

Certification Report

BSI-DSZ-CC-0938-2016

for

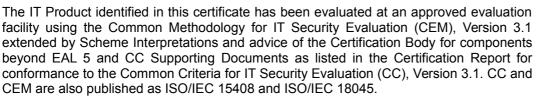
Morpho_HC_Germany_G2_COS V1

from

Morpho Cards GmbH

BSI - Bundesamt für Sicherheit in der Informationstechnik, Postfach 20 03 63, D-53133 Bonn Phone +49 (0)228 99 9582-0, Fax +49 (0)228 9582-5477, Infoline +49 (0)228 99 9582-111

Deutsches


IT-Sicherheitszertifikat

Bundesamt für Sicherheit in der Informationstechnik

BSI-DSZ-CC-0938-2016 (*)

Morpho_HC_Germany_G2_COS V1

Morpho Cards GmbH	
Card Operating System Generation 2 (PP COS G2), Version 1.9, 18 November 2014, BSI-CC-PP-0082-V2-2014	
PP conformant Common Criteria Part 2 extended	F
Common Criteria Part 3 conformant EAL 4 augmented by AVA_VAN.5, ATE_DPT.2 and ALC_DVS.2	
	Card Operating System Generation 2 (PP COS G2), Version 1.9, 18 November 2014, BSI-CC-PP-0082-V2-2014 PP conformant Common Criteria Part 2 extended Common Criteria Part 3 conformant EAL 4 augmented by AVA_VAN.5, ATE_DPT.2 and

(*) This certificate applies only to the specific version and release of the product in its evaluated configuration and in conjunction with the complete Certification Report and Notification. For details on the validity see Certification Report part A chapter 4

The evaluation has been conducted in accordance with the provisions of the certification scheme of the German Federal Office for Information Security (BSI) and the conclusions of the evaluation facility in the evaluation technical report are consistent with the evidence adduced.

This certificate is not an endorsement of the IT Product by the Federal Office for Information Security or any other organisation that recognises or gives effect to this certificate, and no warranty of the IT Product by the Federal Office for Information Security or any other organisation that recognises or gives effect to this certificate, is either expressed or implied.

Bonn, 28 October 2016

For the Federal Office for Information Security

SOGIS Recognition Agreement

Common Criteria

Common Criteria Recognition Arrangement for components up to EAL 4

Joachim Weber Head of Division

This page is intentionally left blank.

Preliminary Remarks

Under the BSIG¹ Act, the Federal Office for Information Security (BSI) has the task of issuing certificates for information technology products.

Certification of a product is carried out on the instigation of the vendor or a distributor, hereinafter called the sponsor.

A part of the procedure is the technical examination (evaluation) of the product according to the security criteria published by the BSI or generally recognised security criteria.

The evaluation is normally carried out by an evaluation facility recognised by the BSI or by BSI itself.

The result of the certification procedure is the present Certification Report. This report contains among others the certificate (summarised assessment) and the detailed Certification Results.

The Certification Results contain the technical description of the security functionality of the certified product, the details of the evaluation (strength and weaknesses) and instructions for the user.

¹ Act on the Federal Office for Information Security (BSI-Gesetz - BSIG) of 14 August 2009, Bundesgesetzblatt I p. 2821

Contents

A. Certification	7
 Specifications of the Certification Procedure Recognition Agreements	7 9 9
B. Certification Results	12
 Executive Summary. Identification of the TOE. Security Policy. Assumptions and Clarification of Scope. Architectural Information. Documentation. IT Product Testing. Evaluated Configuration. Results of the Evaluation. Obligations and Notes for the Usage of the TOE. Security Target. Definitions. Bibliography. 	16 19 20 21 21 22 23 23 28 32
C. Excerpts from the Criteria	
CC Part 1: CC Part 3:	
D. Annexes	47

A. Certification

1. Specifications of the Certification Procedure

The certification body conducts the procedure according to the criteria laid down in the following:

- Act on the Federal Office for Information Security²
- BSI Certification and Approval Ordinance³
- BSI Schedule of Costs⁴
- Special decrees issued by the Bundesministerium des Innern (Federal Ministry of the Interior)
- DIN EN ISO/IEC 17065 standard
- BSI certification: Scheme documentation describing the certification process (CC-Produkte) [3]
- BSI certification: Scheme documentation on requirements for the Evaluation Facility, its approval and licencing process (CC-Stellen) [3]
- Common Criteria for IT Security Evaluation (CC), Version 3.1⁵[1] also published as ISO/IEC 15408.
- Common Methodology for IT Security Evaluation (CEM), Version 3.1 [2] also published as ISO/IEC 18045.
- BSI certification: Application Notes and Interpretation of the Scheme (AIS) [4]

2. Recognition Agreements

In order to avoid multiple certification of the same product in different countries a mutual recognition of IT security certificates - as far as such certificates are based on ITSEC or CC - under certain conditions was agreed.

2.1. European Recognition of ITSEC/CC – Certificates (SOGIS-MRA)

The SOGIS-Mutual Recognition Agreement (SOGIS-MRA) Version 3 became effective in April 2010. It defines the recognition of certificates for IT-Products at a basic recognition level and, in addition, at higher recognition levels for IT-Products related to certain SOGIS Technical Domains only.

² Act on the Federal Office for Information Security (BSI-Gesetz - BSIG) of 14 August 2009, Bundesgesetzblatt I p. 2821

³ Ordinance on the Procedure for Issuance of Security Certificates and approval by the Federal Office for Information Security (BSI-Zertifizierungs- und -Anerkennungsverordnung - BSIZertV) of 17 December 2014, Bundesgesetzblatt 2014, part I, no. 61, p. 2231

⁴ Schedule of Cost for Official Procedures of the Bundesamt für Sicherheit in der Informationstechnik (BSI-Kostenverordnung, BSI-KostV) of 03 March 2005, Bundesgesetzblatt I p. 519

⁵ Proclamation of the Bundesministerium des Innern of 12 February 2007 in the Bundesanzeiger dated 23 February 2007, p. 3730

The basic recognition level includes Common Criteria (CC) Evaluation Assurance Levels EAL 1 to EAL 4 and ITSEC Evaluation Assurance Levels E1 to E3 (basic). For "Smartcards and similar devices" a SOGIS Technical Domain is in place. For "HW Devices with Security Boxes" a SOGIS Technical Domains is in place, too. In addition, certificates issued for Protection Profiles based on Common Criteria are part of the recognition agreement.

The new agreement has been signed by the national bodies of Austria, Finland, France, Germany, Italy, The Netherlands, Norway, Spain, Sweden and the United Kingdom. The current list of signatory nations and approved certification schemes, details on recognition, and the history of the agreement can be seen on the website at <u>https://www.sogisportal.eu</u>.

The SOGIS-MRA logo printed on the certificate indicates that it is recognised under the terms of this agreement by the nations listed above.

This certificate is recognized under SOGIS-MRA for all assurance components selected.

2.2. International Recognition of CC – Certificates (CCRA)

The international arrangement on the mutual recognition of certificates based on the CC (Common Criteria Recognition Arrangement, CCRA-2014) has been ratified on 08 September 2014. It covers CC certificates based on collaborative Protection Profiles (cPP) (exact use), CC certificates based on assurance components up to and including EAL 2 or the assurance family Flaw Remediation (ALC_FLR) and CC certificates for Protection Profiles and for collaborative Protection Profiles (cPP).

The CCRA-2014 replaces the old CCRA signed in May 2000 (CCRA-2000). Certificates based on CCRA-2000, issued before 08 September 2014 are still under recognition according to the rules of CCRA-2000. For on 08 September 2014 ongoing certification procedures and for Assurance Continuity (maintenance and re-certification) of old certificates a transition period on the recognition of certificates according to the rules of CCRA-2000 (i.e. assurance components up to and including EAL 4 or the assurance family Flaw Remediation (ALC_FLR)) is defined until 08 September 2017.

As of September 2014 the signatories of the new CCRA-2014 are government representatives from the following nations: Australia, Austria, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, India, Israel, Italy, Japan, Malaysia, The Netherlands, New Zealand, Norway, Pakistan, Republic of Korea, Singapore, Spain, Sweden, Turkey, United Kingdom, and the United States.

The current list of signatory nations and approved certification schemes can be seen on the website: <u>http://www.commoncriteriaportal.org</u>.

The Common Criteria Recognition Arrangement logo printed on the certificate indicates that this certification is recognised under the terms of this agreement by the nations listed above.

As the product certified has been accepted into the certification process before 08 September 2014, this certificate is recognized according to the rules of CCRA-2000, i.e. up to and including CC part 3 EAL 4 components. The evaluation contained the components AVA_VAN.5, ATE_DPT.2 and ALC_DVS.2 that are not mutually recognised in accordance with the provisions of the CCRA-2000, for mutual recognition the EAL 4 components of these assurance families are relevant.

3. Performance of Evaluation and Certification

The certification body monitors each individual evaluation to ensure a uniform procedure, a uniform interpretation of the criteria and uniform ratings.

The product Morpho_HC_Germany_G2_COS V1 has undergone the certification procedure at BSI.

The evaluation of the product Morpho_HC_Germany_G2_COS V1 was conducted by SRC Security Research & Consulting GmbH. The evaluation was completed on 02.09.2016. SRC Security Research & Consulting GmbH is an evaluation facility (ITSEF)⁶ recognised by the certification body of BSI.

For this certification procedure the sponsor and applicant is: Morpho Cards GmbH.

The product was developed by: Morpho Cards GmbH.

The certification is concluded with the comparability check and the production of this Certification Report. This work was completed by the BSI.

4. Validity of the Certification Result

This Certification Report only applies to the version of the product as indicated. The confirmed assurance package is only valid on the condition that

- all stipulations regarding generation, configuration and operation, as given in the following report, are observed,
- the product is operated in the environment described, as specified in the following report and in the Security Target.

For the meaning of the assurance levels please refer to the excerpts from the criteria at the end of the Certification Report or in the CC itself.

The Certificate issued confirms the assurance of the product claimed in the Security Target at the date of certification. As attack methods evolve over time, the resistance of the certified version of the product against new attack methods needs to be re-assessed. Therefore, the sponsor should apply for the certified product being monitored within the assurance continuity program of the BSI Certification Scheme (e.g. by a re-certification). Specifically, if results of the certification are used in subsequent evaluation and certification procedures, in a system integration process or if a user's risk management needs regularly updated results, it is recommended to perform a re-assessment on a regular e.g. annual basis.

In order to avoid an indefinite usage of the certificate when evolved attack methods require a re-assessment of the products resistance to state of the art attack methods, the maximum validity of the certificate has been limited. The certificate issued on 28 October 2016 is valid until 27 October 2021. Validity can be re-newed by re-certification.

The owner of the certificate is obliged:

 when advertising the certificate or the fact of the product's certification, to refer to the Certification Report as well as to provide the Certification Report, the Security Target and user guidance documentation mentioned herein to any customer of the product for the application and usage of the certified product,

⁶ Information Technology Security Evaluation Facility

- 2. to inform the Certification Body at BSI immediately about vulnerabilities of the product that have been identified by the developer or any third party after issuance of the certificate,
- 3. to inform the Certification Body at BSI immediately in the case that security relevant changes in the evaluated life cycle, e.g. related to development and production sites or processes, occur, or the confidentiality of documentation and information related to the Target of Evaluation (TOE) or resulting from the evaluation and certification procedure where the certification of the product has assumed this confidentiality being maintained, is not given any longer. In particular, prior to the dissemination of confidential documentation and information related to the TOE or resulting from the evaluation and certification procedure that do not belong to the deliverables according to the Certification Report part B, or for those where no dissemination rules have been agreed on, to third parties, the Certification Body at BSI has to be informed.

In case of changes to the certified version of the product, the validity can be extended to the new versions and releases, provided the sponsor applies for assurance continuity (i.e. re-certification or maintenance) of the modified product, in accordance with the procedural requirements, and the evaluation does not reveal any security deficiencies.

5. Publication

The product Morpho_HC_Germany_G2_COS V1 has been included in the BSI list of certified products, which is published regularly (see also Internet: <u>https://www.bsi.bund.de</u> and [5]). Further information can be obtained from BSI-Infoline +49 228 9582-111.

Further copies of this Certification Report can be requested from the developer⁷ of the product. The Certification Report may also be obtained in electronic form at the internet address stated above.

Morpho Cards GmbH Konrad-Zuse-Ring 1 24220 Flintbek

This page is intentionally left blank.

B. Certification Results

The following results represent a summary of

- the Security Target of the sponsor for the Target of Evaluation,
- the relevant evaluation results from the evaluation facility, and
- complementary notes and stipulations of the certification body.

1. Executive Summary

The Target of Evaluation (TOE) is the product Morpho_HC_Germany_G2_COS V1 developed by Morpho Cards GmbH.

The TOE is a smart card product according to the G2-COS specification [18] from gematik and is implemented on the hardware platform Infineon Security Controller M7892 B11 from Infineon Technologies AG ([refer to [15], [16]).

The TOE is intended to be used as a card operating system platform within the framework of the German health care system.

For this purpose, the TOE implements a classical PIN-based user authentication. The product is capable to authenticate an external role and internal authentication services. Mutual authentication protocols allow for the establishment of secure sessions between the card and a trusted external entity. Its security state model is a prerequisite for controlling the access to the object system and the usage of cryptographic services. The object system stores PINs and cryptographic keys securely by access control mechanisms. Elementary cryptographic functions of the product form the basis for the different authentication protocols and cryptographic services. The following issues are covered:

- user authentication
- internal and external device authentication
- secure state model
- access-controlled cryptographic services
- secure access controlled object system
- elementary cryptographic functions

The TOE comprises:

- the circuitry of the contact-based chip including all IC Dedicated Software being active in the Smart Card Initialisation Phase, Personalisation Phase and Usage Phase of the TOE (the integrated circuit, IC)
- the IC Embedded Software (Morpho_HC_Germany_G2_COS V1 Operating System)
- the Wrapper (TOE specific software tool for interpretation of exported TSF and User data)
- the associated guidance documentation.

The TOE is ready for the installation and personalisation of object systems (applications) on the TOE that match the G2-COS specification [18], but does not contain itself any object system (applications). However, the delivered product can comprise beside the TOE also an object system already installed on the TOE.

In functional view, the TOE with its IC Embedded Software (Morpho_HC_Germany_G2_COS V1 Operating System) is implemented according to the G2-COS specification [18] by gematik. Hereby, the TOE implements the mandatory part of the G2-COS specification [18] with the base functionality of the operating system platform. None of the optional packages defined in the G2-COS specification [18] as Crypto Box,

Contactless, Logical Channels, PACE for Proximity Coupling Device and USB are implemented in the TOE.

The TOE supports none of the commands that are outlined as optional in the G2-COS specification [18]. Furthermore, the TOE provides specific initialisation and personalisation commands.

The TOE's Wrapper is implemented according to the Wrapper specification [19] from gematik, but with the following deviation: The implementation of the TOE's Wrapper does *not* provide the functionality to handle and export Key- / PIN-objects (including corresponding public security attributes) with duplicated key- / PIN-Identifiers within the same folder of an object system (application) that is set up on the TOE. A workaround for covering such issue can be found in the user guidance [14], chapter 2.4.7. Refer as well to chapter 10 of this Certification Report.

The Security Target [6] is the basis for this certification. It is based on the certified Protection Profile Card Operating System Generation 2 (PP COS G2), Version 1.9, 18 November 2014, BSI-CC-PP-0082-V2-2014 [8]. The Security Target [6] and [7] uses the mandatory parts of the PP, but none of the PP's optional packages.

The TOE Security Assurance Requirements (SAR) are based entirely on the assurance components defined in Part 3 of the Common Criteria (see part C or [1], Part 3 for details). The TOE meets the assurance requirements of the Evaluation Assurance Level EAL 4 augmented by AVA_VAN.5, ATE_DPT.2 and ALC_DVS.2.

The TOE Security Functional Requirements (SFR) relevant for the TOE are outlined in the Security Target [6] and [7], chapter 8.1. They are selected from Common Criteria Part 2 and some of them are newly defined. Thus the TOE is CC Part 2 extended.

The TOE Security Functional Requirements are implemented by the following TOE Security Functionality:

TOE Security Functionality	Addressed issue		
User Authentication	The authentication of users is supported by the following security services.		
	The product implements a classical PIN-based user authentication. It is possible to flexibly instantiate the service, e.g. by a minimum required password length, or varying user or retry counter values.		
	The system allows for unblocking of a block PIN using a PIN unblocking code and to user roles which have the right to unblock the PIN.		
	For convenience purposes, the product implements multi-reference PINs which share the same personal identification number and other attributes. This way it is possible that a user keeps several different PINs in sync with each other.		
	A role with the required rights is allowed to activate or deactivate the verification requirement. This is also a convenience function which leverages the requirement to enter PINs.		
Internal and External Device Authentication	The TOE supports user and device authentication: symmetric authentication mechanisms based on 3TDES and AES and asymmetric authentication mechanisms based on RSA and ECC.		
Security State Model	The product effectively models, stores and manages the security states acquired by external entities via user or device authentication. The proper modelling of security states is a prerequisite for controlling the access to the object system and the		

TOE Security Functionality	Addressed issue		
	usage of cryptographic services.		
Access-Controlled Cryptographic Services	The product implements several cryptographic services and controls the access to these services.		
	The card is capable to verify and import digital certificates. This way it is possible to load key material of a public key infrastructure onto the card for further processing.		
	The generation of digital signatures is an additional security services which enables the card holder to effectively sign electronic data.		
	Various enciphering, deciphering, and transciphering services support cryptographic use cases in collaboration with the background system and other cards.		
	As an additional service, the product implements the generation of a fingerprint over the effective codebase which allows for precisely identifying a specific product release.		
Secure Access-Controlled Object System	The object system that acts as storage for PINs, cryptographic keys, and user data provides strict access control mechanisms.		
	It is possible to model access rules in a fine grained manner based on the effective command currently executed, the life-cycle state of the affected object and the product, the securi-ty environment the product operates in and the current IO state, i.e. the IO interface used or the status of a secure session.		
	It is also possible to extend the object system by the loading of new application dedicated files containing additional data and key material in the field. This feature is also subject to the access control enforced by the object system.		
	The object system provides additional means to authorised users which allow for analysing the content of the object system. This feature is used in the approval process of object systems to ensure that a specific instantiation of an object system adheres to a given specification.		
Elementary Cryptographic Functions	The TOE supports secure messaging for protection of the confidentiality and the integrity of the commands. The TOE supports asymmetric and symmetric cryptographic and hashing algorithms to perform authentication procedures, signature computation and verification, data encryption and decryption. The TOE implements a DRG.3 random number generator		

Table 1: TOE Security Functionalities

For more details please refer to the Security Target [6] and [7], chapter 6.1.

The assets to be protected by the TOE are defined in the Security Target [6] and [7], chapter 5.1. Based on these assets the TOE Security Problem is defined in terms of Assumptions, Threats and Organisational Security Policies. This is outlined in the Security Target [6] and [7], chapter 5.3, 5.4 and 5.5.

This certification covers the configurations of the TOE as outlined in chapter 8.

The vulnerability assessment results as stated within this certificate do not include a rating for those cryptographic algorithms and their implementation suitable for encryption and decryption (see BSIG Section 9, Para. 4, Clause 2).

The certification results only apply to the version of the product indicated in the certificate and on the condition that all the stipulations are kept as detailed in this Certification Report. This certificate is not an endorsement of the IT product by the Federal Office for Information Security (BSI) or any other organisation that recognises or gives effect to this certificate, and no warranty of the IT product by BSI or any other organisation that recognises or gives effect to this certificate, is either expressed or implied.

2. Identification of the TOE

The Target of Evaluation (TOE) is called:

Morpho_HC_Germany_G2_COS V1

The following table outlines the TOE deliverables:

No.	Туре	Identifier	Release	Form of Delivery
1.	HW/SW	Integrated Circuit (IC) with Crypto Library "Infineon Security Controller M7892 B11 with optional RSA2048/4096 v1.02.013, EC v1.02.013, SHA-2 v1.01 and Toolbox v1.02.013 libraries and with specific IC dedicated software (firmware)" (SLE 78CFX3000P) provided by Infineon Technologies AG (refer to the Certification Report BSI-DSZ-CC-0782-V2-2015 [16])	Infineon Security Controller M7892 B11	Contact-based chip. Delivery of not-pre-personalised / pre-personalised modules or smartcards. Deliverey procedures of the IC according to the delivery procedures specified in BSI-DSZ-CC-0782-V2-2015 [16].
2.	SW	Smartcard Embedded Software / Part Basic Software (implemented in EEPROM/Flash of the microcontroller) Variants: 0x10 or 0x11 (see [12] chap. 3.1.2)	COS Version 1.0 Release 1.1.2 Patch-Level 0	Delivery of OS Flashing image (implemented in EEPROM/Flash of the microcontroller). The TOE covering the IC and the IC Embedded Software is delivered without any object system. The TOE respective product is delivered as module or smart card. The delivery of the TOE respective product is performed by Morpho Cards GmbH.
3.	SW	Wrapper (For interpretation of the exported TSF data) 7z-archive including: - Wrapper.jar - iwrapper.jar - jdom-2.0.5.jar - bcprov-ext-jdk15on-150.jar	1.1.5	Delivery as electronic file The following SHA-256 hash value serves as integrity check: E0A441DDF5BF251DE5035C2 BF041C803262C0045ABF8CB0 549DC5D3153CB4A36 (see [14], chap. 1.1)
4.	DOC	OS Preparation Guidance Morpho_HC_Germany_G2_ COS V1 [11]	Version 1.13	Document in paper / electronic form.

No.	Туре	Identifier	Release	Form of Delivery
5.	DOC	Operational User Guidance Morpho_HC_Germany_G2_ COS V1 [12]	Version 1.11	Document in paper / electronic form.
6.	DOC	Object System Preparation Guidance Morpho_HC_Germany_G2_ COS V1 [13]		Document in paper / electronic form.
7.	DOC	Wrapper Guidance Morpho_HC_Germany_G2_ COS V1 [14]	Version 1.10	Document in paper / electronic form.
8.	KEY	Aut-Key K_MORPHO_AUT Public part of the authentication key pair relevant for the authenticity of the TOE.		Document in paper / electronic form.
9.	KEY	Perso-Key K_OBJ_PERS Personalisation key relevant for the product personalisation of the TOE.		Document in paper / electronic form.
10.	KEY	Object System Signature Key K_OBJ_VERIFICATION Object System Signature Key, needed for calculation of the Sig-nature over an Object System.		Document in paper / electronic form.

Table 2: Deliverables of the TOE

The commercial numbering of the TOE by Infineon Technologies AG is as follows:

- Product Code: OR152 (Deferred), OR176 (Integrated)
- Product Type: SLE78CFX3000P
- RMS Version: 15b14_78.015.14.1

The TOE Morpho_HC_Germany_G2_COS V1 is as well known under the following product identificator:

Manufacturer: '44 45 4F 52 47' (DEORG)

Product: '4D 48 43 47 5F 47 32 31' (MHCG_G21)

OS Version Number: '01 01 02' (1.1.2)

According to the Security Target [6] and [7], chapter 3.4.1 the life cycle model of the TOE consists of the following phases:

- Phase 1: Smartcard embedded software development
- Phase 2: IC Development
- Phase 3: Combined with Phase 4 to "IC Manufacturing"
- Phase 4: Combined with Phase 3 to "IC Manufacturing"
- Phase 5: "OS Loading"
- Phase 6: "Product Pre-Personalisation" and "Product Personalisation"

Phase 7: Operational use

Two different production variants can be distinguished:

Deferred Production variant with intermediate phase called "OS Pre-Personalisation" coupled to Phase 5.

Integrated Production variant with Intermediate phase coupled ot Phase 6.

The TOE respective product can be delivered as module or smart card (only contact-based).

The user is provided with guidance for TOE identification in [12], chap. 3.1.2. For TOE identification the COS version as well as the product variant has to be checked. The variant can either be a test configuration (Test Card) or an operational configuration (Real Card). The Test Configuration is not considered as part of the TOE.

For identification of the product during its different life-cycle states the GET DATA command (CLA=80, INS=CA) can be used. With parameters P1=DF and P2=99 the Card Configuration Data as described in [13], chap. 7.1.5 is given. There the COS Version can be identified.

Value	Description	Description			
,DF 99'	Get Data DGI	Get Data DGI			
,0Cʻ	Length of Data	а			
Data	Offset	Length	Parameters		
	,00'	,01'	Familiy Identifier		
	,01'	,01'	Configuration Identifier		
	,02'	,02'	Mask Identifier (OS Identifier)		
	,04'	,02'	Mask Date		
	,06'	,02'	Mask Identifier (OS Release Level)		
	,08'	,02'	IC Manufacturer		
	,0A'	,02'	ІС Туре		

Table 3: TOE Identification (COS Version) with "GET DATA" command (P1=DF and P2=99)

With parameters P1=9F and P2=7F the CPLC information as described in [13] chap. 7.1.4 is given. There the COS Version and the Variant can be identified.

Value	Description				
,9F 7F'	CPLC information DGI				
,2Aʻ	Length of Data				
Data	Offset Length Parameters ,00 ⁴ ,04 ⁴ not relevant				
	,04' ,02' OS Identifier				

Value	Description		
	,06'	,02'	not relevant
	,08'	,02'	OS Release Level
	,0Aʻ	,08'	not relevant
	,12'	,01'	Product Configuration: Real Card = 0x10 or 0x11 Test Card = 0x01 or 0x00
	,13'	,17'	not relevant

Table 4: TOE Identification (COS Version and Variant) with "GET DATA" command (P1=9F and P2=7F)

The Identification of the wrapper is described in [14], chapter 1.1.

3. Security Policy

The TOE is a composite smart card product, based on the hardware platform Infineon Security Controller M7892 B11 from Infineon Technologies AG and with IC Embedded Software (Morpho_HC_Germany_G2_COS V1 Operating System) implemented by Morpho Cards GmbH according to the G2-COS specification [18] from gematik.

The security policy enforced is defined by the selected set of Security Functional Requirements and implemented by the TOE. The TOE implements physical and logical security functionality in order to protect user data and TSF data stored and operated on the smartcard when used in a hostile environment. Hence the TOE maintains integrity and confidentiality of code and data stored in its memories and the different CPU modes with the related capabilities for configuration and memory access and for integrity, the correct operation and the confidentiality of security functionality provided by the TOE. Therefore the TOEs policy is to protect against malfunction, leakage, physical manipulation and probing. Besides, the TOE's life-cycle is supported as well as the user Identification whereas the abuse of functionality is prevented. Furthermore, random numbers generation as well as specific cryptographic services are being provided to be securely used by the smartcard embedded software. Specific details concerning the above mentioned security policies can be found in Security Target [6] and [7], chapter 8.

4. Assumptions and Clarification of Scope

The Assumptions defined in the Security Target and some aspects of Threats and Organisational Security Policies are not covered by the TOE itself. These aspects lead to specific security objectives to be fulfilled by the TOE-Environment. The following topics are of relevance:

Security Objectives for the operational environment defined in the Security Target	Description according to the ST
OE.Plat-COS	To ensure that the TOE is used in a secure manner the object system shall be designed such that the requirements from the following documents are met: (i) user guidance of the COS, (ii) application notes for the COS (iii) other guidance documents, and (iv) findings of the TOE evaluation reports relevant for applications developed for COS as referenced in the

Security Objectives for the operational environment defined in the Security Target	Description according to the ST		
	certification report.		
OE.Resp-ObjS	All User Data and TSF Data of the object system are defined as required by the security needs of the specific application context.		
OE.Process-Card	Security procedures shall be used after delivery of the TOE during Phase 6 Smartcard personalization up to the delivery of the smartcard to the end-user in order to maintain confidentiality and integrity of the TOE and to prevent any theft, unauthorized personalization or unauthorized use.		

Table 5: Security	v Ohiectives	for the o	nerational	environment
			perational	CITVITOTITICITE

Details can be found in the Security Target [6] and [7], chapter 6.2.

5. Architectural Information

The TOE is a composite product. It is composed of the Integrated Circuit (IC) Infineon Security Controller M7892 B11 from Infineon Technologies AG and the IC Embedded Software with the Morpho_HC_Germany_G2_COS V1 Operating System developed by Morpho Cards GmbH.

For the implementation of the elementary cryptographic functions the embedded software uses the cryptographic features of the underlying high-secure IC and (partially) its dedicated crypto library modified by Morpho Cards GmbH.

For details concerning the CC evaluation of the underlying IC see the evaluation documentation under the Certification ID BSI-DSZ-CC-0782-V2-2015 ([15], [16]).

This chapter gives an overview of the subsystems of the TOE's Embedded Software and the corresponding TSF. The security functions of the TOE are:

- User Authentication
- Internal and External Device Authentication
- Security State Model
- Access-Controlled Cryptographic Services
- Secure Access-Controlled Object System
- Elementary Cryptographic Functions

According to the TOE design the Security Functions of the TOE as listed in chapter 1 are implemented by the following subsystems:

- Application Layer (APP) Subsystems
- Hardware Abstraction Layer (HAL) Subsystems
- System Layer (SYS) Subsystems
- Shared System/Standard Services (SSS) Subsystems
- Wrapper

6. Documentation

The evaluated documentation as outlined in table 2 is being provided with the product to the customer. This documentation contains the required information for secure usage of the TOE in accordance with the Security Target [6] and [7].

Additional obligations and notes for secure usage of the TOE as outlined in chapter 10 of this report have to be followed.

7. IT Product Testing

The developer tested all TOE Security Functions either on real cards or with simulator tests. For all commands and functionality tests, test cases are specified in order to demonstrate its expected behaviour including error cases. Hereby a representative sample including all boundary values of the parameter set, e.g. all command APDUs with valid and invalid inputs are tested and all functions are tested with valid and invalid inputs. Repetition of developer tests was performed during the independent evaluator tests.

Since many Security Functions can be tested by APDU command sequences, the evaluators performed these tests with real cards. This is considered to be a reasonable approach because the developer tests include a full coverage of all security functionality. Furthermore penetration tests were chosen by the evaluators for those Security Functions where internal secrets of the card could maybe be modified or observed during testing. During their independent testing, the evaluators covered:

- testing APDU commands related to Authentication
- testing APDU commands related to Access Control,
- testing APDU commands related to general protection of User data and TSF data
- testing APDU commands related to cryptographic functions,
- testing APDU commands related to protection of communication,
- testing APDU commands related to security relevant attributes,
- testing the LOAD APPLICATION commands,
- penetration testing related to verification the Reliability of the TOE,
- source code analysis performed by the evaluators,
- side channel analysis for RSA and Hash,
- fault injection attacks (laser attacks),
- testing APDU commands for the object system installation/personalisation and usage phase,
- testing APDU commands for the commands using cryptographic mechanisms.
- fuzzy testing on APDU processing

The following list gives an overview of the attack scenarios covered by the evaluation:

- Manipulation of the cryptographic algorithm during a private key
- Manipulation of cryptographic algorithm during authentication function
- Attack on Secure Messaging

- Manipulation of actual authentication function
- Illegal access on protected user data
- Persistent manipulation of stored user data
- Manipulation of Signature Check
- Attack during startup phase of the chip
- Template attack on the input, intermediate and output values of SHA-256
- Analysis of intermediate values at the beginning of the RSA decryption
- Analysis of intermediate values at the end of the RSA decryption
- Analysis of the RSA encryption
- Analysis of the RSA modular exponentiation

The evaluators have tested the TOE systematically against high attack potential during their penetration testing.

The achieved test results correspond to the expected test results.

8. Evaluated Configuration

This certification covers the following configurations of the TOE as outlined in the Security Target [6] and [7]:

Morpho_HC_Germany_G2_COS V1

There is only one configuration of the final TOE. It comprises the following items:

- The IC Infineon M7892 B11 consisting of the circuit of the chip and the IC dedicated software (BSI-DSZ-CC-0782-V2-2015 [16]),
- the embedded software (operating system),
- the wrapper,
- the (transport) keys on the card as key containers and off card, and
- the guidance documentation

Refer to the information provided in chapter 2 of this Certification Report.

For the implementation of the elementary cryptographic functions the embedded software uses the cryptographic features of the underlying high-secure IC and (partially) its dedicated crypto library modified by Morpho Cards GmbH.

Two distinct core-images for both the Integrated as well as the Deferred Production variant were evaluated. However, the configuation as test card was not in scope of the evaluation as it is not considered as part of the TOE.

The TOE covering the IC and the IC Embedded Software is delivered as a module or smart card without any object system. For details refer to chapter 2 of this Certification Report.

The user can identify the certified TOE by the TOE response to specific APDU commands, more detailed by using the command GET DATA in different command variants according to the user guidance [12], chapter 3.1.2.

9. **Results of the Evaluation**

9.1. CC specific results

The Evaluation Technical Report (ETR) [9] was provided by the ITSEF according to the Common Criteria [1], the Methodology [2], the requirements of the Scheme [3] and all interpretations and guidelines of the Scheme (AIS) [4] as relevant for the TOE.

The Evaluation Methodology CEM [2] was used for those components up to EAL 5 extended by advice of the Certification Body for components beyond EAL 5 and guidance specific for the technology of the product [4] (AIS 34).

The following guidance specific for the technology was used:

- (i) Composite product evaluation for Smart Cards and similar devices (see AIS 36). According to this concept the relevant guidance documents of the underlying platform (refer to the guidance documents covered by [16]) and the document ETR for composite evaluation from the platform evaluation ([17]) have been applied in the TOE evaluation.
- (ii) Guidance for Smartcard Evaluation.
- (iii) Application of Attack Potential to Smartcards (see AIS 26).
- (iv) Functionality classes and evaluation methodology of physical and deterministic random number generators.

For smart card specific methodology the scheme interpretations AIS 25, AIS 26 and AIS 36 (see [4]) were used. For RNG assessment the scheme interpretation AIS 20 and AIS 31 were used (see [4]).

The assurance refinements outlined in the Security Target were followed in the course of the evaluation of the TOE.

A document ETR for composite evaluation according to AIS 36 has not been provided in the course of this certification procedure. It could be provided by the ITSEF and submitted to the certification body for approval subsequently.

As a result of the evaluation the verdict PASS is confirmed for the following assurance components:

- All components of the EAL 4 package including the class ASE as defined in the CC (see also part C of this report)
- The components AVA_VAN.5, ATE_DPT.2 and ALC_DVS.2 augmented for this TOE evaluation.

The evaluation has confirmed:

- PP Conformance: Common Criteria Protection Profile Card Operating System Generation 2 (PP COS G2), Version 1.9, 18 November 2014, BSI-CC-PP-0082-V2-2014 [8]
- for the Functionality: PP conformant Common Criteria Part 2 extended
- for the Assurance: Common Criteria Part 3 conformant EAL 4 augmented by AVA_VAN.5, ATE_DPT.2 and ALC_DVS.2

The Security Target [6] and [7] use the mandatory parts of the PP and do not make use of the optional packages of the PP.

For specific evaluation results regarding the development and production environment see annex B in part D of this report.

The results of the evaluation are only applicable to the TOE as defined in chapter 2 and the configuration as outlined in chapter 8 above.

9.2. Results of cryptographic assessment

The following cryptographic algorithms are used by the TOE to enforce its security policy:

No.	Purpose	Cryptographic Mechanism	Standard of Implementation	Key Size in Bits	Standard of Application	Comments
1.	Authenti- city	RSA signature generation (RSASSA-PSS-SIGN with SHA-256, RSASA PKCS1-V1_5, RSA ISO9796-2 DS2 with SHA-256)	[21], [22], [23] (SHA)	Modulusleng th = 2048, 3072	[18], sec. 6.6.3.1 [20]	FCS_COP. 1.1/COS.R SA.S (PSO COM-PUT E DIGITAL SIG-NATU RE)
2.		RSA signature verification (RSA ISO9796-2 DS1)	[21], [22], [23] (SHA)	Modulusleng th = 2048	[18], sec. 6.6.4.1 [20]	FCS_COP. 1.1/COS.R SA.V (PSO VERIFY CERTIFICA TE)
3.		ECDSA-signature generation using SHA-{256, 384, 512}	[24] (ECDSA), [25], [23] (SHA)	Key sizes correspondi ng to the used elliptic curve brainpoolP{2 56, 384, 512}r1 [29] and ansix9p{256, 384}r1 [31]	[18], sec. 6.6.3.2 [20]	FCS_COP. 1.1/COS.E CDSA.S (PSO COMPUTE DIGITAL SIGNATUR E),
4.		ECDSA-signature verification using SHA-{256, 384, 512}	[24] (ECDSA), [25], [23] (SHA)	Key sizes correspondi ng to the used elliptic curve brainpoolP{2 56, 384, 512}r1 [29] and ansix9p{256, 384}r1 [31]	[18], sec. 6.6.4.2 [20]	FCS_COP. 1.1/COS.E CDSA.V (PSO VERIFY CERTIFICA TE, PSO VERIFY DIGITAL SIGNATUR E)
5.		SHA-256 based Fingerprint	[23] (SHA)		[18], sec. 6.6.1.3	FPT_ITE.1 (FINGERP RINT)

No.	Purpose	Cryptographic Mechanism	Standard of Implementation	Key Size in Bits	Standard of Application	Comments
6.	Authenti cation	AES in CBC mode	[18], [27] (AES)	k =128,192, 256 challenge = 64	[20] [18], sec. 6.7.1.2 and 6.7.2.2	FCS_COP. 1.1/COS.A ES (MUTUAL AUTHENTI CATE, EXTERNAL AUTHENTI CATE, INTERNAL AUTHENTI CATE, GENERAL AUTHENTI CATE)
7.		AES in CMAC mode	[20], sec. 3.2.2 [30] [18]	k =128,192, 256 challenge = 64	[20] [18], sec. 6.6.1 and 6.6.2	FCS_COP. 1.1/COS.C MAC (MUTUAL AUTHENTI CATE, EXTERNAL AUTHENTI CATE, INTERNAL AUTHENTI CATE)
8.		TDES in Retail MAC	[18]	k =168, challenge = 64	[20] [18], sec. 6.6.1 and 6.6.2	FCS_COP. 1/COS.RM AC (MUTUAL AUTHENTI CATE, EXTERNAL AUTHENTI CATE)
9.		RSA signature generation (RSASSA-PSS-SIGN with SHA-256, RSASSA PKCS1-V1_5, RSA ISO9796-2 DS1 with SHA-256)	[21], [22], [23] (SHA)	Modulusleng th = 2048, 3072	[20] [18], sec. 6.6.3.1	FCS_COP. 1.1/COS.R SA.S (INTERNAL AUTHENTI CATE)
10.		RSA signature verification (RSA ISO9796-2 DS1)	[21], [22], [23] (SHA)	Modulusleng th = 2048	[20] [18], sec. 6.6.4.1	FCS_COP. 1.1/COS.R SA.V (EXTERNA L AUTHENTI CATE)
11.		ECDSA-signature generation using SHA-{256,	[24] (ECDSA), [25], [23] (SHA)	Key sizes correspondi	[20] [18], sec.	FCS_COP. 1.1/COS.E

No.	Purpose	Cryptographic Mechanism	Standard of Implementation	Key Size in Bits	Standard of Application	Comments
		384, 512}		ng to the used elliptic curve brainpoolP{2 56, 384, 512}r1 [29] and ansix9p{256, 384}r1 [31]	6.6.3.2	CDSA.S (INTERNAL AUTHENTI CATE)
12.		ECDSA-signature verification using SHA-{256, 384, 512}	[24] (ECDSA), [25], [23] (SHA)	Key sizes correspondi ng to the used elliptic curve brainpoolP{2 56, 384, 512}r1 [29] and ansix9p{256, 84}r1 [31]	[20] [18], sec. 6.6.4.2	FCS_COP. 1.1/COS.E CDSA.V (EXTERNA L AUTHENTI CATE)
13.		Hybrid physical RNG PTG.3	[KS11]	n.a.	[20]	FCS_RNG. 1, (GENERAL AUTHENTI CATE)
14.	Key Agreeme nt	Key Derivation Function for TDES based on SHA-1	[25], sec. 5.6.3 [23] (SHA)	k =168	[20] [18], sec. 6.2.1	FCS_CKM. 1.1/3TDES _SM
15.		Key Derivation Function for AES based on SHA-{1, 256}	[24], sec. 4.4.3, [27], [23] (SHA)	k =128, 192, 256	[18], sec. 6.2.2, 6.2.3 und 6.2.4	FCS_CKM. 1.1/AES.S M
16.	Confiden tiality	AES in CBC mode	[27] (AES)	k =128,192, 256	[20], sec. 3.3.1 [18], sec. 6.7.1.2 and 6.7.2.2	FCS_COP. 1.1/COS.A ES (secure messaging)
17.		TDES in CBC mode	[26] (TDES)	k =168	[20], sec. 3.3.1	FCS_COP. 1.1/COS.3T DES (Secure messaging)
18.		RSA encryption and decryption (RSAES-PKCS1-v1.5, RSAES-OAEP) Transcipher RSA to ELC	[18], [21], sec. 7.1.1, 7.1.2, 7.2.1 and 7.2.2	Modulusleng th=2048, 3072 for RSA private key	[20] [18], sec. 6.8.1 and 6.8.2	FCS_COP. 1.1/COS.R SA (PSO ENCIPHER , PSO

No.	Purpose	Cryptographic Mechanism	Standard of Implementation	Key Size in Bits	Standard of Application	Comments
		and ELC to RSA		operation, 2048 for RSA public key operation		DECIPHER , PSO TRANSCIP HER) For the ELC part of PSO TRANSCIP HER see FCS_COP. 1.1/COS.E LC in row 19
19.		ELC encryption and decryption Transcipher RSA to ELC and ELC to RSA	[24], [18]	Key sizes correspondi ng to the used elliptic curve brainpoolP{2 56, 384, 512}r1 [29] and ansix9p{256, 384}r1 [31]	[20] [18], sec. 6.8.1 and 6.8.2	FCS_COP. 1.1/COS.E LC (PSO ENCIPHER , PSO DECIPHER , PSO TRANSCIP HER) For the RSA part of PSO TRANSCIP HER see FCS_COP. 1.1/COS.R SA in row 18
20.	Integrity	AES in CMAC mode	[20], sec. 3.2.2 [30] [18]	k =128, 192, 256 challenge = 64	[20] sec. 3.2.2 [18], sec. 6.6.1 and 6.6.2	FCS_COP. 1/COS.RM AC (Secure messaging)
21.		TDES in Retail MAC	[18]	k =168 challenge = 64	[20] sec. 3.2.2 [18], sec. 6.6.1 and 6.6.2	FCS_COP. 1/COS.RM AC (Secure messaging)
22.	Cryptogr aphic Primitive	Hybrid physical RNG PTG.3	[32]	n.a.	[20]	FCS_RNG. 1
23.		Physical RNG PTG.2	[4] (AIS31)	n.a.	[20]	FCS_RNG. 1/SICP
24.		SHA-{1, 256, 384, 512}	[23]	-	[20], sec. 3.2.1	FCS_COP. 1.1/SHA

Table 6: TOE cryptographic functionality

The strength of the cryptographic algorithms was not rated in the course of this certification procedure (see BSIG Section 9, Para. 4, Clause 2).

According to [18] and [20] the algorithms are suitable for securing integrity, authenticity and confidentiality of the data stored in and processed by the TOE as a generation G2 card operating system platform that is intended to be used within the German health care system. The validity period of each algorithm is mentioned in the official catalogue [20].

10. Obligations and Notes for the Usage of the TOE

The documents as outlined in table 2 contain necessary information about the usage of the TOE and all security hints therein have to be considered. In addition all aspects of Assumptions, Threats and OSPs as outlined in the Security Target not covered by the TOE itself need to be fulfilled by the operational environment of the TOE.

The customer or user of the product shall consider the results of the certification within his system risk management process. In order for the evolution of attack methods and techniques to be covered, he should define the period of time until a re-assessment of the TOE is required and thus requested from the sponsor of the certificate.

The limited validity for the usage of cryptographic algorithms as outlined in chapter 9 has to be considered by the user and his system risk management process.

Some security measures are partly implemented in this certified TOE, but require additional configuration or control or measures to be implemented by a product layer on top, e.g. the Application Software using the TOE. For this reason the TOE includes guidance documentation (see table 2) which contains obligations and guidelines for the developer of the product layer on top on how to securely use this certified TOE and which measures have to be implemented in order to fulfil the security requirements of the Security Target of the TOE. In the course of the evaluation of the composite product or system it must be examined if the required measures have been correctly and effectively implemented by the product layer on top.

In particular, the following aspects from the TOE user guidance documentation [11] to [14] need to be taken into account when using the TOE and when designing and implementing object systems (applications) intended to be set up on the TOE, especially in view of later TR-conformity testing of card products according to the Technical Guideline BSI TR-03144 ([33]):

• Security requirements and hints for designing and implementing object systems (applications) intended to be set up and running on the TOE:

This concerns the design and implementation of object systems of card products including application development prior to and after card product delivery as well as card management e.g. by using the command LOAD APPLICATION.

For an object system, one has to take care of the choice of the access rules and flags for the object system's objects. In particular, this concerns key objects, PIN objects and TOE specific system objects including their assigned security attributes.

The specific life cycle state concept of the TOE for objects managed and processed by the TOE as the MF, folders, files, key and PIN objects has to be taken into account. Especially, the concept of physical and logical life cycle states and their specific processing by the TOE are of relevance for object systems intended to run on the TOE (refer to [18]).

Any object system set up on the TOE shall only make use of the TOE's functionality as described in the G2-COS specification [18] and the user guidance [12]. The object system has to be checked for taking this requirement into account. Card products with an object system that do not fulfil the requirement run out of the scope of the certified TOE and shall not be delivered respective used. It has to be taken into account that the TOE implements the functionality of the G2-COS specification [18] that is defined as mandatory, but none of the optional packages for Crypto Box, Contactless, Logical Channels, PACE for Proximity Coupling Device and USB. However, the user guidance [12], chapter 7 mentions commands and command variants that belong to those optional packages. Hence, the user guidance [12], chapter 7 has to be read with care and only in combination with the G2-COS specification [18]. Concerning the TOE's command set, only the mandatory commands and command variants from the G2-COS specification [18] and the additional commands and command variants form the section [18] and the additional commands and command variants form the section [18] and the additional commands and command variants form the section [18] and the additional commands and command variants form the section [18] and the additional commands and command variants form the section [18] and the additional commands and command variants form the section [18] and the additional commands and command variants form the section [18] and the additional commands and command variants form the section [18] and the additional commands and command variants form the section [18] and the additional commands and command variants form the section [18] and the additional commands and command variants form the section [18] and the additional commands and command variants form the section [18] and the additional commands and command variants form the section [18] and the additional commands and command variants form the section [18] and the additional commands and

Within an object system no key ID or PIN ID duplicates in the same folder shall exist. The object system has to be manually checked for taking this requirement into account by using the TOE's Wrapper and following the requirements outlined in the user guidance [14], chapter 2.4.7. Card products with an object system that do not fulfil the requirement run out of the scope of the certified TOE and shall not be delivered respective used.

Refer to the user guidance documentation [11], [12], [13] and [14], chapter 2.4.

• Restrictions for key usage:

Refer to the user guidance [12], chapter 7.5.1, 7.5.2, 7.6.3, 7.6.6, 8.4.2, 12.1, 13.1 and 13.3.

• PIN / PUK Handling:

Refer to the user guidance [12], chapter 13.2 and 13.4.

 Security requirements and hints for Phase 6 of the TOE's life-cycle model described in the ST ([6], [7]), more detailed for the Object System PrePersonalisation Phase (concerning the loading of a pre-configured object system onto the card) and for the Object System Personalisation Phase (concerning the personalisation of the previously loaded object system with individual data and secrets):

In particular, the TOE's specific load functionality for loading a pre-configured object system onto the card in the Object System PrePersonalisation Phase and for the personalisation of such installed object system in the Personalisation Phase has to be taken into account.

Refer to the user guidance documentation [11] and [13].

• Security requirements and hints for Phase 7 of the TOE's life-cycle model described in the ST ([6], [7]), more detailed for the operational use of the card:

Refer to the user guidance documentation [12].

• The TOE's Wrapper and its specifics beyond the Wrapper specification [19]:

Refer to the user guidance [14].

• Overwriting security attributes of objects in card products:

For the design and implementation of a card product running on the TOE that

undergoes a later TR-conformity testing according to the Technical Guideline BSI TR-03144 ([33]) it is strongly recommended to care for that via the TOE's specific personalisation commands as well as via the TOE's regular commands available in Phase 7 of the TOE's life-cycle model initialised security attributes and public key data of the object system and its objects cannot be overwritten (except for where explicitly intended by the object system's intention and design). This addresses the appropriate setting of access rules and flags for the object system's objects.

Refer to the user guidance documentation [13], chapter 3.2, 4.1 and 5.2, [11], chapter 11 and [12].

For a TR-conformity testing of a card product set up on the TOE according to the Technical Guideline BSI TR-03144 ([33]) the following specific aspects and issues have to be taken into account:

• The TOE's implementation of the FINGERPRINT command generates the same fingerprint values for real cards (final TOE) and for test cards (test configuration) if the same challenge is used as input. In particular, the configuration variant of the COS (final TOE or test card) is not included in the calculation of the fingerprint value. The TOE's Wrapper does not provide the functionality to check the COS configuration variant.

For distinguishing real cards (final TOE) from test cards (test configuration), a workaround is described in the user guidance [12], chap. 3.1.2. Via the combination of the FINGERPRINT command (for the version check of the COS) and the GET DATA command (for the variant check of the COS) the TOE can be identified unambiguously and its integrity and authenticity verified.

Note: A card product with an underlying COS that does not match the COS variant related identification data as these are defined for the final TOE in the user guidance [12], chap. 3.1.2.3 will be rejected for a TR-certificate according to the Technical Guideline BSI TR-03144 ([33]).

- For usage of the TOE's Wrapper in the framework of the TR-conformity testing of a card product according to the Technical Guideline BSI TR-03144 ([33]) refer in particular for its specifics beyond the Wrapper specification [19] as these are outlined in the user guidance [14].
- Specific requirements for the TR-conformity testing of a card product according to the Technical Guideline BSI TR-03144 ([33]) are pointed out in the user guidance [14], chap. 2.4 and subchapters. Each requirement for a card product addressed there has to be fulfilled by the card product undergoing a TR-conformity testing according to the Technical Guideline BSI TR-03144 ([33]), and a corresponding check for fulfillment of these requirements within the card product has to be performed in the framework of the TR-conformity testing.

Note: If for a card product such check for fulfillment of the requirements addressed in [14], chap. 2.4 is not possible or if the card product does not fulfill the requirements addressed in [14], chap. 2.4 this card product will be rejected for a TR-certificate according to the Technical Guideline BSI TR-03144 ([33]).

 The implementation of the TOE's Wrapper does *not* provide the functionality to handle and export Key- / PIN-objects (including corresponding public security attributes) with duplicated key- / PIN-Identifiers within the same folder of an object system (application) that is set up on the TOE. As a workaround each folder in the card product's object system has to be manually checked whether key ID or PIN ID duplicates within this folder are existing. This check shall be done by using the TOE's Wrapper and following the requirements outlined in the user guidance [14], chapter 2.4.7.

Note: If there is any folder with key ID or PIN ID duplicates found the card product will be rejected for a TR-certificate according to the Technical Guideline BSI TR-03144 ([33]).

 For a card product that undergoes a TR-conformity testing according to the Technical Guideline BSI TR-03144 ([33]) with using the Konsistenz-Prüftool according to the Technical Guideline BSI TR-03143 ([34]) it has to be taken into account that for an initialised, not yet personalised card product the functionality of the command READ BINARY (in particular for reading out a file as e.g. EF.ATR) is not available.

In the case that the Konsistenz-Prüftool according to the Technical Guideline BSI TR-03143 ([34]) expects for its conformity test run read access to the EF.ATR via the command READ BINARY, for conformity testing of the initialised, not yet personalised card product an appropriate workaround has to be set up by the TR-evaluation body. This workaround has to satisfy the overall intention of the TR-conformity testing according to the Technical Guideline BSI TR-03144 ([33]) that in the end a complete picture of the object system installed in the initialised, not yet personalised card product is obtained and a comparison against the respective object system specification is carried out. As a part of the workaround, the requirement for the card product addressed in the user guidance [14], chapter 2.4.1 may be used.

• For the card product, it has to be checked that via the TOE's specific personalisation commands as well as via the TOE's regular commands available in Phase 7 of the TOE's life-cycle model initialised security attributes and public key data of the object system and its objects cannot be overwritten (except for where explicitly intended by the object system's intention and design).

Note: If overwriting of initialised security attributes and public key data of the object system and its objects via the TOE's specific personalisation commands or via the TOE's regular commands available in Phase 7 of the TOE's life-cycle model is possible and not technically suppressed (except for data where overwriting is explicitly intended by the object system's intention and design) the card product will be rejected for a TR-certificate according to the Technical Guideline BSI TR-03144 ([33]).

• Any object system set up on the TOE shall only make use of the TOE's functionality as described in the G2-COS specification [18] and the user guidance [12]. The card product's object system has to be checked for taking this requirement into account.

It has to be taken into account that the TOE implements the functionality of the G2-COS specification [18] that is defined as mandatory, but none of the optional packages for Crypto Box, Contactless, Logical Channels, PACE for Proximity Coupling Device and USB. However, the user guidance [12], chapter 7 mentions commands and command variants that belong to those optional packages. Hence, the user guidance [12], chapter 7 has to be read with care and only in combination with the G2-COS specification [18]. Concerning the TOE's command set, only the mandatory commands and command variants from the G2-COS specification [18] and the additional commands and command variants outlined in the user guidance [12], chapter 3.2 are part of the TOE and its evaluation.

If in particular in the framework of the TR-conformity testing of a card product according to the Technical Guideline BSI TR-03144 ([33]) the Konsistenz-Prüftool according to the Technical Guideline BSI TR-03143 ([34]) depicts in its test report within an access rule of an object a wild card or an APDU header lying outside the G2-COS specification [18] or the user guidance [12] this has to be manually examined and valuated.

11. Security Target

For the purpose of publishing, the Security Target Lite [7] of the Target of Evaluation (TOE) is provided within a separate document as Annex A of this report. It is a sanitised version of the complete Security Target [6] used for the evaluation performed. Sanitisation was performed according to the rules as outlined in the relevant CCRA policy (see AIS 35 [4]).

12. Definitions

12.1. Acronyms

3TDES	Three Key DES
AES	Advanced Encryption Standard
AIS	Application Notes and Interpretations of the Scheme
APDU	Application Protocol Data Unit
BSI	Bundesamt für Sicherheit in der Informationstechnik / Federal Office for Information Security, Bonn, Germany
BSIG	BSI-Gesetz / Act on the Federal Office for Information Security
CBC	Cipher Block Chaining
CCRA	Common Criteria Recognition Arrangement
CC	Common Criteria for IT Security Evaluation
CEM	Common Methodology for Information Technology Security Evaluation
CMAC	Cipher-based Message Authentication Code
сРР	Collaborative Protection Profile
CPU	Central Processing Unit
DEMA	Differential Electromagnetic Analysis
DES	Data Encryption Standard
DFA	Differential Fault Analysis / Attack
DGI	Data Grouping Identifier
DPA	Differential Power Analysis
DRNG	Deterministic Random Number Generator
EAL	Evaluation Assurance Level
ECC	Elliptic Curve Cryptography
ECDSA	Elliptic Curve Digital Signature Algorithm

EEPROM	Electrically Erasable Programmable Read-Only Memory
eHC	electronic Health Card
ETR	Evaluation Technical Report
IC	Integrated Circuit
IT	Information Technology
ITSEF	Information Technology Security Evaluation Facility
MAC	Message Authentication Code
NVM	Non-Volatile Memory
PACE	Password Authenticated Connection Establishment
PIN	Personal Identification Number
PP	Protection Profile
PRNG	Physical Random Number Generator
PUK	Personal Unblocking Key
RNG	Random Number Generator
RSA	Rivest Shamir Adleman Algorithm
SAR	Security Assurance Requirement
SEMA	Simple Electromagnetic Analysis
SFP	Security Function Policy
SFR	Security Functional Requirement
SHA	Secure Hash Algorithm
SM	Secure Messaging
ST	Security Target
TOE	Target of Evaluation
TR	Technische Richtlinie (Technical Guideline)
TSF	TOE Security Functionality

12.2. Glossary

Augmentation - The addition of one or more requirement(s) to a package.

Collaborative Protection Profile - A Protection Profile collaboratively developed by an International Technical Community endorsed by the Management Committee.

Extension - The addition to an ST or PP of functional requirements not contained in CC part 2 and/or assurance requirements not contained in CC part 3.

Formal - Expressed in a restricted syntax language with defined semantics based on well-established mathematical concepts.

Informal - Expressed in natural language.

Object - A passive entity in the TOE, that contains or receives information, and upon which subjects perform operations.

Package - named set of either security functional or security assurance requirements

Protection Profile - A formal document defined in CC, expressing an implementation independent set of security requirements for a category of IT Products that meet specific consumer needs.

Security Target - An implementation-dependent statement of security needs for a specific identified TOE.

Semiformal - Expressed in a restricted syntax language with defined semantics.

Subject - An active entity in the TOE that performs operations on objects.

Target of Evaluation - An IT Product and its associated administrator and user guidance documentation that is the subject of an Evaluation.

TOE Security Functionality - Combined functionality of all hardware, software, and firmware of a TOE that must be relied upon for the correct enforcement of the SFRs.

13. Bibliography

- [1] Common Criteria for Information Technology Security Evaluation, Version 3.1, Part 1: Introduction and general model, Revision 4, September 2012 Part 2: Security functional components, Revision 4, September 2012 Part 3: Security assurance components, Revision 4, September 2012 <u>http://www.commoncriteriaportal.org</u>
- [2] Common Methodology for Information Technology Security Evaluation (CEM), Evaluation Methodology, Version 3.1, Rev. 4, September 2012 <u>http://www.commoncriteriaportal.org</u>
- [3] BSI certification: Scheme documentation describing the certification process (CC-Produkte) and Scheme documentation on requirements for the Evaluation Facility, approval and licencing (CC-Stellen), <u>https://www.bsi.bund.de/zertifizierung</u>
- [4] Application Notes and Interpretations of the Scheme (AIS) as relevant for the TOE⁸ <u>https://www.bsi.bund.de/AIS</u>
- [5] German IT Security Certificates (BSI 7148), periodically updated list published also on the BSI Website, <u>https://www.bsi.bund.de/zertifizierungsreporte</u>
- [6] Security Target BSI-DSZ-CC-0938-2016, Security Target Morpho_HC_Germany_G2_COS V1, Version 1.09, 30.08.2016, Morpho Cards GmbH (confidential document)
- [7] Security Target Lite BSI-DSZ-CC-0938-2016, Security Target Lite Morpho_HC_Germany_G2_COS V1, Version 1.02, 30.08.2016, Morpho Cards GmbH (sanitised public document)

⁸specifically

- AIS 1, Version 13, Durchführung der Ortsbesichtigung in der Entwicklungsumgebung des Herstellers
- AIS 14, Version 7, Anforderungen an Aufbau und Inhalt der ETR-Teile (Evaluation Technical Report) für Evaluationen nach CC (Common Criteria)
- AIS 19, Version 8, Anforderungen an Aufbau und Inhalt der Zusammenfassung des ETR (Evaluation Technical Report) für Evaluationen nach CC (Common Criteria) und ITSEC
- AIS 20, Version 3, Funktionalitätsklassen und Evaluationsmethodologie für deterministische Zufallszahlengeneratoren
- AIS 23, Version 3, Zusammentragen von Nachweisen der Entwickler
- AIS 25, Version 8, Anwendung der CC auf Integrierte Schaltungen including JIL Document and CC Supporting Document
- AIS 26, Version 9, Evaluationsmethodologie f
 ür in Hardware integrierte Schaltungen including JIL Document and CC Supporting Document
- AIS 31, Version 3, Funktionalitätsklassen und Evaluationsmethodologie für physikalische Zufallszahlengeneratoren
- AIS 32, Version 7, CC-Interpretationen im deutschen Zertifizierungsschema
- AIS 34, Version 3, Evaluation Methodology for CC Assurance Classes for EAL 5+ (CCv2.3 & CCv3.1) and EAL 6 (CCv3.1)
- AIS 36, Version 4, Kompositionsevaluierung including JIL Document and CC Supporting Document
- AIS 38, Version 2.9, Reuse of evaluation results

- [8] Common Criteria Protection Profile Card Operating System Generation 2 (PP COS G2), Version 1.9, 18 November 2014, BSI-CC-PP-0082-V2-2014, Bundesamt für Sicherheit in der Informationstechnik (BSI)
- [9] ETR BSI-DSZ-CC-0938-2016, Evaluation Technical Report (ETR) Summary for Morpho_HC_Germany_G2_COS V1, Version 2.0, 02.09.2016, SRC Security Research & Consulting GmbH (confidential document)
- [10] Configuration List BSI-DSZ-CC-0938-2016, Configuration List Morpho_HC_Germany_G2_COS V1, Version 1.11, 01.09.2016, Morpho Cards GmbH (confidential document)
- [11] Guidance Documentation Morpho_HC_Germany_G2_COS V1 OS Preparation Guidance, Version 1.13, 01.09.2016, Morpho Cards GmbH
- [12] Guidance Documentation Morpho_HC_Germany_G2_COS V1 Operational User Guidance, Version 1.11, 12.08.2016, Morpho Cards GmbH
- [13] Guidance Documentation Morpho_HC_Germany_G2_COS V1 Object System Preparation Guidcance, Version 1.10, 25.08.2016, Morpho Cards GmbH
- [14] Guidance Documentation Morpho_HC_Germany_G2_COS V1 Wrapper Guidance Version 1.10, 01.09.2016, Morpho Cards GmbH
- [15] Security Target of the underlying hardware platform, Security Target M7892 B11, Version 0.3, 13 October 2015, Infineon Technologies AG, BSI-DSZ-CC-0782-V2-2015
- [16] Certification Report BSI-DSZ-CC-0782-V2-2015 for Infineon Security Controller M7892 B11 with optional RSA2048/4096 v1.02.013, EC v1.02.013, SHA-2 v1.01 and Toolbox v1.02.013 libraries and with specific IC dedicated software (firmware) from Infineon Technologies AG, November 2015, Bundesamt für Sicherheit in der Informationstechnik (BSI)
- [17] ETR for Composite Evaluation of the underlying hardware platform Infineon Security Controller M7892 B11 from certification procedure BSI-DSZ-CC-0782-V2-2015, Version 7, 21 October 2015, TÜV Informationstechnik GmbH (confidential document)
- [18] Einführung der Gesundheitskarte, Spezifikation des Card Operating System (COS), Elektrische Schnittstelle, Version 3.8.0 vom 17.07.2015, gematik Gesellschaft für Telematikanwendungen der Gesundheitskarte mbH
- [19] Einführung der Gesundheitskarte, Spezifikation Wrapper, Version 1.7.0, 17.07.2015, gematik Gesellschaft für Telematikanwendungen der Gesundheitskarte mbH
- [20] Technische Richtlinie BSI TR-03116-1 Kryptographische Vorgaben für Projekte der Bundesregierung Teil 1 – Telematikinfrastruktur, Version 3.19, 04.12.2015, Bundesamt für Sicherheit in der Informationstechnik (BSI)
- [21] PKCS #1 v2.2: RSA Cryptography Standard, 27 October 2012, RSA Laboratories
- [22] ISO 9796-2:2010, Information technology Security techniques Digital signature schemes giving message recovery – Part 2: Integer factorization based mechanisms, 2016-05-24, ISO
- [23] Federal Information Processing Standards Publication FIPS PUB 180-4, Specifications for the Secure Hash Standard (SHS), March 2012, U.S. Department of Commerce/National Institute of Standards and Technology

- [24] Technical Guideline TR-03111: Elliptic Curve Cryptography, Version 2.0, 28.06.2012, Bundesamt für Sicherheit in der Informationstechnik (BSI)
- [25] American National Standard X9.63-2001, Public Key Cryptography for the Financial Services Industry, Key Agreement and Key Transport Using Elliptic Curve Cryptography, 16 November 2005
- [26] Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher, NIST Special Publication 800-67, Revised January 2012, 2012-01, National Institute of Standards and Technology
- [27] Federal Information Processing Standards Publication FIPS PUB 197, Advanced Encryption Standard (AES), 2001-11-26, U.S. Department of Commerce/National Institute of Standards and Technology
- [28] Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1, RFC 3447, 2003-02, J. Jonsson, B. Kaliski, IETF
- [29] Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation, RFC 5639, 2010-03, M. Lochter, J. Merkle, IETF
- [30] ISO 15946 Information technology Security techniques Cryptographic techniques – Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication, NIST Special Publication 800-38B, May 2005, National Institute of Standards and Technology
- [31] Federal Information Processing Standards Publication FIPS PUB 186-4, Digital Signature Standard (DSS), July 2013, U.S. Department of Commerce/National Institute of Standards and Technology
- [32] A proposal for: Functionality Classes for Random Number Generators, Version 2.0, 2011, Wolfgang Killmann, Werner Schindler, Part of AIS 20/31
- [33] Technische Richtlinie BSI TR-03144 eHealth Konformitätsnachweis für Karten-Produkte der Kartengeneration G2, Bundesamt für Sicherheit in der Informationstechnik (BSI)
- [34] Technische Richtlinie BSI TR-03143 eHealth G2-COS Konsistenz-Prüftool, Bundesamt für Sicherheit in der Informationstechnik (BSI)

This page is intentionally left blank.

C. Excerpts from the Criteria

CC Part 1:

Conformance Claim (chapter 10.4)

"The conformance claim indicates the source of the collection of requirements that is met by a PP or ST that passes its evaluation. This conformance claim contains a CC conformance claim that:

- describes the version of the CC to which the PP or ST claims conformance.
- describes the conformance to CC Part 2 (security functional requirements) as either:
 - **CC Part 2 conformant** A PP or ST is CC Part 2 conformant if all SFRs in that PP or ST are based only upon functional components in CC Part 2, or
 - CC Part 2 extended A PP or ST is CC Part 2 extended if at least one SFR in that PP or ST is not based upon functional components in CC Part 2.
- describes the conformance to CC Part 3 (security assurance requirements) as either:
 - **CC Part 3 conformant** A PP or ST is CC Part 3 conformant if all SARs in that PP or ST are based only upon assurance components in CC Part 3, or
 - CC Part 3 extended A PP or ST is CC Part 3 extended if at least one SAR in that PP or ST is not based upon assurance components in CC Part 3.

Additionally, the conformance claim may include a statement made with respect to packages, in which case it consists of one of the following:

- Package name Conformant A PP or ST is conformant to a pre-defined package (e.g. EAL) if:
 - the SFRs of that PP or ST are identical to the SFRs in the package, or
 - the SARs of that PP or ST are identical to the SARs in the package.
- Package name Augmented A PP or ST is an augmentation of a predefined package if:
 - the SFRs of that PP or ST contain all SFRs in the package, but have at least one additional SFR or one SFR that is hierarchically higher than an SFR in the package.
 - the SARs of that PP or ST contain all SARs in the package, but have at least one additional SAR or one SAR that is hierarchically higher than an SAR in the package.

Note that when a TOE is successfully evaluated to a given ST, any conformance claims of the ST also hold for the TOE. A TOE can therefore also be e.g. CC Part 2 conformant.

Finally, the conformance claim may also include two statements with respect to Protection Profiles:

- PP Conformant A PP or TOE meets specific PP(s), which are listed as part of the conformance result.
- Conformance Statement (Only for PPs) This statement describes the manner in which PPs or STs must conform to this PP: strict or demonstrable. For more information on this Conformance Statement, see Annex D."

CC Part 3:

Class APE: Protection Profile evaluation (chapter 10)

"Evaluating a PP is required to demonstrate that the PP is sound and internally consistent, and, if the PP is based on one or more other PPs or on packages, that the PP is a correct instantiation of these PPs and packages. These properties are necessary for the PP to be suitable for use as the basis for writing an ST or another PP.

Assurance Class	Assurance Components					
Class APE: Protection Profile evaluation	APE_INT.1 PP introduction					
	APE_CCL.1 Conformance claims					
	APE_SPD.1 Security problem definition					
	APE_OBJ.1 Security objectives for the operational environment APE_OBJ.2 Security objectives					
	APE_ECD.1 Extended components definition					
	APE_REQ.1 Stated security requirements APE_REQ.2 Derived security requirements					

APE: Protection Profile evaluation class decomposition"

Class ASE: Security Target evaluation (chapter 11)

"Evaluating an ST is required to demonstrate that the ST is sound and internally consistent, and, if the ST is based on one or more PPs or packages, that the ST is a correct instantiation of these PPs and packages. These properties are necessary for the ST to be suitable for use as the basis for a TOE evaluation."

Assurance Class	Assurance Components					
Class ASE: Security Target evaluation	ASE_INT.1 ST introduction					
	ASE_CCL.1 Conformance claims					
	ASE_SPD.1 Security problem definition					
	ASE_OBJ.1 Security objectives for the operational environment ASE_OBJ.2 Security objectives					
	ASE_ECD.1 Extended components definition					
	ASE_REQ.1 Stated security requirements ASE_REQ.2 Derived security requirements					
	ASE_TSS.1 TOE summary specification ASE_TSS.2 TOE summary specification with architectural design summary					

ASE: Security Target evaluation class decomposition

Security assurance components (chapter 7)

"The following Sections describe the constructs used in representing the assurance classes, families, and components."

"Each assurance class contains at least one assurance family."

"Each assurance family contains one or more assurance components."

The following table shows the assurance class decomposition.

Assurance Class	Assurance Components					
ADV: Development	ADV_ARC.1 Security architecture description					
	ADV_FSP.1 Basic functional specification ADV_FSP.2 Security-enforcing functional specification ADV_FSP.3 Functional specification with complete summary ADV_FSP.4 Complete functional specification ADV_FSP.5 Complete semi-formal functional specification with additional error information ADV_FSP.6 Complete semi-formal functional specification with additional formal specification					
	ADV_IMP.1 Implementation representation of the TSF ADV_IMP.2 Implementation of the TSF					
	ADV_INT.1 Well-structured subset of TSF internals ADV_INT.2 Well-structured internals ADV_INT.3 Minimally complex internals					
	ADV_SPM.1 Formal TOE security policy model					
	ADV_TDS.1 Basic design ADV_TDS.2 Architectural design ADV_TDS.3 Basic modular design ADV_TDS.4 Semiformal modular design ADV_TDS.5 Complete semiformal modular design ADV_TDS.6 Complete semiformal modular design with formal high-level design presentation					
AGD:	AGD_OPE.1 Operational user guidance					
Guidance documents	AGD_PRE.1 Preparative procedures					
ALC: Life cycle support	ALC_CMC.1 Labelling of the TOE ALC_CMC.2 Use of a CM system ALC_CMC.3 Authorisation controls ALC_CMC.4 Production support, acceptance procedures and automation ALC_CMC.5 Advanced support					
	ALC_CMS.1 TOE CM coverage ALC_CMS.2 Parts of the TOE CM coverage ALC_CMS.3 Implementation representation CM coverage ALC_CMS.4 Problem tracking CM coverage ALC_CMS.5 Development tools CM coverage					
	ALC_DEL.1 Delivery procedures					
	ALC_DVS.1 Identification of security measures ALC_DVS.2 Sufficiency of security measures					
	ALC_FLR.1 Basic flaw remediation ALC_FLR.2 Flaw reporting procedures ALC_FLR.3 Systematic flaw remediation					
	ALC_LCD.1 Developer defined life-cycle model					

Assurance Class	Assurance Components				
	ALC_LCD.2 Measurable life-cycle model				
	ALC_TAT.1 Well-defined development tools ALC_TAT.2 Compliance with implementation standards ALC_TAT.3 Compliance with implementation standards - all parts				
	ATE_COV.1 Evidence of coverage ATE_COV.2 Analysis of coverage ATE_COV.3 Rigorous analysis of coverage				
ATE: Tests	ATE_DPT.1 Testing: basic design ATE_DPT.2 Testing: security enforcing modules ATE_DPT.3 Testing: modular design ATE_DPT.4 Testing: implementation representation				
	ATE_FUN.1 Functional testing ATE_FUN.2 Ordered functional testing				
	ATE_IND.1 Independent testing – conformance ATE_IND.2 Independent testing – sample ATE_IND.3 Independent testing – complete				
AVA: Vulnerability assessment	AVA_VAN.1 Vulnerability survey AVA_VAN.2 Vulnerability analysis AVA_VAN.3 Focused vulnerability analysis AVA_VAN.4 Methodical vulnerability analysis AVA_VAN.5 Advanced methodical vulnerability analysis				

Assurance class decomposition

Evaluation assurance levels (chapter 8)

"The Evaluation Assurance Levels (EALs) provide an increasing scale that balances the level of assurance obtained with the cost and feasibility of acquiring that degree of assurance. The CC approach identifies the separate concepts of assurance in a TOE at the end of the evaluation, and of maintenance of that assurance during the operational use of the TOE.

It is important to note that not all families and components from CC Part 3 are included in the EALs. This is not to say that these do not provide meaningful and desirable assurances. Instead, it is expected that these families and components will be considered for augmentation of an EAL in those PPs and STs for which they provide utility."

Evaluation assurance level (EAL) overview (chapter 8.1)

"Table 1 represents a summary of the EALs. The columns represent a hierarchically ordered set of EALs, while the rows represent assurance families. Each number in the resulting matrix identifies a specific assurance component where applicable.

As outlined in the next Section, seven hierarchically ordered evaluation assurance levels are defined in the CC for the rating of a TOE's assurance. They are hierarchically ordered inasmuch as each EAL represents more assurance than all lower EALs. The increase in assurance from EAL to EAL is accomplished by substitution of a hierarchically higher assurance component from the same assurance family (i.e. increasing rigour, scope, and/or depth) and from the addition of assurance components from other assurance families (i.e. adding new requirements).

These EALs consist of an appropriate combination of assurance components as described in Chapter 7 of this CC Part 3. More precisely, each EAL includes no more than one component of each assurance family and all assurance dependencies of every component are addressed.

While the EALs are defined in the CC, it is possible to represent other combinations of assurance. Specifically, the notion of "augmentation" allows the addition of assurance components (from assurance families not already included in the EAL) or the substitution of assurance components (with another hierarchically higher assurance component in the same assurance family) to an EAL. Of the assurance constructs defined in the CC, only EALs may be augmented. The notion of an "EAL minus a constituent assurance component" is not recognised by the standard as a valid claim. Augmentation carries with it the obligation on the part of the claimant to justify the utility and added value of the added assurance component to the EAL. An EAL may also be augmented with extended assurance requirements.

Evaluation assurance level 1 (EAL 1) - functionally tested (chapter 8.3)

"Objectives

EAL 1 is applicable where some confidence in correct operation is required, but the threats to security are not viewed as serious. It will be of value where independent assurance is required to support the contention that due care has been exercised with respect to the protection of personal or similar information.

EAL 1 requires only a limited security target. It is sufficient to simply state the SFRs that the TOE must meet, rather than deriving them from threats, OSPs and assumptions through security objectives.

EAL 1 provides an evaluation of the TOE as made available to the customer, including independent testing against a specification, and an examination of the guidance documentation provided. It is intended that an EAL 1 evaluation could be successfully conducted without assistance from the developer of the TOE, and for minimal outlay.

An evaluation at this level should provide evidence that the TOE functions in a manner consistent with its documentation."

Evaluation assurance level 2 (EAL 2) - structurally tested (chapter 8.4)

"Objectives

EAL 2 requires the co-operation of the developer in terms of the delivery of design information and test results, but should not demand more effort on the part of the developer than is consistent with good commercial practise. As such it should not require a substantially increased investment of cost or time.

EAL 2 is therefore applicable in those circumstances where developers or users require a low to moderate level of independently assured security in the absence of ready availability of the complete development record. Such a situation may arise when securing legacy systems, or where access to the developer may be limited."

Evaluation assurance level 3 (EAL 3) - methodically tested and checked (chapter 8.5)

"Objectives

EAL 3 permits a conscientious developer to gain maximum assurance from positive security engineering at the design stage without substantial alteration of existing sound development practises.

EAL 3 is applicable in those circumstances where developers or users require a moderate level of independently assured security, and require a thorough investigation of the TOE and its development without substantial re-engineering."

Evaluation assurance level 4 (EAL 4) - methodically designed, tested, and reviewed (chapter 8.6)

"Objectives

EAL 4 permits a developer to gain maximum assurance from positive security engineering based on good commercial development practises which, though rigorous, do not require substantial specialist knowledge, skills, and other resources. EAL 4 is the highest level at which it is likely to be economically feasible to retrofit to an existing product line.

EAL 4 is therefore applicable in those circumstances where developers or users require a moderate to high level of independently assured security in conventional commodity TOEs and are prepared to incur additional security-specific engineering costs."

Evaluation assurance level 5 (EAL 5) - semiformally designed and tested (chapter 8.7)

"Objectives

EAL 5 permits a developer to gain maximum assurance from security engineering based upon rigorous commercial development practises supported by moderate application of specialist security engineering techniques. Such a TOE will probably be designed and developed with the intent of achieving EAL 5 assurance. It is likely that the additional costs attributable to the EAL 5 requirements, relative to rigorous development without the application of specialised techniques, will not be large.

EAL 5 is therefore applicable in those circumstances where developers or users require a high level of independently assured security in a planned development and require a rigorous development approach without incurring unreasonable costs attributable to specialist security engineering techniques."

Evaluation assurance level 6 (EAL 6) - semiformally verified design and tested (chapter 8.8)

"Objectives

EAL 6 permits developers to gain high assurance from application of security engineering techniques to a rigorous development environment in order to produce a premium TOE for protecting high value assets against significant risks.

EAL 6 is therefore applicable to the development of security TOEs for application in high risk situations where the value of the protected assets justifies the additional costs."

Evaluation assurance level 7 (EAL 7) - formally verified design and tested (chapter 8.9)

"Objectives

EAL 7 is applicable to the development of security TOEs for application in extremely high risk situations and/or where the high value of the assets justifies the higher costs. Practical application of EAL 7 is currently limited to TOEs with tightly focused security functionality that is amenable to extensive formal analysis."

Assurance Class	Assurance Family	Assurance Components by Evaluation Assurance Level						
		EAL 1	EAL 2	EAL 3	EAL 4	EAL 5	EAL 6	EAL 7
Development	ADV_ARC		1	1	1	1	1	1
	ADV_FSP	1	2	3	4	5	5	6
	ADV_IMP				1	1	2	2
	ADV_INT					2	3	3
	ADV_SPM						1	1
	ADV_TDS		1	2	3	4	5	6
Guidance	AGD_OPE	1	1	1	1	1	1	1
Documents	AGD_PRE	1	1	1	1	1	1	1
Life cycle	ALC_CMC	1	2	3	4	4	5	5
Support	ALC_CMS	1	2	3	4	5	5	5
	ALC_DEL		1	1	1	1	1	1
	ALC_DVS			1	1	1	2	2
	ALC_FLR							
	ALC_LCD			1	1	1	1	2
	ALC_TAT				1	2	3	3
Security Target Evaluation	ASE_CCL	1	1	1	1	1	1	1
Evaluation	ASE_ECD	1	1	1	1	1	1	1
	ASE_INT	1	1	1	1	1	1	1
	ASE_OBJ	1	2	2	2	2	2	2
	ASR_REQ	1	2	2	2	2	2	2
	ASE_SPD		1	1	1	1	1	1
	ASE_TSS	1	1	1	1	1	1	1
Tests	ATE_COV		1	2	2	2	3	3
	ATE_DPT			1	1	3	3	4
	ATE_FUN		1	1	1	1	2	2
	ATE_IND	1	2	2	2	2	2	3
Vulnerability assessment	AVA_VAN	1	2	2	3	4	5	5

Table 1: Evaluation assurance level summary"

Class AVA: Vulnerability assessment (chapter 16)

"The AVA: Vulnerability assessment class addresses the possibility of exploitable vulnerabilities introduced in the development or the operation of the TOE."

Vulnerability analysis (AVA_VAN) (chapter 16.1)

"Objectives

Vulnerability analysis is an assessment to determine whether potential vulnerabilities identified, during the evaluation of the development and anticipated operation of the TOE or by other methods (e.g. by flaw hypotheses or quantitative or statistical analysis of the security behaviour of the underlying security mechanisms), could allow attackers to violate the SFRs.

Vulnerability analysis deals with the threats that an attacker will be able to discover flaws that will allow unauthorised access to data and functionality, allow the ability to interfere with or alter the TSF, or interfere with the authorised capabilities of other users."

D. Annexes

List of annexes of this certification report

- Annex A: Security Target provided within a separate document.
- Annex B: Evaluation results regarding development and production environment

This page is intentionally left blank.

Annex B of Certification Report BSI-DSZ-CC-0938-2016

Evaluation results regarding development and production environment

The IT product Morpho_HC_Germany_G2_COS, V1 (Target of Evaluation, TOE) has been evaluated at an approved evaluation facility using the Common Methodology for IT Security Evaluation (CEM), Version 3.1 extended by Scheme Interpretations and advice of the Certification Body for components beyond EAL 5 and guidance specific for the technology of the product for conformance to the Common Criteria for IT Security Evaluation (CC), Version 3.1.

As a result of the TOE certification, dated 28 October 2016, the following results regarding the development and production environment apply. The Common Criteria assurance requirements ALC – Life cycle support (i.e. ALC_CMC.4, ALC_CMS.4, ALC_DEL.1, ALC_DVS.2, ALC_LCD.1, ALC_TAT.1)

are fulfilled for the development and production sites of the TOE listed below:

- a) Morpho Cards GmbH, An der Talle 89, D-33102 Paderborn, (Development)
- b) Achelos GmbH, Vattmannstraße 1, D-33100 Paderborn, (Development)
- c) Morpho Osny, 18 Chaussée Jules César, 95520 Osny, France, (Development)
- d) Morpho Cards GmbH, Konrad-Zuse-Ring 1, 24220 Flintbek, (OS flash loading and OS Pre-Personalisation)
- e) Swiss Post Solutions GmbH, Systemformstr. 5, 83209 Prien am Chiemsee, (OS Pre-Personalisation)
- f) NedCard BV, Bijsterhuizen 25-29, NL-6604LM Wijchen, Netherlands, (Card Embedding)
- g) NedCard Shanghai Microelectronics Co. Ltd., Standardized Plant Building #8, No. 789 Puxing Road, Caohejing Hi-Tech Park, EPZ, 201114 Shanghai, People's Republic of China, (Card Embedding)
- h) For development and production sites regarding the platform please refer to the Certification Report BSI-DSZ-CC-0782-V2-2015 ([16])

For the sites listed above, the requirements have been specifically applied in accordance with the Security Target [6] and [7]. The evaluators verified, that the threats, security objectives and requirements for the TOE life cycle phases up to delivery (as stated in the Security Target [6] and [7]) are fulfilled by the procedures of these sites.

This page is intentionally left blank.