Altair PBS Professional 10.1 Security Target

Version: 1.4
Status: Released
Last Update: 2009-10-23
Classification: Public
Trademarks

atsec is a trademark of atsec GmbH.

Linux® is registered trademark of Linus Torvalds in the U.S. and other countries.

Red Hat® and Red Hat® Enterprise Linux® are registered trademarks of Red Hat, Inc. in the U.S. and other countries.

SuSE is a trademark of Novell, Inc. in the U.S. and other countries.

Legal Notice

This document is provided AS IS with no express or implied warranties. Use the information in this document at your own risk.

This document may be reproduced or distributed in any form without prior permission provided the copyright notice is retained on all copies. Modified versions of this document may be freely distributed provided that they are clearly identified as such, and this copyright is included intact.

Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Author(s)</th>
<th>Date</th>
<th>Changes to Previous Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Scott Chapman, atsec</td>
<td>2008-11-23</td>
<td>Initial Version</td>
</tr>
<tr>
<td>1.1</td>
<td>Scott Chapman, atsec</td>
<td>2009-02-11</td>
<td>Fixed BSI comments.</td>
</tr>
<tr>
<td>1.3</td>
<td>Scott Chapman, atsec</td>
<td>2009-06-15</td>
<td>Change PBS version number to 10.1. Added FIA_UID.2-job.</td>
</tr>
</tbody>
</table>
Table of Contents

1 Introduction .. 7
 1.1 Security Target Identification .. 7
 1.2 TOE Identification ... 7
 1.3 TOE Overview .. 7
 1.3.1 TOE Type .. 7
 1.3.2 Required Non-TOE Hardware and Software ... 7
 1.3.3 Intended Method of Use .. 8
 1.3.4 Major Security Features .. 8
 1.4 TOE Description ... 8
 1.4.1 TOE Introduction and Logical Boundary ... 8
 1.4.2 TOE Security Features ... 10
 1.4.3 Subjects and Objects .. 11
 1.4.4 TSF Data and Security Attributes ... 13
 1.4.5 Physical Boundary .. 13
 1.4.6 Evaluated Configuration .. 13
 1.4.7 Operational Environment ... 13
2 CC Conformance Claim ... 15
3 Security Problem Definition ... 16
 3.1 Threat Environment .. 16
 3.1.1 Threats countered by the TOE .. 16
 3.2 Assumptions ... 16
 3.2.1 Environment of use of the TOE ... 16
4 Security Objectives .. 18
 4.1 Objectives for the TOE .. 18
 4.2 Objectives for the Operational Environment ... 18
 4.3 Security Objectives Rationale .. 19
 4.3.1 Security Objectives Coverage ... 19
 4.3.2 Security Objectives Sufficiency ... 19
5 Extended Components Definition ... 23
6 Security Requirements ... 24
 6.1 TOE Security Functional Requirements ... 24
 6.1.1 User data protection (FDP) ... 26
 6.1.2 Identification and authentication (FIA) .. 30
 6.1.3 Security management (FMT) .. 31
 6.1.4 Resource utilisation (FRU) .. 33
 6.2 Security Functional Requirements Rationale .. 33

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1 Security Requirements Coverage</td>
<td>33</td>
</tr>
<tr>
<td>6.2.2 Security Requirements Sufficiency</td>
<td>34</td>
</tr>
<tr>
<td>6.2.3 Security Requirements Dependency Analysis</td>
<td>36</td>
</tr>
<tr>
<td>6.3 Security Assurance Requirements</td>
<td>38</td>
</tr>
<tr>
<td>6.4 Security Assurance Requirements Rationale</td>
<td>38</td>
</tr>
<tr>
<td>7 TOE Summary Specification</td>
<td>39</td>
</tr>
<tr>
<td>7.1 TOE Security Functionality</td>
<td>39</td>
</tr>
<tr>
<td>7.1.1 Identification and Authentication (I&A)</td>
<td>39</td>
</tr>
<tr>
<td>7.1.2 Access Control</td>
<td>40</td>
</tr>
<tr>
<td>7.1.3 Resource Allocation Quotas</td>
<td>43</td>
</tr>
<tr>
<td>7.1.4 Management</td>
<td>43</td>
</tr>
<tr>
<td>8 Abbreviations, Terminology and References</td>
<td>44</td>
</tr>
<tr>
<td>8.1 Abbreviations</td>
<td>44</td>
</tr>
<tr>
<td>8.2 Terminology</td>
<td>44</td>
</tr>
<tr>
<td>8.3 References</td>
<td>45</td>
</tr>
</tbody>
</table>
List of Tables

Table 1: Mapping of security objectives to threats and policies .. 19
Table 2: Mapping of security objectives for the Operational Environment to assumptions, threats and policies .. 19
Table 3: Sufficiency of objectives countering threats .. 20
Table 4: Sufficiency of objectives holding assumptions .. 20
Table 5: Security functional requirements for the TOE .. 24
Table 6: Mapping of security functional requirements to security objectives 33
Table 7: Security objectives for the TOE rationale .. 34
Table 8: TOE SFR dependency analysis .. 36
List of Figures

Figure 1: Logical boundary ... 9
1 Introduction

1.1 Security Target Identification

Title: Altair PBS Professional 10.1 Security Target
Version: 1.4
Status: Released
Date: 2009-10-23
Sponsor: Altair Engineering, Inc.
Developer: Altair Engineering, Inc.
Certification ID: BSI-DSZ-CC-0599
Keywords: Altair, PBS Pro, PBS Professional, PBS GridWorks, grid computing, high performance computing, workload management

1.2 TOE Identification

The TOE is Altair PBS Professional Version 10.1 (10.1.0.91350).

1.3 TOE Overview

Altair PBS Professional is a workload management software product for resource and workload management of a computer complex. Users submit batch jobs to the TOE. The TOE finds available resources for the jobs within the complex, schedules the jobs for execution, and executes the jobs on behalf of the users.

The TOE consists of a Job Server (a.k.a. Server), a Job Scheduler (a.k.a. Scheduler), and Job Executors (a.k.a. MOMs). The MOMs run on multiple host computers and present resources as virtual nodes (Vnodes) within the complex (one MOM per host computer). An authorized user submits a batch job (a.k.a. job) to the Server in the form of a shell script that contain the job’s execution requirements. The job is queued by the Server on either a Job Queue (a.k.a. Queue) or on a Job Reservation Queue (a.k.a. Reservation) and then scheduled for execution on one or more MOMs. The TOE reviews the job requirements defined by the job and reviews the workload of the MOMs within the complex to determine where and when to execute a job.

The TOE also supports multi-Vnode jobs. For a multi-Vnode job, the Scheduler selects a MOM to be the “Mother Superior” for the entire job. The Mother Superior then passes various parts of the job to multiple “Subordinate MOMs” for execution and tracks the progress of the job parts to completion.

1.3.1 TOE Type

Altair PBS Professional is a distributed software application that provides a grid computing environment for workload management. It is used to schedule and execute software jobs across multiple Vnodes within the grid complex. The aspects evaluated are software components of the product along with the guidance documentation associated with the product.

1.3.2 Required Non-TOE Hardware and Software

The Operational Environment for the TOE consists of the following hardware platforms and operating systems:
• Red Hat® Enterprise Linux® 5 (x86 64-bit)
• SuSE Linux Enterprise Server 10 (x86 64-bit)

The hardware platforms and operating systems are not part of the TOE and are not shipped as part of the product.

1.3.3 Intended Method of Use

The TOE employs a distributed architecture intended to be used in a protected network environment where network eavesdropping is not allowed except by network administrative personnel (i.e. protected by policy) or where communications between networked computers is protected by some other means (e.g. IPsec). Communication with the TOE and between TOE components is not protected from modification or disclosure by the TOE.

1.3.4 Major Security Features

The TOE performs identification of users accessing the TOE, it uses multiple access control lists (ACLs) to control access to the Server, Queues, and Reservation Queues, and it provides multiple User Roles for separating administrative tasks, such as management of the security features, from non-administrative tasks, such as submitting jobs for execution.

1.4 TOE Description

1.4.1 TOE Introduction and Logical Boundary

The TOE consists of software components and guidance documentation. The software components of the TOE consist of:

• Server
• Scheduler
• MOM
• PBS Commands
• PBS Libraries
The Server, Scheduler, and MOM are daemon processes which run continuously within the complex. There’s one Server, one Scheduler, and one or more MOMs per complex. The TOE includes the PBS Commands for both administration of the TOE and for regular user interaction with the TOE. The TOE also includes the PBS Libraries which are used by the PBS Commands and which allow end-users to write custom commands/applications that access the TOE. Figure 1 shows the logical boundary of the TOE.

The TOE has a distributed design allowing all the TOE components to reside anywhere in a distributed environment and in almost any configuration. The components communicate with each other over TCP/IP. The only real requirements are for the Server and Scheduler to reside on the same computer and for MOMs to reside on host computers where the jobs will be executed. It’s typical for the MOMs to reside on computers other than where the Server / Scheduler reside, but this is not a requirement. In the evaluated configuration, a Vnode is equivalent to a host computer containing a MOM (i.e. a host computer represents one Vnode and a Vnode represents one host computer).

The TOE supports the concept of Queues which are collections of jobs waiting to be serviced. Multiple Queues can be created within the TOE and access control lists attached to each Queue. Queues are created by TOE "Managers" and access to the Queues are controlled by the TOE "Managers". Two types of Queues exist: Execution Queues and Routing Queues. Execution
Queues contain jobs waiting to be executed. Execution Queues also have the ability to route jobs to another Server. Routing Queues contain jobs waiting to be routed somewhere else. Routing Queues can route jobs to either another Routing Queue or to an Execution Queue.

The TOE supports the concept of Reservation Queues. Reservation Queues are queue entities that reserve a set of resources for a specified time. Multiple Reservation Queues can be created within the TOE and access control lists attached to each Reservation Queue. Any authorized TOE user can create a Reservation Queue. Two main types of Reservations exist: Advance Reservations and Standing Reservations. Advance Reservations reserve a set of resources for a specified time in the future. Standing Reservations are recurring Advance Reservations.

A typical job flow for the TOE is for an authorized user (i.e. Manager, Operator, Regular User - see section 1.4.2.4) to submit a batch job request to the Server using the PBS Commands or a custom command. The Server queues the request on an Execution Queue for execution. The Scheduler schedules where and when the job will be executed. The MOM then executes the job on the system where the MOM resides and as the user who submits the job.

The TOE also supports multi-Vnode jobs. For a multi-Vnode job, the Scheduler selects a MOM to be the Mother Superior for the entire job. The Mother Superior then passes various parts of the job to multiple Subordinate MOMs for execution and tracks the progress of the job parts to completion. The Mother Superior continues to act as a MOM for its own Vnode.

The software required by the job must already exist on the computer where the MOM resides. The TOE does not install the required software on the host computer. Thus, if the job executes a weather forecasting program, the weather forecasting program must already exist on the Vnode.

The Server, Scheduler, and MOMs run as administrative users (i.e. the root user on Linux operating systems) on their respective systems. This allows the daemons to communicate with each other over privileged ports. This also allows the MOMs to execute the jobs as the users who submit the jobs. The communications are not protected from modification or disclosure by the TOE.

The TOE relies on the trustworthiness of the operating systems for identifying users. This implies that the user community of the computers allowed to access the complex as well as the computers comprising the complex must be well managed.

1.4.2 TOE Security Features

This section describes the security features at a high level. The security functional requirement (SFR) enforcing components of the TOE are the Server and the MOMs.

1.4.2.1 Identification & Authentication

Server User Identification

The TOE uses the operating system user names to identify TOE users when they submit a request to the Server. The TOE provides a method to verify user identities through the use of privileged ports. The user identified by the Server is the user identity used by the MOM when executing a job.

Job Process Identification and Authentication

To thwart unauthorized usage of job resources, the MOM creates a pseudo-random Job Cookie for each job and passes the Job Cookie to the job. (If it’s a multi-Vnode job, the Mother Superior creates the Job Cookie and passes the Job Cookie along with the job to the Subordinate MOMs
which in turn pass the Job Cookie to the job.) When a Job Process requests a service from its
MOM, the Job Process identifies and authenticates itself to the MOM by passing its Job Cookie
to the MOM which the MOM validates. (The pseudo-random function used by the TOE to create
the Job Cookie is part of the Operational Environment.)

1.4.2.2 Access Control

The TOE uses access control lists (ACLs) to manage access to the Server, Queues, and
Reservation Queues. There are separate sets of ACLs for each Server, for each Queue on a
Server, and for each Reservation Queue on a Server. The ACLs allow or deny access based
on user names and host names. The Queue ACLs and Reservation Queue ACLs can also allow
or deny access based on the user’s default group (as defined by operating system where the
Server is executing).

The Server enforces the access control policy for User Roles supported by the TOE. The User
Roles access control policy is hardcoded within the Server.

1.4.2.3 Resource Allocation Quotas

The TOE enforces and provides a management interface for managing maximum resource
allocation quotas on users, groups of users, and jobs. These quotas allow the TOE to counter
denial of service issues for the TOE controlled resources. The TOE enforceable resource quotas
are:

- Job slots
- Elapsed time
- Processor time
- Number of processors
- Physical memory
- Virtual memory

1.4.2.4 Management

The TOE supports the following User Roles that are effectively assignable to users. The roles
are:

- Manager
- Operator
- Regular User

Managers have the most privilege of any of the User Roles. Operators have more privilege than
Regular Users, but have less privilege than Managers. Authorized users that are neither
Managers nor Operators are considered Regular Users.

Managers can manage the entire TOE including the security aspects of the TOE such as the
management of ACLs and the assigning of users to User Roles. Operators are limited to
managing the non-security aspects of the TOE such as setting and unsetting non-security
attributes of Vnodes, Queues, and Servers.

1.4.3 Subjects and Objects

Users are represented as operating system processes. Operating systems use user IDs to
associate users with processes. The following subjects are defined for the TOE:

Subjects:
- **Command Process** - A process that issues requests to a Server.
- **Job Process** - A process executed as part of a batch job on behalf of a user by a MOM.

Objects:

- **Job** - A job (a.k.a. batch job) is a collection of information that describes the task required to be performed by the TOE, a description of the resources required for the task, and one or more Job Processes.
- **Queue** - A Queue (a.k.a. Job Queue) is a collection of jobs waiting to be processed. Two types of Queues exist: Execution Queues and Routing Queues. For the purposes of this Security Target document, both Queue types are treated the same with respect to security. Queue attributes include:
 - Host, User, and Group ACLs
 - Host, User, and Group ACL enable/disable flags
 - Maximum number of Queue jobs
 - Maximum user resources
 - Maximum resources for a defined group of users
 - Maximum job resources

- **Reservation Queue** - A Reservation Queue (a.k.a. Reservation) reserves a set of resources for a specified time. Two main types of Reservations exist: Advance Reservations and Standing Reservations. For the purposes of this Security Target document, both Reservation types are treated the same with respect to security. Reservation Queue attributes include:
 - Host, User, and Group ACLs
 - Host, User, and Group ACL enable/disable flags
 - Maximum number of Reservation Queue jobs
 - Maximum user resources
 - Maximum resources for a defined group of users
 - Maximum job resources

- **Server** - The Server daemon (a.k.a. Job Server) is the front-end of the TOE with which users communicate to submit and control jobs. Server attributes include:
 - Host and User ACLs
 - Host and User ACL enable/disable flags
 - Maximum user resources
 - Maximum resources for a defined group of users
 - Maximum job resources
 - Maximum number of jobs per user
 - Maximum number of jobs for a defined group of users

- **Vnode** - A Vnode (a.k.a. Virtual Node) is an object representing a set of resources which form a usable part of a computer. In the evaluated configuration, a Vnode is a computer and vice versa. Vnode attributes include:
 - Maximum number of Vnode jobs
 - Maximum number of jobs per user
 - Maximum number of jobs for a defined group of users
1.4.4 TSF Data and Security Attributes

The following TOE Security Functionality (TSF) data are maintained by the TOE:

- Access Control Lists
- Job Cookies
- Resource Quotas

The following user security attributes are maintained by the TOE:

- User Roles

1.4.5 Physical Boundary

The TOE is comprised of the following software installation images:

- For Red Hat® Enterprise Linux® 5 (x86 64-bit):
 - PBSPro_10.1.0-RHEL5_x86_64.tar.gz
- For SuSE Linux Enterprise Server 10 (x86 64-bit):
 - PBSPro_10.1.0-SLES10_x86_64.tar.gz

The TOE is comprised of the following guidance documents:

- PBS Professional 10.1 Administrator’s Guide
- PBS Professional 10.1 Common Criteria Administration & Usage Guide
- PBS Professional 10.1 External Reference Specification
- PBS Professional 10.1 Installation and Upgrade Guide
- PBS Professional 10.1 User’s Guide

1.4.6 Evaluated Configuration

The consumer must read, understand, and follow the guidance documentation provided as part of the TOE for the evaluated configuration.

The TOE contains a “root” ACL which is called acl_root by the TOE’s guidance documentation. This ACL should not be used in the evaluated configuration.

Each MOM’s configuration file contains a parameter named $restricted which allows a MOM to accept connections from non-privileged ports of hosts specified by $restricted. This parameter should not be used in the evaluated configuration.

The Server contains a startup attribute called flatuid which can be set to either true or false in the evaluated configuration. This attribute is explained in the TOE guidance documentation.

1.4.7 Operational Environment

The Operational Environment for the TOE consists of the hardware platforms and operating systems specified in section 1.3.2 under TOE Reference.

1.4.7.1 Physical

The computer hardware and networking used by the TOE are part of the Operational Environment. The computers that run the Server, Scheduler, and MOMs must be in a non-hostile environment. The security of these software components depends on the physical security of the computers where the components reside.
The Domain Name Servers (DNS) must be trustworthy.

As mentioned in section 1.3.3, the Operational Environment must provide protection for the network data against modification and disclosure. Protection mechanisms include:

- Providing physical security of both the local network and the grid resources
- Providing logical protection of grid resources through the use of firewalls and/or network isolation
- Providing encrypted VPNs (e.g. IPsec) between enterprise sites
- Providing grid resources with up-to-date anti-virus tools and applying security updates regularly
- Restricting local users of grid resources from having administrative rights

1.4.7.2 Software

The operating systems used by the TOE are part of the Operational Environment. The TOE depends on the non-bypassability of the operating systems to prevent unauthorized users from accessing, modifying, and using the TOE. The TOE also depends on the authentication of users by the operating system. The TOE retrieves user and group security attributes from the operating systems.
2 CC Conformance Claim

This ST is CC Part 2 conformant and CC Part 3 conformant, with a claimed Evaluation Assurance Level of EAL3, augmented by ALC_FLR.1.

This ST does not claim conformance to any Protection Profile.

Common Criteria [CC] and Common Evaluation Methodology [CEM] version 3.1 have been taken as the basis for this conformance claim.
3 Security Problem Definition

3.1 Threat Environment

This section describes the threat model for the TOE and identifies the individual threats that are assumed to exist in the Operational Environment.

The IT assets to be protected comprise the information stored, processed or transmitted by the TOE. The term “information” is used here to refer to all data held within the product.

The TOE counters the general threat of unauthorized access to information, where “access” includes disclosure, modification, and destruction.

The threat agents can be categorized as either:

- Unauthorized users of the TOE, i.e. individuals who have not been granted the right to access the system; or
- Authorized users of the TOE, i.e. individuals who have been granted the right to access the system.

The threat agents are assumed to originate from a well managed user community in a non-hostile working environment. Therefore, the product protects against threats of security vulnerabilities that might be exploited in the intended environment for the TOE with medium level of expertise and effort. The TOE protects against straightforward or intentional breach of TOE security by attackers possessing a low attack potential.

3.1.1 Threats countered by the TOE

T.Access A threat agent may gain access to protected resources of the TOE or perform TOE operations for which no access rights have been granted.

T.Authorized Unauthorized users may gain access to the TOE.

T.DenialOfService A TOE user, process, or job could monopolize TOE resources thereby causing a denial of service.

3.2 Assumptions

3.2.1 Environment of use of the TOE

3.2.1.1 Physical

A.Network.Protection The Operational Environment protects network traffic from modification and disclosure by non-administrator personnel.

A.Physical.Protection The Operational Environment protects the complex’s computer resources from unauthorized physical access.

3.2.1.2 Personnel

A.Admin.Training The administrators of the TOE and of the Operational Environment are aware of the security policies and procedures of their organization, are trained and competent to follow the
manufacturer’s guidance and documentation, and correctly configure and operate the TOE and Operational Environment in accordance with those policies and procedures.

A.Admin.Trust

The administrators of the TOE and of the Operational Environment are trustworthy and are not careless, negligent, malicious, or hostile.

A.User.Training

The TOE users are aware of the security policies and procedures of their organization, and are trained and competent to follow those policies and procedures.

3.2.1.3 Connectivity

A.DNS.Trust

The Domain Name Service (DNS) used by the complex provides trustworthy services.

A.LogicalProtection

The Operational Environment protects the complex’s computer resources by running up-to-date anti-virus tools regularly on the complex’s computer resources, applying security updates regularly to the complex’s computer resources, using firewalls and/or network isolation to protect the complex’s computer resources, and restricting the set of people who have administrative access to the complex’s computer resources.

A.User.Authentication

The Operational Environment (i.e. operating system) correctly identifies and authenticates users prior to providing them access to the TOE.
4 Security Objectives

4.1 Objectives for the TOE

O.User.Access The TOE shall ensure that users are authorized to access the protected objects of the TOE and ensure that users can perform only the actions allowed by the user's User Role in accordance to the security policy of the TOE.

O.User.Authenticated The TOE shall require identification and authentication of a Job Process to the Subordinate MOM on the host computer where the Job Process is running.

O.User.Identified The TOE shall require identification of all users that access the TOE and for a User Role to be associated with each user.

O.Resource.Availability The TOE shall provide functionality to control the use of resources such that a denial of service will not occur due to the monopolization of TOE controlled resources.

4.2 Objectives for the Operational Environment

OE.Admin.Trained The administrators of the TOE and of the Operational Environment shall be made aware of the security policies and procedures of their organization, shall be trained and competent to follow the manufacturer’s guidance and documentation, and shall correctly configure and operate the TOE and Operational Environment in accordance with those policies and procedures.

OE.Admin.Trusted The administrators of the TOE and of the Operational Environment shall be trustworthy and shall not be careless, negligent, malicious, or hostile.

OE.DNS.Trusted The Domain Name Service (DNS) used by the complex shall be trustworthy.

OE.Logical.Protected The Operational Environment shall protect the complex’s computer resources by running up-to-date anti-virus tools regularly on the complex’s computer resources, applying security updates regularly to the complex’s computer resources, using firewalls and/or network isolation to protect the complex’s computer resources, and restricting the set of people who have administrative access to the complex’s computer resources.

OE.Network.Protected The Operational Environment shall protect network traffic from modification and disclosure by non-administrator personnel.

OE.Physical.Protected The Operational Environment shall protect the complex’s computer resources from unauthorized physical access.

OE.User.Authenticated The Operational Environment (i.e. operating system) shall correctly identify and authenticate users prior to providing them access to the TOE.
OE.User.Trained The TOE users shall be aware of the security policies and procedures of their organization, and shall be trained and competent to follow those policies and procedures.

4.3 Security Objectives Rationale

4.3.1 Security Objectives Coverage

The following table provides a mapping of TOE objectives to threats and policies, showing that each objective counters or enforces at least one threat or policy, respectively.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Threats / OSPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.User.Access</td>
<td>T.Access</td>
</tr>
<tr>
<td>O.User.Authenticated</td>
<td>T.Authorized</td>
</tr>
<tr>
<td>O.User.Identified</td>
<td>T.Authorized</td>
</tr>
<tr>
<td>O.Resource.Availability</td>
<td>T.DenialOfService</td>
</tr>
</tbody>
</table>

Table 1: Mapping of security objectives to threats and policies

The following table provides a mapping of the objectives for the Operational Environment to assumptions, threats and policies, showing that each objective holds, counters or enforces at least one assumption, threat or policy, respectively.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Assumptions / Threats / OSPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE.Admin.Trained</td>
<td>A.Admin.Training</td>
</tr>
<tr>
<td>OE.Admin.Trusted</td>
<td>A.Admin.Trust</td>
</tr>
<tr>
<td>OE.DNS.Trusted</td>
<td>A.DNS.Trust</td>
</tr>
<tr>
<td>OE.Logical.Protected</td>
<td>A.Logical.Protection</td>
</tr>
<tr>
<td>OE.Network.Protected</td>
<td>A.Network.Protection</td>
</tr>
<tr>
<td>OE.Physical.Protected</td>
<td>A.Physical.Protection</td>
</tr>
<tr>
<td>OE.User.Authenticated</td>
<td>A.User.Authentication</td>
</tr>
<tr>
<td>OE.User.Trained</td>
<td>A.User.Training</td>
</tr>
</tbody>
</table>

Table 2: Mapping of security objectives for the Operational Environment to assumptions, threats and policies

4.3.2 Security Objectives Sufficiency

The following rationale provides justification that the security objectives are suitable to counter each individual threat and that each security objective tracing back to a threat, when achieved, actually contributes to the removal, diminishing or mitigation of that threat:
Rationale for security objectives

T.Access

The threat that a threat agent may gain access to protected resources of the TOE or perform TOE operations for which no access rights have been granted is diminished by:

- **O.User.Access** which ensures that users are authorized to access the protected object of the TOE and ensures that users can perform only the actions allowed by the user’s User Role in accordance to the security policy of the TOE.

T.Authorized

The threat that unauthorized users may gain access to the TOE is diminished by:

- **O.User.Authenticated** which requires the TOE to identify and authenticate a Job Process to its Subordinate MOM.
- **O.User.Identified** which requires the TOE to identify all users that access the TOE and for a User Role to be associated with each user.

T.DenialOfService

The threat that a TOE user, process, or job could monopolize TOE resources thereby causing a denial of service is diminished by:

- **O.Resource.Availability** which requires that the TOE provide functionality to control the use of resources such that a denial of service will not occur due to the monopolization of TOE controlled resources.

<table>
<thead>
<tr>
<th>Threat</th>
<th>Rationale for security objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.Access</td>
<td>The threat that a threat agent may gain access to protected resources of the TOE or perform TOE operations for which no access rights have been granted is diminished by:</td>
</tr>
<tr>
<td>T.Authorized</td>
<td>The threat that unauthorized users may gain access to the TOE is diminished by:</td>
</tr>
<tr>
<td>T.DenialOfService</td>
<td>The threat that a TOE user, process, or job could monopolize TOE resources thereby causing a denial of service is diminished by:</td>
</tr>
</tbody>
</table>

Table 3: Sufficiency of objectives countering threats

The following rationale provides justification that the security objectives for the environment are suitable to cover each individual assumption, that each security objective for the environment that traces back to an assumption about the environment of use of the TOE, when achieved, actually contributes to the environment achieving consistency with the assumption, and that if all security objectives for the environment that trace back to an assumption are achieved, the intended usage is supported:

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Rationale for security objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.NetworkProtection</td>
<td>The assumption that the Operational Environment protects network traffic from modification and disclosure by non-administrator personnel is covered by:</td>
</tr>
<tr>
<td>A.PhysicalProtection</td>
<td>The assumption that the Operational Environment protects the complex’s computer resources from unauthorized physical access is covered by:</td>
</tr>
<tr>
<td>Assumption</td>
<td>Rationale for security objectives</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>A.Admin.Training</td>
<td>The assumption that the administrators of the TOE and of the Operational Environment are aware of the security policies and procedures of their organization, are trained and competent to follow the manufacturer’s guidance and documentation, and correctly configure and operate the TOE and Operational Environment in accordance with those policies and procedures.</td>
</tr>
<tr>
<td></td>
<td>- OE.Admin.Trained which requires the administrators of the TOE and of the Operational Environment shall be made aware of the security policies and procedures of their organization, to be trained and competent to follow the manufacturer’s guidance and documentation, and to correctly configure and operate the TOE and Operational Environment in accordance with those policies and procedures.</td>
</tr>
<tr>
<td>A.Admin.Trust</td>
<td>The assumption that the administrators of the TOE and of the Operational Environment are trustworthy and are not careless, negligent, malicious, or hostile is covered by:</td>
</tr>
<tr>
<td></td>
<td>- OE.Admin.Trusted which requires the administrators of the TOE and of the Operational Environment to be trustworthy and to not be careless, negligent, malicious, or hostile.</td>
</tr>
<tr>
<td>A.User.Training</td>
<td>The assumption that the TOE users are aware of the security policies and procedures of their organization, and are trained and competent to follow those policies and procedures is covered by:</td>
</tr>
<tr>
<td></td>
<td>- OE.User.Trained which requires the TOE users to be aware of the security policies and procedures of their organization, and to be trained and competent to follow those policies and procedures.</td>
</tr>
<tr>
<td>A.DNS.Trust</td>
<td>The assumption that the Domain Name Service used by the complex provides trustworthy services is covered by:</td>
</tr>
<tr>
<td></td>
<td>- OE.DNS.Trusted which requires the Domain Name Service used by the complex to be trustworthy.</td>
</tr>
<tr>
<td>A.Logical.Protection</td>
<td>The assumption that the Operational Environment protects the complex’s computer resources by running up-to-date anti-virus tools regularly on the complex’s computer resources, applying security updates regularly to the complex’s computer resources, using firewalls and/or network isolation to protect the complex’s computer resources, and restricting the set of people who have administrative access to the complex’s computer resources is covered by:</td>
</tr>
<tr>
<td></td>
<td>- OE.Logical.Protected which requires the Operational Environment to protect the complex’s computer resources by running up-to-date anti-virus tools regularly on the complex’s computer resources, applying security updates regularly to the complex’s computer resources, using firewalls and/or network isolation to protect the complex’s computer resources, and restricting the set of people who have administrative access to the complex’s computer resources.</td>
</tr>
<tr>
<td>Assumption</td>
<td>Rationale for security objectives</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>A.User.Authentication</td>
<td>The assumption that the Operational Environment (i.e. operating system) correctly identifies and authenticates users prior to providing them access to the TOE is covered by:</td>
</tr>
<tr>
<td></td>
<td>- OE.User.Authenticated which requires the Operational Environment (i.e. operating system) to correctly identify and authenticate users prior to providing them access to the TOE.</td>
</tr>
</tbody>
</table>

Table 4: Sufficiency of objectives holding assumptions
5 Extended Components Definition

There are no extended component definitions.
6 Security Requirements

6.1 TOE Security Functional Requirements

The following table shows the Security functional requirements for the TOE, and the operations performed on the components according to CC part 2: iteration (Iter.), refinement (Ref.), assignment (Ass.) and selection (Sel.).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP User data protection</td>
<td>FDP_ACC.1-acle Queue and Reservation Access Control Policy</td>
<td>FDP_ACC.1</td>
<td>CC Part 2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>FDP_ACC.1-aclsrv Server Access Control Policy</td>
<td>FDP_ACC.1</td>
<td>CC Part 2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>FDP_ACC.1-job Job Access Control Policy</td>
<td>FDP_ACC.1</td>
<td>CC Part 2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>FDP_ACC.1-role Role Access Control Policy</td>
<td>FDP_ACC.1</td>
<td>CC Part 2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>FDP_ACF.1-acle Queue and Reservation Access Control Functions</td>
<td>FDP_ACF.1</td>
<td>CC Part 2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>FDP_ACF.1-aclsrv Server Access Control Functions</td>
<td>FDP_ACF.1</td>
<td>CC Part 2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>FDP_ACF.1-job Job Access Control Functions</td>
<td>FDP_ACF.1</td>
<td>CC Part 2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>FDP_ACF.1-role Role Access Control Functions</td>
<td>FDP_ACF.1</td>
<td>CC Part 2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>FIA Identification and authentication</td>
<td>FIA_ATD.1 User Attribute Definition</td>
<td>FIA_ATD.1</td>
<td>CC Part 2</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>FIA_SOS.2 TSF Generation of Secrets</td>
<td>FIA_SOS.2</td>
<td>CC Part 2</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>FIA_UAU.2 Job Process Authentication before Any Action</td>
<td>FIA_UAU.2</td>
<td>CC Part 2</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>FIA_UID.2-job Job Process Identification before Any Action</td>
<td>FIA_UID.2</td>
<td>CC Part 2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>FIA_UID.2-usr Server User Identification before Any Action</td>
<td>FIA_UID.2</td>
<td>CC Part 2</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>FIA_USB.1 User-Subject Binding</td>
<td>FIA_USB.1</td>
<td>CC Part 2</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>FMT Security management</td>
<td>FMT_MSA.1-aclque Management of Queue ACL Security Attributes</td>
<td>FMT_MSA.1</td>
<td>CC Part 2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>--------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.1-acres1 Management of Reservation ACL Security Attributes</td>
<td>FMT_MSA.1</td>
<td>CC Part 2</td>
<td>Yes Yes Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.1-acres2 Management of Reservation ACL Security Attributes</td>
<td>FMT_MSA.1</td>
<td>CC Part 2</td>
<td>Yes Yes Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.1-aclsrv Management of Server ACL Security Attributes</td>
<td>FMT_MSA.1</td>
<td>CC Part 2</td>
<td>Yes Yes Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.1-job Management of Job Security Attributes</td>
<td>FMT_MSA.1</td>
<td>CC Part 2</td>
<td>Yes No Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.3-acque Static Queue ACL Attribute Initialisation</td>
<td>FMT_MSA.3</td>
<td>CC Part 2</td>
<td>Yes No Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.3-aclres Static Reservation ACL Attribute Initialisation</td>
<td>FMT_MSA.3</td>
<td>CC Part 2</td>
<td>Yes No Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.3-aclsrv Static Server ACL Attribute Initialisation</td>
<td>FMT_MSA.3</td>
<td>CC Part 2</td>
<td>Yes No Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.3-job Static Job Attribute Initialisation</td>
<td>FMT_MSA.3</td>
<td>CC Part 2</td>
<td>Yes No Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMT_MTD.1-role Management of User Role Data</td>
<td>FMT_MTD.1</td>
<td>CC Part 2</td>
<td>Yes No Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMT_MTD.1-rsrc Management of Resource Quota Data</td>
<td>FMT_MTD.1</td>
<td>CC Part 2</td>
<td>Yes No Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMT_SMF.1 Specification of Management Functions</td>
<td>FMT_SMF.1</td>
<td>CC Part 2</td>
<td>No No Yes No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1 Security Roles</td>
<td>FMT_SMR.1</td>
<td>CC Part 2</td>
<td>No No Yes No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRU Resource utilisation</td>
<td>FRU_RSA.1-env Environment Resources</td>
<td>FRU_RSA.1</td>
<td>CC Part 2</td>
<td>Yes Yes Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRU_RSA.1-time Time Resources</td>
<td>FRU_RSA.1</td>
<td>CC Part 2</td>
<td>Yes Yes Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRU_RSA.1-toe TOE Resources</td>
<td>FRU_RSA.1</td>
<td>CC Part 2</td>
<td>Yes Yes Yes Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Security functional requirements for the TOE
6.1.1 User data protection (FDP)

6.1.1.1 Queue and Reservation Access Control Policy (FDP_ACC.1-aclque)
FDP_ACC.1.1-aclque The TSF shall enforce the [Queue Access Control Policy and Reservation Access Control Policy] on [.

- Subjects:
 - Command Processes representing Authorized Users

- Objects:
 - Queues

- Operations:
 - Enqueue jobs (i.e. submit to this Queue, move to this Queue, route to this Queue)
].

6.1.1.2 Server Access Control Policy (FDP_ACC.1-aclsrv)
FDP_ACC.1.1-aclsrv The TSF shall enforce the [Server Access Control Policy] on [.

- Subjects:
 - Command Processes representing Authorized Users

- Objects:
 - Servers

- Operations:
 - Request services
].

6.1.1.3 Job Access Control Policy (FDP_ACC.1-job)
FDP_ACC.1.1-job The TSF shall enforce the [Job Access Control Policy] on [.

- Subjects:
 - Command Processes representing Authorized Users

- Objects:
 - Jobs

- Operations:
 - All Regular User operations on Jobs
].

6.1.1.4 Role Access Control Policy (FDP_ACC.1-role)
FDP_ACC.1.1-role The TSF shall enforce the [Role Access Control Policy] on [.

- Subjects:
 - Command Processes representing Authorized Users

- Objects:
Jobs
- Queues
- Reservation Queues
- Servers
- Vnodes

- Operations:
 - All operations among subjects and objects
 - All operations among subject and object attributes

6.1.1.5 Queue and Reservation Access Control Functions (FDP_ACF.1-aclque)

The TSF shall enforce the Queue Access Control Policy and Reservation Access Control Policy to objects based on the following:

- Subjects and objects defined in FDP_ACC.1-aclque
- Subjects attributes:
 - User name
 - Host name
 - User's default operating system group on the Server
 - User Role
- Object attributes:
 - Host ACL
 - User ACL
 - Group ACL
 - Host ACL enable/disable flag
 - User ACL enable/disable flag
 - Group ACL enable/disable flag

The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed:

- If all enabled Queue ACLs (i.e., Host ACL, User ACL, and/or Group ACL) allow the user access, then the user can perform all enqueue operations (i.e., submit to this Queue, move to this Queue, route to this Queue) on this Queue; otherwise, all enqueue operations on this Queue are denied.
- If all Queue ACLs (i.e., Host ACL, User ACL, and Group ACL) are disabled, then the user can perform all enqueue operations on this Queue.
FDP_ACF.1.3-aclque The TSF shall explicitly authorize access of subjects to objects based on the following additional rules:

- If the Host ACL is enabled and allows access or is disabled AND if at least one of the User and Group ACLs is enabled and denies access, then a Manager or Operator is allowed to use the move enqueue operation to move an existing job to this Queue.

FDP_ACF.1.4-aclque The TSF shall explicitly deny access of subjects to objects based on the following additional rules: none.

6.1.1.6 Server Access Control Functions (FDP_ACF.1-aclsrv)

FDP_ACF.1.1-aclsrv The TSF shall enforce the Server Access Control Policy to objects based on the following:

- Subjects and objects defined in FDP_ACC.1-aclsrv
- Subjects attributes:
 - User name
 - Host name
 - User Role
- Object attributes:
 - Host ACL
 - User ACL
 - Host ACL enable/disable flag
 - User ACL enable/disable flag

FDP_ACF.1.2-aclsrv The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed:

- If all enabled Server ACLs (i.e., Host ACL and/or User ACL) allow access, then the operation is allowed; otherwise, the operation is denied.
- If all Server ACLs (i.e., Host ACL and User ACL) are disabled, then the operation is allowed.

FDP_ACF.1.3-aclsrv The TSF shall explicitly authorize access of subjects to objects based on the following additional rules:

- If the Host ACL is enabled and allows access or is disabled AND if the user is a Manager or Operator, then the operation is allowed (i.e., the User ACL is ignored when the user is a Manager or Operator).

FDP_ACF.1.4-aclsrv The TSF shall explicitly deny access of subjects to objects based on the following additional rules: none.
6.1.7 Job Access Control Functions (FDP_ACF.1-job)

FDP_ACF.1.1-job The TSF shall enforce the [Job Access Control Policy] to objects based on the following:

- Subjects and objects defined in FDP_ACC.1-job
- Subjects attributes:
 - User Role
- Object attributes:
 - Attributes of Jobs

FDP_ACF.1.2-job The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed:

- Users can only perform the operations specified in FDP_ACC.1-job on their own jobs; otherwise, access is denied.

FDP_ACF.1.3-job The TSF shall explicitly authorize access of subjects to objects based on the following additional rules:

- When query_other_jobs is set to true, Regular Users can query another user’s job.
- All Managers and Operators can perform all operations defined in FDP_ACC.1-job on any user’s job.

FDP_ACF.1.4-job The TSF shall explicitly deny access of subjects to objects based on the following additional rules: none.

6.1.8 Role Access Control Functions (FDP_ACF.1-role)

FDP_ACF.1.1-role The TSF shall enforce the [Role Access Control Policy] to objects based on the following:

- Subjects and objects defined in FDP_ACC.1-role
- Subjects attributes:
 - User Role
- Object attributes:
 - Attributes of all objects listed in FDP_ACC.1-role

FDP_ACF.1.2-role The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed:

- If the subject invoking the operation on an object is assigned to a User Role that allows the operation, then the operation is allowed; otherwise, the operation is denied.
- If the subject invoking the operation on an attribute of the object is assigned to a User Role that allows the operation, then the operation is allowed; otherwise, the operation is denied.
FDP_ACF.1.3-role The TSF shall explicitly authorize access of subjects to objects based on the following additional rules: [none].
FDP_ACF.1.4-role The TSF shall explicitly deny access of subjects to objects based on the following additional rules: none.

6.1.2 Identification and authentication (FIA)

6.1.2.1 User Attribute Definition (FIA_ATD.1)
FIA_ATD.1.1 The TSF shall maintain the following list of security attributes belonging to individual users: [
 - User Role
].

6.1.2.2 TSF Generation of Secrets (FIA_SOS.2)
FIA_SOS.2.1 The TSF shall provide a mechanism to generate secrets that meet 128-bits of pseudo-random data using a 32-bit pseudo-random generator that is part of Operational Environment.
FIA_SOS.2.2 The TSF shall be able to enforce the use of TSF generated secrets for Job Process authentication.

6.1.2.3 Job Process Authentication before Any Action (FIA_UAU.2)
FIA_UAU.2.1 The TSF shall require each user Job Process to be successfully authenticated to the Subordinate MOM before allowing any other TSF-mediated actions on behalf of that user.

6.1.2.4 Job Process Identification before Any Action (FIA_UID.2-job)
FIA_UID.2.1 The TSF shall require each user Job Process to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

6.1.2.5 Server User Identification before Any Action (FIA_UID.2-usr)
FIA_UID.2.1 The TSF shall require each Server user to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

6.1.2.6 User-Subject Binding (FIA_USB.1)
FIA_USB.1.1 The TSF shall associate the following user security attributes with subjects acting on the behalf of that user: [
 - User ID
 - User name
 - User Role
].
FIA_USB.1.2 The TSF shall enforce the following rules on the initial association of user security attributes with subjects acting on the behalf of users: [none].
FIA_USB.1.3 The TSF shall enforce the following rules governing changes to the user security attributes associated with subjects acting on the behalf of users: [none].

6.1.3 Security management (FMT)

6.1.3.1 Management of Queue ACL Security Attributes (FMT_MSA.1-aclque)

FMT_MSA.1.aclque The TSF shall enforce the [Queue Access Control Policy] to restrict the ability to [modify] the security attributes [Host ACL, User ACL, and Group ACL] and [enable, disable] the security attributes [Host ACL, User ACL, and Group ACL] to [Operator and Manager].

6.1.3.2 Management of Reservation ACL Security Attributes (FMT_MSA.1-aclres1)

FMT_MSA.1.aclres1 The TSF shall enforce the [Reservation Access Control Policy] to restrict the ability to [modify] the security attributes [Host ACL, User ACL, and Group ACL] and [enable, disable] the security attributes [Host ACL, User ACL, and Group ACL] to [Operator and Manager] after the Reservation Queue has been created.

6.1.3.3 Management of Reservation ACL Security Attributes (FMT_MSA.1-aclres2)

FMT_MSA.1.aclres2 The TSF shall enforce the [Reservation Access Control Policy] to restrict the ability to [disable] the security attributes [User ACL] to [none] when creating a Reservation Queue.

6.1.3.4 Management of Server ACL Security Attributes (FMT_MSA.1-aclsrv)

FMT_MSA.1.aclsrv The TSF shall enforce the [Server Access Control Policy] to restrict the ability to [modify] the security attributes [Host ACL and User ACL] and [enable, disable] the security attributes [Host ACL and User ACL] to [Manager].

6.1.3.5 Management of Job Security Attributes (FMT_MSA.1-job)

FMT_MSA.1.job The TSF shall enforce the [Job Access Control Policy] to restrict the ability to [modify] the security attributes [query_other_jobs] to [Manager].

6.1.3.6 Static Queue ACL Attribute Initialisation (FMT_MSA.3-aclque)

FMT_MSA.3.aclque The TSF shall enforce the [Queue Access Control Policy] to provide [permissive] default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.aclque The TSF shall allow the [Manager] to specify alternative initial values to override the default values when an object or information is created.
6.1.3.7 Static Reservation ACL Attribute Initialisation (FMT_MSA.3-aclres)

FMT_MSA.3.1-aclres The TSF shall enforce the [Reservation Access Control Policy] to provide [restrictive] default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2-aclres The TSF shall allow the [authorized user who creates the Reservation Queue] to specify alternative initial values to override the default values when an object or information is created.

6.1.3.8 Static Server ACL Attribute Initialisation (FMT_MSA.3-aclsrv)

FMT_MSA.3.1-aclsrv The TSF shall enforce the [Server Access Control Policy] to provide [permissive] default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2-aclsrv The TSF shall allow the [Manager] to specify alternative initial values to override the default values when an object or information is created.

6.1.3.9 Static Job Attribute Initialisation (FMT_MSA.3-job)

FMT_MSA.3.1-job The TSF shall enforce the [Job Access Control Policy] to provide [restrictive] default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2-job The TSF shall allow the [Manager] to specify alternative initial values to override the default values when an object or information is created.

6.1.3.10 Management of User Role Data (FMT_MTD.1-role)

FMT_MTD.1.1-role The TSF shall restrict the ability to [modify] the [User Role of an authorized user] to [Manager].

6.1.3.11 Management of Resource Quota Data (FMT_MTD.1-rsrc)

FMT_MTD.1.1-rsrc The TSF shall restrict the ability to [modify] the [Resource Quotas] to [Manager, Operator].

6.1.3.12 Specification of Management Functions (FMT_SMF.1)

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions:

- Management of ACLs
- Management of Resource Allocation Quotas
- Management of User Roles

6.1.3.13 Security Roles (FMT_SMR.1)

FMT_SMR.1.1 The TSF shall maintain the roles [Manager, Operator, and Regular User].

FMT_SMR.1.2 The TSF shall be able to associate users with roles.
6.1.4 Resource utilisation (FRU)

6.1.4.1 Environment Resources (FRU_RSA.1-env)

FRU_RSA1.1-env The TSF shall enforce maximum quotas of the following resources: [Number of processors, Physical memory size, Virtual memory size] that [an individual user, defined group of users, subjects (individual jobs only)] can use [simultaneously].

6.1.4.2 Time Resources (FRU_RSA.1-time)

FRU_RSA1.1-time The TSF shall enforce maximum quotas of the following resources: [Elapsed time, Processor time] that [an individual user, defined group of users, subjects (individual jobs only)] can use [over a specified period of time].

6.1.4.3 TOE Resources (FRU_RSA.1-toe)

FRU_RSA1.1-toe The TSF shall enforce maximum quotas of the following resources: [Job slots] that [an individual user, defined group of users] can use [simultaneously].

6.2 Security Functional Requirements Rationale

6.2.1 Security Requirements Coverage

The following table provides a mapping of SFR to the security objectives, showing that each security functional requirement addresses at least one security objective.

<table>
<thead>
<tr>
<th>Security Functional Requirements</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_ACC.1-aclque</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FDP_ACC.1-aclsrv</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FDP_ACC.1-job</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FDP_ACC.1-role</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FDP_ACF.1-aclque</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FDP_ACF.1-aclsrv</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FDP_ACF.1-job</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FDP_ACF.1-role</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FIA_ATD.1</td>
<td>O.User.Identified</td>
</tr>
<tr>
<td>FIA_SOS.2</td>
<td>O.User.Authenticated</td>
</tr>
<tr>
<td>FIA_UAU.2</td>
<td>O.User.Authenticated</td>
</tr>
<tr>
<td>FIA_UID.2-job</td>
<td>O.User.Authenticated</td>
</tr>
<tr>
<td>FIA_UID.2-usr</td>
<td>O.User.Identified</td>
</tr>
</tbody>
</table>
Security Functional Requirements to Objectives

<table>
<thead>
<tr>
<th>Security Functional Requirements</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIA_USB.1</td>
<td>O.User.Authenticated</td>
</tr>
<tr>
<td></td>
<td>O.User.Identified</td>
</tr>
<tr>
<td>FMT_MSA.1-aclque</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FMT_MSA.1-aclres1</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FMT_MSA.1-aclres2</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FMT_MSA.1-aclsrv</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FMT_MSA.1-job</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FMT_MSA.3-aclque</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FMT_MSA.3-aclres</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FMT_MSA.3-aclsrv</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FMT_MSA.3-job</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FMT_MTD.1-role</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FMT_MTD.1-rsrc</td>
<td>O.Resource.Availability</td>
</tr>
<tr>
<td>FMT_SMF.1</td>
<td>O.User.Access</td>
</tr>
<tr>
<td>FMT_SMR.1</td>
<td>O.User.Identified</td>
</tr>
<tr>
<td>FRU_RSA.1-env</td>
<td>O.Resource.Availability</td>
</tr>
<tr>
<td>FRU_RSA.1-time</td>
<td>O.Resource.Availability</td>
</tr>
<tr>
<td>FRU_RSA.1-toe</td>
<td>O.Resource.Availability</td>
</tr>
</tbody>
</table>

Table 6: Mapping of security functional requirements to security objectives

6.2.2 Security Requirements Sufficiency

The following rationale provides justification for each security objective for the TOE, showing that the security functional requirements are suitable to meet and achieve the security objectives:

<table>
<thead>
<tr>
<th>Security objectives</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.User.Access</td>
<td>The objective that</td>
</tr>
<tr>
<td></td>
<td>• the TOE shall ensure that users are authorized to access the protected</td>
</tr>
<tr>
<td></td>
<td>objects of the TOE and ensure that users can perform only the actions</td>
</tr>
<tr>
<td></td>
<td>allowed by the user’s User Role in accordance to the security policy of</td>
</tr>
<tr>
<td></td>
<td>the TOE</td>
</tr>
<tr>
<td></td>
<td>is met by:</td>
</tr>
<tr>
<td></td>
<td>• [FDP_ACC.1-aclque] which specifies the Queue and Reservation ACL policy</td>
</tr>
</tbody>
</table>

Classification: Public

Copyright © 2008, 2009 by atsec information security corporation and Altair Engineering, Inc. All rights reserved.
<table>
<thead>
<tr>
<th>Security objectives</th>
<th>Rationale</th>
</tr>
</thead>
</table>
| O.User.Authenticated | The objective that the TOE shall require identification and authentication of a Job Process to its Subordinate MOM is met by:
 - [FIA_UID.2-job] which identifies a Job Process to its MOM via a Job Cookie
 - [FIA_UAU.2] which authenticates a Job Process to its MOM via a Job Cookie
 - [FIA_USB.1] which binds the identified user to a process
 - [FIA_SOS.2] which states that the MOM or Mother Superior creates a Job Cookie that's used as a shared secret between a Job Process and its MOM |
| O.User.Identified | The objective that the TOE shall require identification of all users that access the TOE and for a User Role to be associated with each user is met by:
 - [FIA_ATD.1] which specifies the user security attributes associated with a TOE user
 - [FIA_UID.2-usr] which identifies TOE users
 - [FIA_USB.1] which binds the identified user to a process |
<table>
<thead>
<tr>
<th>Security objectives</th>
<th>Rationale</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O.Resource.Availability</td>
<td>The objective that the TOE shall provide functionality to control the use of resources such that a denial of service will not occur due to the monopolization of TOE controlled resources is met by:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• [FMT_MTD.1-rsrc] which specifies the set of User Roles that can manage resource quotas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• [FRU_RSA.1-env] which specifies the TOE controlled environment resources</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• [FRU_RSA.1-time] which specifies the TOE controlled time resources</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• [FRU_RSA.1-toe] which specifies the TOE controlled TOE resources</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Security objectives for the TOE rationale

6.2.3 Security Requirements Dependency Analysis

The following table demonstrates the dependencies of SFRs modeled in CC Part 2 and how the SFRs for the TOE resolve those dependencies:

<table>
<thead>
<tr>
<th>Security Functional Requirement</th>
<th>Dependencies</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_ACC.1-acque</td>
<td>FDP_ACF.1</td>
<td>FDP_ACF.1-acque</td>
</tr>
<tr>
<td>FDP_ACC.1-aclsrv</td>
<td>FDP_ACF.1</td>
<td>FDP_ACF.1-aclsrv</td>
</tr>
<tr>
<td>FDP_ACC.1-job</td>
<td>FDP_ACF.1</td>
<td>FDP_ACF.1-job</td>
</tr>
<tr>
<td>FDP_ACC.1-role</td>
<td>FDP_ACF.1</td>
<td>FDP_ACF.1-role</td>
</tr>
<tr>
<td>FDP_ACF.1-acque</td>
<td>FDP_ACC.1</td>
<td>FDP_ACC.1-acque</td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.3</td>
<td>FMT_MSA.3-acque</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FMT_MSA.3-aclsrv</td>
</tr>
<tr>
<td>FDP_ACF.1-aclsrv</td>
<td>FDP_ACC.1</td>
<td>FDP_ACC.1-aclsrv</td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.3</td>
<td>FMT_MSA.3-aclsrv</td>
</tr>
<tr>
<td>FDP_ACF.1-job</td>
<td>FDP_ACC.1</td>
<td>FDP_ACC.1-job</td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.3</td>
<td>FMT_MSA.3-job</td>
</tr>
<tr>
<td>FDP_ACF.1-role</td>
<td>FDP_ACC.1</td>
<td>FDP_ACC.1-role</td>
</tr>
<tr>
<td>Security Functional Requirement</td>
<td>Dependencies</td>
<td>Resolution</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>FIA_ATD.1</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FIA_SOS.2</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FIA_UAU.2</td>
<td>FIA_UID.1</td>
<td>FIA_UID.2-job</td>
</tr>
<tr>
<td>FIA_UID.2-job</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FIA_UID.2-usr</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FIA_USB.1</td>
<td>FIA_ATD.1</td>
<td>FIA_ATD.1</td>
</tr>
<tr>
<td>FMT_MSA.1-aclque</td>
<td>[FDP_ACC.1 or FDP_IFC.1]</td>
<td>FDP_ACC.1-aclque</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1</td>
<td>FMT_SMR.1</td>
</tr>
<tr>
<td></td>
<td>FMT_SMF.1</td>
<td>FMT_SMF.1</td>
</tr>
<tr>
<td>FMT_MSA.1-acres1</td>
<td>[FDP_ACC.1 or FDP_IFC.1]</td>
<td>FDP_ACC.1-acres1</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1</td>
<td>FMT_SMR.1</td>
</tr>
<tr>
<td></td>
<td>FMT_SMF.1</td>
<td>FMT_SMF.1</td>
</tr>
<tr>
<td>FMT_MSA.1-acres2</td>
<td>[FDP_ACC.1 or FDP_IFC.1]</td>
<td>FDP_ACC.1-acres2</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1</td>
<td>FMT_SMR.1</td>
</tr>
<tr>
<td></td>
<td>FMT_SMF.1</td>
<td>FMT_SMF.1</td>
</tr>
<tr>
<td>FMT_MSA.1-aclsrv</td>
<td>[FDP_ACC.1 or FDP_IFC.1]</td>
<td>FDP_ACC.1-aclsrv</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1</td>
<td>FMT_SMR.1</td>
</tr>
<tr>
<td></td>
<td>FMT_SMF.1</td>
<td>FMT_SMF.1</td>
</tr>
<tr>
<td>FMT_MSA.1-job</td>
<td>[FDP_ACC.1 or FDP_IFC.1]</td>
<td>FDP_ACC.1-job</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1</td>
<td>FMT_SMR.1</td>
</tr>
<tr>
<td></td>
<td>FMT_SMF.1</td>
<td>FMT_SMF.1</td>
</tr>
<tr>
<td>FMT_MSA.3-aclque</td>
<td>FMT_MSA.1</td>
<td>FMT_MSA.1-aclque</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1</td>
<td>FMT_SMR.1</td>
</tr>
<tr>
<td>FMT_MSA.3-acres</td>
<td>FMT_MSA.1</td>
<td>FMT_MSA.1-acres</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1</td>
<td>FMT_SMR.1</td>
</tr>
<tr>
<td>FMT_MSA.3-aclsrv</td>
<td>FMT_MSA.1</td>
<td>FMT_MSA.1-aclsrv</td>
</tr>
</tbody>
</table>
Security Assurance Requirements

The security assurance requirements for the TOE are the Evaluation Assurance Level 3 components, augmented by ALC_FLR.1, as specified in [CC] part 3. No operations are applied to the assurance components.

Security Assurance Requirements Rationale

The evaluation assurance level has been chosen commensurate with the threat environment that is experienced by typical consumers of the TOE. In addition, the evaluation assurance level has been augmented with ALC_FLR.1 commensurate with the augmented flaw remediation capabilities offered by the developer beyond those required by the evaluation assurance level.

Table 8: TOE SFR dependency analysis

<table>
<thead>
<tr>
<th>Security Functional Requirement</th>
<th>Dependencies</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMT_SMR.1</td>
<td>FMT_SMF.1</td>
<td>FMT_SMF.1</td>
</tr>
<tr>
<td>FMT_MSA.3-job</td>
<td>FMT_MSA.1</td>
<td>FMT_MSA.1-job</td>
</tr>
<tr>
<td>FMT_SMF.1</td>
<td>FIA_UID.2-usr</td>
<td>FIA_UID.2-usr</td>
</tr>
<tr>
<td>FMT_MTD.1-role</td>
<td>FMT_SMF.1</td>
<td>FMT_SMF.1</td>
</tr>
<tr>
<td>FMT_MTD.1-rsrc</td>
<td>FMT_SMF.1</td>
<td>FMT_SMF.1</td>
</tr>
<tr>
<td>FMT_SMF.1</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FMT_SMR.1</td>
<td>FIA_UID.1</td>
<td>FIA_UID.2-usr</td>
</tr>
<tr>
<td>FRU_RSA.1-env</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FRU_RSA.1-time</td>
<td>No dependencies.</td>
<td></td>
</tr>
<tr>
<td>FRU_RSA.1-toe</td>
<td>No dependencies.</td>
<td></td>
</tr>
</tbody>
</table>

Last update: 2009-10-23

Copyright © 2008, 2009 by atsec information security corporation and Altair Engineering, Inc. All rights reserved.
7 TOE Summary Specification

7.1 TOE Security Functionality

The following section explains how the security functions are implemented. The different TOE security functions cover the various SFR classes.

The primary security features of the TOE are:

- Identification and Authentication
- Access Control
- Resource Allocation Quotas
- Management

7.1.1 Identification and Authentication (I&A)

The TOE supports an identification mechanism and an authentication mechanism. This section describes the supported mechanisms.

7.1.1.1 Identification of Server Users

When a user’s process (i.e., Command Process) contacts the Server, the process does it through an unprivileged port. The process also executes a local privileged (setuid root) process that connects to the Server via a privileged port. The user’s process passes to the privileged process the unprivileged port that it is using to contact the Server. The privileged process then sends the following data:

- the user name associated with the real user ID of the process that invoked it from the local password file
- the host name of the privileged process
- the unprivileged port number used by the process that invoked it to connect to the Server

The Server compares the data sent via the privileged port to its list of unauthenticated connections to identify the unprivileged port user.

This section maps to the following SFRs:

- FIA_ATD.1
- FIA_UID.2-usr
- FIA_USB.1

7.1.1.2 Identification and Authentication of Job Processes

A MOM (or, in a multi-Vnode case, the Mother Superior) creates a token known as a Job Cookie for every job that it receives and adds the Job Cookie to the job. When the job executes, it executes as one or more Job Processes. When a Job Process sends a request to its MOM, the process uses an unprivileged port to connect to the MOM because the MOM executes the job as the user who submitted the job, who is not necessarily a privileged user (i.e., not necessarily root). To prove to the MOM that it is authorized to make a request, the Job Process passes the Job Cookie as part of the request to the MOM; thus, the Job Cookie is used as both an identifier and as a shared secret between the Job Process and its MOM.

A Job Cookie is a 128-bit pseudo-random number. The 32-bit pseudo-random generator used to create the Job Cookie is part of the Operational Environment.
This section maps to the following SFRs:

- FIA_SOS.2
- FIA_UAU.2
- FIA_UID.2-job

7.1.2 Access Control

7.1.2.1 Role Access Control

The Server enforces the following access control policy between processes acting on behalf of a user (i.e., Command Processes) and the following objects:

- Jobs
- Queues
- Reservation Queues
- Servers
- Vnodes

Each TOE user has one of the User Roles defined in section 7.1.4 associated with it. When the user performs an operation on an object listed above or on an attribute of one of these objects, the TOE uses the user’s role to help determine the user’s access rights. If the role does not allow the user access, then access is denied.

The Server does not allow this policy to be actively managed (i.e., this policy is hardcoded in the Server); therefore, new roles cannot be added to the TOE and the policy cannot be modified.

The Server does allow Managers to assign users to the different User Roles. See section 7.1.4 for more information on User Role management.

This section maps to the following SFRs:

- FDP_ACC.1-role
- FDP_ACF.1-role

7.1.2.2 Queue ACLs

Queue ACLs specify who can perform enqueue job operations (i.e., submit to this Queue, move to this Queue, route to this Queue) on a Queue. Each Queue has the following ACLs associated with it:

- Host ACL
- User ACL
- Group ACL

Managers can create Queues and specify the initial ACL values. Both Managers and Operators can manage Queue ACLs.

Each ACL can be individually enabled or disabled by a Manager or Operator on an existing Queue. Also, the contents of each ACL can be managed by a Manager or Operator on an existing Queue. If an ACL is enabled, the contents of the ACL are evaluated. If an ACL is disabled, the ACL is ignored.

All enabled ACLs on the Queue must allow the subject access in order for an enqueue operation to be allowed; otherwise, the operation is denied. There exists an exception to this rule that allows either a Manager or an Operator to move an existing job to this Queue when this Queue’s Host ACL allows access (i.e., is enabled and allows access or is disabled) and simultaneously
at least one of this Queue's other two ACLs (i.e., User ACL and Group ACL) is enabled and
denies access. If all ACLs are disabled, access is granted and the operation is allowed. By
default, all ACLs are disabled allowing all users access to the Queue.

Host ACLs contain host names. The subject's host name is compared to the entries in the Host
ACL.

User ACLs contain a user name / host name combination. The subject's user name / host name
combination is compared to the entries in the User ACL.

Group ACLs contain Server operating system group names. The subject's default group name
on the Server is compared to the entries in the Group ACL.

This section maps to the following SFRs:
 - FDP_ACC.1-aclque
 - FDP_ACF.1-aclque
 - FMT_MSA.1-aclque
 - FMT_MSA.3-aclque

7.1.2.3 Reservation Queue ACLs

Reservation Queue ACLs specify who can perform enqueue job operations (i.e. submit to this
Queue, move to this Queue, route to this Queue) on a Reservation Queue. Each Reservation
Queue has the following ACLs associated with it:
 - Host ACL
 - User ACL
 - Group ACL

All user roles can create Reservation Queues and specify the initial ACL values. A User ACL
will always be enabled on a Reservation Queue when it is first created. By default, the TOE will
set the User ACL to allow only the creator access, but the creator can specify different User
ACL values at the time of creation. Also by default, the Host ACL and Group ACL are disabled,
but the creator can specify a Host ACL and/or Group ACL at the time of creation. Once created,
if the creator is a Regular User, the creator will not be able to modify the ACLs or enable/disable
the ACLs.

Each ACL can be individually enabled or disabled by a Manager or Operator on an existing
Reservation Queue. Also, the contents of each ACL can be managed by a Manager or Operator
on an existing Reservation Queue. If an ACL is enabled, the contents of the ACL are evaluated.
If an ACL is disabled, the ACL is ignored.

All enabled ACLs on the Reservation Queue must allow the subject access in order for an
enqueue operation to be allowed; otherwise, the operation is denied. There exists an exception
to this rule that allows either a Manager or an Operator to move an existing job to this Reservation
Queue when this Queue's Host ACL allows access (i.e., is enabled and allows access or is
disabled) and simultaneously at least one of this Queue's other two ACLs (i.e., User ACL and
Group ACL) is enabled and denies access. If all ACLs are disabled, access is granted and the
operation is allowed.

Host ACLs contain host names. The subject's host name is compared to the entries in the Host
ACL.

User ACLs contain a user name / host name combination. The subject's user name / host name
combination is compared to the entries in the User ACL.
Group ACLs contain Server operating system group names. The subject’s default group name on the Server is compared to the entries in the Group ACL.

This section maps to the following SFRs:
- FDP_ACC.1-aclque
- FDP_ACF.1-aclque
- FMT_MSA.1-acres1
- FMT_MSA.1-acres2
- FMT_MSA.3-acres

7.1.2.4 Server ACLs

Server ACLs specify who can access the Server. Each Server has the following ACLs associated with it:
- Host ACL
- User ACL

Each ACL can be individually enabled or disabled by a Manager. Also, the contents of each ACL can be managed by a Manager. If an ACL is enabled, the contents of the ACL are evaluated. If an ACL is disabled, the ACL is ignored.

All enabled ACLs must allow the subject access in order for the requested operation to be allowed; otherwise, the operation is denied. If no ACLs are enabled, access is granted and the operation is allowed. By default, both ACLs are disabled allowing all users access to the Server. The Server allows for the use of alternate default ACL values (both ACL contents and ACL enable/disable flags) upon creation / instantiation of the Server daemon. These alternate values are configurable by a Manager.

There exists one special case. If the User ACL is enabled and the user is a Manager or Operator, then the User ACL always allows the user access.

Host ACLs contain host names. The subject’s host name is compared to the entries in the Host ACL.

User ACLs contain a user name / host name combination. The subject’s user name / host name combination is compared to the entries in the User ACL.

This section maps to the following SFRs:
- FDP_ACC.1-aclsrv
- FDP_ACF.1-aclsrv
- FMT_MSA.1-aclsrv
- FMT_MSA.3-aclsrv

7.1.2.5 Job Access Control

By default, users can only access their own jobs. The TOE can modify user access to jobs through the query_other_jobs attribute. When this attribute is set to false, Regular Users can only perform operations on their own jobs. They cannot access another user’s job. When this attribute is set to true, Regular Users can perform operations on their own jobs and they can query the status of another user’s job.

Only Managers can set the value of this attribute. Managers and Operators are also allowed to perform Regular User operations on any user’s job.
This section maps to the following SFRs:

- FDP_ACC.1-job
- FDP_ACF.1-job
- FMT_MSA.1-job
- FMT_MSA.3-job

7.1.3 Resource Allocation Quotas

The TOE enforces maximum resource quotas on users, groups of users, and jobs to counter denial of service issues. Below is the list of enforced quotas. The terms in parentheses are the resource attribute names used in the TOE guidance.

- Number of processors used by a user, group of users, or job at any given time (*ncpus*)
- Amount of physical memory used by a user, group of users, or job at any given time (*mem*)
- Amount of virtual memory used by a user, group of users, or job at any given time (*vmem*)
- Cumulative elapsed time used by a user, group of users, or job (*walltime*)
- Cumulative processor time used by a user, group of users, or job (*cput*)
- Number of executing jobs for a user or group of users at any given time (*max_user_run*, *max_group_run*)

The TOE allows Managers and Operators to modify these resource quota values.

This section maps to the following SFRs:

- FMT_MTD.1-rsrc
- FRU_RSA.1-env
- FRU_RSA.1-time
- FRU_RSA.1-toe

7.1.4 Management

The TOE supports the following authorized User Roles:

- Managers
- Operators
- Regular Users

Managers are administrators that have the greatest power for managing and configuring the TOE. Operators have less power than Managers, but have some power to manage and configure the TOE. Regular Users have no power to manage and configure the TOE, but they can submit jobs to the TOE for processing.

Only Managers can manage (modify) the User Role security attribute of a user. Through this attribute, Managers can control which users are Managers, Operators, and Regular Users.

In addition, the TOE provides functions for the management of ACLs and users.

This section maps to the following SFRs:

- FMT_MTD.1-role
- FMT_SMF.1
- FMT_SMR.1
8 Abbreviations, Terminology and References

8.1 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td>Access Control List</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name Service</td>
</tr>
<tr>
<td>IPsec</td>
<td>Internet Protocol Security</td>
</tr>
<tr>
<td>MOM</td>
<td>Machine Oriented Miniserver</td>
</tr>
<tr>
<td>PBS</td>
<td>Portable Batch System</td>
</tr>
<tr>
<td>SFR</td>
<td>Security Functional Requirement</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Socket Layer</td>
</tr>
<tr>
<td>ST</td>
<td>Security Target</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol / Internet Protocol</td>
</tr>
<tr>
<td>TLS</td>
<td>Transport Layer Security</td>
</tr>
<tr>
<td>TOE</td>
<td>Target of Evaluation</td>
</tr>
<tr>
<td>TSF</td>
<td>TOE Security Functionality</td>
</tr>
</tbody>
</table>

8.2 Terminology

This section contains definitions of technical terms that are used with a meaning specific to this document. Terms defined in the [CC] are not reiterated here, unless stated otherwise.

Authorized Users

Any authorized User Role (i.e. Manager, Operator, and Regular User).

Manager

A user authorized to use all capabilities of the product including administrative capabilities.

Operator

A user authorized to use most of the capabilities of the product including some administrative capabilities (i.e. a superset of the Regular User capabilities, but a subset of the Manager capabilities).

Product

The term product is used to define software components that comprise PBS Professional.

Regular User

A user authorized to use the product, but does not have product administrative capabilities (i.e. does not have the administrative capabilities of a Manager nor Operator).

Subject

A subject is a process representing a user.

User Security Attributes

Defined by functional requirement FIA_ATD.1, every user is associated with one or more security attributes which allow the TOE to enforce its security functions on this user.

Vnode

A Virtual Node (Vnode) is an object representing a set of resources which form a usable part of a computer. Architecturally speaking, a Vnode can be an entire host computer or it can be a nodeboard or a blade. In the evaluated configuration, a Vnode is an entire host computer.
8.3 References

CC

Version (specified above)
Date (specified above)
Location http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R1.pdf
Location http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R2.pdf
Location http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R2.pdf

CEM

Common Methodology for Information Technology Security Evaluation
Version 3.1R2
Date September 2007
Location http://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R2.pdf