

Common Criteria
for Information Technology

Security Evaluation

Part 3: Security Assurance Requirements

March 2004

Version 2.4
Revision 256

ASE/APE Trial Use version

CCIMB-2004-03-003

Page 2 of 190 Version 2.4 March 2004

Foreword

This version of the Common Criteria for Information Technology Security Evaluation (CC
2.4) is based on CC v2.2, and includes an updated version of the Protection Profile and
Security Target criteria (APE and ASE), together with significant changes in the rest of the
CC that were necessary to accommodate these new criteria.

CC version 2.4 consists of the following parts:

− Part 1: Introduction and general model

− Part 2: Security functional requirements

− Part 3: Security assurance requirements

 Version 2.4
 March 2004

This Legal NOTICE has been placed in all Parts of the CC by request:

The seven governmental organisations (collectively called the “Common Criteria
Project Sponsoring Organisations”) listed just below, as the joint holders of the
copyright in the Common Criteria for Information Technology Security Evaluations,
version 2.4 Parts 1 through 3 (called “CC 2.4”), hereby grant non-exclusive license
to ISO/IEC to use CC 2.4 in the continued development/maintenance of the ISO/IEC
15408 international standard. However, the Common Criteria Project Sponsoring
Organisations retain the right to use, copy, distribute, translate or modify CC 2.4 as
they see fit.

Canada: Communications Security Establishment
France: Service Central de la Sécurité des Systèmes d’Information
Germany: Bundesamt für Sicherheit in der Informationstechnik
Netherlands: Netherlands National Communications Security Agency
United Kingdom: Communications-Electronics Security Group
United States: National Institute of Standards and Technology
United States: National Security Agency

Table of contents

Page 4 of 190 Version 2.4 March 2004

Table of Contents

1 SCOPE ... 10

1.1 Organisation of CC Part 3.. 10

1.2 CC assurance paradigm.. 10
1.2.1 CC philosophy.. 10
1.2.2 Assurance approach.. 11
1.2.3 The CC evaluation assurance scale... 12

2 SECURITY ASSURANCE REQUIREMENTS... 13

2.1 Structures... 13
2.1.1 Class structure .. 13
2.1.2 Assurance family structure ... 14
2.1.3 Assurance component structure.. 15
2.1.4 Assurance elements .. 18
2.1.5 EAL structure ... 18

2.2 Component taxonomy ... 21

2.3 Usage of terms in Part 3.. 22

2.4 Assurance categorisation .. 24

2.5 Assurance class and family overview... 25
2.5.1 Class ACM:Configuration management... 25
2.5.2 Class ADO:Delivery and operation .. 26
2.5.3 Class ADV:Development ... 26
2.5.4 Class AGD:Guidance documents ... 27
2.5.5 Class ALC:Life cycle support .. 28
2.5.6 Class ASE:Security Target evaluation.. 29
2.5.7 Class ATE:Tests ... 30
2.5.8 Class AVA:Vulnerability assessment... 30

3 CLASS APE: PROTECTION PROFILE EVALUATION 32

3.1 Conformance claims (APE_CCL).. 32

3.2 Extended components definition (APE_ECD) .. 34

3.3 PP introduction (APE_INT) ... 34

3.4 Security objectives (APE_OBJ).. 35

3.5 Security requirements (APE_REQ)... 36

3.6 Security problem definition (APE_SPD)... 38

4 EVALUATION ASSURANCE LEVELS .. 40

4.1 Evaluation assurance level (EAL) overview.. 40

4.2 Evaluation assurance level details.. 41

Table of contents

March 2004 Version 2.4 Page 5 of 190

4.3 Evaluation assurance level 1 (EAL1) - functionally tested... 42

4.4 Evaluation assurance level 2 (EAL2) - structurally tested... 43

4.5 Evaluation assurance level 3 (EAL3) - methodically tested and checked 44

4.6 Evaluation assurance level 4 (EAL4) - methodically designed, tested, and reviewed.................. 45

4.7 Evaluation assurance level 5 (EAL5) - semiformally designed and tested 47

4.8 Evaluation assurance level 6 (EAL6) - semiformally verified design and tested 48

4.9 Evaluation assurance level 7 (EAL7) - formally verified design and tested 50

5 ASSURANCE CLASSES, FAMILIES, AND COMPONENTS 52

6 CLASS ACM: CONFIGURATION MANAGEMENT 53

6.1 CM automation (ACM_AUT) .. 53

6.2 CM capabilities (ACM_CAP)... 56

6.3 CM scope (ACM_SCP) ... 63

7 CLASS ADO: DELIVERY AND OPERATION.. 67

7.1 Delivery (ADO_DEL).. 67

7.2 Installation, generation and start-up (ADO_IGS) .. 69

8 CLASS ADV: DEVELOPMENT.. 72

8.1 Functional specification (ADV_FSP) ... 77

8.2 High-level design (ADV_HLD)... 80

8.3 Implementation representation (ADV_IMP) .. 86

8.4 TSF internals (ADV_INT) .. 89

8.5 Low-level design (ADV_LLD) .. 94

8.6 Representation correspondence (ADV_RCR)... 98

8.7 Security policy modeling (ADV_SPM) .. 100

9 CLASS AGD: GUIDANCE DOCUMENTS.. 104

9.1 Administrator guidance (AGD_ADM) .. 104

9.2 User guidance (AGD_USR) .. 106

10 CLASS ALC: LIFE CYCLE SUPPORT... 108

10.1 Development security (ALC_DVS) .. 108

Table of contents

Page 6 of 190 Version 2.4 March 2004

10.2 Flaw remediation (ALC_FLR)... 110

10.3 Life cycle definition (ALC_LCD)... 114

10.4 Tools and techniques (ALC_TAT)... 117

11 CLASS ASE: SECURITY TARGET EVALUATION.................................. 120

11.1 Conformance claims (ASE_CCL) .. 120

11.2 Extended components definition (ASE_ECD) .. 122

11.3 ST introduction (ASE_INT) ... 123

11.4 Security objectives (ASE_OBJ).. 124

11.5 Security requirements (ASE_REQ)... 125

11.6 Security problem definition (ASE_SPD) ... 127

11.7 TOE summary specification (ASE_TSS)... 128

12 CLASS ATE: TESTS .. 129

12.1 Coverage (ATE_COV) .. 130

12.2 Depth (ATE_DPT)... 132

12.3 Functional tests (ATE_FUN).. 136

12.4 Independent testing (ATE_IND).. 138

13 CLASS AVA: VULNERABILITY ASSESSMENT 143

13.1 Covert channel analysis (AVA_CCA).. 143

13.2 Misuse (AVA_MSU).. 146

13.3 Vulnerability analysis (AVA_VLA)... 150

A VULNERABILITY ASSESSMENT (AVA)... 155

A.1 Guidance for completing a Covert Channel Analysis .. 155

A.2 Guidance for completing a Misuse Analysis ... 156

A.3 What is Vulnerability Analysis... 156

A.4 Developer construction of a Vulnerability Analysis ... 157
A.4.1 Unstructured Analysis .. 158
A.4.2 Systematic analysis... 159

A.5 Evaluator construction of a Vulnerability Analysis ... 159

A.6 Identification of Potential Vulnerabilities ... 160
A.6.1 Encountered.. 160

Table of contents

March 2004 Version 2.4 Page 7 of 190

A.6.2 Analysis .. 161

A.7 When is attack potential used... 163
A.7.1 Developer.. 163
A.7.2 Evaluator... 164

A.8 Weighted parameters Approach .. 165
A.8.1 Application of attack potential.. 165
A.8.2 Characterising attack potential.. 166
A.8.3 Examples of the application of this approach ... 174

A.9 Example calculation for direct attack.. 176

A.10 Independent Factors Approach.. 177
A.10.1 Definitions of Independent Attack Potential Parameters ... 177
A.10.2 Determination of the Attack Potential.. 182

A.11 Determination of the Requirements for Attack Potential of a Potential Vulnerability............. 184

B CROSS REFERENCE OF ASSURANCE COMPONENT DEPENDENCIES186

C CROSS REFERENCE OF EALS AND ASSURANCE COMPONENTS....... 190

Table of contents

Page 8 of 190 Version 2.4 March 2004

List of figures

Figure 1 - Assurance class/family/component/element hierarchy 14
Figure 2 - Assurance component structure .. 16
Figure 3 - EAL structure .. 19
Figure 4 - Assurance and assurance level association ... 21
Figure 5 - Sample class decomposition diagram .. 21
Figure 6 - APE: Protection Profile evaluation class decomposition............................... 32
Figure 7 - ACM: Configuration management class decomposition 53
Figure 8 - ADO: Delivery and operation class decomposition.. 67
Figure 9 - Relationships between TOE representations and ST entities 73
Figure 10 - ADV: Development class decomposition... 76
Figure 11 - AGD: Guidance documents class decomposition 104
Figure 12 - ALC: Life cycle support class decomposition... 108
Figure 13 - ASE: Security Target evaluation class decomposition............................... 120
Figure 14 - ATE: Tests class decomposition... 129
Figure 15 - AVA: Vulnerability assessment class decomposition................................. 143

List of figures

March 2004 Version 2.4 Page 9 of 190

List of tables

Table 1 Assurance family breakdown and mapping ..25
Table 2 Evaluation assurance level summary ..41
Table 3 EAL1 ...42
Table 4 EAL2 ...44
Table 5 EAL3 ...45
Table 6 EAL4 ...46
Table 7 EAL5 ...48
Table 8 EAL6 ...50
Table 9 EAL7 ...51
Table 10 Vulnerability testing and attack potential..164
Table 11 Calculation of attack potential...173
Table 12 Rating of vulnerabilities ..174
Table 13 Assignment of TOE's characteristic to the requirements derived from the
definitions of the independent parameters...183
Table 14 Determination of the Attack Potential...184
Table 15 Dependency table for Class ACM: Configuration management.........................186
Table 16 Dependency table for Class ADO: Delivery and operation187
Table 17 Dependency table for Class ADV: Development..187
Table 18 Dependency table for Class AGD: Guidance documents187
Table 19 Dependency table for Class ALC: Life cycle support...188
Table 20 Dependency table for Class APE: Protection Profile evaluation188
Table 21 Dependency table for Class ASE: Security Target evaluation............................189
Table 22 Dependency table for Class ATE: Tests..189
Table 23 Dependency table for Class AVA: Vulnerability assessment189
Table 24 Evaluation assurance level summary ..190

Scope

Page 10 of 190 Version 2.4 March 2004

1 Scope

1 This Part 3 defines the assurance requirements of the CC. It includes the
evaluation assurance levels (EALs) that define a scale for measuring
assurance, the individual assurance components from which the assurance
levels are composed, and the criteria for evaluation of PPs and STs.

1.1 Organisation of CC Part 3

2 Clause 1 is the introduction and paradigm for this CC Part 3.

3 Clause 2 describes the presentation structure of the assurance classes,
families, components, and evaluation assurance levels along with their
relationships. It also characterises the assurance classes and families found in
clauses 8 through 14.

4 Clause 3 provides a brief introduction to the evaluation criteria for PPs,
followed by detailed explanations of the families and components that are
used for those evaluations.

5 Clause 4 provides detailed definitions of the EALs.

6 Clause 5 provides a brief introduction to the assurance classes and is
followed by clauses 6 through 13 that provide detailed definitions of those
classes.

7 Annex A provides an explanation of the AVA criteria and examples of their
application..

8 Annex B provides a summary of the dependencies between the assurance
components.

9 Annex C provides a cross reference between the EALs and the assurance
components.

1.2 CC assurance paradigm

10 The purpose of this subclause is to document the philosophy that underpins
the CC approach to assurance. An understanding of this subclause will
permit the reader to understand the rationale behind the CC Part 3 assurance
requirements.

1.2.1 CC philosophy

11 The CC philosophy is that the threats to security and organisational security
policy commitments should be clearly articulated and the proposed security
measures be demonstrably sufficient for their intended purpose.

12 Furthermore, measures should be adopted that reduce the likelihood of
vulnerabilities, the ability to exercise (i.e. intentionally exploit or

Scope

March 2004 Version 2.4 Page 11 of 190

unintentionally trigger) a vulnerability, and the extent of the damage that
could occur from a vulnerability being exercised. Additionally, measures
should be adopted that facilitate the subsequent identification of
vulnerabilities and the elimination, mitigation, and/or notification that a
vulnerability has been exploited or triggered.

1.2.2 Assurance approach

13 The CC philosophy is to provide assurance based upon an evaluation (active
investigation) of the TOE that is to be trusted. Evaluation has been the
traditional means of providing assurance and is the basis for prior evaluation
criteria documents. In aligning the existing approaches, the CC adopts the
same philosophy. The CC proposes measuring the validity of the
documentation and of the resulting TOE by expert evaluators with increasing
emphasis on scope, depth, and rigour.

14 The CC does not exclude, nor does it comment upon, the relative merits of
other means of gaining assurance. Research continues with respect to
alternative ways of gaining assurance. As mature alternative approaches
emerge from these research activities, they will be considered for inclusion
in the CC, which is so structured as to allow their future introduction.

15 Assurance is grounds for confidence that a TOE in its operational
environment solves a defined security problem. The CC-approach to gaining
assurance is to divide the problem into two subproblems:

a) postulating a set of SFRs for the TOE and gain assurance that a TOE
meeting these SFRs in its operational environment will solve the
defined security problem;

b) gain assurance that the TOE meets these SFRs.

1.2.2.1 The requirements solve the problem

16 Postulating SFRs and showing that these solve a defined security problem is
done in the CC through the use of the Security Target construct.

17 In this Security Target, the security problem is defined, and it is shown how
the combination of SFRs and security objectives for the operational
environment address this problem.

18 Assurance in the correctness of the Security Target is gained through
evaluation (application of the ASE criteria) of the Security Target.

19 More information on Security Targets can be found in CC Part 1 Annex B.

1.2.2.2 The TOE meets the requirements

20 When the ST has been succesfully evaluated, assurance has been established
that a TOE meeting the SFRs in the ST, in the operational environment
defined in the ST, will solve the security problem that was defined in the ST

Scope

Page 12 of 190 Version 2.4 March 2004

21 The next step is gaining assurance that the TOE actually meets these SFRs,
and does not contain vulnerabilities. Vulnerabilities can arise through
failures in:

a) construction - that is, a TOE does not meet its SFRs and/or
vulnerabilities have been introduced as a result of poor constructional
standards or incorrect design choices;

b) operation - that is, a TOE has been constructed correctly to correct
SFRs but vulnerabilities have been introduced as a result of
inadequate controls upon the operation.

22 This assurance is gained through evaluation. Evaluation techniques can
include, but are not limited to:

a) analysis and checking of process(es) and procedure(s);

b) checking that process(es) and procedure(s) are being applied;

c) analysis of the correspondence between TOE design representations;

d) analysis of the TOE design representations against the SFRs;

e) verification of proofs;

f) analysis of guidance documents;

g) analysis of functional tests developed and the results provided;

h) independent functional testing;

i) analysis for vulnerabilities (including flaw hypothesis);

j) penetration testing.

1.2.3 The CC evaluation assurance scale

23 The CC philosophy asserts that greater assurance results from the application
of greater evaluation effort, and that the goal is to apply the minimum effort
required to provide the necessary level of assurance. The increasing level of
effort is based upon:

a) depth -- that is, the effort is greater because it is deployed to a finer
level of design and implementation detail;

b) rigour -- that is, the effort is greater because it is applied in a more
structured, formal manner.

Security assurance requirements

March 2004 Version 2.4 Page 13 of 190

2 Security assurance requirements

2.1 Structures

24 The following subclauses describe the constructs used in representing the
assurance classes, families, components, and EALs along with the
relationships among them.

25 Figure 1 illustrates the SARs defined in this CC Part 3. Note that the most
abstract collection of SARs is referred to as a class. Each class contains
assurance families, which then contain assurance components, which in turn
contain assurance elements. Classes and families are used to provide a
taxonomy for classifying SARs, while components are used to specify SARs
in a PP/ST.

2.1.1 Class structure

26 Figure 1 illustrates the assurance class structure.

2.1.1.1 Class name

27 Each assurance class is assigned a unique name. The name indicates the
topics covered by the assurance class.

28 A unique short form of the assurance class name is also provided. This is the
primary means for referencing the assurance class. The convention adopted
is an “A” followed by two letters related to the class name.

2.1.1.2 Class introduction

29 Each assurance class has an introductory subclause that describes the
composition of the class and contains supportive text covering the intent of
the class.

2.1.1.3 Assurance families

30 Each assurance class contains at least one assurance family. The structure of
the assurance families is described in the following subclause.

Security assurance requirements

Page 14 of 190 Version 2.4 March 2004

Figure 1 - Assurance class/family/component/element hierarchy

2.1.2 Assurance family structure

31 Figure 1 illustrates the assurance family structure.

2.1.2.1 Family name

32 Every assurance family is assigned a unique name. The name provides
descriptive information about the topics covered by the assurance family.
Each assurance family is placed within the assurance class that contains other
families with the same intent.

33 A unique short form of the assurance family name is also provided. This is
the primary means used to reference the assurance family. The convention
adopted is that the short form of the class name is used, followed by an
underscore, and then three letters related to the family name.

Security assurance requirements

March 2004 Version 2.4 Page 15 of 190

2.1.2.2 Objectives

34 The objectives subclause of the assurance family presents the intent of the
assurance family.

35 This subclause describes the objectives, particularly those related to the CC
assurance paradigm, that the family is intended to address. The description
for the assurance family is kept at a general level. Any specific details
required for objectives are incorporated in the particular assurance
component.

2.1.2.3 Component levelling

36 Each assurance family contains one or more assurance components. This
subclause of the assurance family describes the components available and
explains the distinctions between them. Its main purpose is to differentiate
between the assurance components once it has been determined that the
assurance family is a necessary or useful part of the SARs for a PP/ST.

37 Assurance families containing more than one component are levelled and
rationale is provided as to how the components are levelled. This rationale is
in terms of scope, depth, and/or rigour.

2.1.2.4 Application notes

38 The application notes subclause of the assurance family, if present, contains
additional information for the assurance family. This information should be
of particular interest to users of the assurance family (e.g. PP and ST authors,
designers of TOEs, evaluators). The presentation is informal and covers, for
example, warnings about limitations of use and areas where specific attention
may be required.

2.1.2.5 Assurance components

39 Each assurance family has at least one assurance component. The structure
of the assurance components is provided in the following subclause.

2.1.3 Assurance component structure

40 Figure 2 illustrates the assurance component structure.

Security assurance requirements

Page 16 of 190 Version 2.4 March 2004

Figure 2 - Assurance component structure

41 The relationship between components within a family is highlighted using a
bolding convention. Those parts of the requirements that are new, enhanced
or modified beyond the requirements of the previous component within a
hierarchy are bolded. The same bolding convention is also used for
dependencies.

2.1.3.1 Component identification

42 The component identification subclause provides descriptive information
necessary to identify, categorise, register, and reference a component.

43 Every assurance component is assigned a unique name. The name provides
descriptive information about the topics covered by the assurance
component. Each assurance component is placed within the assurance family
that shares its security objective.

44 A unique short form of the assurance component name is also provided. This
is the primary means used to reference the assurance component. The
convention used is that the short form of the family name is used, followed
by a period, and then a numeric character. The numeric characters for the
components within each family are assigned sequentially, starting from 1.

2.1.3.2 Objectives

45 The objectives subclause of the assurance component, if present, contains
specific objectives for the particular assurance component. For those
assurance components that have this subclause, it presents the specific intent
of the component and a more detailed explanation of the objectives.

2.1.3.3 Application notes

46 The application notes subclause of an assurance component, if present,
contains additional information to facilitate the use of the component.

Security assurance requirements

March 2004 Version 2.4 Page 17 of 190

2.1.3.4 Dependencies

47 Dependencies among assurance components arise when a component is not
self-sufficient, and relies upon the presence of another component.

48 Each assurance component provides a complete list of dependencies to other
assurance components. Some components may list “No dependencies”, to
indicate that no dependencies have been identified. The components
depended upon may have dependencies on other components.

49 The dependency list identifies the minimum set of assurance components
which are relied upon. Components which are hierarchical to a component in
the dependency list may also be used to satisfy the dependency.

50 In specific situations the indicated dependencies might not be applicable. The
PP/ST author, by providing rationale for why a given dependency is not
applicable, may elect not to satisfy that dependency.

2.1.3.5 Assurance elements

51 A set of assurance elements is provided for each assurance component. An
assurance element is a security requirement which, if further divided, would
not yield a meaningful evaluation result. It is the smallest security
requirement recognised in the CC.

52 Each assurance element is identified as belonging to one of the three sets of
assurance elements:

a) Developer action elements: the activities that shall be performed by
the developer. This set of actions is further qualified by evidential
material referenced in the following set of elements. Requirements
for developer actions are identified by appending the letter “D” to the
element number.

b) Content and presentation of evidence elements: the evidence
required, what the evidence shall demonstrate, and what information
the evidence shall convey. Requirements for content and presentation
of evidence are identified by appending the letter “C” to the element
number.

c) Evaluator action elements: the activities that shall be performed by
the evaluator. This set of actions explicitly includes confirmation that
the requirements prescribed in the content and presentation of
evidence elements have been met. It also includes explicit actions and
analysis that shall be performed in addition to that already performed
by the developer. Implicit evaluator actions are also to be performed
as a result of developer action elements which are not covered by
content and presentation of evidence requirements. Requirements for
evaluator actions are identified by appending the letter “E” to the
element number.

Security assurance requirements

Page 18 of 190 Version 2.4 March 2004

53 The developer actions and content and presentation of evidence define the
assurance requirements that are used to represent a developer's
responsibilities in demonstrating assurance in the TOE meeting the SFRs of
a PP or ST.

54 The evaluator actions define the evaluator's responsibilities in the two
aspects of evaluation. The first aspect is validation of the PP/ST, in
accordance with the classes APE and ASE in clauses APE: Protection Profile
evaluation and ASE: Security Target evaluation. The second aspect is
verification of the TOE's conformance with its SFRs and SARs. By
demonstrating that the PP/ST is valid and that the requirements are met by
the TOE, the evaluator can provide a basis for confidence that the TOE in its
operational environment solves the defined security problem.

55 The developer action elements, content and presentation of evidence
elements, and explicit evaluator action elements, identify the evaluator effort
that shall be expended in verifying the security claims made in the ST of the
TOE.

2.1.4 Assurance elements

56 Each element represents a requirement to be met. These statements of
requirements are intended to be clear, concise, and unambiguous. Therefore,
there are no compound sentences: each separable requirement is stated as an
individual element.

2.1.5 EAL structure

57 Figure 3 illustrates the EALs and associated structure defined in this Part 3.
Note that while the figure shows the contents of the assurance components, it
is intended that this information would be included in an EAL by reference
to the actual components defined in the CC.

Security assurance requirements

March 2004 Version 2.4 Page 19 of 190

Figure 3 - EAL structure

2.1.5.1 EAL name

58 Each EAL is assigned a unique name. The name provides descriptive
information about the intent of the EAL.

59 A unique short form of the EAL name is also provided. This is the primary
means used to reference the EAL.

2.1.5.2 Objectives

60 The objectives subclause of the EAL presents the intent of the EAL.

2.1.5.3 Application notes

61 The application notes subclause of the EAL, if present, contains information
of particular interest to users of the EAL (e.g. PP and ST authors, designers
of TOEs targeting this EAL, evaluators). The presentation is informal and
covers, for example, warnings about limitations of use and areas where
specific attention may be required.

Security assurance requirements

Page 20 of 190 Version 2.4 March 2004

2.1.5.3.1 Assurance components

62 A set of assurance components have been chosen for each EAL.

63 A higher level of assurance than that provided by a given EAL can be
achieved by:

a) including additional assurance components from other assurance
families; or

b) replacing an assurance component with a higher level assurance
component from the same assurance family.

2.1.5.4 Relationship between assurances and assurance levels

64 Figure 4 illustrates the relationship between the SARs and the assurance
levels defined in the CC. While assurance components further decompose
into assurance elements, assurance elements cannot be individually
referenced by assurance levels. Note that the arrow in the figure represents a
reference from an EAL to an assurance component within the class where it
is defined.

Security assurance requirements

March 2004 Version 2.4 Page 21 of 190

Figure 4 - Assurance and assurance level association

2.2 Component taxonomy

65 This Part 3 contains classes of families and components that are grouped on
the basis of related assurance. At the start of each class is a diagram that
indicates the families in the class and the components in each family.

Figure 5 - Sample class decomposition diagram

66 In Figure 5, above, the class as shown contains a single family. The family
contains three components that are linearly hierarchical (i.e. component 2
requires more than component 1, in terms of specific actions, specific
evidence, or rigour of the actions or evidence). The assurance families in this
Part 3 are all linearly hierarchical, although linearity is not a mandatory
criterion for assurance families that may be added in the future.

Security assurance requirements

Page 22 of 190 Version 2.4 March 2004

2.3 Usage of terms in Part 3

67 The following is a list of terms which are used in a precise way in this Part 3.
They do not merit inclusion in the glossary because they are general English
terms and their usage, though restricted to the explanations given below, is in
conformance with dictionary definitions. However, those explanations of the
terms were used as guidance in the development of this Part 3 and should be
helpful for general understanding.

68 Coherent :

An entity is logically ordered and has a discernible meaning. For
documentation, this addresses both the actual text and the structure of
the document, in terms of whether it is understandable by its target
audience.

69 Complete :

All necessary parts of an entity have been provided. In terms of
documentation, this means that all relevant information is covered in
the documentation, at such a level of detail that no further
explanation is required at that level of abstraction.

70 Confirm :

This term is used to indicate that something needs to be reviewed in
detail, and that an independent determination of sufficiency needs to
be made. The level of rigour required depends on the nature of the
subject matter. This term is only applied to evaluator actions.

71 Consistent :

This term describes a relationship between two or more entities,
indicating that there are no apparent contradictions between these
entitieAssurance categorisations.

72 Counter (verb) :

This term is typically used in the context that the impact of a
particular threat is mitigated but not necessarily eradicated.

73 Demonstrate :

This term refers to an analysis leading to a conclusion, which is less
rigourous than a “proof”.

74 Describe :

This term requires that certain, specific details of an entity be
provided.

75 Determine :

Security assurance requirements

March 2004 Version 2.4 Page 23 of 190

This term requires an independent analysis to be made, with the
objective of reaching a particular conclusion. The usage of this term
differs from “confirm” or “verify”, since these other terms imply that
an analysis has already been performed which needs to be reviewed,
whereas the usage of “determine” implies a truly independent
analysis, usually in the absence of any previous analysis having been
performed.

76 Ensure :

This term, used by itself, implies a strong causal relationship between
an action and its consequences. This term is typically preceded by the
word “helps”, which indicates that the consequence is not fully
certain, on the basis of that action alone.

77 Exhaustive :

This term is used in the CC with respect to conducting an analysis or
other activity. It is reAssurance categorisationlated to “systematic”
but is considerably stronger, in that it indicates not only that a
methodical approach has been taken to perform the analysis or
activity according to an unambiguous plan, but that the plan that was
followed is sufficient to ensure that all possible avenues have been
exercised.

78 Explain :

This term differs from both “describe” and “demonstrate”. It is
intended to answer the question “Why?” without actually attempting
to argue that the course of action that was taken was necessarily
optimal.

79 Internally consistent :

There are no apparent contradictions between any aspects of an
entity. In terms of documentation, this means that there can be no
statements within the documentation that can be taken to contradict
each other.

80 Justification :

This term refers to an analysis leading to a conclusion, but is more
rigorous than a demonstration. This term requires significant rigour in
terms of very carefully and thoroughly explaining every step of a
logical argument.

81 Prove :

This refers to a formal analysis in its mathematical sense. It is
completely rigourous in all ways. Typically, “prove” is used when
there is a desire to show correspondence between two TSF
representations at a high level of rigour.

Security assurance requirements

Page 24 of 190 Version 2.4 March 2004

82 Specify :

This term is used in the same context as “describe”, but is intended to
be more rigourous and precise. It is very similar to “define”.

83 Trace (verb) :

This term is used to indicate that an informal correspondence is
required between two entities with only a minimal level of rigour.

84 Verify :

This term is similar in context to “confirm”, but has more rigourous
connotations. This term when used in the context of evaluator actions
indicates that an independent effort is required of the evaluator.

2.4 Assurance categorisation

85 The assurance classes, families, and the abbreviation for each family are
shown in Table 1 Assurance family breakdown and mapping.

Assurance Class Assurance Family Abbreviated
Name

CM automation (ACM_AUT) ACM_AUT
CM capabilities (ACM_CAP) ACM_CAP

ACM: Configuration
management

CM scope (ACM_SCP) ACM_SCP
Delivery (ADO_DEL) ADO_DEL ADO: Delivery and

operation Installation, generation and
start-up (ADO_IGS)

ADO_IGS

Functional specification
(ADV_FSP)

ADV_FSP

High-level design
(ADV_HLD)

ADV_HLD

Implementation
representation (ADV_IMP)

ADV_IMP

TSF internals (ADV_INT) ADV_INT
Low-level design
(ADV_LLD)

ADV_LLD

Representation
correspondence (ADV_RCR)

ADV_RCR

ADV: Development

Security policy modeling
(ADV_SPM)

ADV_SPM

Administrator guidance
(AGD_ADM)

AGD_ADM AGD: Guidance
documents

User guidance (AGD_USR) AGD_USR
Development security
(ALC_DVS)

ALC_DVS

Flaw remediation
(ALC_FLR)

ALC_FLR

ALC: Life cycle
support

Life cycle definition ALC_LCD

Security assurance requirements

March 2004 Version 2.4 Page 25 of 190

Assurance Class Assurance Family Abbreviated
Name

(ALC_LCD)
Tools and techniques
(ALC_TAT)

ALC_TAT

Conformance claims
(ASE_CCL)

ASE_CCL

Extended components
definition (ASE_ECD)

ASE_ECD

ST introduction (ASE_INT) ASE_INT
Security objectives
(ASE_OBJ)

ASE_OBJ

Security requirements
(ASE_REQ)

ASE_REQ

Security problem definition
(ASE_SPD)

ASE_SPD

ASE: Security Target
evaluation

TOE summary specification
(ASE_TSS)

ASE_TSS

Coverage (ATE_COV) ATE_COV
Depth (ATE_DPT) ATE_DPT
Functional tests (ATE_FUN) ATE_FUN

ATE: Tests

Independent testing
(ATE_IND)

ATE_IND

Covert channel analysis
(AVA_CCA)

AVA_CCA

Misuse (AVA_MSU) AVA_MSU

AVA: Vulnerability
assessment

Vulnerability analysis
(AVA_VLA)

AVA_VLA

Table 1 Assurance family breakdown and mapping

2.5 Assurance class and family overview

86 The following summarises the assurance classes and families of clauses 6-13.
These classes and family summaries are presented in the same order as they
appear in clauses 6-13.

2.5.1 Class ACM:Configuration management

87 Configuration management (CM) helps to ensure that the integrity of the
TOE is preserved, by requiring discipline and control in the processes of
refinement and modification of the TOE and other related information. CM
prevents unauthorised modifications, additions, or deletions to the TOE, thus
providing assurance that the TOE and documentation used for evaluation are
the ones prepared for distribution.

2.5.1.1 CM automation (ACM_AUT)

88 Configuration management automation establishes the level of automation
used to control the configuration items.

Security assurance requirements

Page 26 of 190 Version 2.4 March 2004

2.5.1.2 CM capabilities (ACM_CAP)

89 Configuration management capabilities define the characteristics of the
configuration management system.

2.5.1.3 CM scope (ACM_SCP)

90 Configuration management scope indicates the TOE items that need to be
controlled by the configuration management system.

2.5.2 Class ADO:Delivery and operation

91 Assurance class ADO: Delivery and operation defines requirements for the
measures, procedures, and standards concerned with secure delivery,
installation, and operational use of the TOE, ensuring that the security
protection offered by the TOE is not compromised during transfer,
installation, start-up, and operation.

2.5.2.1 Delivery (ADO_DEL)

92 Delivery covers the procedures used to maintain security during transfer of
the TOE to the user, both on initial delivery and as part of subsequent
modification. It includes special procedures or operations required to
demonstrate the authenticity of the delivered TOE. Such procedures and
measures are the basis for ensuring that the security protection offered by the
TOE is not compromised during transfer. While compliance with the
delivery requirements cannot always be determined when a TOE is
evaluated, it is possible to evaluate the procedures that a developer has
developed to distribute the TOE to users.

2.5.2.2 Installation, generation and start-up (ADO_IGS)

93 Installation, generation, and start-up requires that the copy of the TOE is
configured and activated by the administrator to exhibit the same protection
properties as the master copy of the TOE. The installation, generation, and
start-up procedures provide confidence that the administrator will be aware
of the TOE configuration parameters and how they can affect the TSF.

2.5.3 Class ADV:Development

94 Assurance class ADV: Development defines requirements for the stepwise
refinement of the TSF from the TOE summary specification in the ST down
to the actual implementation. Each of the resulting TSF representations
provide information to help the evaluator determine whether the TOE meets
its SFRs.

2.5.3.1 Functional specification (ADV_FSP)

95 The functional specification describes the TSF, and must be a complete and
accurate instantiation of the SFRs. The functional specification also details
the external interface to the TOE. Users of the TOE are expected to interact
with the TSF through this interface.

Security assurance requirements

March 2004 Version 2.4 Page 27 of 190

2.5.3.2 High-level design (ADV_HLD)

96 The high-level design is a top level design specification that refines the TSF
functional specification into the major constituent parts of the TSF. The high
level design identifies the basic structure of the TSF and the major hardware,
firmware, and software elements.

2.5.3.3 Implementation representation (ADV_IMP)

97 The implementation representation is the least abstract representation of the
TSF. It captures the detailed internal workings of the TSF in terms of source
code, hardware drawings, etc., as applicable.

2.5.3.4 TSF internals (ADV_INT)

98 The TSF internals requirements specify the requisite internal structuring of
the TSF.

2.5.3.5 Low-level design (ADV_LLD)

99 The low-level design is a detailed design specification that refines the high-
level design into a level of detail that can be used as a basis for programming
and/or hardware construction.

2.5.3.6 Representation correspondence (ADV_RCR)

100 The representation correspondence is a demonstration of mappings between
all adjacent pairs of available TSF representations, from the functional
specification through to the least abstract TSF representation that is provided.

2.5.3.7 Security policy modeling (ADV_SPM)

101 Security policy models are structured representations of security policies of
the TSP, and are used to provide increased assurance that the functional
specification corresponds to the security policies of the TSP, and ultimately
to the SFRs. This is achieved via correspondence mappings between the
functional specification, the security policy model, and the security policies
that are modelled.

2.5.4 Class AGD:Guidance documents

102 Assurance class AGD: Guidance documents defines requirements directed at
the understandability, coverage and completeness of the operational
documentation provided by the developer. This documentation, which
provides two categories of information, for users and for administrators, is an
important factor in the secure operation of the TOE.

2.5.4.1 Administrator guidance (AGD_ADM)

103 Requirements for administrative guidance help ensure that the environmental
constraints can be understood by administrators and operators of the TOE.
Administrative guidance is the primary means available to the developer for

Security assurance requirements

Page 28 of 190 Version 2.4 March 2004

providing the TOE administrators with detailed, accurate information of how
to administer the TOE in a secure manner and how to make effective use of
the TSF privileges and protection functions.

2.5.4.2 User guidance (AGD_USR)

104 Requirements for user guidance help ensure that users are able to operate the
TOE in a secure manner (e.g. the usage constraints assumed by the PP or ST
must be clearly explained and illustrated). User guidance is the primary
vehicle available to the developer for providing the TOE users with the
necessary background and specific information on how to correctly use the
TOE's protection functions. User guidance must do two things. First, it needs
to explain what the user-visible security functions do and how they are to be
used, so that users are able to consistently and effectively protect their
information. Second, it needs to explain the user's role in maintaining the
TOE's security.

2.5.5 Class ALC:Life cycle support

105 Assurance class ALC: Life cycle support defines requirements for assurance
through the adoption of a well defined life-cycle model for all the steps of
the TOE development, including flaw remediation procedures and policies,
correct use of tools and techniques and the security measures used to protect
the development environment.

2.5.5.1 Development security (ALC_DVS)

106 Development security covers the physical, procedural, personnel, and other
security measures used in the development environment. It includes physical
security of the development location(s) and controls on the selection and
hiring of development staff.

2.5.5.2 Flaw remediation (ALC_FLR)

107 Flaw remediation ensures that flaws discovered by the TOE consumers will
be tracked and corrected while the TOE is supported by the developer. While
future compliance with the flaw remediation requirements cannot be
determined when a TOE is evaluated, it is possible to evaluate the procedures
and policies that a developer has in place to track and repair flaws, and to
distribute the repairs to consumers.

2.5.5.3 Life cycle definition (ALC_LCD)

108 Life cycle definition establishes that the engineering practices used by a
developer to produce the TOE include the considerations and activities
identified in the development process and operational support requirements.
Confidence in the correspondence between the requirements and the TOE is
greater when security analysis and the production of evidence are done on a
regular basis as an integral part of the development process and operational
support activities. It is not the intent of this component to dictate any specific
development process.

Security assurance requirements

March 2004 Version 2.4 Page 29 of 190

2.5.5.4 Tools and techniques (ALC_TAT)

109 Tools and techniques addresses the need to define the development tools
being used to analyse and implement the TOE. It includes requirements
concerning the development tools and implementation dependent options of
those tools.

2.5.6 Class ASE:Security Target evaluation

110 Assurance class ASE: Security Target evaluation defines requirements for
the evaluation of an ST, to demonstrate that the ST is sound and internally
consistent, and, if the ST is based on one or more PPs or packages, that the
ST is a correct instantiation of these PPs and packages.

2.5.6.1 Conformance claims (ASE_CCL)

111 Conformance claims describes how the Security Target conforms to Parts 2
and Part 3 of the CC, to Protection Profiles and to packages.

2.5.6.2 Extended components definition (ASE_ECD)

112 Extended components are defined wherever it is impossible to clearly
express requirements using only components from CC Part 2 and/or CC Part
3.

2.5.6.3 ST introduction (ASE_INT)

113 The ST introduction describes the TOE in a narrative way on three levels of
abstraction.

2.5.6.4 Security objectives (ASE_OBJ)

114 Security objectives are a concise statement of the intended response to the
security problem defined in the Security problem definition (ASE_SPD)
family.

2.5.6.5 Security requirements (ASE_REQ)

115 The SFRs form a clear, unambiguous and canonical description of the
expected security behavior of the TOE. The SARs form a clear,
unambiguous and canonical description of the expected activities that will be
undertaken to gain assurance in the TOE.

2.5.6.6 Security problem definition (ASE_SPD)

116 The security problem definition defines the problem addressed by the TOE,
the operational environment of the TOE and the development environment of
the TOE.

Security assurance requirements

Page 30 of 190 Version 2.4 March 2004

2.5.6.7 TOE summary specification (ASE_TSS)

117 The TOE Summary specification allows evaluators and potential consumers
of the TOE to understand how the TOE meets its SFRs.

2.5.7 Class ATE:Tests

118 Assurance class ATE: Tests states testing requirements that demonstrate that
the TOE matches its design descriptions as provided in the ADV:
Development class.

2.5.7.1 Coverage (ATE_COV)

119 Coverage deals with the completeness of the functional tests performed by
the developer on the TOE. It addresses the extent to which the TSF is tested.

2.5.7.2 Depth (ATE_DPT)

120 Depth deals with the level of detail to which the developer tests the TSF.
Testing of is based upon increasing depth of information derived from
analysis of the TSF representations.

2.5.7.3 Functional tests (ATE_FUN)

121 Functional testing establishes that the tests performed by the developer are
performed and documented correctly.

2.5.7.4 Independent testing (ATE_IND)

122 Independent testing specifies the degree to which the testing of the TSF must
be performed by a party other than the developer (e.g. a third party). This
family adds value by the introduction of tests that are not part of the
developers tests.

2.5.8 Class AVA:Vulnerability assessment

123 Assurance class AVA: Vulnerability assessment defines requirements
directed at the identification of exploitable vulnerabilities. Specifically, it
addresses those vulnerabilities introduced in the construction, operation,
misuse, or incorrect configuration of the TOE.

2.5.8.1 Covert channel analysis (AVA_CCA)

124 Covert channel analysis is directed towards the discovery and analysis of
unintended communications channels that can be exploited to violate the
TSP.

2.5.8.2 Misuse (AVA_MSU)

125 Misuse analysis investigates whether an administrator or user, with an
understanding of the guidance documentation, would reasonably be able to

Security assurance requirements

March 2004 Version 2.4 Page 31 of 190

determine if the TOE is configured and operating in a manner that is
insecure.

2.5.8.3 Vulnerability analysis (AVA_VLA)

126 Vulnerability analysis consists of the identification of vulnerabilities
potentially introduced in the different refinement steps of the development.
These potential vulnerabilities are assessed through penetration testing to
determine whether they could, in practice, be exploitable to compromise the
TSP.

Class APE: Protection Profile evaluation

Page 32 of 190 Version 2.4 March 2004

3 Class APE: Protection Profile evaluation

127 Evaluating a PP is required to demonstrate that the PP is sound and internally
consistent, and, if the PP is based on one or more other other PPs or on
packages, that the PP is a correct instantiation of these PPs and packages.
These properties are necessary for the PP to be suitable for use as the basis
for writing an ST.

128 Figure 6 shows the families within this class, and the hierarchy of
components within the families.

Figure 6 - APE: Protection Profile evaluation class decomposition

3.1 Conformance claims (APE_CCL)

Objectives

129 The objective of this family is to determine the validity of the conformance
claim. In addition, this family specifies how STs are to claim conformance
with the PP.

APE_CCL.1 Conformance claims

Dependencies

APE_INT.1 PP introduction
ASE_ECD.1 Extended components definition
ASE_REQ.1 Stated security requirements

Developer action elements

APE_CCL.1.1D The developer shall provide a conformance claim.

Class APE: Protection Profile evaluation

March 2004 Version 2.4 Page 33 of 190

APE_CCL.1.2D The developer shall provide a conformance claim rationale.

APE_CCL.1.3D The developer shall provide a conformance statement.

Content and presentation of evidence elements

APE_CCL.1.1C The conformance claim shall contain a CC conformance claim that identifies
the version of the CC to which the PP claims conformance.

APE_CCL.1.2C The CC conformance claim shall describe the conformance of the PP to CC
Part 2 as either CC Part 2 conformant or CC Part 2 extended.

APE_CCL.1.3C The CC conformance claim shall describe the conformance of the PP to CC
Part 3 as either CC Part 3 conformant or CC Part 3 extended.

APE_CCL.1.4C The CC conformance claim shall be consistent with the extended
components definition.

APE_CCL.1.5C The conformance claim shall identify all PPs and security requirement
packages to which the PP claims conformance.

APE_CCL.1.6C The conformance claim shall describe any conformance of the PP to a
package as either package-conformant or package-augmented.

APE_CCL.1.7C The conformance claims rationale shall demonstrate that the TOE type is
consistent with the TOE type in the PPs for which conformance is being
claimed.

APE_CCL.1.8C The conformance claims rationale shall demonstrate that the statement of the
security problem definition is consistent with the statement of the security
problem definition in the PPs for which conformance is being claimed.

APE_CCL.1.9C The conformance claims rationale shall demonstrate that the statement of
objectives is consistent with the statement of objectives in the PPs for which
conformance is being claimed.

APE_CCL.1.10C The conformance claims rationale shall demonstrate that the statement of
security requirements is consistent with the statement of security
requirements in the PPs for which conformance is being claimed.

APE_CCL.1.11C The conformance claims rationale shall demonstrate that all operations of the
security requirements that were taken from a PP are completed consistently
with the respective PP.

APE_CCL.1.12C The conformance claims rationale shall demonstrate that the statement of
security requirements is consistent with the statement of security
requirements in the security requirements package for which conformance is
being claimed.

APE_CCL.1.13C The conformance claims rationale shall demonstrate that all operations of the
security requirements in the PP that were taken from a package are
completed consistently with the respective security requirement package.

Class APE: Protection Profile evaluation

Page 34 of 190 Version 2.4 March 2004

APE_CCL.1.14C The conformance statement shall describe the conformance required of any
PPs/STs as exact-PP, strict-PP or demonstrable-PP -conformance for the PP.

Evaluator action elements

APE_CCL.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

3.2 Extended components definition (APE_ECD)

APE_ECD.1 Extended components definition

Developer action elements

APE_ECD.1.1D The PP developer shall provide a statement of security requirements

APE_ECD.1.2D The PP developer shall provide an extended components definition.

Content and presentation of evidence elements

APE_ECD.1.1C The statement of security requirements shall identify all extended security
requirements.

APE_ECD.1.2C The extended components definition shall define an extended component for
each extended security requirement.

APE_ECD.1.3C The extended components definition shall describe how each extended
component is related to the existing CC components, families, and classes.

APE_ECD.1.4C The extended components definition shall use the existing CC components,
families, classes, and methodology as a model for presentation.

APE_ECD.1.5C The extended components shall consist of measurable and objective elements
such that compliance or noncompliance to these elements can be
demonstrated.

Evaluator action elements

APE_ECD.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

APE_ECD.1.2E The evaluator shall confirm that no extended component can be clearly
expressed using existing components.

3.3 PP introduction (APE_INT)

Objectives

130 The objective of this family is to describe the TOE in a narrative way.

Class APE: Protection Profile evaluation

March 2004 Version 2.4 Page 35 of 190

131 Evaluation of the PP introduction is required to demonstrate that the PP is
correctly identified, and that the PP reference and TOE overview are
consistent with each other.

APE_INT.1 PP introduction

Developer action elements

APE_INT.1.1D The PP developer shall provide a PP introduction.

Content and presentation of evidence elements

APE_INT.1.1C The PP introduction shall contain a PP reference and a TOE overview.

APE_INT.1.2C The PP reference shall uniquely identify the PP.

APE_INT.1.3C The TOE overview shall summarise the usage and major security features of
the TOE.

APE_INT.1.4C The TOE overview shall identify the TOE type.

APE_INT.1.5C The TOE overview shall identify any non-TOE hardware/software/firmware
available to the TOE.

Evaluator action elements

APE_INT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

3.4 Security objectives (APE_OBJ)

Objectives

132 The security objectives are a concise statement of the intended response to
the security problem defined through the Security problem definition
(APE_SPD) family.

133 Evaluation of the security objectives is required to demonstrate that the
security objectives adequately and completely address the security problem
definition, that the division of this problem between the TOE, its
development environment, and its operational environment is clearly
defined, and that the security objectives are internally consistent.

APE_OBJ.1 Security objectives

Dependencies

APE_SPD.1 Security problem definition

Developer action elements

APE_OBJ.1.1D The PP developer shall provide a statement of security objectives.

Class APE: Protection Profile evaluation

Page 36 of 190 Version 2.4 March 2004

APE_OBJ.1.2D The PP developer shall provide a security objectives rationale.

Content and presentation of evidence elements

APE_OBJ.1.1C The statement of security objectives shall describe the security objectives for
the TOE.

APE_OBJ.1.2C The security objectives rationale shall trace each security objective for the
TOE back to threats countered by that security objective and OSPs met by
that security objective.

APE_OBJ.1.3C The statement of security objectives shall describe the security objectives for
the development environment.

APE_OBJ.1.4C The security objectives rationale shall trace each security objective for the
development environment back to threats countered by that security
objective and OSPs met by that security objective.

APE_OBJ.1.5C The statement of security objectives shall describe the security objectives for
the operational environment

APE_OBJ.1.6C The security objectives rationale shall trace each security objective for the
operational environment back to threats countered by that security objective,
OSPs enforced by that security objective, and assumptions upheld by that
security objective.

APE_OBJ.1.7C The security objectives rationale shall demonstrate that the security
objectives counter all threats.

APE_OBJ.1.8C The security objectives rationale shall demonstrate that the security
objectives enforce all OSPs.

APE_OBJ.1.9C The security objectives rationale shall demonstrate that the security
objectives for the operational environment uphold all assumptions.

Evaluator action elements

APE_OBJ.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

APE_OBJ.1.2E The evaluator shall confirm that the statement of security objectives is
internally consistent.

3.5 Security requirements (APE_REQ)

Objectives

134 The SFRs form a clear, unambiguous and canonical description of the
expected security behaviour of the TOE. The SARs form a clear,

Class APE: Protection Profile evaluation

March 2004 Version 2.4 Page 37 of 190

unambiguous and canonical description of the expected activities that will be
undertaken to gain assurance in the TOE.

135 Evaluation of the security requirements is required to ensure that they are
clear, unambiguous and canonical.

Component levelling

136 The components in this family are levelled on whether they are stated as is,
or whether they are derived from security objectives for the TOE and
security objectives for the development environment.

APE_REQ.1 Stated security requirements

Dependencies

APE_ECD.1 Extended components definition

Content and presentation of evidence elements

APE_REQ.1.1C The statement of security requirements shall describe the SFRs and the
SARs.

APE_REQ.1.2C The statement of security requirements shall identify all operations on the
security requirements.

APE_REQ.1.3C All operations shall be performed correctly.

Evaluator action elements

APE_REQ.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

APE_REQ.1.2E The evaluator shall confirm that the statement of security requirements is
internally consistent.

APE_REQ.2 Derived security requirements

Dependencies

APE_OBJ.1 Security objectives
APE_ECD.1 Extended components definition

Developer action elements

APE_REQ.2.1D The developer shall provide a security requirements rationale.

Content and presentation of evidence elements

APE_REQ.2.1C The statement of security requirements shall describe the SFRs and the
SARs.

Class APE: Protection Profile evaluation

Page 38 of 190 Version 2.4 March 2004

APE_REQ.2.2C The statement of security requirements shall identify all operations on the
security requirements.

APE_REQ.2.3C All operations shall be performed correctly.

APE_REQ.2.4C Each dependency of the security requirements shall either be satisfied, or the
security requirements rationale shall justify the dependency not being
satisfied.

APE_REQ.2.5C The security requirements rationale shall trace each SFR back to the security
objectives for the TOE.

APE_REQ.2.6C The security requirements rationale shall demonstrate that the SFRs meet all
security objectives for the TOE.

APE_REQ.2.7C The security requirements rationale shall trace each SAR back to the security
objectives for the development environment.

APE_REQ.2.8C The security requirements rationale shall demonstrate that the SARs meet all
security objectives for the development environment.

Evaluator action elements

APE_REQ.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

APE_REQ.2.2E The evaluator shall confirm that the statement of security requirements is
internally consistent.

3.6 Security problem definition (APE_SPD)

Objectives

137 This part of the PP defines the security problem to be addressed by the TOE,
the operational environment of the TOE, and the development environment
of the TOE.

138 Evaluation of the security problem definition is required to demonstrate that
the security problem intended to be addressed by the TOE, its operational
environment, and its development environment, is clearly defined.

APE_SPD.1 Security problem definition

Developer action elements

APE_SPD.1.1D The PP developer shall provide a security problem definition.

Content and presentation of evidence elements

APE_SPD.1.1C The security problem definition shall describe the threats.

Class APE: Protection Profile evaluation

March 2004 Version 2.4 Page 39 of 190

APE_SPD.1.2C All threats shall be described in terms of a threat agent, an asset, and an
adverse action.

APE_SPD.1.3C The security problem definition shall describe the OSPs.

APE_SPD.1.4C The security problem definition shall describe the assumptions about the
operational environment of the TOE.

Evaluator action elements

APE_SPD.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Evaluation assurance levels

Page 40 of 190 Version 2.4 March 2004

4 Evaluation assurance levels

139 The Evaluation Assurance Levels (EALs) provide an increasing scale that
balances the level of assurance obtained with the cost and feasibility of
acquiring that degree of assurance. The CC approach identifies the separate
concepts of assurance in a TOE at the end of the evaluation, and of
maintenance of that assurance during the operational use of the TOE.

140 It is important to note that not all families and components from CC Part 3
are included in the EALs. This is not to say that these do not provide
meaningful and desirable assurances. Instead, it is expected that these
families and components will be considered for augmentation of an EAL in
those PPs and STs for which they provide utility.

4.1 Evaluation assurance level (EAL) overview

141 Table 2 Evaluation assurance level summary represents a summary of the
EALs. The columns represent a hierarchically ordered set of EALs, while the
rows represent assurance families. Each number in the resulting matrix
identifies a specific assurance component where applicable.

142 As outlined in the next subclause, seven hierarchically ordered evaluation
assurance levels are defined in the CC for the rating of a TOE's assurance.
They are hierarchically ordered inasmuch as each EAL represents more
assurance than all lower EALs. The increase in assurance from EAL to EAL
is accomplished by substitution of a hierarchically higher assurance
component from the same assurance family (i.e. increasing rigour, scope,
and/or depth) and from the addition of assurance components from other
assurance families (i.e. adding new requirements).

143 These EALs consist of an appropriate combination of assurance components
as described in clause 2 of this Part 3. More precisely, each EAL includes no
more than one component of each assurance family and all assurance
dependencies of every component are addressed.

144 While the EALs are defined in the CC, it is possible to represent other
combinations of assurance. Specifically, the notion of “augmentation” allows
the addition of assurance components (from assurance families not already
included in the EAL) or the substitution of assurance components (with
another hierarchically higher assurance component in the same assurance
family) to an EAL. Of the assurance constructs defined in the CC, only EALs
may be augmented. The notion of an “EAL minus a constituent assurance
component” is not recognised by the standard as a valid claim. Augmentation
carries with it the obligation on the part of the claimant to justify the utility
and added value of the added assurance component to the EAL. An EAL
may also be augmented with extended assurance requirements.

Evaluation assurance levels

March 2004 Version 2.4 Page 41 of 190

Assurance Components by
Evaluation Assurance Level Assurance

class
Assurance

Family EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7
ACM_AUT 1 1 2 2
ACM_CAP 1 2 3 4 4 5 5 Configuration

management ACM_SCP 1 2 3 3 3
ADO_DEL 1 1 2 2 2 3 Delivery and

operation ADO_IGS 1 1 1 1 1 1 1
ADV_FSP 1 1 1 2 3 3 4
ADV_HLD 1 2 2 3 4 5
ADV_IMP 1 2 3 3
ADV_INT 1 2 3
ADV_LLD 1 1 2 2
ADV_RCR 1 1 1 1 2 2 3

Development

ADV_SPM 1 3 3 3
AGD_ADM 1 1 1 1 1 1 1 Guidance

documents AGD_USR 1 1 1 1 1 1 1
ALC_DVS 1 1 1 2 2
ALC_FLR
ALC_LCD 1 2 2 3 Life cycle support

ALC_TAT 1 2 3 3
ASE_CCL 1 1 1 1 1 1 1
ASE_ECD 1 1 1 1 1 1 1
ASE_INT 1 1 1 1 1 1 1
ASE_OBJ 1 1 1 1 1 1
ASE_REQ 1 2 2 2 2 2 2
ASE_SPD 1 1 1 1 1 1

Security Target
evaluation

ASE_TSS 1 1 1 1 1 1 1
ATE_COV 1 2 2 2 3 3
ATE_DPT 1 1 2 2 3
ATE_FUN 1 1 1 1 2 2 Tests

ATE_IND 1 2 2 2 2 2 3
AVA_CCA 1 2 2
AVA_MSU 1 2 2 3 3 Vulnerability

assessment AVA_VLA 1 1 2 3 4 4

Table 2 Evaluation assurance level summary

4.2 Evaluation assurance level details

145 The following subclauses provide definitions of the EALs, highlighting
differences between the specific requirements and the prose characterisations
of those requirements using bold type.

Evaluation assurance levels

Page 42 of 190 Version 2.4 March 2004

4.3 Evaluation assurance level 1 (EAL1) - functionally
tested

Objectives

146 EAL1 is applicable where some confidence in correct operation is required,
but the threats to security are not viewed as serious. It will be of value where
independent assurance is required to support the contention that due care has
been exercised with respect to the protection of personal or similar
information.

147 EAL1 requires only a limited security target. It is sufficient to simply state
the SFRs that the TOE must meet, rather than deriving them from threats,
OSPs and assumptions through security objectives.

148 EAL1 provides an evaluation of the TOE as made available to the customer,
including independent testing against a specification, and an examination of
the guidance documentation provided. It is intended that an EAL1 evaluation
could be successfully conducted without assistance from the developer of the
TOE, and for minimal outlay.

149 An evaluation at this level should provide evidence that the TOE functions in
a manner consistent with its documentation, and that it provides useful
protection against identified threats.

Assurance components

150 EAL1 provides a basic level of assurance by a limited security target and an
analysis of the SFRs in that ST using a functional and interface specification
and guidance documentation, to understand the security behaviour.

151 The analysis is supported by independent testing of the TSF.

152 This EAL provides a meaningful increase in assurance over unevaluated IT.

Assurance components
ASE_CCL.1 Conformance claims
ASE_ECD.1 Extended components definition
ASE_INT.1 ST introduction
ASE_REQ.1 Stated security requirements
ASE_TSS.1 TOE summary specification
ACM_CAP.1 Version numbers
ADO_IGS.1 Installation, generation, and start-up procedures
ADV_FSP.1 Informal functional specification
ADV_RCR.1 Informal correspondence demonstration
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance
ATE_IND.1 Independent testing - conformance

Table 3 EAL1

Evaluation assurance levels

March 2004 Version 2.4 Page 43 of 190

4.4 Evaluation assurance level 2 (EAL2) - structurally
tested

Objectives

153 EAL2 requires the co-operation of the developer in terms of the delivery of
design information and test results, but should not demand more effort on the
part of the developer than is consistent with good commercial practice. As
such it should not require a substantially increased investment of cost or
time.

154 EAL2 is therefore applicable in those circumstances where developers or
users require a low to moderate level of independently assured security in the
absence of ready availability of the complete development record. Such a
situation may arise when securing legacy systems, or where access to the
developer may be limited.

Assurance components

155 EAL2 provides assurance by a full security target and an analysis of the
SFRs in that ST, using a functional and interface specification, guidance
documentation and the high-level design of the TOE, to understand the
security behaviour.

156 The analysis is supported by independent testing of the TSF, evidence of
developer testing based on the functional specification, selective independent
confirmation of the developer test results, and evidence of a developer search
for obvious vulnerabilities (e.g. those in the public domain).

157 EAL2 also provides assurance through a configuration list for the TOE, and
evidence of secure delivery procedures.

158 This EAL represents a meaningful increase in assurance from EAL1 by
requiring developer testing, a vulnerability analysis, and independent testing
based upon more detailed TOE specifications.

Assurance components
ASE_CCL.1 Conformance claims
ASE_ECD.1 Extended components definition
ASE_INT.1 ST introduction
ASE_OBJ.1 Security objectives
ASE_REQ.2 Derived security requirements
ASE_SPD.1 Security problem definition
ASE_TSS.1 TOE summary specification
ACM_CAP.2 Configuration items
ADO_DEL.1 Delivery procedures
ADO_IGS.1 Installation, generation, and start-up procedures
ADV_FSP.1 Informal functional specification
ADV_HLD.1 Descriptive high-level design
ADV_RCR.1 Informal correspondence demonstration

Evaluation assurance levels

Page 44 of 190 Version 2.4 March 2004

Assurance components
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance
ATE_COV.1 Evidence of coverage
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing - sample
AVA_VLA.1 Developer vulnerability analysis

Table 4 EAL2

4.5 Evaluation assurance level 3 (EAL3) - methodically
tested and checked

Objectives

159 EAL3 permits a conscientious developer to gain maximum assurance from
positive security engineering at the design stage without substantial alteration
of existing sound development practices.

160 EAL3 is applicable in those circumstances where developers or users require
a moderate level of independently assured security, and require a thorough
investigation of the TOE and its development without substantial re-
engineering.

Assurance components

161 EAL3 provides assurance by a full security target and an analysis of the
SFRs in that ST, using a functional and interface specification, guidance
documentation, and the high-level design of the TOE, to understand the
security behaviour.

162 The analysis is supported by independent testing of the TSF, evidence of
developer testing based on the functional specification and high-level design,
selective independent confirmation of the developer test results, and
evidence of a developer search for obvious vulnerabilities (e.g. those in the
public domain).The analysis is supported by independent testing of the TSF,
evidence of developer testing based on the functional specification and high-
level design, selective independent confirmation of the developer test results,
and evidence of a developer search for obvious vulnerabilities (e.g. those in
the public domain).

163 EAL3 also provides assurance through the use of development environment
controls, TOE configuration management, and evidence of secure delivery
procedures.

164 This EAL represents a meaningful increase in assurance from EAL2 by
requiring more complete testing coverage of the security functions and
mechanisms and/or procedures that provide some confidence that the TOE
will not be tampered with during development.

Evaluation assurance levels

March 2004 Version 2.4 Page 45 of 190

Assurance components
ASE_CCL.1 Conformance claims
ASE_ECD.1 Extended components definition
ASE_INT.1 ST introduction
ASE_OBJ.1 Security objectives
ASE_REQ.2 Derived security requirements
ASE_SPD.1 Security problem definition
ASE_TSS.1 TOE summary specification
ACM_CAP.3 Authorisation controls
ACM_SCP.1 TOE CM coverage
ADO_DEL.1 Delivery procedures
ADO_IGS.1 Installation, generation, and start-up procedures
ADV_FSP.1 Informal functional specification
ADV_HLD.2 Security enforcing high-level design
ADV_RCR.1 Informal correspondence demonstration
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance
ALC_DVS.1 Identification of security measures
ATE_COV.2 Analysis of coverage
ATE_DPT.1 Testing: high-level design
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing - sample
AVA_MSU.1 Examination of guidance
AVA_VLA.1 Developer vulnerability analysis

Table 5 EAL3

4.6 Evaluation assurance level 4 (EAL4) - methodically
designed, tested, and reviewed

Objectives

165 EAL4 permits a developer to gain maximum assurance from positive
security engineering based on good commercial development practices
which, though rigorous, do not require substantial specialist knowledge,
skills, and other resources. EAL4 is the highest level at which it is likely to
be economically feasible to retrofit to an existing product line.

166 EAL4 is therefore applicable in those circumstances where developers or
users require a moderate to high level of independently assured security in
conventional commodity TOEs and are prepared to incur additional security-
specific engineering costs.

Assurance components

167 EAL4 provides assurance by a full security target and an analysis of the
SFRs in that ST, using a functional and complete interface specification,
guidance documentation, the high-level and low-level design of the TOE,
and a subset of the implementation, to understand the security behaviour.

Evaluation assurance levels

Page 46 of 190 Version 2.4 March 2004

Assurance is additionally gained through an informal model of the TOE
security policy.

168 The analysis is supported by independent testing of the TSF, evidence of
developer testing based on the functional specification and high-level design,
selective independent confirmation of the developer test results, evidence of
a developer search for vulnerabilities, and an independent vulnerability
analysis demonstrating resistance to penetration attackers with a low attack
potential

169 EAL4 also provides assurance through the use of development environment
controls and additional TOE configuration management including
automation, and evidence of secure delivery procedures.

170 This EAL represents a meaningful increase in assurance from EAL3 by
requiring more design description, a subset of the implementation, and
improved mechanisms and/or procedures that provide confidence that the
TOE will not be tampered with during development or delivery.

Assurance components
ASE_CCL.1 Conformance claims
ASE_ECD.1 Extended components definition
ASE_INT.1 ST introduction
ASE_OBJ.1 Security objectives
ASE_REQ.2 Derived security requirements
ASE_SPD.1 Security problem definition
ASE_TSS.1 TOE summary specification
ACM_AUT.1 Partial CM automation
ACM_CAP.4 Generation support and acceptance procedures
ACM_SCP.2 Problem tracking CM coverage
ADO_DEL.2 Detection of modification
ADO_IGS.1 Installation, generation, and start-up procedures
ADV_FSP.2 Fully defined external interfaces
ADV_HLD.2 Security enforcing high-level design
ADV_IMP.1 Subset of the implementation of the TSF
ADV_LLD.1 Descriptive low-level design
ADV_RCR.1 Informal correspondence demonstration
ADV_SPM.1 Informal TOE security policy model
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance
ALC_DVS.1 Identification of security measures
ALC_LCD.1 Developer defined life-cycle model
ALC_TAT.1 Well-defined development tools
ATE_COV.2 Analysis of coverage
ATE_DPT.1 Testing: high-level design
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing - sample
AVA_MSU.2 Validation of analysis
AVA_VLA.2 Independent vulnerability analysis

Table 6 EAL4

Evaluation assurance levels

March 2004 Version 2.4 Page 47 of 190

4.7 Evaluation assurance level 5 (EAL5) - semiformally
designed and tested

Objectives

171 EAL5 permits a developer to gain maximum assurance from security
engineering based upon rigorous commercial development practices
supported by moderate application of specialist security engineering
techniques. Such a TOE will probably be designed and developed with the
intent of achieving EAL5 assurance. It is likely that the additional costs
attributable to the EAL5 requirements, relative to rigorous development
without the application of specialised techniques, will not be large.

172 EAL5 is therefore applicable in those circumstances where developers or
users require a high level of independently assured security in a planned
development and require a rigorous development approach without incurring
unreasonable costs attributable to specialist security engineering techniques.

Assurance components

173 EAL5 provides assurance by a full security target and an analysis of the
SFRs in that ST, using a functional and complete interface specification,
guidance documentation, the high-level and low-level design of the TOE,
and all of the implementation, to understand the security behaviour.
Assurance is additionally gained through a formal model of the TOE security
policy and a semiformal presentation of the functional specification and
high-level design and a semiformal demonstration of correspondence
between them. A modular TSF design is also required.

174 The analysis is supported by independent testing of the TSF, evidence of
developer testing based on the functional specification, high-level design and
low-level design, selective independent confirmation of the developer test
results, evidence of a developer search for vulnerabilities, and an
independent vulnerability analysis demonstrating resistance to penetration
attackers with a moderate attack potential. The analysis also includes
validation of the developer?s covert channel analysis.

175 EAL5 also provides assurance through the use of a development
environment controls, and comprehensive TOE configuration management
including automation, and evidence of secure delivery procedures.

176 This EAL represents a meaningful increase in assurance from EAL4 by
requiring semiformal design descriptions, the entire implementation, a more
structured (and hence analysable) architecture, covert channel analysis, and
improved mechanisms and/or procedures that provide confidence that the
TOE will not be tampered with during development.

Assurance components
ASE_CCL.1 Conformance claims
ASE_ECD.1 Extended components definition
ASE_INT.1 ST introduction

Evaluation assurance levels

Page 48 of 190 Version 2.4 March 2004

Assurance components
ASE_OBJ.1 Security objectives
ASE_REQ.2 Derived security requirements
ASE_SPD.1 Security problem definition
ASE_TSS.1 TOE summary specification
ACM_AUT.1 Partial CM automation
ACM_CAP.4 Generation support and acceptance procedures
ACM_SCP.3 Development tools CM coverage
ADO_DEL.2 Detection of modification
ADO_IGS.1 Installation, generation, and start-up procedures
ADV_FSP.3 Semiformal functional specification
ADV_HLD.3 Semiformal high-level design
ADV_IMP.2 Implementation of the TSF
ADV_INT.1 Modularity
ADV_LLD.1 Descriptive low-level design
ADV_RCR.2 Semiformal correspondence demonstration
ADV_SPM.3 Formal TOE security policy model
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance
ALC_DVS.1 Identification of security measures
ALC_LCD.2 Standardised life-cycle model
ALC_TAT.2 Compliance with implementation standards
ATE_COV.2 Analysis of coverage
ATE_DPT.2 Testing: low-level design
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing - sample
AVA_CCA.1 Covert channel analysis
AVA_MSU.2 Validation of analysis
AVA_VLA.3 Moderately resistant

Table 7 EAL5

4.8 Evaluation assurance level 6 (EAL6) - semiformally
verified design and tested

Objectives

177 EAL6 permits developers to gain high assurance from application of security
engineering techniques to a rigorous development environment in order to
produce a premium TOE for protecting high value assets against significant
risks.

178 EAL6 is therefore applicable to the development of security TOEs for
application in high risk situations where the value of the protected assets
justifies the additional costs.

Assurance components

179 EAL6 provides assurance by a full security target and an analysis of the
SFRs in that ST, using a functional and complete interface specification,

Evaluation assurance levels

March 2004 Version 2.4 Page 49 of 190

guidance documentation, the high-level and low-level design of the TOE,
and a structured presentation of the implementation, to understand the
security behaviour. Assurance is additionally gained through a formal model
of the TOE security policy, a semiformal presentation of the functional
specification, high-level design, and low-level design and a semiformal
demonstration of correspondence between them. A modular and layered TSF
design is also required.

180 The analysis is supported by independent testing of the TSF, evidence of
developer testing based on the functional specification, high-level design and
low-level design, selective independent confirmation of the developer test
results, evidence of a developer search for vulnerabilities, and an
independent vulnerability analysis demonstrating resistance to penetration
attackers with a high attack potential. The analysis also includes validation of
the developer?s systematic covert channel analysis.

181 EAL6 also provides assurance through the use of a structured development
process, development environment controls, and comprehensive TOE
configuration management including complete automation, and evidence of
secure delivery procedures.

182 This EAL represents a meaningful increase in assurance from EAL5 by
requiring more comprehensive analysis, a structured representation of the
implementation, more architectural structure (e.g. layering), more
comprehensive independent vulnerability analysis, systematic covert channel
identification, and improved configuration management and development
environment controls.

Assurance components
ASE_CCL.1 Conformance claims
ASE_ECD.1 Extended components definition
ASE_INT.1 ST introduction
ASE_OBJ.1 Security objectives
ASE_REQ.2 Derived security requirements
ASE_SPD.1 Security problem definition
ASE_TSS.1 TOE summary specification
ACM_AUT.2 Complete CM automation
ACM_CAP.5 Advanced support
ACM_SCP.3 Development tools CM coverage
ADO_DEL.2 Detection of modification
ADO_IGS.1 Installation, generation, and start-up procedures
ADV_FSP.3 Semiformal functional specification
ADV_HLD.4 Semiformal high-level explanation
ADV_IMP.3 Structured implementation of the TSF
ADV_INT.2 Reduction of complexity
ADV_LLD.2 Semiformal low-level design
ADV_RCR.2 Semiformal correspondence demonstration
ADV_SPM.3 Formal TOE security policy model
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

Evaluation assurance levels

Page 50 of 190 Version 2.4 March 2004

Assurance components
ALC_DVS.2 Sufficiency of security measures
ALC_LCD.2 Standardised life-cycle model
ALC_TAT.3 Compliance with implementation standards - all parts
ATE_COV.3 Rigorous analysis of coverage
ATE_DPT.2 Testing: low-level design
ATE_FUN.2 Ordered functional testing
ATE_IND.2 Independent testing - sample
AVA_CCA.2 Systematic covert channel analysis
AVA_MSU.3 Analysis and testing for insecure states
AVA_VLA.4 Highly resistant

Table 8 EAL6

4.9 Evaluation assurance level 7 (EAL7) - formally verified
design and tested

Objectives

183 EAL7 is applicable to the development of security TOEs for application in
extremely high risk situations and/or where the high value of the assets
justifies the higher costs. Practical application of EAL7 is currently limited
to TOEs with tightly focused security functionality that is amenable to
extensive formal analysis.

Assurance components

184 EAL7 provides assurance by a full security target and an analysis of the
SFRs in that ST, using a functional and complete interface specification,
guidance documentation, the high-level and low-level design of the TOE,
and a structured presentation of the implementation, to understand the
security behaviour. Assurance is additionally gained through a formal model
of the TOE security policy, a formal presentation of the functional
specification and high-level design, a semiformal presentation of the low-
level design, and formal and semiformal demonstration of correspondence
between them, as appropriate. A modular, layered and simple TSF design is
also required.

185 The analysis is supported by independent testing of the TSF, evidence of
developer testing based on the functional specification high-level design,
low-level design and implementation representation, complete independent
confirmation of the developer test results, evidence of a developer search for
vulnerabilities, and an independent vulnerability analysis demonstrating
resistance to penetration attackers with a high attack potential. The analysis
also includes validation of the developer?s systematic covert channel
analysis.

186 EAL7 also provides assurance through the use of a structured development
process, development environment controls, and comprehensive TOE

Evaluation assurance levels

March 2004 Version 2.4 Page 51 of 190

configuration management including complete automation, and evidence of
secure delivery procedures.

187 This EAL represents a meaningful increase in assurance from EAL6 by
requiring more comprehensive analysis using formal representations and
formal correspondence, and comprehensive testing.

Assurance components
ASE_CCL.1 Conformance claims
ASE_ECD.1 Extended components definition
ASE_INT.1 ST introduction
ASE_OBJ.1 Security objectives
ASE_REQ.2 Derived security requirements
ASE_SPD.1 Security problem definition
ASE_TSS.1 TOE summary specification
ACM_AUT.2 Complete CM automation
ACM_CAP.5 Advanced support
ACM_SCP.3 Development tools CM coverage
ADO_DEL.3 Prevention of modification
ADO_IGS.1 Installation, generation, and start-up procedures
ADV_FSP.4 Formal functional specification
ADV_HLD.5 Formal high-level design
ADV_IMP.3 Structured implementation of the TSF
ADV_INT.3 Minimisation of complexity
ADV_LLD.2 Semiformal low-level design
ADV_RCR.3 Formal correspondence demonstration
ADV_SPM.3 Formal TOE security policy model
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance
ALC_DVS.2 Sufficiency of security measures
ALC_LCD.3 Measurable life-cycle model
ALC_TAT.3 Compliance with implementation standards - all parts
ATE_COV.3 Rigorous analysis of coverage
ATE_DPT.3 Testing: implementation representation
ATE_FUN.2 Ordered functional testing
ATE_IND.3 Independent testing - complete
AVA_CCA.2 Systematic covert channel analysis
AVA_MSU.3 Analysis and testing for insecure states
AVA_VLA.4 Highly resistant

Table 9 EAL7

Assurance classes, families, and components

Page 52 of 190 Version 2.4 March 2004

5 Assurance classes, families, and
components

188 The next seven clauses provide the detailed requirements, presented in
alphabetical order, of each of the assurance components, grouped by class
and family.

Class ACM: Configuration management

March 2004 Version 2.4 Page 53 of 190

6 Class ACM: Configuration management

189 Configuration management (CM) is one means for establishing that the TOE
meets the SFRs. CM establishes this by requiring discipline and control in
the processes of refinement and modification of the TOE and the related
information. CM systems are put in place to ensure the integrity of the
portions of the TOE that they control, by providing a method of tracking any
changes, and by ensuring that all changes are authorised.

190 Figure 7 shows the families within this class, and the hierarchy of
components within the families.

Figure 7 - ACM: Configuration management class decomposition

6.1 CM automation (ACM_AUT)

Objectives

191 The objective of introducing automated CM tools is to increase the
effectiveness of the CM system. While both automated and manual CM
systems can be bypassed, ignored, or prove insufficient to prevent
unauthorised modification, automated systems are less susceptible to human
error or negligence.

Component levelling

192 The components in this family are levelled on the basis of the set of
configuration items that are controlled through automated means.

Application notes

193 ACM_AUT.1.1C introduces a requirement that is related to the implementation
representation of the TOE. The implementation representation of the TOE
consists of all hardware, software, and firmware that comprise the physical
TOE. In the case of a software-only TOE, the implementation representation
may consist solely of source and object code.

194 ACM_AUT.1.2C introduces a requirement that the CM system provide an
automated means to support the generation of the TOE. This requires that the
CM system provide an automated means to assist in determining that the
correct configuration items are used in generating the TOE.

Class ACM: Configuration management

Page 54 of 190 Version 2.4 March 2004

195 ACM_AUT.2.5C introduces a requirement that the CM system provide an
automated means to ascertain the changes between the TOE and its
preceding version. If no previous version of the TOE exists, the developer
still needs to provide an automated means to ascertain the changes between
the TOE and a future version of the TOE.

ACM_AUT.1 Partial CM automation

Dependencies

ACM_CAP.3 Authorisation controls

Objectives

196 In development environments where the implementation representation is
complex or is being developed by multiple developers, it is difficult to
control changes without the support of automated tools. In particular, these
automated tools need to be able to support the numerous changes that occur
during development and ensure that those changes are authorised. It is the
objective of this component to ensure that the implementation representation
is controlled through automated means.

Developer action elements

ACM_AUT.1.1D The developer shall use a CM system.

ACM_AUT.1.2D The developer shall provide a CM plan.

Content and presentation of evidence elements

ACM_AUT.1.1C The CM system shall provide an automated means by which only authorised
changes are made to the TOE implementation representation.

ACM_AUT.1.2C The CM system shall provide an automated means to support the generation
of the TOE.

ACM_AUT.1.3C The CM plan shall describe the automated tools used in the CM system.

ACM_AUT.1.4C The CM plan shall describe how the automated tools are used in the CM
system.

Evaluator action elements

ACM_AUT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ACM_AUT.2 Complete CM automation

Dependencies

ACM_CAP.3 Authorisation controls

Class ACM: Configuration management

March 2004 Version 2.4 Page 55 of 190

Objectives

197 In development environments where the configuration items are complex or
are being developed by multiple developers, it is difficult to control changes
without the support of automated tools. In particular, these automated tools
need to be able to support the numerous changes that occur during
development and ensure that those changes are authorised. It is the objective
of this component to ensure that all configuration items are controlled
through automated means.

198 Providing an automated means of ascertaining changes between versions of
the TOE and identifying which configuration items are affected by
modifications to other configuration items assists in determining the impact
of the changes between successive versions of the TOE. This in turn can
provide valuable information in determining whether changes to the TOE
result in all configuration items being consistent with one another.

Developer action elements

ACM_AUT.2.1D The developer shall use a CM system.

ACM_AUT.2.2D The developer shall provide a CM plan.

Content and presentation of evidence elements

ACM_AUT.2.1C The CM system shall provide an automated means by which only authorised
changes are made to the TOE implementation representation, and to all other
configuration items.

ACM_AUT.2.2C The CM system shall provide an automated means to support the generation
of the TOE.

ACM_AUT.2.3C The CM plan shall describe the automated tools used in the CM system.

ACM_AUT.2.4C The CM plan shall describe how the automated tools are used in the CM
system.

ACM_AUT.2.5C The CM system shall provide an automated means to ascertain the changes
between the TOE and its preceding version.

ACM_AUT.2.6C The CM system shall provide an automated means to identify all other
configuration items that are affected by the modification of a given
configuration item.

Evaluator action elements

ACM_AUT.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Class ACM: Configuration management

Page 56 of 190 Version 2.4 March 2004

6.2 CM capabilities (ACM_CAP)

Objectives

199 The capabilities of the CM system address the likelihood that accidental or
unauthorised modifications of the configuration items will occur. The CM
system should ensure the integrity of the TOE from the early design stages
through all subsequent maintenance efforts.

200 The objectives of this family include the following:

a) ensuring that the TOE is correct and complete before it is sent to the
consumer;

b) ensuring that no configuration items are missed during evaluation;

c) preventing unauthorised modification, addition, or deletion of TOE
configuration items.

201 In the case where the TOE is a subset of a product, the ACM requirements
apply only to the TOE configuration items, not to the product as a whole.
While it is desired that CM be applied from the early design stages and
continue into the future, ACM requires that CM be in place and in use prior
to the end of the evaluation.

Component levelling

202 The components in this family are levelled on the basis of the CM system
capabilities, the scope of the CM documentation provided by the developer,
and whether the developer provides justification that the CM system meets
its security requirements.

Application notes

203 ACM_CAP.2 Configuration items introduces several elements which refer
to configuration items. The CM scope (ACM_SCP) family contains
requirements for the configuration items to be tracked by the CM system.

204 ACM_CAP.2.3C introduces a requirement that a configuration list be provided.
The configuration list contains all configuration items that are maintained by
the CM system.

205 ACM_CAP.2.7C introduces a requirement that the CM system uniquely identify
all configuration items. This also requires that modifications to configuration
items result in a new, unique identifier being assigned.

206 ACM_CAP.3.9C introduces the requirement that the evidence shall demonstrate
that the CM system operates in accordance with the CM plan. Examples of
such evidence might be documentation such as screen snapshots or audit trail
output from the CM system, or a detailed demonstration of the CM system
by the developer. The evaluator is responsible for determining that this

Class ACM: Configuration management

March 2004 Version 2.4 Page 57 of 190

evidence is sufficient to show that the CM system operates in accordance
with the CM plan.

207 ACM_CAP.3.10C introduces the requirement that evidence be provided to show
that all configuration items are being maintained under the CM system. Since
a configuration item refers to an item that is on the configuration list, this
requirement states that all items on the configuration list are maintained
under the CM system.

208 ACM_CAP.4.12C introduces the requirement that the CM system support the
generation of the TOE. This requires that the CM system provide
information and/or electronic means to assist in determining that the correct
configuration items are used in generating the TOE.

209 CM capabilities (ACM_CAP) identifies the CM requirements to be imposed
on all items identified in the configuration item list. Other than the TOE
itself, CM capabilities (ACM_CAP) leaves the contents of the configuration
item list to the discretion of the developer. (CM scope (ACM_SCP) can be
used to identify specific items that must be included in the configuration item
list, and hence covered by CM.)

ACM_CAP.1 Version numbers

Objectives

210 A unique reference is required to ensure that there is no ambiguity in terms
of which instance of the TOE is being evaluated. Labelling the TOE with its
reference ensures that users of the TOE can be aware of which instance of
the TOE they are using.

Developer action elements

ACM_CAP.1.1D The developer shall provide a reference for the TOE.

Content and presentation of evidence elements

ACM_CAP.1.1C The reference for the TOE shall be unique to each version of the TOE.

ACM_CAP.1.2C The TOE shall be labelled with its reference.

Evaluator action elements

ACM_CAP.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ACM_CAP.2 Configuration items

Objectives

211 A unique reference is required to ensure that there is no ambiguity in terms
of which instance of the TOE is being evaluated. Labelling the TOE with its

Class ACM: Configuration management

Page 58 of 190 Version 2.4 March 2004

reference ensures that users of the TOE can be aware of which instance of
the TOE they are using.

212 Unique identification of the configuration items leads to a clearer
understanding of the composition of the TOE, which in turn helps to
determine those items which are subject to the evaluation requirements for
the TOE.

Developer action elements

ACM_CAP.2.1D The developer shall provide a reference for the TOE.

ACM_CAP.2.2D The developer shall use a CM system.

ACM_CAP.2.3D The developer shall provide CM documentation.

Content and presentation of evidence elements

ACM_CAP.2.1C The reference for the TOE shall be unique to each version of the TOE.

ACM_CAP.2.2C The TOE shall be labelled with its reference.

ACM_CAP.2.3C The CM documentation shall include a configuration list.

ACM_CAP.2.4C The configuration list shall uniquely identify all configuration items that
comprise the TOE.

ACM_CAP.2.5C The configuration list shall describe the configuration items that comprise
the TOE.

ACM_CAP.2.6C The CM documentation shall describe the method used to uniquely identify
the configuration items.

ACM_CAP.2.7C The CM system shall uniquely identify all configuration items.

Evaluator action elements

ACM_CAP.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ACM_CAP.3 Authorisation controls

Dependencies

ALC_DVS.1 Identification of security measures

Objectives

213 A unique reference is required to ensure that there is no ambiguity in terms
of which instance of the TOE is being evaluated. Labelling the TOE with its
reference ensures that users of the TOE can be aware of which instance of
the TOE they are using.

Class ACM: Configuration management

March 2004 Version 2.4 Page 59 of 190

214 Unique identification of the configuration items leads to a clearer
understanding of the composition of the TOE, which in turn helps to
determine those items which are subject to the evaluation requirements for
the TOE.

215 Providing controls to ensure that unauthorised modifications are not made to
the TOE, and ensuring proper functionality and use of the CM system, helps
to maintain the integrity of the TOE.

Developer action elements

ACM_CAP.3.1D The developer shall provide a reference for the TOE.

ACM_CAP.3.2D The developer shall use a CM system.

ACM_CAP.3.3D The developer shall provide CM documentation.

Content and presentation of evidence elements

ACM_CAP.3.1C The reference for the TOE shall be unique to each version of the TOE.

ACM_CAP.3.2C The TOE shall be labelled with its reference.

ACM_CAP.3.3C The CM documentation shall include a configuration list and a CM plan.

ACM_CAP.3.4C The configuration list shall uniquely identify all configuration items that
comprise the TOE.

ACM_CAP.3.5C The configuration list shall describe the configuration items that comprise
the TOE.

ACM_CAP.3.6C The CM documentation shall describe the method used to uniquely identify
the configuration items.

ACM_CAP.3.7C The CM system shall uniquely identify all configuration items.

ACM_CAP.3.8C The CM plan shall describe how the CM system is used.

ACM_CAP.3.9C The evidence shall demonstrate that the CM system is operating in
accordance with the CM plan.

ACM_CAP.3.10C The CM documentation shall provide evidence that all configuration items
have been and are being effectively maintained under the CM system.

ACM_CAP.3.11C The CM system shall provide measures such that only authorised changes are
made to the configuration items.

Evaluator action elements

ACM_CAP.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Class ACM: Configuration management

Page 60 of 190 Version 2.4 March 2004

ACM_CAP.4 Generation support and acceptance procedures

Dependencies

ALC_DVS.1 Identification of security measures

Objectives

216 A unique reference is required to ensure that there is no ambiguity in terms
of which instance of the TOE is being evaluated. Labelling the TOE with its
reference ensures that users of the TOE can be aware of which instance of
the TOE they are using.

217 Unique identification of the configuration items leads to a clearer
understanding of the composition of the TOE, which in turn helps to
determine those items which are subject to the evaluation requirements for
the TOE.

218 Providing controls to ensure that unauthorised modifications are not made to
the TOE, and ensuring proper functionality and use of the CM system, helps
to maintain the integrity of the TOE.

219 The purpose of acceptance procedures is to confirm that any creation or
modification of configuration items is authorised.

Developer action elements

ACM_CAP.4.1D The developer shall provide a reference for the TOE.

ACM_CAP.4.2D The developer shall use a CM system.

ACM_CAP.4.3D The developer shall provide CM documentation.

Content and presentation of evidence elements

ACM_CAP.4.1C The reference for the TOE shall be unique to each version of the TOE.

ACM_CAP.4.2C The TOE shall be labelled with its reference.

ACM_CAP.4.3C The CM documentation shall include a configuration list, a CM plan, and an
acceptance plan.

ACM_CAP.4.4C The configuration list shall uniquely identify all configuration items that
comprise the TOE.

ACM_CAP.4.5C The configuration list shall describe the configuration items that comprise
the TOE.

ACM_CAP.4.6C The CM documentation shall describe the method used to uniquely identify
the configuration items.

ACM_CAP.4.7C The CM system shall uniquely identify all configuration items.

Class ACM: Configuration management

March 2004 Version 2.4 Page 61 of 190

ACM_CAP.4.8C The CM plan shall describe how the CM system is used.

ACM_CAP.4.9C The evidence shall demonstrate that the CM system is operating in
accordance with the CM plan.

ACM_CAP.4.10C The CM documentation shall provide evidence that all configuration items
have been and are being effectively maintained under the CM system.

ACM_CAP.4.11C The CM system shall provide measures such that only authorised changes are
made to the configuration items.

ACM_CAP.4.12C The CM system shall support the generation of the TOE.

ACM_CAP.4.13C The acceptance plan shall describe the procedures used to accept modified or
newly created configuration items as part of the TOE.

Evaluator action elements

ACM_CAP.4.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ACM_CAP.5 Advanced support

Dependencies

ALC_DVS.2 Sufficiency of security measures

Objectives

220 A unique reference is required to ensure that there is no ambiguity in terms
of which instance of the TOE is being evaluated. Labelling the TOE with its
reference ensures that users of the TOE can be aware of which instance of
the TOE they are using.

221 Unique identification of the configuration items leads to a clearer
understanding of the composition of the TOE, which in turn helps to
determine those items which are subject to the evaluation requirements for
the TOE.

222 Providing controls to ensure that unauthorised modifications are not made to
the TOE, and ensuring proper functionality and use of the CM system, helps
to maintain the integrity of the TOE.

223 The purpose of acceptance procedures is to confirm that any creation or
modification of configuration items is authorised.

224 Integration procedures help to ensure that generation of the TOE from a
managed set of configuration items is correctly performed in an authorised
manner.

Class ACM: Configuration management

Page 62 of 190 Version 2.4 March 2004

225 Requiring that the CM system be able to identify the master copy of the
material used to generate the TOE helps to ensure that the integrity of this
material is preserved by the appropriate technical, physical and procedural
safeguards.

Developer action elements

ACM_CAP.5.1D The developer shall provide a reference for the TOE.

ACM_CAP.5.2D The developer shall use a CM system.

ACM_CAP.5.3D The developer shall provide CM documentation.

Content and presentation of evidence elements

ACM_CAP.5.1C The reference for the TOE shall be unique to each version of the TOE.

ACM_CAP.5.2C The TOE shall be labelled with its reference.

ACM_CAP.5.3C The CM documentation shall include a configuration list, a CM plan, an
acceptance plan, and integration procedures.

ACM_CAP.5.4C The configuration list shall describe the configuration items that comprise
the TOE.

ACM_CAP.5.5C The CM documentation shall describe the method used to uniquely identify
the configuration items.

ACM_CAP.5.6C The CM system shall uniquely identify all configuration items.

ACM_CAP.5.7C The CM plan shall describe how the CM system is used.

ACM_CAP.5.8C The evidence shall demonstrate that the CM system is operating in
accordance with the CM plan.

ACM_CAP.5.9C The CM documentation shall provide evidence that all configuration items
have been and are being effectively maintained under the CM system.

ACM_CAP.5.10C The CM system shall provide measures such that only authorised changes are
made to the configuration items.

ACM_CAP.5.11C The CM system shall support the generation of the TOE.

ACM_CAP.5.12C The acceptance plan shall describe the procedures used to accept modified or
newly created configuration items as part of the TOE.

ACM_CAP.5.13C The integration procedures shall describe how the CM system is applied in
the TOE manufacturing process.

ACM_CAP.5.14C The CM system shall require that the person responsible for accepting a
configuration item into CM is not the person who developed it.

Class ACM: Configuration management

March 2004 Version 2.4 Page 63 of 190

ACM_CAP.5.15C The CM system shall clearly identify the configuration items that comprise
the TSF.

ACM_CAP.5.16C The CM system shall support the audit of all modifications to the TOE,
including the originator, date, and time in the audit trail.

ACM_CAP.5.17C The CM system shall be able to identify the master copy of all material used
to generate the TOE.

ACM_CAP.5.18C The CM documentation shall demonstrate that the use of the CM system,
together with the development security measures, allow only authorised
changes to be made to the TOE.

ACM_CAP.5.19C The CM documentation shall demonstrate that the use of the integration
procedures ensures that the generation of the TOE is correctly performed in
an authorised manner.

ACM_CAP.5.20C The CM documentation shall demonstrate that the CM system is sufficient to
ensure that the person responsible for accepting a configuration item into CM
is not the person who developed it.

ACM_CAP.5.21C The CM documentation shall justify that the acceptance procedures provide
for an adequate and appropriate review of changes to all configuration items.

Evaluator action elements

ACM_CAP.5.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.3 CM scope (ACM_SCP)

Objectives

226 The objective of this family is to require items to be included as
configuration items and hence placed under the CM requirements of CM
capabilities (ACM_CAP). Applying configuration management to these
additional items provides additional assurance that the integrity of TOE is
maintained.

Component levelling

227 The components in this family are levelled on the basis of which of the
following are required to be included as configuration items: implementation
representation; the evaluation evidence required by the assurance
components in the ST; security flaws; and development tools and related
information.

Class ACM: Configuration management

Page 64 of 190 Version 2.4 March 2004

Application notes

228 While CM capabilities (ACM_CAP) mandates a list of configuration items
and that each item on this list be under CM, other than the TOE itself, CM
capabilities (ACM_CAP) leaves the contents of the configuration item list to
the discretion of the developer. CM scope (ACM_SCP) narrows this
discretion by identifying items that must be included in the configuration
item list, and hence come under the CM requirements of CM capabilities
(ACM_CAP).

229 ACM_SCP.1.1C introduces the requirement that the TOE implementation
representation be included in the list of configuration items. The TOE
implementation representation refers to all hardware, software, and firmware
that comprise the physical TOE. In the case of a software-only TOE, the
implementation representation may consist solely of source and object code.

230 ACM_SCP.1.1C also introduces the requirement that the evaluation evidence
required by the other assurance components in the ST be included in the list
of configuration items.

231 ACM_SCP.2.1C introduces the requirement that security flaws be included in the
list of configuration items. This requires that information regarding previous
security flaws and their resolution be maintained, as well as details regarding
current security flaws.

232 ACM_SCP.3.1C introduces the requirement that development tools and other
related information be included in the list of configuration items. Examples
of development tools are programming languages and compilers. Information
pertaining to TOE generation items (such as compiler options,
installation/generation options, and build options) is an example of
information relating to development tools.

ACM_SCP.1 TOE CM coverage

Dependencies

ACM_CAP.3 Authorisation controls

Objectives

233 A CM system can control changes only to those items that have been placed
under CM (i.e., the configuration items identified in the configuration item
list). Placing the TOE implementation and the evaluation evidence required
by the other SARs in the ST under CM provides assurance that they have
been modified in a controlled manner with proper authorisations.

Developer action elements

ACM_SCP.1.1D The developer shall provide a list of configuration items for the TOE.

Class ACM: Configuration management

March 2004 Version 2.4 Page 65 of 190

Content and presentation of evidence elements

ACM_SCP.1.1C The list of configuration items shall include the following: implementation
representation and the evaluation evidence required by the SARs in the ST.

Evaluator action elements

ACM_SCP.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ACM_SCP.2 Problem tracking CM coverage

Dependencies

ACM_CAP.3 Authorisation controls

Objectives

234 A CM system can control changes only to those items that have been placed
under CM (i.e., the configuration items identified in the configuration item
list). Placing the TOE implementation and the evaluation evidence required
by the other SARs in the ST under CM provides assurance that they have
been modified in a controlled manner with proper authorisations.

235 A CM system can control changes only to those items that have been placed
under CM (i.e., the configuration items identified in the configuration item
list). Placing the TOE implementation and the evaluation evidence required
by the other SARs in the ST under CM provides assurance that they have
been modified in a controlled manner with proper authorisations.

Developer action elements

ACM_SCP.2.1D The developer shall provide a list of configuration items for the TOE.

Content and presentation of evidence elements

ACM_SCP.2.1C The list of configuration items shall include the following: implementation
representation, security flaws, and the evaluation evidence required by the
SARs in the ST.

Evaluator action elements

ACM_SCP.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Class ACM: Configuration management

Page 66 of 190 Version 2.4 March 2004

ACM_SCP.3 Development tools CM coverage

Dependencies

ACM_CAP.3 Authorisation controls

Objectives

236 A CM system can control changes only to those items that have been placed
under CM (i.e., the configuration items identified in the configuration item
list). Placing the TOE implementation and the evaluation evidence required
by the other SARs in the ST under CM provides assurance that they have
been modified in a controlled manner with proper authorisations.

237 A CM system can control changes only to those items that have been placed
under CM (i.e., the configuration items identified in the configuration item
list). Placing the TOE implementation and the evaluation evidence required
by the other SARs in the ST under CM provides assurance that they have
been modified in a controlled manner with proper authorisations.

238 A CM system can control changes only to those items that have been placed
under CM (i.e., the configuration items identified in the configuration item
list). Placing the TOE implementation and the evaluation evidence required
by the other SARs in the ST under CM provides assurance that they have
been modified in a controlled manner with proper authorisations.

Developer action elements

ACM_SCP.3.1D The developer shall provide a list of configuration items for the TOE.

Content and presentation of evidence elements

ACM_SCP.3.1C The list of configuration items shall include the following: implementation
representation; security flaws; development tools and related information;
and the evaluation evidence required by the SARs in the ST.

Evaluator action elements

ACM_SCP.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Class ADO: Delivery and operation

March 2004 Version 2.4 Page 67 of 190

7 Class ADO: Delivery and operation

239 Delivery and operation provides requirements for correct delivery,
installation, generation, and start-up of the TOE.

240 Figure 8 shows the families within this class, and the hierarchy of
components within the families.

Figure 8 - ADO: Delivery and operation class decomposition

7.1 Delivery (ADO_DEL)

Objectives

241 The requirements for delivery call for system control and distribution
facilities and procedures that detail the measures necessary to provide
assurance that the security of the TOE is maintained during distribution of
the TOE. For a valid distribution of the TOE, the procedures used for the
distribution of the TOE address the threats identified in the PP/ST relating to
the security of the TOE during delivery.

Component levelling

242 The components in this family are levelled on the basis of increasing
requirements on the developer to maintain security of the TOE during
delivery.

Application notes

243 These procedures could consider issues such as:

a) ensuring the TOE received by the consumer corresponds precisely to
the TOE Master copy;

b) avoiding/detecting any tampering with the actual version of the TOE;

c) preventing submission of a false version of the TOE;

d) avoiding unwanted knowledge of distribution of the TOE to the
consumer;

e) avoiding/detecting the TOE being intercepted during delivery; and

f) avoiding the TOE being delayed or stopped during distribution.

Class ADO: Delivery and operation

Page 68 of 190 Version 2.4 March 2004

244 Although the procedures consider protection of the TOE in all aspects
(integrity, confidentiality, availability), the technical measures introduced in
ADO_DEL.2 Detection of modification and ADO_DEL.3 Prevention of
modification are required to address integrity issues only.

ADO_DEL.1 Delivery procedures

Developer action elements

ADO_DEL.1.1D The developer shall document procedures for delivery of the TOE or parts of
it to the user.

ADO_DEL.1.2D The developer shall use the delivery procedures.

Content and presentation of evidence elements

ADO_DEL.1.1C The delivery documentation shall describe all procedures that are necessary
to maintain security when distributing versions of the TOE to a user's site.

Evaluator action elements

ADO_DEL.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADO_DEL.2 Detection of modification

Dependencies

ACM_CAP.3 Authorisation controls

Developer action elements

ADO_DEL.2.1D The developer shall document procedures for delivery of the TOE or parts of
it to the user.

ADO_DEL.2.2D The developer shall use the delivery procedures.

Content and presentation of evidence elements

ADO_DEL.2.1C The delivery documentation shall describe all procedures that are necessary
to maintain security when distributing versions of the TOE to a user's site.

ADO_DEL.2.2C The delivery documentation shall describe how the various procedures and
technical measures provide for the detection of modifications, or any
discrepancy between the developer's master copy and the version received at
the user site.

ADO_DEL.2.3C The delivery documentation shall describe how the various procedures allow
detection of attempts to masquerade as the developer, even in cases in which
the developer has sent nothing to the user's site.

Class ADO: Delivery and operation

March 2004 Version 2.4 Page 69 of 190

Evaluator action elements

ADO_DEL.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADO_DEL.3 Prevention of modification

Dependencies

ACM_CAP.3 Authorisation controls

Developer action elements

ADO_DEL.3.1D The developer shall document procedures for delivery of the TOE or parts of
it to the user.

ADO_DEL.3.2D The developer shall use the delivery procedures.

Content and presentation of evidence elements

ADO_DEL.3.1C The delivery documentation shall describe all procedures that are necessary
to maintain security when distributing versions of the TOE to a user's site.

ADO_DEL.3.2C The delivery documentation shall describe how the various procedures and
technical measures provide for the prevention of modifications, or any
discrepancy between the developer's master copy and the version received at
the user site.

ADO_DEL.3.3C The delivery documentation shall describe how the various procedures allow
detection of attempts to masquerade as the developer, even in cases in which
the developer has sent nothing to the user's site.

Evaluator action elements

ADO_DEL.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

7.2 Installation, generation and start-up (ADO_IGS)

Objectives

245 Installation, generation, and start-up procedures are useful for ensuring that
the TOE has been installed, generated, and started up in a secure manner as
intended by the developer. The requirements for installation, generation and
start-up call for a secure transition from the TOE's implementation
representation being under configuration control to its initial operation in the
user environment.

Class ADO: Delivery and operation

Page 70 of 190 Version 2.4 March 2004

Component levelling

246 The components in this family are levelled on the basis of whether the TOE
generation options are logged.

Application notes

247 It is recognised that the application of these requirements will vary
depending on aspects such as whether the TOE is an IT product or system,
whether it is delivered in an operational state, or whether it has to be brought
up at the TOE owner's site, etc. For a given TOE, there will normally be a
division of responsibility with respect to installation, generation and start-up
between the TOE developer and the owner of the TOE, but there are
examples where all activities take place at one site. For example, for a smart
card all aspects of installation, generation and start-up may have been
performed at the TOE developer's site. On the other hand the TOE might be
delivered as an IT system in the form of software, where all aspects of
installation, generation and start-up are carried out at the TOE owner's site.

248 It might also be the case that the TOE is already installed by the time the
evaluation starts. In this case it may be inappropriate to demand and analyse
installation procedures.

249 Furthermore, the generation requirements are applicable only to TOEs that
provide the ability to generate portions of an operational TOE from its
implementation representation.

250 The installation, generation, and start-up procedures may exist as a separate
documents or could be grouped with other administrative guidance. The
requirements in this assurance family are presented separately from those in
the Administrator guidance (AGD_ADM) family, due to the infrequent,
possibly one-time use of the installation, generation and start-up procedures.

ADO_IGS.1 Installation, generation, and start-up procedures

Dependencies

AGD_ADM.1 Administrator guidance

Developer action elements

ADO_IGS.1.1D The developer shall document procedures necessary for the secure
installation, generation, and start-up of the TOE.

Content and presentation of evidence elements

ADO_IGS.1.1C The installation, generation and start-up documentation shall describe all the
steps necessary for secure installation, generation and start-up of the TOE.

Class ADO: Delivery and operation

March 2004 Version 2.4 Page 71 of 190

Evaluator action elements

ADO_IGS.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADO_IGS.1.2E The evaluator shall determine that the installation, generation, and start-up
procedures result in a secure configuration.

ADO_IGS.2 Generation log

Dependencies

AGD_ADM.1 Administrator guidance

Developer action elements

ADO_IGS.2.1D The developer shall document procedures necessary for the secure
installation, generation, and start-up of the TOE.

Content and presentation of evidence elements

ADO_IGS.2.1C The installation, generation and start-up documentation shall describe all the
steps necessary for secure installation, generation and start-up of the TOE.

ADO_IGS.2.2C The installation, generation and start-up documentation shall describe
procedures capable of creating a log containing the generation options used
to generate the TOE in such a way that it is possible to determine exactly
how and when the TOE was generated.

Evaluator action elements

ADO_IGS.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADO_IGS.2.2E The evaluator shall determine that the installation, generation, and start-up
procedures result in a secure configuration.

Class ADV: Development

Page 72 of 190 Version 2.4 March 2004

8 Class ADV: Development

251 The development class encompasses four families of requirements for
representing the TSF at various levels of abstraction from the functional
interface to the implementation representation. The development class also
includes a family of requirements for a correspondence mapping between the
various TSF representations, ultimately requiring a demonstration of
correspondence from the least abstract TSF representation through all
intervening TSF representations, with the SFRs provided in the ST. In
addition, there is a family of requirements for a TSP model, and for
correspondence mappings between the SFRs, the TSP model, and the
functional specification. Finally, there is a family of requirements on the
internal structure of the TSF, which covers aspects such as modularity,
layering, and minimisation of complexity of the TSF.

252 The paradigm evident for these families is one of a functional specification
of the TSF, decomposing the TSF into subsystems, decomposing the
subsystems into modules, showing the implementation of the modules, and
demonstration of correspondence between all decompositions that are
provided as evidence. The requirements for the various TSF representations
are separated into different families, however, to allow the PP/ST author to
specify which subset of the TSF representations are required.

Class ADV: Development

March 2004 Version 2.4 Page 73 of 190

Figure 9 - Relationships between TOE representations and ST entities

253 Figure 9 indicates the relationships between the various TSF representations,
the SFRs, the security objectives and the security problem definition. As the
figure indicates, the ASE class defines the requirements for the
correspondence between the SFRs and the security objectives as well as
between the security objectives and the security problem definition.

254 The requirements for all other correspondence shown in Figure 9 are defined
in the ADV: Development class. The Security policy modeling (ADV_SPM)
family defines the requirements for correspondence between the SFRs and
the TSP model, and between the TSP model and the functional specification.

255 The Representation correspondence (ADV_RCR) family defines the
requirements for pairwise correspondence between all available TSF
representations and the requirements for correspondence between the
functional specification and the SFRs.

256 Finally, each assurance family specific to a TSF representation (i.e.
Functional specification (ADV_FSP), High-level design (ADV_HLD), Low-
level design (ADV_LLD) and Implementation representation (ADV_IMP))
defines requirements relating that TSF representation to the SFRs, the
combination of which helps to ensure that the SFRs have been addressed.
The traceability analysis is always to be performed from the highest-level

Class ADV: Development

Page 74 of 190 Version 2.4 March 2004

TSF representation down through each of the TSF representations that are
provided. The CC captures this traceability requirement via dependencies on
the Representation correspondence (ADV_RCR) family.

257 The TSF internals (ADV_INT) family is not represented in this figure, as it
is related to the internal structure of the TSF, and is only indirectly related to
the process of refinement of the TSF representations.

258 The TOE summary specification (ASE_TSS) family is also not represented
in this figure, as it is intended to provide the ST reader with a general
overview of how the TOE implements the SFRs, and not as a full TSF
representation.

259 The TOE security policy (TSP) is the set of rules that regulate how resources
are managed, protected and distributed within a TOE, expressed by the
SFRs. The developer is not explicitly required to provide a TSP, as the TSP
is expressed by the SFRs, through a combination of security function policies
(SFPs) and the other individual requirement elements.

260 The TOE security functions (TSF) are all the parts of the TOE that have to be
relied upon for enforcement of the TSP. The TSF includes both parts that
directly enforce the TSP, and also those parts that, while not directly
enforcing the TSP, contribute to the enforcement of the TSP in a more
indirect manner.

261 Although the requirements within several families of this class call for
several different TSF representations, it is not absolutely necessary for each
and every TSF representation to be in a separate document. Indeed, it may be
the case that a single document meets the documentation requirements for
more than one TSF representation, since it is the information about each of
these TSF representations that is required, rather than the resulting document
structure. In cases where multiple TSF representations are combined within a
single document, the developer should indicate which documents meet which
requirements.

262 Three types of specification style are mandated by this class: informal,
semiformal and formal. The functional specification, high-level design, low-
level design and TSP models will be written using one or more of these
specification styles. Ambiguity in these specifications is reduced by using an
increased level of formality.

263 An informal specification is written as prose in natural language. Natural
language is used here as meaning communication in any commonly spoken
tongue (e.g. Dutch, English, French, German). An informal specification is
not subject to any notational or special restrictions other than those required
as ordinary conventions for that language (e.g. grammar and syntax). While
no notational restrictions apply, the informal specification is also required to
provide defined meanings for terms that are used in a context other than that
accepted by normal usage.

Class ADV: Development

March 2004 Version 2.4 Page 75 of 190

264 A semiformal specification is written in a restricted syntax language and is
typically accompanied by supporting explanatory (informal) prose. The
restricted syntax language may be a natural language with restricted sentence
structure and keywords with special meanings, or it may be diagrammatic
(e.g. data-flow diagrams, state transition diagrams, entity-relationship
diagrams, data structure diagrams, and process or program structure
diagrams). Whether based on diagrams or natural language, a set of
conventions must be supplied to define the restrictions placed on the syntax.

265 A formal specification is written in a notation based upon well-established
mathematical concepts, and is typically accompanied by supporting
explanatory (informal) prose. These mathematical concepts are used to
define the syntax and semantics of the notation and the proof rules that
support logical reasoning. The syntactic and semantic rules supporting a
formal notation should define how to recognise constructs unambiguously
and determine their meaning. There needs to be evidence that it is impossible
to derive contradictions, and all rules supporting the notation need to be
defined or referenced.

266 Significant assurance can be gained by ensuring that the TSF can be traced
through each of its representations, and by ensuring that the TSP model
corresponds to the functional specification. The Representation
correspondence (ADV_RCR) family contains requirements for
correspondence mappings between the various TSF representations, and the
Security policy modeling (ADV_SPM) family contains requirements for a
correspondence mapping between the TSP model and the functional
specification. A correspondence can take the form of an informal
demonstration, a semiformal demonstration, or a formal proof.

267 When an informal demonstration of correspondence is required, this means
that only a basic correspondence is required. Correspondence methods
include, for example, the use of a two-dimensional table with entries
denoting correspondence, or the use of appropriate notation of design
diagrams. Pointers and references to other documents may also be used.

268 A semiformal demonstration of correspondence requires a structured
approach at the analysis of the correspondence. This approach should lessen
ambiguity that could exist in an informal correspondence by limiting the
interpretation of the terms included in the correspondence. Pointers and
references to other documents may be used.

269 A formal proof of correspondence requires that well-established
mathematical concepts be used to define the syntax and semantics of the
formal notation and the proof rules that support logical reasoning. The
security properties need to be expressible in the formal specification
language, and these security properties need to be shown to be satisfied by
the formal specification. Pointers and references to other documents may
also be used.

270 The Representation correspondence (ADV_RCR).*.1C elements require that
the developer provide evidence, for each adjacent pair of TSF

Class ADV: Development

Page 76 of 190 Version 2.4 March 2004

representations, that all relevant security functionality of the more abstract
TSF representation is refined in the less abstract TSF representation. The
Functional specification (ADV_FSP).*.2E, High-level design
(ADV_HLD).*.2E, Low-level design (ADV_LLD).*.2E and Implementation
representation (ADV_IMP).*.2E elements each require the evaluator to
determine that the TSF represented by that family of requirements is an
accurate and complete instantiation of the SFRs. In order to determine that a
TSF representation is an accurate and complete instantiation of the SFRs, it
is intended that the evaluator use the evidence provided by the developer in
Representation correspondence (ADV_RCR).*.1C as an input to this
determination. By establishing a correspondence between the SFRs and each
of successive TSF representations down the chain, this step-wise process will
ultimately provide more assurance that the least abstract TSF representation
corresponds to the SFRs, which is the ultimate goal of this class. If the
evaluator makes no correspondence determinations back to the SFRs for
intermediate TSF representations, then trying to determine the
correspondence from the least abstract TSF representation back to the SFRs
may represent too large a step to be accurately performed. Finally, depending
on the set of TSF representations that are required, it is quite possible that the
low-level design, high-level design, or even the functional specification
might be the least abstract TSF representation that is provided.

271 Figure 10 shows the families within this class, and the hierarchy of
components within the families.

Figure 10 - ADV: Development class decomposition

Class ADV: Development

March 2004 Version 2.4 Page 77 of 190

8.1 Functional specification (ADV_FSP)

Objectives

272 The functional specification is a description of the user-visible interface and
behaviour of the TSF. It is an instantiation of the SFRs. The functional
specification has to show that all SFRs are addressed.

Component levelling

273 The components in this family are levelled on the basis of the degree of
formalism required of the functional specification, and the degree of detail
provided for the external interfaces to the TSF.

Application notes

274 The Functional specification (ADV_FSP).*.2E elements within this family
define a requirement that the evaluator determine that the functional
specification is an accurate and complete instantiation of the SFRs. This
provides a direct correspondence between the SFRs and the functional
specification, in addition to the pairwise correspondences required by the
Representation correspondence (ADV_RCR) family. It is expected that the
evaluator will use the evidence provided in Representation correspondence
(ADV_RCR) as an input to making this determination, and the requirement
for completeness is intended to be relative to the level of abstraction of the
functional specification.

275 For ADV_FSP.1.2C, it is intended that sufficient information is provided in the
functional specification to understand how the TOE security functional
requirements have been addressed, and to enable the specification of tests
which reflect the TOE security functional requirements in the ST. It is not
necessarily the case that such testing will cover all possible return values and
error messages which could be generated at the interface, but the information
provided should make clear the results of using an interface in the case of
success and the most common instances of failure.

276 ADV_FSP.2.2C introduces a requirement for a complete presentation of the
functional interface. This will provide the necessary detail for supporting
both thorough testing of the TOE and the assessment of vulnerabilities.

277 In the context of the level of formality of the functional specification,
informal, semiformal and formal are considered to be hierarchical in nature.
Thus, ADV_FSP.1.1C and ADV_FSP.2.1C may also be met with either a
semiformal or formal functional specification, provided that it is supported
by informal, explanatory text where appropriate. In addition, ADV_FSP.3.1C
may also be met with a formal functional specification.

Class ADV: Development

Page 78 of 190 Version 2.4 March 2004

ADV_FSP.1 Informal functional specification

Dependencies

ADV_RCR.1 Informal correspondence demonstration

Developer action elements

ADV_FSP.1.1D The developer shall provide a functional specification.

Content and presentation of evidence elements

ADV_FSP.1.1C The functional specification shall describe the TSF and its external interfaces
using an informal style.

ADV_FSP.1.2C The functional specification shall describe the purpose and method of use of
all external TSF interfaces, providing details of effects, exceptions and error
messages, as appropriate.

ADV_FSP.1.3C The functional specification shall completely represent the TSF.

Evaluator action elements

ADV_FSP.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_FSP.1.2E The evaluator shall determine that the functional specification is an accurate
and complete instantiation of the SFRs.

ADV_FSP.1.3E The evaluator shall determine that the functional specification is consistent
with the TOE summary specification.

ADV_FSP.2 Fully defined external interfaces

Dependencies

ADV_RCR.1 Informal correspondence demonstration

Developer action elements

ADV_FSP.2.1D The developer shall provide a functional specification.

Content and presentation of evidence elements

ADV_FSP.2.1C The functional specification shall describe the TSF and its external interfaces
using an informal style.

ADV_FSP.2.2C The functional specification shall describe the purpose and method of use of
all external TSF interfaces, providing complete details of all effects,
exceptions and error messages.

Class ADV: Development

March 2004 Version 2.4 Page 79 of 190

ADV_FSP.2.3C The functional specification shall completely represent the TSF.

ADV_FSP.2.4C The functional specification shall include rationale that the TSF is
completely represented.

Evaluator action elements

ADV_FSP.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_FSP.2.2E The evaluator shall determine that the functional specification is an accurate
and complete instantiation of the SFRs.

ADV_FSP.2.3E The evaluator shall determine that the functional specification is consistent
with the TOE summary specification.

ADV_FSP.3 Semiformal functional specification

Dependencies

ADV_RCR.1 Informal correspondence demonstration

Developer action elements

ADV_FSP.3.1D The developer shall provide a functional specification.

Content and presentation of evidence elements

ADV_FSP.3.1C The functional specification shall describe the TSF and its external interfaces
using a semiformal style, supported by informal, explanatory text where
appropriate.

ADV_FSP.3.2C The functional specification shall describe the purpose and method of use of
all external TSF interfaces, providing complete details of all effects,
exceptions and error messages.

ADV_FSP.3.3C The functional specification shall completely represent the TSF.

ADV_FSP.3.4C The functional specification shall include rationale that the TSF is
completely represented.

Evaluator action elements

ADV_FSP.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_FSP.3.2E The evaluator shall determine that the functional specification is an accurate
and complete instantiation of the SFRs.

ADV_FSP.3.3E The evaluator shall determine that the functional specification is consistent
with the TOE summary specification.

Class ADV: Development

Page 80 of 190 Version 2.4 March 2004

ADV_FSP.4 Formal functional specification

Dependencies

ADV_RCR.1 Informal correspondence demonstration

Developer action elements

ADV_FSP.4.1D The developer shall provide a functional specification.

Content and presentation of evidence elements

ADV_FSP.4.1C The functional specification shall describe the TSF and its external interfaces
using a formal style, supported by informal, explanatory text where
appropriate.

ADV_FSP.4.2C The functional specification shall describe the purpose and method of use of
all external TSF interfaces, providing complete details of all effects,
exceptions and error messages.

ADV_FSP.4.3C The functional specification shall completely represent the TSF.

ADV_FSP.4.4C The functional specification shall include rationale that the TSF is
completely represented.

Evaluator action elements

ADV_FSP.4.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_FSP.4.2E The evaluator shall determine that the functional specification is an accurate
and complete instantiation of the SFRs.

ADV_FSP.4.3E The evaluator shall determine that the functional specification is consistent
with the TOE summary specification.

8.2 High-level design (ADV_HLD)

Objectives

278 The high-level design of a TOE provides a description of the TSF in terms of
major structural units (i.e. subsystems) and relates these units to the
functions that they provide. The high-level design requirements are intended
to provide assurance that the TOE provides an architecture appropriate to
implement the SFRs.

279 The high-level design refines the functional specification into subsystems.
For each subsystem of the TSF, the high-level design describes its purpose

Class ADV: Development

March 2004 Version 2.4 Page 81 of 190

and function, and identifies the security functionality contained in the
subsystem. The interrelationships of all subsystems are also defined in the
high-level design. These interrelationships will be represented as external
interfaces for data flow, control flow, etc., as appropriate.

Component levelling

280 The components in this family are levelled on the basis of the degree of
formalism required of the high-level design, and on the degree of detail
required for the interface specifications.

Application notes

281 The developer is expected to describe the design of the TSF in terms of
subsystems. The term “subsystem” is used here to express the idea of
decomposing the TSF into a relatively small number of parts. While the
developer is not required to actually have “subsystems”, the developer is
expected to represent a similar level of decomposition. For example, a design
may be similarly decomposed using “layers”, “domains”, or “servers”.

282 The term “TSP-enforcing subsystem” refers to a subsystem that contributes
to the enforcement of the TSP, either directly or indirectly.

283 The High-level design (ADV_HLD).*.2E elements within this family define
a requirement that the evaluator determine that the high-level design is an
accurate and complete instantiation of the SFRs. This provides a direct
correspondence between the TOE security functional requirements and the
high-level design, in addition to the pairwise correspondences required by
the Representation correspondence (ADV_RCR) family. It is expected that
the evaluator will use the evidence provided in Representation
correspondence (ADV_RCR) as an input to making this determination, and
the requirement for completeness is intended to be relative to the level of
abstraction of the high-level design.

284 ADV_HLD.3.7C introduces a requirement for a complete presentation for the
interfaces to the subsystems. This will provide the necessary detail for
supporting both thorough testing of the TOE (using components from Depth
(ATE_DPT)), and the assessment of vulnerabilities.

285 In the context of the level of formality of the high-level design, informal,
semiformal and formal are considered to be hierarchical in nature. Thus,
ADV_HLD.1.1C and ADV_HLD.2.1C may also be met with either a semiformal or
formal high-level design, and ADV_HLD.3.1C and ADV_HLD.4.1C may also be
met with a formal high-level design.

286 In High-level design (ADV_HLD).*.5C the phrase “underlying hardware,
firmware and/or software” concerns the virtual machine on which the TOE
runs (if any), rather than mechanisms contained within the TOE (which are
covered elsewhere in the component). As such it is a requirement on
information about the operational environment.

Class ADV: Development

Page 82 of 190 Version 2.4 March 2004

ADV_HLD.1 Descriptive high-level design

Dependencies

ADV_FSP.1 Informal functional specification
ADV_RCR.1 Informal correspondence demonstration

Developer action elements

ADV_HLD.1.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements

ADV_HLD.1.1C The presentation of the high-level design shall be informal.

ADV_HLD.1.2C The high-level design shall describe the structure of the TSF in terms of
subsystems.

ADV_HLD.1.3C The high-level design shall describe the security functionality provided by
each subsystem of the TSF.

ADV_HLD.1.4C The high-level design shall identify any underlying hardware, firmware,
and/or software required by the TSF with a presentation of the functions
provided by the supporting protection mechanisms implemented in that
hardware, firmware, or software.

ADV_HLD.1.5C The high-level design shall identify all interfaces to the subsystems of the
TSF.

ADV_HLD.1.6C The high-level design shall identify which of the interfaces to the subsystems
of the TSF are externally visible.

Evaluator action elements

ADV_HLD.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_HLD.1.2E The evaluator shall determine that the high-level design is an accurate and
complete instantiation of the SFRs.

ADV_HLD.2 Security enforcing high-level design

Dependencies

ADV_FSP.1 Informal functional specification
ADV_RCR.1 Informal correspondence demonstration

Developer action elements

ADV_HLD.2.1D The developer shall provide the high-level design of the TSF.

Class ADV: Development

March 2004 Version 2.4 Page 83 of 190

Content and presentation of evidence elements

ADV_HLD.2.1C The presentation of the high-level design shall be informal.

ADV_HLD.2.2C The high-level design shall describe the structure of the TSF in terms of
subsystems.

ADV_HLD.2.3C The high-level design shall describe the security functionality provided by
each subsystem of the TSF.

ADV_HLD.2.4C The high-level design shall identify any underlying hardware, firmware,
and/or software required by the TSF with a presentation of the functions
provided by the supporting protection mechanisms implemented in that
hardware, firmware, or software.

ADV_HLD.2.5C The high-level design shall identify all interfaces to the subsystems of the
TSF.

ADV_HLD.2.6C The high-level design shall identify which of the interfaces to the subsystems
of the TSF are externally visible.

ADV_HLD.2.7C The high-level design shall describe the purpose and method of use of all
interfaces to the subsystems of the TSF, providing details of effects,
exceptions and error messages, as appropriate.

ADV_HLD.2.8C The high-level design shall describe the separation of the TOE into TSP-
enforcing and other subsystems.

Evaluator action elements

ADV_HLD.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_HLD.2.2E The evaluator shall determine that the high-level design is an accurate and
complete instantiation of the SFRs.

ADV_HLD.3 Semiformal high-level design

Dependencies

ADV_FSP.3 Semiformal functional specification
ADV_RCR.2 Semiformal correspondence demonstration

Developer action elements

ADV_HLD.3.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements

ADV_HLD.3.1C The presentation of the high-level design shall be semiformal.

Class ADV: Development

Page 84 of 190 Version 2.4 March 2004

ADV_HLD.3.2C The high-level design shall describe the structure of the TSF in terms of
subsystems.

ADV_HLD.3.3C The high-level design shall describe the security functionality provided by
each subsystem of the TSF.

ADV_HLD.3.4C The high-level design shall identify any underlying hardware, firmware,
and/or software required by the TSF with a presentation of the functions
provided by the supporting protection mechanisms implemented in that
hardware, firmware, or software.

ADV_HLD.3.5C The high-level design shall identify all interfaces to the subsystems of the
TSF.

ADV_HLD.3.6C The high-level design shall identify which of the interfaces to the subsystems
of the TSF are externally visible.

ADV_HLD.3.7C The high-level design shall describe the purpose and method of use of all
interfaces to the subsystems of the TSF, providing complete details of all
effects, exceptions and error messages.

ADV_HLD.3.8C The high-level design shall describe the separation of the TOE into TSP-
enforcing and other subsystems.

Evaluator action elements

ADV_HLD.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_HLD.3.2E The evaluator shall determine that the high-level design is an accurate and
complete instantiation of the SFRs.

ADV_HLD.4 Semiformal high-level explanation

Dependencies

ADV_FSP.3 Semiformal functional specification
ADV_RCR.2 Semiformal correspondence demonstration

Developer action elements

ADV_HLD.4.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements

ADV_HLD.4.1C The presentation of the high-level design shall be semiformal.

ADV_HLD.4.2C The high-level design shall describe the structure of the TSF in terms of
subsystems.

Class ADV: Development

March 2004 Version 2.4 Page 85 of 190

ADV_HLD.4.3C The high-level design shall describe the security functionality provided by
each subsystem of the TSF.

ADV_HLD.4.4C The high-level design shall identify any underlying hardware, firmware,
and/or software required by the TSF with a presentation of the functions
provided by the supporting protection mechanisms implemented in that
hardware, firmware, or software.

ADV_HLD.4.5C The high-level design shall identify all interfaces to the subsystems of the
TSF.

ADV_HLD.4.6C The high-level design shall identify which of the interfaces to the subsystems
of the TSF are externally visible.

ADV_HLD.4.7C The high-level design shall describe the purpose and method of use of all
interfaces to the subsystems of the TSF, providing complete details of all
effects, exceptions and error messages.

ADV_HLD.4.8C The high-level design shall describe the separation of the TOE into TSP-
enforcing and other subsystems.

Evaluator action elements

ADV_HLD.4.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_HLD.4.2E The evaluator shall determine that the high-level design is an accurate and
complete instantiation of the SFRs.

ADV_HLD.5 Formal high-level design

Dependencies

ADV_FSP.4 Formal functional specification
ADV_RCR.3 Formal correspondence demonstration

Developer action elements

ADV_HLD.5.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements

ADV_HLD.5.1C The presentation of the high-level design shall be formal.

ADV_HLD.5.2C The high-level design shall describe the structure of the TSF in terms of
subsystems.

ADV_HLD.5.3C The high-level design shall describe the security functionality provided by
each subsystem of the TSF.

Class ADV: Development

Page 86 of 190 Version 2.4 March 2004

ADV_HLD.5.4C The high-level design shall identify any underlying hardware, firmware,
and/or software required by the TSF with a presentation of the functions
provided by the supporting protection mechanisms implemented in that
hardware, firmware, or software.

ADV_HLD.5.5C The high-level design shall identify all interfaces to the subsystems of the
TSF.

ADV_HLD.5.6C The high-level design shall identify which of the interfaces to the subsystems
of the TSF are externally visible.

ADV_HLD.5.7C The high-level design shall describe the purpose and method of use of all
interfaces to the subsystems of the TSF, providing complete details of all
effects, exceptions and error messages.

ADV_HLD.5.8C The high-level design shall describe the separation of the TOE into TSP-
enforcing and other subsystems.

Evaluator action elements

ADV_HLD.5.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_HLD.5.2E The evaluator shall determine that the high-level design is an accurate and
complete instantiation of the SFRs.

8.3 Implementation representation (ADV_IMP)

Objectives

287 The description of the implementation representation in the form of source
code, firmware, hardware drawings, etc. captures the detailed internal
workings of the TSF in support of analysis.

Component levelling

288 The components in this family are levelled on the basis of the completeness
and structure of the implementation representation provided.

Application notes

289 The implementation representation is used to express the notion of the least
abstract representation of the TSF, specifically the one that is used to create
the TSF itself without further design refinement. Source code that is then
compiled or a hardware drawing that is used to build the actual hardware are
examples of parts of an implementation representation.

290 It is possible that evaluators may use the implementation representation to
directly support other evaluation activities (e.g. vulnerability analysis, test
coverage analysis, or identification of additional evaluator tests). It is

Class ADV: Development

March 2004 Version 2.4 Page 87 of 190

expected that PP/ST authors will select a component that requires that the
implementation is complete and comprehensive enough to address the needs
of all other SARs included in the PP/ST.

ADV_IMP.1 Subset of the implementation of the TSF

Dependencies

ADV_LLD.1 Descriptive low-level design
ADV_RCR.1 Informal correspondence demonstration
ALC_TAT.1 Well-defined development tools

Application notes

291 ADV_IMP.1.1D requires that the developer provide the implementation
representation for a subset of the TSF. The intention is that access to at least
a portion of the TSF will provide the evaluator with an opportunity to
examine the implementation representation for those portions of the TSF
where such an examination can add significantly to the understanding of, and
assurance in, the mechanisms employed. Provision of a sample of the
implementation representation will also allow the evaluator to sample the
traceability evidence to gain assurance in the approach taken for refinement,
and to assess the presentation of the implementation representation itself.

292 ADV_IMP.1.2E element defines a requirement that the evaluator determine that
the least abstract TSF representation is an accurate and complete
instantiation of the SFRs. This provides a direct correspondence between the
SFRs and the least abstract TSF representation, in addition to the pairwise
correspondences required by the Representation correspondence
(ADV_RCR) family. It is expected that the evaluator will use the evidence
provided in Representation correspondence (ADV_RCR) as an input to
making this determination. The least abstract TSF representation for this
component is an aggregate of the implementation representation that is
provided and that portion of the low-level design for which no corresponding
implementation representation is provided.

Developer action elements

ADV_IMP.1.1D The developer shall provide the implementation representation for a selected
subset of the TSF.

Content and presentation of evidence elements

ADV_IMP.1.1C The implementation representation shall unambiguously define the TSF to a
level of detail such that the TSF can be generated without further design
decisions.

Evaluator action elements

ADV_IMP.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Class ADV: Development

Page 88 of 190 Version 2.4 March 2004

ADV_IMP.1.2E The evaluator shall determine that the least abstract TSF representation
provided is an accurate and complete instantiation of the SFRs.

ADV_IMP.2 Implementation of the TSF

Dependencies

ADV_LLD.1 Descriptive low-level design
ALC_TAT.1 Well-defined development tools

Application notes

293 The ADV_IMP.2.2E element defines a requirement that the evaluator determine
that the implementation representation is an accurate and complete
instantiation of the SFRs. This provides a direct correspondence between the
TOE security functional requirements and the implementation representation,
in addition to the pairwise correspondences required by the Representation
correspondence (ADV_RCR) family. It is expected that the evaluator will
use the evidence provided in Representation correspondence (ADV_RCR) as
an input to making this determination.

Developer action elements

ADV_IMP.2.1D The developer shall provide the implementation representation for the entire
TSF.

Content and presentation of evidence elements

ADV_IMP.2.1C The implementation representation shall unambiguously define the TSF to a
level of detail such that the TSF can be generated without further design
decisions.

ADV_IMP.2.2C The implementation representation shall describe the relationships between
all portions of the implementation.

Evaluator action elements

ADV_IMP.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_IMP.2.2E The evaluator shall determine that the implementation representation is an
accurate and complete instantiation of the SFRs.

ADV_IMP.3 Structured implementation of the TSF

Dependencies

ADV_INT.1 Modularity

Class ADV: Development

March 2004 Version 2.4 Page 89 of 190

ADV_LLD.1 Descriptive low-level design
ADV_RCR.1 Informal correspondence demonstration
ALC_TAT.1 Well-defined development tools

Application notes

294 The ADV_IMP.3.2E element defines a requirement that the evaluator determine
that the implementation representation is an accurate and complete
instantiation of the SFRs. This provides a direct correspondence between the
TOE security functional requirements and the implementation representation,
in addition to the pairwise correspondences required by the Representation
correspondence (ADV_RCR) family. It is expected that the evaluator will
use the evidence provided in Representation correspondence (ADV_RCR) as
an input to making this determination.

Developer action elements

ADV_IMP.3.1D The developer shall provide the implementation representation for the entire
TSF.

Content and presentation of evidence elements

ADV_IMP.3.1C The implementation representation shall unambiguously define the TSF to a
level of detail such that the TSF can be generated without further design
decisions.

ADV_IMP.3.2C The implementation representation shall describe the relationships between
all portions of the implementation.

ADV_IMP.3.3C The implementation representation shall be structured into small and
comprehensible sections.

Evaluator action elements

ADV_IMP.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_IMP.3.2E The evaluator shall determine that the implementation representation is an
accurate and complete instantiation of the SFRs.

8.4 TSF internals (ADV_INT)

Objectives

295 This family addresses the internal structure of the TSF. Requirements are
presented for modularity, layering (to separate levels of abstraction and
minimise circular dependencies), minimisation of the complexity of policy
enforcement mechanisms, and the minimisation of the amount of non-TSP-

Class ADV: Development

Page 90 of 190 Version 2.4 March 2004

enforcing functionality within the TSF -- thus resulting in a TSF that is
simple enough to be analysed.

296 Modular design reduces the interdependence between elements of the TSF
and thus reduces the risk that a change or error in one module will have
effects throughout the TOE. Thus, a modular design provides the basis for
determining the scope of interaction with other elements of the TSF,
provides for increased assurance that unexpected effects do not occur, and
also provides the basis for designing and evaluating test suites.

297 The use of layering and of simpler designs for the TSP-enforcing
functionality reduces the complexity of the TSF. This in turn enables a better
understanding of the TSF, providing more assurance that the SFRs are
accurately and completely instantiated in the implementation.

298 Minimising the amount of functionality in the TSF that does not enforce the
TSP, reduces the possibility of flaws in the TSF. In combination with
modularity and layering, it allows the evaluator to focus only on that
functionality which is necessary for TSP enforcement.

299 Design complexity minimisation contributes to the assurance that the code is
understood -- the less complex the code in the TSF, the greater the likelihood
that the design of the TSF is comprehensible. Design complexity
minimisation is a key characteristic of a reference validation mechanism.

Component levelling

300 The components in this family are levelled on the basis of the amount of
structure and minimisation required.

Application notes

301 The term “portions of the TSF” is used to represent parts of the TSF with a
varying granularity based on the available TSF representations. The
functional specification allows identification in terms of interfaces, the high-
level design allows identification in terms of subsystems, the low-level
design allows identification in terms of modules, and the implementation
representation allows identification in terms of implementation units.

302 The ADV_INT.2.5C and ADV_INT.3.5C elements address minimisation of mutual
interactions between layers. Nevertheless, it is still permissible to have
mutual interactions between layers, but in such cases the developer is
required to demonstrate that these mutual interactions are necessary and
cannot reasonably be avoided.

303 ADV_INT.2.6C introduces a reference monitor concept by requiring the
minimisation of complexity of the portions of the TSF that enforce the access
control and/or information flow control policies identified in the TSP.
ADV_INT.3.6C further develops the reference monitor concept by requiring
minimisation of the complexity of the entire TSF.

Class ADV: Development

March 2004 Version 2.4 Page 91 of 190

304 Several of the elements within the components for this family refer to the
architectural description. The architectural description is at a similar level of
abstraction to the low-level design, in that it is concerned with the modules
of the TSF. Whereas the low-level design describes the design of the
modules of the TSF, the purpose of the architectural description is to provide
evidence of modularity, layering, and minimisation of complexity of the
TSF, as applicable. Both the low-level design and the implementation
representation are required to be in compliance with the architectural
description, to provide assurance that these TSF representations possess the
required modularity, layering, and minimisation of complexity.

ADV_INT.1 Modularity

Dependencies

ADV_IMP.1 Subset of the implementation of the TSF
ADV_LLD.1 Descriptive low-level design

Developer action elements

ADV_INT.1.1D The developer shall design and structure the TSF in a modular fashion that
avoids unnecessary interactions between the modules of the design.

ADV_INT.1.2D The developer shall provide an architectural description.

Content and presentation of evidence elements

ADV_INT.1.1C The architectural description shall identify the modules of the TSF.

ADV_INT.1.2C The architectural description shall describe the purpose, interface,
parameters, and effects of each module of the TSF.

ADV_INT.1.3C The architectural description shall describe how the TSF design provides for
largely independent modules that avoid unnecessary interactions.

Evaluator action elements

ADV_INT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_INT.1.2E The evaluator shall determine that both the low-level design and the
implementation representation are in compliance with the architectural
description.

ADV_INT.2 Reduction of complexity

Dependencies

ADV_IMP.1 Subset of the implementation of the TSF
ADV_LLD.1 Descriptive low-level design

Class ADV: Development

Page 92 of 190 Version 2.4 March 2004

Application notes

305 This component introduces a reference monitor concept by requiring the
minimisation of complexity of the portions of the TSF that enforce the access
control and/or information flow control policies identified in the TSP.

Developer action elements

ADV_INT.2.1D The developer shall design and structure the TSF in a modular fashion that
avoids unnecessary interactions between the modules of the design.

ADV_INT.2.2D The developer shall provide an architectural description.

ADV_INT.2.3D The developer shall design and structure the TSF in a layered fashion that
minimises mutual interactions between the layers of the design.

ADV_INT.2.4D The developer shall design and structure the TSF in such a way that
minimises the complexity of the portions of the TSF that enforce any access
control and/or information flow control policies.

Content and presentation of evidence elements

ADV_INT.2.1C The architectural description shall identify the modules of the TSF and shall
specify which portions of the TSF enforce the access control and/or
information flow control policies.

ADV_INT.2.2C The architectural description shall describe the purpose, interface,
parameters, and effects of each module of the TSF.

ADV_INT.2.3C The architectural description shall describe how the TSF design provides for
largely independent modules that avoid unnecessary interactions.

ADV_INT.2.4C The architectural description shall describe the layering architecture.

ADV_INT.2.5C The architectural description shall show that mutual interactions have been
minimised, and justify those that remain.

ADV_INT.2.6C The architectural description shall describe how the portions of the TSF that
enforce any access control and/or information flow control policies have
been structured to minimise complexity.

Evaluator action elements

ADV_INT.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_INT.2.2E The evaluator shall determine that both the low-level design and the
implementation representation are in compliance with the architectural
description.

Class ADV: Development

March 2004 Version 2.4 Page 93 of 190

ADV_INT.3 Minimisation of complexity

Dependencies

ADV_IMP.2 Implementation of the TSF
ADV_LLD.1 Descriptive low-level design

Application notes

306 This component requires that the reference monitor property “simple enough
to be analysed” is fully addressed. When this component is combined with
the SFRs FPT_RVM.1 and FPT_SEP.3, the reference monitor concept would
be fully realised.

Developer action elements

ADV_INT.3.1D The developer shall design and structure the TSF in a modular fashion that
avoids unnecessary interactions between the modules of the design.

ADV_INT.3.2D The developer shall provide an architectural description.

ADV_INT.3.3D The developer shall design and structure the TSF in a layered fashion that
minimises mutual interactions between the layers of the design.

ADV_INT.3.4D The developer shall design and structure the TSF in such a way that
minimises the complexity of the entire TSF.

ADV_INT.3.5D The developer shall design and structure the portions of the TSF that enforce
any access control and/or information flow control policies such that they are
simple enough to be analysed.

ADV_INT.3.6D The developer shall ensure that functions whose objectives are not relevant
for the TSF are excluded from the TSF modules.

Content and presentation of evidence elements

ADV_INT.3.1C The architectural description shall identify the modules of the TSF and shall
specify which portions of the TSF enforce the access control and/or
information flow control policies.

ADV_INT.3.2C The architectural description shall describe the purpose, interface,
parameters, and side-effects of each module of the TSF.

ADV_INT.3.3C The architectural description shall describe how the TSF design provides for
largely independent modules that avoid unnecessary interactions.

ADV_INT.3.4C The architectural description shall describe the layering architecture.

ADV_INT.3.5C The architectural description shall show that mutual interactions have been
minimised, and justify those that remain.

Class ADV: Development

Page 94 of 190 Version 2.4 March 2004

ADV_INT.3.6C The architectural description shall describe how the entire TSF has been
structured to minimise complexity.

ADV_INT.3.7C The architectural description shall justify the inclusion of any non-TSP-
enforcing modules in the TSF.

Evaluator action elements

ADV_INT.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_INT.3.2E The evaluator shall determine that both the low-level design and the
implementation representation are in compliance with the architectural
description.

ADV_INT.3.3E The evaluator shall confirm that the portions of the TSF that enforce any
access control and/or information flow control policies are simple enough to
be analysed.

8.5 Low-level design (ADV_LLD)

Objectives

307 The low-level design of a TOE provides a description of the internal
workings of the TSF in terms of modules and their interrelationships and
dependencies. The low-level design provides assurance that the TSF
subsystems have been correctly and effectively refined.

308 For each module of the TSF, the low-level design describes its purpose,
function, interfaces, dependencies, and the implementation of any TSP-
enforcing functions.

Component levelling

309 The components in this family are levelled on the basis of the degree of
formalism required of the low-level design, and on the degree of detail
required for the interface specifications.

Application notes

310 The term “TSP-enforcing module” refers to any module that must be relied
upon for correct enforcement of the TSP.

311 The term “security functionality” is used to represent the set of operations
that a module performs in contribution to security functions implemented by
the TOE. This distinction is made because modules do not necessarily relate
to specific security functions. While a given module may correspond directly
to a security function, or even multiple security functions, it is also possible
that many modules must be combined to implement a single security
function.

Class ADV: Development

March 2004 Version 2.4 Page 95 of 190

312 The Low-level design (ADV_LLD).*.6C elements require that the low-level
design describe how each TSP-enforcing function is provided. The intent of
this requirement is that the low-level design provide a description of how
each module is expected to be implemented from a design perspective.

313 The Low-level design (ADV_LLD).*.2E elements within this family define a
requirement that the evaluator determine that the low-level design is an
accurate and complete instantiation of the SFRs. This provides a direct
correspondence between the SFRs and the low-level design, in addition to
the pairwise correspondences required by the Representation correspondence
(ADV_RCR) family. It is expected that the evaluator will use the evidence
provided in Representation correspondence (ADV_RCR) as an input to
making this determination, and the requirement for completeness is intended
to be relative to the level of abstraction of the low-level design.

314 ADV_LLD.2.8C introduces a requirement for a complete presentation for the
interfaces to the modules. This will provide the necessary detail for
supporting both thorough testing of the TOE (using components from Depth
(ATE_DPT)), and the assessment of vulnerabilities.

315 In the context of the level of formality of the low-level design, informal,
semiformal and formal are considered to be hierarchical in nature. Thus,
ADV_LLD.1.1C may also be met with either a semiformal or formal low-level
design, and ADV_LLD.2.1C may also be met with a formal low-level design.

ADV_LLD.1 Descriptive low-level design

Dependencies

ADV_HLD.2 Security enforcing high-level design
ADV_RCR.1 Informal correspondence demonstration

Developer action elements

ADV_LLD.1.1D The developer shall provide the low-level design of the TSF.

Content and presentation of evidence elements

ADV_LLD.1.1C The presentation of the low-level design shall be informal.

ADV_LLD.1.2C The low-level design shall describe the TSF in terms of modules.

ADV_LLD.1.3C The low-level design shall describe the purpose of each module.

ADV_LLD.1.4C The low-level design shall define the interrelationships between the modules
in terms of provided security functionality and dependencies on other
modules.

ADV_LLD.1.5C The low-level design shall describe how each TSP-enforcing module is
provided.

ADV_LLD.1.6C The low-level design shall identify all interfaces to the modules of the TSF.

Class ADV: Development

Page 96 of 190 Version 2.4 March 2004

ADV_LLD.1.7C The low-level design shall identify which of the interfaces to the modules of
the TSF are externally visible.

ADV_LLD.1.8C The low-level design shall describe the purpose and method of use of all
interfaces to the modules of the TSF, providing details of effects, exceptions
and error messages, as appropriate.

ADV_LLD.1.9C The low-level design shall describe the separation of the TOE into TSP-
enforcing and other modules.

Evaluator action elements

ADV_LLD.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_LLD.1.2E The evaluator shall determine that the low-level design is an accurate and
complete instantiation of the SFRs.

ADV_LLD.2 Semiformal low-level design

Dependencies

ADV_HLD.3 Semiformal high-level design
ADV_RCR.2 Semiformal correspondence demonstration

Developer action elements

ADV_LLD.2.1D The developer shall provide the low-level design of the TSF.

Content and presentation of evidence elements

ADV_LLD.2.1C The presentation of the low-level design shall be semiformal.

ADV_LLD.2.2C The low-level design shall describe the TSF in terms of modules.

ADV_LLD.2.3C The low-level design shall describe the purpose of each module.

ADV_LLD.2.4C The low-level design shall define the interrelationships between the modules
in terms of provided security functionality and dependencies on other
modules.

ADV_LLD.2.5C The low-level design shall describe how each TSP-enforcing module is
provided.

ADV_LLD.2.6C The low-level design shall identify all interfaces to the modules of the TSF.

ADV_LLD.2.7C The low-level design shall identify which of the interfaces to the modules of
the TSF are externally visible.

Class ADV: Development

March 2004 Version 2.4 Page 97 of 190

ADV_LLD.2.8C The low-level design shall describe the purpose and method of use of all
interfaces to the modules of the TSF, providing complete details of all
effects, exceptions and error messages.

ADV_LLD.2.9C The low-level design shall describe the separation of the TOE into TSP-
enforcing and other modules.

Evaluator action elements

ADV_LLD.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_LLD.2.2E The evaluator shall determine that the low-level design is an accurate and
complete instantiation of the SFRs.

ADV_LLD.3 Formal low-level design

Dependencies

ADV_HLD.5 Formal high-level design
ADV_RCR.3 Formal correspondence demonstration

Developer action elements

ADV_LLD.3.1D The developer shall provide the low-level design of the TSF.

Content and presentation of evidence elements

ADV_LLD.3.1C The presentation of the low-level design shall be formal.

ADV_LLD.3.2C The low-level design shall describe the TSF in terms of modules.

ADV_LLD.3.3C The low-level design shall describe the purpose of each module.

ADV_LLD.3.4C The low-level design shall define the interrelationships between the modules
in terms of provided security functionality and dependencies on other
modules.

ADV_LLD.3.5C The low-level design shall describe how each TSP-enforcing module is
provided.

ADV_LLD.3.6C The low-level design shall identify all interfaces to the modules of the TSF.

ADV_LLD.3.7C The low-level design shall identify which of the interfaces to the modules of
the TSF are externally visible.

ADV_LLD.3.8C The low-level design shall describe the purpose and method of use of all
interfaces to the modules of the TSF, providing complete details of all
effects, exceptions and error messages.

Class ADV: Development

Page 98 of 190 Version 2.4 March 2004

ADV_LLD.3.9C The low-level design shall describe the separation of the TOE into TSP-
enforcing and other modules.

Evaluator action elements

ADV_LLD.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_LLD.3.2E The evaluator shall determine that the low-level design is an accurate and
complete instantiation of the SFRs.

8.6 Representation correspondence (ADV_RCR)

Objectives

316 The correspondence between the SFRs and the functional specification, and
the pairwise correspondence between the various TSF representations (i.e.
functional specification, high-level design, low-level design, implementation
representation) together address the correct and complete instantiation of the
SFRs to the least abstract TSF representation provided. This conclusion is
achieved by step-wise refinement and the cumulative results of
correspondence determinations between all adjacent abstractions.

Component levelling

317 The components in this family are levelled on the basis of the required level
of formality of the correspondence between the various TSF representations.

Application notes

318 The developer must demonstrate to the evaluator that the most detailed, or
least abstract, TSF representation provided is an accurate, consistent, and
complete instantiation of the SFRs. This is accomplished by showing
correspondence between adjacent representations at a commensurate level of
rigour.

319 This family of requirements is not intended to address correspondence
relating to the TSP model or the TSP. Rather, as shown in Figure 9, it is
intended to address correspondence between various TSF representations
(i.e. the SFRs, functional specification, high-level design, low-level design,
and implementation representation) that are provided.

320 The Representation correspondence (ADV_RCR).*.1C elements refer to “all
relevant security functionality” in defining the scope of what must be refined
between an adjacent pair of TSF representations. Where the implementation
representation is only provided for a subset of the TSF (as in ADV_IMP.1
Subset of the implementation of the TSF), the required refinements
between the low-level design and the implementation representation are
limited to the security functionality that is presented in the implementation
representation. In all other cases, this element requires that all parts of the

Class ADV: Development

March 2004 Version 2.4 Page 99 of 190

more abstract TSF representation be refined in the less abstract TSF
representation.

321 In the context of the level of formality for correspondence between adjacent
TSF representations, informal, semiformal and formal are considered to be
hierarchical in nature. Thus, ADV_RCR.2.2C and ADV_RCR.3.2C may be met with
a formal proof of correspondence, and in the absence of any requirements on
its level of formality, a demonstration of correspondence may be informal,
semiformal or formal.

ADV_RCR.1 Informal correspondence demonstration

Developer action elements

ADV_RCR.1.1D The developer shall provide an analysis of correspondence between all
adjacent pairs of TSF representations that are provided.

Content and presentation of evidence elements

ADV_RCR.1.1C For each adjacent pair of provided TSF representations, the analysis shall
demonstrate that all relevant security functionality of the more abstract TSF
representation is correctly and completely refined in the less abstract TSF
representation.

Evaluator action elements

ADV_RCR.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_RCR.2 Semiformal correspondence demonstration

Developer action elements

ADV_RCR.2.1D The developer shall provide an analysis of correspondence between all
adjacent pairs of TSF representations that are provided.

Content and presentation of evidence elements

ADV_RCR.2.1C For each adjacent pair of provided TSF representations, the analysis shall
demonstrate that all relevant security functionality of the more abstract TSF
representation is correctly and completely refined in the less abstract TSF
representation.

ADV_RCR.2.2C For each adjacent pair of provided TSF representations, where portions of
both representations are at least semiformally specified, the demonstration of
correspondence between those portions of the representations shall be
semiformal.

Evaluator action elements

ADV_RCR.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Class ADV: Development

Page 100 of 190 Version 2.4 March 2004

ADV_RCR.3 Formal correspondence demonstration

Application notes

322 The developer must either demonstrate or prove correspondence, as
described in the requirements below, commensurate with the level of rigour
of presentation style. For example, correspondence must be proven when
corresponding representations are formally specified.

Developer action elements

ADV_RCR.3.1D The developer shall provide an analysis of correspondence between all
adjacent pairs of TSF representations that are provided.

Content and presentation of evidence elements

ADV_RCR.3.1C For those corresponding portions of representations that are formally
specified, the developer shall prove that correspondence.

ADV_RCR.3.2C For each adjacent pair of provided TSF representations, the analysis shall
prove or demonstrate that all relevant security functionality of the more
abstract TSF representation is correctly and completely refined in the less
abstract TSF representation.

ADV_RCR.3.3C For each adjacent pair of provided TSF representations, where portions of
one representation are semiformally specified and the other at least
semiformally specified, the demonstration of correspondence between those
portions of the representations shall be semiformal .

ADV_RCR.3.4C For each adjacent pair of provided TSF representations, where portions of
both representations are formally specified, the proof of correspondence
between those portions of the representations shall be formal.

Evaluator action elements

ADV_RCR.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_RCR.3.2E The evaluator shall determine the accuracy of the proofs of correspondence
by selectively verifying the formal analysis.

8.7 Security policy modeling (ADV_SPM)

Objectives

323 It is the objective of this family to provide additional assurance that the
security functions in the functional specification enforce the policies in the
TSP. This is accomplished via the development of a security policy model
that is based on a subset of the policies of the TSP, and establishing a
correspondence between the functional specification, the security policy
model, and these policies of the TSP.

Class ADV: Development

March 2004 Version 2.4 Page 101 of 190

Component levelling

324 The components in this family are levelled on the basis of the degree of
formality required of the TSP model, and the degree of formality required of
the correspondence between the TSP model and the functional specification.

Application notes

325 While a TSP may include any policies, TSP models have traditionally
represented only subsets of those policies, because modeling certain policies
is currently beyond the state of the art. The current state of the art determines
the policies that can be modeled, and the PP/ST author should identify
specific functions and associated policies that can, and thus are required to
be, modeled. At the very least, access control and information flow control
policies are required to be modeled (if they are part of the TSP) since they
are within the state of the art.

326 For each of the components within this family, there is a requirement to
describe the rules and characteristics of applicable policies of the TSP in the
TSP model and to ensure that the TSP model satisfies the corresponding
policies of the TSP. The “rules” and “characteristics” of a TSP model are
intended to allow flexibility in the type of model that may be developed (e.g.
state transition, non-interference). For example, rules may be represented as
“properties” (e.g. simple security property) and characteristics may be
represented as definitions such as “initial state”, “secure state”, “subjects”
and “objects”.

327 In the context of the level of formality of the TSP model and the
correspondence between the TSP model and the functional specification,
informal, semiformal and formal are considered to be hierarchical in nature.
Thus, ADV_SPM.1.1C may also be met with either a semiformal or formal TSP
model, and ADV_SPM.2.1C may also be met with a formal TSP model.
Furthermore, ADV_SPM.2.5C and ADV_SPM.3.5C may be met with a formal proof
of correspondence. Finally, in the absence of any requirements on its level of
formality, a demonstration of correspondence may be informal, semiformal
or formal.

ADV_SPM.1 Informal TOE security policy model

Dependencies

ADV_FSP.1 Informal functional specification

Developer action elements

ADV_SPM.1.1D The developer shall provide a TSP model.

ADV_SPM.1.2D The developer shall demonstrate correspondence between the functional
specification and the TSP model.

Class ADV: Development

Page 102 of 190 Version 2.4 March 2004

Content and presentation of evidence elements

ADV_SPM.1.1C The TSP model shall be informal.

ADV_SPM.1.2C The TSP model shall describe the rules and characteristics of all policies of
the TSP that can be modeled.

ADV_SPM.1.3C The TSP model shall include a rationale that demonstrates that it is
consistent and complete with respect to all policies of the TSP that can be
modeled.

ADV_SPM.1.4C The demonstration of correspondence between the TSP model and the
functional specification shall show that all of the external interfaces to the
TSF in the functional specification are consistent and complete with respect
to the TSP model.

Evaluator action elements

ADV_SPM.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_SPM.2 Semiformal TOE security policy model

Dependencies

ADV_FSP.1 Informal functional specification

Developer action elements

ADV_SPM.2.1D The developer shall provide a TSP model.

ADV_SPM.2.2D The developer shall demonstrate correspondence between the functional
specification and the TSP model.

Content and presentation of evidence elements

ADV_SPM.2.1C The TSP model shall be semiformal.

ADV_SPM.2.2C The TSP model shall describe the rules and characteristics of all policies of
the TSP that can be modeled.

ADV_SPM.2.3C The TSP model shall include a rationale that demonstrates that it is
consistent and complete with respect to all policies of the TSP that can be
modeled.

ADV_SPM.2.4C The demonstration of correspondence between the TSP model and the
functional specification shall show that all of the external interfaces in the
functional specification are consistent and complete with respect to the TSP
model.

Class ADV: Development

March 2004 Version 2.4 Page 103 of 190

ADV_SPM.2.5C Where the functional specification is at least semiformal, the demonstration
of correspondence between the TSP model and the functional specification
shall be semiformal.

Evaluator action elements

ADV_SPM.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_SPM.3 Formal TOE security policy model

Dependencies

ADV_FSP.1 Informal functional specification

Developer action elements

ADV_SPM.3.1D The developer shall provide a TSP model.

ADV_SPM.3.2D The developer shall demonstrate or prove, as appropriate, correspondence
between the functional specification and the TSP model.

Content and presentation of evidence elements

ADV_SPM.3.1C The TSP model shall be formal.

ADV_SPM.3.2C The TSP model shall describe the rules and characteristics of all policies of
the TSP that can be modeled.

ADV_SPM.3.3C The TSP model shall include a rationale that demonstrates that it is
consistent and complete with respect to all policies of the TSP that can be
modeled.

ADV_SPM.3.4C The demonstration of correspondence between the TSP model and the
functional specification shall show that all of the extrernal interfaces in the
functional specification are consistent and complete with respect to the TSP
model.

ADV_SPM.3.5C Where the functional specification is semiformal, the demonstration of
correspondence between the TSP model and the functional specification shall
be semiformal.

ADV_SPM.3.6C Where the functional specification is formal, the proof of correspondence
between the TSP model and the functional specification shall be formal.

Evaluator action elements

ADV_SPM.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Class AGD: Guidance documents

Page 104 of 190 Version 2.4 March 2004

9 Class AGD: Guidance documents

328 The guidance documents class provides the requirements for user and
administrator guidance documentation. For the secure administration and use
of the TOE it is necessary to describe all relevant aspects for the secure
application of the TOE. Guidance documentation includes user and
administrator guidance and, when included in the assurance requirements,
the specific guidance for users and administrators resulting from the
requirements in the ADO: Delivery and operation class and the Flaw
remediation (ALC_FLR) family.

329 Figure 11 shows the families within this class, and the hierarchy of
components within the families.

Figure 11 - AGD: Guidance documents class decomposition

9.1 Administrator guidance (AGD_ADM)

Objectives

330 Administrator guidance refers to written material that is intended to be used
by those persons responsible for configuring, maintaining, and administering
the TOE in a correct manner for maximum security. Because the secure
operation of the TOE is dependent upon the correct performance of the TSF,
persons responsible for performing these functions are trusted by the TSF.
Administrator guidance is intended to help administrators understand the
TSF, including the security-critical information provided by the TSF, and the
security-critical actions required by the administrator.

Component levelling

331 This family contains only one component.

Application notes

332 The requirements AGD_ADM.1.3C and encompass the aspect that any warnings
to the users of a TOE with regard to the TOE security environment and the
security objectives described in the PP/ST are appropriately covered in the
administrator guidance.

333 The concept of secure values, as employed in AGD_ADM.1.4C, has relevance
where an administrator has control over security parameters. Guidance needs
to be provided on secure and insecure settings for such parameters. This
concept is related to the use of the component FMT_MSA.2 from CC Part 2.

Class AGD: Guidance documents

March 2004 Version 2.4 Page 105 of 190

334 AGD_ADM.1.5C requires that the administrator guidance describe the
appropriate administrator's reactions to all security-relevant events. Although
many security-relevant events are the result of performing administrative
functions, this need not always be the case (e.g. the audit log fills up, an
intrusion is detected). Furthermore, a security-relevant event may happen as
a result of a specific chain of administrator functions or, conversely, several
security-relevant events may be triggered by one function.

AGD_ADM.1 Administrator guidance

Dependencies

ADV_FSP.1 Informal functional specification

Developer action elements

AGD_ADM.1.1D The developer shall provide administrator guidance addressed to system
administrative personnel.

Content and presentation of evidence elements

AGD_ADM.1.1C The administrator guidance shall describe the administrative functions and
interfaces available to the administrator of the TOE.

AGD_ADM.1.2C The administrator guidance shall describe how to administer the TOE in a
secure manner.

AGD_ADM.1.3C The administrator guidance shall contain warnings about functions and
privileges that should be controlled in a secure processing environment.

AGD_ADM.1.4C The administrator guidance shall describe all security parameters under the
control of the administrator, indicating secure values as appropriate.

AGD_ADM.1.5C The administrator guidance shall describe each type of security-relevant
event relative to the administrative functions that need to be performed,
including changing the security characteristics of entities under the control of
the TSF.

AGD_ADM.1.6C The administrator guidance shall describe all security objectives for the
operational environment that are relevant to the administrator.

Evaluator action elements

AGD_ADM.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Class AGD: Guidance documents

Page 106 of 190 Version 2.4 March 2004

9.2 User guidance (AGD_USR)

Objectives

335 User guidance refers to material that is intended to be used by non-
administrative human users of the TOE, and by others (e.g. programmers)
using the TOE's external interfaces. User guidance describes the security
functions provided by the TSF and provides instructions and guidelines,
including warnings, for its secure use.

336 The user guidance provides a measure of confidence that non-malicious
users, application providers and others exercising the external interfaces of
the TOE will understand the secure operation of the TOE and will use it as
intended.

Component levelling

337 This family contains only one component.

Application notes

338 In many cases it may be appropriate that guidance is provided in separate
documents: one for human users, and one for application programmers
and/or hard-ware designers using software or hardware interfaces.

AGD_USR.1 User guidance

Dependencies

ADV_FSP.1 Informal functional specification

Developer action elements

AGD_USR.1.1D The developer shall provide user guidance.

Content and presentation of evidence elements

AGD_USR.1.1C The user guidance shall describe the interfaces available to the non-
administrative users of the TOE.

AGD_USR.1.2C The user guidance shall describe the use of the interfaces available to the
non-administrative users of the TOE.

AGD_USR.1.3C The user guidance shall contain warnings about user-accessible functions and
privileges that should be controlled in a secure processing environment.

AGD_USR.1.4C The user guidance shall describe all security objectives for the operational
environment that are relevant to the user.

Class AGD: Guidance documents

March 2004 Version 2.4 Page 107 of 190

Evaluator action elements

AGD_USR.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Class ALC: Life cycle support

Page 108 of 190 Version 2.4 March 2004

10 Class ALC: Life cycle support

339 Life-cycle support is an aspect of establishing discipline and control in the
processes of refinement of the TOE during its development and maintenance.
Confidence in the correspondence between the TOE security requirements
and the TOE is greater if security analysis and the production of the evidence
are done on a regular basis as an integral part of the development and
maintenance activities.

340 Figure 12 shows the families within this class, and the hierarchy of
components within the families.

Figure 12 - ALC: Life cycle support class decomposition

10.1 Development security (ALC_DVS)

Objectives

341 Development security is concerned with physical, procedural, personnel, and
other security measures that may be used in the development environment to
protect the TOE. It includes the physical security of the development
location and any procedures used to select development staff.

Component levelling

342 The components in this family are levelled on the basis of whether
justification of the sufficiency of the security measures is required.

Application notes

343 This family deals with measures to remove or reduce threats to assets in the
development environment of the TOE.

344 The evaluator should determine whether there is a need for visiting the
developer's site in order to confirm that the requirements of this family are
met.

Class ALC: Life cycle support

March 2004 Version 2.4 Page 109 of 190

345 It is recognised that confidentiality may not always be an issue for the
protection of the TOE in its development environment. The use of the word
“necessary” allows for the selection of appropriate safeguards.

ALC_DVS.1 Identification of security measures

Developer action elements

ALC_DVS.1.1D The developer shall produce development security documentation.

Content and presentation of evidence elements

ALC_DVS.1.1C The development security documentation shall describe all the physical,
procedural, personnel, and other security measures that are necessary to
protect the confidentiality and integrity of the TOE design and
implementation in its development environment.

ALC_DVS.1.2C The development security documentation shall provide evidence that these
security measures are followed during the development and maintenance of
the TOE.

Evaluator action elements

ALC_DVS.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_DVS.1.2E The evaluator shall confirm that the security measures are being applied.

ALC_DVS.2 Sufficiency of security measures

Developer action elements

ALC_DVS.2.1D The developer shall produce development security documentation.

Content and presentation of evidence elements

ALC_DVS.2.1C The development security documentation shall describe all the physical,
procedural, personnel, and other security measures that are necessary to
protect the confidentiality and integrity of the TOE design and
implementation in its development environment.

ALC_DVS.2.2C The development security documentation shall provide evidence that these
security measures are followed during the development and maintenance of
the TOE.

ALC_DVS.2.3C The evidence shall justify that the security measures provide the necessary
level of protection to maintain the confidentiality and integrity of the TOE.

Evaluator action elements

ALC_DVS.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Class ALC: Life cycle support

Page 110 of 190 Version 2.4 March 2004

ALC_DVS.2.2E The evaluator shall confirm that the security measures are being applied.

10.2 Flaw remediation (ALC_FLR)

Objectives

346 Flaw remediation requires that discovered security flaws be tracked and
corrected by the developer. Although future compliance with flaw
remediation procedures cannot be determined at the time of the TOE
evaluation, it is possible to evaluate the policies and procedures that a
developer has in place to track and correct flaws, and to distribute the flaw
information and corrections.

Component levelling

347 The components in this family are levelled on the basis of the increasing
extent in scope of the flaw remediation procedures and the rigour of the flaw
remediation policies.

Application notes

348 This family provides assurance that the TOE will be maintained and
supported in the future, requiring the TOE developer to track and correct
flaws in the TOE. Additionally, requirements are included for the
distribution of flaw corrections. However, this family does not impose
evaluation requirements beyond the current evaluation.

349 The TOE user is considered to be the focal point in the user organisation that
is responsible for receiving and implementing fixes to security flaws. This is
not necessarily an individual user, but may be an organisational
representative who is responsible for the handling of security flaws. The use
of the term TOE user recognises that different organisations have different
procedures for handling flaw reporting, which may be done either by an
individual user, or by a central administrative body.

350 The flaw remediation procedures should describe the methods for dealing
with all types of flaws encountered. These flaws may be reported by the
developer, by users of the TOE, or by other parties with familiarity with the
TOE. Some flaws may not be reparable immediately. There may be some
occasions where a flaw cannot be fixed and other (e.g. procedural) measures
must be taken. The documentation provided should cover the procedures for
providing the operational sites with fixes, and providing information on
flaws where fixes are delayed (and what to do in the interim) or when fixes
are not possible.

351 Once the evaluation of a TOE is complete, it is no longer the target for
evaluation. Furthermore, any changes to this evaluated TOE result in the
original evaluation results being no longer applicable to the changed version.
The phrase release of the TOE used in this family therefore refers to a
version of a product or system that is a release of a certified TOE, to which
changes have been applied.

Class ALC: Life cycle support

March 2004 Version 2.4 Page 111 of 190

ALC_FLR.1 Basic flaw remediation

Developer action elements

ALC_FLR.1.1D The developer shall provide flaw remediation procedures addressed to TOE
developers.

Content and presentation of evidence elements

ALC_FLR.1.1C The flaw remediation procedures documentation shall describe the
procedures used to track all reported security flaws in each release of the
TOE.

ALC_FLR.1.2C The flaw remediation procedures shall require that a description of the nature
and effect of each security flaw be provided, as well as the status of finding a
correction to that flaw.

ALC_FLR.1.3C The flaw remediation procedures shall require that corrective actions be
identified for each of the security flaws.

ALC_FLR.1.4C The flaw remediation procedures documentation shall describe the methods
used to provide flaw information, corrections and guidance on corrective
actions to TOE users.

Evaluator action elements

ALC_FLR.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_FLR.2 Flaw reporting procedures

Objectives

352 In order for the developer to be able to act appropriately upon security flaw
reports from TOE users, and to know to whom to send corrective fixes, TOE
users need to understand how to submit security flaw reports to the
developer. Flaw remediation guidance from the developer to the TOE user
ensures that TOE users are aware of this important information.

Developer action elements

ALC_FLR.2.1D The developer shall provide flaw remediation procedures addressed to TOE
developers.

ALC_FLR.2.2D The developer shall establish a procedure for accepting and acting upon all
reports of security flaws and requests for corrections to those flaws.

ALC_FLR.2.3D The developer shall provide flaw remediation guidance addressed to TOE
users.

Class ALC: Life cycle support

Page 112 of 190 Version 2.4 March 2004

Content and presentation of evidence elements

ALC_FLR.2.1C The flaw remediation procedures documentation shall describe the
procedures used to track all reported security flaws in each release of the
TOE.

ALC_FLR.2.2C The flaw remediation procedures shall require that a description of the nature
and effect of each security flaw be provided, as well as the status of finding a
correction to that flaw.

ALC_FLR.2.3C The flaw remediation procedures shall require that corrective actions be
identified for each of the security flaws.

ALC_FLR.2.4C The flaw remediation procedures documentation shall describe the methods
used to provide flaw information, corrections and guidance on corrective
actions to TOE users.

ALC_FLR.2.5C The flaw remediation procedures shall describe a means by which the
developer receives from TOE users reports and enquiries of suspected
security flaws in the TOE.

ALC_FLR.2.6C The procedures for processing reported security flaws shall ensure that any
reported flaws are corrected and the correction issued to TOE users.

ALC_FLR.2.7C The procedures for processing reported security flaws shall provide
safeguards that any corrections to these security flaws do not introduce any
new flaws.

ALC_FLR.2.8C The flaw remediation guidance shall describe a means by which TOE users
report to the developer any suspected security flaws in the TOE.

Evaluator action elements

ALC_FLR.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_FLR.3 Systematic flaw remediation

Objectives

353 In order for the developer to be able to act appropriately upon security flaw
reports from TOE users, and to know to whom to send corrective fixes, TOE
users need to understand how to submit security flaw reports to the
developer, and how to register themselves with the developer so that they
may receive these corrective fixes. Flaw remediation guidance from the
developer to the TOE user ensures that TOE users are aware of this
important information.

Developer action elements

ALC_FLR.3.1D The developer shall provide flaw remediation procedures addressed to TOE
developers.

Class ALC: Life cycle support

March 2004 Version 2.4 Page 113 of 190

ALC_FLR.3.2D The developer shall establish a procedure for accepting and acting upon all
reports of security flaws and requests for corrections to those flaws.

ALC_FLR.3.3D The developer shall provide flaw remediation guidance addressed to TOE
users.

Content and presentation of evidence elements

ALC_FLR.3.1C The flaw remediation procedures documentation shall describe the
procedures used to track all reported security flaws in each release of the
TOE.

ALC_FLR.3.2C The flaw remediation procedures shall require that a description of the nature
and effect of each security flaw be provided, as well as the status of finding a
correction to that flaw.

ALC_FLR.3.3C The flaw remediation procedures shall require that corrective actions be
identified for each of the security flaws.

ALC_FLR.3.4C The flaw remediation procedures documentation shall describe the methods
used to provide flaw information, corrections and guidance on corrective
actions to TOE users.

ALC_FLR.3.5C The flaw remediation procedures shall describe a means by which the
developer receives from TOE users reports and enquiries of suspected
security flaws in the TOE.

ALC_FLR.3.6C The procedures for processing reported security flaws shall ensure that any
reported flaws are corrected and the correction issued to TOE users.

ALC_FLR.3.7C The procedures for processing reported security flaws shall provide
safeguards that any corrections to these security flaws do not introduce any
new flaws.

ALC_FLR.3.8C The flaw remediation guidance shall describe a means by which TOE users
report to the developer any suspected security flaws in the TOE.

ALC_FLR.3.9C The flaw remediation procedures shall include a procedure requiring timely
responses for the automatic distribution of security flaw reports and the
associated corrections to registered users who might be affected by the
security flaw.

ALC_FLR.3.10C The flaw remediation guidance shall describe a means by which TOE users
may register with the developer, to be eligible to receive security flaw reports
and corrections.

ALC_FLR.3.11C The flaw remediation guidance shall identify the specific points of contact
for all reports and enquiries about security issues involving the TOE.

Class ALC: Life cycle support

Page 114 of 190 Version 2.4 March 2004

Evaluator action elements

ALC_FLR.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

10.3 Life cycle definition (ALC_LCD)

Objectives

354 Poorly controlled development and maintenance of the TOE can result in a
TOE that does not meet all of its SFRs. Therefore, it is important that a
model for the development and maintenance of a TOE be established as early
as possible in the TOE's life-cycle.

355 Using a model for the development and maintenance of a TOE does not
guarantee that the TOE meets all of its SFRs. It is possible that the model
chosen will be insufficient or inadequate and therefore no benefits in the
quality of the TOE can be observed. Using a life-cycle model that has been
approved by some group of experts (e.g. academic experts, standards bodies)
improves the chances that the development and maintenance models will
contribute to the TOE meeting its SFRs.

Component levelling

356 The components in this family are levelled on the basis of increasing
requirements for standardisation and measurability of the life-cycle model,
and for compliance with that model.

Application notes

357 A life-cycle model encompasses the procedures, tools and techniques used to
develop and maintain the TOE. Aspects of the process that may be covered
by such a model include design methods, review procedures, project
management controls, change control procedures, test methods and
acceptance procedures. An effective life-cycle model will address these
aspects of the development and maintenance process within an overall
management structure that assigns responsibilities and monitors progress.

358 Although life-cycle definition deals with the maintenance of the TOE and
hence with aspects becoming relevant after the completion of the evaluation,
its evaluation adds assurance through an analysis of the life-cycle
information for the TOE provided at the time of the evaluation.

359 A standardised life-cycle model is a model that has been approved by some
group of experts (e.g. academic experts, standards bodies).

360 A measurable life-cycle model is a model with arithmetic parameters and/or
metrics that measure TOE development properties (e.g. source code
complexity metrics).

361 A life-cycle model provides for the necessary control over the development
and maintenance of the TOE, if the developer can supply information that

Class ALC: Life cycle support

March 2004 Version 2.4 Page 115 of 190

shows that the model appropriately minimises the danger the TOE not
meeting its SFRs.

ALC_LCD.1 Developer defined life-cycle model

Developer action elements

ALC_LCD.1.1D The developer shall establish a life-cycle model to be used in the
development and maintenance of the TOE.

ALC_LCD.1.2D The developer shall provide life-cycle definition documentation.

Content and presentation of evidence elements

ALC_LCD.1.1C The life-cycle definition documentation shall describe the model used to
develop and maintain the TOE.

ALC_LCD.1.2C The life-cycle model shall provide for the necessary control over the
development and maintenance of the TOE.

Evaluator action elements

ALC_LCD.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_LCD.2 Standardised life-cycle model

Developer action elements

ALC_LCD.2.1D The developer shall establish a life-cycle model to be used in the
development and maintenance of the TOE.

ALC_LCD.2.2D The developer shall provide life-cycle definition documentation.

ALC_LCD.2.3D The developer shall use a standardised life-cycle model to develop and
maintain the TOE.

Content and presentation of evidence elements

ALC_LCD.2.1C The life-cycle definition documentation shall describe the model used to
develop and maintain the TOE.

ALC_LCD.2.2C The life-cycle model shall provide for the necessary control over the
development and maintenance of the TOE.

ALC_LCD.2.3C The life-cycle definition documentation shall explain why the model was
chosen.

ALC_LCD.2.4C The life-cycle definition documentation shall explain how the model is used
to develop and maintain the TOE.

ALC_LCD.2.5C The life-cycle definition documentation shall demonstrate compliance with
the standardised life-cycle model.

Class ALC: Life cycle support

Page 116 of 190 Version 2.4 March 2004

Evaluator action elements

ALC_LCD.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_LCD.3 Measurable life-cycle model

Developer action elements

ALC_LCD.3.1D The developer shall establish a life-cycle model to be used in the
development and maintenance of the TOE.

ALC_LCD.3.2D The developer shall provide life-cycle definition documentation.

ALC_LCD.3.3D The developer shall use a standardised and measurable life-cycle model to
develop and maintain the TOE.

ALC_LCD.3.4D The developer shall measure the TOE development using the standardised
and measurable life-cycle model.

Content and presentation of evidence elements

ALC_LCD.3.1C The life-cycle definition documentation shall describe the model used to
develop and maintain the TOE, including the details of its arithmetic
parameters and/or metrics used to measure the TOE development against the
model.

ALC_LCD.3.2C The life-cycle model shall provide for the necessary control over the
development and maintenance of the TOE.

ALC_LCD.3.3C The life-cycle definition documentation shall explain why the model was
chosen.

ALC_LCD.3.4C The life-cycle definition documentation shall explain how the model is used
to develop and maintain the TOE.

ALC_LCD.3.5C The life-cycle definition documentation shall demonstrate compliance with
the standardised and measurable life-cycle model.

ALC_LCD.3.6C The life-cycle documentation shall provide the results of the measurements
of the TOE development using the standardised and measurable life-cycle
model.

Evaluator action elements

ALC_LCD.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Class ALC: Life cycle support

March 2004 Version 2.4 Page 117 of 190

10.4 Tools and techniques (ALC_TAT)

Objectives

362 Tools and techniques is an aspect of selecting tools that are used to develop,
analyse and implement the TOE. It includes requirements to prevent ill-
defined, inconsistent or incorrect development tools from being used to
develop the TOE. This includes, but is not limited to, programming
languages, documentation, implementation standards, and other parts of the
TOE such as supporting runtime libraries.

Component levelling

363 The components in this family are levelled on the basis of increasing
requirements on the description and scope of the implementation standards
and the documentation of implementation- dependent options.

Application notes

364 There is a requirement for well-defined development tools. These are tools
that have been shown to be applicable without the need for intensive further
clarification. For example, programming languages and computer aided
design (CAD) systems that are based on an a standard published by standards
bodies are considered to be well-defined.

365 Tools and techniques distinguishes between the implementation standards
applied by the developer (ALC_TAT.2.3D) and the implementation standards for
“all parts of the TOE” (ALC_TAT.3.3D) that additionally includes third party
software, hardware, or firmware.

366 The requirement in ALC_TAT.1.2C is especially applicable to programming
languages so as to ensure that all statements in the source code have an
unambiguous meaning.

ALC_TAT.1 Well-defined development tools

Dependencies

ADV_IMP.1 Subset of the implementation of the TSF

Developer action elements

ALC_TAT.1.1D The developer shall identify the development tools being used for the TOE.

ALC_TAT.1.2D The developer shall document the selected implementation-dependent
options of the development tools.

Content and presentation of evidence elements

ALC_TAT.1.1C All development tools used for implementation shall be well-defined.

Class ALC: Life cycle support

Page 118 of 190 Version 2.4 March 2004

ALC_TAT.1.2C The documentation of the development tools shall unambiguously define the
meaning of all statements used in the implementation.

ALC_TAT.1.3C The documentation of the development tools shall unambiguously define the
meaning of all implementation-dependent options.

Evaluator action elements

ALC_TAT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_TAT.2 Compliance with implementation standards

Dependencies

ADV_IMP.1 Subset of the implementation of the TSF

Developer action elements

ALC_TAT.2.1D The developer shall identify the development tools being used for the TOE.

ALC_TAT.2.2D The developer shall document the selected implementation-dependent
options of the development tools.

ALC_TAT.2.3D The developer shall describe the implementation standards to be applied.

Content and presentation of evidence elements

ALC_TAT.2.1C All development tools used for implementation shall be well-defined.

ALC_TAT.2.2C The documentation of the development tools shall unambiguously define the
meaning of all statements used in the implementation.

ALC_TAT.2.3C The documentation of the development tools shall unambiguously define the
meaning of all implementation-dependent options.

Evaluator action elements

ALC_TAT.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_TAT.2.2E The evaluator shall confirm that the implementation standards have been
applied.

ALC_TAT.3 Compliance with implementation standards - all parts

Dependencies

ADV_IMP.1 Subset of the implementation of the TSF

Class ALC: Life cycle support

March 2004 Version 2.4 Page 119 of 190

Developer action elements

ALC_TAT.3.1D The developer shall identify the development tools being used for the TOE.

ALC_TAT.3.2D The developer shall document the selected implementation-dependent
options of the development tools.

ALC_TAT.3.3D The developer shall describe the implementation standards for all parts of the
TOE.

Content and presentation of evidence elements

ALC_TAT.3.1C All development tools used for implementation shall be well-defined.

ALC_TAT.3.2C The documentation of the development tools shall unambiguously define the
meaning of all statements used in the implementation.

ALC_TAT.3.3C The documentation of the development tools shall unambiguously define the
meaning of all implementation-dependent options.

Evaluator action elements

ALC_TAT.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_TAT.3.2E The evaluator shall confirm that the implementation standards have been
applied.

Class ASE: Security Target evaluation

Page 120 of 190 Version 2.4 March 2004

11 Class ASE: Security Target evaluation

367 Evaluating an ST is required to demonstrate that the ST is sound and
internally consistent, and, if the ST is based on one or more PPs or packages,
that the ST is a correct instantiation of these PPs and packages. These
properties are necessary for the ST to be suitable for use as the basis for the
rest of the TOE evaluation.

368 Figure 13 shows the families within this class, and the hierarchy of
components within the families.

Figure 13 - ASE: Security Target evaluation class decomposition

11.1 Conformance claims (ASE_CCL)

Objectives

369 The objective of this family is to determine the validity of the conformance
claim. In addition, this family specifies how STs are to claim conformance
with the PP.

ASE_CCL.1 Conformance claims

Dependencies

ASE_INT.1 ST introduction
ASE_SPD.1 Security problem definition
ASE_OBJ.1 Security objectives
ASE_ECD.1 Extended components definition

Class ASE: Security Target evaluation

March 2004 Version 2.4 Page 121 of 190

ASE_REQ.1 Stated security requirements

Developer action elements

ASE_CCL.1.1D The developer shall provide a conformance claim.

ASE_CCL.1.2D The developer shall provide a conformance claim rationale.

Content and presentation of evidence elements

ASE_CCL.1.1C The conformance claim shall contain a CC conformance claim that identifies
the version of the CC to which the ST and the TOE claim conformance.

ASE_CCL.1.2C The CC conformance claim shall describe the conformance of the ST to CC
Part 2 as either CC Part 2 conformant or CC Part 2 extended.

ASE_CCL.1.3C The CC conformance claim shall describe the conformance of the ST to CC
Part 3 as either CC Part 3 conformant or CC Part 3 extended.

ASE_CCL.1.4C The CC conformance claim shall be consistent with the extended
components definition.

ASE_CCL.1.5C The conformance claim shall identify all PPs and security requirement
packages to which the ST claims conformance.

ASE_CCL.1.6C The conformance claim shall describe any conformance of the ST to a
package as either package-conformant or package-augmented.

ASE_CCL.1.7C The conformance claims rationale shall demonstrate that the TOE type is
consistent with the TOE type in the PPs for which conformance is being
claimed.

ASE_CCL.1.8C The conformance claims rationale shall demonstrate that the statement of the
security problem definition is consistent with the statement of the security
problem definition in the PPs for which conformance is being claimed.

ASE_CCL.1.9C The conformance claims rationale shall demonstrate that the statement of
objectives is consistent with the statement of objectives in the PPs for which
conformance is being claimed.

ASE_CCL.1.10C The conformance claims rationale shall demonstrate that the statement of
security requirements is consistent with the statement of security
requirements in the PPs for which conformance is being claimed.

ASE_CCL.1.11C The conformance claims rationale shall demonstrate that all operations of the
security requirements that were taken from a PP are completed consistently
with the respective PP.

ASE_CCL.1.12C The conformance claims rationale shall demonstrate that the statement of
security requirements is consistent with the statement of security
requirements in the security requirement package for which conformance is
being claimed.

Class ASE: Security Target evaluation

Page 122 of 190 Version 2.4 March 2004

ASE_CCL.1.13C The conformance claims rationale shall demonstrate that all operations of the
security requirements in the ST that were taken from a package are
completed consistently with the respective security requirement package.

ASE_CCL.1.14C The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Evaluator action elements

ASE_CCL.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

11.2 Extended components definition (ASE_ECD)

Objectives

370 Extended security requirements are requirements that are not based on
components from CC Part 2 or CC Part 3, but are based on extended
components: components defined by the ST author.

371 Evaluation of the definition of extended components is necessary to
determine that they are clear and unambiguous, and that they are necessary,
i.e. they could not have been clearly expressed using existing CC Part 2 or
CC Part 3 components.

ASE_ECD.1 Extended components definition

Developer action elements

ASE_ECD.1.1D The developer shall provide a statement of security requirements.

ASE_ECD.1.2D The developer shall provide an extended components definition.

Content and presentation of evidence elements

ASE_ECD.1.1C The statement of security requirements shall identify all extended security
requirements.

ASE_ECD.1.2C The extended components definition shall define an extended component for
each extended security requirement.

ASE_ECD.1.3C The extended components definition shall describe how each extended
component is related to the existing CC components, families, and classes.

ASE_ECD.1.4C The extended components definition shall use the existing CC components,
families, classes, and methodology as a model for presentation.

ASE_ECD.1.5C The extended components shall consist of measurable and objective elements
such that compliance or noncompliance to these elements can be
demonstrated.

Class ASE: Security Target evaluation

March 2004 Version 2.4 Page 123 of 190

Evaluator action elements

ASE_ECD.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ASE_ECD.1.2E The evaluator shall confirm that no extended component can be clearly
expressed using existing components.

11.3 ST introduction (ASE_INT)

Objectives

372 The objective of this family is to describe the TOE in a narrative way on
three levels of abstraction: ST/TOE reference, TOE overview and TOE
description.

373 Evaluation of the ST introduction is required to demonstrate that the ST and
the TOE are correctly identified, that the TOE is correctly described at three
levels of abstraction and that these three descriptions are consistent with each
other.

ASE_INT.1 ST introduction

Developer action elements

ASE_INT.1.1D The developer shall provide an ST introduction.

Content and presentation of evidence elements

ASE_INT.1.1C The ST introduction shall contain an ST reference, a TOE reference, a TOE
overview and a TOE description.

ASE_INT.1.2C The ST reference shall uniquely identify the ST.

ASE_INT.1.3C The TOE reference shall identify the TOE.

ASE_INT.1.4C The TOE overview shall summarise the usage and major security features of
the TOE.

ASE_INT.1.5C The TOE overview shall identify the TOE type.

ASE_INT.1.6C The TOE overview shall identify any non-TOE hardware/software/firmware
required by the TOE.

ASE_INT.1.7C The TOE description shall describe the physical scope and boundaries of the
TOE.

ASE_INT.1.8C The TOE description shall describe the logical scope and boundaries of the
TOE.

Class ASE: Security Target evaluation

Page 124 of 190 Version 2.4 March 2004

Evaluator action elements

ASE_INT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ASE_INT.1.2E The evaluator shall confirm that the TOE reference, the TOE overview, and
the TOE description are consistent with each other.

11.4 Security objectives (ASE_OBJ)

Objectives

374 The security objectives are a concise statement of the intended response to
the security problem defined through the Security problem definition
(ASE_SPD) family.

375 Evaluation of the security objectives is required to demonstrate that the
security objectives adequately and completely address the security problem
definition, that the division of this problem between the TOE, its
development environment, and its operational environment is clearly
defined, and that the security objectives are internally consistent.

ASE_OBJ.1 Security objectives

Dependencies

ASE_SPD.1 Security problem definition

Developer action elements

ASE_OBJ.1.1D The developer shall provide a statement of security objectives.

ASE_OBJ.1.2D The developer shall provide a security objectives rationale.

Content and presentation of evidence elements

ASE_OBJ.1.1C The statement of security objectives shall describe the security objectives for
the TOE.

ASE_OBJ.1.2C The security objectives rationale shall trace each security objective for the
TOE back to threats countered by that security objective and OSPs met by
that security objective.

ASE_OBJ.1.3C The statement of security objectives shall describe the security objectives for
the development environment.

ASE_OBJ.1.4C The security objectives rationale shall trace each security objective for the
development environment back to threats countered by that security
objective and OSPs met by that security objective.

ASE_OBJ.1.5C The statement of security objectives shall describe the security objectives for
the operational environment

Class ASE: Security Target evaluation

March 2004 Version 2.4 Page 125 of 190

ASE_OBJ.1.6C The security objectives rationale shall trace each security objective for the
operational environment back to threats countered by that security objective,
OSPs enforced by that security objective, and assumptions upheld by that
security objective.

ASE_OBJ.1.7C The security objectives rationale shall demonstrate that the security
objectives counter all threats.

ASE_OBJ.1.8C The security objectives rationale shall demonstrate that the security
objectives enforce all OSPs.

ASE_OBJ.1.9C The security objectives rationale shall demonstrate that the security
objectives for the operational environment uphold all assumptions.

Evaluator action elements

ASE_OBJ.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ASE_OBJ.1.2E The evaluator shall confirm that the statement of security objectives is
internally consistent.

11.5 Security requirements (ASE_REQ)

Objectives

376 The SFRs form a clear, unambiguous and canonical description of the
expected security behaviour of the TOE. The SARs form a clear,
unambiguous and canonical description of the expected activities that will be
undertaken to gain assurance in the TOE.

377 Evaluation of the security requirements is required to ensure that they are
clear, unambiguous and canonical.

Component levelling

378 The components in this family are levelled on whether they are stated as is,
or whether they are derived from security objectives for the TOE and
security objectives for the development environment.

ASE_REQ.1 Stated security requirements

Dependencies

ASE_ECD.1 Extended components definition

Content and presentation of evidence elements

ASE_REQ.1.1C The statement of security requirements shall describe the SFRs and the
SARs.

Class ASE: Security Target evaluation

Page 126 of 190 Version 2.4 March 2004

ASE_REQ.1.2C The statement of security requirements shall identify all operations on the
security requirements.

ASE_REQ.1.3C All assignment and selection operations shall be completed.

ASE_REQ.1.4C All operations shall be performed correctly.

Evaluator action elements

ASE_REQ.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ASE_REQ.1.2E The evaluator shall confirm that the statement of security requirements is
internally consistent.

ASE_REQ.2 Derived security requirements

Dependencies

ASE_OBJ.1 Security objectives
ASE_ECD.1 Extended components definition

Developer action elements

ASE_REQ.2.1D The developer shall provide a security requirements rationale.

Content and presentation of evidence elements

ASE_REQ.2.1C The statement of security requirements shall describe the SFRs and the
SARs.

ASE_REQ.2.2C The statement of security requirements shall identify all operations on the
security requirements.

ASE_REQ.2.3C All assignment and selection operations shall be completed.

ASE_REQ.2.4C All operations shall be performed correctly.

ASE_REQ.2.5C Each dependency of the security requirements shall either be satisfied, or the
security requirements rationale shall justify the dependency not being
satisfied.

ASE_REQ.2.6C The security requirements rationale shall trace each SFR back to the security
objectives for the TOE.

ASE_REQ.2.7C The security requirements rationale shall demonstrate that the SFRs meet all
security objectives for the TOE.

ASE_REQ.2.8C The security requirements rationale shall trace each SAR back to the security
objectives for the development environment.

Class ASE: Security Target evaluation

March 2004 Version 2.4 Page 127 of 190

ASE_REQ.2.9C The security requirements rationale shall demonstrate that the SARs meet all
security objectives for the development environment.

Evaluator action elements

ASE_REQ.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ASE_REQ.2.2E The evaluator shall confirm that the statement of security requirements is
internally consistent.

11.6 Security problem definition (ASE_SPD)

Objectives

379 This part of the ST defines the security problem to be addressed by the TOE,
the operational environment of the TOE, and the development environment
of the TOE.

380 Evaluation of the security problem definition is required to demonstrate that
the security problem intended to be addressed by the TOE, its operational
environment, and its development environment, is clearly defined.

ASE_SPD.1 Security problem definition

Developer action elements

ASE_APD.1.1D The developer shall provide a security problem definition.

Content and presentation of evidence elements

ASE_SPD.1.1C The security problem definition shall describe the threats.

ASE_SPD.1.2C All threats shall be described in terms of a threat agent, an asset, and an
adverse action.

ASE_SPD.1.3C The security problem definition shall describe the OSPs.

ASE_SPD.1.4C The security problem definition shall describe the assumptions about the
operational environment of the TOE.

Evaluator action elements

ASE_SPD.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Class ASE: Security Target evaluation

Page 128 of 190 Version 2.4 March 2004

11.7 TOE summary specification (ASE_TSS)

Objectives

381 The TOE summary specification allows evaluators and potential consumers
to understand how the TOE meets its SFRs.

382 Evaluation of the TOE summary specification is necessary to determine
whether all SFRs have been adequately addressed, and whether the TOE
summary specification is consistent with other narrative descriptions of the
TOE.

ASE_TSS.1 TOE summary specification

Dependencies

ASE_INT.1 ST introduction
ASE_REQ.1 Stated security requirements

Developer action elements

ASE_TSS.1.1D The developer shall provide a TOE summary specification.

Content and presentation of evidence elements

ASE_TSS.1.1C The TOE summary specification shall describe how the TOE meets each
SFR.

Evaluator action elements

ASE_TSS.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ASE_TSS.1.2E The evaluator shall confirm that the TOE summary specification is consistent
with the TOE overview and the TOE description.

Class ATE: Tests

March 2004 Version 2.4 Page 129 of 190

12 Class ATE: Tests

383 The class “Tests” encompasses four families: coverage (ATE_COV), depth
(ATE_DPT), independent testing (e.g. functional testing performed by
evaluators) (ATE_IND), and functional tests (ATE_FUN). Testing provide
assurance that the TSF meets its design descriptions (functional
specifications, high-level design, low-level design and implementation
representation).

384 The emphasis in this class is on confirmation that the TSF operates according
to its design descriptions. This class does not address penetration testing,
which is based upon an analysis of the TSF that specifically seeks to identify
vulnerabilities in the design and implementation of the TSF. Penetration
testing is addressed separately as an aspect of vulnerability assessment in the
AVA class.

385 The ATE: Tests class separates testing into developer testing and evaluator
testing. The Coverage (ATE_COV) and Depth (ATE_DPT) families address
the completeness of developer testing. Coverage (ATE_COV) addresses the
rigor with which the functional specification is tested, Depth (ATE_DPT)
addresses whether testing against other design descriptions (high-level
design, low-level design, implementation representation) is required.

386 Functional tests (ATE_FUN) addresses the performing of these tests by the
developer and how this testing should be documented. Finally, Independent
testing (ATE_IND) then addresses evaluator testing: whether the evaluator
should redo part or all of the developer testing and how much independent
testing the evaluator should do.

387 Figure 14 shows the families within this class, and the hierarchy of
components within the families.

Figure 14 - ATE: Tests class decomposition

Class ATE: Tests

Page 130 of 190 Version 2.4 March 2004

12.1 Coverage (ATE_COV)

Objectives

388 This family addresses those aspects of testing that deal with completeness of
test coverage. That is, it addresses the extent to which the TSF is tested, and
whether or not the testing is sufficiently extensive to demonstrate that the
TSF operates in accordance with its functional specification.

Component levelling

389 The components in this family are levelled on the basis of increasing rigour
of interface testing, and increasing rigour of the analysis of the sufficiency of
the tests to demonstrate that the TSF operates in accordance with its
functional specification.

Application notes

390 Not all tests in the test documentation have to correspond to interfaces in the
functional specification: some tests may address other interfaces such as
internal interfaces that are only visible in the high-level design.

ATE_COV.1 Evidence of coverage

Dependencies

ADV_FSP.1 Informal functional specification
ATE_FUN.1 Functional testing

Objectives

391 In this component, the objective is to confirm that the developer performed
some tests of some interfaces in the functional specification. This is to be
achieved through an examination of developer evidence of correspondence.

Application notes

392 In this component the developer is required to show how tests in the test
documentation correspond to interfaces in the functional specification. This
can be achieved by a statement of correspondence, perhaps using a table.

Developer action elements

ATE_COV.1.1D The developer shall provide evidence of the test coverage.

Content and presentation of evidence elements

ATE_COV.1.1C The evidence of the test coverage shall show the correspondence between the
tests in the test documentation and the interfaces in the functional
specification.

Class ATE: Tests

March 2004 Version 2.4 Page 131 of 190

Evaluator action elements

ATE_COV.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_COV.2 Analysis of coverage

Dependencies

ADV_FSP.1 Informal functional specification
ATE_FUN.1 Functional testing

Objectives

393 In this component, the objective is to confirm that the developer performed
some tests of all interfaces in the functional specification. This is to be
achieved through an examination of developer evidence of correspondence.

Application notes

394 In this component the developer is required to show how tests in the test
documentation correspond to interfaces in the functional specification. This
can be achieved by a statement of correspondence, perhaps using a table.

Developer action elements

ATE_COV.2.1D The developer shall provide an analysis of the test coverage.

Content and presentation of evidence elements

ATE_COV.2.1C The analysis of the test coverage shall demonstrate the correspondence
between the tests in the test documentation and the interfaces in the
functional specification.

ATE_COV.2.2C The analysis of the test coverage shall demonstrate that the correspondence
between the interfaces in the functional specification and the tests in the test
documentation is complete.

Evaluator action elements

ATE_COV.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_COV.3 Rigorous analysis of coverage

Dependencies

ADV_FSP.1 Informal functional specification

Class ATE: Tests

Page 132 of 190 Version 2.4 March 2004

ATE_FUN.1 Functional testing

Objectives

395 In this component, the objective is to confirm that the developer performed
exhaustive tests of all interfaces in the functional specification.

Application notes

396 In this component the developer is required to show how tests in the test
documentation correspond to interfaces in the functional specification. This
can be achieved by a statement of correspondence, perhaps using a table, but
in addition the developer is required to demonstrate that the tests
exhaustively test each interface in the functional specification.

Developer action elements

ATE_COV.3.1D The developer shall provide an analysis of the test coverage.

Content and presentation of evidence elements

ATE_COV.3.1C The analysis of the test coverage shall demonstrate the correspondence
between the tests in the test documentation and the interfaces in the
functional specification.

ATE_COV.3.2C The analysis of the test coverage shall demonstrate that the correspondence
between the interfaces in the functional specification and the tests in the test
documentation is complete.

ATE_COV.3.3C The analysis of the test coverage shall rigorously demonstrate that all
interfaces in the functional specification have been exhaustively tested.

Evaluator action elements

ATE_COV.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

12.2 Depth (ATE_DPT)

Objectives

397 The components in this family deal with the level of detail to which the TSF
is tested. Testing of the TSF is based upon increasing depth of information
derived from additional design representations (high-level design, low-level
design, implementation representation).

398 The objective is to counter the risk of missing an error in the development of
the TOE. Additionally, the components of this family, especially as testing is
more concerned with the internal structure of the TSF, are more likely to
discover any malicious code that has been inserted.

Class ATE: Tests

March 2004 Version 2.4 Page 133 of 190

399 Testing that exercises specific internal interfaces can provide assurance not
only that the TSF exhibits the desired external security behaviour, but also
that this behaviour stems from correctly operating internal mechanisms.

Component levelling

400 The components in this family are levelled on the basis of increasing detail
provided in the TSF representations, from the high-level design to the
implementation representation. This levelling reflects the TSF
representations presented in the ADV class.

Application notes

401 The high-level design should describe each of the subsystems and also
describe the interfaces between these subsystems in sufficient detail.
Evidence of testing of this high-level design must show that the internal
interfaces between subsystems have been exercised. This may be achieved
through testing via the external interfaces of the TSF, or by testing of the
subsystem interfaces in isolation, perhaps employing a test harness. In cases
where some aspects of an internal interface cannot be tested via the external
interfaces there should either be justification that these aspects need not be
tested, or the internal interface needs to be tested directly. In the latter case
the high-level design needs to be sufficiently detailed in order to facilitate
direct testing.

402 A smilar line of reasoning applies to the higher components in this family:
they aim to check the correct operation of internal interfaces that become
visible as the design becomes less abstract. When these components are
applied it will be more difficult to provide adequate evidence of the depth of
testing using the TSF's external interfaces alone, and modular testing will
usually be necessary.

ATE_DPT.1 Testing: high-level design

Dependencies

ADV_HLD.1 Descriptive high-level design
ATE_FUN.1 Functional testing

Objectives

403 The subsystems of the TSF provide a high-level description of the internal
workings of the TSF. Testing at the level of the subsystems provides
assurance that the TSF subsystems have been correctly realised.

Developer action elements

ATE_DPT.1.1D The developer shall provide the analysis of the depth of testing.

Class ATE: Tests

Page 134 of 190 Version 2.4 March 2004

Content and presentation of evidence elements

ATE_DPT.1.1C The analysis of the depth of testing shall demonstrate the correspondence
between the tests in the test documentation and the interfaces in the high-
level design.

ATE_DPT.1.2C The analysis of the depth of testing shall demonstrate that the
correspondence between the interfaces in the high-level design and the tests
in the test documentation is complete.

Evaluator action elements

ATE_DPT.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_DPT.2 Testing: low-level design

Dependencies

ADV_HLD.2 Security enforcing high-level design
ADV_LLD.1 Descriptive low-level design
ATE_FUN.1 Functional testing

Objectives

404 The subsystems of the TSF provide a high-level description of the internal
workings of the TSF. Testing at the level of the subsystems provides
assurance that the TSF subsystems have been correctly realised.

405 The modules of the TSF provide a description of the internal workings of the
TSF. Testing at the level of the modules provides assurance that the TSF
modules have been correctly realised.

Developer action elements

ATE_DPT.2.1D The developer shall provide the analysis of the depth of testing.

Content and presentation of evidence elements

ATE_DPT.2.1C The analysis of the depth of testing shall demonstrate the correspondence
between the tests in the test documentation and the interfaces in the high-
level design and the low-level design.

ATE_DPT.2.2C The analysis of the depth of testing shall demonstrate that the
correspondence between the interfaces in the high-level design and the tests
in the test documentation is complete.

ATE_DPT.2.3C The analysis of the depth of testing shall demonstrate that the
correspondence between the interfaces in the low-level design and the tests
in the test documentation is complete.

Class ATE: Tests

March 2004 Version 2.4 Page 135 of 190

Evaluator action elements

ATE_DPT.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_DPT.3 Testing: implementation representation

Dependencies

ADV_HLD.2 Security enforcing high-level design
ADV_IMP.2 Implementation of the TSF
ADV_LLD.1 Descriptive low-level design
ATE_FUN.1 Functional testing

Objectives

406 The subsystems of the TSF provide a high-level description of the internal
workings of the TSF. Testing at the level of the subsystems provides
assurance that the TSF subsystems have been correctly realised.

407 The modules of the TSF provide a description of the internal workings of the
TSF. Testing at the level of the modules provides assurance that the TSF
modules have been correctly realised.

408 The implementation representation of the TSF provides a detailed description
of the internal workings of the TSF. Testing at the level of the
implementation provides assurance that the TSF implementation has been
correctly realised.

Developer action elements

ATE_DPT.3.1D The developer shall provide the analysis of the depth of testing.

Content and presentation of evidence elements

ATE_DPT.3.1C The analysis of the depth of testing shall demonstrate the correspondence
between the tests in the test documentation and the interfaces in the high-
level design, the low-level design and the implementation representation.

ATE_DPT.3.2C The analysis of the depth of testing shall demonstrate that the
correspondence between the interfaces in the high-level design and the tests
in the test documentation is complete.

ATE_DPT.3.3C The analysis of the depth of testing shall demonstrate that the
correspondence between the interfaces in the low-level design and the tests
in the test documentation is complete.

Class ATE: Tests

Page 136 of 190 Version 2.4 March 2004

ATE_DPT.3.4C The analysis of the depth of testing shall demonstrate that the
correspondence between the interfaces in the implementation representation
and the tests in the test documentation is complete.

Evaluator action elements

ATE_DPT.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

12.3 Functional tests (ATE_FUN)

Objectives

409 Functional testing performed by the developer provides assurance that the
tests in the test documentation are performed and documented correctly. The
correspondence of these tests to the design descriptions of the TSF is
achieved through the Coverage (ATE_COV) and Depth (ATE_DPT)
families.

410 This family contributes to providing assurance that the likelihood of
undiscovered flaws is relatively small.

411 The families Coverage (ATE_COV), Depth (ATE_DPT) and Functional tests
(ATE_FUN) are used in combination to define the evidence of testing to be
supplied by a developer. Independent functional testing by the evaluator is
specified by Independent testing (ATE_IND).

Component levelling

412 This family contains two components, the higher requiring that ordering
dependencies are analysed.

Application notes

413 Procedures for performing tests are expected to provide instructions for using
test programs and test suites, including the test environment, test conditions,
test data parameters and values. The test procedures should also show how
the test results are derived from the test inputs.

414 Ordering dependencies are relevant when the successful execution of a
particular test depends upon the existence of a particular state. For example,
this might require that test A be executed immediately before test B, since
the state resulting from the successful execution of test A is a prerequisite for
the successful execution of test B. Thus, failure of test B could be related to a
problem with the ordering dependencies. In the above example, test B could
fail because test C (rather than test A) was executed immediately before it, or
the failure of test B could be related to a failure of test A.

Class ATE: Tests

March 2004 Version 2.4 Page 137 of 190

ATE_FUN.1 Functional testing

Objectives

415 The objective is for the developer to demonstrate that the tests in the test
documentation are performed and documented correctly.

Developer action elements

ATE_FUN.1.1D The developer shall test the TSF and document the results.

ATE_FUN.1.2D The developer shall provide test documentation.

Content and presentation of evidence elements

ATE_FUN.1.1C The test documentation shall consist of test plans, expected test results and
actual test results.

ATE_FUN.1.2C The test plans shall identify the tests to be performed and describe the
scenarios for performing each test. These scenarios shall include any
ordering dependencies on the results of other tests.

ATE_FUN.1.3C The expected test results shall show the anticipated outputs from a successful
execution of the tests.

ATE_FUN.1.4C The actual test results shall be consistent with the expected test results.

Evaluator action elements

ATE_FUN.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_FUN.2 Ordered functional testing

Objectives

416 The objectives are for the developer to demonstrate that the tests in the test
documentation are performed and documented correctly, and to ensure that
testing is structured such as to avoid circular arguments about the correctness
of the interfaces being tested.

Application notes

417 Although the test procedures may state pre-requisite initial test conditions in
terms of ordering of tests, they may not provide a rationale for the ordering.
An analysis of test ordering is an important factor in determining the
adequacy of testing, as there is a possibility of faults being concealed by the
ordering of tests.

Developer action elements

ATE_FUN.2.1D The developer shall test the TSF and document the results.

Class ATE: Tests

Page 138 of 190 Version 2.4 March 2004

ATE_FUN.2.2D The developer shall provide test documentation.

Content and presentation of evidence elements

ATE_FUN.2.1C The test documentation shall consist of test plans, expected test results and
actual test results.

ATE_FUN.2.2C The test plans shall identify the tests to be performed and describe the
scenarios for performing each test. These scenarios shall include any
ordering dependencies on the results of other tests.

ATE_FUN.2.3C The expected test results shall show the anticipated outputs from a successful
execution of the tests.

ATE_FUN.2.4C The actual test results shall be consistent with the expected test results.

ATE_FUN.2.5C The test documentation shall include an analysis of the test procedure
ordering dependencies.

Evaluator action elements

ATE_FUN.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

12.4 Independent testing (ATE_IND)

Objectives

418 The objectives are to gain more assurance in that the TSF meets its design
representations by verifying the developer testing and the performing of
additional tests by the evaluator.

Component levelling

419 Levelling is based upon the amount of test documentation, test support and
the amount of evaluator testing.

Application notes

420 This family deals with the degree to which there is independent functional
testing of the TSF. Independent functional testing may take the form of
repeating the developer's functional tests, in whole or in part. It may also
take the form of the augmentation of the developer's functional tests, either
to extend the scope or the depth of the developer's tests, or to test for obvious
public domain security weaknesses that could be applicable to the TOE.
These activities are complementary, and an appropriate mix must be planned
for each TOE, which takes into account the availability and coverage of test
results, and the functional complexity of the TSF.

421 Sampling of developer tests is intended to provide confirmation that the
developer has carried out his planned test programme on the TSF, and has
correctly recorded the results. The size of sample selected will be influenced

Class ATE: Tests

March 2004 Version 2.4 Page 139 of 190

by the detail and quality of the developer's functional test results. The
evaluator will also need to consider the scope for devising additional tests,
and the relative benefit that may be gained from effort in these two areas. It
is recognised that repetition of all developer tests may be feasible and
desirable in some cases, but may be very arduous and less productive in
others. The highest component in this family should therefore be used with
caution. Sampling will address the whole range of test results available,
including those supplied to meet the requirements of both Coverage
(ATE_COV) and Depth (ATE_DPT).

422 There is also a need to consider the different configurations of the TOE that
are included within the evaluation. The evaluator will need to assess the
applicability of the results provided, and to plan his own testing accordingly.

423 The suitability of the TOE for testing is based on the access to the TOE, and
the supporting documentation and information required (including any test
software or tools) to run tests. The need for such support is addressed by the
dependencies to other assurance families.

424 Additionally, suitability of the TOE for testing may be based on other
considerations. For example, the version of the TOE submitted by the
developer may not be the final version.

425 The term interfaces refers to interfaces in the functional specification, high-
level design, low-level design or implementation representation. The exact
set of interfaces to be used is selected through the Depth (ATE_DPT)
component.

426 References to a subset of the interfaces are intended to allow the evaluator to
design an appropriate set of tests which is consistent with the objectives of
the evaluation being conducted.

ATE_IND.1 Independent testing - conformance

Dependencies

ADV_FSP.1 Informal functional specification
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

Objectives

427 In this component, the objective is to demonstrate that the TOE operates at
least partially in accordance with its design representations.

Application notes

428 This component does not address the use of developer test results. It is
applicable where such results are not available, and also in cases where the
developer's testing is accepted without validation. The evaluator is required
to devise and conduct tests with the objective of confirming that the TOE

Class ATE: Tests

Page 140 of 190 Version 2.4 March 2004

operates in accordance with its design representations. The approach is to
gain confidence in correct operation through representative testing, rather
than to conduct every possible test. The extent of testing to be planned for
this purpose is a methodology issue, and needs to be considered in the
context of a particular TOE and the balance of other evaluation activities.

Developer action elements

ATE_IND.1.1D The developer shall provide the TOE for testing.

Content and presentation of evidence elements

ATE_IND.1.1C The TOE shall be suitable for testing.

Evaluator action elements

ATE_IND.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_IND.1.2E The evaluator shall test the TSF to confirm that the TSF operates as
specified.

ATE_IND.2 Independent testing - sample

Dependencies

ADV_FSP.1 Informal functional specification
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance
ATE_FUN.1 Functional testing

Objectives

429 In this component, the objective is to confirm that the developer performed
some tests of some interfaces in the functional specification. This is to be
achieved through an examination of developer evidence of correspondence.

Application notes

430 The intent is that the developer should provide the evaluator with materials
necessary for the efficient reproduction of developer tests. This may include
such things as machine-readable test documentation, test programs, etc.

431 This component contains a requirement that the evaluator has available test
results from the developer to supplement the programme of testing. The
evaluator will repeat a sample of the developer's tests to gain confidence in
the results obtained. Having established such confidence the evaluator will
build upon the developer's testing by conducting additional tests that exercise
the TOE in a different manner. By using a platform of validated developer

Class ATE: Tests

March 2004 Version 2.4 Page 141 of 190

test results the evaluator is able to gain confidence that the TOE operates
correctly in a wider range of conditions than would be possible purely using
the developer's own efforts, given a fixed level of resource. Having gained
confidence that the developer has tested the TOE, the evaluator will also
have more freedom, where appropriate, to concentrate testing in areas where
examination of documentation or specialist knowledge has raised particular
concerns.

Developer action elements

ATE_IND.2.1D The developer shall provide the TOE for testing.

Content and presentation of evidence elements

ATE_IND.2.1C The TOE shall be suitable for testing.

ATE_IND.2.2C The developer shall provide an equivalent set of resources to those that were
used in the developer's functional testing of the TSF.

Evaluator action elements

ATE_IND.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_IND.2.2E The evaluator shall execute a sample of tests in the test documentation to
verify the developer test results.

ATE_IND.2.3E The evaluator shall test the TSF to confirm that the TSF operates as
specified.

ATE_IND.3 Independent testing - complete

Dependencies

ADV_FSP.1 Informal functional specification
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance
ATE_FUN.1 Functional testing

Objectives

432 In this component, the objective is to demonstrate that the TOE operates in
accordance with its design representations. Evaluator testing includes
repeating all of the developer tests.

Application notes

433 The intent is that the developer should provide the evaluator with materials
necessary for the efficient reproduction of developer tests. This may include
such things as machine-readable test documentation, test programs, etc.

Class ATE: Tests

Page 142 of 190 Version 2.4 March 2004

434 In this component the evaluator must repeat all of the developer's tests as
part of the programme of testing. As in the previous component the evaluator
will also conduct tests that aim to exercise the TSF in a different manner
from that achieved by the developer. In cases where developer testing has
been exhaustive, there may remain little scope for this.

Developer action elements

ATE_IND.3.1D The developer shall provide the TOE for testing.

Content and presentation of evidence elements

ATE_IND.3.1C The TOE shall be suitable for testing.

ATE_IND.3.2C The developer shall provide an equivalent set of resources to those that were
used in the developer's functional testing of the TSF.

Evaluator action elements

ATE_IND.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_IND.3.2E The evaluator shall execute all tests in the test documentation to verify the
developer test results.

ATE_IND.3.3E The evaluator shall test the TSF to confirm that the TSF operates as
specified.

Class AVA: Vulnerability assessment

March 2004 Version 2.4 Page 143 of 190

13 Class AVA: Vulnerability assessment

435 The class addresses the existence of exploitable covert channels, the
possibility of misuse or incorrect configuration of the TOE and the
possibility of exploitable vulnerabilities introduced in the development or the
operation of the TOE.

436 Figure 15 shows the families within this class, and the hierarchy of
components within the families.

Figure 15 - AVA: Vulnerability assessment class decomposition

13.1 Covert channel analysis (AVA_CCA)

Objectives

437 Covert channel analysis is carried out to determine the existence and
potential capacity of unintended signalling channels (i.e. illicit information
flows) that may be exploited.

438 The assurance requirements address the threat that unintended and
exploitable signalling paths exist that may be exercised to violate the SFP.

Component levelling

439 The components are levelled on increasing rigour of covert channel analysis.

AVA_CCA.1 Covert channel analysis

Dependencies

ADV_FSP.2 Fully defined external interfaces
ADV_IMP.2 Implementation of the TSF
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

Objectives

440 The objective is to identify covert channels that are identifiable, through an
informal search for covert channels.

Class AVA: Vulnerability assessment

Page 144 of 190 Version 2.4 March 2004

Developer action elements

AVA_CCA.1.1D The developer shall conduct a search for covert channels for each
information flow control policy.

AVA_CCA.1.2D The developer shall provide covert channel analysis documentation.

Content and presentation of evidence elements

AVA_CCA.1.1C The analysis documentation shall identify covert channels and estimate their
capacity.

AVA_CCA.1.2C The analysis documentation shall describe the procedures used for
determining the existence of covert channels, and the information needed to
carry out the covert channel analysis.

AVA_CCA.1.3C The analysis documentation shall describe all assumptions made during the
covert channel analysis.

AVA_CCA.1.4C The analysis documentation shall describe the method used for estimating
channel capacity, based on worst case scenarios.

AVA_CCA.1.5C The analysis documentation shall describe the worst case exploitation
scenario for each identified covert channel.

Evaluator action elements

AVA_CCA.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_CCA.1.2E The evaluator shall confirm that the results of the covert channel analysis
show that the TOE meets its functional requirements.

AVA_CCA.1.3E The evaluator shall selectively validate the covert channel analysis through
testing.

AVA_CCA.2 Systematic covert channel analysis

Dependencies

ADV_FSP.2 Fully defined external interfaces
ADV_IMP.2 Implementation of the TSF
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

Objectives

441 The objective is to identify covert channels that are identifiable, through a
systematic search for covert channels.

Class AVA: Vulnerability assessment

March 2004 Version 2.4 Page 145 of 190

Developer action elements

AVA_CCA.2.1D The developer shall conduct a search for covert channels for each
information flow control policy.

AVA_CCA.2.2D The developer shall provide covert channel analysis documentation.

Content and presentation of evidence elements

AVA_CCA.2.1C The analysis documentation shall identify covert channels and estimate their
capacity.

AVA_CCA.2.2C The analysis documentation shall describe the procedures used for
determining the existence of covert channels, and the information needed to
carry out the covert channel analysis.

AVA_CCA.2.3C The analysis documentation shall describe all assumptions made during the
covert channel analysis.

AVA_CCA.2.4C The analysis documentation shall describe the method used for estimating
channel capacity, based on worst case scenarios.

AVA_CCA.2.5C The analysis documentation shall describe the worst case exploitation
scenario for each identified covert channel.

AVA_CCA.2.6C The analysis documentation shall provide evidence that the method used to
identify covert channels is systematic.

AVA_CCA.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_CCA.2.2E The evaluator shall confirm that the results of the covert channel analysis
show that the TOE meets its functional requirements.

AVA_CCA.2.3E The evaluator shall selectively validate the covert channel analysis through
testing.

AVA_CCA.3 Exhaustive covert channel analysis

Dependencies

ADV_FSP.2 Fully defined external interfaces
ADV_IMP.2 Implementation of the TSF
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

Objectives

442 The objective is to identify covert channels that are identifiable, through an
exhaustive search for covert channels.

Class AVA: Vulnerability assessment

Page 146 of 190 Version 2.4 March 2004

Developer action elements

AVA_CCA.3.1D The developer shall conduct a search for covert channels for each
information flow control policy.

AVA_CCA.3.2D The developer shall provide covert channel analysis documentation.

Content and presentation of evidence elements

AVA_CCA.3.1C The analysis documentation shall identify covert channels and estimate their
capacity.

AVA_CCA.3.2C The analysis documentation shall describe the procedures used for
determining the existence of covert channels, and the information needed to
carry out the covert channel analysis.

AVA_CCA.3.3C The analysis documentation shall describe all assumptions made during the
covert channel analysis.

AVA_CCA.3.4C The analysis documentation shall describe the method used for estimating
channel capacity, based on worst case scenarios.

AVA_CCA.3.5C The analysis documentation shall describe the worst case exploitation
scenario for each identified covert channel.

AVA_CCA.3.6C The analysis documentation shall provide evidence that the method used to
identify covert channels is exhaustive.

Evaluator action elements

AVA_CCA.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_CCA.3.2E The evaluator shall confirm that the results of the covert channel analysis
show that the TOE meets its functional requirements.

AVA_CCA.3.3E The evaluator shall selectively validate the covert channel analysis through
testing.

13.2 Misuse (AVA_MSU)

Objectives

443 Misuse investigates whether the TOE can be configured or used in a manner
that is insecure but that an administrator or user of the TOE would
reasonably believe to be secure.

444 The objectives are:

Class AVA: Vulnerability assessment

March 2004 Version 2.4 Page 147 of 190

a) to minimise the probability of configuring or installing the TOE in a
way that is insecure, without the user or administrator being able to
detect it;

b) to minimise the risk of human or other errors in operation that may
deactivate, disable, or fail to activate the TSF, resulting in an
undetected insecure state.

Component levelling

445 The components are levelled on the increasing evidence to be provided by
the developer and the increasing rigour of analysis.

AVA_MSU.1 Examination of guidance

Dependencies

ADO_IGS.1 Installation, generation, and start-up procedures
ADV_FSP.1 Informal functional specification
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

Objectives

446 The objective is to ensure that misleading, unreasonable and conflicting
guidance is absent from the guidance documentation, and that secure
procedures for all modes of operation have been addressed. Insecure states
should be easy to detect.

Developer action elements

AVA_MSU.1.1D The developer shall provide guidance documentation.

Content and presentation of evidence elements

AVA_MSU.1.1C The guidance documentation shall identify all possible modes of operation of
the TOE (including operation following failure or operational error), their
consequences and implications for maintaining secure operation.

AVA_MSU.1.2C The guidance documentation shall be complete, clear and reasonable.

AVA_MSU.1.3C The guidance documentation shall list all security objectives for the
operational environment.

Evaluator action elements

AVA_MSU.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_MSU.1.2E The evaluator shall repeat all configuration and installation procedures to
confirm that the TOE can be configured and used securely using only the
supplied guidance documentation.

Class AVA: Vulnerability assessment

Page 148 of 190 Version 2.4 March 2004

AVA_MSU.1.3E The evaluator shall determine that the use of the guidance documentation
allows all insecure states to be detected.

AVA_MSU.2 Validation of analysis

Dependencies

ADO_IGS.1 Installation, generation, and start-up procedures
ADV_FSP.1 Informal functional specification
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

Objectives

447 The objective is to ensure that misleading, unreasonable and conflicting
guidance is absent from the guidance documentation, and that secure
procedures for all modes of operation have been addressed. Insecure states
should be easy to detect. In this component, an analysis of the guidance
documentation by the developer is required to provide additional assurance
that the objective has been met.

Developer action elements

AVA_MSU.2.1D The developer shall provide guidance documentation.

AVA_MSU.2.2D The developer shall document an analysis of the guidance documentation.

Content and presentation of evidence elements

AVA_MSU.2.1C The guidance documentation shall identify all possible modes of operation of
the TOE (including operation following failure or operational error), their
consequences and implications for maintaining secure operation.

AVA_MSU.2.2C The guidance documentation shall be complete, clear and reasonable.

AVA_MSU.2.3C The guidance documentation shall list all security objectives for the
operational environment.

AVA_MSU.2.4C The analysis documentation shall demonstrate that the guidance
documentation is complete.

Evaluator action elements

AVA_MSU.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_MSU.2.2E The evaluator shall repeat all configuration and installation procedures, and
other procedures selectively, to confirm that the TOE can be configured and
used securely using only the supplied guidance documentation.

Class AVA: Vulnerability assessment

March 2004 Version 2.4 Page 149 of 190

AVA_MSU.2.3E The evaluator shall determine that the use of the guidance documentation
allows all insecure states to be detected.

AVA_MSU.2.4E The evaluator shall confirm that the analysis documentation shows that
guidance is provided for secure operation in all modes of operation of the
TOE.

AVA_MSU.3 Analysis and testing for insecure states

Dependencies

ADO_IGS.1 Installation, generation, and start-up procedures
ADV_FSP.1 Informal functional specification
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

Objectives

448 The objective is to ensure that misleading, unreasonable and conflicting
guidance is absent from the guidance documentation, and that secure
procedures for all modes of operation have been addressed. Insecure states
should be easy to detect. In this component, an analysis of the guidance
documentation by the developer is required to provide additional assurance
that the objective has been met, and this analysis is validated and confirmed
through testing by the evaluator.

Developer action elements

AVA_MSU.3.1D The developer shall provide guidance documentation.

AVA_MSU.3.2D The developer shall document an analysis of the guidance documentation.

Content and presentation of evidence elements

AVA_MSU.3.1C The guidance documentation shall identify all possible modes of operation of
the TOE (including operation following failure or operational error), their
consequences and implications for maintaining secure operation.

AVA_MSU.3.2C The guidance documentation shall be complete, clear and reasonable.

AVA_MSU.3.3C The guidance documentation shall list all security objectives for the
operational environment.

AVA_MSU.3.4C The analysis documentation shall demonstrate that the guidance
documentation is complete.

Evaluator action elements

AVA_MSU.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Class AVA: Vulnerability assessment

Page 150 of 190 Version 2.4 March 2004

AVA_MSU.3.2E The evaluator shall repeat all configuration and installation procedures, and
other procedures selectively, to confirm that the TOE can be configured and
used securely using only the supplied guidance documentation.

AVA_MSU.3.3E The evaluator shall determine that the use of the guidance documentation
allows all insecure states to be detected.

AVA_MSU.3.4E The evaluator shall confirm that the analysis documentation shows that
guidance is provided for secure operation in all modes of operation of the
TOE.

AVA_MSU.3.5E The evaluator shall perform independent testing to determine that an
administrator or user, with an understanding of the guidance documentation,
would reasonably be able to determine if the TOE is configured and
operating in a manner that is insecure.

13.3 Vulnerability analysis (AVA_VLA)

Objectives

449 Vulnerability analysis is an assessment to determine whether potential
vulnerabilities identified, during the evaluation of the construction and
anticipated operation of the TOE or by other methods (e.g. by flaw
hypotheses), could allow users to violate the TSP.

450 Vulnerability analysis deals with the threats that a user will be able to
discover flaws that will allow unauthorised access to resources (e.g. data),
allow the ability to interfere with or alter the TSF, or interfere with the
authorised capabilities of other users.

Component levelling

451 Levelling is based on an increasing rigour of vulnerability analysis by the
developer and the evaluator.

AVA_VLA.1 Developer vulnerability analysis

Objectives

452 A vulnerability analysis is performed by the developer to ascertain the
presence of potential vulnerabilities, and to confirm that they cannot be
exploited by an attacker with basic attack potential in the operational
environment for the TOE.

Developer action elements

AVA_VLA.1.1D The developer shall perform a vulnerability analysis.

AVA_VLA.1.2D The developer shall provide vulnerability analysis documentation.

Class AVA: Vulnerability assessment

March 2004 Version 2.4 Page 151 of 190

Content and presentation of evidence elements

AVA_VLA.1.1C The vulnerability analysis documentation shall describe the analysis of the
TOE deliverables performed to search for ways in which a user can violate
the TSP.

AVA_VLA.1.2C The vulnerability analysis documentation shall describe the disposition of
identified potential vulnerabilities.

AVA_VLA.1.3C The vulnerability analysis documentation shall show, for all identified
potential vulnerabilities, that the vulnerability cannot be exploited in the
operational environment for the TOE.

Evaluator action elements

AVA_VLA.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_VLA.1.2E The evaluator shall conduct penetration testing, verifying the developer
vulnerability analysis and considering encountered potential vulnerabilities,
to determine that the TOE in its operational environment is resistant to
penetration attacks performed by an attacker possessing basic attack
potential.

AVA_VLA.2 Independent vulnerability analysis

Objectives

453 A vulnerability analysis is performed by the developer to ascertain the
presence of potential vulnerabilities, and to confirm that they cannot be
exploited by an attacker with basic attack potential in the operational
environment for the TOE.

454 The evaluator performs independent penetration testing, supported by the
evaluator's independent vulnerability analysis, to determine that the TOE is
resistant to penetration attacks performed by attackers possessing a basic
attack potential.

Developer action elements

AVA_VLA.2.1D The developer shall perform a vulnerability analysis.

AVA_VLA.2.2D The developer shall provide vulnerability analysis documentation.

Content and presentation of evidence elements

AVA_VLA.2.1C The vulnerability analysis documentation shall describe the analysis of the
TOE deliverables performed to search for ways in which a user can violate
the TSP.

AVA_VLA.2.2C The vulnerability analysis documentation shall describe the disposition of
identified potential vulnerabilities.

Class AVA: Vulnerability assessment

Page 152 of 190 Version 2.4 March 2004

AVA_VLA.2.3C The vulnerability analysis documentation shall show, for all identified
potential vulnerabilities, that the vulnerability cannot be exploited in the
operational environment for the TOE.

Evaluator action elements

AVA_VLA.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_VLA.2.2E The evaluator shall conduct penetration testing, using both the developer
vulnerability analysis and the evaluator's independent vulnerability analysis,
to determine that the TOE in its operational environment is resistant to
penetration attacks performed by an attacker possessing basic attack
potential.

AVA_VLA.3 Moderately resistant

Objectives

455 A vulnerability analysis is performed by the developer to ascertain the
presence of potential vulnerabilities, and to confirm that they cannot be
exploited by an attacker with moderate attack potential in the operational
environment for the TOE.

456 The evaluator performs independent penetration testing, supported by the
evaluator's independent vulnerability analysis, to determine that the TOE is
resistant to penetration attacks performed by attackers possessing a moderate
attack potential.

Developer action elements

AVA_VLA.3.1D The developer shall perform a vulnerability analysis.

AVA_VLA.3.2D The developer shall provide vulnerability analysis documentation.

Content and presentation of evidence elements

AVA_VLA.3.1C The vulnerability analysis documentation shall describe the analysis of the
TOE deliverables performed to search for ways in which a user can violate
the TSP.

AVA_VLA.3.2C The vulnerability analysis documentation shall describe the disposition of
identified potential vulnerabilities.

AVA_VLA.3.3C The vulnerability analysis documentation shall show, for all identified
potential vulnerabilities, that the vulnerability cannot be exploited in the
operational environment for the TOE.

AVA_VLA.3.4C The vulnerability analysis documentation shall show that the search for
potential vulnerabilities is systematic.

Class AVA: Vulnerability assessment

March 2004 Version 2.4 Page 153 of 190

Evaluator action elements

AVA_VLA.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_VLA.3.2E The evaluator shall conduct penetration testing, using both the developer
vulnerability analysis and the evaluator's independent vulnerability analysis,
to determine that the TOE in its operational environment is resistant to
penetration attacks performed by an attacker possessing moderate attack
potential.

AVA_VLA.4 Highly resistant

Objectives

457 A vulnerability analysis is performed by the developer to ascertain the
presence of potential vulnerabilities, and to confirm that they cannot be
exploited by an attacker with high attack potential in the operational
environment for the TOE.

Developer action elements

AVA_VLA.4.1D The developer shall perform a vulnerability analysis.

AVA_VLA.4.2D The developer shall provide vulnerability analysis documentation.

Content and presentation of evidence elements

AVA_VLA.4.1C The vulnerability analysis documentation shall describe the analysis of the
TOE deliverables performed to search for ways in which a user can violate
the TSP.

AVA_VLA.4.2C The vulnerability analysis documentation shall describe the disposition of
identified potential vulnerabilities.

AVA_VLA.4.3C The vulnerability analysis documentation shall show, for all identified
potential vulnerabilities, that the vulnerability cannot be exploited in the
operational environment for the TOE.

AVA_VLA.4.4C The vulnerability analysis documentation shall show that the search for
potential vulnerabilities is systematic.

AVA_VLA.4.5C The vulnerability analysis documentation shall provide a justification that the
analysis completely addresses the TOE deliverables.

Evaluator action elements

AVA_VLA.4.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_VLA.4.2E The evaluator shall conduct penetration testing, using both the developer
vulnerability analysis and the evaluator's independent vulnerability analysis,

Class AVA: Vulnerability assessment

Page 154 of 190 Version 2.4 March 2004

to determine that the TOE in its operational environment is resistant to
penetration attacks performed by an attacker possessing high attack potential.

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 155 of 190

A Vulnerability Assessment (AVA)

(normative)

458 This annex provides an explanation of the AVA criteria and examples of
their application. This annex does not define the AVA criteria, this definition
can be found in CC Part 3 Section 13.

459 This annex consists of 4 major parts:

a) Guidance for completing a Covert Channel Analysis. This is
summarised in section A.1.

b) Guidance for completing a Misuse Analysis. This is summarised in
section A.2.

c) What a vulnerability analysis must contain. This is summarised in
section A.3, and described in more detail in sections A.4 to A.5.
These sections describe the approach to vulnerability analysis, the
contents of the developer Vulnerability Analysis, how an evaluator
should approach the construction of an independent Vulnerability
Analysis and the interrelationships between these contents.

d) How to characterise and use assumed Attack Potential of an attacker.
This is summarised in section A.6, and described in more detail in
sections A.7 to A.10. These sections provide an example of describe
how an attack potential can be characterised and should be used, and
provide examples.

A.1 Guidance for completing a Covert Channel Analysis

460 Channel capacity estimations are based upon informal engineering
measurements, as well as actual test measurements.

461 Examples of assumptions upon which the covert channel analysis is based
may include processor speed, system or network configuration, memory size,
and cache size.

462 The selective validation of the covert channel analysis through testing allows
the evaluator the opportunity to verify any aspect of the covert channel
analysis (e.g. identification, capacity estimation, elimination, monitoring, and
exploitation scenarios). This does not impose a requirement to demonstrate
the entire set of covert channel analysis results.

463 If there are no information flow control SFPs in the ST, this family of
assurance requirements is no longer applicable, as this family applies only to
information flow control SFPs.

464 Performing a covert channel analysis in a systematic way, as required by
AVA_CCA.2 Systematic covert channel analysis, requires that the

Vulnerability Assessment (AVA)

Page 156 of 190 Version 2.4 March 2004

developer identify covert channels in a structured and repeatable way, as
opposed to identifying covert channels in an ad-hoc fashion.

465 Performing a covert channel analysis in an exhaustive way, as required by
AVA_CCA.3 Exhaustive covert channel analysis, requires that
additional evidence be provided that the plan that was followed for
identifying covert channels is sufficient to ensure that all possible ways for
covert channel exploration have been exercised.

A.2 Guidance for completing a Misuse Analysis

466 Conflicting, misleading, incomplete or unreasonable guidance may result in a
user of the TOE believing that the TOE is secure when it is not, and can
result in exploitable vulnerabilities. Therefore, the misuse analysis
investigates whether the TOE can be configured or used in a manner that is
insecure but that an administrator or user of the TOE would reasonably
believe to be secure.

467 An example of conflicting guidance would be two guidance instructions that
imply different outcomes when the same input is supplied.

468 An example of misleading guidance would be the description of a single
guidance instruction that could be parsed in more than one way, one of
which may result in an insecure state.

469 An example of incomplete guidance would be a list of significant physical
security requirements that omitted an important item, resulting in this item
being overlooked by the administrator who believed the list to be complete.

470 An example of unreasonable guidance would be a recommendation to follow
a procedure that imposed an unduly onerous administrative burden.

471 Guidance documentation is required as an input into this analysis. This may
be contained in existing User or Administration documentation, or may be
provided separately. If provided separately, the evaluator should confirm that
the documentation is supplied with the TOE.

472 In AVA_MSU.3 Analysis and testing for insecure states the evaluator is
required to undertake testing to ensure that if and when the TOE enters an
insecure state this may easily be detected. This testing may be considered as
a specific aspect of penetration testing (as performed for Vulnerability
analysis (AVA_VLA) components).

A.3 What is Vulnerability Analysis

473 The purpose of the vulnerability assessment activity is to determine the
existence and exploitability of flaws or weaknesses in the TOE in the
operational environment. This determination is based upon analysis
performed by the developer and the evaluator, and is supported by evaluator
testing.

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 157 of 190

474 At the lowest levels of Vulnerability analysis (AVA_VLA) the evaluator
simply validates the developer's analysis, while at the higher levels the
evaluators performs an independent analysis.

475 There are two main factors in performing a vulnerability analysis, namely;

a) the identification of potential vulnerabilities;

b) penetration testing to determine whether the potential vulnerabilities
are exploitable in the operational environment of the TOE.

476 The identification of vulnerabilities can be further decomposed into the
evidence to be searched and how hard to search that evidence to identify
potential vulnerabilities. In a similar manner, the penetration testing can be
further decomposed into analysis of the potential vulnerability to identify
attack methods and the demonstration of the attack methods.

477 These main factors are iterative in nature, i.e. penetration testing of potential
vulnerabilities may lead to the identification of further potential
vulnerabilities. Hence, these are performed as a single vulnerability analysis
activity.

A.4 Developer construction of a Vulnerability Analysis

478 A vulnerability analysis is performed by the developer to ascertain the
presence of potential vulnerabilities, and should consider at least the contents
of all the TOE deliverables including the ST for the targeted evaluation
assurance level. The developer is required to document the disposition of
identified potential vulnerabilities to allow the evaluator to make use of that
information in support of the evaluator's independent vulnerability analysis.

479 The intent of the developer analysis is to confirm that no identified potential
vulnerabilities can be exploited in the operational environment for the TOE.
This determination is made assuming the role of an attacker possessing a
basic (for AVA_VLA.1 Developer vulnerability analysis and AVA_VLA.2
Independent vulnerability analysis), moderate (for AVA_VLA.3
Moderately resistant) or high (for AVA_VLA.4 Highly resistant) attack
potential.

480 At AVA_VLA.3 Moderately resistant and AVA_VLA.4 Highly resistant
the developer shows a systematic search for potential vulnerabilities has been
performed. This systematic search requires that the developer identify those
potential vulnerabilities in a structured and repeatable way, as opposed to
identifying them in an ad-hoc fashion. The associated evidence that the
search for potential vulnerabilities was systematic should include
identification of all TOE documentation upon which the search for flaws was
based. This should also include any other relevant information considered in
the search.

Vulnerability Assessment (AVA)

Page 158 of 190 Version 2.4 March 2004

481 The vulnerability analysis for AVA_VLA.4 Highly resistant should include
a rationale to demonstrate why the systematic search is considered to be
complete.

A.4.1 Unstructured Analysis

482 The unstructured analysis to be performed by the developer (for
AVA_VLA.1 Developer vulnerability analysis and AVA_VLA.2
Independent vulnerability analysis) permits the developer to analyse the
design of the TOE and provide a justification of how the design protects
against attackers. To complete this analysis the developer is able to take a
number of different approaches, including:

a) Focusing on aspects of the design that are considered to be
particularly complex. For example, the developer will analyse the
design to ensure that all routines have been correctly specified and
implemented, that all structures are accurately defined and used, that
all interfaces have adequate bounds defined to control acceptance of
data passed.

b) Analysis of the TOE architecture to determine there are no paths
which permit TSFI to be bypassed.

c) Analysis of the TOE architecture to ensure that non-TSF portions can
only interact with the TSF through defined TSFI and that interactions
within the TSF are only performed through permitted internal
interfaces.

d) Consideration of any probabilistic/permutational mechanisms that
have an inherent weakness to direct attacks. The developer should
ensuring that the interfaces into these mechanisms prevent a brute
force attack, such as incremental guesses of the secret TSF data, to be
successful.

e) Consideration of experience and knowledge of flaws in similar
technology -types.

483 The developer should consider all of the design and operation evidence
provided for the evaluation (i.e. that required for any ADV and AGD
components included in the assurance package) when performing the
analysis of the design.

484 Any of the above may identify a weakness in the TOE construction, which
indicates a potential vulnerability. For each potential vulnerability the
developer is to provide evidence that this potential vulnerability cannot be
exploited in the TOE in its operational environment. The developer may
provide details of testing (interface, subsystem or module) to demonstrate
that any potential vulnerabilities hypothesised are not present in the TOE or
that the TOE is resistant to a particular attack. Or, the developer may refer to
another aspect of TOE design that serves to protect against the potential
vulnerability.

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 159 of 190

A.4.2 Systematic analysis

485 The systematic analysis to be performed by the developer (for AVA_VLA.3
Moderately resistant and AVA_VLA.4 Highly resistant) is to be
approached in a structured, repeatable manner, such that all necessary inputs
are analysed in their entirety. Therefore, where the developer was able to
focus attention to specific aspects of the design in the unstructured analysis,
the developer has to consider the completeness of the TOE design and
construction.

486 In this analysis the developer applies a flaw hypothesis methodology that
considers all development and guidance evidence provided for the evaluation
in an approach that is complete. To achieve this, a developer may adopt a
published flaw hypothesis method or the developer may specify their own
methodology that is applied. If the developer chooses to specify their own
methodology, the method should include all approaches identified in the
unstructured analysis, together with consideration of how the TOE
architecture has been specified and developed to ensure its completeness in
controlling all interfaces through which an attacker may attempt to access the
TOE.

487 A rationale for the completeness of the method applied must be provided for
AVA_VLA.4 Highly resistant, to demonstrate that the entire TOE design
has been analysed. This does not imposed any additional requirements upon
the analysis to be performed, merely that a rationale is to be provided.

A.5 Evaluator construction of a Vulnerability Analysis

488 Independent evaluator vulnerability analysis goes beyond the potential
vulnerabilities identified by the developer. The evaluator analysis is to
determine that the TOE is resistant to penetration attacks performed by an
attacker possessing a basic (for AVA_VLA.2 Independent vulnerability
analysis), moderate (for AVA_VLA.3 Moderately resistant) or high (for
AVA_VLA.4 Highly resistant) attack potential. The evaluator first assesses
the exploitability of all identified potential vulnerabilities. This is
accomplished by conducting penetration testing. The evaluator should
assume the role of an attacker with a basic (for AVA_VLA.2 Independent
vulnerability analysis), moderate (for AVA_VLA.3 Moderately resistant)
or high (for AVA_VLA.4 Highly resistant) attack potential when attempting
to penetrate the TOE.

489 The evaluator considers potential vulnerabilities encountered by the
evaluator during the conduct of other evaluation activities. The evaluator
penetration testing determining TOE resistance to these potential
vulnerabilities should be performed assuming the role of an attacker with a
basic (for AVA_VLA.1 Developer vulnerability analysis and AVA_VLA.2
Independent vulnerability analysis), moderate (for AVA_VLA.3
Moderately resistant) or high (for AVA_VLA.4 Highly resistant) attack
potential.

Vulnerability Assessment (AVA)

Page 160 of 190 Version 2.4 March 2004

490 However, vulnerability analysis should not be performed as an isolated
activity. It is closely linked with ADV: Development and AGD: Guidance
documents. The evaluator performs these other evaluation activities with a
focus on identifying potential vulnerabilities or “areas of concern”.
Therefore, evaluator familiarity with the generic vulnerability guidance
(provided in CEM, AVA_VLA.2 Independent vulnerability analysis-5).

A.6 Identification of Potential Vulnerabilities

491 Potential vulnerabilities may be identified by the evaluator during different
activities. They may become apparent during an evaluation activity or they
may be identified as a result of analysis of evidence to search for
vulnerabilities.

A.6.1 Encountered

492 The encountered identification of vulnerabilities is where potential
vulnerabilities are identified by the evaluator during the conduct of
evaluation activities, i.e. the evidence are not being analysed with the express
aim of identifying potential vulnerabilities.

493 The encountered method of identification is dependent on the evaluator's
experience and knowledge; which is monitored and controlled by the
Certification Authority. It is not reproducible in approach, but will be
documented to ensure repeatability of the conclusions from the reported
potential vulnerabilities.

494 There is no formal analysis criteria required for this method. Potential
vulnerabilities are identified from the evidence provided as a result of
knowledge and experience. However, this method of identification is not
constrained to any particular subset of evidence.

495 Evaluator is assumed to have knowledge of the TOE-type technology and
known security flaws as documented in the public domain. The level of
knowledge assumed is that which can be gained from a security e-mail list
relevant to the TOE type, the regular bulletins (bug, vulnerability and
security flaw lists) published by those organisations researching security
issues in products and technologies in widespread use. This knowledge is not
expected to extend to specific conference proceedings or detailed theses
produced by university research. However, to ensure the knowledge applied
is up to date, the evaluator may need to perform a search of public domain
material.

496 Examples of how these may arise (how the evaluator may encounter
potential vulnerabilities):

a) while the evaluator is examining some evidence, it sparks a memory
of a potential vulnerability identified in a similar product type, that
the evaluator believes to also be present in the TOE under evaluation;

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 161 of 190

b) while examining some evidence, the evaluator spots a flaw in the
specification of an interface, that reflects a potential vulnerability.

497 This may include becoming aware of a potential vulnerability in a TOE
through reading about generic vulnerabilities in a particular product type in
an IT security publication or on a security e-mail list to which the evaluator
is subscribed.

498 Attack methods can be developed directly from these potential
vulnerabilities. Therefore, the encountered potential vulnerabilities are
collated at the time of producing penetration tests based on the developer's
vulnerability analysis or, if performed, an independent vulnerability analysis.
There is no explicit action for the evaluator to encounter potential
vulnerabilities. Therefore, the evaluator is directed through an implicit action
specified in Vulnerability analysis (AVA_VLA).*.2E.

499 Current information regarding public domain vulnerabilities and attacks may
be provided to the evaluator by, for example, an overseer such as the
evaluation authority. This information is to be taken into account by the
evaluator when collating encountered vulnerabilities and attack methods
when developing penetration tests.

A.6.2 Analysis

500 The following types of analysis are presented in terms of the evaluator
actions. However, the general philosophy and approaches described are also
applicable to the developer in the production of the evaluation evidence.

A.6.2.1 Focused

501 During the conduct of evaluation activities the evaluator may also identify
areas of concern. These are specific portions of the TOE evidence that the
evaluator has some reservation about, although the evidence meets the
requirements for the activity with which the evidence is associated. For
example, a particular interface specification looks particularly complex, and
therefore may be prone to error either in the construction of the TOE or in
the operation of the TOE. There is no potential vulnerability apparent at this
stage, further investigation is required. This is beyond the bounds of
encountered, as further investigation is required.

502 Difference between potential vulnerability and area of concern:

a) Potential vulnerability - know a method of attack that can be used to
exploit it, know of vulnerability information.

b) Area of concern - may be able to discount concern as a potential
vulnerability based on information provided elsewhere. While
reading interface specification, the evaluator identifies that due to the
extreme (unnecessary) complexity of an interface a potential
vulnerability may lie within that area, although it is not apparent
through this initial examination.

Vulnerability Assessment (AVA)

Page 162 of 190 Version 2.4 March 2004

503 The focused approach to the identification of vulnerabilities is an analysis of
the evidence with the aim of identifying any potential vulnerabilities evident
through the contained information. It is an unstructured analysis, as the
approach is not predetermined. This approach to the identification of
potential vulnerabilities can be used during the independent vulnerability
analysis required by AVA_VLA.2 Independent vulnerability analysis.

504 This analysis can be achieved through different approaches, that will lead to
commensurate levels of confidence. None of the approaches have a rigid
format for the examination of evidence to be performed.

505 The approach taken is directed by the results of the evaluator's assessment of
the evidence to determine it meets the requirements of the ADV/AGD sub-
activities. Therefore, the investigation of the evidence for the existence of
potential vulnerabilities may be directed by any of the following:

a) areas of concern identified during examination of the evidence during
the conduct of evaluation activities;

b) directive from developer vulnerability analysis, leading the evaluator
to examine particular areas of the TOE evidence;

c) representative examination of the evidence to hypothesise potential
vulnerabilities in the TOE.

506 The evaluator will report what actions were taken to identify potential
vulnerabilities in the evidence. However, the evaluator may not be able to
describe the steps in identifying potential vulnerabilities before the outset of
the examination. The approach will evolve as a result of the outcome of
evaluation activities.

507 The areas of concern may arise from examination of any of the evidence
provided to satisfy the SARs specified for the TOE evaluation. The
information publicly accessible is also considered.

508 The activities performed by the evaluator can be repeated and the same
conclusions, in terms of the level of assurance in the TOE, can be reached
although the steps taken to achieve those conclusions may vary. As the
evaluator is documenting the form the analysis took, the actual steps taken to
achieve those conclusions are also reproducible.

A.6.2.2 Methodical

509 The methodical analysis approach takes the form of a structured examination
of the evidence. This method requires the evaluator to specify the structure
and form the analysis will take (i.e. the manner in which the analysis is
performed is predetermined, unlike the focused identification method). The
method is specified in terms of the information that will be considered and
how/why it will be considered. This approach to the identification of
potential vulnerabilities can be used during the independent vulnerability

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 163 of 190

analysis required by AVA_VLA.3 Moderately resistant and AVA_VLA.4
Highly resistant.

510 This analysis of the evidence is deliberate and pre-planned in approach,
considering all evidence identified as an input into the analysis.

511 All evidence provided to satisfy the (ADV) assurance requirements specified
in the assurance package are used as input to the potential vulnerability
identification activity.

512 The “methodical” descriptor for this analysis has been used in an attempt to
capture the characterisation that this identification of potential vulnerabilities
is to take an ordered and planned approach. A “method” or “system” is to be
applied in the examination. The evaluator is to describe the method to be
used in terms of what evidence will be considered, the information within the
evidence that is to be examined, the manner in which this information is to
be considered; and the hypothesis that is to be generated.

513 The following provide some examples that a hypothesis may take:

a) consideration of malformed input for interfaces available to an
attacker at the external interfaces;

b) examination of a security mechanism, such as domain separation,
hypothesising internal buffer overflows leading to degradation of
separation;

c) analysis to identify any objects created in the TOE implementation
representation that are then not fully controlled by the TSF, and could
be used by an attacker to undermine the TSP.

514 For example, the evaluator may identify that interfaces are a potential area of
weakness in the TOE and specify an approach to the analysis that “all
interface specifications provided in the functional specification and high-
level design will be analysed to hypothesise potential vulnerabilities” and go
on to explain the methods used in the hypothesis.

515 This identification method will provide a plan of attack of the TOE, that
would be performed by an evaluator completing penetration testing of
potential vulnerabilities in the TOE. The rationale for the method of
identification would provide the evidence for the coverage and depth of
exploitation determination that would be performed on the TOE.

A.7 When is attack potential used

A.7.1 Developer

516 Attack potential is used by a PP/ST author during the development of the
PP/ST, in consideration of the threat environment and the selection assurance
components. This may simply be a determination that the attack potential
possessed by the assumed attackers of the TOE is generically characterised

Vulnerability Assessment (AVA)

Page 164 of 190 Version 2.4 March 2004

as basic, moderate or high. Alternatively, the PP/ST may wish to specify
particular levels of individual factors assumed to be possessed by attackers.
(e.g. the attackers are assumed to be experts in the TOE technology type,
with access to specialised equipment.)

517 The PP/ST author considers the threat profile developed during a risk
assessment (outside the scope of the CC, but used as an input into the
development of the PP/ST in terms of the Security Problem Definition).
Consideration of this threat profile in terms of one of the approaches
discussed in the following sections will permit the specification of the attack
potential the TOE is to resist.

A.7.2 Evaluator

518 Attack potential is especially considered by the evaluator in two distinct
ways during the ST evaluation and the vulnerability assessment activities.

519 During the ST evaluation, the evaluator determines whether or not the choice
of the assurance requirement components, in particular the components of
the AVA: Vulnerability assessment class, are commensurate with the threat
attack potential (see ASE_REQ.1.4C). Cases where the assurance is not
commensurate may mean either that the evaluation will not provide
sufficient assurance, or that the evaluation will be unnecessarily onerous.

520 Attack potential is used by an evaluator during the conduct of the
vulnerability analysis sub-activity to determine whether or not the TOE is
resistant to attacks assuming a specific attack potential of an attacker. If the
evaluator determines that a potential vulnerability is exploitable in the TOE,
they have to confirm that it is exploitable considering all aspects of the
intended environment, including the attack potential assumed by an attacker.

521 Therefore, using the information provided in the threat statement of the
Security Target, the evaluator determines the minimum attack potential
required by an attacker to effect an attack, and arrives at some conclusion
about the TOE's resistance to attacks. Table 10 Vulnerability testing and
attack potential demonstrates the relationship between this analysis and
attack potential.

vulnerability
component

TOE resistant to
attacker with attack
potential of:

Residual vulnerabilities only
exploitable by attacker with
attack potential of:

VLA.4 high infeasible
VLA.3 moderate high
VLA.2 basic moderate
VLA.1 basic moderate

Table 10 Vulnerability testing and attack potential

522 The “infeasible” attack potential in the residual vulnerabilities column of the
above table represents those potential vulnerabilities that would become
exploitable should a countermeasure in the operational environment be

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 165 of 190

removed or the operational environment develop such that the technology
required to perform an exploit becomes more widely available.A
vulnerability classified as residual in this instance reflects the fact that a
known weakness exists in the TOE, but in the current operational
environment, with the assumed attack potential, the weakness cannot be
exploited.

523 A vulnerability analysis applies to all TSFI, including ones that access
probabilistic or permutational mechanisms. No assumptions are made
regarding the correctness of the design and implementation of the TSFI; nor
are constraints placed on the attack method or the attacker's interaction with
the TOE - if an attack is possible, then it is to be considered during the
vulnerability analysis. As shown in Table 10 Vulnerability testing and attack
potential , successful evaluation against a vulnerability assurance component
reflects that the TSF is designed and implemented to protect against the
required level of threat.

524 It is not necessary for an evaluator to perform an attack potential calculation
for each potential vulnerability. In some cases it is apparent when developing
the attack method whether or not the attack potential required to develop and
run the attack method is commensurate with that assumed of the attacker in
the operational environment. For any vulnerabilities for which an
exploitation is determined, the evaluator performs an attack potential
calculation to determine that the exploitation is appropriate to the level of
attack potential assumed for the attacker.

525 This material is not intended to select and specify a preferred method. Rather
it is to provide alternatives for PP/ST authors and evaluators to consider
when assuming a level of attack potential.

A.8 Weighted parameters Approach

A.8.1 Application of attack potential

526 Attack potential is a function of expertise, resources and motivation. There
are multiple methods of representing and quantifying these factors. Also,
there are other factors that are applicable for particular TOE types. The
following material presents one method.

A.8.1.1 Treatment of motivation

527 Motivation is an attack potential factor that can be used to describe several
aspects related to the attacker and the assets the attacker desires. Firstly,
motivation can imply the likelihood of an attack - one can infer from a threat
described as highly motivated that an attack is imminent, or that no attack is
anticipated from an un-motivated threat. However, except for the two
extreme levels of motivation, it is difficult to derive a probability of an attack
occurring from motivation.

528 Secondly, motivation can imply the value of the asset, monetarily or
otherwise, to either the attacker or the asset holder. An asset of very high

Vulnerability Assessment (AVA)

Page 166 of 190 Version 2.4 March 2004

value is more likely to motivate an attack compared to an asset of little value.
However, other than in a very general way, it is difficult to relate asset value
to motivation because the value of an asset is subjective - it depends largely
upon the value an asset holder places on it.

529 Thirdly, motivation can imply the expertise and resources with which an
attacker is willing to effect an attack. One can infer that a highly motivated
attacker is likely to acquire sufficient expertise and resources to defeat the
measures protecting an asset. Conversely, one can infer that an attacker with
significant expertise and resources is not willing to effect an attack using
them if the attacker's motivation is low.

530 During the course of preparing for and conducting an evaluation, all three
aspects of motivation are at some point considered. The first aspect,
likelihood of attack, is what may inspire a developer to pursue an evaluation.
If the developer believes that the attackers are sufficiently motivated to
mount an attack, then an evaluation can provide assurance of the ability of
the TOE to thwart the attacker's efforts. Where the operational environment
is well defined, for example in a system evaluation, the level of motivation
for an attack may be known, and will influence the selection of
countermeasures.

531 Considering the second aspect, an asset holder may believe that the value of
the assets (however measured) is sufficient to motivate attack against them.
Once an evaluation is deemed necessary, the attacker's motivation is
considered to determine the methods of attack that may be attempted, as well
as the expertise and resources used in those attacks. Once examined, the
developer is able to choose the appropriate assurance level, in particular the
AVA: Vulnerability assessment requirement components, commensurate
with the attack potential for the threats. During the course of the evaluation,
and in particular as a result of completing the vulnerability assessment
activity, the evaluator determines whether or not the TOE, operating in its
operational environment, is sufficient to thwart attackers with the identified
expertise and resources.

532 It may be possible for a PP author to quantify the motivation of an attacker,
as the PP author has greater knowledge of the operational environment in
which the TOE (conforming to the requirements of the PP) is to be placed.
Therefore, the motivation could form an explicit part of the expression of the
attack potential in the PP, along with the necessary methods and measures to
quantify the motivation.

A.8.2 Characterising attack potential

533 This section examines the factors that determine attack potential, and
provides some guidelines to help remove some of the subjectivity from this
aspect of the evaluation process.

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 167 of 190

A.8.2.1 Identification and exploitation

534 For an attacker to exploit a vulnerability in the TOE, the potential
vulnerability must first be identified, the attack method then developed and
finally the potential vulnerability exploited using the attack method. Each of
these stages of determining whether there is a vulnerability in the TOE must
be considered when quantifying the factors comprising the attack potential.

535 To illustrate this, consider a potential vulnerability that is uncovered
following months of analysis by an expert, but requires use of a simple attack
method published on the Internet to exploit. Compare this with a potential
vulnerability that is well known, but requires enormous time and resource to
exploit.

536 When a vulnerability is identified by an evaluator, the evaluator must
determined the attack potential associated with the vulnerability. The
evaluator may have performed considerable analysis to identify the
vulnerability. However, the evaluator must consider the effect of the
vulnerability becoming publicly known. That is, an attacker would not have
to repeat the analysis to identify the vulnerability, but would only have to
perform the exploitation. In some instances knowledge of the vulnerability
would not immediately facilitate exploitation because considerable further
analysis would be required to permit the development of an attack method

537 In direct attacks against probabilistic or permutational mechanisms, the issue
of exploitation will normally be the most important, since potential
vulnerabilities in these mechanisms will often be self evident. Note,
however, that this may not always be the case. With cryptographic
mechanisms, for example, knowledge of subtle potential vulnerabilities may
considerably affect the effectiveness of a brute force attack. Knowledge that
users of a system tend to choose first names as passwords will have a similar
effect. For vulnerability testing above AVA_VLA.1 Developer vulnerability
analysis, the initial identification of potential vulnerabilities will become a
much more important consideration, since the existence of difficult to
uncover potential vulnerabilities may be promulgated, often rendering
exploitation trivial.

A.8.2.2 Factors to be considered

538 The following factors should be considered during analysis of the attack
potential required to exploit a vulnerability:

a) Time taken to identify and exploit (Elapsed Time);

b) Specialist technical expertise required (Specialist Expertise);

c) Knowledge of the TOE design and operation (Knowledge of the
TOE);

d) Window of opportunity;

Vulnerability Assessment (AVA)

Page 168 of 190 Version 2.4 March 2004

e) IT hardware/software or other equipment required for exploitation.

539 These factors provide characterisation of other quantifiers that can be used to
describe the attack potential posed by an attacker, such as motivation and
collusion.

540 Motivation and the value of the asset are intrinsically linked, as they give an
indication of the lengths to which an attacker will go in order to subvert the
TSP of the TOE. If the asset is of high value to the attacker, either in
monetary value or in prestige of attaining possession, the attacker is likely to
have a high motivation and will sustain his efforts in subverting the TOE.
This may be demonstrated by seeking to increase his access to the required
knowledge of the TOE, related technology and/or attack methods (either by
increasing his own or looking to external sources), increasing the
sophistication of the equipment available for the attack, and by dedicating a
large amount of time to the attack. The ability to increase these factors and
sustain the effort applied to the attack is likely to depend upon the funds at
the attacker's disposal, as many of the factors (Knowledge of the TOE,
Equipment, and even Elapsed Time to a certain extent) can be purchased by
the attacker.

541 The attacker may also seek to increase the factors by colluding with others.
For this reason the attack potential is calculated as that possessed by the
combination of the people involved in an attack, providing a characterisation
of the role of the attacker. Therefore, the different types of expertise required
at each stage of the attack, and within each stage of the attack, must be
considered. Different levels of expertise may be required between the
identification of the potential vulnerability, the development of the attack
method and the realisation of the attack. Within each of these stages a
number of different types of expertise may be required. Therefore the highest
level of required expertise must be assumed when applying.

542 In many cases these factors are not independent, but may be substituted for
each other in varying degrees. For example, expertise or hardware/software
may be a substitute for time. A discussion of these factors follows. (The
levels of each factor are discussed in increasing order of magnitude.)

543 Elapsed time is the total amount of time taken by an attacker to identify that
a particular potential vulnerability may exist in the TOE, to develop an attack
method and to sustain effort required to mount the attack against the TOE.
When considering this factor, the worst case scenario should be used to
estimate the amount of time required.

544 For example, the time taken to identify a potential vulnerability may be the
time taken to locate the potential vulnerability in the information that is
publicly available or may be the time required to analyse the design
information to identify a potential vulnerability. In addition to this time taken
for identification, consideration of the time required to develop an attack
method (which may also be publicly available) and successfully run the
attack method on the TOE to exploit the vulnerability must be included in the
Elapsed Time factor.

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 169 of 190

545 For the purposes of this discussion within minutes means an attack can be
identified or exploited in less than an hour; within hours means an attack can
succeed in less than a day; within days means an attack can succeed in less
than a week, within weeks means an attack can succeed in less than a month,
and in months means a successful attack requires up to three months.

546 Specialist expertise refers to the level of generic knowledge of the underlying
principles, product type or attack methods (e.g. Internet protocols, Unix
operating systems, buffer overflows). The identified levels are as follows:

a) Laymen are unknowledgeable compared to experts or proficient
persons, with no particular expertise;

b) Proficient persons are knowledgeable in that they are familiar with
the security behaviour of the product or system type;

c) Experts are familiar with the underlying algorithms, protocols,
hardware, structures, security behaviour, principles and concepts of
security employed, techniques and tools for the definition of new
attacks, cryptography, classical attacks for the product type, attack
methods, etc. implemented in the product or system type.

547 When describing the expertise required, the total number of experts required
must be included; the number of people for each type of expertise required
and access to the expertise (dissemination) must be considered when
describing the expertise required. Therefore, if expertise in both techniques
for types of attack applicable to the TOE and underlying algorithms and
protocols is required, then the highest level of Specialist Expertise
characterisation should be assumed.

548 Knowledge of the TOE refers to specific expertise in relation to the TOE.
This is distinct from generic expertise, but not unrelated to it. Identified
levels are as follows:

a) Public information concerning the TOE (e.g. as gained from the
internet);

b) Restricted information concerning the TOE (e.g. knowledge that is
controlled within the developer organisation and shared with other
organisations under a non-disclosure agreement)

c) Sensitive information about the TOE (e.g. knowledge that is shared
between discreet teams within the developer organisation, access to
which is constrained only to members of the specified teams);

d) Critical information about the TOE (e.g. knowledge that is known by
only a few individuals, access to which is very tightly controlled on a
strict need to know basis and individual undertaking).

549 The knowledge of the TOE may graduate according to design abstraction,
although this can only be done on a TOE by TOE basis. Some TOE designs

Vulnerability Assessment (AVA)

Page 170 of 190 Version 2.4 March 2004

may be public source (or heavily based on public source) and therefore even
the design representation would be classified as public or at most restricted,
while the implementation representation for other TOEs is very closely
controlled as it would give an attacker information that would aid an attack
and is therefore considered to be sensitive or even critical.

550 Care should be taken here to ensure the highest level of knowledge of the
TOE required during identification, development and running of the potential
vulnerability is identified.

551 Window of opportunity (Opportunity) is also an important consideration, and
has a relationship to the Elapsed Time factor. Identification or exploitation
of a vulnerability may require considerable amounts of access to a TOE that
may increase the likelihood of detection. Some attack methods may require
considerable effort off-line, and only brief access to the TOE to exploit.
Access may also need to be continuous, or over a number of sessions.

552 For some TOEs the Window of opportunity may equate to the number of
samples of the TOE that the attacker can obtain. This is particularly relevant
where attempts to penetrate the TOE and undermine the TSP may result in
the destruction of the TOE preventing use of that TOE sample for further
testing, e.g.hardware devices. Often in these cases distribution of the TOE is
controlled and so the attacker must apply effort to obtain further samples of
the TOE.

553 For the purposes of this discussion unnecessary/unlimited access means that
the attack doesn”t need any kind of opportunity to be realised; easy means
that access is required for less than a day or that the number of TOE samples
required to perform the attack is less than ten; moderate means that access is
required for less than a month or that the number of TOE samples required to
perform the attack is less than fifty; difficult means that access is required for
at least a month or that the number of TOE samples required to perform the
attack is less than one hundred; none means that the opportunity window is
not sufficient to perform the attack (the length for which the asset to be
exploited is available or is sensitive is less than the opportunity length
needed to perform the attack - for example, if the asset key is changed each
week and the attack needs two weeks).

554 Consideration of this factor may result in a determining that it is not possible
to complete the exploit, due to requirements for time availability that are
greater than the opportunity time.

555 IT hardware/software or other equipment refers to the equipment required
to identify or exploit a vulnerability.

a) Standard equipment is readily available to the attacker, either for the
identification of a vulnerability or for an attack. This equipment may
be a part of the TOE itself (e.g. a debugger in an operating system),
or can be readily obtained (e.g. Internet downloads, protocol analyser
or simple attack scripts).

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 171 of 190

b) Specialised equipment is not readily available to the attacker, but
could be acquired without undue effort. This could include purchase
of moderate amounts of equipment (e.g. power analysis tools, use of
hundreds of PCs linked across the Internet would fall into this
category), or development of more extensive attack scripts or
programs.

c) Bespoke equipment is not readily available to the public as it may
need to be specially produced (e.g. very sophisticated software), or
because the equipment is so specialised that its distribution is
controlled, possibly even restricted. Alternatively, the equipment may
be very expensive.

556 Specialist expertise and Knowledge of the TOE are concerned with the
information required for persons to be able to attack a TOE. There is an
implicit relationship between an attacker's expertise (where the attacker may
be one or more persons with complementary areas of knowledge) and the
ability to effectively make use of equipment in an attack. The weaker the
attacker's expertise, the lower the potential to use equipment (IT
hardware/software or other equipment). Likewise, the greater the expertise,
the greater the potential for equipment to be used in the attack. Although
implicit, this relationship between expertise and the use of equipment does
not always apply, for instance, when environmental measures prevent an
expert attacker's use of equipment, or when, through the efforts of others,
attack tools requiring little expertise to be effectively used are created and
freely distributed (e.g. via the Internet).

A.8.2.3 An approach to calculation

557 The above section identifies the factors to be considered. However, further
guidance is required if evaluations are to be conducted on a consistent basis.
The following approach is provided to assist in this process. The numbers
have been provided with the objective of achieving ratings that are consistent
with the relevant evaluation levels.

558 Table 11 Calculation of attack potential identifies the factors discussed in
the previous section and associates numeric values with the total value of
each factor.

559 When this table is used by a PP/ST author the highest level of each factor
assumed to be applied by an attacker is to be identified. The values
associated with these levels are then identified using Table 11 Calculation of
attack potential, and are summed to determine the overall attack potential
rating of the assumed attacker. This should be performed in the context of
threats against the TOE as specified in the Security Problem Definition of the
ST.

560 When determining the attack potential for a given vulnerability, a single
level for each factor is selected to represent the extent of the factor required
to identify the potential vulnerability, develop an attack method and perform
the exploitation. The selected level should reflect the highest level of the

Vulnerability Assessment (AVA)

Page 172 of 190 Version 2.4 March 2004

factor required. Although in the case of Expertise if more than one type of
expert is required, this factor should be iterated (see below). The values
associated with the selected level for each factor should then be identified
using Table 11 Calculation of attack potential. When selecting values the
intended operational environment for the TOE should be assumed. The
values are then summed, giving a single value. This value is then checked
using Table 12 Rating of vulnerabilities to determine the overall rating.

561 If the attacker needs to have different types of expertise (example: hardware
specialist and firewall expert) or different types of equipment (example:
protocol analyser and very sophisticated software) to develop and perform
the attack, then the different values corresponding to the factor (Specialist
Expertise or Equipment) should be added. If you only need one type of
expertise or equipment, no iteration should be performed. Elapsed time,
Knowledge of the TOE and Window of Opportunity factors cannot be
iterated: only the overall sequence of steps to perform the attack should be
considered (identification of a potential vulnerability if any, development of
attack method if any and realisation of the attack).

562 For the Elapsed Time factor, each week is considered to be worth one point,
so this factor can scale in the granularity required for the TOE.

563 Where a factor falls close to the boundary of a range the evaluator should
consider use of an intermediate value to those in the table. For example, if
twenty samples are required to perform the attack then a value between one
and four may be selected for that factor, or if the design is based on a
publicly available design but the developer has made some alterations then a
value between zero and four should be selected according to the evaluator's
view of the impact of those design changes. The table is intended as a guide.

564 The “**” specifications in the table are not to be seen as a natural
progression from the timescales specified in the preceding ranges associated
with a factor. These specifications identify that for a particular reason the
potential vulnerability cannot be exploited in the TOE in its intended
operational environment. For example, in considering Window of
Opportunity, unauthorised access to the TOE may be detected after a certain
amount of time in a TOE with a known environment (i.e. in the case of a
system) where regular patrols are completed, and the attacker could not gain
access to the TOE for the required two weeks undetected. However, this
would not be applicable to a TOE connected to the network where remote
access is possible, or where the physical environment of the TOE is
unknown.

Factor Range Value
<= 1 day 0
<= 1 week 1
<= 1 month 4
<= 3 months 13
<= 6 months 26

Elapsed Time

> 6 months *

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 173 of 190

Factor Range Value
Layman 0
Proficient 2

Expertise

Expert 5
Public 0
Restricted 1
Sensitive 4

Knowledge of TOE

Critical 10
Unnecessary / unlimited access 0
Easy 1
Moderate 4
Difficult 12

Window of Opportunity

None **
Standard 0
Specialised 3

Equipment

Bespoke 7

Table 11 Calculation of attack potential

565 * Indicates that the corresponding attack potential is beyond high attack
potential.

566 ** Indicates that the attack path is not exploitable due to other measures in
the intended operational environment of the TOE.

567 For a given vulnerability it may be necessary to make several passes through
the table for different attack scenarios (e.g. trading off, or compensating,
expertise for time or equipment). The lowest value obtained for these passes
should be retained, as this reflects the minimum level of attack potential
required to undermine the TSP.

568 In the case of a vulnerability that has been identified and is in the public
domain, the identifying values should be selected for an attacker to uncover
that vulnerability in the public domain, rather than to initially identify it.

569 If different types of attacker are assumed by the PP/ST author, several passes
through the table should be made to determine the different level of attack
potential understood for each type of attacker. The PP/ST author then
considers the highest value obtained when determining the level of attack the
TOE should withstand (selection of Vulnerability analysis (AVA_VLA)
component).

570 Table 12 Rating of vulnerabilities should then be used to obtain a rating for
the vulnerability/attack potential.

Vulnerability Assessment (AVA)

Page 174 of 190 Version 2.4 March 2004

Range of values Resistant to attacker with attack potential of:
0-2 No rating
3-6 Basic
7-14 Moderate
15-26 High
* Beyond High

Table 12 Rating of vulnerabilities

571 An approach such as this cannot take account of every circumstance or
factor, but should give a better indication of the level of resistance to attack
required to achieve the standard ratings. Other factors, such as the reliance
on unlikely chance occurrences are not included in the basic model, but can
be used by an evaluator as justification for a rating other than those that the
basic model might indicate.

572 It should be noted that whereas a number of vulnerabilities rated individually
may indicate high resistance to attack, collectively the combination of
vulnerabilities may indicate that overall a lower rating is applicable. The
presence of one vulnerability may make another easier to exploit.

A.8.3 Examples of the application of this approach

A.8.3.1 Basic attack potential

573 The characterisation of the least attributes required by an attacker
demonstrating a Basic attack potential rating is considered to be represented
by the following, giving a result of 4 from Table 11 Calculation of attack
potential, and a rating of Basic in Table 12 Rating of vulnerabilities :

− the TOE would withstand attack for up to 4 weeks (4);

− layman expertise (0);

− public knowledge of the TOE (0);

− unlimited access/unlimited number of samples (0);

− standard equipment (0).

A.8.3.2 Considering Elapsed Time only

574 The following examples consider a change only in the elapsed time taken to
exploit a vulnerability in the TOE, showing the affect on the rating of attack
potential for a layman, with standard equipment, public knowledge of the
TOE and unlimited access/unlimited number of samples:

a) The TOE can be broken within one week (1) = No rating.

b) The TOE can withstand the attack for up to 4 weeks (4) = Basic.

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 175 of 190

c) The TOE can withstand the attack for up to 12 weeks (12) =
Moderate.

d) The TOE can withstand the attack for more than 13 weeks (13+) =
(High).

A.8.3.3 Comparing time and expertise

575 The following examples illustrate the affect on the rating of attack potential
when changing the expertise of an attacker and the elapsed time taken to
exploit a vulnerability in the TOE. Standard equipment, public knowledge of
the TOE and unlimited access/unlimited number of samples are assumed to
be used in all cases.

a) The proficient attacker (2) takes between one day and one week (1) to
break the TOE, with no other factors = Basic rating (3).

b) The proficient attacker (2) takes up to four weeks (one month) to
break the TOE (4), with no other factors = Moderate rating (6).

c) The proficient attacker (2) takes up to twelve weeks (three months) to
break the TOE (12), with no other factors = High rating (14).

d) The expert attacker (5) takes between one day and one week (1) to
break the TOE, with no other factors = Basic rating (6).

e) The expert attacker (5) takes up to four weeks (one month) to break
the TOE (4), with no other factors = Moderate rating (9).

f) The expert attacker (5) takes up to twelve weeks (three months) to
break the TOE (12), with no other factors = High rating (17).

A.8.3.4 Elapsed time, Specialist expertise, Knowledge of the TOE

576 The following provides examples of how ratings vary according to the
elapsed time, expertise and knowledge that is applied in the attack, when
standard equipment is used with unlimited access/unlimited number of
samples:

a) TOE resists attack from proficient attacker (2), with restricted
knowledge (1), 1 day to 1 week (1) = Basic rating (4).

b) TOE resists attack from laymen with critical information for at least
one week = High (14).

c) TOE resists attack from a layman with critical information between
one day and one week = Moderate (11).

This example reflects a calculation performed by an evaluator when a
vulnerability has been found to result in a successful attack and the
evaluator is to rate it as “exploitable” or “residual”.

Vulnerability Assessment (AVA)

Page 176 of 190 Version 2.4 March 2004

d) The TOE can be broken by a layman with critical information in less
than one day = Moderate (10).

A.9 Example calculation for direct attack

577 Mechanisms subject to direct attack are often vital for system security and
developers often strengthen these mechanisms. As an example, a TOE might
use a simple pass number authentication mechanism that can be overcome by
an attacker who has the opportunity to repeatedly guess another user's pass
number. The system can strengthen this mechanism by restricting pass
numbers and their use in various ways. During the course of the evaluation
an analysis of this direct attack could proceed as follows:

578 Information gleaned from the ST and design evidence reveals that
identification and authentication provides the basis upon which to control
access to network resources from widely distributed terminals. Physical
access to the terminals is not controlled by any effective means. The duration
of access to a terminal is not controlled by any effective means. Authorised
users of the system choose their own pass numbers when initially authorized
to use the system, and thereafter upon user request. The system places the
following restrictions on the pass numbers selected by the user:

a) the pass number must be at least four and no greater than six digits
long;

b) consecutive numerical sequences are disallowed (such as 7,6,5,4,3);

c) repeating digits is disallowed (each digit must be unique).

579 Guidance provided to the users at the time of pass number selection is that
pass numbers should be as random as possible and should not be affiliated
with the user in some way - a date of birth, for instance.

580 The pass number space is calculated as follows:

a) Patterns of human usage are an important considerations that can
influence the approach to searching a password space. Assuming the
worst case scenario and the user chooses a number comprising only
four digits, the number of pass number permutations assuming that
each digit must be unique is:

b) The number of possible increasing sequences is seven, as is the
number of decreasing sequences. The pass number space after
disallowing sequences is:

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 177 of 190

581 Based on further information gleaned from the design evidence, the pass
number mechanism is designed with a terminal locking feature. Upon the
sixth failed authentication attempt the terminal is locked for one hour. The
failed authentication count is reset after five minutes so that an attacker can
at best attempt five pass number entries every five minutes, or 60 pass
number entries every hour.

582 On average, an attacker would have to enter 2513 pass numbers, over 2513
minutes, before entering the correct pass number. The average successful
attack would, as a result, occur in slightly less than:

583 Using the approach described in the previous section, it is possible that a
layman can defeat the mechanism within days (given easy access to the
TOE), with the use of standard equipment, and with no knowledge of the
TOE, giving a value of 2. Given the resulting sum, 2, the attack potential
required to effect a successful attack is not rated, as it falls below that
considered to be Basic.

A.10 Independent Factors Approach

584 This approach is a variation of the Weighted Factors approach presented
above. Rather than providing weighting of factors and taking the sum of the
weights into account to derive the attack potential, this approach presents a
set of independent parameters that require no weighting when assigning
initial values to the parameters. (However, there is a sense of implicit
weighting as minimum values for a given rating are set for each factor.)

A.10.1 Definitions of Independent Attack Potential Parameters

585 In consideration of the “Nature of the TOE” and the “Life expectancy of the
TOE” the following independent parameters have been identified, which
affect an estimation of the resistance of a potential vulnerability against a
specific attack.

586 The “Nature of the TOE” is the term used to refer to the TOE type, the
complexity of the technology used in the construction of the TOE and the
information relating to the technology used in the TOE that is available in the
public domain. Each of these three aspects affect the level of understanding
of the “Nature of the TOE”.

587 The “Life expectancy of the TOE” is used in consideration of the time taken
to develop and run an attack method to undermine the TSP. This may be
affected by aspects such as the frequency with which a key or password is
updated, and the duration in which the TOE is expected to be in operational
use.

Vulnerability Assessment (AVA)

Page 178 of 190 Version 2.4 March 2004

A.10.1.1 Knowledge of the Technology

588 The kind of theoretical knowledge necessary to identify a potential
vulnerability within the life expectancy of the TOE.

589 The main focus of this parameter is the technology on which the TOE is
based. It strongly depends on the nature of the TOE. This means that the
technology of a limited (simple) software product is considered to need less
time to become familiar with than with a complex product like an ICC or an
operating system. Therefore, identifying potential vulnerabilities depends on
both the nature of the TOE and the expertise of the attacker.

590 The following levels of knowledge (expertise) of a special technology have
been defined: Inexperienced-Layman, Low-Experienced-Layman, Proficient
Attacker or Expert.

− An Inexperienced-Layman is defined as someone who does not have
any useful knowledge of the technology in the subject area of the
TOE whereas a Low-Experienced-Layman has little knowledge that
can be seen as useful.

− A Proficient Attacker has at least intermediate knowledge of the
technique. Meaning the attacker is familiar with general theory on
which the TOE based in respect to its security behaviour.

− An Expert has the extensive and profound knowledge required to
identify a potential vulnerability in accordance with the nature of the
TOE. This not only includes general knowledge of the theory on
which the TOE is based but also detailed knowledge on which the
theory itself is based. These could be algorithms, tools, the internal
structure of the theory etc.

591 There are two possibilities to obtain knowledge of a potential vulnerability.
Firstly to study the technology on which the TOE is based. Secondly to have
a well known list that identifies, and possibly explains, certain
vulnerabilities.

592 In the first case, this parameter depends on the time and/or the expertise an
attacker needs to gain knowledge of the vulnerability. The second case
assumes that someone already has information of the potential vulnerability.
Then the situation should be interpreted as a worst case, whereby the
knowledge of the attacker should be estimated as an in-experienced-layman,
as the attacker has been given all the knowledge required. The knowledge
required to effect an attack on the TOE having gained understanding of the
existence of the potential vulnerability is considered in Knowledge of
Exploitation, below.

A.10.1.2 Knowledge of the TOE

593 The kind of knowledge, or possibility to obtain this knowledge, an attacker
has or can obtain within the life expectancy of the TOE.

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 179 of 190

594 If a potential vulnerability is based on a special knowledge of the TOE
(internals) this parameter indicates the depth of information an attacker
requires. An attacker may be able to identify potential vulnerabilities in the
TOE from TOE design information.

595 The following levels of Knowledge of the TOE or parts of it have been
defined: None, Restricted, Sensitive or Critical.

− This parameter is determined to be “None” if an attacker has no or
only very little knowledge of the TOE. This knowledge is usually
public e.g. available by literature and/or the internet.

− “Restricted” means that the attacker possibly knows simple internal
procedures of the TOE.

− In the case that an attacker knows significant relationships within the
TOE and/or has special knowledge of parts of the TOE, the attacker
could be seen as someone who has “Sensitive” information like
detailed design knowledge (e.g. low-level design).

− This parameter is considered “Critical” if an attacker knows exactly
how the TOE works internally (e.g. the source code) including details
that can be used to exploit potential vulnerabilities.

596 Generally two possibilities exist to obtain knowledge of the TOE. Firstly an
attacker has access to the development documentation or has knowledge of
its content. In this case the question arises if the development environment
could be deemed to be trustworthy or if it is imaginable that development
information could leave the protected area. Secondly an attacker could
become familiar with details of the TOE internals during the operational
work.

597 In the second case, the time factor has to be considered. If the life expectancy
(see definition above) of the TOE is shorter than the time an attacker (in
consideration of his expertise) needs to get specific information of the TOE,
the level of Knowledge of the TOE has to be set to a value which correlates
with the respective knowledge the attacker can probably acquire during this
available time.

598 The possibility to buy such kind of knowledge is not in the scope of this
parameter. The parameter “Equipment” (discussed below) deals with this
issue.

A.10.1.3 Knowledge of Exploitation

599 The knowledge an attacker can obtain to develop and perform the
exploitation of a potential vulnerability within the life expectancy of the
TOE.

600 On the basis of Knowledge of the Technology and Knowledge of the TOE
an attacker can develop and perform attacks against the TOE or part of the

Vulnerability Assessment (AVA)

Page 180 of 190 Version 2.4 March 2004

TOE to exploit potential vulnerabilities. Therefore, an attacker needs
expertise of methods to organise and to carry out such attacks. Knowledge of
Exploitation only deals with the knowledge of planning possible attacks and
the capability to carry them out, but not with physically completing the
attack (this is discussed under Opportunity below).

601 Similar to the definition of Knowledge of the Technology, four levels of
knowledge (expertise) for exploitation of potential vulnerabilities are
defined: Inexperienced-Layman, Low-Experienced-Layman, Proficient
Attacker or Expert.

a) In this context, an Inexperienced-Layman is defined as someone who
does not have any experience to develop, plan and/or perform attacks
against the TOE whereas a Low-Experienced-Layman has little
experience to do so, possibly assisted in similar attacks under
instruction.

b) A Proficient Attacker has at minimum intermediate knowledge to
exploit specific vulnerabilities of the TOE.

c) One can be sure to assume that an Expert has enough experience to
design and perform (if the opportunity and equipment are available)
exploitations of potential vulnerabilities.

602 The knowledge of an expert can be seen as something that represents the
state of the art knowledge concerning a certain technology. With respect to
specific exploitations of potential vulnerabilities of the TOE or parts of the
TOE, this leads to the fact that if there are any vulnerabilities in the TOE an
expert knows exactly what has to be done for their successfully exploitation.

603 Proceeding on the assumption that an attacker has the opportunity (see
Opportunity) and the equipment (Equipment) to carry out an attack,
Knowledge of Exploitation only depends on the capability and time required
to organise this exploitation. The knowledge of the technology and of the
TOE is discussed by the parameters Knowledge of the Technology and
Knowledge of the TOE (see above). Therefore, an estimation of the expertise
for developing, designing and performing exploitations has to be made under
consideration of the life expectancy of the TOE. This means a specific attack
must be practical within the available time by an attacker possessing the
expertise estimated for Knowledge of Exploitation. In the case that the
knowledge of an attacker is not sufficient to identify a potential vulnerability
then the question arises whether the attacker is able to get this expertise
within the life expectancy of the TOE. If this is possible a proficient attacker
can become an expert attacker.

604 As already mentioned for Knowledge of the TOE the possibility to buy such
kind of knowledge isn”t in the scope of this parameter. This subject is also
addressed by parameter “Equipment”) discussed below.

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 181 of 190

A.10.1.4 Opportunity

605 The likelihood of having the required access to the TOE within its life
expectancy.

606 Exploiting a potential vulnerability in the TOE requires some level of access
to the TOE. In general the opportunity to have access to the TOE depends on
the operational environment in which the TOE is used.

607 This parameter determines the following levels of access to the TOE: easy,
with some effort, difficult or improbable. This parameter does not take into
consideration whether an attacker has suitable equipment or the expertise to
perform the exploitation of a potential vulnerability. These are discussed by
Equipment and Knowledge of Exploitation respectively.

a) If a TOE is generally available (e.g. available for members of the
public to buy, without restrictions) then the opportunity to perform an
attack is easy in principle.

b) In the case that a TOE is merely distributed or available for a limited
circle but there are no high obstacles (e.g. there are no special
protective measures restricting access to the TOE) to get one or more
samples of it than the TOE is available with some effort.

c) If the operational environment of the TOE protects the TOE for
example by organisational measures then it is difficult to get access to
it.

d) It should be improbable to get the opportunity of access to the TOE if
the TOE operates inside a high protected area with strict access rules,
where only a few people that can be seen as very trustworthy have
access to the TOE.

608 The determination for the level of opportunity in the context of this
parameter reflects the probability that an unauthorised person can have
access to the TOE within its life expectancy. Therefore, the time required for
an attacker to exploit a vulnerability is the main factor on which Opportunity
depends.

609 The nature of the TOE may also need to be considered when determining
access to the TOE. For example, some TOEs may be rendered inoperable
following an attempt to exploit a potential vulnerability. Therefore if
multiple attempts are required, multiple copies of the TOE may also be
required. The feasibility of obtaining multiple copies should be considered,
as this may become cost prohibitive or there may be controls on attempts to
obtain multiple copies.

A.10.1.5 Equipment

610 The type of equipment necessary to exploit the potential vulnerability.

Vulnerability Assessment (AVA)

Page 182 of 190 Version 2.4 March 2004

611 To exploit a potential vulnerability of the TOE special equipment may be
necessary. There are different types of equipment imaginable: Firstly the
hardware and software devices needed to perform a certain attack against the
TOE. Secondly the human resource required is another factor that could have
an influence to drive a successful attack.

612 Money is an additional possibility to improve the prerequisite for that.
Although the financial aspect could affect also the first types, it also could be
used to buy other things (e.g. industrial espionage) which are helpful to
perform attacks.

613 The following levels of equipment necessary to exploit a potential
vulnerability are defined: Standard, Higher-than-Average, Specialised or
Bespoke.

a) In this context the definition of “Standard” equipment is only the
equipment (hardware, software, money or human resource) likely to
be possessed by a standard user of the TOE that is necessary to
perform an attack.

b) If some more effort is essential, e.g. special equipment (that means
the equipment needed cannot be considered as a common object of
utility by the TOE user) must be bought within a moderate price-
range (one can finance this utility without major difficulty), than the
value of Equipment can be set to “Higher-than-Average”.

c) “Specialised” equipment does demand an expense and/or human
resource that is difficult to realise by a private person.

d) In this context “Bespoke” means that the equipment and human
resource needed is not commonly available.

614 Before an estimation of the equipment is determined, the interrelationships
between the three types of equipment mentioned above must be clear
because an assessment of Equipment must be done under consideration of
all types of equipment required to realise an attack. For example if an
attacker has enough money to buy all hardware and software components
which are necessary but it seems to be impossible to get the human resource
to carry out the attack then the level of equipment should be rated as
“bespoke” due to the constraints in obtaining the human resource required.

A.10.2 Determination of the Attack Potential

615 On the basis of the independent parameter definitions it should be possible to
decide whether a potential vulnerability is resistant against a certain attack
potential.

616 To determine resistance, the user shall consider the TOE and the potential
vulnerability with the definitions of the independent parameters (as described
in Section A.10.1.

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 183 of 190

617 For a given potential vulnerability, the evaluator has to give a statement of
the rating for each independent parameter. This rating is to be compared with
the minimum rating of that parameter for a given attack potential. If for each
parameter the rating assigned by the user meets or exceeds the minimum
rating for the given attack potential the TOE is considered to resist the
potential vulnerability.

618 To specify the attack potential the TOE is to resist, the PP/ST author
identifies for each parameter the minimum level assumed to be possessed by
an attacker of the TOE. The author will then compare these ratings to the
minimums specified for each of the levels of attack potential to identify the
appropriate attack potential claim.

619 A lookup table is provided, allowing a value to be identified for each
independent parameter. For each parameter, the evaluator looks up the rating
considered to be appropriate for the potential vulnerability in Table 13
Assignment of TOE's characteristic to the requirements derived from the
definitions of the independent parameters .

Independent Parameter Rating Value
Inexperienced-Layman 0
Low-experience-Layman 1
Proficient 2

Knowledge of the Technology

Expert 3
None 0
Restricted 1
Sensitive 2

Knowledge of the TOE

Critical 3
Inexperienced-Layman 0
Low-experience-Layman 1
Proficient 2

Knowledge of Exploitation

Expert 3
Easy 0
Some Effort 1
Difficult 2

Opportunity

Improbable 3
Standard 0
Higher average 1
Specialised 2

Equipment

Bespoke 3

Table 13 Assignment of TOE's characteristic to the requirements derived from the definitions
of the independent parameters

620 Application steps using Table 13 Assignment of TOE's characteristic to the
requirements derived from the definitions of the independent parameters :

a) Estimate for each independent parameter the requirements, as given
in Section A.10.1, met by an attacker of the TOE.

Vulnerability Assessment (AVA)

Page 184 of 190 Version 2.4 March 2004

b) For each parameter make the assignment to that rating which the
TOE at least fulfilled. Determine the appropriate cells in column
“Rating”.

621 There may be additional factors that prevent a vulnerability from being
exploited, and therefore Table 13 Assignment of TOE's characteristic to the
requirements derived from the definitions of the independent parameters
does not need to be applied. For example, if a brute force attack against a
permutational or probabilistic mechanism will take a longer to complete than
the life-expectancy of the TOE, the evaluator reports that the vulnerability
cannot be exploited in the TOE.

A.11 Determination of the Requirements for Attack Potential
of a Potential Vulnerability

622 The following table contains on the one hand the minimum requirements of
each independent parameter (represented by the rows) which on the other
hand depends on the level of the attack potential of the identified
vulnerability (represented by the columns).

623 To confirm that a vulnerability has a certain attack potential, one has to
check whether the rating of each independent parameter of the analysed
vulnerability fulfills the requirements necessary for a defined attack
potential, i.e. for each parameter the assigned rating achieves at least the
minimum stated in Table 14 Determination of the Attack Potential for the a
given attack potential.

624 If the requirements, for a particular characteristic (expressed by an
independent parameter) that is considered important to decide the attack
potential rating, are not fulfilled the considered attack potential has not been
achieved. This means that when applying this method it is not possible to
compensate a “weak” estimated parameter by another parameter that was
estimated as “High”. Each independent parameter is considered equally in a
way that a minimum of requirements have to be met.

Independent
Parameter

Attack
Potential
“Basic”

Attack Potential
“Moderate”

Attack
Potential
“High”

Knowledge of the
Technology

0 1 2

Knowledge of the
TOE

1 2 3

Knowledge of
Exploitation

1 2 3

Opportunity 1 2 3
Equipment 1 2 3

Table 14 Determination of the Attack Potential

625 Application steps using Table 14 Determination of the Attack Potential :

Vulnerability Assessment (AVA)

March 2004 Version 2.4 Page 185 of 190

a) Take the assigned rating values resulted of step 2 described in Section
A.10.2.

b) Make sure that for each parameter the minimum requirements
displayed by the “Attack Potential” column which shall be claimed
are fulfilled.

Cross reference of assurance component dependencies

Page 186 of 190 Version 2.4 March 2004

B Cross reference of assurance component
dependencies

(informative)

626 The dependencies documented in the components of clauses 3-13 are the
direct dependencies between the assurance components.

627 The following dependency tables for assurance components show their
direct, indirect and optional dependencies. Each of the components that is a
dependency of some assurance component is allocated a column. Each
assurance component is allocated a row. The value in the table cell indicate
whether the column label component is directly required (indicated by a
cross “X”) or indirectly required (indicated by a dash “-”), by the row label
component. If no character is presented, the component is not dependent
upon another component.

 A

C
M

_C
A

P.

A
LC

_D
V

S.

A
LC

_D
V

S.

ACM_AUT.1 X -
ACM_AUT.2 X -
ACM_CAP.1
ACM_CAP.2
ACM_CAP.3 X
ACM_CAP.4 X
ACM_CAP.5 X
ACM_SCP.1 X -
ACM_SCP.2 X -
ACM_SCP.3 X -

Table 15 Dependency table for Class ACM: Configuration management

 A

C
M

_C
A

P.

A
D

V
_FSP.

A
D

V
_R

C
R

.

A
G

D
_A

D
M

A
LC

_D
V

S.

ADO_DEL.1
ADO_DEL.2 X -
ADO_DEL.3 X -
ADO_IGS.1 - - X
ADO_IGS.2 - - X

Cross reference of assurance component dependencies

March 2004 Version 2.4 Page 187 of 190

Table 16 Dependency table for Class ADO: Delivery and operation

 A

D
V

_FSP.

A
D

V
_FSP.

A
D

V
_FSP.

A
D

V
_H

LD
.

A
D

V
_H

LD
.

A
D

V
_H

LD
.

A
D

V
_IM

P.

A
D

V
_IM

P.

A
D

V
_IN

T.

A
D

V
_LLD

.

A
D

V
_R

C
R

.

A
D

V
_R

C
R

.

A
D

V
_R

C
R

.

A
LC

_TA
T.

ADV_FSP.1 X
ADV_FSP.2 X
ADV_FSP.3 X
ADV_FSP.4 X
ADV_HLD.1 X X
ADV_HLD.2 X X
ADV_HLD.3 X - X
ADV_HLD.4 X - X
ADV_HLD.5 X - X
ADV_IMP.1 - - - X X X
ADV_IMP.2 - - - X - X
ADV_IMP.3 - - - X X X X
ADV_INT.1 - - X X - -
ADV_INT.2 - - X X - -
ADV_INT.3 - - - X X - -
ADV_LLD.1 - X X
ADV_LLD.2 - X - X
ADV_LLD.3 - X - X
ADV_RCR.1
ADV_RCR.2
ADV_RCR.3
ADV_SPM.1 X -
ADV_SPM.2 X -
ADV_SPM.3 X -

Table 17 Dependency table for Class ADV: Development

 A

D
V

_FSP.

A
D

V
_R

C
R

.

AGD_ADM.1 X -
AGD_USR.1 X -

Table 18 Dependency table for Class AGD: Guidance documents

Cross reference of assurance component dependencies

Page 188 of 190 Version 2.4 March 2004

 A
D

V
_FSP.

A
D

V
_H

LD
.

A
D

V
_IM

P.

A
D

V
_LLD

.

A
D

V
_R

C
R

.

A
LC

_TA
T.

ALC_DVS.1
ALC_DVS.2
ALC_FLR.1
ALC_FLR.2
ALC_FLR.3
ALC_LCD.1
ALC_LCD.2
ALC_LCD.3
ALC_TAT.1 - - X - - -
ALC_TAT.2 - - X - - -
ALC_TAT.3 - - X - - -

Table 19 Dependency table for Class ALC: Life cycle support

 A

PE_EC
D

.

A
PE_IN

T.1

A
PE_O

B
J.1

A
PE_SPD

.1

A
SE_EC

D
.

A
SE_R

EQ
.

APE_CCL.1 X X X
APE_ECD.1
APE_INT.1
APE_OBJ.1 X
APE_REQ.1 X
APE_REQ.2 X X -
APE_SPD.1

Table 20 Dependency table for Class APE: Protection Profile evaluation

 A

SE_EC
D

.

A
SE_IN

T.1

A
SE_O

B
J.1

A
SE_R

EQ
.

A
SE_SPD

.1

ASE_CCL.1 X X X X X
ASE_ECD.1
ASE_INT.1
ASE_OBJ.1 X
ASE_REQ.1 X
ASE_REQ.2 X X -
ASE_SPD.1
ASE_TSS.1 - X X

Cross reference of assurance component dependencies

March 2004 Version 2.4 Page 189 of 190

Table 21 Dependency table for Class ASE: Security Target evaluation

 A

D
V

_FSP.

A
D

V
_H

LD
.

A
D

V
_H

LD
.

A
D

V
_IM

P.

A
D

V
_IM

P.

A
D

V
_LLD

.

A
D

V
_R

C
R

.

A
G

D
_A

D
M

A
G

D
_U

SR
.

A
LC

_TA
T.

A
TE_FU

N
.

ATE_COV.1 X - X
ATE_COV.2 X - X
ATE_COV.3 X - X
ATE_DPT.1 - X - X
ATE_DPT.2 - X X - X
ATE_DPT.3 - X - X X - - X
ATE_FUN.1
ATE_FUN.2
ATE_IND.1 X - X X
ATE_IND.2 X - X X X
ATE_IND.3 X - X X X

Table 22 Dependency table for Class ATE: Tests

 A

D
O

_IG
S.1

A
D

V
_FSP.

A
D

V
_FSP.

A
D

V
_H

LD
.

A
D

V
_IM

P.

A
D

V
_IM

P.

A
D

V
_LLD

.

A
D

V
_R

C
R

.

A
G

D
_A

D
M

A
G

D
_U

SR
.

A
LC

_TA
T.

AVA_CCA.1 - X - - X - - X X -
AVA_CCA.2 - X - - X - - X X -
AVA_CCA.3 - X - - X - - X X -
AVA_MSU.1 X X - X X
AVA_MSU.2 X X - X X
AVA_MSU.3 X X - X X
AVA_VLA.1
AVA_VLA.2
AVA_VLA.3
AVA_VLA.4

Table 23 Dependency table for Class AVA: Vulnerability assessment

Cross reference of EALs and assurance components

Page 190 of 190 Version 2.4 March 2004

C Cross reference of EALs and assurance
components

(informative)

628 Table 24 Evaluation assurance level summary describes the relationship
between the evaluation assurance levels and the assurance classes, families
and components.

Assurance Components by
Evaluation Assurance Level Assurance

class
Assurance

Family EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7
ACM_AUT 1 1 2 2
ACM_CAP 1 2 3 4 4 5 5 Configuration

management ACM_SCP 1 2 3 3 3
ADO_DEL 1 1 2 2 2 3 Delivery and

operation ADO_IGS 1 1 1 1 1 1 1
ADV_FSP 1 1 1 2 3 3 4
ADV_HLD 1 2 2 3 4 5
ADV_IMP 1 2 3 3
ADV_INT 1 2 3
ADV_LLD 1 1 2 2
ADV_RCR 1 1 1 1 2 2 3

Development

ADV_SPM 1 3 3 3
AGD_ADM 1 1 1 1 1 1 1 Guidance

documents AGD_USR 1 1 1 1 1 1 1
ALC_DVS 1 1 1 2 2
ALC_FLR
ALC_LCD 1 2 2 3 Life cycle support

ALC_TAT 1 2 3 3
ASE_CCL 1 1 1 1 1 1 1
ASE_ECD 1 1 1 1 1 1 1
ASE_INT 1 1 1 1 1 1 1
ASE_OBJ 1 1 1 1 1 1
ASE_REQ 1 2 2 2 2 2 2
ASE_SPD 1 1 1 1 1 1

Security Target
evaluation

ASE_TSS 1 1 1 1 1 1 1
ATE_COV 1 2 2 2 3 3
ATE_DPT 1 1 2 2 3
ATE_FUN 1 1 1 1 2 2 Tests

ATE_IND 1 2 2 2 2 2 3
AVA_CCA 1 2 2
AVA_MSU 1 2 2 3 3 Vulnerability

assessment AVA_VLA 1 1 2 3 4 4

Table 24 Evaluation assurance level summary

