
Red Hat Enterprise Linux, Version 7.1

0.8Version:
ReleasedStatus:
2016-09-15Last Update:
Red Hat and atsec publicClassification:



Trademarks
Red Hat and the Red Hat logo are trademarks or registered trademarks of Red Hat, Inc. in the United
States, other countries, or both.
atsec is a trademark of atsec information security GmbH
Linux is a registered trademark of Linus Torvalds.
UNIX is a registered trademark of The Open Group in the United States and other countries.
IBM, IBM logo, bladecenter, eServer, iSeries, OS/400, , POWER3, POWER4, POWER4+, pSeries,
System p, POWER5, POWER5+, POWER6, POWER6+, POWER7, POWER7+, System x, System z,
S390, xSeries, zSeries, zArchitecture, and z/VM are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries, or both.
Intel, Xeon, and Pentium are trademarks of Intel Corporation in the United States, other countries,
or both.
This document is based in parts on the Red Hat Enterprise Linux Version 6.2 Security Target,
Copyright © 2013 by Red Hat, Inc. and atsec information security corp.

Legal Notice
This document is provided AS IS with no express or implied warranties. Use the information in this
document at your own risk.
This document may be reproduced or distributed in any form without prior permission provided the
copyright notice is retained on all copies. Modified versions of this documentmay be freely distributed
provided that they are clearly identified as such, and this copyright is included intact.

Revision History
Changes to Previous RevisionAuthor(s)DateRevision
First draft based on RHEL 6.2 STStephan Mueller2013-08-130.0

Corrections in cryptographic specificationsStephan Mueller2013-08-300.1

Re-adding of Twofish and SerpentStephan Mueller2013-09-110.2

Addition of IPsec and NSS DRBG, clarification of mount namespace, replace FIPS
186-3 with 186-4, addition of amtu

Stephan Mueller2014-05-180.3

Remove amtu, clearly define Linux Containers in chapter 7 and update the
remainder of the ST accordingly, TLS added, remove all claims that are in addition
to OSPP 3.9

Stephan Mueller2014-08-200.4

Sync with ST 0.8, add TSS details to satisfy GPOSPP part 2Stephan Mueller2014-08-250.5

Address evaluator comments: remove FCS_* SFRs, update FTP_ITC.1, editorial
changes.

Stephan Mueller2014-07-220.6

Address evaluator commentsStephan Mueller2014-09-020.7

Add more details to TSSStephan Mueller2014-09-150.8

Page 2 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Table of Contents
1 Introduction .................................................................................................... 9

1.1 Security Target Identification ......................................................................................... 9
1.2 TOE Identification .......................................................................................................... 9
1.3 TOE Type ........................................................................................................................ 9
1.4 TOE Overview ................................................................................................................ 9

1.4.1 Configurations defined with this ST ....................................................................... 9
1.4.2 Overview description ............................................................................................ 9
1.4.3 Allowed Unclaimed Functionality ........................................................................... 9
1.4.4 Compliance with STIG and other standards ........................................................ 10
1.4.5 Required Hardware and Software ........................................................................ 10
1.4.6 Intended Method of Use ...................................................................................... 11

1.4.6.1 General-purpose computing environment .................................................. 11
1.4.6.2 Operating Environment .............................................................................. 12

1.4.7 Major Security Features ....................................................................................... 12
1.5 TOE Description ........................................................................................................... 12

1.5.1 Introduction ......................................................................................................... 12
1.5.2 TOE boundaries ................................................................................................... 13

1.5.2.1 Physical ...................................................................................................... 13
1.5.2.2 Logical ........................................................................................................ 13
1.5.2.3 Configurations ............................................................................................ 15
1.5.2.4 TOE Environment ........................................................................................ 15
1.5.2.5 Security Policy Model .................................................................................. 16

1.5.3 Additional Functions ............................................................................................ 17
2 CC Conformance Claim ................................................................................... 19
3 Security Problem Definition ............................................................................ 20

3.1 Threat Environment ..................................................................................................... 20
3.1.1 Assets .................................................................................................................. 20
3.1.2 Threat Agents ...................................................................................................... 20
3.1.3 Threats countered by the TOE ............................................................................ 20

3.2 Assumptions ................................................................................................................ 21
3.2.1 Environment of use of the TOE ........................................................................... 21

3.2.1.1 Physical ...................................................................................................... 21
3.2.1.2 Personnel .................................................................................................... 21
3.2.1.3 Procedural .................................................................................................. 22
3.2.1.4 Connectivity ............................................................................................... 22

3.3 Organizational Security Policies ................................................................................... 22
4 Security Objectives ........................................................................................ 24

4.1 Objectives for the TOE ................................................................................................. 24
4.2 Objectives for the Operational Environment ................................................................ 25
4.3 Security Objectives Rationale ...................................................................................... 26

4.3.1 Coverage ............................................................................................................. 26
4.3.2 Sufficiency ........................................................................................................... 27

Page 3 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



5 Extended Components Definition .................................................................... 32
6 Security Requirements ................................................................................... 33

6.1 TOE Security Functional Requirements ........................................................................ 33
6.1.1 General-purpose computing environment ........................................................... 35

6.1.1.1 Audit data generation (FAU_GEN.1) ........................................................... 35
6.1.1.2 User identity association (FAU_GEN.2) ...................................................... 37
6.1.1.3 Audit review (FAU_SAR.1) .......................................................................... 38
6.1.1.4 Restricted audit review (FAU_SAR.2) ......................................................... 38
6.1.1.5 Selective audit (FAU_SEL.1) ....................................................................... 38
6.1.1.6 Protected audit trail storage (FAU_STG.1) ................................................. 38
6.1.1.7 Action in case of possible audit data loss (FAU_STG.3) .............................. 39
6.1.1.8 Prevention of audit data loss (FAU_STG.4) ................................................. 39
6.1.1.9 Subset access control (FDP_ACC.1(PSO)) .................................................. 39
6.1.1.10 Subset access control (FDP_ACC.1(TSO)) ................................................ 40
6.1.1.11 Security attribute based access control (FDP_ACF.1(PSO)) ...................... 40
6.1.1.12 Security attribute based access control (FDP_ACF.1(TSO)) ...................... 42
6.1.1.13 Complete information flow control (FDP_IFC.1) ....................................... 43
6.1.1.14 Simple security attributes (FDP_IFF.1) ..................................................... 43
6.1.1.15 Full residual information protection (FDP_RIP.2) ...................................... 45
6.1.1.16 Authentication failure handling (FIA_AFL.1) ............................................. 45
6.1.1.17 User attribute definition (FIA_ATD.1) ....................................................... 45
6.1.1.18 Timing of authentication (FIA_UAU.1(RITE)) ............................................ 45
6.1.1.19 Timing of authentication (FIA_UAU.1(HU)) ............................................... 46
6.1.1.20 Multiple authentication mechanisms (FIA_UAU.5) ................................... 46
6.1.1.21 Protected authentication feedback (FIA_UAU.7) ...................................... 46
6.1.1.22 Timing of identification (FIA_UID.1) ......................................................... 47
6.1.1.23 User-subject binding (FIA_USB.1) ............................................................ 47
6.1.1.24 Public key based authentication (FIA_PK_EXT.1) ...................................... 49
6.1.1.25 Reliable time stamps (FPT_STM.1) ........................................................... 49
6.1.1.26 TSF-initiated session locking (FTA_SSL.1) ................................................ 49
6.1.1.27 User-initiated locking (FTA_SSL.2) ........................................................... 49
6.1.1.28 Inter-TSF trusted channel (FTP_ITC.1) ...................................................... 49

6.1.2 Management related functionality ...................................................................... 50
6.1.2.1 Management of security functions behaviour (FMT_MOF.1) ...................... 50
6.1.2.2 Management of object security attributes (FMT_MSA.1(PSO)) .................. 50
6.1.2.3 Management of object security attributes (FMT_MSA.1(TSO)) .................. 50
6.1.2.4 Static attribute initialisation (FMT_MSA.3(DAC/PSO)) ................................ 51
6.1.2.5 Static attribute initialisation (FMT_MSA.3(DAC/TSO)) ................................ 51
6.1.2.6 Static attribute initialisation (FMT_MSA.3(NI)) ........................................... 51
6.1.2.7 Security attribute value inheritance (FMT_MSA.4) ..................................... 52
6.1.2.8 Management of TSF data (FMT_MTD.1(AE)) .............................................. 52
6.1.2.9 Management of TSF data (FMT_MTD.1(AS)) .............................................. 52
6.1.2.10 Management of TSF data (FMT_MTD.1(AT)) ............................................. 52
6.1.2.11 Management of TSF data (FMT_MTD.1(AF)) ............................................ 53
6.1.2.12 Management of TSF data (FMT_MTD.1(CM)) ............................................ 53

Page 4 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



6.1.2.13 Management of TSF data (FMT_MTD.1(NI)) ............................................. 53
6.1.2.14 Management of TSF data (FMT_MTD.1(IAT)) ............................................ 53
6.1.2.15 Management of TSF data (FMT_MTD.1(IAF)) ............................................ 53
6.1.2.16 Management of TSF data (FMT_MTD.1(IAU)) ........................................... 54
6.1.2.17 Revocation (FMT_REV.1(OBJ)) .................................................................. 54
6.1.2.18 Revocation (FMT_REV.1(USR)) ................................................................. 54
6.1.2.19 Remote Management Capabilities (FMT_SMF_RMT.1) .............................. 55
6.1.2.20 Security management roles (FMT_SMR.1) ............................................... 55

6.2 Security Functional Requirements Rationale ................................................................ 55
6.2.1 Coverage ............................................................................................................. 55
6.2.2 Sufficiency ........................................................................................................... 57
6.2.3 Security requirements dependency analysis ....................................................... 59

6.3 Security Assurance Requirements ............................................................................... 62
6.4 Security Assurance Requirements Rationale ............................................................... 63

7 TOE Summary Specification ............................................................................ 64
7.1 General System Overview ........................................................................................... 64

7.1.1 High-level product overview ................................................................................ 64
7.1.1.1 Host computer structure ............................................................................ 64
7.1.1.2 System structure ........................................................................................ 66
7.1.1.3 TOE services ............................................................................................... 66
7.1.1.4 Security policy ............................................................................................ 67
7.1.1.5 Operation and administration ..................................................................... 69
7.1.1.6 TSF interfaces ............................................................................................. 69

7.1.2 TSF identification ................................................................................................ 71
7.2 Software architecture ................................................................................................... 72

7.2.1 Hardware and software privilege ........................................................................ 72
7.2.1.1 Hardware privilege ..................................................................................... 72
7.2.1.2 Software privilege ....................................................................................... 74

7.2.2 TOE Security Functions software structure .......................................................... 80
7.2.2.1 Kernel TSF software .................................................................................... 80
7.2.2.2 Non-kernel TSF software ............................................................................. 83
7.2.2.3 TSF databases ............................................................................................ 83

7.2.3 Hardware ............................................................................................................. 83
7.2.4 Firmware ............................................................................................................. 83

7.3 TOE Security Functionality ........................................................................................... 83
7.3.1 Audit .................................................................................................................... 84

7.3.1.1 Audit functionality ...................................................................................... 84
7.3.1.2 Audit trail .................................................................................................... 85
7.3.1.3 Audit subsystem implementation ............................................................... 86

7.3.2 Trusted Channel .................................................................................................. 93
7.3.2.1 Cryptographic network services ................................................................. 93

7.3.3 Network Information Flow Control ....................................................................... 98
7.3.3.1 Network layer filtering ................................................................................ 98

7.3.4 Identification and Authentication ...................................................................... 100

Page 5 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



7.3.4.1 PAM-based identification and authentication mechanisms ....................... 100
7.3.4.2 User Identity Changing ............................................................................. 104
7.3.4.3 Authentication Data Management ............................................................ 105
7.3.4.4 SSH key-based authentication .................................................................. 106
7.3.4.5 Session locking ......................................................................................... 106

7.3.5 Discretionary Access Control ............................................................................. 106
7.3.5.1 Permission bits ......................................................................................... 107
7.3.5.2 Access Control Lists (ACLs) ....................................................................... 107
7.3.5.3 File system objects ................................................................................... 108
7.3.5.4 Special Permissions .................................................................................. 108
7.3.5.5 IPC objects ................................................................................................ 108

7.3.6 Security Management ....................................................................................... 110
7.3.6.1 Privileges .................................................................................................. 110

8 Abbreviations, Terminology and References .................................................. 112
8.1 Abbreviations ............................................................................................................. 112
8.2 Terminology ............................................................................................................... 112
8.3 References ................................................................................................................. 115

Page 6 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



List of Tables
Table 1: Non-evaluated functionalities .................................................................................. 18
Table 2: Mapping of security objectives to threats and policies ............................................ 26
Table 3: Mapping of security objectives for the Operational Environment to assumptions,

threats and policies ........................................................................................................ 27
Table 4: Sufficiency of objectives countering threats ........................................................... 27
Table 5: Sufficiency of objectives holding assumptions ........................................................ 29
Table 6: Sufficiency of objectives enforcing Organizational Security Policies ....................... 31
Table 7: SFRs for the TOE ..................................................................................................... 33
Table 8: Minimum set of auditable events with event specific information .......................... 36
Table 9: Mapping of security functional requirements to security objectives ....................... 55
Table 10: Security objectives for the TOE rationale .............................................................. 57
Table 11: TOE SFR dependency analysis .............................................................................. 59
Table 12: SARs ...................................................................................................................... 62
Table 13: SSH implementation notes .................................................................................... 93

Page 7 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



List of Figures
Figure 1: Overal Structure of TOE ......................................................................................... 65
Figure 2: Local and network services provided by Linux ...................................................... 67
Figure 3: Audit framework .................................................................................................... 87

Page 8 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



1 Introduction

1.1 Security Target Identification
Red Hat Enterprise Linux, Version 7.1Title:
0.8Version:
ReleasedStatus:
2016-09-15Date:
Red Hat, Inc.Sponsor:
Red Hat, Inc.Developer:
BSICertification Body:
BSI-DSZ-CC-0949Certification ID:
Security Target, Common Criteria, Linux Distribution, Embedded LinuxKeywords:

1.2 TOE Identification
The TOE is Red Hat Enterprise Linux Version 7.1.

1.3 TOE Type
The TOE type is a Linux-based general-purpose operating system.

1.4 TOE Overview

1.4.1 Configurations defined with this ST
This security target documents the security characteristics of the Red Hat Enterprise Linux
distribution (abbreviated with RHEL throughout this document).

1.4.2 Overview description
Red Hat Enterprise Linux is a highly-configurable Linux-based operating system which has been
developed to provide a good level of security as required in commercial environments. It also meets
all requirements of the Operating System protection profile [OSPP].

1.4.3 Allowed Unclaimed Functionality
The TOE implements mechanisms without any security claims specified in this Security Target. This
section outlines such mechanism which are allowed to be used in the evaluated configuration. As
these listed mechanisms may interfere with the operation of the claimed security functionality, the
evaluation ensures that the interference does not weaken any security functionality.
RHEL provides virtualization environment based on the Linux KVM technology on x86 architectures.
RHEL implements the host system for the virtual machine environment and manages the virtual
machines. In addition, RHEL provides management interfaces to administer the virtual machine
environment as well as full auditing of user and administrator operations. The virtualization
mechanism is not available on the other hardware architectures.

Page 9 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



The KVM technology separates the runtime environment of virtual machines from each other. The
Linux kernel operates as the hypervisor to the virtual machines but provides a normal computing
environment to administrators of the virtual machines. Therefore, the Linux kernel supports the
concurrent execution of virtual machines and regular applications. RHEL uses the processor
virtualization support to ensure that the virtual machines execute close to the native speed of the
hardware.
In addition to the separation of the runtime environment, RHEL also provides system-inherent
separation mechanisms to the resources of virtual machines. This separation ensures that the large
software component used for virtualizing and simulating devices executing for each virtual machine
cannot interfere with each other. Using the SELinux multi-category mechanism, the virtualization
and simulation software instances are isolated. The virtual machine management framework
configures SELinux multi-category settings transparently to the administrator.
RHEL also provides a strong user space separationmechanism called Linux Containers. These Linux
Containers use different kernel mechanism to enforce strong isolation of user space components.
The isolation mechanisms include Linux namespaces, Linux control groups and system call filtering.
Using SELinux, RHEL provides a multi-level security framework. The TOE uses mandatory access
control together with discretionary and role-based access control. In MLS mode rules are defined
to assign sensitivity labels to subjects and objects and to implement the information flowmandatory
access control policy modeled based on the concept of Bell-LaPadula.

1.4.4 Compliance with STIG and other standards
The evaluated configuration draws from many standards, including the US STIG standard. It is
possible to achieve full compliance with STIG in the evaluated configuration. However, to prevent
violation of other configuration standards, the evaluated configuration does not claim full compliance
with STIG.

1.4.5 Required Hardware and Software
The following hardware / firmware allows the installation of the TOE:
The following hardware is allowed:

● HP based on x86 64bit Intel Xeon processors:
❍ HP Proliant ML series G7, Gen8, Gen9 product line
❍ HP Proliant DL series G7, Gen8, Gen9 product line
❍ HP ProLiant BL series G7, Gen8, Gen9 product line
❍ HP ProLiant SL series G7, Gen8, Gen9 product line

● HP based on AMD64 processors:
❍ HP Proliant ML series G7, Gen8 product line
❍ HP Proliant DL series G7, Gen8 product line
❍ HP ProLiant BL series G7, Gen8 product line
❍ HP ProLiant SL series G7, Gen8 product line

● Dell based on x86 64bit Intel:
❍ Dell PowerEdge R920
❍ Dell PowerEdge R930
❍ Dell PowerEdge M620, M520, M420,

Page 10 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



❍ Dell PowerEdge T430, T630, R430, R530, R630, R730, R730xd, M630, M830, FC430,
FC630, FC830, C6320, and Precision R7910

● IBM System p based on Power 8 processors providing execution environments with PowerVM:
❍ Big Endian with PowerVM: Tuleta BE model number - Power 835 model 8286-41A
❍ Little Endian with RHEV for Power 3.6: Power 835 model 8284-22A

● IBM System z based on z/Architecture processors:
❍ zEnterprise EC12 (zEC12)
❍ zEnterprise BC12 (zBC12)
❍ zEnterprise 196 (z196)
❍ zEnterprise 114 (z114)

The following virtual environment is allowed as an execution environment for the TOE:
● KVM on x86 hardware as provided by RHEL 7 or later
● KVM on POWER LE hardware as provided by RHEV-H 3.6 or later

All hardware must be configured using a RAM with automated error correction mechanism present.
For example ECC RAM would be suitable to cover that requirement.

1.4.6 Intended Method of Use

1.4.6.1 General-purpose computing environment
The TOE is a Linux-based multi-user multi-tasking operating system. The TOE may provide services
to several users at the same time. After successful login, the users have access to a general
computing environment, allowing the start-up of user applications, issuing user commands at shell
level, creating and accessing files. The TOE provides adequate mechanisms to separate the users
and protect their data. Privileged commands are restricted to administrative users.
The TOE is intended to operate in a networked environment with other instantiations of the TOE
as well as other well-behaved peer systems operating within the same management domain. All
those systems need to be configured in accordance with a defined common security policy.
It is assumed that responsibility for the safeguarding of the user data protected by the TOE can be
delegated to human users of the TOE if such users are allowed to log on and spawn processes on
their behalf. All user data is under the control of the TOE. The user data is stored in named objects,
and the TOE can associate a description of the access rights to that object with each named object.
The TOE enforces controls such that access to data objects can only take place in accordance with
the access restrictions placed on that object by its owner, and by administrative users. Ownership
of named objects may be transferred under the control of the access control policies implemented
by RHEL.
Discretionary access rights (e.g. read, write, execute) can be assigned to data objects with respect
to subjects identified with their UID, GID and supplemental GIDs. Once a subject is granted access
to an object, the content of that object may be used freely to influence other objects accessible to
this subject.

Page 11 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



1.4.6.2 Operating Environment
The TOE permits one or more processors and attached peripheral and storage devices to be used
by multiple applications assigned to different UIDs to perform a variety of functions requiring
controlled shared access to the data stored on the system. With different UIDs proper access
restrictions to resources assigned to processes can be enforced using the access control mechanisms
provided by the TOE. Such installations and usage scenarios are typical for systems accessed by
processes or users local to, or with otherwise protected access to, the computer system.
Note: The TOE provides the platform for installing and running arbitrary services. These additional
services are not part of the TOE. The TOE is solely the operating system which provides the runtime
environment for such services.
All human users, if existent, as well as all services offered by RHEL are assigned unique user
identifiers within the single host system that forms the TOE. This user identifier is used together
with the attributes and roles assigned to the user identifier as the basis for access control decisions.
Except for virtual machine accesses, the TOE authenticates the claimed identity of the user before
allowing the user to perform any further actions. Services may be spawned by the TOE without the
need for user-interaction. The TOE internally maintains a set of identifiers associated with processes,
which are derived from the unique user identifier upon login of the user or from the configured user
identifier for a TOE-spawned service. Some of those identifiers may change during the execution
of the process according to a policy implemented by the TOE.

1.4.7 Major Security Features
The primary security features of the TOE are specified as part of the section 1.5.2.2 logical boundary
description.
These primary security features are supported by domain separation and reference mediation,
which ensure that the features are always invoked and cannot be bypassed.

1.5 TOE Description

1.5.1 Introduction
Red Hat Enterprise Linux is a general purpose, multi-user, multi-tasking Linux based operating
system. It provides a platform for a variety of applications.
The RHEL evaluation covers a potentially distributed network of systems running the evaluated
versions and configurations of RHEL as well as other peer systems operating within the same
management domain. The hardware platforms selected for the evaluation consist of machines
which are available when the evaluation has completed and to remain available for a substantial
period of time afterwards.
The TOE Security Functions (TSF) consist of functions of RHEL that run in kernel mode plus some
trusted processes. These are the functions that enforce the security policy as defined in this Security
Target. Tools and commands executed in user mode that are used by an administrative user need
also to be trusted to manage the system in a secure way. But as with other operating system
evaluations they are not considered to be part of this TSF.
The hardware, the BootProm or BIOS firmware and potentially other firmware layers between the
hardware and the TOE are considered to be part of the TOE environment.
The TOE includes standard networking applications, including applications allowing access of the
TOE via cryptographically protected communication channels, such as SSH.

Page 12 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



System administration tools include the standard command line tools. A graphical user interface
for system administration or any other operation is not included in the evaluated configuration.
The TOE environment also includes applications that are not evaluated, but are used as unprivileged
tools to access public system services. For example a network server using a port above 1024 may
be used as a normal application running without root privileges on top of the TOE. The additional
documentation specific for the evaluated configuration provides guidance how to set up such
applications on the TOE in a secure way.

1.5.2 TOE boundaries

1.5.2.1 Physical
The Target of Evaluation is based on the following system software:

● Red Hat Enterprise Linux in the above mentioned version
The TOE and its documentation are supplied on ISO images distributed via the Red Hat Network.
The TOE includes a package holding the additional user and administrator documentation.
In addition to the installation media, the following documentation is provided:

● Evaluated Configuration Guide published by Red Hat at the end of the evaluation
● Manual pages for all applications, configuration files and system calls

The hardware applicable to the evaluated configuration is listed above. The analysis of the hardware
capabilities as well as the firmware functionality is covered by this evaluation to the extent that
the following capabilities supporting the security functionality are analyzed and tested:

● Memory separation capability
● Unavailability of privileged processor states to untrusted user code (like the hypervisor

state or the SMM)
● Full testing of the security functionality on all listed hardware systems

1.5.2.2 Logical
The primary security features of the TOE are enumerated as follows:

Auditing
The Lightweight Audit Framework (LAF) is designed to be an audit system making Linux
compliant with the requirements from Common Criteria. LAF is able to intercept all system
calls as well as retrieving audit log entries from privileged user space applications. The
subsystem allows configuring the events to be actually audited from the set of all events
that are possible to be audited.
The TOE can be deployed as an audit server that receives audit logs from other TOE instances.
These audit logs are stored locally. The TOE provides search and review facilities to authorized
administrators for all audit logs.

Trusted Channel
The TOE provides cryptographically secured communication to allow remote entities to log
into the TOE. For interactive usage, the SSHv2 protocol is provided. The TOE provides the
server side as well as the client side applications. Using OpenSSH, password-based and
public-key-based authentication are allowed.

Page 13 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Network Information Flow Control
The TOE provides a stateless and stateful packet filter for regular IP-based communication.
OSI Layer 3 (IP) and OSI layer 4 (TCP, UDP, ICMP) network protocols can be controlled using
this packet filter. To allow virtual machines to communicate with the environment, the TOE
provides a bridging functionality. Ethernet frames routed through bridges are controlled by
a separate packet filter which implements a stateless packet filter for the TCP/IP protocol
family.
The packet filtering functionality offered by the TOE is hooked into the TCP/IP stack of the
kernel at different locations. Based on these locations, different filtering capabilities are
applicable. The lower level protocols are covered by the EBTables filter mechanism which
includes the filtering of Ethernet frames including the ARP layer -- EBTables is not covered
in this evaluation. The higher level protocols of TCP/IP are covered with the IPTables
mechanism which allows filtering of IP and TCP, UDP, ICMP packets. In addition, IPTables
offers a stateful packet filter for the mentioned higher level protocols.

Identification and Authentication
User identification and authentication in the TOE includes all forms of interactive login (e.g.
using the SSH protocol or log in at the local console) as well as identity changes through
the su or sudo command. These all rely on explicit authentication information provided
interactively by a user.
The authentication security function allows password-based authentication. For SSH access,
public-key-based authentication is also supported.
Password quality enforcement mechanisms are offered by the TOE which are enforced at
the time when the password is changed.
The TOE provides a framework to authenticate with remote servers, such as LDAP, Kerberos
or Microsoft Windows Active Directory. The SSSD daemon establishes the connection to the
remote authentication stores and provides a local authentication cache in case the connection
is severed. SSSD is integrated with the Linux authentication mechanism by using a PAM
module.

Discretionary Access Control
DAC allows owners of named objects to control the access permissions to these objects.
These owners can permit or deny access for other users based on the configured permission
settings. The DAC mechanism is also used to ensure that untrusted users cannot tamper
with the TOE mechanisms.
In addition to the standard Unix-type permission bits for file system objects as well as IPC
objects, the TOE implements POSIX access control lists. These ACLs allow the specification
of the access to individual file system objects down to the granularity of a single user.

Security Management
The security management facilities provided by the TOE are usable by authorized users
and/or authorized administrators to modify the configuration of TSF.
The TOE allows remote management via OpenSSH. Administrative users can log in remotely
and perform the same management tasks as a locally operating administrator.

Page 14 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



1.5.2.3 Configurations
The evaluated configurations are defined as follows:

● The CC evaluated package set must be selected at install time in accordance with the
description provided in the Evaluated Configuration Guide and installed accordingly.

● The TOE supports the use of IPv4 and IPv6, both are also supported in the evaluated
configuration. IPv6 conforms to the following RFCs:

❍ RFC 2460 specifying the basic IPv6 protocol
❍ IPv6 source address selection as documented in RFC 3484
❍ Linux implements several new socket options (IPV6_RECVPKTINFO, IPV6_PKTINFO,

IPV6_RECVHOPOPTS, IPV6_HOPOPTS, IPV6_RECVDSTOPTS, IPV6_DSTOPTS,
IPV6_RTHDRDSTOPTS, IPV6_RECVRTHDR, IPV6_RTHDR, IPV6_RECVHOPOPTS,
IPV6_HOPOPTS, IPV6_{RECV,}TCLASS) and ancillary data in order to support
advanced IPv6 applications including ping, traceroute, routing daemons and others.
The following section introduces Internet Protocol Version 6 (IPv6). For additional
information about referenced socket options and advanced IPv6 applications, see
RFC 3542

❍ Transition from IPv4 to IPv6: dual stack, and configured tunneling according to
RFC 4213.

❍ Additional RFCs covering various cryptographic aspects are outlined as part of the
Security Functional Requirements.

● The default configuration for identification and authentication are the defined
password-based PAM modules as well as by the certificate based authentication for
OpenSSH. Support for other authentication options, e.g. smart card authentication, is not
included in the evaluation configuration.

● If the system console is used, it must be connected directly to the TOE and afforded the
same physical protection as the TOE.

Deviations from the configurations and settings specified with the Evaluated Configuration Guide
are not permitted.
The TOE comprises a single system (and optional peripherals) running the TOE software listed.
Cluster configurations touching the state information of security functions are not permitted in the
evaluated configuration. This means it is permissible to install applications which by themselves
offer cluster functionality covering their state, such as JBoss EAP.

1.5.2.4 TOE Environment
Several TOE systems may be interlinked in a network, and individual networks may be joined by
bridges and/or routers, or by TOE systems which act as routers and/or gateways. Each of the TOE
systems implements its own security policy. The TOE does not include any synchronization function
for those policies. As a result a single user may have user accounts on each of those systems with
different UIDs, different roles, and other different attributes. (A synchronization method may
optionally be used, but it not part of the TOE and must not use methods that conflict with the TOE
requirements.)

Page 15 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



If other systems are connected to a network they need to be configured and managed by the same
authority using an appropriate security policy that does not conflict with the security policy of the
TOE. All connections between this network and untrusted networks (e. g. the Internet) need to be
protected by appropriate measures such as carefully configured firewall systems that prohibit
attacks from the untrusted networks. Those protections are part of the TOE environment.

1.5.2.5 Security Policy Model
The security policy for the TOE is defined by the security functional requirements in chapter 6. The
following is a list of the subjects and objects participating in the policy.
Subjects:

● Processes acting on behalf of a human user or technical entity.
● Processes acting on behalf of a human user or technical entity providing a virtual machine

environment.
Named objects:

● File system objects in the following allowed file systems:
❍ XFS - standard file system for general data
❍ VFAT - special purpose file system for UEFI BIOS support mounted at /boot/efi
❍ Ext4 - standard file system for general data
❍ iso9660 - ISO9660 file system for CD-ROM and DVD
❍ tmpfs - the temporary file system backed by RAM
❍ rootfs - the virtual root file system used temporarily during system boot
❍ procfs - process file system holding information about processes, general statistical

data and tunable kernel parameters
❍ sysfs - system-related file system covering general information about resources

maintained by the kernel including several tunable parameters for these resources
❍ devpts - pseudoterminal file system for allocating virtual TTYs on demand
❍ devtmpfs - temporary file system that allows the kernel to generate character or

block device nodes
❍ binfmt_misc - configuration interface allowing the assignment of executable file

formats with user space applications
❍ securityfs - interface for loadable security modules (LSM) to provide tunables and

configuration interfaces to user space
❍ selinuxfs - interface for allowing user space components to interact with the SELinux

module inside the kernel, including managing the SELinux policy.
Note that the TOE supports a number of additional virtual (i.e. without backing of persistent
storage) file systems which are only accessible to the TSF - they are not or cannot be
mounted. All above mentioned virtual file systems implement access decisions based DAC
attributes inferred from the underlying process’ DAC attributes. Additional restrictions may
apply for specific objects in this file system.

● Inter Process Communication (IPC) objects:
❍ Semaphores
❍ Shared memory
❍ Message queues
❍ Named pipes

Page 16 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



❍ UNIX domain socket special files

TSF data:
● TSF executable code
● Subject meta data - all data used for subjects except data which is not interpreted by the

TSF and does not implement parts of the TSF (this data is called user data)
● Named object meta data - all data used for the respective objects except data which is not

interpreted by the TSF and does not implement parts of the TSF (this data is called user
data)

● User accounts, including the security attributes defined by FIA_ATD.1
● Audit records

User data:
● Non-TSF executable code used to drive the behavior of subjects
● Data not interpreted by TSF and stored or transmitted using named objects

1.5.3 Additional Functions
The TOE provides many more functions and mechanisms. The evaluation ensures that all these
additional functions do not interfere with the abovementioned security mechanisms in the evaluated
configuration. The mechanisms given in the following list, however, may interfere with the security
functionality of the TOE and should be allowed in the evaluated configuration. Therefore, the
evaluation assesses the functionality to verify that the impact on the security functionality at most
adds further restrictions as outlined below.

● KVM virtualization support: The TOE offers virtualization support via KVM. That virtualization
support shall be allowed to be used such that it does not interfere with the operation of
the security functions. The evaluation ensures that the constraints associated with the use
of KVM in the evaluated configuration guide has no adverse impact on the security
functionality. In addition, the libvirt daemon is allowed to run with the privileges of the root
user to allow management of KVM.

● Linux Container: Linux Container provide execution environments for processes. These
Linux Containers isolate the processes, ensure resource accounting and limitation as well
as Linux kernel service limitation. The evaluation ensures that only additional restrictions
are enforced with Linux Containers. Therefore, Linux Containers cannot be used to override
security mechanisms claimed in this ST.

● SELinux: SELinux together with a SELinux policy may enforce additional access restrictions
of applications to resources and objects. The evaluation ensures that only additional
restrictions are enforced with SELinux. Therefore, SELinux cannot be used to override
security mechanisms claimed in this ST. Note, the MLS mechanism is implemented using
a specifically crafted SELinux policy.

● IPSec VPN: The TOE offers IPSec VPN where the IPSEC protocol is implemented in the kernel
and the IKE protocol in a user space daemon. When applying an IPSec VPN, the
communicated data is automatically encrypted or decrypted by the operating system.

Additional mechanisms and functions that would interfere with the operation of the security functions
are disallowed in the evaluated configuration and the Evaluation Configuration Guide provides
instructions to the administrator on how to disable them. Note: TOE mechanism which provide
additional restrictions to the above claimed security functions are allowed in the evaluated
configuration. For example, the eCryptFS cryptographic file system provided with the TOE and
permitted in the evaluated configuration even though they have not been subject to this evaluation.

Page 17 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



The eCryptFS provides further restrictions on, for example, the security function of discretionary
access control mechanism for file system objects and therefore cannot breach the security
functionality as the discretionary access control rules of the "lower" file system are still enforced.
The following table enumerates mechanisms that are provided with the TOE but which are excluded
from the evaluation:

Exclusion discussionFunctions

eCryptFS is allowed to be used in the evaluated configuration. The
encryption capabilities provided with this file system is, however, not
subject to this evaluation.

eCryptFS

dm-crypt is allowed to be used in the evaluated configuration. The
encryption capabilities provided with this block device encryption
mechanism is, however, not subject to this evaluation.

dm-crypt

The mandatory access control functionality offered by the SMACK LSM
is not assessed by the evaluation and disabled in the evaluated
configuration. The SELinux LSM provides the mandatory access control
policy enforcement.

SMACK

The TOE provides the stunnel application which can be used to establish
SSL and TLS tunnels with remote peers. This application however was
excluded from evaluation assessment.

SSL / TLS tunnels

The GSS-API is used to secure the connection between different audit
daemons. The security mechanisms used by the GSS-API, however, is
not part of the evaluation. Therefore, A.CONNECT applies to the
audit-related communication link.

GSS-API Security Mechanisms

The Linux kernel provides several runtime protection mechanisms to
lower the probability of a successful exploitation of typical software
errors like buffer overruns. This mechanism, however, is not part of the
evaluation.

Runtime protection mechanisms

Table 1: Non-evaluated functionalities

Note: Packages and mechanisms not covered with security claims and subsequent assessments
during the evaluation or disabling the respective functionality in the evaluated configuration result
from resource constraints during the evaluation but does not imply that the respective package or
functionality is implemented insecurely.

Page 18 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



2 CC Conformance Claim
This Security Target is CC Part 2 extended and CC Part 3 conformant.
This Security Target claims conformance to the following Protection Profiles and PP packages:

● [OSPP]: General-Purpose Operating System Protection Profile. Version 3.9 as of 2012-12-06;
strict conformance.

Common Criteria [CC] version 3.1 revision 4 is the basis for this conformance claim.

Page 19 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



3 Security Problem Definition

3.1 Threat Environment
Threats to be countered by the TOE are characterized by the combination of an asset being subject
to a threat, a threat agent and an adverse action.
The definition of threat agents and protected assets that follows is derived from the OSPP.

3.1.1 Assets
Assets to be protected are:

● Storage objects used to store user data and/or TSF data, where this data needs to be
protected from any of the following operations:

❍ Unauthorized read access
❍ Unauthorized modification
❍ Unauthorized deletion of the object
❍ Unauthorized creation of new objects
❍ Unauthorized management of object attributes

● TSF functions and associated TSF data
● The resources managed by the TSF that are used to store the above-mentioned objects,

including the metadata needed to manage these objects.

3.1.2 Threat Agents
Threat agents are external entities that potentially may attack the TOE. They satisfy one or more
of the following criteria:

● External entities not authorized to access assets may attempt to access them either by
masquerading as an authorized entity or by attempting to use TSF services without proper
authorization.

● External entities authorized to access certain assets may attempt to access other assets
they are not authorized to either by misusing services they are allowed to use or by
masquerading as a different external entity.

● Untrusted subjects may attempt to access assets they are not authorized to either by
misusing services they are allowed to use or by masquerading as a different subject.

Threat agents are typically characterized by a number of factors, such as expertise, available
resources, and motivation, with motivation being linked directly to the value of the assets at stake.
The TOE protects against intentional and unintentional breach of TOE security by attackers
possessing an enhanced-basic attack potential.

3.1.3 Threats countered by the TOE
T.ACCESS.TSFDATA

A threat agent might read or modify TSF data using functions of the TOE without the
necessary authorization.

Page 20 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



T.ACCESS.USERDATA
A threat agent might gain access to user data stored, processed or transmitted by the TOE
without being appropriately authorized according to the TOE security policy by using functions
provided by the TOE.

T.ACCESS.TSFFUNC
A threat agentmight use or manage functionality of the TSF bypassing protectionmechanisms
of the TSF.

T.ACCESS.COMM
A threat agent may access cryptographically protected data transferred via a trusted channel
between the TOE and another remote trusted IT system, modify such data during transfer
in a way not detectable by the receiving party or masquerade as a remote trusted IT system.

T.RESTRICT.NETTRAFFIC
A threat agent may send data packets to the recipient in the TOE via a network
communication channel in violation of the information flow control policy.

T.IA.MASQUERADE
A threat agent may masquerade as an authorized entity including the TOE itself or a part
of the TOE in order to gain unauthorized access to user data, TSF data, or TOE resources.

T.IA.USER
A threat agent may gain access to user data, TSF data or TOE resources with the exception
of public objects without being identified and authenticated by the TSF.

T.UNATTENDED_SESSION
A threat agent may gain unauthorized access to an unattended session.

3.2 Assumptions

3.2.1 Environment of use of the TOE

3.2.1.1 Physical
A.PHYSICAL

It is assumed that the IT environment provides the TOE with appropriate physical security,
commensurate with the value of the IT assets protected by the TOE.

3.2.1.2 Personnel
A.MANAGE

The TOE security functionality is managed by one or more competent individuals. The system
administrative personnel are not careless, willfully negligent, or hostile, and will follow and
abide by the instructions provided by the guidance documentation.

Page 21 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



A.AUTHUSER
Authorized users possess the necessary authorization to access at least some of the
information managed by the TOE and are expected to act in a cooperating manner in a
benign environment.

A.TRAINEDUSER
Users are sufficiently trained and trusted to accomplish some task or group of tasks within
a secure IT environment by exercising complete control over their user data.

3.2.1.3 Procedural
A.DETECT

Any modification or corruption of security-enforcing or security-relevant files of the TOE,
user or the underlying platform caused either intentionally or accidentally will be detected
by an administrative user.

A.PEER.MGT
All remote trusted IT systems trusted by the TSF to provide TSF data or services to the TOE,
or to support the TSF in the enforcement of security policy decisions are assumed to be
under the samemanagement control and operate under security policy constraints compatible
with those of the TOE.

A.PEER.FUNC
All remote trusted IT systems trusted by the TSF to provide TSF data or services to the TOE,
or to support the TSF in the enforcement of security policy decisions are assumed to correctly
implement the functionality used by the TSF consistent with the assumptions defined for
this functionality.

3.2.1.4 Connectivity
A.CONNECT

All connections to and from remote trusted IT systems and between physically-separate
parts of the TSF not protected by the TSF itself are physically or logically protected within
the TOE environment to ensure the integrity and confidentiality of the data transmitted and
to ensure the authenticity of the communication end points.

3.3 Organizational Security Policies
P.ACCOUNTABILITY

The users of the TOE shall be held accountable for their security-relevant actions within the
TOE.

P.USER
Authority shall only be given to users who are trusted to perform the actions correctly.

Page 22 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



P.ROLES
Administrative authority to TSF functionality shall be given to trusted personnel and be as
restricted as possible supporting only the administrative duties the person has.

Page 23 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



4 Security Objectives

4.1 Objectives for the TOE
O.AUDITING

The TSF must be able to record defined security-relevant events (which usually include
security-critical actions of users of the TOE). The TSF must protect this information and
present it to authorized users if the audit trail is stored on the local system. The information
recorded for security-relevant events must contain the time and date the event happened
and, if possible, the identification of the user that caused the event, and must be in sufficient
detail to help the authorized user detect attempted security violations or potential
misconfiguration of the TOE security features that would leave the IT assets open to
compromise.

O.DISCRETIONARY.ACCESS
The TSF must control access of subjects and/or users to named resources based on identity
of the object. The TSF must allow authorized users to specify for each access mode which
users/subjects are allowed to access a specific named object in that access mode.

O.NETWORK.FLOW
The TOE shall mediate network communication between an entity outside of the TOE and
a recipient within the TOE in accordance with its network information flow security policy.

O.SUBJECT.COM
The TOE shall mediate any possible sharing of objects or resources between subjects acting
with different subject security attributes in accordance with its discretionary access control
policy.

O.I&A
The TOE must ensure that users have been successfully authenticated before allowing any
action the TOE has defined to provide to authenticated users only.

O.MANAGE
The TSF must provide all the functions and facilities necessary to support the authorized
users that are responsible for the management of TOE security mechanisms, must allow
restringing such management actions to dedicated users, and must ensure that only such
authorized users are able to access management functionality.

O.TRUSTED_CHANNEL
The TSF must allow authorized users to remotely access the TOE using a
cryptographically-protected network protocol that ensures integrity and confidentiality of
the transported data and is able to authenticate the end points of the communication. Note
that the same protocols may also be used in the case where the TSF is physically separated
into multiple parts that must communicate securely with each other over untrusted network
connections. The protocol must also prevent masquerading of the remote trusted IT system.

Page 24 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



O.UNATTENDED_SESSION
The TOEmust allow for the temporary suspension of a user's session allowing the continuation
of such a suspended session and user related input and output only after the user has
resumed the session by re-authenticating himself to the TSF.

4.2 Objectives for the Operational Environment
OE.ADMIN

Those responsible for the TOE are competent and trustworthy individuals, capable of
managing the TOE and the security of the information it contains.

OE.REMOTE
If the TOE relies on remote trusted IT systems to support the enforcement of its policy, those
systems provide the functions required by the TOE and are sufficiently protected from any
attack that may cause those functions to provide false results.

OE.INFO_PROTECT
Those responsible for the TOE must establish and implement procedures to ensure that
information is protected in an appropriate manner. In particular:

● All network and peripheral cabling must be approved for the transmittal of the most
sensitive data held by the system. Such physical links are assumed to be adequately
protected against threats to the confidentiality and integrity of the data transmitted.

● DAC protections on security-relevant files (such as audit trails and authentication
databases) shall always be set up correctly.

● Users are authorized to access parts of the data managed by the TOE and are trained
to exercise control over their own data.

OE.INSTALL
Those responsible for the TOE must establish and implement procedures to ensure that the
hardware, software and firmware components that comprise the system are distributed,
installed and configured in a secure manner supporting the security mechanisms provided
by the TOE.

OE.MAINTENANCE
Authorized users of the TOE must ensure that the comprehensive diagnostics facilities
provided by the product are invoked at every scheduled preventative maintenance period.

OE.PHYSICAL
Those responsible for the TOEmust ensure that those parts of the TOE critical to enforcement
of the security policy are protected from physical attack that might compromise IT security
objectives. The protection must be commensurate with the value of the IT assets protected
by the TOE.

Page 25 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



OE.RECOVER
Those responsible for the TOEmust ensure that procedures and/or mechanisms are provided
to assure that after system failure or other discontinuity, recovery without a protection
(security) compromise is achieved.

OE.TRUSTED.IT.SYSTEM
The remote trusted IT systems implement the protocols and mechanisms required by the
TSF to support the enforcement of the security policy.
These remote trusted IT systems are under the same management domain as the TOE, are
managed based on the same rules and policies applicable to the TOE, and are physically
and logically protected equivalent to the TOE.

4.3 Security Objectives Rationale

4.3.1 Coverage
The following table provides a mapping of TOE objectives to threats and policies, showing that each
objective counters or enforces at least one threat or policy, respectively.

Threats / OSPsObjective

P.ACCOUNTABILITYO.AUDITING

T.ACCESS.TSFDATA
T.ACCESS.USERDATA

O.DISCRETIONARY.ACCESS

T.RESTRICT.NETTRAFFICO.NETWORK.FLOW

T.ACCESS.TSFDATA
T.ACCESS.USERDATA

O.SUBJECT.COM

T.IA.MASQUERADE
T.IA.USER

O.I&A

T.ACCESS.TSFFUNC
P.ACCOUNTABILITY
P.USER
P.ROLES

O.MANAGE

T.ACCESS.TSFDATA
T.ACCESS.USERDATA
T.ACCESS.TSFFUNC
T.ACCESS.COMM

O.TRUSTED_CHANNEL

T.UNATTENDED_SESSIONO.UNATTENDED_SESSION

Table 2: Mapping of security objectives to threats and policies

The following table provides a mapping of the objectives for the Operational Environment to
assumptions, threats and policies, showing that each objective holds, counters or enforces at least
one assumption, threat or policy, respectively.

Page 26 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Assumptions / Threats / OSPsObjective

A.MANAGE
A.AUTHUSER
A.TRAINEDUSER
P.ROLES

OE.ADMIN

A.CONNECT
T.ACCESS.COMM

OE.REMOTE

A.PHYSICAL
A.MANAGE
A.AUTHUSER
A.TRAINEDUSER
P.USER

OE.INFO_PROTECT

A.MANAGE
A.DETECT

OE.INSTALL

A.DETECTOE.MAINTENANCE

A.PHYSICALOE.PHYSICAL

A.MANAGE
A.DETECT

OE.RECOVER

A.PEER.MGT
A.PEER.FUNC
A.CONNECT

OE.TRUSTED.IT.SYSTEM

Table 3: Mapping of security objectives for the Operational Environment to assumptions,
threats and policies

4.3.2 Sufficiency
The following rationale provides justification that the security objectives are suitable to counter
each individual threat and that each security objective tracing back to a threat, when achieved,
actually contributes to the removal, diminishing or mitigation of that threat.

Rationale for security objectivesThreat

The threat of accessing TSF data without proper authorization is mitigated
by:

T.ACCESS.TSFDATA

● O.TRUSTED_CHANNEL requiring cryptographically-protected
communication channels for data including TSF data controlled by
the TOE in transit between trusted IT systems,

● O.DISCRETIONARY.ACCESS requiring that data, including TSF data
stored with the TOE, have discretionary access control protection,

● O.SUBJECT.COM requiring the TSF to mediate communication
between subjects.

The threat of accessing user data without proper authorization is
mitigated by:

T.ACCESS.USERDATA

Page 27 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Rationale for security objectivesThreat

● O.TRUSTED_CHANNEL requiring cryptographically-protected
communication channels for data including user data controlled by
the TOE in transit between trusted IT systems,

● O.DISCRETIONARY.ACCESS requiring that data including user data
stored with the TOE, have discretionary access control protection,

● O.SUBJECT.COM requiring the TSF to mediate communication
between subjects.

The threat of accessing TSF functions without proper authorization is
mitigated by:

T.ACCESS.TSFFUNC

● O.TRUSTED_CHANNEL requiring cryptographically-protected
communication channels to limit which TSF functions are accessible
to external entities,

● O.MANAGE requiring that only authorized users utilize management
TSF functions.

The threat of accessing a communication channel that establishes a
trust relationship between the TOE and another remote trusted IT system
is mitigated by:

T.ACCESS.COMM

● O.TRUSTED_CHANNEL requiring that the TOE implements a trusted
channel between itself and a remote trusted IT system protecting
the user data and TSF data transferred over this channel from
disclosure and undetectedmodification and preventsmasquerading
of the remote trusted IT system,

● OE.REMOTE requiring that those systems providing the functions
required by the TOE are sufficiently protected from any attack that
may cause those functions to provide false results.

The threat of accessing information or transmitting information to other
recipients via network communication channels without authorization
for this communication attempt is mitigated by:

T.RESTRICT.NETTRAFFIC

● O.NETWORK.FLOW requiring the TOE tomediate the communication
between itself and remote entities in accordance with its security
policy.

The threat of masquerading as an authorized entity in order to gain
unauthorized access to user data, TSF data or TOE resources is mitigated
by:

T.IA.MASQUERADE

● O.I&A requiring that each entity interacting with the TOE is properly
identified and authenticated before allowing any action the TOE is
defined to provide to authenticated users only.

The threat of accessing user data, TSF data or TOE resources without
being identified and authenticated is removed by:

T.IA.USER

● O.I&A requiring that each entity interacting with the TOE is properly
identified and authenticated before allowing any action the TOE
has defined to provide to authenticated users only.

The threat of an attack agent using an unattended session to gain access
to protected functionality of the TSF, user data, or TSF data is mitigated:

T.UNATTENDED_SESSION

Page 28 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Rationale for security objectivesThreat

● O.UNATTENDED_SESSION requiring the capability that unattended
sessions can be protected from use by unauthorized persons.

Table 4: Sufficiency of objectives countering threats

The following rationale provides justification that the security objectives for the environment are
suitable to cover each individual assumption, that each security objective for the environment that
traces back to an assumption about the environment of use of the TOE, when achieved, actually
contributes to the environment achieving consistency with the assumption, and that if all security
objectives for the environment that trace back to an assumption are achieved, the intended usage
is supported.

Rationale for security objectivesAssumption

The assumption on the IT environment to provide the TOE with
appropriate physical security, commensurate with the value of the IT
assets protected by the TOE is covered by:

A.PHYSICAL

● OE.INFO_PROTECT requiring the approval of network and peripheral
cabling,

● OE.PHYSICAL requiring physical protection.

The assumptions on the TOE security functionality being managed by
one or more trustworthy individuals is covered by:

A.MANAGE

● OE.ADMIN requiring trustworthy personnel managing the TOE,
● OE.INFO_PROTECT requiring personnel to ensure that information

is protected in an appropriate manner,
● OE.INSTALL requiring personnel to ensure that components that

comprise the system are distributed, installed and configured in a
secure manner supporting the security mechanisms provided by
the TOE,

● OE.RECOVER requiring personnel to assure that after system failure
or other discontinuity, recovery without a protection (security)
compromise is achieved.

The assumption on authorized users to possess the necessary
authorization to access at least some of the information managed by
the TOE and to act in a cooperating manner in a benign environment is
covered by:

A.AUTHUSER

● OE.ADMIN ensuring that those responsible for the TOE are
competent and trustworthy individuals, capable of managing the
TOE and the security of the information it contains.

● OE.INFO_PROTECT requiring that DAC protections on
security-relevant files (such as audit trails and authentication
databases) shall always be set up correctly and that users are
authorized to access parts of the data maintained by the TOE.

The assumptions on users to be sufficiently trained and trusted to
accomplish some task or group of tasks within a secure IT environment
by exercising complete control over their user data is covered by:

A.TRAINEDUSER

Page 29 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Rationale for security objectivesAssumption

● OE.ADMIN requiring competent personnel managing the TOE.
● OE.INFO_PROTECT requiring that those responsible for the TOE

must establish and implement procedures to ensure that
information is protected in an appropriate manner and that users
are trained to exercise control over their own data.

The assumption that modification or corruption of security-enforcing or
security-relevant files will be detected by an administrative user is
covered by:

A.DETECT

● OE.INSTALL requiring an administrative user to ensure that the TOE
is distributed, installed and configured in a secure manner
supporting the security mechanisms provided by the TOE.

● OE.MAINTENANCE requiring an administrative user to ensure that
the diagnostics facilities are invoked at every scheduled
preventative maintenance period, verifying the correct operation
of the TOE.

● OE.RECOVER requiring an administrative user to ensure that
procedures and/or mechanisms are provided to assure that after
system failure or other discontinuity, recovery without a protection
(security) compromise is achieved.

The assumption on all remote trusted IT systems to be under the same
management control and operate under security policy constraints
compatible with those of the TOE is covered by:

A.PEER.MGT

● OE.TRUSTED.IT.SYSTEM requiring that these remote trusted IT
systems are under the samemanagement domain as the TOE, and
are managed based on the same rules and policies applicable to
the TOE.

The assumption on all remote trusted IT systems to correctly implement
the functionality used by the TSF consistent with the assumptions defined
for this functionality is covered by:

A.PEER.FUNC

● OE.TRUSTED.IT.SYSTEM requiring that the remote trusted IT systems
implement the protocols and mechanisms required by the TSF to
support the enforcement of the security policy.

The assumption on all connections to and from remote trusted IT systems
and between physically separate parts of the TSF not protected by the
TSF itself are physically or logically protected is covered by:

A.CONNECT

● OE.REMOTE requiring that remote trusted IT systems provide the
functions required by the TOE and are sufficiently protected from
any attack that may cause those functions to provide false results.

● OE.TRUSTED.IT.SYSTEM demanding the physical and logical
protection equivalent to the TOE.

Table 5: Sufficiency of objectives holding assumptions

Page 30 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



The following rationale provides justification that the security objectives are suitable to cover each
individual organizational security policy (OSP), that each security objective that traces back to an
OSP, when achieved, actually contributes to the implementation of the OSP, and that if all security
objectives that trace back to an OSP are achieved, the OSP is implemented.

Rationale for security objectivesOSP

The policy to hold users accountable for their security-relevant actions
within the TOE is implemented by:

P.ACCOUNTABILITY

● O.AUDITING providing the TOE with audit functionality,
● O.MANAGE allowing the management of this function.

The policy to match the trust given to a user and the actions the user is
given authority to perform is implemented by:

P.USER

● O.MANAGE allowing appropriately-authorized users to manage the
TSF,

● OE.INFO_PROTECT, which requires that users are trusted to use
the protection mechanisms of the TOE to protect their data.

The policy to only give trusted users authority is implemented by:P.ROLES
● O.MANAGE allowing appropriately-authorized users to manage the

TSF.
● OE.ADMIN, which requires that users responsible for the TOE are

competent and trustworthy individuals, capable of managing the
TOE and the security of the information it contains.

Table 6: Sufficiency of objectives enforcing Organizational Security Policies

Page 31 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



5 Extended Components Definition
The Security Target uses the extended components of FIA_PK_EXT.1 as well as FMT_SMF_RMT.1
defined by [OSPP]. They are not re-defined here again.

Page 32 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



6 Security Requirements

6.1 TOE Security Functional Requirements
All of the following SFRs are derived from the OSPP supplemented with additional SFRs for add-on
functionality.
The following table shows the SFRs for the TOE, and the operations performed on the components
according to CC part 1: iteration (Iter.), refinement (Ref.), assignment (Ass.) and selection (Sel.).

OperationsSourceBase
security
functional
component

Security functional requirementSecurity
functional
group Sel.Ass.Ref.Iter.

NoNoYesNoOSPPFAU_GEN.1 Audit data generationGeneral-purpose
computing
environment NoNoNoNoOSPPFAU_GEN.2 User identity association

NoYesNoNoOSPPFAU_SAR.1 Audit review

NoNoNoNoOSPPFAU_SAR.2 Restricted audit review

NoYesNoNoOSPPFAU_SEL.1 Selective audit

YesNoNoNoOSPPFAU_STG.1 Protected audit trail
storage

NoYesYesNoOSPPFAU_STG.3 Action in case of
possible audit data loss

YesYesYesNoOSPPFAU_STG.4 Prevention of audit data
loss

NoYesNoYesOSPPFDP_ACC.1FDP_ACC.1(PSO) Subset access
control

NoYesNoYesOSPPFDP_ACC.1FDP_ACC.1(TSO) Subset access
control

NoYesNoYesOSPPFDP_ACF.1FDP_ACF.1(PSO) Security attribute
based access control

NoYesNoYesOSPPFDP_ACF.1FDP_ACF.1(TSO) Security attribute
based access control

NoYesNoYesOSPPFDP_IFC.1 Complete information
flow control

YesYesYesYesOSPPFDP_IFF.1 Simple security attributes

YesNoNoNoOSPPFDP_RIP.2 Full residual information
protection

NoYesNoNoOSPPFIA_AFL.1 Authentication failure
handling

Page 33 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



OperationsSourceBase
security
functional
component

Security functional requirementSecurity
functional
group Sel.Ass.Ref.Iter.

NoYesNoNoOSPPFIA_ATD.1 User attribute definition

NoYesNoYesOSPPFIA_UAU.1FIA_UAU.1(RITE) Timing of
authentication

NoYesNoYesOSPPFIA_UAU.1FIA_UAU.1(HU) Timing of
authentication

YesYesNoNoOSPPFIA_UAU.5 Multiple authentication
mechanisms

NoNoNoNoOSPPFIA_UAU.7 Protected authentication
feedback

NoYesNoNoOSPPFIA_UID.1 Timing of identification

NoYesNoNoOSPPFIA_USB.1 User-subject binding

YesYesNoNoOSPPFIA_PK_EXT.1 Public key based
authentication

NoNoNoNoOSPPFPT_STM.1 Reliable time stamps

NoYesNoNoOSPPFTA_SSL.1 TSF-initiated session
locking

NoYesNoNoOSPPFTA_SSL.2 User-initiated locking

YesYesNoNoOSPPFTP_ITC.1 Inter-TSF trusted channel

NoYesNoYesOSPPFMT_MOF.1 Management of security
functions behaviour

Management
related
functionality

YesYesNoYesOSPPFMT_MSA.1FMT_MSA.1(PSO) Management of
object security attributes

NoYesNoYesOSPPFMT_MSA.1FMT_MSA.1(TSO) Management of
object security attributes

NoYesNoYesOSPPFMT_MSA.3FMT_MSA.3(DAC/PSO) Static
attribute initialisation

NoYesNoYesOSPPFMT_MSA.3FMT_MSA.3(DAC/TSO) Static
attribute initialisation

YesYesNoYesOSPPFMT_MSA.3FMT_MSA.3(NI) Static attribute
initialisation

NoYesNoNoOSPPFMT_MSA.4 Security attribute value
inheritance

NoYesNoYesOSPPFMT_MTD.1FMT_MTD.1(AE) Management of TSF
data

Page 34 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



OperationsSourceBase
security
functional
component

Security functional requirementSecurity
functional
group Sel.Ass.Ref.Iter.

YesYesNoYesOSPPFMT_MTD.1FMT_MTD.1(AS) Management of TSF
data

YesYesNoYesOSPPFMT_MTD.1FMT_MTD.1(AT) Management of TSF
data

YesYesNoYesOSPPFMT_MTD.1FMT_MTD.1(AF) Management of TSF
data

YesYesNoYesOSPPFMT_MTD.1FMT_MTD.1(CM)Management of TSF
data

YesYesNoYesOSPPFMT_MTD.1FMT_MTD.1(NI) Management of TSF
data

NoYesNoYesOSPPFMT_MTD.1FMT_MTD.1(IAT) Management of TSF
data

NoYesNoYesOSPPFMT_MTD.1FMT_MTD.1(IAF) Management of TSF
data

NoYesYesYesOSPPFMT_MTD.1FMT_MTD.1(IAU) Management of
TSF data

NoYesNoYesOSPPFMT_REV.1FMT_REV.1(OBJ) Revocation

NoYesNoYesOSPPFMT_REV.1FMT_REV.1(USR) Revocation

NoNoNoNoOSPPFMT_SMF_RMT.1 Remote
Management Capabilities

NoYesNoNoOSPPFMT_SMR.1 Security management
roles

Table 7: SFRs for the TOE

6.1.1 General-purpose computing environment

6.1.1.1 Audit data generation (FAU_GEN.1)
The TSF shall be able to generate an audit record of the following auditable events:FAU_GEN.1.1
a) Start-up and shutdown of the audit functions;
b) All auditable events for the not specified level of audit; and
c) all modifications to the set of events being audited;
d) all user authentication attempts;
e) all denied accesses to objects for which the access control policy defined in

the OSPP base applies;

Page 35 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



f) explicit modifications of access rights to objects covered by the access control
policies; and

g) other specifically defined auditable events as defined in the table in
FAU_GEN.1.2.

The TSF shall record within each audit record at least the following information:FAU_GEN.1.2
a) Date and time of the event, type of event, subject identity (if applicable),

and outcome (success or failure) of the event; and
b) for all management SFRs included in the Security Target: the identity of the

user that performed/attempted to perform the management operation
consisting of the user identifier and the identifier of the Linux user namespace
the user is confined to if applicable, an identification of what was managed
and the indication what the administrative user has changed as part of the
management operation, and

c) For each audit event type, based on the auditable event definitions of the
functional components included in the following table:

Events and Event specific informationSFR

Event: Any attempt to access the audit recordsFAU_SAR.1
● identity of the user attempting to access the

audit records
● success or failure

Event: Any attempt to modify the events to be
audited

FAU_SEL.1

● identity of the user attempting to modify the
events to be audited

● success or failure
● in case of success: modification to the set of

events to be audited

Event: Any attempt to access an object protected by
the SFP

FDP_ACF.1(PSO),
FDP_ACF.1(TSO)

● identity of the user attempting to access an
object protected by the SFP. Note: if the
operation is attempted by a subject not
operating on behalf of a user: identity of the
subject

● identity of the object the user attempts to access
● attempted operation
● success or failure

Event: Denied information flowFDP_IFF.1
● identification of the network interface
● reason for denying information flow

Page 36 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Events and Event specific informationSFR

Event: Exceeding the limit of unsuccessful
consecutive authentication attempts

FIA_AFL.1

● user identity where the limit was exceeded

Event: Verification that a user has been successfully
authenticated

FIA_UAU.1(HU)

● user identity
● indicator that the user has been successfully

authenticated
In the case the authentication is performed by the
TOE, also the event of a failed authentication attempt
needs to be auditable:
● user identity provided
● indicator that the authentication failed

Event: Re-authentication attempt to unlock a sessionFTA_SSL.1
● user identity
● success or failure of re-authentication

Event: Re-authentication attempt to unlock a sessionFTA_SSL.2
● user identity
● success or failure of re-authentication

Event: Initialization of a trusted channelFTP_ITC.1
● identity of the communication partner
● protocol used to establish the channel
● success or failure of setting up the channel

Table 8: Minimum set of auditable events with event specific information

6.1.1.2 User identity association (FAU_GEN.2)
For audit events resulting from actions of identified users, the TSF shall be able
to associate each auditable event with the identity of the user that caused the
event.

FAU_GEN.2.1

Application Note: The TOE maintains a "Login UID", which is inherited by every new process
spawned. This allows the TOE to identify the "real" originator of an event, regardless if he has
changed his real and / or effective and filesystem UID e. g. using the su or sudo commands or
executing a setuid or setgid program.

Page 37 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



6.1.1.3 Audit review (FAU_SAR.1)
The TSF shall provide the root user with the capability to read all audit
information from the audit records.

FAU_SAR.1.1

The TSF shall provide the audit records in a manner suitable for the user to
interpret the information.

FAU_SAR.1.2

Application Note: The audit records are stored in ASCII format and can therefore be read with a
normal editor or pager. In addition, the TOE provides specific tools that support the interpretation
of the audit trail.

Application Note: The audit trail is stored in a file that is readable to the users with the above
mentioned capabilities only.

6.1.1.4 Restricted audit review (FAU_SAR.2)
The TSF shall prohibit all users read access to the audit records, except those
users that have been granted explicit read-access.

FAU_SAR.2.1

Application Note: The protection of the audit records is based on the Unix permission bit settings
defined by FDP_ACC.1(PSO) supported by FDP_ACF.1(PSO).

6.1.1.5 Selective audit (FAU_SEL.1)
The TSF shall be able to select the set of events to be audited from the set of all
auditable events based on the following attributes:

FAU_SEL.1.1

a) Type of audit event;
b) Subject or user identity;
c) Outcome (success or failure) of the audit event;
d) Named object identity;
e) Access types on a particular object;
f) System call number;
g) Performing inter-field comparison rule where the specified

comparison rule triggers the audit event;
h) arguments to system calls;
i) access type to file system objects (read, write, execute, change

attributes);

Application Note: The TOE provides an application that allows specification of the audit rules
which injects the rules into the kernel for enforcement. The Linux kernel auditing mechanism obtains
all audit events and decides based on this rule set whether an event is forwarded to the audit
daemon for storage.

6.1.1.6 Protected audit trail storage (FAU_STG.1)
The TSF shall protect the stored audit records in the audit trail from unauthorised
deletion.

FAU_STG.1.1

The TSF shall be able to prevent unauthorised modifications to the audit records
in the audit trail.

FAU_STG.1.2

Page 38 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Application Note: The protection of the audit records is based on the mechanisms explained in
FAU_SAR.1.

6.1.1.7 Action in case of possible audit data loss (FAU_STG.3)
The TSF shall notify an authorized administrator if the audit trail exceeds a
root-user selectable, pre-defined size limit of the audit trail or if any of
the following condition is detected that may result in a loss of audit records :
no other condition .

FAU_STG.3.1

Application Note: The term "authorized administrator" refers to the user that is notified by the
auditd daemon. This daemon can be configured to notify different users in different ways. The
administrator of the system must ensure that the auditd is configured to send the notification to
the intended recipient.

Application Note: The alarm generated by the TOE can be configured to be a syslog message or
the execution of an administrator-specified application. This message or action of executing the
application is generated when the audit trail capacity exceeds the limit defined in the auditd.conf
file.

Application Note: The information of the threshold limit is done in the configuration file of the
auditd daemon. This file is only writable to the root user.

6.1.1.8 Prevention of audit data loss (FAU_STG.4)
The TSF shall be able to ignore the audited events and perform one of
the following administrator-defined actions:

FAU_STG.4.1

a) Stop all processes that attempt to generate an audit record;
b) Switch to single user mode;
c) Halt the system;
d) Notify the administrator
if the audit trail is full.

Application Note: The SFR lists all configuration possibilities that apply to the case when the audit
trail is full (i.e. the disk is full). Even though the SFR mentions the "ignoring of audit events" separate
from the other options, all options should be seen as equal where the root user can select one of
these options.

6.1.1.9 Subset access control (FDP_ACC.1(PSO))
The TSF shall enforce the Persistent Storage Object Access Control Policy
on

FDP_ACC.1.1

a) Subjects: all subjects defined with the Security Policy Model;
b) Objects: all file system objects defined with the Security Policy

Model;
c) Operations: read, write, execute (regular files), search (directories).

Page 39 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



6.1.1.10 Subset access control (FDP_ACC.1(TSO))
The TSF shall enforce the Transient Storage Object Access Control Policy
on

FDP_ACC.1.1

a) Subjects: all subjects defined with the Security Policy Model;
b) Objects: all IPC objects defined with the Security Policy Model;
c) Operations: read, receive, write, send.

6.1.1.11 Security attribute based access control (FDP_ACF.1(PSO))
The TSF shall enforce the Persistent Storage Object Access Control Policy
to objects based on the following:

FDP_ACF.1.1

a) Subject security attributes: file system UID, file system GID,
supplemental GIDs;

b) Object security attributes: owning UID, owning GID;
c) Access control security attributes maintained for each file system

object governing access to that object:
i. ACL for specific UIDs (ACL_USER),
ii. ACL for specific GIDs (ACL_GROUP),
iii. Maximum ACL for the file system object (ACL_MASK),
iv. Permission bits for the owning UID (equals to ACL_USER_OBJ

when using ACLs),
v. Permission bits for the owning GID (equals to ACL_GROUP_OBJ

when using ACLs),
vi. Permission bits for "world" (equals to ACL_OTHER when using

ACLs),
vii. The following permission bits: read, write, execute (for files),

search (for directories),
viii. The following access rights applicable to the file system object:

SAVETXT (directories),
d) Access control security attributes maintained for each partition

holding a file system: read-only, no-execute;
The TSF shall enforce the following rules to determine if an operation among
controlled subjects and controlled objects is allowed:
A subject must have search permission for every element of the
pathname and the requested access for the object. A subject has a
specific type access to an object if one of the following rules hold (the
order of the rules is applicable on a first-match basis):

FDP_ACF.1.2

a) The subject's filesystem UID is identical with the owning UID of the
object and the requested type of access is within the permission
bits defined for the owning UID (permission bits) or by ACL_USER_OBJ
(ACLs); or

b) ACLs: The subject's filesystem UID is identical with the UID specified
with ACL_USER of the object and the requested type of access is
within the permission bits defined in ACL_USER; or

Page 40 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



c) The subject's filesystem GID or one of the subject's supplemental
GIDs identical with the owning GID and the requested type of access
is within the permission bits defined for the owning GID (permission
bits), or by ACL_GROUP_OBJ when there is no ACL_MASK entry (ACLs),
or by the ACL_MASK entry (ACLs); or

d) ACLs: The subject's filesystem GID or one of the subject's
supplemental GIDs is identical with the GID specified with
ACL_GROUP of the object and the requested type of access is within
the permission bits defined in ACL_GROUP; or

e) The requested type of access is within the permission bits defined
for "world" (permission bits) or by ACL_OTHER (ACLs).

Application Note: The permission bits and the ACLs are inherently consistent as the TOE assigns
the permission bits to ACLs when ACLs are used. Without any ACLs specified for an object, the TOE
only uses the permission bits. If at least one ACL is present or when the ACL management tools
are applied for objects even without any ACL set, the permission bits are interpreted as outlined
above: the ACL entry of ACL_USER_OBJ contains the owning UID permission bits, the ACL entry of
ACL_GROUP_OBJ contains the owning GID permission bits, and the ACL entry of ACL_OTHER contains
the permission bits for "world". The ACL entries of ACL_USER_OBJ, ACL_GROUP_OBJ and ACL_OTHER
are only a different representation of the permission bits to users, they are not separate attributes
in addition to permission bits. The explicit specification of ACL_USER_OBJ, ACL_GROUP_OBJ and
ACL_OTHER in the rule set above in addition to the permission bits is only intended to aid the
evaluator or reader in understanding the overall ruleset.

Application Note: Due to the fact that the permission bits are an inherent part of the ACLs, there
is no precedence issue between permission bits and ACLs.

The TSF shall explicitly authorise access of subjects to objects based on the
following additional rules:

FDP_ACF.1.3

a) read and directory search operations are allowed for the subject
with the capability of CAP_DAC_READ_SEARCH;

b) write and execute operations are allowed for the subject with the
capability of CAP_DAC_OVERRIDE - the execute permission is granted
if the file system object object is marked with at least one executable
bit in its permission settings.

The TSF shall explicitly deny access of subjects to named objects based on the
following rules:

FDP_ACF.1.4

a) Any file system object in a file system that is mounted as read-only
cannot be modified, created or removed,

b) A regular file, a directory and a symbolic link in a file system that
is mounted as read-only cannot be written to,

c) A regular file in a file system that is mounted with the no-execute
flag cannot be executed,

d) Any file system object stored in a directory marked with the SAVETXT
bit cannot be modified or removed by subjects whose file system
UID is not equal to the owning UID of the file system object unless
the subject performing the operation possesses the CAP_FOWNER
capability.

Page 41 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Application Note: The no-execute flag as well as a missing execute bit in the permission bit set
or ACL for the requesting user can only be considered a convenience mechanism to prevent
accidental executions of files. A missing execute permission can be circumvented using the following
approaches:

● a binary file can be opened for reading (if the access control mechanism allows reading)
with the Linux loader ld-linux.so and implicitly executed. Even without a dedicated user
space loader, a user can implement the logic of the loader in an application that is marked
executable to use that logic for executing any file.

● a script file (i.e. any ASCII file starting with a Shebang can be invoked by executing the
interpreter referenced in the Shebang furnishing the ASCII file to be executed as input file.

6.1.1.12 Security attribute based access control (FDP_ACF.1(TSO))
The TSF shall enforce the Transient Storage Object Access Control Policy
to objects based on the following:

FDP_ACF.1.1

a) Subject security attributes: effective UID, file system UID, effective
GID, file system GID, supplemental GIDs;

b) Object security attributes: owning UID, owning GID;
c) Access control security attributes maintained for each IPC object

whose name is managed with a file governing access to that object:
see FDP_ACF.1(PSO);

d) Access control security attributes maintained for any other IPC
object governing access to that object:
i. Permission bits for the owning UID,
ii. Permission bits for the owning GID,
iii. Permission bits for "world",
iv. The following permission bits: read, write, execute,

The TSF shall enforce the following rules to determine if an operation among
controlled subjects and controlled objects is allowed:

FDP_ACF.1.2

a) IPC object whose name is managed with a file: see FDP_ACF.1(PSO);
b) Any other IPC object: A subject has a specific type access to an

object if one of the following rules hold (the order of the rules is
applicable on a first-match basis):
1. The subject's effective UID is identical with the owning UID of

the object and the requested type of access is within the
permission bits defined for the owning UID; or

2. The subject's effective GID or one of the subject's supplemental
GIDs identical with the owning GID and the requested type of
access is within the permission bits defined for the owning GID;
or

3. The requested type of access is within the permission bits
defined for "world".

The TSF shall explicitly authorise access of subjects to objects based on the
following additional rules:

FDP_ACF.1.3

a) IPC object whose name is managed with a file: see FDP_ACF.1(PSO);
b) Any other IPC object:

Page 42 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



1. read, write, send and receive operations are allowed for the
subject with the capability of CAP_IPC_OWNER.

The TSF shall explicitly deny access of subjects to named objects based on the
following rules:

FDP_ACF.1.4

a) IPC object whose name is managed with a file: see FDP_ACF.1(PSO);
b) Any other IPC object: none.

6.1.1.13 Complete information flow control (FDP_IFC.1)
The TSF shall enforce the Network Information Flow Control Policy onFDP_IFC.1.1
a) Originating entities:

i. unauthenticated external IT entities that send network data to a network
interface of the TOE;

ii. subjects within the TOE that send network data to unauthenticated
external IT entities via a network interface of the TOE;

b) Information:
i. Network data received by the TOE from an external IT entity;
ii. Network data provided to the TOE by a subject executing on the TOE

intended to be sent to an external IT entity via a network interface
controlled by the TOE;

iii. No other information;
c) Operations:

i. Receiving network data from an unauthenticated external IT entity;
ii. Sending network data to an unauthenticated IT entity by a subject within

the TOE;

6.1.1.14 Simple security attributes (FDP_IFF.1)
The TSF shall enforce the Network Information Flow Control Policy based on the
following types of subject and information security attributes:

FDP_IFF.1.1

a) ObjectInformation security attribute: the logical or physical network interface
through which the network data from an external IT entity entered the TOE
or is intended to be sent out;

b) TCP/IP information security attributes:
i. Source and destination IP address,
ii. Source and destination TCP port number,
iii. Source and destination UDP port number,
iv. Network protocol of TCP, UDP, ICMP
v. TCP header flags of SYN, ACK, FIN, RST, URG, PSH, TCP sequence

numbers

Application Note: The refinement is applied due to an obvious error in the OSPP.

Page 43 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



The TSF shall permit an information flow between a controlled subject and
controlled information via a controlled operation if the following rules hold: for
both receiving network data from an external IT entity and sending network data
by a subject within the TOE to an external IT entity:

FDP_IFF.1.2

a) if the set of rules defined in accordance with the security attributes defined
in FDP_IFF.1.3 define that the network data is discarded the network data
shall not be delivered by the TOE to the intended recipient;

b) if the set of rules defined in accordance with the security attributes defined
in FDP_IFF.1.3 define that the network data is to be delivered unaltered the
network data shall be delivered unaltered by the TOE to the intended
recipient;

c) if the set of rules defined in accordance with the security attributes defined
in FDP_IFF.1.3 define another action to be taken than discarding the network
data or delivering the data unaltered to the intended recipient, the TOE shall
perform this action.

The TSF shall enforce the following rules consisting of an identification when the
rule fires and an action to be taken when the rule fires:

FDP_IFF.1.3

a) Information security attribute matching based on the following security
attributes:
1. IP header information,
2. UDP header information,
3. TCP header information,
4. ICMP type and code,
5. incoming network interface,
6. outgoing network interface

b) Matching based on the state of a TCP connection, Statistical analysis
matching;

Performing one or more of the following actions with identified network data:
a) Discard the network datawithout any further processing, with sending

a notification to the sender;
b) Allow the network data to be processed unaltered by the TOE according to

the routing information maintained by the TOE;
c) No other actions.
The TSF shall explicitly authorise an information flow based on the following rules:
If the network data is not matched by the rule set and the default rule
of the packet filter is ACCEPT then the data is forwarded unaltered based
on the normal operation of the host system's networking stack .

FDP_IFF.1.4

The TSF shall explicitly deny an information flow based on the following rules:
If the network data is not matched by the rule set, one of the following
default rules applies:

FDP_IFF.1.5

a) DROP: the data is discarded.

Application Note: The default rule is configurable where exactly one of the above mentioned
default rules can be selected at any given time.

Application Note: The SFRs FDP_IFF.1 defines different rule sets implemented by the TOE covering
the FDP_IFF.1 SFR from the OSPP base.

Page 44 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



6.1.1.15 Full residual information protection (FDP_RIP.2)
The TSF shall ensure that any previous information content of a resource is made
unavailable upon the allocation of the resource to all objects, subjects or
subject/object related TSF data before the resource is assigned or made available
to another subject or user.

FDP_RIP.2.1

6.1.1.16 Authentication failure handling (FIA_AFL.1)
The TSF shall detect when an administrator-configurable positive integer within
a range of acceptable values of unsuccessful authentication attempts for the
authentication method password based authentication no other method occur
related to consecutive unsuccessful authentication attempts.

FIA_AFL.1.1

When the defined number of unsuccessful authentication attempts has beenmet,
the TSF shall

FIA_AFL.1.2

a) For all administrator accounts, "disable" the account for an
authorized administrator configurable time period such that there
can be no more than ten attempts per minute.

b) For all other accounts, disable the user logon account until it is
re-enabled by the authorized administrator.

c) For all disabled accounts, any response to an authentication attempt
given to the user shall not be based on the result of that
authentication attempt.

6.1.1.17 User attribute definition (FIA_ATD.1)
The TSF shall maintain the following list of security attributes belonging to
individual human users:

FIA_ATD.1.1

a) User identifier;
b) Group memberships;
c) User password;
d) Security roles;
e) Software token verification data;

Application Note: Please see the application note for FIA_UAU.5 for a list of token-based
authentication mechanisms and their associated tokens.

6.1.1.18 Timing of authentication (FIA_UAU.1(RITE))
The TSF shall allowFIA_UAU.1.1
a) the information flow covered by the Network Information Flow Control Policy;
b) SSH log-in: obtaining the list of allowed authentication methods;
c) Establishing a cryptographically secured network connection;
on behalf of the remote IT entity to be performed before the remote IT entity is
authenticated.
The TSF shall require each user to be successfully authenticated before allowing
any other TSF-mediated actions on behalf of that remote IT entity.

FIA_UAU.1.2

Page 45 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



6.1.1.19 Timing of authentication (FIA_UAU.1(HU))
The TSF shall allowFIA_UAU.1.1
a) Local console log-in: banner information;
on behalf of the user to be performed before the user is authenticated.
The TSF shall require each user to be successfully authenticated before allowing
any other TSF-mediated actions on behalf of that user.

FIA_UAU.1.2

6.1.1.20 Multiple authentication mechanisms (FIA_UAU.5)
The TSF shall provide the following authentication mechanisms:FIA_UAU.5.1
a) Authentication based on username and password (for human users);
b) Authentication based on SSH keys
c) Authentication based on remote authentication provider
to support user authentication.

Application Note: The TOE is able to maintain the following types of software tokens and their
verification data:

● SSH user keys: The TOE as server part is able to store the public part of the SSH user key
for the user account the user wants to access. When the TOE acts as an SSH client, the
TOE is able to store the private part of the SSH user key for the requesting user.

● Kerberos token: The TOE stores the Kerberos token retrieved from a Kerberos Ticket
Granting Server.

The TSF shall authenticate any user's claimed identity according to the following
rules:

FIA_UAU.5.2

a) Authentication based on username and password is performed for
TOE-originated requests and with credentials stored by the TSF by default
unless another authenticationmethod defined for human users in FIA_UAU.5.1
b is selected;

b) Users with expired passwords are required to create a new password
after correctly entering the expired password

c) For SSH, both, the password-based and key-based authentication
methods can be enabled at the same time. In this case, the
key-based authenticationmethod is tried before the password-based
authentication. If the key-based authentication succeeds, the user
is authenticated. If the key-based authentication fails, the
password-based authentication is applied. If the password-based
authentication fails, the user login request is denied.

d) For username and password based authentication, the order whether
the remote authentication provider or the local database is accessed
is configurable. If the authentication at either the locally store
credentials or at the remote authentication provider succeeds, the
authenticating user is granted access.

6.1.1.21 Protected authentication feedback (FIA_UAU.7)
The TSF shall provide only obscured feedback to the user while the authentication
is in progress.

FIA_UAU.7.1

Page 46 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



6.1.1.22 Timing of identification (FIA_UID.1)
The TSF shall allowFIA_UID.1.1
a) Establishing a cryptographically secured network connection;
b) Console log-in: banner information;
c) SSH log-in: obtaining the list of allowed authentication methods;
on behalf of the user to be performed before the user is identified.
The TSF shall require each user to be successfully identified before allowing any
other TSF-mediated actions on behalf of that user.

FIA_UID.1.2

6.1.1.23 User-subject binding (FIA_USB.1)
The TSF shall associate the following security attributes with subjects acting on
the behalf of that human user:

FIA_USB.1.1

a) The user identity;
b) The user security attributes that are used to enforce the Persistent

Storage Object Access Control Policy;
c) The user security attributes that are used to enforce the Transient

Storage Object Access Control Policy;
d) The SSH private key that can be used for subsequent identification

and authentication with the TSF or other remote IT systems;
e) Active roles;
f) Active groups;
The TSF shall enforce the following rules on the initial association of security
attributes with subjects acting on the behalf of users:

FIA_USB.1.2

a) Upon successful identification and authentication, the login UID,
the real UID, the filesystem UID and the effective UID shall be those
specified in the user entry for the user that has authenticated
successfully;

b) Upon successful identification and authentication, the real GID, the
filesystem GID and the effective GID shall be those specified via the
primary group membership attribute in the user entry;

c) Upon successful identification and authentication, the supplemental
GIDs shall be those specified via the supplemental group
membership assignment for the user entry;

Application Note: The various subject UIDs are all derived from the same numeric UID per user
entry stored in the /etc/passwd file.

Application Note: The various subject GIDs except the supplemental GIDs are all derived from
the same numeric GID per user entry stored in the /etc/passwd file.

Application Note: The subject's supplemental GIDs are derived from the username to group name
mappings in the /etc/group file. As the TOE only maintains numeric IDs for subjects, the username
and the group names need to be converted before instantiating the subject. The username to UID
mapping is provided in /etc/passwd and the group name to GID mapping is provided in /etc/group.

Page 47 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



The TSF shall enforce the following rules governing changes to the user security
attributes associated with subjects acting on the behalf of users:

FIA_USB.1.3

a) The effective and filesystem UID of a subject can be changed by the
use of an executable with the SETUID bit set. In this case the
program is executed with the effective and filesystem UID of the
owning UID of the file storing the program. These newly set effective
and filesystem UIDs are used for the DAC permission validation. The
real and login UID remain unchanged.

b) The effective and filesystem GID of a subject can be changed by the
use of an executable with the SETGID bit set. In this case the
program is executed with the effective and filesystem GID of the
owning GID of the file storing the program. These newly set effective
and filesystem GIDs are used for the DAC permission validation. The
real GID remains unchanged.

c) The real, effective and filesystem UID of a subject can be changed
by the use of the set*uid system call family for the calling
application. These system calls are restricted to processes
possessing the CAP_SETUID capability.

d) The real, effective and filesystem GID of a subject can be changed
by the use of the set*gid system call family for the calling
application. These system calls are restricted to processes
possessing the CAP_SETUID capability.

e) The set of supplemental GIDs of a subject can be changed by the
use of the setgroups system call for the calling application. These
system calls are restricted to processes possessing the CAP_SETUID
capability.

f) The set of effective and inheritable capabilities of a subject can be
changed by the use of an executable with activated file capabilities.
In this case the program obtains the following capabilities when
invoking the file with execve:
1. the process' the effective capability set gains the capabilities

defined by the permitted file capabilities set;
2. the process' inheritable capability set is ANDed with the

inheritable file capability set to form the new process'
inheritable capability set which defines the capability set that
will be retained after an execve system call.

Application Note: The applications "su" and "sudo" allow the calling user to change the filesystem
and effective UID either to root or to other users provided the authentication to "su" or "sudo" was
successful. Both application uses the SETUID bit with the owning UID of root as well as the set*uid
system calls to change to other UIDs before spawning a new shell or the given command. As both
applications rest on the above mentioned mechanisms, it is not listed as a separate mechanism to
modify the calling user's UIDs.

Application Note: The login UID is set by the PAM modules by inserting the intended UID into the
/proc/<PID>/loginuid file. This file can be written to only by subjects executing with the effective
UID of zero (root) and only for the calling process' own loginuid file. However, there is no application
except the PAM modules which access that proc file which implies that the login UID remains
unchanged after login when operating the TOE. Authorized administrators are not intended to
access that proc file.

Page 48 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



6.1.1.24 Public key based authentication (FIA_PK_EXT.1)
The TSF shall use public key cryptography as defined by the SSH protocol
specification given in [RFC4352]☝ for SSH public key authentication to
support authentication for SSH connections.

FIA_PK_EXT.1.1

The TSF shall store and protect certificates and/or public keys from unauthorized
deletion and modification.

FIA_PK_EXT.1.2

6.1.1.25 Reliable time stamps (FPT_STM.1)
The TSF shall be able to provide reliable time stamps.FPT_STM.1.1

6.1.1.26 TSF-initiated session locking (FTA_SSL.1)
The TSF shall lock an interactive session to a human user maintained by the TSF
after an administrator-configurable time interval of user inactivity by:

FTA_SSL.1.1

a) clearing or overwriting TSF controlled display devices, making the current
contents unreadable;

b) disabling any activity of the user's TSF controlled access/TSF controlled
display devices other than unlocking the session.

The TSF shall require the following events to occur prior to unlocking the session:FTA_SSL.1.2
a) Successful re-authentication with the credentials of the user owning the

session using password based authentication;
b) No other events .

6.1.1.27 User-initiated locking (FTA_SSL.2)
The TSF shall allow user-initiated locking of the user's own interactive session
maintained by the TSF, by:

FTA_SSL.2.1

a) clearing or overwriting TSF controlled display devices, making the current
contents unreadable;

b) disabling any activity of the user's TSF controlled data access/TSF controlled
display devices other than unlocking the session.

The TSF shall require the following events to occur prior to unlocking the session:FTA_SSL.2.2
a) Successful re-authentication with the credentials of the user owning the

session using password based authentication;
b) No other events .

6.1.1.28 Inter-TSF trusted channel (FTP_ITC.1)
The TSF shall provide a communication channel between itself and another trusted
IT product that is logically distinct from other communication channels and
provides assured identification of its end points and protection of the channel
data from modification and disclosure using the following mechanisms:
Cryptographically-protected communication channel using

FTP_ITC.1.1

i. SSH protocol version 2 as defined in RFCs 4251, 4252, 4253, and
4254 with a combination of the following cipher suites defined there:

Page 49 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

http://www.ietf.org/rfc/rfc4352.txt


1. 3DES-CBC, AES256-CBC, AES128-CBC, AES192-CBC,
AEAD_AES_128_GCM (as defined in RFC 5647),
AEAD_AES_256_GCM (as defined in RFC 5647) for encryption;

2. HMAC_SHA1, HMAC-SHA1-96 for integrity;
3. DIFFIE-HELLMAN-GROUP14-SHA1,

DIFFIE-HELLMAN-GROUP1-SHA1 for key exchange;
4. SSH-DSS, SSH-RSA, no other public key algorithms for public

key encryption;

The TSF shall permit the TSF, another trusted IT product to initiate
communication via the trusted channel.

FTP_ITC.1.2

The TSF shall initiate communication via the trusted channel for all security
functions specified in the ST that interact with remote trusted IT systems and
no other conditions or functions.

FTP_ITC.1.3

Application Note: The SSH protocol implements a bi-directional authentication mechanism as
follows:

● Server-side authentication: the user identification and authentication via user name and
password / SSH user key allows the server to authenticate the client.

● Client-side authentication: the SSH host key verification performed by the SSH client during
each connection attempt allows the client to authenticate the server.

6.1.2 Management related functionality

6.1.2.1 Management of security functions behaviour (FMT_MOF.1)
The TSF shall restrict the ability to modify the behaviour of the functions password
based user authentication to the root user by allowing those users to specify
rules for acceptable passwords that:

FMT_MOF.1.1

a) allow for uppercase characters, lowercase characters, digits, and special
characters to be used in passwords

b) define a minimum password length of 8 characters or more (at least up to
15 characters)

c) define that passwords must have at least one digit and one special character
d) reject passwords used by the same user before up to a history of at least 6

passwords

6.1.2.2 Management of object security attributes (FMT_MSA.1(PSO))
The TSF shall enforce the Persistent Storage Object Access Control Policy
to restrict the ability to modify and change_default the security attributes of
the objects covered by the SFP to the owner of the object and root user .

FMT_MSA.1.1

6.1.2.3 Management of object security attributes (FMT_MSA.1(TSO))
The TSF shall enforce the Transient Storage Object Access Control Policy
to restrict the ability to modify the security attributes of the objects covered by
the SFP to the owner of the object and users with processes granted the
CAP_FOWNER capability.

FMT_MSA.1.1

Page 50 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



6.1.2.4 Static attribute initialisation (FMT_MSA.3(DAC/PSO))
The TSF shall enforce the Persistent Storage Object Access Control Policy
to provide restrictive default values for security attributes that are used to enforce
the SFP.

FMT_MSA.3.1

The TSF shall allow theFMT_MSA.3.2
a) root user for a global setting applied during logon;
b) each user for a setting applicable to his processes;
c) users with write permissions to a directory for setting default ACLs
to specify alternative initial values to override the default values when an object
or information is created.

Application Note: The global default value for permission bits is specified with the umask value
which specifies the permission bits for newly created objects. This value has an initial setting of
022 or the value specified in /etc/login.defs. Only the root user can manage that initial value as
this file is writable to root only. Users can change their umask value at any time using the umask(2)
system call. For ACLs, the default ACL is provided for for the root directory which, in case of absence
of a default ACL entry is consistent with the umask.

6.1.2.5 Static attribute initialisation (FMT_MSA.3(DAC/TSO))
The TSF shall enforce the Transient Storage Object Access Control Policy
to provide restrictive default values for security attributes that are used to enforce
the SFP.

FMT_MSA.3.1

The TSF shall allow theFMT_MSA.3.2
a) root user for a global setting applied during logon;
b) each user for a setting applicable to his processes
to specify alternative initial values to override the default values when an object
or information is created.

Application Note: The global default value for permission bits is specified with the umask value
which specifies the permission bits for newly created objects. This value has an initial setting of
022 or the value specified in /etc/login.defs. Only the root user can manage that initial value as
this file is writable to root only. Users can change their umask value at any time using the umask(2)
system call.

6.1.2.6 Static attribute initialisation (FMT_MSA.3(NI))
The TSF shall enforce the Network Information Flow Control Policy to provide
permissive default values for security attributes that are used to enforce the
SFP.

FMT_MSA.3.1

The TSF shall allow the root user to specify alternative initial values to override
the default values when an object or information is created.

FMT_MSA.3.2

Application Note: The default value specified in this SFR applies to the default for the packet
filter after boot. The administrator can configure alternative default values as outlined in FDP_IFF.1.

Application Note: The iptables command uses a netlink interfact to the kernel which requires
that the caller possesses the CAP_NET_ADMIN capability.

Page 51 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



6.1.2.7 Security attribute value inheritance (FMT_MSA.4)
The TSF shall use the following rules to set the value of security attributes for
objects covered by an access control policy:

FMT_MSA.4.1

a) The newly created object's owning UID is set to the effective UID of
the calling subject;

b) The newly created object's owning GID is set to the effective GID of
the calling subject with the following exception for file system
objects: if the parent directory holding the newly created file system
object is marked with the SETGID permission bit, the owning GID of
the newly created file system object is set to the owning GID of the
parent directory;

c) The newly created object's permission bits are derived from the
calling subject's umask value by masking out the umask bits from
the permission bit set granting full access;

d) The newly created object's ACLs are derived from the default ACL
specified for the parent directory the newly created file system
object is stored in, if existant. Otherwise, no ACL is set.

.

6.1.2.8 Management of TSF data (FMT_MTD.1(AE))
The TSF shall restrict the ability to query, modify the set of audited events to
processes with the capability CAP_AUDIT_CONTROL.

FMT_MTD.1.1

Application Note: This SFR applies to FAU_SEL.1.

Application Note: Using the audit tools which in turn use the netlink interface, an administrator
can configure the audit rules.

6.1.2.9 Management of TSF data (FMT_MTD.1(AS))
The TSF shall restrict the ability to clear delete, configure the storage location
the audit storage to the root user.

FMT_MTD.1.1

Application Note: This SFR applies to FAU_STG.1 where the directory used for storing the audit
trail is configured.

Application Note: The configuration of these parameters is performed with the configuration file
/etc/auditd/auditd.conf which is writable to the root user only.

6.1.2.10 Management of TSF data (FMT_MTD.1(AT))
The TSF shall restrict the ability to modify add, delete theFMT_MTD.1.1
a) threshold of the audit trail when an action is performed;
b) action when the threshold is reached
to the root user.

Application Note: This SFR applies to FAU_STG.3.

Application Note: The configuration of these parameters is performed with the configuration file
/etc/auditd/auditd.conf which is writable to the root user only.

Page 52 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



6.1.2.11 Management of TSF data (FMT_MTD.1(AF))
The TSF shall restrict the ability to modify add, delete the actions to be taken
in case of audit storage failure to the root user.

FMT_MTD.1.1

Application Note: This SFR applies to FAU_STG.4.

Application Note: The configuration of these parameters is performed with the configuration file
/etc/auditd/auditd.conf which is writable to the root user only.

6.1.2.12 Management of TSF data (FMT_MTD.1(CM))
The TSF shall restrict the ability to import, enable, disable the digital certificates
or public keys for remote entity authentication no other security function to

FMT_MTD.1.1

a) the account owner and the user with the CAP_DAC_OVERRIDE for
SSH

.

Application Note: This SFR applies to FTP_ITC.1.

6.1.2.13 Management of TSF data (FMT_MTD.1(NI))
The TSF shall restrict the ability to define, query, modify, delete change_default
the security attributes for the rules governing the

FMT_MTD.1.1

a) identification of and matching of network data;
b) actions performed on the identified network data;
to users with processes granted the CAP_NET_ADMIN capability.

Application Note: This SFR applies to FDP_IFF.1.

Application Note: The iptables command use a netlink interface to the kernel which requires that
the caller possesses the CAP_NET_ADMIN capability.

6.1.2.14 Management of TSF data (FMT_MTD.1(IAT))
The TSF shall restrict the ability to modify the threshold for unsuccessful
authentication attempts to the root user.

FMT_MTD.1.1

Application Note: This SFR applies to FIA_AFL.1.

Application Note: The configuration of these parameters is performed with the PAM configuration
files which are writable to the root user only.

6.1.2.15 Management of TSF data (FMT_MTD.1(IAF))
The TSF shall restrict the ability to re-enable the authentication to the account
subject to authentication failure to the root user.

FMT_MTD.1.1

Application Note: This SFR applies to FIA_AFL.1.

Application Note: The account locking information is stored in the directory /var/log/faillock. Using
the pam_faillock application which modifies this file, the account can be unlocked. The DAC
permissions of that file ensure that only the root user can write to it.

Page 53 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



6.1.2.16 Management of TSF data (FMT_MTD.1(IAU))
The TSF shall restrict the ability to initialize, modify, delete the user security
attributes stored in local databases to

FMT_MTD.1.1

a) the root user,
b) users authorized to modify their own authentication data
.

Application Note: This SFR applies to FIA_ATD.1, FIA_UAU.1(HU), FIA_UAU.1(RITE), and FIA_UID.1.

Application Note: The configuration of these parameters is performed with the configuration files
/etc/passwd and /etc/shadow which are writable to the root user only. The TOE also supports remote
authentication data stores such as LDAP or Kerberos. In this case, the TOE does not have the ability
to protect these databases. This is ensured by the assumption of A.PEER.MGT.

6.1.2.17 Revocation (FMT_REV.1(OBJ))
The TSF shall restrict the ability to revoke object security attributes defined by
SFPs associated with the corresponding object under the control of the TSF to

FMT_REV.1.1

a) DAC permissions: owners of the object and authorized administrator;
b) Other security attributes: authorized administrator.

Application Note: The privileges that constitute an authorized administrator are defined in the
abovementioned FMT_* SFRs which specify the privileges needed tomodify object security attributes.
The same privileges are required to revoke these security attributes.

The TSF shall enforce the following rules:FMT_REV.1.2
a) The access rights associated with an object shall be enforced when an access

check is made;
b) no specification of other revocation rules.

Application Note: Revocation of security attributes for named objects imply the revocation of
access granted to users other than the owner of the object. Note that the DAC ownership
management (which can be also considered as a form of access revocation) is specified in
FMT_MSA.1(PSO).

6.1.2.18 Revocation (FMT_REV.1(USR))
The TSF shall restrict the ability to revoke user security attributes defined by the
SFP associated with the corresponding user under the control of the TSF to
authorized administrators .

FMT_REV.1.1

Application Note: The privileges that constitute an authorized administrator are defined in the
abovementioned FMT_* SFRs which specify the privileges needed tomodify object security attributes.
The same privileges are required to revoke these security attributes.

The TSF shall enforce the following rules:FMT_REV.1.2
a) The enforcement of the revocation of security-relevant authorizations with

the next user-subject binding process during the next authentication of the
user;

b) No other rules

Page 54 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Application Note: The changes are enforced for a new session when the user affected by the
change initiates that new session.

6.1.2.19 Remote Management Capabilities (FMT_SMF_RMT.1)
The TSF shall allow management functions also to be performed from a remote
IT entity using a trusted channel established in accordance with the requirements
stated in FTP_ITC.1.

FMT_SMF_RMT.1.1

6.1.2.20 Security management roles (FMT_SMR.1)
The TSF shall maintain the roles:FMT_SMR.1.1
a) authorized administrator;
b) regular user;
c) no other roles.
The TSF shall be able to associate users with roles.FMT_SMR.1.2

Application Note: Administrative actions can only be performed when the calling subject possesses
the above mentioned capabilities which in the TOE configuration is only provided to processes
executing with the effective UID or file system UID of zero (also called the root user). As the account
for the root user is disabled for direct logon, authorized administrators are defined as users who
are assigned to the "wheel" group. This group allows the use of the "su" application which is the
only way to assume the root user capabilities. In addition, the "sudo" application allows granting
users the privilege to execute commands with a different user ID, including the root user.

6.2 Security Functional Requirements Rationale

6.2.1 Coverage
The following table provides a mapping of SFR to the security objectives, showing that each security
functional requirement addresses at least one security objective.

ObjectivesSecurity functional requirements

O.AUDITINGFAU_GEN.1

O.AUDITINGFAU_GEN.2

O.AUDITINGFAU_SAR.1

O.AUDITINGFAU_SAR.2

O.AUDITINGFAU_SEL.1

O.AUDITINGFAU_STG.1

O.AUDITINGFAU_STG.3

O.AUDITINGFAU_STG.4

O.DISCRETIONARY.ACCESSFDP_ACC.1(PSO)

O.SUBJECT.COMFDP_ACC.1(TSO)

Page 55 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



ObjectivesSecurity functional requirements

O.DISCRETIONARY.ACCESSFDP_ACF.1(PSO)

O.SUBJECT.COMFDP_ACF.1(TSO)

O.NETWORK.FLOWFDP_IFC.1

O.NETWORK.FLOWFDP_IFF.1

O.AUDITING,
O.DISCRETIONARY.ACCESS,
O.I&A,
O.NETWORK.FLOW,
O.SUBJECT.COM

FDP_RIP.2

O.I&AFIA_AFL.1

O.I&AFIA_ATD.1

O.I&A,
O.NETWORK.FLOW

FIA_UAU.1(RITE)

O.I&AFIA_UAU.1(HU)

O.I&AFIA_UAU.5

O.I&AFIA_UAU.7

O.I&AFIA_UID.1

O.I&AFIA_USB.1

O.TRUSTED_CHANNELFIA_PK_EXT.1

O.AUDITINGFPT_STM.1

O.UNATTENDED_SESSIONFTA_SSL.1

O.UNATTENDED_SESSIONFTA_SSL.2

O.TRUSTED_CHANNELFTP_ITC.1

O.I&A,
O.MANAGE

FMT_MOF.1

O.MANAGEFMT_MSA.1(PSO)

O.MANAGEFMT_MSA.1(TSO)

O.MANAGEFMT_MSA.3(DAC/PSO)

O.MANAGEFMT_MSA.3(DAC/TSO)

O.MANAGEFMT_MSA.3(NI)

O.MANAGEFMT_MSA.4

O.MANAGEFMT_MTD.1(AE)

Page 56 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



ObjectivesSecurity functional requirements

O.MANAGEFMT_MTD.1(AS)

O.MANAGEFMT_MTD.1(AT)

O.MANAGEFMT_MTD.1(AF)

O.MANAGEFMT_MTD.1(CM)

O.MANAGEFMT_MTD.1(NI)

O.MANAGEFMT_MTD.1(IAT)

O.MANAGEFMT_MTD.1(IAF)

O.MANAGEFMT_MTD.1(IAU)

O.MANAGEFMT_REV.1(OBJ)

O.MANAGEFMT_REV.1(USR)

O.MANAGEFMT_SMF_RMT.1

O.MANAGEFMT_SMR.1

Table 9: Mapping of security functional requirements to security objectives

6.2.2 Sufficiency
The following rationale provides justification for each security objective for the TOE, showing that
the security functional requirements are suitable to meet and achieve the security objectives.

RationaleSecurity objectives

The events to be audited are defined in [FAU_GEN.1] and are associated
with the identity of the user that caused the event [FAU_GEN.2].
Authorized users are provided the capability to read the audit records

O.AUDITING

[FAU_SAR.1], while all other users are denied access to the audit records
[FAU_SAR.2]. The authorized user must have the capability to specify
which audit records are generated [FAU_SEL.1]. The TOE prevents the
audit log from being modified or deleted [FAU_STG.1] and ensures that
the audit log is not lost due to resource shortage [FAU_STG.3,
FAU_STG.4]. To support auditing, the TOE is able to maintain proper time
stamps [FPT_STM.1].

The protection of reused resources ensures that no data leaks from other
protected sources [FDP_RIP.2].

The TSF must control access to resources based on the identity of users
that are allowed to specify which resources they want to access for
storing their data.

O.DISCRETIONARY.ACCESS

The access control policy must have a defined scope of control
[FDP_ACC.1(PSO)]. The rules for the access control policy are defined
[FDP_ACF.1(PSO)].

Page 57 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



RationaleSecurity objectives

The protection of reused resources ensures that no data leaks from other
protected sources [FDP_RIP.2].

The network information flow control mechanism controls the information
flowing between different entities [FDP_IFC.1]. The TOE implements a
rule-set governing the information flow [FDP_IFF.1]. Information flow

O.NETWORK.FLOW

control is enforced for unauthenticated remote IT entity, allowing
authenticated remote IT entity to be excluded from the rules of the
network information flow control policy (FIA_UAU.1(RITE)).

The protection of reused resources ensures that no data leaks from other
protected sources [FDP_RIP.2].

The TSF must control the exchange of data using transient storage
objects between subjects based on the identity of users.

O.SUBJECT.COM

The access control policy must have a defined scope of control
[FDP_ACC.1(TSO)]. The rules for the access control policy are defined
[FDP_ACF.1(TSO)].

The protection of reused resources ensures that no data leaks from other
protected sources [FDP_RIP.2].

The TSF must ensure that only authorized users gain access to the TOE
and its resources. Users authorized to access the TOE must use an
identification and authentication process [FIA_UID.1, FIA_UAU.1(HU),

O.I&A

FIA_UAU.1(RITE)]. Multiple I&A mechanisms are allowed as specified in
[FIA_UAU.5]. To ensure authorized access to the TOE, authentication
data is protected [FIA_ATD.1, FIA_UAU.7]. Proper authorization for
subjects acting on behalf of users is also ensured [FIA_USB.1]. To support
the strength of authentication methods, the TOE is capable of identifying
and reacting to unsuccessful authentication attempts [FIA_AFL.1] and
define password rules [FMT_MOF.1].

The protection of reused resources ensures that no data leaks from other
protected sources [FDP_RIP.2] are present.

The TOE provides management interfaces for:O.MANAGE
● the access control policies [FMT_MSA.1(PSO), FMT_MSA.1(TSO),

FMT_MSA.3(DAC/PSO), FMT_MSA.3(DAC/TSO)];
● the information flow control policy [FMT_MSA.3(NI), FMT_MTD.1(NI)];
● the auditing aspects [FMT_MTD.1(AE), FMT_MTD.1(AS),

FMT_MTD.1(AT), FMT_MTD.1(AF)];
● digital certificates [FMT_MTD.1(CM}];
● the identification and authentication aspects [FMT_MTD.1(IAT),

FMT_MTD.1(IAF), FMT_MTD.1(IAU)].

Persistently stored user data is stored either in hierarchical or relational
fashion, which implies an inheritance of security attributes from parent
object [FMT_MSA.4].

The rights management for the different management aspects is defined
with [FMT_SMR.1].

Page 58 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



RationaleSecurity objectives

The management interfaces for the revocation of user and object
attributes is provided with [FMT_REV.1(OBJ) and FMT_REV.1(USR)].

Management of password rules is defined in [FMT_MOF.1].

Remote management capabilities need to be provided as defined in
[FMT_SMF_RMT.1].

The TOE provides a trusted channel protecting communication between
a remote trusted IT system and itself [FTP_ITC.1]. Digital certificates
must be used for remote entity authentication [FIA_PK_EXT.1].

O.TRUSTED_CHANNEL

User-initiated and TSF-initiated session locking [FTA_SSL.1, FTA_SSL.2]
protect the authenticated user's session.

O.UNATTENDED_SESSION

Table 10: Security objectives for the TOE rationale

6.2.3 Security requirements dependency analysis
The following table demonstrates the dependencies of SFRs modeled in CC Part 2 and how the SFRs
for the TOE resolve those dependencies.

ResolutionDependenciesSecurity functional
requirement

FPT_STM.1FPT_STM.1FAU_GEN.1

FAU_GEN.1FAU_GEN.1FAU_GEN.2

FIA_UID.1FIA_UID.1

FAU_GEN.1FAU_GEN.1FAU_SAR.1

FAU_SAR.1FAU_SAR.1FAU_SAR.2

FAU_GEN.1FAU_GEN.1FAU_SEL.1

FMT_MTD.1(AE)FMT_MTD.1

FAU_GEN.1FAU_GEN.1FAU_STG.1

FAU_STG.1FAU_STG.1FAU_STG.3

FAU_STG.1FAU_STG.1FAU_STG.4

FDP_ACF.1(PSO)FDP_ACF.1FDP_ACC.1(PSO)

FDP_ACF.1(TSO)FDP_ACF.1FDP_ACC.1(TSO)

FDP_ACC.1(PSO)FDP_ACC.1FDP_ACF.1(PSO)

FMT_MSA.3(DAC/PSO)FMT_MSA.3

Page 59 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



ResolutionDependenciesSecurity functional
requirement

FDP_ACC.1(TSO)FDP_ACC.1FDP_ACF.1(TSO)

FMT_MSA.3(DAC/TSO)FMT_MSA.3

FDP_IFF.1FDP_IFF.1FDP_IFC.1

FDP_IFC.1FDP_IFC.1FDP_IFF.1

FMT_MSA.3(NI)FMT_MSA.3

No dependenciesFDP_RIP.2

FIA_UAU.1(HU)FIA_UAU.1FIA_AFL.1

No dependenciesFIA_ATD.1

FIA_UID.1FIA_UID.1FIA_UAU.1(RITE)

FIA_UID.1FIA_UID.1FIA_UAU.1(HU)

No dependenciesFIA_UAU.5

FIA_UAU.1(HU)FIA_UAU.1FIA_UAU.7

No dependenciesFIA_UID.1

FIA_ATD.1FIA_ATD.1FIA_USB.1

FMT_MTD.1(CM)FMT_MTD.1FIA_PK_EXT.1

No dependenciesFPT_STM.1

FIA_UAU.1(HU)FIA_UAU.1FTA_SSL.1

FIA_UAU.1(HU)FIA_UAU.1FTA_SSL.2

No dependenciesFTP_ITC.1

FMT_SMR.1FMT_SMR.1FMT_MOF.1

See OSPP rationale.FMT_SMF.1

FDP_ACC.1(PSO)[FDP_ACC.1 or FDP_IFC.1]FMT_MSA.1(PSO)

FMT_SMR.1FMT_SMR.1

See OSPP rationale.FMT_SMF.1

FDP_ACC.1(PSO)[FDP_ACC.1 or FDP_IFC.1]FMT_MSA.1(TSO)

FMT_SMR.1FMT_SMR.1

See OSPP rationale.FMT_SMF.1

Page 60 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



ResolutionDependenciesSecurity functional
requirement

FMT_MSA.1(PSO)FMT_MSA.1FMT_MSA.3(DAC/PSO)

FMT_SMR.1FMT_SMR.1

FMT_MSA.1(TSO)FMT_MSA.1FMT_MSA.3(DAC/TSO)

FMT_SMR.1FMT_SMR.1

See OSPP rationale.FMT_MSA.1FMT_MSA.3(NI)

FMT_SMR.1FMT_SMR.1

FDP_ACC.1(PSO)[FDP_ACC.1 or FDP_IFC.1]FMT_MSA.4

FMT_SMR.1FMT_SMR.1FMT_MTD.1(AE)

See OSPP rationale.FMT_SMF.1

FMT_SMR.1FMT_SMR.1FMT_MTD.1(AS)

See OSPP rationale.FMT_SMF.1

FMT_SMR.1FMT_SMR.1FMT_MTD.1(AT)

See OSPP rationale.FMT_SMF.1

FMT_SMR.1FMT_SMR.1FMT_MTD.1(AF)

See OSPP rationale.FMT_SMF.1

FMT_SMR.1FMT_SMR.1FMT_MTD.1(CM)

See OSPP rationale.FMT_SMF.1

FMT_SMR.1FMT_SMR.1FMT_MTD.1(NI)

See OSPP rationale.FMT_SMF.1

FMT_SMR.1FMT_SMR.1FMT_MTD.1(IAT)

See OSPP rationale.FMT_SMF.1

FMT_SMR.1FMT_SMR.1FMT_MTD.1(IAF)

See OSPP rationale.FMT_SMF.1

FMT_SMR.1FMT_SMR.1FMT_MTD.1(IAU)

See OSPP rationale.FMT_SMF.1

FMT_SMR.1FMT_SMR.1FMT_REV.1(OBJ)

FMT_SMR.1FMT_SMR.1FMT_REV.1(USR)

Page 61 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



ResolutionDependenciesSecurity functional
requirement

FMT_SMR.1FMT_SMR.1FMT_SMF_RMT.1

FIA_UID.1FIA_UID.1FMT_SMR.1

Table 11: TOE SFR dependency analysis

6.3 Security Assurance Requirements
The security assurance requirements for this evaluation are defined in [GPOSPP2] and will be taken
for this evaluation as defined there.
The security assurance requirements (SARs) for the TOE are the components defined in the
evaluation assurance package dummy.
The following table shows the SARs, and the operations performed on the components according
to CC part 3: iteration (Iter.), refinement (Ref.), assignment (Ass.) and selection (Sel.).

OperationsSourceSecurity assurance requirementSecurity
assurance class

Sel.Ass.Ref.Iter.

NoNoNoNoCC Part 3ASE_INT.1 ST introductionASE Security
Target evaluation

NoNoNoNoCC Part 3ASE_CCL.1 Conformance claims

NoNoNoNoCC Part 3ASE_SPD.1 Security problem definition

NoNoNoNoCC Part 3ASE_OBJ.2 Security objectives

NoNoNoNoCC Part 3ASE_ECD.1 Extended components definition

NoNoNoNoCC Part 3ASE_REQ.2 Derived security requirements

NoNoNoNoCC Part 3ASE_TSS.1 TOE summary specification

NoNoNoNoCC Part 3ADV_ARC.1 Security architecture descriptionADVDevelopment

NoNoNoNoCC Part 3ADV_FSP.1 Basic functional specification

NoNoNoNoCC Part 3AGD_OPE.1 Operational user guidanceAGD Guidance
documents

NoNoNoNoCC Part 3AGD_PRE.1 Preparative procedures

NoNoNoNoCC Part 3ALC_CMC.3 Authorisation controlsALC Life-cycle
support

NoNoNoNoCC Part 3ALC_CMS.3 Implementation representation CM
coverage

NoNoNoNoCC Part 3ALC_DEL.1 Delivery procedures

NoNoNoNoCC Part 3ALC_FLR.3 Systematic flaw remediation

NoNoNoNoCC Part 3ALC_LCD.1 Developer defined life-cycle model

Page 62 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



OperationsSourceSecurity assurance requirementSecurity
assurance class

Sel.Ass.Ref.Iter.

NoNoNoNoCC Part 3ATE_COV.2 Analysis of coverageATE Tests

NoNoNoNoCC Part 3ATE_DPT.1 Testing: basic design

NoNoNoNoCC Part 3ATE_FUN.1 Functional testing

NoNoNoNoCC Part 3ATE_IND.2 Independent testing - sample

NoNoNoNoCC Part 3AVA_VAN.2 Vulnerability analysisAVA Vulnerability
assessment

Table 12: SARs

6.4 Security Assurance Requirements Rationale
The justification of the assurance requirements is given in [GPOSPP1].

Page 63 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



7 TOE Summary Specification

7.1 General System Overview
The section about the general system overview describes the Linux operating system in general
terms. It therefore also describes mechanisms which are not claimed by SFRs to support the general
understanding of the system. With section 1.5.3, those unclaimed functions are properly identified.
The Target of Evaluation (TOE) is the Linux distribution in the version specified in the ST executing
on the hardware specified in the ST.
Multiple TOE systems can be connected via a physically-protected Local Area Network (LAN).The
environment is allows interconnecting a series of TOE systems. Each TOE system is executing the
Linux operating system on hardware system identified in the ST. Each computer provides the same
set of local services, such as file, memory, and process management. Each computer also provides
network services, such as remote secure shells and file transfers, to users on other computers. A
user logs in to a host computer and requests services from the local host and also from other
computers within the LAN.
User programs issue network requests by sending Transmission Control Protocol (TCP) or User
Datagram Protocol (UDP) messages to another computer. Some network protocols, such as Secure
Shell (SSH), can start a shell process for the user on another computer, while others are handled
by trusted server daemon processes.
The TOE system provides a user Identification and Authentication (I&A) mechanism by requiring
each user to log in with proper password at the local workstation, and also at any remote computer
where the user can enter commands into a shell program (for example, remote SSH sessions). Each
computer enforces a set of the following policies:

● Discretionary Access Control (DAC) policy, based on UNIX®-style mode bits
● an optional Access Control List (ACL)
● Mandatory Access Control (MAC) policy using Security Enhanced Linux (SELinux) extensions

for the named objects under its control.

7.1.1 High-level product overview
The TOE system can be connected to other systems by a protected LAN. Linux provides a multi-user,
multi-processing environment, where users interact with the operating system by issuing commands
to a command interpreter. Users issue the commands by running system utilities, or by developing
their own software to run in their own protected environments.
The following subsections present a structural overview of the hardware and software that make
up an individual host computer. This single-computer architecture is one of the configurations
permitted under this evaluation.

7.1.1.1 Host computer structure
This section describes the structure of Linux for an individual host computer. As shown in the
following figure, the system consists of hardware, the Linux kernel, trusted non-kernel processes,
TSF databases, and untrusted processes. In this figure, the TOE itself consists of Kernel Mode
software, User Mode software, and hardware. The TOE Security Functions (TSF) are shaded in gray.
Details such as interactions within the kernel, inter-process communications, and direct user access
to the hardware are omitted.

Page 64 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Figure 1: Overal Structure of TOE

The planar components, including CPUs, memory, buses, on-board adapters, and support circuitry;
additional adapters, including LAN and video; and, other peripherals, including storage devices,
monitors, keyboards, and front-panel hardware, constitute the hardware.
The Linux kernel includes the base kernel and separately-loadable kernel modules and device
drivers. The kernel consists of the bootable kernel image and its loadable modules. The kernel
implements the Linux system call interface, which provides system calls for file management,
memory management, process management, networking, and other TSF (logical subsystems)
functions addressed in the Functional Descriptions chapter of this document. An incoming request
from user space passes the system call layer and it checked for its input and permission. After
these checks, the requested work is executed which may need to access device drivers to obtain
hardware access. The structure of the Linux kernel is described further in the Software Architecture
chapter of this document.
Non-kernel TSF software includes programs that run with the administrative privilege, such as the
sshd, and systemd daemons. The TSF also includes the configuration files that define authorized
users, groups of users, services provided by the system, and other configuration data. Not included
as TSF are shells used by administrators, and standard utilities invoked by administrators.
The Linux system, which includes hardware, kernel-mode software, non-kernel programs, and
databases, provides a protected environment in which users and administrators run the programs,
or sequences of CPU instructions. Programs execute as processes with the identity of the users
that started them (except for some exceptions defined in this document), and with privileges as
dictated by the system security policy. Programs are subject to the access control and accountability
processes of the system.

Page 65 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



7.1.1.2 System structure
The TOE permits one user at a time to log in to the computer's physical console. Several virtual
consoles can be mapped to a single physical console. Different users can simultaneously login
through different virtual consoles. The system can be connected to other computers via physically
and logically protected LANs.
A standalone host configuration operates as a CC-evaluated system, which can be used by multiple
users at a time. Users can operate by logging in at the virtual consoles or serial terminals of a
system, or by setting-up background execution jobs. Users can request local services, such as file,
memory, and process management, by making system calls to the kernel. Even though
interconnection of different systems running the TOE is not included in the evaluation boundary,
the networking software is loaded. This aids in a user’s request for network services (for example,
SSH) from server processes on the same host.
Another configuration provides a useful network configuration, in which a user can log in to the
console of any of the host computers, request local services at that computer, and also request
network services from any of the other computers. For example, a user can use SSH to log into one
host from another, or transfer files from one host to another. The configuration extends the single
LAN architecture to show that Linux provides Internet Protocol (IP) routing from one LAN segment
to another. For example, a user can log in at the console of a host in one network segment and
establish an SSH connection to a host in another network segment. Packets on the connection
travel across a LAN segment, and they are routed by a host in that segment to a host on another
LAN segment. The packets are eventually routed by the host in the second LAN segment to a host
on a third LAN segment, and from there are routed to the target host. The number of hops from
the client to the server are irrelevant to the security provided by the system, and are transparent
to the user.
The hosts that perform routing functions have statically-configured routing tables. When the hosts
use other components for routing (for example, a commercial router or switches), then those
components are assumed to perform the routing functions correctly, and do not alter the data part
of the packets.
If other systems are to be connected to the network, with multiple TOE systems connected via a
physically protected LAN, then they need to be configured and managed by the same authority
using an appropriate security policy that does not conflict with the security policy of the TOE.

7.1.1.3 TOE services
Each host computer in the system is capable of providing the following types of services:

● Local services to the users who are currently logged in to the system using a local computer
console, virtual consoles, or terminal devices connected through physically protected serial
lines.

● Local services to the previous users via deferred jobs; an example is the cron daemon.
● Local services to users who have accessed the local host via the network using a protocol

such as SSH, which starts a user shell on the local host.
● Network services to potentially multiple users on either the local host or on remote hosts.
● Virtualization environments are provided to allow untrusted software to execute in user

state of the processor.
The following illustrates the difference between local services that take place on each local host
computer, versus network services that involve client-server architecture and a network service
layer protocol. For example, a user can log in to the local host computer and make file system

Page 66 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



requests or memory management requests for services via system calls to the kernel of the local
host. All such local services take place solely on the local host computer and are mediated solely
by trusted software on that host.

Figure 2: Local and network services provided by Linux

Network services, such as SSH or ftp, involve client-server architecture and a network service-layer
protocol. The client-server model splits the software that provides a service into a client portion
that makes the request, and a server portion that carries out the request, usually on a different
computer. The service protocol is the interface between the client and server. For example, User
A can log in at Host 1, and then use SSH to log in to Host 2. On Host 2, User A is logged in from a
remote host.
On Host 1, when User A uses SSH to log in to Host 2, the SSH client on Host 1 makes protocol
requests to an SSH server process on Host 2. The server process mediates the request on behalf
of User A, carries out the requested service, if possible, and returns the results to the requesting
client process.
Also, note that the network client and server can be on the same host system. For example, when
User B uses SSH to log in to Host 2, the user's client process opens an SSH connection to the SSH
server process on Host 2. Although this process takes place on the local host computer, it is
distinguished from local services because it involves networking protocols.

7.1.1.4 Security policy
A user is an authorized individual with an account. Users can use the system in one of following
ways:

● By interacting directly with the system through a session at a computer console (in which
case the user can use the display provided as the physical console), or

● By interacting directly with system through a session at a serial terminal, or
● Through deferred execution of jobs using the cron mechanism, or
● By using services implemented with applications accessing these services either locally or

remotely, or
● By using virtual machine environments accessing these environments either locally or

remotely.
A user must log in at the local system in order to access the protected resources of the system.
Once a user is authenticated, the user can access files or execute programs on the local computer,
or make network requests to other computers in the system.

Page 67 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



The only subjects in the system are processes. A process consists of an address space with an
execution context. The process is confined to a computer; there is no mechanism for dispatching
a process to run remotely (across TCP/IP) on another host. Every process has a process ID (PID)
that is unique on its local host computer, but PIDs are not unique across systems. As an example,
each host in the system has an init process with PID 1.
Objects are passive repositories of data. The TOE defines three types of objects:

● named objects which are resources, such as files and IPC objects, which can be manipulated
by multiple users using a naming convention defined at the TSF interface;

● storage objects which is an object that supports both read and write access by multiple
non-trusted subjects; and

● public objects which is an object that can be publicly read by non-trusted subjects and can
be written only by trusted subjects.

Consistent with these definitions, all named objects are also categorized as storage objects, but
not all storage objects are named objects.
Linux enforces a DAC policy for all named objects under its control, and an object reuse policy for
all storage objects under its control. The DAC policy that is enforced varies among different object
classes, in all cases it is based on user identity and on group membership associated with the user
identity.
In addition to the DAC policy, Linux also enforces a MAC policy for all named objects under its
control. DAC policy is enforced first, while MAC is enforced only if DAC permits the operation. The
MAC policy is non-authoritative; that is, a DAC policy denial cannot be overridden by the MAC policy.
The MAC policy that is enforced varies among different object classes, in all cases it is based on
the domain of the user and the type of the object.
To allow for enforcement of the access control policies, all users must be identified, and their
identities must be authenticated.
The TOE uses both hardware and software protection mechanisms. The hardware mechanisms
used by Linux to provide a protected domain for its own execution include a multistate processor,
memory segment protection, and memory page protection. The TOE software relies on these
hardwaremechanisms to implement TSF isolation, non-circumventability, and process address-space
separation.
A user can log in at the console, at other directly attached terminals, or through a network
connection. Authentication is based on a password entered by the user and authentication data
stored in a protected file or via other types of credentials, such as cryptographic keys when using
SSH. Users must log in to a host before they can access any named objects on that host. Some
services, such as SSH, to obtain a shell prompt on another host, or ftp, to transfer files between
hosts in the distributed system, require the user to re-enter authentication data to the remote host.
Linux permits the user to change passwords (subject to TOE enforced password guidelines), change
identity, submit batch jobs for deferred execution, and log out of the system.
The system architecture provides TSF self-protection and process isolation mechanisms.

Page 68 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



7.1.1.5 Operation and administration
The network including the TOE can be composed of one, several, or many different host computers,
each of which can be in various states of operation, such as being shut down, initializing, being in
single-user mode, or online in a secure state. Thus, administration involves the configuration of
multiple computers and the interactions of those computers, as well as the administration of users,
groups, files, printers, and other resources for each host system.
The TOE provides commands which can be used to add, modify, and delete a user account. Also,
the TOE provides commands to add, modify, and delete a group form the system, or to configure
elements of the system security policy. These commands accept options to set up or modify various
parameters for accounts, groups, and security policy. The commands modify the appropriate TSF
databases and provide a safer way than manual editing to update authentication databases. Refer
to the appropriate command man pages for detailed information about how to set up and maintain
users and groups.

7.1.1.6 TSF interfaces
The TSF interfaces include local interfaces provided by each host computer, and the network
client-server interfaces provided by pairs of host computers.
The local interfaces provided by an individual host computer include the following kernel-provided
interfaces:

● System calls made by trusted and untrusted programs to the privileged kernel-mode
software. As described separately in this document, system calls are exported by the base
Linux kernel and by kernel modules.

● Although technically speaking the following kernel interfaces are a semantical extension
of the open, ioctl or socket-related system calls, they should be considered independent
interfaces during a security analysis:

❍ Device files: device files allow direct access to hardware resources. The access is
established using the read, write and/or mmap functions or using ioctls to
implement more specific access mechanisms. In addition, a limited number of
device files allow access to kernel-internal data structures using file system
semantics as well as ioctls.

❍ Virtual file systems: virtual file systems provide access to kernel-internal data
structures using file system semantics. Access is limited to read, write and/or
mmap functions.

❍ Network sockets using the AF_NETLINK protocol: netlink sockets provide access
to kernel-internal data structures using networking semantics. Access is limited
to sending and/or receiving information.

❍ Network sockets using the PF_KEY protocol: the PF_KEY sockets are used to interact
with the network packet transformation logic in the kernel.

❍ Network sockets using the AF_ALG protocol: The AF_ALG network protocol can be
used to interact with the kernel crypto API.

● Any network protocol analyzer/parser implemented by the kernel. The following list
enumerates the protocols available in the evaluated configuration:

❍ Ethernet
❍ ARP
❍ TCP/IP protocol family

Page 69 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



❍ IPSec
❍ Labeled communication using IPSec protocols

The following interfaces are implemented by trusted processes in user space:
● Networked interfaces provided by pairs of host computers:

❍ SSHv2. For more detailed information about these interfaces, refer to: RFC 4252ff
❍ IKEv1 and IKEv2: For more details on IKE refer to RFC 2409 as well as RFC 5996 –

the available Diffie-Hellman groups are defined in RFC 2409, RFC 3526, RFC 5114.
❍ TLS v1.1 and TLS v1.2: Details of the protocols are defined in RFC 4346 and RFC

5246.
● The argv and envp character arrays which are arguments to the execve system call. These

two arrays can be evaluated by the executed application. Note that a number of environment
variables that can be provided with envp are implemented by libraries that are commonly
loaded by most, if not all, applications (like the C-library).

● Files that are part of the TSF database that define the configuration parameters used by
the security functions.

● Inter-process communication interfaces exported by an application. This inter-process
communication interface type includes the DBus support as DBus is a protocol that runs
on top of kernel-provided inter-process communicationmechanisms. The kernel inter-process
communication mechanisms are agnostic of the DBus protocol specifics and are therefore
secondary when assessing DBus.

● Hypervisor calls and instruction emulation and simulation implemented by the Linux kernel
to support the KVM virtualization environment. This includes the simulation and emulation
of hardware provided with the Linux kernel.

The following are interfaces that are not viewed as TSF interfaces:
● Interfaces between non-TSF processes and the underlying hardware. Typically, user

processes do not interface directly with the hardware; exceptions are processor, USB,
parallel port connections, serial port connections and graphics hardware. User processes
interact with the processor by executing CPU instructions, reading and modifying CPU
registers, and modifying the contents of physical memory assigned to the process. User
processes interact with graphics hardware by modifying the contents of registers and
memory on the graphics adapter. Accessing the remainder of the listed hardware from
user space is done by using the proper signal lines to communicate with the respective
device. Unprivileged processor instructions are externally visible interfaces. However, the
unprivileged processor instructions do not implement any security functionality, and the
processor restricts these instructions to the bounds defined by the processor. In addition,
the rest of the listed hardware components are not part of the TOE as they are peripherals.
Therefore, this interface is not considered as part of the TSF.

● Interfaces between different parts of the TSF that are invisible to normal users (for example,
between subroutines within the kernel) are not considered to be TSF interfaces. This is
because the interface is internal to the trusted part of the TOE and cannot be invoked
outside of those parts. Those interfaces are therefore not part of the functional specification,
but are explained in this HLD.

● The firmware, while part of the TOE, are not considered as providing TSF interfaces because
they do not allow direct unprivileged operations to them.

Page 70 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



● Processor exceptions reflected to the firmware, are not considered to be TSF interfaces.
They are not relevant to security because they provide access to the firmware, which does
not implement any security functionality.

● In case the IT environment provides a virtualization environment, such as KVM host systems,
z/VM or PR/SM on s390x systems or POWER LPAR on IBM POWER systems, the architected
hypervisor interfaces of the virtualization environment (like hypervisor calls) are not
considered a TSF interface because it is not accessible by unprivileged processes in the
problem state, and does not provide any security functionality. Note, the hypervisor
functionality implemented by the Linux kernel and its interfaces is not referenced here.

● The SMM state of Intel-based processors is not security relevant as the software executing
in this state does not implement any security functionality. Moreover, unprivileged code
cannot access or modify the software executing in this processor state.

TSF interfaces include any interface that is possible between untrusted software and the TSF.

7.1.2 TSF identification
This section summarizes the approach to identification of the TSF.
The hardware and firmware are not considered providing TSF interfaces. The Linux operating system,
on the other hand, does provide TSF interfaces.
The Linux operating system is distributed as a collection of packages. A package can include
programs, configuration data, and documentation for the package. Analysis is performed at the file
level, except where a particular package can be treated collectively. A file is included in the TSF
for one or more of the following reasons:

● It contains code, such as the kernel, kernel module, and device drivers, that runs in a
privileged hardware state of the processor.

● It enforces the security policy of the system.
● It allows SUID or SGID to a privileged user (for example, root) or group.
● It is given file system capabilities implying a privilege escalation during execution.
● It grants one or more abilities to override security-related rules enforced by the system to

the calling user.
● It started as a daemon executing with root privileges or with a system UID / GID; an example

is one started by systemd.
● It is software that must function correctly to support the system security mechanisms.
● It is required for system administration.
● It consists of TSF data or configuration files.
● It consists of libraries linked to TSF programs.
● It started as an application with different privileges than the caller; for example using

mechanisms like udev, DBus, PolKit, modprobe, or even the kernelIt is very rare that the
kernel performs callbacks to userspace. The most notable examples are init, modprobe,
and v86d used by the uvesafb driver.

● It grants one or more MLS override capabilities to the calling user.
There is a distinction between non-TSF user-mode software that can be loaded and run on the
system, and software that must be excluded from the system. The following methods are used to
ensure that excluded software cannot be used to violate the security policies of the system:

● Addition of kernel modules is not permitted.

Page 71 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



● The installation software may change the configuration (for example, mode bits) so that
a program cannot violate the security policy.

● Addition of programs with SUID bit enabled and owning UID of either root or a system UID.
● Addition of programs with SGID bit enabled and owning GID of either root or a system GID.
● Addition of programs capability bits enabled.
● Addition of daemons executing with root or system UID / GID.
● Alterations of the rule set of the frameworks that allow spawning of processes with different

privileges, such as udev or PolicyKit.
● Addition of programs with MLS override capabilities enabled.

7.2 Software architecture
This chapter summarizes the software structure and design of the Linux system and provides
references to detailed design documentation.
The following subsections describe the TOE Security Functions (TSF) software and the TSF databases
for the Linux system. The descriptions are organized according to the structure of the system and
describe the Linux kernel that controls access to shared resources from trusted (administrator) and
untrusted (user) processes. This chapter provides a detailed look at the architectural pieces, or
subsystems, that make up the kernel and the non-kernel TSF. This chapter also summarizes the
databases that are used by the TSF.
The Functional Description chapter that follows this chapter describes the functions performed by
the Linux logical subsystems. These logical subsystems generally correspond to the architectural
subsystems described in this chapter. The two topics were separated into different chapters in
order to emphasize that the material in the Functional Descriptions chapter describes how the
system performs certain key security-relevant functions. The material in this chapter provides the
foundation information for the descriptions in the Functional Description chapter.

7.2.1 Hardware and software privilege
This section describes the terms hardware privilege and software privilege as they relate to the
Linux operating system. These two types of privileges are critical for the Linux system to provide
TSF self-protection. This section does not enumerate the privileged and unprivileged programs.
Rather, the TSF Software Structure identifies the privileged software as part of the description of
the structure of the system.

7.2.1.1 Hardware privilege
The underlying processors provides a notion of user mode execution and supervisor, or kernel,
mode execution. The following briefly describes how these user- and kernel-execution modes are
provided by the different architectures.

X86 Privilege level
This section describes the concept of privilege levels by using Intel-based / AMD-based processors
as an example. The other processor architectures use a very similar concept albeit the protection
mechanisms are called differently. For example, the PowerPC and System Z processors implement
a supervisor and user state that are logically identical to ring 0 and 3 in Intel-based systems. The
concept of privilege is implemented by assigning a value of 0 to 3 to key objects recognized by the
processor. This value is called the privilege level. The following processor-recognized objects contain
privilege levels:

Page 72 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



● Descriptors contain a field called the descriptor privilege level (DPL).
● Selectors contain a field called the requestor’s privilege level (RPL). The RPL is intended

to represent the privilege level of the procedure that originates the selector.
● An internal processor register records the current privilege level (CPL). Normally the CPL

is equal to the DPL of the segment the processor is currently executing. The CPL changes
as control is transferred to segments with differing DPLs.

The following figure shows how these levels of privilege can be interpreted as layers of protection.
The center is for the segments containing the most critical software, usually the kernel of the
operating system. Outer layers are for the segments of less critical software.

The Linux kernel, as with most other UNIX-variant kernels, utilizes only two of these execution
modes. The highest, with the processor privilege level of 0, corresponds to the kernel mode; the
lowest, with the processor privilege of 3, corresponds to the user mode.
User and kernel modes, which are offered by all of the processors, implement hardware privilege
as follows:

● When the processor is in kernel mode, the program has hardware privilege because it can
access and modify any addressable resources, such as memory, page tables, I/O address
space, and memory management registers. This is not possible in the user mode.

● When the processor is in kernel mode, the program has hardware privilege because it can
execute certain privileged instructions that are not available in user mode.

Thus, any code that runs in kernel mode executes with hardware privileges. Software that runs
with hardware privileges includes:

● The base Linux kernel. This constitutes a large portion of software that performs memory
management file I/O and process management.

● Separately loaded kernel modules, such as many device driver modules. A kernel module
is an object file whose code can be linked to, and unlinked from, the kernel at runtime. The
kernel module code is executed in kernel like any other statically-linked kernel function.

All other software on the system normally runs in user mode, without hardware privileges, including
user processes such as shells, networking client software, and editors. User-mode processes run
with hardware privileges when they invoke a system call. The execution of the system call or

Page 73 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



processor traps (such as page faults) caused by user space applications switches the mode from
user to kernel mode, and continues the operation at a designated address within the kernel where
the code of the system call handler or trap handler is located.
The following paragraphs explain the hardware privileges for processor architectures other than
the x86 architecture.

PowerPC Privilege level
This processor architecture provides three execution modes, identified by the PR bit (bit 49) and
the HV bit (bit 3) of the Machine State Register (MSR) of the processor. Values of 0 for both PR and
HV bits indicate a hypervisor execution mode. An HV bit value of 1, and a PR bit value of 0, indicate
a supervisor, or kernel, execution mode. An HV bit value of 1 and a PR bit value of 1 indicate a user
execution mode.

SystemZ Privilege level
The System z systems also provide two execution modes identified by the Problem State bit (bit
15) of the processor’s Program Status Word (PSW). A value of 0 indicates a supervisor, or kernel,
execution mode, and the value of 1 indicates a problem state, or user, execution mode.

Virtualization consideration
When the TOE is used as a host system for the KVM virtualization, a third privilege state is used in
addition to the two mentioned above: the hypervisor mode. The hypervisor mode utilizes additional
hardware support provided by the processor.
With the hypervisor mode, processor register are accessible that are not accessible via the other
two states. Using these registers, another layer of memory address translation is implemented. In
addition, I/O address space virtualization is utilized if available. The Linux kernel utilizes this mode
when the KVM virtualization is activated. In this case, the entire Linux kernel operates in hypervisor
mode.
Normal processes still operate in user mode. For user mode processes, the Linux kernel behaves
the same way as if the kernel would operate in supervisor mode.
In addition, processesmay also use the supervisor mode with the help provided by KVM to implement
a guest operating system. From the Linux kernel perspective, a guest system is nothing more than
a regular process where parts of that process are executed by enabling the virtualization functionality
of the processor.
The following CPU mechanisms are used to implement the hypervisor state:

● Intel-based: VT-x
● AMD-based: SVM
● System Z: SIE instruction

The Linux kernel does not provide virtualization support for CPUs other than those listed.

7.2.1.2 Software privilege
Software privilege in Linux involves the ability to override the kernel’s access control mechanisms.
Linux implements the following access control models:

● Discretionary Access Control enforced on storage objects

Page 74 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



● Capability-based security checks to restrict the execution of system calls or functional
subsets of system calls to callers having the respective capability

● Linux Security Module (LSM) access checks – Mandatory Access Control policies are
implemented using LSMs

When accessing named objects, Discretionary Access Control (DAC) is applied first, and the LSM
access checks is applied if and only if the DAC check grants access. The kernel implements software
privileges for the DAC policy.
In addition, the SELinux LSM module may implement software privileges with an optionally loaded
MLS policy.
Besides the access control software privileges, capabilities are another software privilege that can
be granted to applications.
This section first describes the Linux access control model followed by the discussion of the capability
model.
The following figure illustrates the access to a file system object as well as an IPC object and the
access control enforcement. The illustration also shows that only the kernel is able to connect user
space applications with either file system objects or IPC objects as user space is not allowed to
directly access the storage locations.

As illustrated in the figure, access control is applied every time a subject attempts to access a
storage object. Both subjects and objects carry security attributes that are relevant for the DAC
policy and the access control policy enforced by the LSM. The kernel evaluates access based on
these attributes and access control rules. If access is granted by DAC policy, the LSM hook is called
to evaluate access based on the loaded LSM. Which LSM is loaded is subject to the configuration
of the TOE.

DAC
The DAC model allows the owner of the object to decide who can access that object, and in what
manner. Like any other access control model, DAC implementation can be explained by which
subjects and objects are under the control of the model, security attributes used by the model,
access control and attribute transition rules, and the override (software privilege) mechanism to
bypass those rules.

Page 75 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Subjects and objects
Subjects in Linux are regular processes and kernel threads. They are both represented by the
task_struct structure. Kernel threads run only in the kernel mode, and are not constrained by the
DAC policy. All storage objects such as regular files, character and block files, directories, sockets,
IPC objects, and kernel key rings are under the control of the DAC policy.

Attributes
Subject attributes used to enforce DAC policy are the process UID, GID, supplementary groups, and
process capabilities. These attributes are stored in the task_structure of the process, and are
affected by the system calls as described in Section 5.2. Object attributes used to enforce DAC
policy are owner, group owner, permission bits, and POSIX.1e Access Control Lists (ACLs) for file
system objects. These attributes are stored in-core and, for appropriate disk-based file systems, in
the on-disk inode.

Access control rules
DAC access control rules specify how a certain process with appropriate DAC security attributes
can access an object with a set of DAC security attributes. In addition, DAC access control rules
also specify how subject and object security attributes transition to new values and under what
conditions.

Software privilege
Software privilege for DAC policy is based on the capabilities of CAP_DAC_OVERRIDE,
CAP_DAC_READ_SEARCH which can be assigned to a process. A process bearing these capabilities
is granted software privilege with respect to DAC as it can bypass the access control policies of the
system.

SELinux LSM MAC
With the Mandatory Access Control implemented with the SELinux LSM, it is the system security
policy, unlike the owner in DAC, that controls who should be allowed access to what information.
The MAC policy provided with SELinux rests on two policy types:

● Type Enforcement (TE) which is used to implement role-based access control, and
● Multi-Level Security (MLS) with a Bell-LaPadula style hierarchical labeling policy.

This section describes the enforcement engine of the Linux MAC model by using the subjects and
objects for which the MAC is performed, the attributes that are used for this check, access control
rules, and override rules.

Subjects and objects
Subjects in Linux are regular processes and kernel threads. They are both represented by the
task_struct structure. Kernel threads run only in the kernel mode and are not constrained by the
MAC policy. All named objects such as regular files, character and block files, directories, sockets,
and IPC objects are under the control of the MAC policy. In addition to named objects, the MAC
policy can also control access to certain kernel data structures such as file descriptors, IPC messages,
and file systems to allow granular expression of the system security policy.

Page 76 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Attributes
Subject and object security attributes, also referred to as the SELinux security context, have the
same format. In user-readable and external form, the security context is an ASCII string. The kernel,
for performance reasons, converts the string into a 32-bit integer at run-time; however, this document
uses the ASCII version of the security context to describe the enforcement engine and the security
policy.
The security context consists of four colon-separated components. They correspond to user, role,
type, and MLS range of the subject or object as illustrated in the following figure.

● User: The user component is the SELinux user name.
● Role: The role component is the SELinux role corresponding to the subject or object. For

subjects, the role is used to implement role-based access control by allowing the role to
control access to domains. For objects, the role component is not used, and is all object_r.

● Type: The type field represents the subject domain or object type. Domains and types are
equivalent classes for processes and resources, respectively. Access decisions in the kernel
are made based on subject domain and object type.

● MLS label range: The MLS label range contains two complete MLS labels. They are arranged
with the low label on the left and the high label, which dominates the low label, on the
right. The two labels are separated by a dash and form a label range. For subjects, the low
label of the range corresponds to the effective MLS label of the subject, while the high label
corresponds to the clearance of the subject. The subject clearance maps to the clearance
of the user on whose behalf the subject is acting.

For objects such as regular files, the security policy dictates that the low label and the high label
are equal, thus making the object, effectively, single level. Objects such as directories, devices,
and sockets may have a high label that is not equal to the low label. These objects are multilevel,
and their MLS label range requires that the sensitivity level of any information that passes through
them dominates the low label and is dominated by the high label.
Each MLS label consists of two components, a hierarchical classification level (or sensitivity level),
and a non-hierarchical set of categories.
Between any two MLS labels, four possible relationships can exist, as follows whereas in the following
listing L1 is the low label of the subject performing the access request and L2 is the low label of
the object access is requested to:

● L1 is equal to L2 (levels are equal, category sets are equal)
● L1 dominates L2 (level of L1 >= level of L2, L2 category set equal or subset of L1 category

set)
● L1 is dominated by L2 (level of L2 >= level of L1, L1 category set equal or subset of L2

category set)
● L1 is incomparable to L2 (L1 and L2 are not equal and neither dominates the other)

Page 77 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Attribute storage
SELinux attributes are stored:

● in the task_struct process structure for subjects,
● in in-core and on-disk inode data structure for file system objects.
● in the kern_ipc_perm data structure for system V IPC objects,
● in the sock data structure for sockets,
● in the xfrm_state structure for netlink sockets,
● and the key data structure for keys.

SELinux maps invalid contexts to the system_u:object_r:unlabeled_t:s0 context.

Access control rules
MAC access control implementation is based on Type Enforcement (TE). TE provides fine-grained
access control over subjects and objects.
The TE and the MLS policy rules are defined with the SELinux policy. TE rules are defined as access
control checks whereas the MLS policy is expressed as a constraint on top of the TE. Therefore, the
total access control check happens in three logical steps, as follows:

1. The first is the DAC check using DAC attributes, followed by
2. the TE check using domains and types of the SELinux security context, followed by
3. the Bell-LaPadula MLS policy check using the MLS range of the SELinux security context.

Each check is non-authoritative. That is, permissions are only reduced at each stage; a DAC denial
cannot be overridden by TE, and a TE denial cannot be overridden by MLS.

Software privilege
Software privilege for the MAC policy is implemented with the domain of the process and security
policy rules associated with that domain.
For example, processes running in the init_t domain are allowed to read objects whose sensitivity
label dominates the process sensitivity label. This override is achieved by domain attributes. The
policy rule expresses the domain’s access to type with the override tied to an attribute of the
domain. For example, the following policy rule can be used to allow a process to override the
Bell-LaPadula restriction of “no-read-up” when it tries to read a regular file: mlsconstrain {file}
{read} ((l1 dom l2) or (t1 == mlsfileread));
The above statement sets the security policy that label l1 (belonging to the subject) must dominate
label l2 (belonging to the object) for the read operation to succeed, unless the process domain has
the mlsfileread attribute.
System security policy for different subject and object types is described with the functional
description of those subjects and objects.
In addition to the process attributes which can grant override rights, the following capability are
known to the Linux kernel: CAP_MAC_OVERRIDE. If a process possesses this capability, the process
can bypass the entire SELinux policy enforcement.

Page 78 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Capabilities
The Linux kernel has a framework for providing software privilege for many different functions
provided by the Linux kernel by using capabilities. These capabilities, which are based on the
POSIX.1e draft plus a number of additional capabilities defined and fully documented in
include/linux/capability.h, allow breakup of the kernel software privilege associated with user ID
zero into a set of discrete privileges based on the operation being attempted.
Capabilities integrate with user IDs as follows:

● If a SUID application with the owning ID of root is executed, all capabilities for that process
are enabled.

● If the set*uid system call family is used to change the UID of the calling process to an ID
not equal to 0, all capabilities are removed for that process.

● Processes spawned by root initially have all capabilities set.
● Processes spawned by non-root users initially have no capability set.

Software privilege
The kernel restricts the use of many system calls or functional areas called by system calls to
processes which possess a specific capability. If the calling process does not possess the required
capability, the execution of the affected code area is denied and the error of EPERM is returned to
the caller.
For example, if a process is trying to create a device special file by invoking the mknod system call,
the kernel checks to ensure that the process is capable of creating device special files by verifying
that the process possesses the CAP_MKNOD capability. In the absence of special kernel modules
that define and use capabilities, as is the case with the TOE, capability checks revert back to granting
kernel software privilege based on the user ID of the process.
The entire list of all capabilities including their meanings is fully described in the Linux kernel source
code file of include/linux/capability.h.

Programs with software privilege
Examples of programs running with software privilege are:

● Programs that are run by the system, such as the cron and init daemons.
● Programs that are run by trusted administrators to perform system administration.
● Programs that run with privileged identity by executing SUID / SGID / file system capabilities

program files.
● Programs executed by trusted super daemons. The following super daemons with the

capability of spawning applications with dissimilar privileged on behalf of calling users are
present:

❍ systemd: The system boot and management framework provided by systemd
allows users to communicate with it via DBus channels. As systemd runs as root,
it allows untrusted users to perform actions that otherwise would not be possible
for such users.

❍ PolKit: The user space authorization framework is implemented by the PolKit
daemon. That daemon offers its services via DBus providing the capability to spawn
applications as configured by its policy via a SUID helper application.

Page 79 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



All software that runs with hardware privileges or software privileges are part of the TOE Security
Functions (TSF).
In a properly administered system, unprivileged software is subject to the security policies of the
system and does not have any means of bypassing the enforcement mechanisms. This unprivileged
software need not be trusted in any way, and is thus referred to as untrusted software. Trusted
processes that do not implement any security function need to be protected from unauthorized
tampering using the security functions of Linux. They need to be trusted to not perform any function
that violates the security policy of Linux.

7.2.2 TOE Security Functions software structure
This section describes the structure of the Linux software that constitutes the TOE Security Functions
(TSF). The Linux system is a multi-user operating system, with the kernel running in a privileged
hardware mode, and the user processes running in user mode. The TSF includes both the kernel
software and certain trusted non-kernel processes.
The concept of breaking the TOE product into logical subsystems is described in the Common
Criteria. These logical subsystems are the building blocks of the TOE, and are described in the
Functional Descriptions chapter of this document. They include logical subsystems and trusted
processes that implement security functions. A logical subsystem can implement or support one
or more functional components. For example, the File and I/O subsystem is partly implemented by
functions of the Virtual Memory Manager.

7.2.2.1 Kernel TSF software
The kernel is the core of the operating system. It interacts directly with the hardware, implements
the sharing of resources, providing common services to programs, and prevents programs from
directly accessing hardware-dependent functions. Services provided by the kernel include the
following:

● Control of the execution of processes by allowing their creation, termination or suspension,
and communication. These include:

❍ Fair scheduling of processes for execution on the CPU.
❍ Share of processes in the CPU in a time-shared manner.
❍ CPU execution of a process.
❍ Kernel suspension when its time quantum elapses.
❍ Kernel schedule of another process to execute.
❍ Later kernel rescheduling of the suspended process.
❍ Management of the process security-relatedmeta data, such as UIDs, GIDs, SELinux

labels, capabilities.
● Allocation of the main memory for an executing process. These include:

❍ Kernel allowance of processes to share portions of their address space under
certain conditions, but protection of the private address space of a process from
outside tampering.

❍ If the system runs low on free memory, the kernel frees memory by writing a
process temporarily to secondary memory, or a swap device.

❍ Coordination with the machine hardware to set up a virtual-to-physical address
that maps the compiler-generated addresses to their physical addresses.

● Life-cycle maintenance of virtual machines, which includes:

Page 80 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Enforcement of the resource limits configured by the emulation application
applicable to the virtual machine.

❍

❍ Starting of the virtual machine code.
❍ Handling of exiting of virtual machines by either performing an instruction

completion or deferring the instruction completion to the user-space emulation
application.

● File system maintenance. These include:
❍ Allocation of secondary memory for efficient storage and retrieval of user data.
❍ Allocation of secondary storage for user files.
❍ Reclamation of unused storage.
❍ Structure of the file system in a well-understood manner.
❍ Protection of user files from illegal access.
❍ Allowance of processes’ controlled access to peripheral devices such as terminals,

tape drives, disk drives, and network devices.
❍ Mediation of access between subjects and objects, allowing controlled access

based on the DAC policy and any policy enforced by the loaded LSM.

The Linux kernel is a fully preemptible kernel. In non-preemptive kernels, kernel code runs until
completion. That is, the scheduler is not capable of rescheduling a task while it is in the kernel.
Moreover, the kernel code is scheduled cooperatively, not preemptively, and it runs until it finishes
and returns to user-space, or explicitly blocks. In preemptive kernels, it is possible to preempt a
task at any point, so long as the kernel is in a state in which it is safe to reschedule.

Logical components
The kernel consists of logical subsystems that provide different functionalities. Even though the
kernel is a single executable program, the various services it provides can be broken into logical
components. These components interact to provide specific functions.
The kernel consists of the following logical subsystems:

● File and I/O subsystem: This subsystem implements functions related to file system objects.
Implemented functions include those that allow a process to create, maintain, interact,
and delete file-system objects. These objects include regular files, directories, symbolic
links, hard links, device-special files, named pipes, and sockets.

● Process subsystem: This subsystem implements functions related to process and thread
management. Implemented functions include those that allow the creation, scheduling,
execution, and deletion of process and thread subjects.

● Memory subsystem: This subsystem implements functions related to the management of
memory resources of a system. Implemented functions include those that create and
manage virtual memory, including management of page tables and paging algorithms.

● Networking subsystem: This subsystem implements UNIX and Internet domain sockets, as
well as algorithms for scheduling network packets.

● IPC subsystem: This subsystem implements functions related to IPC mechanisms.
Implemented functions include those that facilitate controlled sharing of information
between processes, allowing them to share data and synchronize their execution, in order
to interact with a common resource.

Page 81 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



● Kernel framework subsystem: This subsystem implements the infrastructure for the kernel
to sustain various kernel mechanisms. This subsystem includes the following functions
among others:

❍ Support for loadable modules: Implemented functions include those that load,
initialize, and unload kernel modules.

❍ Exception handling such as context switches, system call loading, etc.
❍ Auditing: The audit subsystem implements functions related to recording of

security-critical events on the system. Implemented functions include those that
trap each system call to record security-critical events and those that implement
the collection and recording of audit data.

● Linux Security Extensions: The Linux Security extensions implement various security-related
aspects that are provided to the entire kernel, including the Linux Security Module
framework. The LSM framework provides a security-agnostic framework for modules to
implement different security policies, including SELinux. SELinux is an important logical
subsystem. This subsystem implements mandatory access control functions to mediate
access between all subjects and objects.

● Device driver subsystem: This subsystem implements support for various hardware and
software devices through a common, device-independent interface.

● KVM subsystem: This subsystem implements the virtual machine life-cycle handling. It
includes instruction completion for instructions requiring only small verifications. For any
other instruction completion, KVM calls the QEMU user-space component.

● Crypto API: This subsystem provides a kernel-internal cryptographic library to all components
of the kernel. It provides cryptographic primitives to callers.

Linux Containers are not considered to be a subsystem inside the Linux kernel. Linux Containers
use different mechanisms provided by various subsystems. To form Linux Containers, namespaces,
control groups and the seccomp filter mechanism are used. Namespaces are implemented by the
subsystem for the respective type of namespace.

Execution components
The execution components of the kernel can be divided into three components: base kernel, kernel
threads, and kernel modules, depending on their execution perspective.

Base kernel
The base kernel includes the code that is executed to provide a service, such as servicing a user’s
system call invocation, or servicing an interrupt or exception event. A majority of the compiled
kernel code falls under this category.

Kernel threads
In order to perform certain routine tasks such as flushing disk caches, or reclaiming memory by
swapping out unused page frames, the kernel creates internal processes, or threads.
Threads are scheduled just like regular processes, but they do not have context in user mode.
Kernel threads execute specific C kernel functions. Kernel threads reside in kernel space, and only
run in the kernel mode.

Page 82 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Kernel modules and device drivers
Kernel modules are pieces of code that can be loaded and unloaded into and out of the kernel upon
demand. They extend the functionality of the kernel without the need to reboot the system. Once
loaded, the kernel module object code can access other kernel code and data in the same manner
as statically-linked kernel object code.
A device driver is a special type of kernel module that allows the kernel to access the hardware
connected to the system. These devices can be hard disks, monitors, or network interfaces. The
driver interacts with the remaining part of the kernel through a specific interface, which allows the
kernel to deal with all devices in a uniform way, independently of their underlying implementations.

7.2.2.2 Non-kernel TSF software
The non-kernel TSF software consists of trusted programs that are used to implement security
functions. Note that shared libraries, including PAM modules in some cases, are used by trusted
programs. However, there is no instance where a shared library by itself is considered to be a
trusted entity. The trusted commands can be grouped as follows.

● System Initialization
● Identification and Authentication
● Network Applications
● Batch Processing
● System Management
● User Level Audit
● Cryptographic Support
● Virtual machine support
● User space authorization handling

7.2.2.3 TSF databases
Trusted databases are configuration files for trusted applications. None of these databases is
modifiable by a user other than an administrative user. Access control is performed by the file
system component of the Linux kernel. For more information about the format of these TSF
databases, refer to their respective man pages.

7.2.3 Hardware
The hardware consists of the physical resources such as CPU, main memory, registers, caches, and
devices that effectively make up the computer system.

7.2.4 Firmware
The firmware consists of the software residing in the hardware that is started when the system
goes through a power-on reset. In addition to initializing the hardware and starting the operating
system, on the partitioning-capable platforms the firmware provides logical partitioning support as
well.

7.3 TOE Security Functionality
The following section explains how the security functions are implemented. The different TOE
security functions cover the various SFR classes.

Page 83 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



The primary security features of the TOE are:
● Audit
● Trusted Channel
● Network Information Flow Control
● Identification and Authentication
● Discretionary Access Control
● Security Management

7.3.1 Audit
The Lightweight Audit Framework (LAF) is designed to be an audit system for Linux compliant with
the requirements from Common Criteria. LAF is able to intercept all system calls as well as retrieving
audit log entries from privileged user space applications. The subsystem allows configuring the
events to be actually audited from the set of all events that are possible to be audited. Those events
are configured in a specific configuration file and then the kernel is notified to build its own internal
structure for the events to be audited.

7.3.1.1 Audit functionality
The Linux kernel implements the core of the LAF functionality. It gathers all audit events, analyzes
these events based on the audit rules and forwards the audit events that are requested to be
audited to the audit daemon executing in user space.
Audit events are generated in various places of the kernel. In addition, a user space application
can create audit records which needs to be fed to the kernel for further processing.
The audit functionality of the Linux kernel is configured by user space applications which
communicate with the kernel using a specific netlink communication channel. This netlink channel
is also to be used by applications that want to send an audit event to the kernel.
The kernel netlink interface is usable only by applications possessing the following capabilities:

● CAP_AUDIT_CONTROL: Performing management operations like adding or deleting audit
rules, setting or getting auditing parameters;

● CAP_AUDIT_WRITE: Submitting audit records to the kernel which in turn forwards the audit
records to the audit daemon.

Based on the audit rules, the kernel decides whether an audit event is discarded or to be sent to
the user space audit daemon for storing it in the audit trail. The kernel sends the message to the
audit daemon again using the above mentioned netlink communication channel. The audit daemon
writes the audit records to the audit trail. An internal queuing mechanism is used for this purpose.
When the queue does not have sufficient space to hold an audit record the TOE switches into single
user mode, is halted or the audit daemon executes an administrator-specified notification action
depending on the configuration of the audit daemon. This ensures that audit records do not get
lost due to resource shortage and the administrator can backup and clear the audit trail to free
disk space for new audit logs.
Access to audit data by normal users is prohibited by the discretionary access control function of
the TOE, which is used to restrict the access to the audit trail and audit configuration files to the
system administrator only.

Page 84 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



The system administrator can define the events to be audited from the overall events that the
Lightweight Audit Framework using simple filter expressions. This allows for a flexible definition of
the events to be audited and the conditions under which events are audited. The system
administrator is also able to define a set of user IDs for which auditing is active or alternatively a
set of user IDs that are not audited.
The system administrator can select the audited events. Individual files can be configured to be
audited by adding them to a watch list that is loaded into the kernel. In addition, audit rules can
be specified to generate audit data based on a large number of different attributes, including:

● Subject or user identifiers
● Result of the operation (success/failure)
● Object identity
● Operation performed on an object
● System call number
● SELinux label components

The complete list of auditable operations can be obtained from the auditctl(8) man page.
The audit system can be configured to take actions if the audit trail is full or reaches a given theshold
of disk space. The actions that can be configured include a halting of the system, preventing further
auditable actions, notifications to an administrator or the execution of a configured command.
The TOE provides a management application that uses the aforementioned netlink interface. This
application is used during boot time to load the audit rules from the configuration file
/etc/audit/audit.rules. The audit rules can be modified at runtime of the system.

7.3.1.2 Audit trail
An audit record consists of one or more lines of text containing fields in a “keyword=value” tagged
format. The following information is contained in all audit record lines:

● Type: indicates the source of the event, such as SYSCALL, PATH, USER_LOGIN, or LOGIN
● Timestamp: Date and time the audit record was generated
● Audit ID: unique numerical event identifier
● Login ID (“auid”), the user ID of the user authenticated by the system (regardless if the

user has changed his real and / or effective user ID afterwards)
● Effective user and group ID: the effective user and group ID of the proces s at the time the

audit event was generated
● Success or failure (where appropriate)
● Process ID of the subject that caused the event (PID)
● Hostname or terminal the subject used for performing the operation
● Information about the intended operation

This information is followed by event specific data. In some cases, such as SYSCALL event records
involving file system objects, multiple text lines will be generated for a single event, these all have
the same time stamp and audit ID to permit easy correlation.
The audit trail is stored in ASCII text. The TOE provides tools for managing ASCII files that can be
used for post-processing of audit data. The application ausearch allows selective extraction of
records from the audit trail using defined selection criteria. Using the ausearch, the administrator

Page 85 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



is able to select the information he wants to review. The tools allow the specification of a fine-grained
search pattern where each information component can be searched for, including combinations of
these patterns.
The audit trail is stored in files which are accessible by root only. If the audit trail fills up and reaches
a warning threshold the administrator is notified about reaching the configured level. If the audit
trail is full, the audit daemon rejects fetching new audit logs from the kernel to store them into a
file. The kernel buffer holding audit messages fills up. When the kernel audit message buffer is full,
the kernel suspends every subject that triggered an auditable event until the buffer is cleared again.
This way, operations causing auditable events are prevented. In addition, the audit daemon can
inform the administrator about the full audit trail, can switch to single user mode or halt the system,
depending on the configuration.
This security function covers the SFRs of: FAU_GEN.1, FAU_GEN.2, FAU_SAR.1, FAU_SAR.2, FAU_STG.1.

7.3.1.3 Audit subsystem implementation
An auditing facility records information about actions that may affect the security of a computer
system. In particular, an auditing facility records any action by any user that may represent a breach
of system security. For each action, the auditing facility records enough information about those
actions to verify the following:

● The user who performed the action
● The kernel object on which the action was performed
● The exact date and time it was performed
● The success or failure of the action
● The identity of the object involved

The TOE includes a comprehensive audit framework called Linux Audit Framework (LAF), which is
composed of user-space and kernel-space components. The framework records security events in
the form of an audit trail and provides tools for an administrative user. These tools enable the
administrator to configure the subsystem and to search for particular audit records, providing the
administrator with the ability to identify attempted and realized violations of the system’s security
policy.
This section describes the design and operation of the audit subsystem at a high level.

Audit components
The following figure illustrates the various components that make up the audit framework and how
they interact with each other. In general, there are user-space components and kernel-space
components that use a netlink socket for communication. Whenever a security event of interest
occurs, the kernel queues a record describing the event and its result to the netlink socket. If
listening to the netlink, the audit daemon, auditd, reads the record and writes it to the audit log.

Page 86 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Figure 3: Audit framework

This section describes the various components of the audit subsystem, starting with the kernel
components and then followed by the user-level components.

Kernel-userspace interface
On top of netlink, there exists the generic netlink family that provides simplified access for less
demanding users. This introduces a control for ID management and name resolution, and possesses
a new type of safety interface for netlink messages and attributes handling. This interface also
features simplified message constructing, validation capabilities, and documentation.
This mechanism also receives user-space commands to control the operation of the audit framework
and to set the audit filter rules and file system watch points.
When user space applications want to generate an audit entry, they also have to use the netlink
interface to send the message to the kernel.
The kernel checks the effective capabilities of the sender process. If the sender does not possess
the right capability (CAP_AUDIT_WRITE), the netlink message is discarded.
As outlined above, the kernel sends the completely formatted audit entry to the audit daemon for
storage. The interface the kernel uses is also the same netlink mechanism. However, how does the
kernel know to which process it has to send the message to? During startup time, the audit daemon
opens the netlink socket and sends a specific control message with its PID to the kernel. That control
message registers the PID with the kernel-internal audit mechanisms. From the time of the registering
on, this PID is used as the receiver of kernel messages.

Page 87 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Task structure extensions for audit
The audit subsystem extends the task structure to potentially include an audit context. By default,
on task creation, the audit context is built, unless specifically denied by the per-task filter rules.
Then, during system calls, the audit context data is filled. The audit subsystem further extends the
audit context to allow for more auxiliary audit information, which might be needed for specific audit
events.
The following fields are part of the audit context:

● Login ID: Login ID is the user ID of the logged-in user. It remains unchanged through the
setuid or seteuid system calls. Login ID is required to irrefutably associate a user with that
user’s actions, even across su(8) calls or use of SUID binaries. The Login ID is set by writing
the ID to /proc/<PID>/loginuid, which is performed during login time with the
pam_loginuid.so module. The loginuid file is only writable by root and is readable by
everyone. The /proc file system triggers the kernel function audit_set_loginuid to set the
login uid for the user in the audit context. From then on, this login uid is maintained
throughout the session to trace back all operations done in the session to the login user.

● state: State represents the audit state that controls the creation of per-task audit context
and filling of system call specifics in the audit context. It can take the following values:

❍ AUDIT_DISABLED: Do not create per-task audit_context. No syscall-specific audit
records will be generated for the task

❍ AUDIT_SETUP_CONTEXT: Create the per-task audit_context, but don't necessarily
fill it in a syscall entry time (i.e., filter instead).

❍ AUDIT_BUILD_CONTEXT: Create the per-task audit_context, and always fill it in at
syscall entry time. This makes a full syscall record available if some other part of
the kernel decides it should be recorded.

❍ AUDIT_RECORD_CONTEXT: Create the per-task audit_context, always fill it in at
syscall entry time, and always write out the audit record at syscall exit time.

● in_syscall: States whether the process is running in a syscall versus in an interrupt.
● serial: A unique number that helps identify a particular audit record.Along with ctime, it

can determine which pieces belong to the same audit record. The (timestamp, serial) tuple
is unique for each syscall and it lives from syscall entry to syscall exit.

● ctime: Time at system call entry
● major: System call number
● argv array: The first 4 arguments of the system call.
● name_count: Number of names. The maximum defined is 20.
● audit_names: An array of audit_names structure which holds the data copied by getname.
● auditable: This field is set to 1 if the audit_context needs to be written on syscall exit.
● pwd: Current working directory from where the task has started.
● pwdmnt: Current working directory mount point. Pwdmnt and pwd are used to set the cwd

field of FS_WATCH audit record type.
● aux: A pointer to auxiliary data structure to be used for event specific audit information.
● pid: Process ID.
● arch: The machine architecture.
● personality: The OS personality number.

Page 88 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



● Other fields: The audit context also holds the various user and group real, effective, ser
and file system id’s: uid, euid, suid, fsuid, gid, egid, sgid, fsgid.

Syscall auditing
The audit framework is hooked into the system call glue code of the kernel which is part of the
system call interrupt handling routine. Every time a system call is called by a process, the following
two states are triggered by the system call glue code:

1. Upon entering the kernel realm but before the actual function implementing the invoked
system call is called, a callback to the audit framework is made (audit_syscall_entry). This
callback first verifies whether the system call is to be audited based on the audit rules. If
it determines that the system call is to be audited, it retrieves the system call number,
converts the arguments to an ASCII string to store them with the audit trail and obtains
other information like the caller PID and its IDs.

2. After the function implementing the invoked system call completes, but before control is
returned to user space, another audit hook (audit_syscall_exit) is called by the system call
glue code. This hook code verifies whether there is data generated in step 1. If so, it receives
the return code of the system call, stores it together with the initial information to complete
the audit entry. This audit entry is now forwarded to the audit daemon via the netlink
interface.

To bridge the gap between step one and two, the kernel audit framework uses the audit context
registered with the task_struct. This audit context data structure is filled with the information
obtained in step 1.
If an architecture implements the system call handling as a kernel-internal thread, the kernel must
expect the possibility that the same process can issue another system call before the first is
completed. In this case, the kernel uses the audit context pointer of the data structure and generates
a double linked list with the pointer to the latest audit context structure as the head of the list. This
list is walked during step 2 to find the right entry and merge the exit audit data with the right entry
information.

Socket call and IPC audit record generation
Some system calls pass an argument to the kernel specifying which function the system call is
requesting from the kernel. These system calls request multiple services from the kernel through
a single entry point. For example, the first argument to the ipc call specifies whether the request
is for semaphore operation, shared memory operation, and so forth. In the same manner, the
socketcall system call is a common kernel entry point for the socket system calls. The socketcall
and the ipc call are extended to audit the arguments and therefore audit the exact service being
performed. Following is a typical flow:

1. The kernel encounters a socket or ipc call.
2. The kernel invokes an audit framework function to collect appropriate data to be used in

the auxiliary audit context.
3. The call is processed.
4. On exit the audit record that includes the auxiliary audit information is placed on the netlink.

Page 89 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Filesystem auditing
File system auditing is implemented using of the inotify kernel file modification notification system.
The audit_init kernel audit subsystem initialization routine registers a vector of inotify operations
using the inotify_init function. The operations vector contains the audit_handle_ievent audit
subsystem inotify event notification function and the audit_free_parent audit subsystem inotify
destroy function. The audit subsystem inotify handle is returned by a successful audit_init call.
When audit inotify events occur, audit_handle_ievent updates audit context inode data to reflect
changes in watched file status.
When the audit subsystem receives an instruction from auditctl to set a watch on a file system
object, the audit_recieve_skb function receives the netlink packet in the kernel. It in turn calls
audit_receive_message, which dispatches the appropriate function based upon the operation
requested. For audit rule updates, it calls audit_receive_filter. The audit_receive_filter routine calls
audit_data_to_entry, which converts the audit data to a watch and calls audit_to_watch to initialize
the audit watch data structure, and then calls audit_add_rule. The audit add_rule_function adds the
inotify watch for the watch rule by calling audit_add_watch, which scans the list of active audit
inotify watch parents and adds the parent if it does not already exist by calling audit_init_parent.
The audit_init_parent function calls inotify_init_watch and inotify_add_watch to initialize the inotify
watch and register it with the inotify subsystem. It finally adds the watch to the parent by calling
the audit_add_to_parent function, which associates the watch rule with the watch parent.
When a filesystem object the audit subsystem is watching changes, the inotify subsystem calls the
audit_handle_ievent function. audit_handle_ievent in turn updates the audit subsystem's watch
data for the watched entity.
Permission changes, as well as access and modification of the object security attributes chown,
chmod, setxattr, and removexattr, are audited by audit_inode hooks inserted into the system calls.
The hooks directly update the inode information in the audit context.
When a watched object is accessed by a system call, the audit subsystem's information about the
inode and its watches is updated. A typical sequence of file system operations that generates audit
records for a watched object follows these steps:

1. A system call is entered.
2. The system call modifies a watched file's inode information, triggering an inotify event that

calls the audit_handle_ievent function with the inotify watch event information, which
updates the audit context's inode information. In certain cases, a hooked system call
updates the audit context's inode information.

3. At syscall exit, audit_log_exit detects the updated inode information in the audit context
and emits PATH and SYSCALL records for the watch event via the audit netlink interface.

Auditing of other kernel actions
In addition to the auditing of system calls and file system objects, the audit mechanism inside the
kernel provides service functions for any other functional area inside the kernel. These service
functions can be used to generate an audit entry with arbitrary contents. That audit entry is
forwarded, like any other audit entry, to the auditd daemon for storage.

Page 90 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Kernel audit initialization
At kernel startup four lists are created to hold the filter rules. One list is checked at task creation,
another is checked at syscall entry time, the third is checked at syscall exit time, and the fourth is
used to filter user messages. These lists hold the filter rules set by user-space components. Multiple
variables are used to control the operation of audit.
During boot time, the audit enabled flag is set according to audit_default or to the boot parameter
audit. No syscall or file system auditing takes place without audit_enabled being set to true.
The file system auditing is initialized by creating the watch lists and the hash table for the file
system auditing.

Audit record format
Each audit record consists of the type of record, a time stamp, login ID, and process ID, along with
variable audit data depending on the audit record type. In other words, the record depends on the
audit event. Since audit records are written to user-space as soon as they are generated, a complete
audit record might be written in several pieces. A time stamp and a serial number pair identify the
various pieces of the audit records. The timestamp of the record and the serial number are used
by the user-space daemon to determine which pieces belong to the same audit record. The tuple
is unique for each syscall and lasts from syscall entry to syscall exit. The tuple is composed of the
timestamp and the serial number.
Each audit record for system calls contains the system call return code, which indicates if the call
was successful or not. The following table lists security-relevant events for which an audit record
is generated on the TOE.

LAF audit eventsEvent description

DAEMON_START, DAEMON_END, generated by auditdStartup and shutdown of audit functions

DAEMON_CONFIG, DAEMON_RECONFIG generated by
auditd. Syscalls open, link, unlink, rename, truncate,
(write access to configuration files)

Modification of audit configuration files

Syscall openSuccessful and unsuccessful file read/write

Space_left_action, admin_space_left_action
configuration parameters for auditd.

Audit storage space exceeds a threshold

Disk_full_action, disk_error_action configuration
parameters for auditd.

Audit storage space failure

system calls accessing the objectsOperation on file system objects and IPC objects

Audit record type: USER_AUTH from PAM Framework
and audit record type: USER_CHAUTHTOK

Rejection or acceptance by the TSF of any tested
secret.

Audit record type: USER_AUTH, USER_CHAUTHTOK
from PAM framework.

Use of identification and authentication mechanism

Audit record type: LOGIN from pam_login.so module.
Syscalls: fork and clone.

Success and failure of binding user security attributes
to a subject (e.g. success and failure to create a
subject)

Syscalls chmod, chown, setxattr, msgctl, semctl,
shmctl, removexattr, truncate

All modification of subject security values

Page 91 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



LAF audit eventsEvent description

Syscalls umask, openModifications of the default setting of permissive of
restrictive rules

System calls to access file system objects; audit record
type: USER_CHAUTHTOK

Modification of TSF data

Audit messages from trusted programs in the shadow
suite, audit record type: USER_CHAUTHTOK.

Modifications to the group of users that are part of a
role

Syscall settimeofday, adjtimex; execution of hwclock
and access to /dev/rtc

Changes to system time

Auditing Support for IPTables
IPTables supports the creation of audit logs based on IPTables rules by providing an AUDIT target.
That target can be added to generate an audit record for accepted, denied or rejected traffic. The
AUDIT target creates an audit entry for the logged IP packet with the following information, if
applicable:

● Netfilter hook
● packet length
● incoming/outgoing interface
● MAC source and destination address and protocol for Ethernet packets
● Source and destination address and protocol for IPv4/IPv6
● Source and destination port for TCP/UDP/UDPLITE
● ICMP type/code
● IPTables buffer marker

Auditing Support for OpenSSH
The OpenSSH server generates audit records for the following operations:

● The audit records contain an identifier that the sshd process generated the audit records
and therefore implicitly identifying the used communication protocol.

● Origin of the communication channel by logging the remote IP and remote port are logged.
● Indication of a success establishment of a connection is logged. Note, the absence of that

log entry indicates a failure of establishing a communication channel.
● Indication when a connection is terminated is logged.
● Authentication of a user (success and failure) including the user name is logged.
● Authentication type is logged (such as password-based or key-based authentication).
● The OpenSSH server logs cryptographic information of key exchange mechanism and the

used user or host based authentication mechanisms. In addition, the server logs when a
new ephemeral session key is established.

● If the server executes a command, this command will be logged.

Time Stamp Maintenance
The Linux kernel maintains various time stamps which has the following properties:

Page 92 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



● Time with a resolution in seconds is available to user space. The time is obtained from the
firmware or hardware at boot time.

● Time with a nanosecond resolution since the system started.
● Time with a microsecond resolution since Epoch (01.01.1970).

The auditing mechanism uses the available time information to add a time stamp to each audit
record.
The configuration files including the auditd.conf and the audit.rules files for the audit framework
covering all management aspects are writable by the root user only.
This security function covers the SFRs of: FAU_GEN.1, FAU_SEL.1, FAU_STG.3, FAU_STG.4, FPT_STM.1.

7.3.2 Trusted Channel
The TOE offers different cryptographic services to protect user data. The following subsections
cover the different types of cryptographic services analyzed as part of the evaluation. Additional
cryptographic mechanisms are active in the TOE which, however, are not subject to the assessments
of this evaluation.

7.3.2.1 Cryptographic network services
The TOE provides cryptographically secured network communication channels to allow remote
users to interact with the TOE. Using one of the following cryptographically secured network channels,
a user can request the following services:

● OpenSSH: The OpenSSH application provides access to the command line interface of the
TOE. Users may employ OpenSSH for interactive sessions as well as for non-interactive
sessions. The console provided via OpenSSH provides the same environment as a local
console. OpenSSH implements the SSHv2 protocol.

In addition to the cryptographically secured communication channels, the TOE also provides
cryptographic algorithms for general use.
The cryptographic primitives for implementing the above mentioned cryptographic communication
protocols are provided by OpenSSL.

SSHv2 Protocol
The TOE provides the Secure Shell Protocol Version 2 (SSH v2.0) to allow users from a remote host
to establish a secure connection and perform a logon to the TOE.
The following table documents implementation details concerning the OpenSSH implementation’s
compliance to the relevant standards. It addresses areas where the standards permit different
implementation choices such as optional features.

Implementation DetailsDescriptionReference

The OpenSSH implementation is capable of interoperating
with clients and servers using the old 1.x protocol. That
functionality is explicitly disabled in the evaluated
configuration, it permits protocol version 2.0 exclusively.

Compatibility with old SSH
versions

[RFC4253]☝
chapter 5

OpenSSH supports the OPTIONAL "zlib" compression method.Compression[RFC4253]☝
section 6.2

Page 93 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4253


Implementation DetailsDescriptionReference

The ciphers supported in the evaluated configuration are listed
in FTP_ITC.1 for the SSH protocol.

Encryption[RFC4253]☝
section 6.3

This REQUIRED authentication method is supported by
OpenSSH but can be disabled by the administrator of the
OpenSSH daemon.

Public Key Authentication
Method: "publickey"

[RFC4252]☝
chapter 7

This SHOULD authenticationmethod is supported by OpenSSH
but can be disabled by the administrator of the OpenSSH
daemon.

Password Authentication
Method: "password"

[RFC4252]☝
chapter 8

The OpenSSH implementation supports the optional password
change mechanism in the evaluated configuration.

Password change request and
setting new password

[RFC4252]☝
chapter 8

This OPTIONAL authentication method is disabled in the
evaluated configuration.

Host-Based Authentication:
"hostbased"

[RFC4252]☝
chapter 9

Table 13: SSH implementation notes

The TOE supports the generation of RSA, DSA and ECDSA key pairs. These key pairs are used by
OpenSSH for the host keys as well as for the per-user keys. When a user registers his public key
with the user he wants to access on the server side, a key-based authentication can be performed
instead of a password-based authentication. The key generation mechanism uses the Linux kernel
random number generator. The evaluated configuration permits the import of externally-generated
key pairs.
This security function covers the SFRs of: FIA_PK_EXT.1, FTP_ITC.1.
The TOE supports the following security functions of the SSH v2.0 protocol:

● Establishing a secure communication channel using the following cryptographic functions
provided by the SSH v2.0 protocol:

❍ Encryption as defined in section 4.3 of [RFC4253]☝ - the keys are generated using
the random number generator of the underlying cryptographic library;

❍ Diffie-Hellman key exchange as defined in section 6.1 of [RFC4253]☝;
❍ The keyed hash function for integrity protection as defined in section 4.4 of

[RFC4253]☝.
Note: The protocol supports more cryptographic algorithms than the ones listed above.
Those other algorithms are not covered by this evaluation and should be disabled or not
used when running the evaluated configuration.

● Performing user authentication using the standard password-based authentication method
the TOE provides for users (password authentication method as defined in chapter 5 of
[RFC4252]☝).

● Performing user authentication using a RSA, DSA or ECDSA key-based authentication
method (public key authentication method as defined in chapter 5 of [RFC4252]☝).

● Checking the integrity of the messages exchanged and close down the connection in case
an integrity error is detected.

Page 94 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc4252


The OpenSSH applications of sshd, ssh and ssh-keygen use the OpenSSL random number generator
seeded by /dev/random or /dev/urandom to generate cryptographic keys. OpenSSL provides different
DRNGs depending whether the FIPS 140-2 mode is enabled in the system.

OpenSSH Implementation Details
Secure Shell (SSH) is a network protocol that provides a replacement for insecure remote login and
command execution facilities such as telnet, rlogin, and Remote Shell (RSH). SSH encrypts traffic,
preventing traffic sniffing and password theft.
On a local system, the user starts the SSH client to open a connection to a remote server running
the sshd daemon. If the user is authenticated successfully, an interactive session is initiated, allowing
the user to run commands on the remote system. SSH is not a shell in the sense of a command
interpreter, but it permits the use of a shell on the remote system.
In addition to interactive logins, the user can tunnel TCP network connections through the existing
channel, allowing the use of X11 and other network-based applications, and copy files through the
use of the scp and sftp tools. OpenSSH is configured to use the PAM framework for authentication,
authorization, account maintenance, and session maintenance. Password expiration and locking
are handled through the appropriate PAM functions.
Communication between the SSH client and SSH server uses the SSH protocol, version 2.0. The
SSH protocol requires that each host have a host-specific key. When the SSH client initiates a
connection, the keys are exchanged using the Diffie-Hellman protocol. A session key is generated,
and all traffic is encrypted using this session key and the agreed-upon algorithm.
Default encryption algorithms supported by SSH are 3DES (triple DES) and blowfish. The default
can be overridden by providing the list in the server configuration file with the “ciphers” keyword.
The default message authentication code algorithms supported by SSH are SHA-1 and MD5. The
default can be overridden by providing the list in the server configuration file with the keyword
MACs.
Encryption is provided by the OpenSSL package, which is a separate software package. The following
briefly describes the default SSH setup with respect to encryption, integrity check, certificate format,
and key exchange protocol.

● Encryption: A number of ciphers and block chaining modes are available with OpenSSH. A
subset is allowed in the evaluated configuration.

● Integrity check: Data integrity is protected by including a message authentication code
(MAC) with each packet that is computed from a shared secret, packet sequence number,
and the contents of the packet. The message authentication algorithm and key are
negotiated during key exchange. Initially, no MAC will be in effect, and its length must be
zero. After key exchange, the selected MAC will be computed before encryption from the
concatenation of packet data
mac = MAC (key, sequence_number || unencrypted_packet) where unencrypted_packet is
the entire packet without MAC (the length fields, payload and padding), and
sequence_number is an implicit packet sequence number represented as uint32. The
sequence number is initialized to zero for the first packet, and is incremented after every
packet, regardless of whether encryption or MAC is in use. It is never reset, even if keys
or algorithms are renegotiated later. It wraps around to zero after every 2^32 packets.
The packet sequence number itself is not included in the packet sent over the wire.

Page 95 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



The MAC algorithms for each direction must run independently, and implementations must
allow choosing the algorithm independently for both directions. The MAC bytes resulting
from the MAC algorithm must be transmitted without encryption as the last part of the
packet. The number of MAC bytes depends on the algorithm chosen. The default MAC
algorithm defined is the hmac-sha1 (with digest length = key length = 20 bytes).

● Certificate format: The default certificate format used is ssh-dss signed with Simple DSS.
Signing and verifying using this key format is done according to the Digital Signature
Standard [FIPS-186] using the SHA-1 hash. In addition to DSS, RSA, ECDSA are available.

● Key exchange protocol: The default key exchange protocol is diffie-hellman-group1-sha1.
The diffie-hellman-group1- sha1method specifies Diffie-Hellman key agreement with SHA-1
as HASH. The domain parameters of size 1024 bits are specified in [RFC2409] In addition,
the following key agreement protocols are available:

❍ diffie-hellman-group14-sha1: Diffie-Hellman key agreement with SHA-1 and domain
parameters of size 2048 bits defined in RFC3526

❍ diffie-hellman-group-exchange-sha1: Diffie-Hellman key agreement with SHA-1
and domain parameters generated as defined in RFC4419 - OpenSSH provides a
set of pre-computed Diffie-Hellman domain parameters in /etc/ssh/moduli. During
the SSH protocol handshake, the client and server negotiate the domain parameter
set where both must agree on a set that is located in /etc/ssh/moduli on both sides.

❍ diffie-hellman-group-exchange-sha256: This option is identical to
diffie-hellman-group-exchange-sha1 except that it requires SHA-256 to be used.

❍ ecdh-sha2-nistp256: Elliptic Curve Diffie-Hellman key agreement with SHA-256
using the NIST curve P-256 as defined in RFC5656

❍ ecdh-sha2-nistp384: Elliptic Curve Diffie-Hellman key agreement with SHA-384
using the NIST curve P-384 as defined in RFC5656

❍ ecdh-sha2-nistp521: Elliptic Curve Diffie-Hellman key agreement with SHA-512
using the NIST curve P-521 as defined in RFC5656

❍ curve25519-sha256@libssh.org: Elliptic Curve Diffie-Hellman key agreement with
SHA-256 using the Montgomery curve 25519 as defined in
http://cr.yp.to/ecdh/curve25519-20060209.pdf

The following subsections briefly describe the implementation of SSH client and SSH server. For
detailed information about the SSH Transport Layer Protocol, SSH Authentication Protocol, SSH
Connection Protocol, and SSH Protocol Architecture, refer to the corresponding protocol specifications
in RFC 4250ff.

SSH client
The SSH client first parses arguments and reads the configuration (readconf.c), then calls ssh_connect
(in sshconnect*.c) to open a connection to the server, and performs authentication (ssh_login in
sshconnect.c). Terminal echo is turned off while users type their passwords, which prevents the
password from being displayed on the terminal as it is being typed. The SSH client then makes
requests such as allocating a pseudo-tty, forwarding X11 connections, forwarding TCP-IP connections
and so on, and might call code in ttymodes.c to encode current tty modes. Finally, the SSH client
calls client_loop in clientloop.c.

Page 96 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



The client is typically installed with suid as root. The client temporarily gives up this right while
reading the configuration data. The root privileges are used to make the connection from a privileged
socket, which is required for host-based authentication and to read the host key for host-based
authentication using protocol version 1. Any extra privileges are dropped before calling ssh_login.
Because .rhosts support is not included in the TSF, the SSH client is not suid root on the system.

SSH server daemon
The sshd daemon starts by processing arguments and reading the /etc/ssh/sshd_config configuration
file. The configuration file contains keyword-argument pairs, one per line. Refer to the sshd_config
man page for available configuration options. The daemon then reads the host key, starts listening
for connections, and generates the server key.
When the server receives a connection, it forks a process and re-executes the sshd binary, disables
the regeneration alarm, and starts communicating with the client. The server and client first perform
identification string exchange, and then negotiate encryption and perform authentication. If
authentication is successful, the forked process sets the effective user ID to that of the authenticated
user, performs preparatory operations, and enters the normal session mode by calling server_loop
in serverloop.c.
When the server accepts a new connection, it prints the contents of the file pointed to by the
configuration variable “Banner” before any authentication takes place.
The sshd daemon in the TOE supports extended user/role/range@hostname login syntax for MLS
role and level selection. Because newrole is restricted to administrative users, the extended role
and level selection syntax is the method by which ordinary ordinary users select role and level.

Password-based authentication
The password based authentication utilizes the PAM library if the configuration option UsePAM is
set in sshd_config. The SSH daemon receives the user name and password after setting up the SSH
tunnel and feeds it into the PAM library. The following sequence is used by the SSH daemon to
access the PAM library:

1. Initializing the interaction with the PAM library using the pam_start. The PAM configuration
name is set to the file name of the SSH daemon which is “sshd”.

2. Establishing a thread that is used for the authentication conversation. That thread uses
pam_authenticate to authenticate the user. If the PAM library requires a change of the
authentication token, pam_chauthtok is called.

3. If the authentication returns PAM_SUCCESS, pam_open_session is used to set up the user
session.

Key-based authentication
If the key-based authentication is enabled, the SSH daemon allows the use of RSA or DSA keys as
authentication token.
The following steps are performed by the SSH daemon:

1. Verify that the user name is defined on the local system. If not, the authentication attempt
is terminated.

2. The key-based authentication is performed as defined by RFC 4252. The public key for the
key-based authentication must reside in the home directory of the target user in the file
.ssh/authorized_keys. As this file may contain multiple key, each key is tried whether it is

Page 97 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



appropriate as a public key for the authentication attempt (i.e. whether the public key can
decrypt the data sent by the client encrypted with the client's private key). The first key
that is found to match the private key indicates a successful authentication.

3. If the authentication was successful, pam_open_session is used to set up the user session.
The session part of the PAM configuration file for the SSH daemon is applied.

This security function covers the SFRs of: FTP_ITC.1, FMT_SMF_RMT.1.

7.3.3 Network Information Flow Control
The Linux kernel's network stack implementation follows the layering structure of the network
protocols. It implements the code for handling the link layer as well as the network layer. For those
layers, independent filter mechanism are provided:

● Network layer: netfilter/iptables implements the filtering mechanism for non-bridge
interfaces

Packet filter rules can only be injected into the Linux kernel for enforcement by processes possessing
the CAP_NET_ADMIN capability.

7.3.3.1 Network layer filtering

Netfilter
Netfilter is a framework for packet mangling, implemented in the Linux kernel network stack handling
the network layer. The netfilter framework comprises of the following parts:

● The IP stack defines five hooks which are well-defined points in a network packet's traversal
of the IP protocol stack. Each of the hooks, the network stack will call the netfilter framework
allowing it to operate on the entire packet. Note: the netfilter framework provides such
hooks in a number of network protocol implementations, but the TOE only supports IP as
outlined above. Therefore, the ST specification only covers the IP protocol.

● The netfilter framework provides register functions for other kernel parts to listen to the
different hooks. When a packet traverses one of the hooks and passed to the netfilter
framework, it invokes every registered kernel part. These kernel parts then can examine
the packet and possible alter it. As part of the examination, these kernel parts can instruct
the netfilter framework to discard the packet, to allow it to pass, or to queue it to user
space.

● When a packet is marked to be queued to user space, the netfilter framework handles the
asynchronous communication with user space.

The netfilter framework implements the five hooks at the following points in the packet traversal
chain:

● When the packet enters the network layer of the TOE and after applying some sanity
checks, but before the routing table is consulted, the NF_IP_PRE_ROUTING hook is triggered.

● After passing the routing table decision and the routing code marks the packet to be
targeted for another host, the NF_IP_FORWARD hook is triggered.

● After passing the routing table decision and the routing code marks the packet to be
targeted for the local system, the NF_IP_LOCAL_IN hook is triggered.

● When the packet traversed all of the network stack and is about to be placed on the wire
again, the NF_IP_POST_ROUTING hook is triggered.

Page 98 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



● When a packet is generated locally, the NF_IP_LOCAL_OUT hook is triggered before the
routing table is consulted.

IPTables
All communication on the network layer can be controlled by the IPTables framework.
The TOE implements a packet filter as part of the network stack provided with the Linux kernel.
The combination of IPTables and netfilter implements the packet filter which provides stateful and
stateless packet filtering for network communication by inspecting the IP header, the TCP header,
UDP header and/or ICMP header of every network packet that passes the network stack.
The packet selection system called IP Tables uses the netfilter framework to implement the actual
packet filtering logic on the network layer for the TCP/IP protocol family.
Note: IPTables is able to perform Network Address Translation (NAT) as well as Port Address
Translation (PAT) for simple as well as more complex protocols. This mechanism is out of scope for
the evaluation. Furthermore, packet mangling support is provided with IPTables which is also out
of scope for the evaluation.
IPTables registers all hooks provided by the netfilter framework. The NAT/PAT mechanism uses the
pre-routing and post-routing hooks whereas the packet filtering capability is enforced on the local-in,
local-out and forwaring hooks.
IPTables consists of the following two components:

● In-kernel packet filter enforcement: The kernel-side of IPTables use the netfilter framework
as indicated above. Three lists of packet filter rules are enforced by the kernel mechanism:
one for each netfilter framework hook that applies to packet filtering. When a packet is
analyzed by the IPTables kernel modules, they first select the applicable list based on the
hook where the netfilter framework triggered IPTables. Each list contains zero or more
rules which are iterated sequentially. A rule consists of a matching part (also called the
"match extension") and an action part (also called the "target extension"). When a rule is
applied to a packet, the kernel modules first applies the matching part of the rule. If the
packet matches, the action part is enforced. If the action part contains a decision of the
fate of the packet (to accept it, to drop it, or to drop it and sending a notification to the
sender), the rule list validation stops for this packet. If the action part contains a modification
instruction or log instruction for the packet, the rule list validation continues after performing
this operation. When the rule list is iterated through and a packet could not be matched
by a rule with a decision action (accept, drop), the default decision action applicable to the
list is enforced. This default action is either to accept the packet, to drop the packet, or to
drop the packet and send a notification to the sender.

● User space configuration application: The user space application [IPTABLES] supported by
[IPTABLES-EXT] allows the configuration of the IPTables kernel components. The application
allows the specification of one rule per invocation where a rule contains the abovementioned
matching part and action part. The tool also allows modification or deletion of existing rules
as well as configuration of the default action. When using the tool, each invocation must
specify the netfilter framework hook to which the rule applies to. See the man page of
iptables(1) for more details.

This security function covers the SFRs of:
● Packet filtering rules: FDP_IFC.1, FDP_IFF.1
● Interpretation of network protocol: FIA_UID.1
● Maintenance of rules: FMT_MTD.1(NI)

Page 99 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



7.3.4 Identification and Authentication
User identification and authentication in the TOE includes all forms of interactive login (e.g. using
the SSH protocol or log in at the local console) as well as identity changes through the su and sudo
commands. These all rely on explicit authentication information provided interactively by a user.
In addition, the key-based authentication mechanism of the OpenSSH server is another form of of
authentication.

7.3.4.1 PAM-based identification and authentication mechanisms
When a user possesses an identity in a system in the form of a login ID, that user has Identification.
Identification establishes user accountability and access restrictions for actions on a system.
Authentication is verification that the user’s claimed identity is valid, and is implemented through
a user password at login time.
All discretionary access-control decisions made by the kernel are based on the process’s user ID
established at login time and all mandatory access control decisions made by the kernel are based
on the process domain established through login, which make the authentication process a critical
component of a system.
The Linux system implements identification and authentication through a set of trusted programs
and protected databases. These trusted programs use an authentication infrastructure called the
Pluggable Authentication Module (PAM). PAM allows different trusted programs to follow a consistent
authentication policy. PAM provides a way to develop programs that are independent of the
authentication scheme. These programs need authentication modules to be attached to them at
run-time in order to work. Which authentication module is to be attached is dependent upon the
local system setup and is at the discretion of the local system administrator.
Linux uses a suite of libraries called the "Pluggable Authentication Modules" (PAM) that allow an
administrative user to choose how PAM-aware applications authenticate users. The TOE provides
PAM modules that implement all the security functionality to:

● Provides login control and establishing all UIDs, GIDs and login ID for a subject
● Ensure the quality of passwords
● Enforce limits for accounts (such as the number of maximum concurrent sessions allowed

for a user)
● Enforce the change of passwords after a configured time including the password quality

enforcement
● Enforcement of locking of accounts after failed login attempts.
● Restriction of the use of the root account to certain terminals
● Restriction of the use of the su and sudo commands

The login processing sets the real, file system effective and login UID as well as the real, effective,
file system GID and the set of supplemental GIDs of the subject that is created. It is of course up
to the client application usually provided by a remote system to protect the user’s entry of a
password correctly (e. g. provide only obscured feedback).
During login processing, the user is shown a banner. After successful authentication, the login time
is recorded.
When configuring the OpenSSH server, the administrator is allowed to enable SSH key-based
authentication in addition or instead of the username/password based authentication. When a user
can successfully authenticate using the SSH key-based authentication based on a private SSH key
in his possession, the TOE grants the user access.

Page 100 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



SSSD is a system daemon with the primary function of providing access to identity and authentication
remote resource through a common framework that can provide caching and offline support to the
system. It provides PAM and NSS modules. It provides also a better database to store local users
as well as extended user data. SSSD can be configured to use a native LDAP domain (that is, an
LDAP identity provider with LDAP authentication), or an LDAP identity provider with Kerberos
authentication. One of the primary benefits of SSSD is offline authentication. This solves the case
of users having a separate corporate account and a local machine account because of the common
requirement to implement a Virtual Private Network (VPN). SSSD can cache remote identities and
authentication credentials. This means that a user can still authenticate with these remote identities
even when a machine is offline. In an SSSD system, a user only needs to manage one account.
SSSD integrates with the PAM and NSS framework and can therefore be used together with PAM
modules for local credential stores.
After a successful identification and authentication, the TOE initiates a session for the user and
spawns the initial login shell as the first process the user can interact with. The TOE provides a
mechanism to lock a session either automatically after a configurable period of inactivity for that
session or upon the user's request.
The TOE ensures that the memory used for the authentication operation is cleared before the
authentication takes place. This ensures that previously entered credentials are not re-used for a
new authentication operation.
When a new user is created, a complete new entry is added to the credential database. This ensures
that previously existing credentials are not reused for the newly added user.
After successful authentication, a new process is spawned where the spawned process is identified
by the "shell" entry in the credential store (either SSSD or /etc/passwd). This new process is spawned
with the UID associated to the user in the credential store, In addition, the new process is spawned
with the primary GID as well as supplemental GIDs defined by the credential store for the user
(either SSSD or /etc/group). The capabilities are initially set as follows: if the UID of the user is 0,
all capabilities are assigned to the newly spawned process. Otherwise no capabilities are assigned.
This security function covers the SFRs of FDP_RIP.2, FIA_AFL.1, FMT_MOF.1, FIA_UAU.1(HU),
FIA_UAU.1(RITE), FIA_UID.1, FIA_UAU.5, FIA_UAU.7, FIA_USB.1.

Pluggable Authentication Module
PAM is responsible for the identification and authentication subsystem. PAM provides a centralized
mechanism for authenticating all services. PAM allows for limits on access to applications and
alternate, configurable authentication methods. For more detailed information about PAM, see the
PAM project Web site at http://www.kernel.org/pub/linux/libs/pam.
PAM consists of a set of shared library modules, which provide appropriate authentication and audit
services to an application. Applications are updated to offload their authentication and audit code
to PAM, which allows the system to enforce a consistent identification and authentication policy,
as well as to generate appropriate audit records. The following programs are enhanced to use PAM:

● login
● passwd
● su, sudo
● useradd, usermod, userdel
● groupadd, groupmod, groupdel
● sshd
● chage

Page 101 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



● chfn
● chsh
● newrole

A PAM-aware application generally goes through the following steps:
1. The application makes a call to PAM to initialize certain data structures. With the

initialization, the calling application provides a name to PAM which ultimately is used to
find the configuration file of the authentication stack configuration in /etc/pam.d/. Usually,
that name equals the application name.

2. The PAM module locates the configuration file for that application from
/etc/pam.d/application_name and obtains a list of PAM modules necessary for servicing
that application. If it cannot find an application-specific configuration file, then it uses
/etc/pam.d/other.

3. Depending on the order specified in the configuration file, PAM loads the appropriate
modules for the PAM operation requested by the calling application (i.e. PAM provides one
call back for each module type – the module type is consistent with the “auth”, “session”,
“password” and “account” sections in the PAM configuration files.

4. The authentication module code performs the requested operation depending on the
module type. The module may require input from the user. Note: a module may perform
operations which hardly have anything to do with authentication, but whose operations
are necessary to set up the user environment.

5. Each authenticationmodule performs its action and relays the result back to the application.
6. The PAM library is modified to create a USER_AUTH type of audit record to note the success

or failure from the authentication module.
7. The application takes appropriate action based on the aggregate results from all

authentication modules.

PAM modules
Linux is configured to use the following PAM modules – each PAM module used in the evaluated
configuration is accompanied by a man page that provides additional information:

● pam_unix.so Supports all four module types, and provides standard password-based
authentication. pam_unix.so uses standard calls from the system libraries to retrieve and
set account information as well as to perform authentication. Authentication information
about Linux is obtained from the /etc/passwd and /etc/shadow files. To perform the
authentication, the pam_unix module calls the unix_chkpwd helper program.

● pam_stack.so pam_stack.so module performs normal password authentication through
recursive stacking of modules. For example, the argument service=system-auth passed
to the pam_stack.somodule indicates that the user must pass through the PAM configuration
for system authentication, found in /etc/pam.d/system-auth.

● pam_passwdqc.so Performs additional password strength checks. For example, it rejects
passwords such as “1qaz2wsx” that follow a pattern on the keyboard. In addition to checking
regular passwords it offers support for passphrases and can provide randomly generated
passwords.

● pam_env.so Loads a configurable list of environment variables, and is configured with the
/etc/security/pam_env.conf file.

Page 102 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



● pam_shells.so Authentication is granted if the user’s shell is listed in /etc/shells. If no shell
is in /etc/passwd (empty), then /bin/sh is used. It also checks to make sure that /etc/shells
is a plain file and not world-writable.

● pam_limits.so This module imposes user limits on login. It is configured using the
/etc/security/limits.conf file. No limits are imposed on UID 0 accounts.

● pam_rootok.so This module is an authentication module that performs one task: if the id
of the user is 0, then it returns PAM_SUCCESS. With the “sufficient” control flag, it can be
used to allow password-free access to some service for root.

● pam_xauth.so This module forwards xauth cookies from user to user. Primitive access
control is provided by ~/.xauth/export in the invoking user's home directory, and
~/.xauth/import in the target user's home directory.

● pam_wheel.so Returns successful if the user to be authenticated is part of the wheel group.
First, the module checks for the existence of a wheel group. Otherwise, the module defines
the group with group ID 0 to be the wheel group.

● pam_nologin.so Provides standard UNIX nologin authentication. If the /etc/nologin file exists,
only root is allowed to log in; other users are turned away with an error message (and the
module returns PAM_AUTH_ERR or PAM_USER_UNKNOWN). All users (root or otherwise)
are shown the contents of /etc/nologin.

● pam_loginuid.so Sets the audit uid for the process that was authenticated.
● pam_securetty.so Provides standard UNIX securetty checking, which causes authentication

for root to fail unless the calling program has set PAM_TTY to a string listed in the
/etc/securetty file. For all other users, pam_securetty.so succeeds.

● pam_faillock.so Keeps track of the number of login attempts made and denies access based
on the number of failed attempts, which is specified as an argument to pam_faillock.so
module. This is addressed at the “account” module type. The pam_faillock program allows
administrative users to examine and control the pam_faillock PAM module's tally file, such
as reset.

● pam_tally2.so Keeps track of the number of login attempts made and denies access based
on the number of failed attempts, which is specified as an argument to pam_tally2.so
module. This is addressed at the “account” module type. The pam_tally2 program allows
administrative users to examine and control the pam_tally2 PAM module's tally file such
as reset.

● pam_listfile.so Allows the use of ACLs based on users, ttys, remote hosts, groups, and
shells.

● pam_deny.so Always returns a failure.
● pam_selinux.so The pam_selinux PAM offers role and level selection and sets the default

security context for the session managed by PAM. pam_selinux prompts users to enter a
non-default role and level, and calls into the SELinux libraries to obtain the default security
context for the next executed shell in the session. It is not used for multilevel SSH sessions.

● pam_namespace.so Allows configuration of polyinstantiated directories using a per-session
private namespace. A polyinstantiated directory provides an instance of itself to a process
based on the user ID and/or the security context of the process. Directories to be
polyinstantiated, location, and names of instance directories and the method used for
polyinstantiation can be configured by modifying the /etc/security/namespace.conf file.
The pam_namespace module relies on the per-session private namespace feature.
pam_namespace invokes the unshare system call disassociates from the parent namespace,
creates an instance directory as configured by the namespace.conf, assigns the security

Page 103 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



context to what is returned by the security_compute_member library routine, and binds it
on top of the directory to polyinstantiate. security_compute_member is an interface to the
system security policy to query its type member rules.

● pam_cracklib.so The action of this module is to prompt the user for a password and check
its strength against a system dictionary and a set of rules for identifying poor choices. The
first action is to prompt for a single password, check its strength and then, if it is considered
strong, prompt for the password a second time (to verify that it was typed correctly on the
first occasion). All being well, the password is passed on to subsequent modules to be
installed as the new authentication token.

● pam_sss.so The SSSD service is integrated into the PAM framework with the pam_sss.so
module. Further information about SSSD is given below.

● pam_systemd.so pam_systemd registers user sessions with the systemd login manager
systemd-logind.service(8), and hence the systemd control group hierarchy.

7.3.4.2 User Identity Changing
Users can change their identity (i.e., switch to another identity) using one of the following commands
provided with the TOE:

su command
The su command is intended for a switch to a another identity that establishes a new login
session and spawns a new shell with the new identity. When invoking su, the user must
provide the credentials associated with the target identity - i.e. when the user wants to
switch to another user ID, it has to provide the password protecting the account of the target
user.
The primary use of the su command within the TOE is to allow appropriately authorized
individuals the ability to assume the root identity to perform administrative actions. In this
system the capability to login as the root identity has been restricted to defined terminals
only. In addition the use of the su command to switch to root has been restricted to users
belonging to a special group. Users that don’t have access to a terminal where root login is
allowed and are not member of that special group will not be able to switch their real, file
system and effective user ID to root even if they would know the authentication information
for root. Note that when a user executes a program that has the setuid bit set, only the
effective user ID and file system ID are changed to that of the owner of the file containing
the program while the real user ID remains that of the caller. The login ID is neither changed
by the su command nor by executing a program that has the setuid or setgid bit set as it is
used for auditing purposes.

sudo command
The sudo command is intended for giving users permissions to execute commands with
another user identity. When invoking sudo, the user has to authenticate with this credentials.
Sudo is associated with sophisticated ruleset that can be engaged to specify which:

● source user ID
● originating from which host
● can access a command, a command with specific configuration flags, or all commands

within a directory
● with which new user identity.

Page 104 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



When switching identities, the real, file system and effective user ID and real, file system and
effective group ID are changed to the one of the user specified in the command (after successful
authentication as this user).
Note: The login ID is not retained for the following special case:

1. User A logs into the system.
2. User A uses su to change to user B.
3. User B now edits the cron or at job queue to add new jobs. This operation is appropriately

audited with the proper login ID.
4. Now when the new jobs are executed as user B, the system does not provide the audit

information that the jobs are created by user A.
The su command invokes the common authentication mechanism to validate the supplied
authentication.
This security function covers the SFRs of FIA_USB.1.

7.3.4.3 Authentication Data Management
Each TOE instance maintains its own set of users with their passwords and attributes. Although the
same human user may have accounts on different servers interconnected by a network and running
an instantiation of the TOE, those accounts and their parameter are not synchronized on different
TOE instances. As a result the same user may have different user names, different user Ids, different
passwords and different attributes on different machines within the networked environment. Existing
mechanism for synchronizing this within the whole networked system are not subject to this
evaluation.
Each TOE instance within the network maintains its own administrative database by making all
administrative changes on the local TOE instance. System administration has to ensure that all
machines within the network are configured in accordance with the requirements defined in this
Security Target.
The file /etc/passwd contains for each user the user’s name, the id of the user, an indicator whether
the password of the user is valid, the principal group id of the user and other (not security relevant)
information. The file /etc/shadow contains for each user a hash of the user's password, the userid,
the time the password was last changed, the expiration time as well as the validity period of the
password and some other information that are not subject to the security functions as defined in
this Security Target. Users are allowed to change their passwords by using the passwd command.
This application is able to read and modify the contents of /etc/shadow for the user’s password
entry, which would ordinarily be inaccessible to a non-privileged user process. Users are also warned
to change their passwords at login time if the password will expire soon, and are prevented from
logging in if the password has expired.
The time of the last successful logins is recorded in the directory /var/log/faillock where one file per
user is kept.
The TOE displays informative banners before or during the login to users. The banners can be
specified with the files /etc/issue for log ins via the physical console or /etc/issue.net for remote log
ins, such as via SSH. When performing a log in on the physical console, the banner is displayed
above the username and password prompt. For log ins via SSH, the banner is displayed to the
remote peer during the SSH-session handshake takes place. The remote SSH client will display the
banner to the user. When using the provided OpenSSH client, the banner is displayed when the
user instructs the OpenSSH client to log into the remote system.

Page 105 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Users can change their own password. Only administrators can add or delete users or change their
properties.
This security function covers the SFRs of FIA_ATD.1, FMT_REV.1(USR).

7.3.4.4 SSH key-based authentication
In addition to the PAM-based authentication outlined above, the OpenSSH server is able to perform
a key-based authentication. When a user wants to log on, instead of providing a password, the user
applies his SSH key. After a successful verification, the OpenSSH server considers the user as
authenticated and performs the PAM-based operations as outlined above.
To establish a key-based authentication, a user first has to generate an RSA, DSA, or ECDSA key
pair. The private part of the key pair remains on the client side. The public part is copied to the
server into the file .ssh/authorized_keys which resides in the home directory of the user he wants
to log on as. When the login operation is performed the SSHv2 protocol tries to perform the
"publickey" authentication using the private key on the client side and the public key found on the
server side. The operations performed during the publickey authentication is defined in [RFC4252]☝
chapter 7.
Users have to protect their private key part the same way as protecting a password. Appropriate
permission settings on the file holding the private key is necessary. To strengthen the protection
of the private key, the user can encrypt the key where a password serves as key for the encryption
operation. See ssh-keygen(1) for more information.
This security function covers the SFRs of FIA_UAU.1(HU), FIA_UAU.1(RITE), FIA_UID.1, FIA_UAU.5,
FMT_MTD.1(CM).

7.3.4.5 Session locking
The TOE uses the screen(1) application which locks the current session of the user either after an
administrator-specified time of inactivity or upon the user's request.
To unlock the session, the user must supply his password. Screen uses PAM to validate the password
and allows the user to access his session after a successful validation.
This security function covers the SFRs of FTA_SSL.1, FTA_SSL.2.

7.3.5 Discretionary Access Control
The general policy enforced is that subjects (i.e., processes) are allowed only the accesses specified
by the policies applicable to the object the subject requests access to. Further, the ability to
propagate access permissions is limited to those subjects who have that permission, as determined
by the policies applicable to the object the subject requests access to.
A subject may possess one or more of the following capabilities which provide the following
exemptions from the DAC mechanism:

● CAP_DAC_OVERRIDE: A process with this capability is exempt from all restrictions of the
discretionary access control and can perform any action desired. For the execution of a
file, the permission bit vector of that file must contain at least one execute bit.

● CAP_DAC_READ_SEARCH: A process with this capability overrides all DAC restrictions
regarding read and search on files and directories.

● CAP_CHOWN: A process with this capability is allowed to make arbitrary changes to a file's
UID or GID.

Page 106 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

http://tools.ietf.org/html/rfc4252


● CAP_FOWNER: Setting permissions and ownership on objects even if the process' UID does
not match the UID of the object.

● CAP_FSETID: Don't clear SUID and SGID permission bits when a file is modified.
DAC provides the mechanism that allows users to specify and control access to objects that they
own. DAC attributes are assigned to objects at creation time and remain in effect until the object
is destroyed or the object attributes are changed. DAC attributes exist for, and are particular to,
each type of named object known to the TOE. DAC is implemented with permission bits and, when
specified, ACLs.
The outlined DAC mechanism applies only to named objects which can be used to store or transmit
user data. Other named objects are also covered by the DACmechanism but may be supplemented
by further restrictions. These additional restrictions are out of scope for this evaluation. Examples
of objects which are accessible to users that cannot be used to store or transmit user data are:
virtual file systems externalizing kernel data structures (such as most of procfs, sysfs, binfmt_misc)
and process signals.
During creation of objects, the TSF ensures that all residual contents is removed from that object
before making it accessible to the subject requesting the creation.
When data is imported into the TOE (such as whenmounting disks created by other trusted systems),
the TOE enforces the permission bits and ACLs applied to the file system objects.
During the creation of file system objects, the TOE ensures that new and zeroized memory is used
for the newly allocated object. This ensures that any data previously present in the storage area
is overwritten.

7.3.5.1 Permission bits
The TOE supports standard UNIX permission bits to provide one form of DAC for file system objects
in all supported file systems. There are three sets of three bits that define access for three categories
of users: the owning user, users in the owning group, and other users. The three bits in each set
indicate the access permissions granted to each user category: one bit for read (r), one for write
(w) and one for execute (x). Note that write access to file systems mounted as read only (e. g.
CD-ROM) is always rejected (the exceptions are character and block device files which can still be
written to as write operations do not modify the information on the storage media). The SAVETXT
attribute is used for world-writable temp directories preventing the removal of files by users other
than the owner.
Each process has an inheritable “umask” attribute which is used to determine the default access
permissions for new objects. It is a bit mask of the user/group/other read/write/execute bits, and
specifies the access bits to be removed from new objects. For example, setting the umask to “002”
ensures that new objects will be writable by the owner and group, but not by others. The umask is
defined by the administrator in the /etc/login.defs file or 022 by default if not specified.
This security function covers the SFRs of FDP_ACC.1(PSO), FDP_ACF.1(PSO), FDP_RIP.2,
FMT_REV.1(OBJ), FMT_MSA.4.

7.3.5.2 Access Control Lists (ACLs)
The TOE provides support for POSIX type ACLs to define a fine grained access control on a user
basis. ACLs are supported for all file system objects stored with the following file systems:

● ext4
● XFS

Page 107 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



● tmpfs
An ACL entry contains the following information:

● A tag type that specifies the type of the ACL entry
● A qualifier that specifies an instance of an ACL entry type
● A permission set that specifies the discretionary access rights for processes identified by

the tag type and qualifier
An ACL contains exactly one entry of three different tag types (called the "required ACL entries”
forming the "minimum ACL"). The standard UNIX file permission bits as described in the previous
section are represented by the entries in the minimum ACL.
A default ACL is an additional ACL which may be associated with a directory. This default ACL has
no effect on the access to this directory. Instead the default ACL is used to initialize the ACL for
any file that is created in this directory. If the new file created is a directory it inherits the default
ACL from its parent directory. When an object is created within a directory and the ACL is not defined
with the function creating the object, the new object inherits the default ACL of its parent directory
as its initial ACL.

7.3.5.3 File system objects
Access to file system objects is generally governed by permission bits. For the above mentioned
file system, ACLs are supported.
File system objects access checks are performed when the object is initially opened, and are not
checked on each subsequent access. Changes to access controls (i.e., revocation) are effective
with the next attempt to open the object.

7.3.5.4 Special Permissions
In addition, the following additional access control bits are processed by the kernel:

● SUID bit: When an executable marked with the SUID bit is executed, the effective UID of
the process is changed to the UID of the owner of the file. The SUID bit for file system
objects other than files is ignored.

● SGID bit: When an executable marked with the SGID bit is executed, the effective GID of
the process is changed to the owning GID of the file. The SGID bit for file system objects
other than files is ignored.

● SAVETXT: When a directory is marked with the SAVETXT bit, only the owner of a file system
object in that directory can remove it. This bit is commonly used for world-writable
directories like /tmp. Only processes with the CAP_FOWNER capability are able to remove
the file system object if their UID is different than the owning UID of the file system object.

7.3.5.5 IPC objects
The System V IPC consists of message queues, semaphores, and shared memory regions. Message
queues allow formatted data streams to be sent between processes. Semaphores allow processes
to synchronize their execution. Shared memory segments allowmultiple processes to share portions
of their virtual address spaces.
This section describes data structures and algorithms used by the Linux kernel to implement the
System V IPC. This section also focuses on the implementation of the enforcement of DAC, LSM
decisions and handling of object reuse by the allocation algorithms.

Page 108 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



The IPC mechanisms share the following common properties:
● Each mechanism is represented by a table in kernel memory whose entries define an

instance of the mechanism.
● Each table entry contains a numeric key, which is used to reference a specific instance of

the mechanism.
● Each table entry has an ownership designation and access permissions structure associated

with it. The creator of an IPC object becomes its owner. This ownership can be transferred
by the control system call of the IPC mechanism. The owner and root user are allowed to
define and modify access permissions to the IPC object. Credentials of the process
attempting access, ownership designation, and access permissions are used for enforcing
DAC. The root user is allowed to override DAC setup through access permissions. In addition
to the DAC permission information, a pointer security is maintained. This pointer is used
by the active LSM. For SELinux, it contains the SELinux security context used for MAC
enforcement.

● Each table entry includes status information such as time of last access or update.
● Each mechanism has a control system call to query and set status information, and to

remove an instance of a mechanism.

Common data structures
The following list describes security-relevant common data structures that are used by all three
IPC mechanisms:

● ipc_ids: The ipc_ids data structure fields, such as size, which indicates the maximum number
of allocatable IPC resources; in_use, which holds the number of allocated IPC resources;
and, entries, which points to the array of IPC resource descriptors.

● ipc_id: The ipc_id data structure describes the security credentials of an IPC resource with
the p field, which is a pointer to the credential structure of the resource.

● kern_ipc_perm: The kern_ipc_perm data structure is a credential structure for an IPC
resource with fields such as key, uid, gid, cuid, cgid, mode, seq, and security. uid and cuid
represent the owner and creator user ID. gid and cgid represent the owner and creator
group ID. The mode field represents the permission bit mask and the seq field identifies
the slot usage sequence number. The security field is a pointer to a structure that contains
the LSM security data structure which is a void pointer to allow LSMs to store data it needs.

IPC Access Control
The ipcperms function is called when a process attempts to access an IPC resource. ipcperms first
enforces the DAC policy, and if DAC grants access, it calls security_ipc_permission to invoke the
LSM for enforcing the LSM-specific policy. Discretionary access to the IPC resource is granted based
on the same logic as that of regular files, using the owner, group, and access mode of the object.
The only difference is that the owner and creator of the IPC resource are treated equivalently, and
the execute permission flag is not used.
As the IPC objects of UNIX domain socket special files and Named Pipes are represented as file
system objects, the access control mechanism covering file system objects are applicable to these
IPC mechanisms too.

Page 109 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



The TOE maintains IPC object types where each process has its own namespace for that object
type: sockets - including network sockets. Access to the socket is only possible by the process
whose socket namespace contains the socket reference. Setting of permissions for such objects
can be handled using file descriptor passing.
The access control rules for IPC are identical to the ones available to files with the following
differences:

● Special bits like SUID, SGID and SAVETXT do not exist.
● A process is given access to an IPC object irrespective of the permission settings if the

process possesses the CAP_IPC_OWNER capability.
This security function covers the SFRs of FDP_ACC.1(TSO), FDP_ACF.1(TSO), FMT_REV.1(OBJ).

7.3.6 Security Management
The security management facilities provided by the TOE are usable by authorized users and/or
authorized administrators to modify the configuration of TSF. The configuration of TSF are hosted
in the following locations:

● Configuration files (or TSF databases)
● Data structures maintained by the kernel and within the kernel memory

The TOE provides applications to authorized users as well as authorized administrators to perform
various administrative tasks. These applications are documented as part of the administrator and
user guidance. These applications are either used to modify configuration files or to access
parameters controlled and enforced by the kernel via kernel-provided interfaces to user space.
Configuration options are stored in different configuration files. These files are protected using the
DAC mechanisms against unauthorized access where usually the root user only is allowed to write
to the files. In some special cases (like for /etc/shadow), the file is even readable to the root user
only. It is the task of the persons responsible for setting up and administrating the system to ensure
that the access control features of the TOE are used throughout the lifetime of the system to protect
those databases. These configuration files are accessed using applications which are able to interpret
the contents of these configuration files. Each TOE instance maintains its own TSF database.
Synchronizing those databases is not performed in the evaluated configuration. If such
synchronization is required by an organization it is the responsibility of an administrative user of
the TOE to achieve this either manually or with some automated assistance.
To access data structures maintained by the kernel, applications use the kernel-provided interfaces,
such as system calls, virtual file systems, netlink sockets, and device files. These kernel interfaces
are restricted to authorized administrators or authorized users, if applicable, by either using DAC
(for virtual file system objects) or special kernel-internal verification checks for each interface.

7.3.6.1 Privileges
Privileges to perform administrative actions are maintained by the TOE. These privileges are
separated into privileges to act on data or access functionality in user space and in kernel space.
Functionality accessible in user space are applications that can be invoked by users. Also, data
accessible in user space is either data maintained with an application or data stored in persistent
or transient storage objects. Privileges are controlled by permissions to invoke applications and to
access data. For example, the configuration files including the user databases of /etc/passwd and
/etc/shadow are accessible to the root user only. Therefore, the root user is given the privilege to
perform modifications on this configuration data which constitutes administrative actions.

Page 110 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Functionality and data maintained by the kernel must be accessed using system calls. The kernel
implements a privilege check for functions and data that shall not be accessible by normal users.
These privileges are controlled with capabilities that can be assigned to processes. If a process is
assigned with a capability, it is allowed to request special operations that other processes cannot.
To implement consistency with the Unix legacy, processes with the effective UID of zero are implicitly
given all capabilities. However, these processes may decide to drop capabilities. Such capabilities
are marked by names with the prefix of "CAP_" throughout this document. The Linux kernel
implements many more capabilities than mentioned in this document. These unmentioned
capabilities protect functions that do not directly cover SFR functionality but need to be protected
to ensure the integrity of the system and its resources.
The TOE provides security management applications for all security-relevant settings listed
throughout this ST, i.e. all FMT_MSA.1, FMT_MSA.3 and FMT_MTD.1 iterations, FMT_SMR.1.

Page 111 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



8 Abbreviations, Terminology and References

8.1 Abbreviations
ACL

Access Control List
API

Application Programming Interface
KVM

Kernel Virtualized Machine
HTTP

Hypertext Transfer Protocol
SFR

Security Functional Requirement
SSL

Secure Sockets Layer
ST

Security Target
TCP/IP

Transmission Control Protocol / Internet Protocol
TLS

Transport Layer Security
TOE

Target of Evaluation
TSF

TOE Security Functionality
VM

Virtual Machine
VPN

Virtual Private Network

8.2 Terminology
This section contains definitions of technical terms that are used with a meaning specific to this
document. Terms defined in the [CC] are not reiterated here, unless stated otherwise.
Authentication Data

Authentication data is the data used by users or remote entities to authenticate their claimed
identity.

Page 112 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Authorized Administrator
This term refers to a user in one of the defined administrative roles of a Linux system. The TOE
associates the user with the UID of zero and named "root" with administrative authorities.
Effectively, the UID zero is assigned with all Linux capabilities known to the Linux kernel. Every
user who is allowed to log on as that root user, or to switch their UID to the root user is considered
an authorized administrator. In addition, any user who is able to execute applications which
grant one or more Linux capabilities to be used in an unconditional manner is considered an
authorized administrator. Note: the process executing on behalf of the root user must possess
MLS override attributes to performmanagement aspects of the Mandatory Access Control Policy.

Category
A category is the non-hierarchical category of the lower MLS label defined with an SELinux label.
Note: an SELinux label consists of four parts where the MLS label is one of them. The MLS label
in turn is split into a higher and a lower MLS label part.

Classification
A sensitivity label associated with an object.

Clearance
A sensitivity label associated with a subject or user.

DAC
Discretionary Access Control implemented with permission bits and ACLs.

Data
Arbitrary bit sequences on persistent or transient storage media.

Dominate
Sensitivity label A dominates sensitivity label B if the hierarchical level of A is greater than or
equal to the hierarchical level of B, and the category set of label A is a proper subset of or equal
to the category set of label B. (cf. Incomparable sensitivity labels).

Guest
Software executing within a virtual machine environment. There can be zero or more guests
executing concurrently on the host system.

Host
The host system provides the Linux environment that controls andmanages the virtual machines.
The host provides the execution environment for every virtual machine.

Information
Any data held within a server, including data in transit between systems.

IOMMU
Input / Output Memory Management Unit. This MMU allows the setup of multiple DMA areas for
different virtual machines.

KVM
Kernel-based Virtual Machine.

MLS
Multi-level security

Named Object
In Linux, those objects that are covered by access control policies. The list of objects defined
as named objects is provided with FDP_ACC.1.

Page 113 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Object
For Linux, objects are defined by FDP_ACC.1.

OSPP
Operating System Protection Profile

OSPP EP
Operating System Protection Profile Extended Package

PAM
Pluggable Authentication Module - the authentication functionality provided with Linux is highly
configurable by selecting and combining different modules implementing different aspects of
the authentication process.

Product
The term product is used to define software components that comprise the Linux system.

QEMU
The QEMU software component implements the virtual devices and virtual resources for virtual
machines. There is one instance of QEMU per virtual machine. The QEMU software component
is also identified as the "kvm" application on the host system.

SELinux
Linux kernel LSM module that is able to implement arbitrary security policies. An SELinux policy
distributed with the TOE implements multi-level or multi-category security.

Sensitivity Label
The TOE attaches a sensitivity label to each named object. This label consists of a hierarchical
sensitivity level and a set of zero or more categories. The policy defines the number and names
of the sensitivity levels and categories.

Subject
There are two classes of subjects in Red Hat Enterprise Linux: i) untrusted internal subject - this
is a Linux process running on behalf of some user or providing an arbitrary service, running
outside of the TSF (for example, with no privileges); ii) trusted internal subject - this is a Linux
process running as part of the TSF (for example: service daemons and the process implementing
the identification and authentication of users).

Target Of Evaluation (TOE)
The TOE is defined as the Red Hat Enterprise Linux operating system, running and tested on
the hardware and firmware specified in this Security Target. The BootPROM firmware as well
as the hardware are not part of the TOE.

User
Any individual/person or technical entity (such as a service added by the administrator on top
of the TOE) who has a unique user identifier and who interacts with the product.

User Security Attributes
Defined by functional requirement FIA_ATD.1, every user is associated with a number of security
attributes which allow the TOE to enforce its security functions on this user. This also includes
the user clearance which defines the maximum sensitivity label a user can have access to.

Virtual devices
See virtual resources for a generic explanation. This definition applies also to virtual devices,
but with a focus to devices, such as disks, network cards, graphics cards, and similar.

Page 114 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1



Virtual machine
A virtual machine is an execution environment where the software executing within the virtual
machine has access to the processor's user and supervisor state and resources defined by the
host system. Resources include the number of processors, RAM size, physical devices, virtualized
devices, communication channels to other virtual machines and the host system. For the KVM
environment a virtual machine environment is controlled and provided by the Linux kernel
hypervisor functionality plus the QEMU application instantiated for each virtual machine.

Virtual machine environment
See virtual machine.

Virtual resources
Virtual resources are resources that either do not physically exist and do not exist in the host
system. Virtual resources are implemented by the virtual machine environment and are provided
to the respective virtual machine. For example, virtual resources are special exceptions that
can be triggered from the virtual machine environment to request services from the host system,
such as para-virtualized drivers. Virtual devices can be considered one form of virtual resources.

8.3 References

Common Criteria for Information Technology Security EvaluationCC
3.1R4Version
September 2012Date
http://www.commoncriteriaportal.org/files/ccfiles/CC
PART1V3.1R4.pdf

Location

http://www.commoncriteriaportal.org/files/ccfiles/CC
PART2V3.1R4.pdf

Location

http://www.commoncriteriaportal.org/files/ccfiles/CC
PART3V3.1R4.pdf

Location

General-Purpose Operating System Protection Profile Part 1GPOSPP1
3.9Version
2012-12-06Date

General-Purpose Operating System Protection Profile Part 2GPOSPP2
3.9Version
2012-12-06Date

IPTables man page chapter 8IPTABLES
RHEL 7.1Version
2015-08-01Date received

IPTables Extensions man page chapter 8IPTABLES-EXT
RHEL 7.1Version
2015-08-01Date received

General-Purpose Operating System Protection ProfileOSPP
3.9Version
2012-12-06Date

Page 115 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R4.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R4.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R4.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R4.pdf


The Secure Shell (SSH) Authentication ProtocolRFC4252
January 2006Date
http://tools.ietf.org/html/rfc4252Location

The Secure Shell (SSH) Transport Layer ProtocolRFC4253
January 2006Date
http://tools.ietf.org/html/rfc4253Location

RTP Payload Format for the Extended Adaptive Multi-Rate Wideband
(AMR-WB+) Audio Codec

RFC4352

J. Sjoberg, M. Westerlund, A. Lakaniemi, S. WengerAuthor(s)
2006-01-01Date
http://www.ietf.org/rfc/rfc4352.txtLocation

Page 116 of 116Classification: Red Hat and atsec publicVersion: 0.8
Copyright © 2015 by Red Hat and atsec information securityLast update: 2016-09-15

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc4253
http://www.ietf.org/rfc/rfc4352.txt

	Revision History
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Security Target Identification
	1.2 TOE Identification
	1.3 TOE Type
	1.4 TOE Overview
	1.4.1 Configurations defined with this ST
	1.4.2 Overview description
	1.4.3 Allowed Unclaimed Functionality
	1.4.4 Compliance with STIG and other standards
	1.4.5 Required Hardware and Software
	1.4.6 Intended Method of Use
	1.4.6.1 General-purpose computing environment
	1.4.6.2 Operating Environment

	1.4.7 Major Security Features

	1.5 TOE Description
	1.5.1 Introduction
	1.5.2 TOE boundaries
	1.5.2.1 Physical
	1.5.2.2 Logical
	1.5.2.3 Configurations
	1.5.2.4 TOE Environment
	1.5.2.5 Security Policy Model

	1.5.3 Additional Functions


	2 CC Conformance Claim
	3 Security Problem Definition
	3.1 Threat Environment
	3.1.1 Assets
	3.1.2 Threat Agents
	3.1.3 Threats countered by the TOE

	3.2 Assumptions
	3.2.1 Environment of use of the TOE
	3.2.1.1 Physical
	3.2.1.2 Personnel
	3.2.1.3 Procedural
	3.2.1.4 Connectivity


	3.3 Organizational Security Policies

	4 Security Objectives
	4.1 Objectives for the TOE
	4.2 Objectives for the Operational Environment
	4.3 Security Objectives Rationale
	4.3.1 Coverage
	4.3.2 Sufficiency


	5 Extended Components Definition
	6 Security Requirements
	6.1 TOE Security Functional Requirements
	6.1.1 General-purpose computing environment
	6.1.1.1 Audit data generation (FAU_GEN.1)
	6.1.1.2 User identity association (FAU_GEN.2)
	6.1.1.3 Audit review (FAU_SAR.1)
	6.1.1.4 Restricted audit review (FAU_SAR.2)
	6.1.1.5 Selective audit (FAU_SEL.1)
	6.1.1.6 Protected audit trail storage (FAU_STG.1)
	6.1.1.7 Action in case of possible audit data loss (FAU_STG.3)
	6.1.1.8 Prevention of audit data loss (FAU_STG.4)
	6.1.1.9 Subset access control (FDP_ACC.1(PSO))
	6.1.1.10 Subset access control (FDP_ACC.1(TSO))
	6.1.1.11 Security attribute based access control (FDP_ACF.1(PSO))
	6.1.1.12 Security attribute based access control (FDP_ACF.1(TSO))
	6.1.1.13 Complete information flow control (FDP_IFC.1)
	6.1.1.14 Simple security attributes (FDP_IFF.1)
	6.1.1.15 Full residual information protection (FDP_RIP.2)
	6.1.1.16 Authentication failure handling (FIA_AFL.1)
	6.1.1.17 User attribute definition (FIA_ATD.1)
	6.1.1.18 Timing of authentication (FIA_UAU.1(RITE))
	6.1.1.19 Timing of authentication (FIA_UAU.1(HU))
	6.1.1.20 Multiple authentication mechanisms (FIA_UAU.5)
	6.1.1.21 Protected authentication feedback (FIA_UAU.7)
	6.1.1.22 Timing of identification (FIA_UID.1)
	6.1.1.23 User-subject binding (FIA_USB.1)
	6.1.1.24 Public key based authentication (FIA_PK_EXT.1)
	6.1.1.25 Reliable time stamps (FPT_STM.1)
	6.1.1.26 TSF-initiated session locking (FTA_SSL.1)
	6.1.1.27 User-initiated locking (FTA_SSL.2)
	6.1.1.28 Inter-TSF trusted channel (FTP_ITC.1)

	6.1.2 Management related functionality
	6.1.2.1 Management of security functions behaviour (FMT_MOF.1)
	6.1.2.2 Management of object security attributes (FMT_MSA.1(PSO))
	6.1.2.3 Management of object security attributes (FMT_MSA.1(TSO))
	6.1.2.4 Static attribute initialisation (FMT_MSA.3(DAC/PSO))
	6.1.2.5 Static attribute initialisation (FMT_MSA.3(DAC/TSO))
	6.1.2.6 Static attribute initialisation (FMT_MSA.3(NI))
	6.1.2.7 Security attribute value inheritance (FMT_MSA.4)
	6.1.2.8 Management of TSF data (FMT_MTD.1(AE))
	6.1.2.9 Management of TSF data (FMT_MTD.1(AS))
	6.1.2.10 Management of TSF data (FMT_MTD.1(AT))
	6.1.2.11 Management of TSF data (FMT_MTD.1(AF))
	6.1.2.12 Management of TSF data (FMT_MTD.1(CM))
	6.1.2.13 Management of TSF data (FMT_MTD.1(NI))
	6.1.2.14 Management of TSF data (FMT_MTD.1(IAT))
	6.1.2.15 Management of TSF data (FMT_MTD.1(IAF))
	6.1.2.16 Management of TSF data (FMT_MTD.1(IAU))
	6.1.2.17 Revocation (FMT_REV.1(OBJ))
	6.1.2.18 Revocation (FMT_REV.1(USR))
	6.1.2.19 Remote Management Capabilities (FMT_SMF_RMT.1)
	6.1.2.20 Security management roles (FMT_SMR.1)


	6.2 Security Functional Requirements Rationale
	6.2.1 Coverage
	6.2.2 Sufficiency
	6.2.3 Security requirements dependency analysis

	6.3 Security Assurance Requirements
	6.4 Security Assurance Requirements Rationale

	7 TOE Summary Specification
	7.1 General System Overview
	7.1.1 High-level product overview
	7.1.1.1 Host computer structure
	7.1.1.2 System structure
	7.1.1.3 TOE services
	7.1.1.4 Security policy
	7.1.1.5 Operation and administration
	7.1.1.6 TSF interfaces

	7.1.2 TSF identification

	7.2 Software architecture
	7.2.1 Hardware and software privilege
	7.2.1.1 Hardware privilege
	7.2.1.2 Software privilege

	7.2.2 TOE Security Functions software structure
	7.2.2.1 Kernel TSF software
	7.2.2.2 Non-kernel TSF software
	7.2.2.3 TSF databases

	7.2.3 Hardware
	7.2.4 Firmware

	7.3 TOE Security Functionality
	7.3.1 Audit
	7.3.1.1 Audit functionality
	7.3.1.2 Audit trail
	7.3.1.3 Audit subsystem implementation

	7.3.2 Trusted Channel
	7.3.2.1 Cryptographic network services

	7.3.3 Network Information Flow Control
	7.3.3.1 Network layer filtering

	7.3.4 Identification and Authentication
	7.3.4.1 PAM-based identification and authentication mechanisms
	7.3.4.2 User Identity Changing
	7.3.4.3 Authentication Data Management
	7.3.4.4 SSH key-based authentication
	7.3.4.5 Session locking

	7.3.5 Discretionary Access Control
	7.3.5.1 Permission bits
	7.3.5.2 Access Control Lists (ACLs)
	7.3.5.3 File system objects
	7.3.5.4 Special Permissions
	7.3.5.5 IPC objects

	7.3.6 Security Management
	7.3.6.1 Privileges



	8 Abbreviations, Terminology and References
	8.1 Abbreviations
	8.2 Terminology
	8.3 References


