

Certification Report

BSI-DSZ-CC-0952-V2-2016

for

STARCOS 3.5 ID GCC C3

from

Giesecke & Devrient GmbH

BSI - Bundesamt für Sicherheit in der Informationstechnik, Postfach 20 03 63, D-53133 Bonn Phone +49 (0)228 99 9582-0, Fax +49 (0)228 9582-5477, Infoline +49 (0)228 99 9582-111

Deutsches

IT-Sicherheitszertifikat

Bundesamt für Sicherheit in der Informationstechnik

BSI-DSZ-CC-0952-V2-2016 (*)

Security IC with ID Card Application

STARCOS 3.5 ID GCC C3

from	Giesecke & Devrient GmbH	COGNITION
PP Conformance:	Common Criteria Protection Profile Electronic Identity Card (ID_Card PP), Version 1.03, 15 December 2009, BSI-CC-PP-0061-2009 (**) and in accordance with BSI Technische Richtlinie BSI-TR-03116-2, 2016	SOGIS Recognition Agreement
Functionality:	PP conformant Common Criteria Part 2 extended	
Assurance:	Common Criteria Part 3 conformant EAL 4 augmented by ALC DVS.2, ATE DPT.2 and AVA VAN.5	Common Criteria

The IT Product identified in this certificate has been evaluated at an approved evaluation facility using the Common Methodology for IT Security Evaluation (CEM), Version 3.1 extended by Scheme Interpretations, by advice of the Certification Body for components beyond EAL 5 and CC Supporting Documents as listed in the Certification Report for conformance to the Common Criteria for IT Security Evaluation (CC), Version 3.1. CC and CEM are also published as ISO/IEC 15408 and ISO/IEC 18045.

(*) This certificate applies only to the specific version and release of the product in its evaluated configuration and in conjunction with the complete Certification Report and Notification. For details on the validity see Certification Report part A chapter 4

(**) The IT Product identified in this certificate fulfils also PP EN 419211-2:2013 and is therefore a compliant signature creation device according to Article 30(3.(a)) of Regulation No 910/2014 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 July 2014.

The evaluation has been conducted in accordance with the provisions of the certification scheme of the German Federal Office for Information Security (BSI) and the conclusions of the evaluation facility in the evaluation technical report are consistent with the evidence adduced.

This certificate is not an endorsement of the IT Product by the Federal Office for Information Security or any other organisation that recognises or gives effect to this certificate, and no warranty of the IT Product by the Federal Office for Information Security or any other organisation that recognises or gives effect to this certificate, is either expressed or implied.

Bonn, 16 December 2016

For the Federal Office for Information Security

Thomas Gast Head of Divison L.S.

 Bundesamt für Sicherheit in der Informationstechnik

 Godesberger Allee 185-189 - D-53175 Bonn
 Postfach 20 03 63 - D-53133 Bonn

 Phone +49 (0)228 99 9582-0 - Fax +49 (0)228 9582-5477 - Infoline +49 (0)228 99 9582-111

Common Criteria Recognition Arrangement for components up to EAL 4

This page is intentionally left blank.

Preliminary Remarks

Under the BSIG¹ Act, the Federal Office for Information Security (BSI) has the task of issuing certificates for information technology products.

Certification of a product is carried out on the instigation of the vendor or a distributor, hereinafter called the sponsor.

A part of the procedure is the technical examination (evaluation) of the product according to the security criteria published by the BSI or generally recognised security criteria.

The evaluation is normally carried out by an evaluation facility recognised by the BSI or by BSI itself.

The result of the certification procedure is the present Certification Report. This report contains among others the certificate (summarised assessment) and the detailed Certification Results.

The Certification Results contain the technical description of the security functionality of the certified product, the details of the evaluation (strength and weaknesses) and instructions for the user.

¹ Act on the Federal Office for Information Security (BSI-Gesetz - BSIG) of 14 August 2009, Bundesgesetzblatt I p. 2821

Contents

A. Certification	7
 Specifications of the Certification Procedure	7 9 9
B. Certification Results	11
 Executive Summary. Identification of the TOE. Security Policy. Assumptions and Clarification of Scope. Architectural Information. Documentation. IT Product Testing. Evaluated Configuration. Results of the Evaluation. Obligations and Notes for the Usage of the TOE. Security Target. Definitions. Bibliography. 	13 14 15 15 15 16 17 18 18 18
C. Excerpts from the Criteria	25
CC Part 1: CC Part 3:	
D. Annexes	33

A. Certification

1. Specifications of the Certification Procedure

The certification body conducts the procedure according to the criteria laid down in the following:

- Act on the Federal Office for Information Security²
- BSI Certification and Approval Ordinance³
- BSI Schedule of Costs⁴
- Special decrees issued by the Bundesministerium des Innern (Federal Ministry of the Interior)
- DIN EN ISO/IEC 17065 standard
- BSI certification: Scheme documentation describing the certification process (CC-Produkte) [3]
- BSI certification: Scheme documentation on requirements for the Evaluation Facility, its approval and licencing process (CC-Stellen) [3]
- Common Criteria for IT Security Evaluation (CC), Version 3.1⁵[1] also published as ISO/IEC 15408.
- Common Methodology for IT Security Evaluation (CEM), Version 3.1 [2] also published as ISO/IEC 18045.
- BSI certification: Application Notes and Interpretation of the Scheme (AIS) [4]

2. Recognition Agreements

In order to avoid multiple certification of the same product in different countries a mutual recognition of IT security certificates - as far as such certificates are based on ITSEC or CC - under certain conditions was agreed.

2.1. European Recognition of ITSEC/CC – Certificates (SOGIS-MRA)

The SOGIS-Mutual Recognition Agreement (SOGIS-MRA) Version 3 became effective in April 2010. It defines the recognition of certificates for IT-Products at a basic recognition level and, in addition, at higher recognition levels for IT-Products related to certain SOGIS Technical Domains only.

² Act on the Federal Office for Information Security (BSI-Gesetz - BSIG) of 14 August 2009, Bundesgesetzblatt I p. 2821

³ Ordinance on the Procedure for Issuance of Security Certificates and approval by the Federal Office for Information Security (BSI-Zertifizierungs- und -Anerkennungsverordnung - BSIZertV) of 17 December 2014, Bundesgesetzblatt 2014, part I, no. 61, p. 2231

⁴ Schedule of Cost for Official Procedures of the Bundesamt für Sicherheit in der Informationstechnik (BSI-Kostenverordnung, BSI-KostV) of 03 March 2005, Bundesgesetzblatt I p. 519

⁵ Proclamation of the Bundesministerium des Innern of 12 February 2007 in the Bundesanzeiger dated 23 February 2007, p. 3730

The basic recognition level includes Common Criteria (CC) Evaluation Assurance Levels EAL 1 to EAL 4 and ITSEC Evaluation Assurance Levels E1 to E3 (basic). For "Smartcards and similar devices" a SOGIS Technical Domain is in place. For "HW Devices with Security Boxes" a SOGIS Technical Domain is in place, too. In addition, certificates issued for Protection Profiles based on Common Criteria are part of the recognition agreement.

The new agreement has been signed by the national bodies of Austria, Finland, France, Germany, Italy, The Netherlands, Norway, Spain, Sweden and the United Kingdom. The current list of signatory nations and approved certification schemes, details on recognition, and the history of the agreement can be seen on the website at <u>https://www.sogisportal.eu</u>.

The SOGIS-MRA logo printed on the certificate indicates that it is recognised under the terms of this agreement by the nations listed above.

This certificate is recognized under SOGIS-MRA for all assurance components selected.

2.2. International Recognition of CC – Certificates (CCRA)

The international arrangement on the mutual recognition of certificates based on the CC (Common Criteria Recognition Arrangement, CCRA-2014) has been ratified on 08 September 2014. It covers CC certificates based on collaborative Protection Profiles (cPP) (exact use), CC certificates based on assurance components up to and including EAL 2 or the assurance family Flaw Remediation (ALC_FLR) and CC certificates for Protection Profiles and for collaborative Protection Profiles (cPP).

The CCRA-2014 replaces the old CCRA signed in May 2000 (CCRA-2000). Certificates based on CCRA-2000, issued before 08 September 2014 are still under recognition according to the rules of CCRA-2000. For on 08 September 2014 ongoing certification procedures and for Assurance Continuity (maintenance and re-certification) of old certificates a transition period on the recognition of certificates according to the rules of CCRA-2000 (i.e. assurance components up to and including EAL 4 or the assurance family Flaw Remediation (ALC_FLR)) is defined until 08 September 2017.

As of September 2014 the signatories of the new CCRA-2014 are government representatives from the following nations: Australia, Austria, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, India, Israel, Italy, Japan, Malaysia, The Netherlands, New Zealand, Norway, Pakistan, Republic of Korea, Singapore, Spain, Sweden, Turkey, United Kingdom, and the United States.

The current list of signatory nations and approved certification schemes can be seen on the website: <u>http://www.commoncriteriaportal.org</u>.

The Common Criteria Recognition Arrangement logo printed on the certificate indicates that this certification is recognised under the terms of this agreement by the nations listed above.

As this certificate is a re-certification of a certificate issued according to CCRA-2000 this certificate is recognized according to the rules of CCRA-2000, i.e. up to and including CC part 3 EAL 4 components. The evaluation contained the components ALC_DVS.2, ATE_DPT.2 and AVA_VAN.5 that are not mutually recognised in accordance with the provisions of the CCRA-2000, for mutual recognition the EAL 4 components of these assurance families are relevant.

3. Performance of Evaluation and Certification

The certification body monitors each individual evaluation to ensure a uniform procedure, a uniform interpretation of the criteria and uniform ratings.

The product STARCOS 3.5 ID GCC C3 has undergone the certification procedure at BSI. This is a re-certification based on BSI-DSZ-CC-0952-2014. Specific results from the evaluation process BSI-DSZ-CC-0952-2014 were re-used.

The evaluation of the product STARCOS 3.5 ID GCC C3 was conducted by SRC Security Research & Consulting GmbH. The evaluation was completed on 15 December 2016. SRC Security Research & Consulting GmbH is an evaluation facility (ITSEF)⁶ recognised by the certification body of BSI.

For this certification procedure the sponsor and applicant is: Giesecke & Devrient GmbH.

The product was developed by:

Giesecke & Devrient GmbH.

The certification is concluded with the comparability check and the production of this Certification Report. This work was completed by the BSI.

4. Validity of the Certification Result

This Certification Report only applies to the version of the product as indicated. The confirmed assurance package is only valid on the condition that

- all stipulations regarding generation, configuration and operation, as given in the following report, are observed,
- the product is operated in the environment described, as specified in the following report and in the Security Target.

For the meaning of the assurance levels please refer to the excerpts from the criteria at the end of the Certification Report or in the CC itself.

The Certificate issued confirms the assurance of the product claimed in the Security Target at the date of certification. As attack methods evolve over time, the resistance of the certified version of the product against new attack methods needs to be re-assessed. Therefore, the sponsor should apply for the certified product being monitored within the assurance continuity program of the BSI Certification Scheme (e.g. by a re-certification). Specifically, if results of the certification are used in subsequent evaluation and certification procedures, in a system integration process or if a user's risk management needs regularly updated results, it is recommended to perform a re-assessment on a regular e.g. annual basis.

In order to avoid an indefinite usage of the certificate when evolved attack methods require a re-assessment of the products resistance to state of the art attack methods, the maximum validity of the certificate has been limited. The certificate issued on 16 December 2016 is valid until 15 December 2021. Validity can be re-newed by re-certification.

⁶ Information Technology Security Evaluation Facility

The owner of the certificate is obliged:

- 1. when advertising the certificate or the fact of the product's certification, to refer to the Certification Report as well as to provide the Certification Report, the Security Target and user guidance documentation mentioned herein to any customer of the product for the application and usage of the certified product,
- 2. to inform the Certification Body at BSI immediately about vulnerabilities of the product that have been identified by the developer or any third party after issuance of the certificate,
- 3. to inform the Certification Body at BSI immediately in the case that security relevant changes in the evaluated life cycle, e.g. related to development and production sites or processes, occur, or the confidentiality of documentation and information related to the Target of Evaluation (TOE) or resulting from the evaluation and certification procedure where the certification of the product has assumed this confidentiality being maintained, is not given any longer. In particular, prior to the dissemination of confidential documentation and information related to the TOE or resulting from the evaluation and certification procedure that do not belong to the deliverables according to the Certification Report part B, or for those where no dissemination rules have been agreed on, to third parties, the Certification Body at BSI has to be informed.

In case of changes to the certified version of the product, the validity can be extended to the new versions and releases, provided the sponsor applies for assurance continuity (i.e. re-certification or maintenance) of the modified product, in accordance with the procedural requirements, and the evaluation does not reveal any security deficiencies.

5. Publication

The product STARCOS 3.5 ID GCC C3 has been included in the BSI list of certified products, which is published regularly (see also Internet: <u>https://www.bsi.bund.de</u> and [5]). Further information can be obtained from BSI-Infoline +49 228 9582-111.

Further copies of this Certification Report can be requested from the developer⁷ of the product. The Certification Report may also be obtained in electronic form at the internet address stated above.

 ⁷ Giesecke & Devrient GmbH Prinzregentenstr. 159 81677 München

B. Certification Results

The following results represent a summary of

- the Security Target of the sponsor for the Target of Evaluation,
- the relevant evaluation results from the evaluation facility, and
- complementary notes and stipulations of the certification body.

1. Executive Summary

Target of Evaluation (TOE) is the product STARCOS 3.5 ID GCC C3 including the identified TOE hardware M7820 A11 by Infineon Technologies. The TOE is an electronic Identity Card (ID_Card) representing a contactless smart card programmed according to the Technical Guideline TR-03110 Version 2.02⁸ [17]. Additionally it meets the requirements of the Technische Richtlinie TR-03116-2 [18] as part of the qualification for the use within Identity Card projects of the Federal Republic of Germany.

The TOE can be used in two different configurations: without (configuration 1) and with the ability to support chaining for the verify certificate command (configuration 2).

The TOE comprises of

- the circuitry of the contactless chip including all IC Dedicated Software being active in the Operational Phase of the TOE (the integrated circuit, IC),
- the hardware for the contactless interface (e.g. antenna),
- the IC Embedded Software (operating system),
- the ePassport-, the eID- and optionally the eSign-application, and
- the associated guidance documentation.

The Security Target [6] and [8] is the basis for this certification. It is based on the following certified Protection Profile:

• Common Criteria Protection Profile Electronic Identity Card (ID_Card PP), Version 1.03, 15 December 2009, BSI-CC-PP-0061-2009 [7].

The Protection Profile [7] itself is strict conformant to the Protection Profile:

• EN 419211-2:2013 - Protection profiles for secure signature creation device - Part 2: Device with key generation, CEN/ISSS - Information Society Standardization System, BSI-CC-PP-0059-2009-MA-02 [30].

Please note that in [31] the European Parliament and the Council of the European Union has codified the conceptional requirements for qualified electronic signature devices used in the European Union. This regulation is clarified in the Commission Implementing Decision [32]. In this decision the requirements are stated an electronic signature device must fulfill to be compliant to [31] (Article 1 and Annex). According to this the TOE must be certified using ISO/IEC 15408 and ISO/IEC 18045 in its 2008/2009 versions and [30]. The evaluation process of STARCOS 3.5 ID GCC C3 used the latest available version of Common Criteria [1] which is as used compatible to the ISO version cited in [31]. The evaluation showed that the TOE in its intended usage fulfils these standards and is therefore a compliant signature creation device according to Article 30(3.(a)) of Regulation [31], where the electronic signature creation data is held in an entirely but not necessarily exclusively user-managed environment.

The TOE Security Assurance Requirements (SAR) are based entirely on the assurance components defined in Part 3 of the Common Criteria (see part C or [1], Part 3 for details).

⁸

Please note that additional the TOE fulfils the stronger requirements of the Version 2.10 [25], [26], [27] of the Technical Guideline TR-03110, whereas the Protection Profile [7] is based on the Version 2.02 [17] only.

The TOE meets the assurance requirements of the Evaluation Assurance Level EAL 4 augmented by ALC_DVS.2, ATE_DPT.2 and AVA_VAN.5.

The TOE Security Functional Requirements (SFR) relevant for the TOE are outlined in the Security Target [6] and [8], chapter 6. They are selected from Common Criteria Part 2 and some of them are newly defined. Thus the TOE is CC Part 2 extended.

The TOE Security Functional Requirements are implemented by the following TOE Security Functionality:

- Access control for different users,
- Protection of assets in the TOE,
- Resistance against physical tampering,
- Key management for generating and using cryptographic keys,
- Creation of digital signatures, and
- Protection of the communication channel.

For more details please refer to the Security Target [6] and [8], chapter 7.1.

The assets to be protected by the TOE are defined in the Security Target [6] and [8], chapter 3.1. Based on these assets the TOE Security Environment is defined in terms of Assumptions, Threats and Organisational Security Policies. This is outlined in the Security Target [6] and [8], chapter 3.2, 3.3 and 3.4.

This certification covers the following configuration of the TOE:

STARCOS 3.5 ID GCC C3, as described in the Guidance Documents [13] and [14] (for details refer to chapter 8).

The vulnerability assessment results as stated within this certificate do not include a rating for those cryptographic algorithms and their implementation suitable for encryption and decryption (see BSIG Section 9, Para. 4, Clause 2).

The certification results only apply to the version of the product indicated in the certificate and on the condition that all the stipulations are kept as detailed in this Certification Report. This certificate is not an endorsement of the IT product by the Federal Office for Information Security (BSI) or any other organisation that recognises or gives effect to this certificate, and no warranty of the IT product by BSI or any other organisation that recognises or gives effect to this certificate, is either expressed or implied.

2. Identification of the TOE

The Target of Evaluation (TOE) is called:

STARCOS 3.5 ID GCC C3

The following table outlines the TOE deliverables:

No	Туре	Identifier	Release	Form of Delivery
1	HW/ SW	M7820 A11 by Infineon Technologies ⁹ with hardware for the contactless interface and including its IC Dedicated Test Software	Rom Mask CIF9DSCSR35-01c _V200	An initialised module (type: FTM8 or bare die) embedded into an inlay
2	SW	IC Embedded Software (the operating system)	STARCOS 3.5	Implemented in ROM/EEPROM of the IC
3	SW	IC Embedded ePassport, eID and (activated or not activated) eSign Applications	CIF9DSCSI35-1A- 8309_V001 or CIF9DSCSI35-1A- 830A_V001	Implemented by the File System
4	KEYS	Cryptographic keys for initialisation or personalisation, securing the TOE from modification by illegal entities, e.g. during transport.		Item in electronic form, encrypted and signed to protect against disclosure and modification.
5	DOC	Guidance Documentation STARCOS 3.5 ID – Main Document	Version 0.5, 31.08.2011 [13]	Document in electronic form
6	DOC	Guidance Documentation for the Personalisation Phase for STARCOS 3.5 ID GCC C3	Version 1.3, 20.10.2016 [14]	Document in electronic form
7	DOC	Guidance Documentation for the Usage Phase for STARCOS 3.5 ID GCC C2	Version 1.6, 19.03.2013 [15]	Document in electronic form

The customer specific ROM mask for the STARCOS 3.5 ID GCC C3 is labelled by IFX as *GDGD*. The name of the ROM file transferred from G&D to IFX is *CIF9DSCSR35-01c_V200.hex*.

The initialisation of the TOE takes place using the following initialisation tables. These tables include the patch code and filesystem data:

- Initialisation table 1 (Configuration 1): CIF9DSCSI35-1A-8309_V001.hex
- Initialisation table 2 (Configuration 2): CIF9DSCSI35-1A-830A_V001.hex

The TOE is finalized after the Initialisation resp. Pre-Personalisation phase. Delivery of the initialised inlay is performed from the Initialisation facility to the Personalisation facility by a secured transport to a specific person of contact at the Personalisation site. Furthermore, the Personaliser receives information about the Personalisation commands and process requirements. To ensure that the Personaliser receives this certified version, the procedures to start the Personalisation process as described in the Guidance Documentation for the Personalisation Phase [14] have to be followed.

3. Security Policy

The Security Policy is expressed by the set of Security Functional Requirements and implemented by the TOE. It is defined according to the Common Criteria Protection Profile

⁹ For details on the ID Card chip and the IC Dedicated Software see Certification Report BSI-DSZ-CC-0829-V2-2015 [16].

Electronic Identity Card (ID_Card PP) [7] by the Security Objectives and Requirements for the contactless chip of electronic Identity Cards based on the Requirements and Recommendations of the International Civil Aviation Organisation (ICAO) and the Technische Richtlinie BSI-TR-03110 [17], BSI-TR-03116-2 [18], BSI-TR-03117 [19] and BSI-TR-03127 [20].

4. Assumptions and Clarification of Scope

The Assumptions defined in the Security Target and some aspects of Threats and Organisational Security Policies are not covered by the TOE itself. These aspects lead to specific security objectives to be fulfilled by the TOE-Environment. The following topics are of relevance: Obligations for ID_Card Issuer, Obligations for ID_Card issuer and CSCA, Obligations for ID_Card Issuer and CVCA, and Obligations for ID_Card holder. Details can be found in the Security Target [6] and [8], chapter 4.2.

5. Architectural Information

The TOE is a composite product. It is composed from an Integrated Circuit (IC) with hardware for the contactless interface, IC Embedded Software and IC Application Software containing the ePassport, the eID and the eSign Application. The IC Embedded software contains the operations system STARCOS 3.5. For details concerning the CC evaluation of the Infineon IC see the evaluation documentation under the certification ID BSI-DSZ-CC-0829-V2-2015 [16].

According to the TOE Design the Security Functionality of the TOE listed in chap. 1 are enforced by the following subsystems:

- System Library (contains the application framework),
- Runtime System (main loop and command interpreter),
- Chip Card Commands (pre-processor and processor of all implemented commands),
- Security Management (manages the security environment, security states and rule analysis),
- Key Management (search, pre-process, use and post-process of keys),
- Secure Messaging (SM handling), and
- Crypto Functions (library with an API to all cryptographic operations).

6. Documentation

The evaluated documentation as outlined in table 1 is being provided with the product to the customer. This documentation contains the required information for secure usage of the TOE in accordance with the Security Target.

Additional obligations and notes for secure usage of the TOE as outlined in chapter 10 of this report have to be followed.

7. IT Product Testing

The developer tested all TOE Security Functions either on real cards or with emulator tests. For all commands and functionality tests, test cases are specified in order to

demonstrate its expected behavior including error cases. Hereby a representative sample including all boundary values of the parameter set, e.g. all command APDUs with valid and invalid inputs were tested and all functions were tested with valid and invalid inputs. Repetition of developer tests were performed during the independent evaluator tests.

Since many Security Functions can be tested by TR-03110 APDU command sequences, the evaluators performed these tests with real cards. This is considered to be a reasonable approach because the developer tests include a full coverage of all security functionality. Furthermore penetration tests were chosen by the evaluators for those Security Functions where internal secrets of the card could maybe be modified or observed during testing. During their independent testing, the evaluators covered:

- testing APDU commands related to Key Management and Crypto Functions,
- testing APDU commands related to NVM Management and File System,
- testing APDU commands related to Security Management,
- testing APDU commands related to Secure Messaging,
- testing APDU commands related to Runtime System and System Library,
- penetration testing related to verify the Reliability of the TOE,
- source code analysis performed by the evaluators,
- testing the commands which are used to execute the PACE protocol,
- side channel analysis for SHA, AES and ECC (including ECC key generation),
- fault injection attacks (LFI and BBI),
- testing APDU commands for the initialization, personalization and usage phase,
- testing APDU commands for the commands using cryptographic mechanisms, and
- fuzzy testing on APDU processing.

The evaluators have tested the TOE systematically against high attack potential during their penetration testing.

The achieved test results correspond to the expected test results.

8. Evaluated Configuration

This certification covers the following configuration of the TOE:

STARCOS 3.5 ID GCC C3 as described in the Guidance Documents [13] and [14]. The initialisation and personalisation agent can use the "GET PROTOCOL DATA" command to read out the chip information and identify the chip. The following table describes the evaluated configuration:

Command parameters	Response	Description
P1='9F'	First eight bytes:	Chip manufacturer data (Chip
P2='6B'	'05 77 33 00 A7 00 23 00 (configuration 1 and 2)'	manufacturer's ROM mask ID)

Command parameters	Response	Description
P1='9F' P2='6A'	First five bytes: '47 44 00 B5 02' (configuration 1 and 2)	Version of the operating system (OS manufacturer / OS version number / Version of ROM mask)
P1='9F' P2='67'	First three bytes: '03 08 09' (configuration 1) '03 08 0A' (configuration 2)	Version of the completion level of the operating system and initialisation table

Table 2: Chip information for the identification of the TOE

9. Results of the Evaluation

9.1. CC specific results

The Evaluation Technical Report (ETR) [9] was provided by the ITSEF according to the Common Criteria [1], the Methodology [2], the requirements of the Scheme [3] and all interpretations and guidelines of the Scheme (AIS) [4] as relevant for the TOE.

The Evaluation Methodology CEM [2] was used and guidance specific for the technology of the product [4] (AIS 34).

The following guidance specific for the technology was used:

- The Application of CC to Integrated Circuits,
- Application of Attack Potential to Smart Cards,
- Composite product evaluation for Smart Cards and similar devices (see AIS 36). According to this concept the relevant guidance documents of the underlying platform and the documents ETR for Composition from the platform evaluations (i.e. on hardware [10], [16]) have been applied in the TOE evaluation.

(see [4], AIS 25, AIS 26, AIS 36).

For RNG assessment the scheme interpretations AIS 31 was used (see [4]).

As a result of the evaluation the verdict PASS is confirmed for the following assurance components:

- All components of the EAL 4 package including the class ASE as defined in the CC (see also part C of this report)
- The components ALC_DVS.2, ATE_DPT.2 and AVA_VAN.5 augmented for this TOE evaluation.

As the evaluation work performed for this certification procedure was carried out as a re-evaluation based on the certificate BSI-DSZ-CC-0952-2014 [21], re-use of specific evaluation tasks was possible. The focus of this re-evaluation was on the change of the underlying hardware platform and an updated version of the embedded software.

The evaluation has confirmed:

 PP Conformance: 	Common Criteria Protection Profile Electronic Identity Card (ID_Card PP), Version 1.03, 15 December 2009, BSI-CC-PP-0061-2009 [7] and in accordance with BSI Technische Richtlinie BSI-TR-03116-2 [16], 2016; PP EN 419211-2:2013, BSI-CC-PP-0059-2009-MA-02 [30]
 for the Functionality: 	PP conformant Common Criteria Part 2 extended
 for the Assurance: 	Common Criteria Part 3 conformant

EAL 4 augmented by ALC_DVS.2, ATE_DPT.2 and AVA_VAN.5.

For specific evaluation results regarding the development and production environment see annex B in part D of this report.

The results of the evaluation are only applicable to the TOE as defined in chapter 2 and the configuration as outlined in chapter 8 above.

9.2. Results of cryptographic assessment

All cryptographic functionalities are described in detail in the Crypto Disclaimer of the Security Target [6] and [8], chap. 9. The strength of the cryptographic algorithms was not rated in the course of this certification procedure (see BSIG Section 9, Para. 4, Clause 2).

10. Obligations and Notes for the Usage of the TOE

The documents as outlined in table 1 contain necessary information about the usage of the TOE and all security hints therein have to be considered. In addition all aspects of Assumptions, Threats and OSPs as outlined in the Security Target not covered by the TOE itself need to be fulfilled by the operational environment of the TOE.

The customer or user of the product shall consider the results of the certification within his system risk management process. In order for the evolution of attack methods and techniques to be covered, he should define the period of time until a re-assessment for the TOE is required and thus requested from the sponsor of the certificate

11. Security Target

For the purpose of publishing, the Security Target [8] of the Target of Evaluation (TOE) is provided within a separate document as Annex A of this report. It is a sanitised version of the complete Security Target [6] used for the evaluation performed. Sanitisation was performed according to the rules as outlined in the relevant CCRA policy (see AIS 35 [4]).

12. Definitions

12.1. Acronyms

- **AES** Advanced Encryption Standard
- APDU Application Protocol Data Unit
- BBI Body Biased Injection
- **BSI** Bundesamt für Sicherheit in der Informationstechnik / Federal Office for Information Security, Bonn, Germany

BSIG	BSI-Gesetz / Act on the Federal Office for Information Security
CCRA	Common Criteria Recognition Arrangement
CC	Common Criteria for IT Security Evaluation
CEM	Common Methodology for Information Technology Security Evaluation
CSCA	Country Signing Certification Authority
CVCA	Country Verifying Certification Authority
EAL	Evaluation Assurance Level
ECC	Elliptic Curve Cryptography
EEPROM	Electrically Erasable Programmable Read-Only Memory
elD	Electronic Identity Card
IC	Integrated Circuit
ICAO	International Civil Aviation Organisation
ID_Card	Identity Card
IT	Information Technology
ITSEC	Information Technology Security Evaluation Criteria
ITSEF	Information Technology Security Evaluation Facility
LFI	Laser Fault Injection
NVM	Non-Volatile Memory
PACE	Password Authenticated Connection Establishment
PP	Protection Profile
ROM	Read Only Memory
SAR	Security Assurance Requirement
SHA	Secure Hash Algorithm
SF	Security Function
SFP	Security Function Policy
SFR	Security Functional Requirement
ST	Security Target
TOE	Target of Evaluation
TSF	TOE Security Functionalities

12.2. Glossary

Augmentation - The addition of one or more requirement(s) to a package.

Collaborative Protection Profile - A Protection Profile collaboratively developed by an International Technical Community endorsed by the Management Committee.

Extension - The addition to an ST or PP of functional requirements not contained in CC part 2 and/or assurance requirements not contained in CC part 3.

Formal - Expressed in a restricted syntax language with defined semantics based on well-established mathematical concepts.

Informal - Expressed in natural language.

Object - A passive entity in the TOE, that contains or receives information, and upon which subjects perform operations.

Package - named set of either security functional or security assurance requirements

Protection Profile - A formal document defined in CC, expressing an implementation independent set of security requirements for a category of IT Products that meet specific consumer needs.

Security Target - An implementation-dependent statement of security needs for a specific identified TOE.

Semiformal - Expressed in a restricted syntax language with defined semantics.

Subject - An active entity in the TOE that performs operations on objects.

Target of Evaluation - An IT Product and its associated administrator and user guidance documentation that is the subject of an Evaluation.

TOE Security Functionality - Combined functionality of all hardware, software, and firmware of a TOE that must be relied upon for the correct enforcement of the SFRs.

13. Bibliography

- [1] Common Criteria for Information Technology Security Evaluation, Version 3.1, Part 1: Introduction and general model, Revision 4, September 2012 Part 2: Security functional components, Revision 4, September 2012 Part 3: Security assurance components, Revision 4, September 2012 <u>http://www.commoncriteriaportal.org</u>
- [2] Common Methodology for Information Technology Security Evaluation (CEM), Evaluation Methodology, Version 3.1, Rev. 4, September 2012, <u>http://www.commoncriteriaportal.org</u>
- [3] BSI certification: Scheme documentation describing the certification process (CC-Produkte) and Scheme documentation on requirements for the Evaluation Facility, approval and licencing (CC-Stellen), <u>https://www.bsi.bund.de/zertifizierung</u>
- [4] Application Notes and Interpretations of the Scheme (AIS) as relevant for the TOE¹⁰ <u>https://www.bsi.bund.de/AIS</u>
- [5] German IT Security Certificates (BSI 7148), periodically updated list published also on the BSI Website, <u>https://www.bsi.bund.de/zertifizierungsreporte</u>
- [6] Security Target BSI-DSZ-CC-0952-V2-2016, Version 1.10, 06.12.2016, STARCOS 3.5 ID GCC C3 Security Target, Giesecke & Devrient GmbH (confidential document)
- [7] Common Criteria Protection Profile Electronic Identity Card (ID_Card PP), Version 1.03, 15 December 2009, BSI-CC-PP-0061-2009, BSI
- [8] Security Target Lite BSI-DSZ-CC-0952-V2-2016, Version 1.10, 06.12.2016, STARCOS 3.5 ID GCC C3 Security Target lite, Giesecke & Devrient GmbH (sanitised public document)
- [9] Evaluation Technical Report, Version 1.3, 15.12.2016, Evaluation Technical Report (ETR) STARCOS 3.5 ID GCC C3, SRC Security Research & Consulting GmbH (confidential document)

¹⁰specifically

- AIS 20, Version 3, Funktionalitätsklassen und Evaluationsmethodologie für deterministische Zufallszahlengeneratoren
- AIS 25, Version 8, Anwendung der CC auf Integrierte Schaltungen including JIL Document and CC Supporting Document
- AIS 26, Version 9, Evaluationsmethodologie für in Hardware integrierte Schaltungen including JIL
 Document and CC Supporting Document
- AIS 31, Version 3, Funktionalitätsklassen und Evaluationsmethodologie für physikalische Zufallszahlengeneratoren
- AIS 32, Version 7, CC-Interpretationen im deutschen Zertifizierungsschema
- AIS 34, Version 3, Evaluation Methodology for CC Assurance Classes for EAL 5+ (CCv2.3 & CCv3.1) and EAL 6 (CCv3.1)
- AIS 35, Version 2, Öffentliche Fassung des Security Targets (ST-Lite) including JIL Document and CC Supporting Document and CCRA policies
- AIS 36, Version 4, Kompositionsevaluierung including JIL Document and CC Supporting Document
- AIS 38, Version 2, Reuse of evaluation results

- [10] ETR for composite evaluation according to AIS 36 for the Product M7820 A11, Version 5, 16.07.2015, TÜV Informationstechnik GmbH, Evaluation Body for IT Security (confidential document)
- [11] STARCOS 3.5 ID GCC C2 Configuration 1, Application Specification, Version 1.0, 14.03.2013, Giesecke & Devrient GmbH
- [12] STARCOS 3.5 ID GCC C2 Configuration 2, Application Specification, Version 1.0, 14.03.2013, Giesecke & Devrient GmbH
- [13] Guidance Documentation STARCOS 3.5 ID Main Document, Version 0.5, 31.08.2011, Giesecke & Devrient GmbH
- [14] Guidance Documentation for the Personalisation Phase STARCOS 3.5 ID GCC C3, Version 1.3, 20.10.2016, Giesecke & Devrient GmbH
- [15] Guidance Documentation for the Usage Phase STARCOS 3.5 ID GCC C2, Version 1.6, 19.03.2013, Giesecke & Devrient GmbH
- [16] Certification Report BSI-DSZ-CC-0829-V2-2015 for Infineon smart card IC (Security Controller) M7820 A11 with optional RSA2048/4096 v1.02.013, ECv1.02.013, SHA-2 v1.01 and Toolbox v1.02.013 libraries and with specific IC dedicated software, 03 August 2015, BSI

Including the maintenance report BSI-DSZ-CC-0829-V2-2015-MA-01: Assurance Continuity Maintenance Report BSI-DSZ-CC-0829-V2-2015-MA-01, Infineon smart card IC (Security Controller) M7820 A11with optional RSA2048/4096 v1.02.013, ECv1.02.013, SHA-2 v1.01and Toolbox v1.02.013 libraries and with specific IC dedicated software, 30 March 2016, BSI

- [17] BSI-TR-03110, Version 2.02, 09.11.2009, Advanced Security Mechanisms for Machine Readable Travel Documents – Extended Access Control (EAC), Password Authenticated Connection Establishment (PACE), and Restricted Identification (RI), BSI
- [18] BSI-TR-3116-2, Stand: 10.03.2016, eCard-Projekte der Bundesregierung, Teil 2 Hoheitliche Ausweisdokumente, BSI
- [19] BSI-TR-03117, Version 1, 2009, eCards mit kontaktloser Schnittstelle als sichere Signaturerstellungseinheit, BSI
- [20] BSI-TR-03127, Version 1.15, 01.10.2012, Architektur elektronischer Personalausweis und elektronischer Aufenthaltstitel, BSI
- [21] Certification Report BSI-DSZ-CC-0952-2014 for STARCOS 3.5 ID GCC C2R from Giesecke & Devrient GmbH, 17.11.2014, BSI
- [22] Site Certificate BSI-DSZ-CC-S-0070-2016 for Development Center Germany (DCG), Zamdorfer Straße 88, 81677 München, Germany, 09.08.2016, BSI
- [23] Site Certificate BSI-DSZ-CC-S-0057-2015 for SMT1, SMARTRAC TECHNOLOGY Ltd. (Thailand),142 Moo, Hi-Tech Industrial Estate, Tambon BanLaean, Amphor Bang-pa-In, 13160 Ayutthaya, Thailand, 28.12.2015, BSI
- [24] Site Certificate BSI-DSZ-CC-S-0062-2016 for Giesecke & Devrient Slovakia, s.r.o., Dolné Hony11, 94901 Nitra, Slovakia, 13.05.2016, BSI

- [25] Site Certificate BSI-DSZ-CC-S-0053-2016 for Bundesdruckerei GmbH, Site for ePassport, eCover, eID card, RP card, -inlay Production of Bundesdruckerei GmbH, 21.04.2016, BSI
- [26] BSI-TR-03110-1, Version 2.10, 20.03.2012, Advanced Security Mechanisms for Machine Readable Travel Documents – Part 1, BSI
- [27] BSI-TR-03110-2, Version 2.10, 20.03.2012, Advanced Security Mechanisms for Machine Readable Travel Documents – Part 2, BSI
- [28] BSI-TR-03110-3, Version 2.10, 20.03.2012, Advanced Security Mechanisms for Machine Readable Travel Documents – Part 3, BSI
- [29] Configuration list for the TOE, Version 1.2, 06.12.2016, Konfigurationsliste von STARCOS 3.5 ID GCC C3, Giesecke & Devrient GmbH (confidential document)
- [30] BSI-CC-PP-0059-2009-MA-02, Common Criteria Protection Profile: EN 419211-2:2013 - Protection profiles for secure signature creation device - Part 2: Device with key generation, CEN/ISSS - Information Society Standardization System, 18 May 2013

The standard is available at the Technical Bodies of the European Committee for Standardization (CEN): <u>https://standards.cen.eu/</u>

For Germany, it can be obtained at Beuth Verlag, DIN's publishing house: <u>http://www.beuth.de/</u>

- [31] REGULATION (EU) No 910/2014 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 July 2014 on electronic identification and trust services for electronic transactions in the internal market and repealing Directive 1999/93/EC
- [32] COMMISSION IMPLEMENTING DECISION (EU) 2016/650 of 25 April 2016, laying down standards for the security assessment of qualified signature and seal creation devices pursuant to Articles 30(3) and 39(2) of Regulation (EU) No 910/2014 of the European Parliament and of the Council on electronic identification and trust services for electronic transactions in the internal market

This page is intentionally left blank.

C. Excerpts from the Criteria

CC Part 1:

Conformance Claim (chapter 10.4)

"The conformance claim indicates the source of the collection of requirements that is met by a PP or ST that passes its evaluation. This conformance claim contains a CC conformance claim that:

- describes the version of the CC to which the PP or ST claims conformance.
- describes the conformance to CC Part 2 (security functional requirements) as either:
 - **CC Part 2 conformant** A PP or ST is CC Part 2 conformant if all SFRs in that PP or ST are based only upon functional components in CC Part 2, or
 - CC Part 2 extended A PP or ST is CC Part 2 extended if at least one SFR in that PP or ST is not based upon functional components in CC Part 2.
- describes the conformance to CC Part 3 (security assurance requirements) as either:
 - **CC Part 3 conformant** A PP or ST is CC Part 3 conformant if all SARs in that PP or ST are based only upon assurance components in CC Part 3, or
 - CC Part 3 extended A PP or ST is CC Part 3 extended if at least one SAR in that PP or ST is not based upon assurance components in CC Part 3.

Additionally, the conformance claim may include a statement made with respect to packages, in which case it consists of one of the following:

- Package name Conformant A PP or ST is conformant to a pre-defined package (e.g. EAL) if:
 - the SFRs of that PP or ST are identical to the SFRs in the package, or
 - the SARs of that PP or ST are identical to the SARs in the package.
- Package name Augmented A PP or ST is an augmentation of a predefined package if:
 - the SFRs of that PP or ST contain all SFRs in the package, but have at least one additional SFR or one SFR that is hierarchically higher than an SFR in the package.
 - the SARs of that PP or ST contain all SARs in the package, but have at least one additional SAR or one SAR that is hierarchically higher than an SAR in the package.

Note that when a TOE is successfully evaluated to a given ST, any conformance claims of the ST also hold for the TOE. A TOE can therefore also be e.g. CC Part 2 conformant.

Finally, the conformance claim may also include two statements with respect to Protection Profiles:

- PP Conformant A PP or TOE meets specific PP(s), which are listed as part of the conformance result.
- Conformance Statement (Only for PPs) This statement describes the manner in which PPs or STs must conform to this PP: strict or demonstrable. For more information on this Conformance Statement, see Annex D."

CC Part 3:

Class APE: Protection Profile evaluation (chapter 10)

"Evaluating a PP is required to demonstrate that the PP is sound and internally consistent, and, if the PP is based on one or more other PPs or on packages, that the PP is a correct instantiation of these PPs and packages. These properties are necessary for the PP to be suitable for use as the basis for writing an ST or another PP.

Assurance Class	Assurance Components
	APE_INT.1 PP introduction
	APE_CCL.1 Conformance claims
Class APE: Protection	APE_SPD.1 Security problem definition
Profile evaluation	APE_OBJ.1 Security objectives for the operational environment APE_OBJ.2 Security objectives
	APE_ECD.1 Extended components definition
	APE_REQ.1 Stated security requirements APE_REQ.2 Derived security requirements

APE: Protection Profile evaluation class decomposition"

Class ASE: Security Target evaluation (chapter 11)

"Evaluating an ST is required to demonstrate that the ST is sound and internally consistent, and, if the ST is based on one or more PPs or packages, that the ST is a correct instantiation of these PPs and packages. These properties are necessary for the ST to be suitable for use as the basis for a TOE evaluation."

Assurance Class	Assurance Components
	ASE_INT.1 ST introduction
	ASE_CCL.1 Conformance claims
Class ASE: Security	ASE_SPD.1 Security problem definition
Target evaluation	ASE_OBJ.1 Security objectives for the operational environment ASE_OBJ.2 Security objectives
	ASE_ECD.1 Extended components definition
	ASE_REQ.1 Stated security requirements ASE_REQ.2 Derived security requirements
	ASE_TSS.1 TOE summary specification ASE_TSS.2 TOE summary specification with architectural design summary

ASE: Security Target evaluation class decomposition

Security assurance components (chapter 7)

"The following Sections describe the constructs used in representing the assurance classes, families, and components."

"Each assurance class contains at least one assurance family."

"Each assurance family contains one or more assurance components."

The following table shows the assurance class decomposition.

Assurance Class	Assurance Components
ADV: Development	ADV_ARC.1 Security architecture description
	ADV_FSP.1 Basic functional specification ADV_FSP.2 Security-enforcing functional specification ADV_FSP.3 Functional specification with complete summary ADV_FSP.4 Complete functional specification ADV_FSP.5 Complete semi-formal functional specification with additional error information ADV_FSP.6 Complete semi-formal functional specification with additional formal specification
	ADV_IMP.1 Implementation representation of the TSF ADV_IMP.2 Implementation of the TSF
	ADV_INT.1 Well-structured subset of TSF internals ADV_INT.2 Well-structured internals ADV_INT.3 Minimally complex internals
	ADV_SPM.1 Formal TOE security policy model
	ADV_TDS.1 Basic design ADV_TDS.2 Architectural design ADV_TDS.3 Basic modular design ADV_TDS.4 Semiformal modular design ADV_TDS.5 Complete semiformal modular design ADV_TDS.6 Complete semiformal modular design with formal high-level design presentation
AGD:	AGD_OPE.1 Operational user guidance
Guidance documents	AGD_PRE.1 Preparative procedures
	ALC_CMC.1 Labelling of the TOE ALC_CMC.2 Use of a CM system ALC_CMC.3 Authorisation controls ALC_CMC.4 Production support, acceptance procedures and automation ALC_CMC.5 Advanced support
ALC: Life cycle support	ALC_CMS.1 TOE CM coverage ALC_CMS.2 Parts of the TOE CM coverage ALC_CMS.3 Implementation representation CM coverage ALC_CMS.4 Problem tracking CM coverage ALC_CMS.5 Development tools CM coverage
	ALC_DEL.1 Delivery procedures
	ALC_DVS.1 Identification of security measures ALC_DVS.2 Sufficiency of security measures
	ALC_FLR.1 Basic flaw remediation ALC_FLR.2 Flaw reporting procedures ALC_FLR.3 Systematic flaw remediation
	ALC_LCD.1 Developer defined life-cycle model

Assurance Class	Assurance Components
	ALC_LCD.2 Measurable life-cycle model
	ALC_TAT.1 Well-defined development tools ALC_TAT.2 Compliance with implementation standards ALC_TAT.3 Compliance with implementation standards - all parts
	ATE_COV.1 Evidence of coverage ATE_COV.2 Analysis of coverage ATE_COV.3 Rigorous analysis of coverage
ATE: Tests	ATE_DPT.1 Testing: basic design ATE_DPT.2 Testing: security enforcing modules ATE_DPT.3 Testing: modular design ATE_DPT.4 Testing: implementation representation
	ATE_FUN.1 Functional testing ATE_FUN.2 Ordered functional testing
	ATE_IND.1 Independent testing – conformance ATE_IND.2 Independent testing – sample ATE_IND.3 Independent testing – complete
AVA: Vulnerability assessment	AVA_VAN.1 Vulnerability survey AVA_VAN.2 Vulnerability analysis AVA_VAN.3 Focused vulnerability analysis AVA_VAN.4 Methodical vulnerability analysis AVA_VAN.5 Advanced methodical vulnerability analysis

Assurance class decomposition

Evaluation assurance levels (chapter 8)

"The Evaluation Assurance Levels (EALs) provide an increasing scale that balances the level of assurance obtained with the cost and feasibility of acquiring that degree of assurance. The CC approach identifies the separate concepts of assurance in a TOE at the end of the evaluation, and of maintenance of that assurance during the operational use of the TOE.

It is important to note that not all families and components from CC Part 3 are included in the EALs. This is not to say that these do not provide meaningful and desirable assurances. Instead, it is expected that these families and components will be considered for augmentation of an EAL in those PPs and STs for which they provide utility."

Evaluation assurance level (EAL) overview (chapter 8.1)

"Table 1 represents a summary of the EALs. The columns represent a hierarchically ordered set of EALs, while the rows represent assurance families. Each number in the resulting matrix identifies a specific assurance component where applicable.

As outlined in the next Section, seven hierarchically ordered evaluation assurance levels are defined in the CC for the rating of a TOE's assurance. They are hierarchically ordered inasmuch as each EAL represents more assurance than all lower EALs. The increase in assurance from EAL to EAL is accomplished by substitution of a hierarchically higher assurance component from the same assurance family (i.e. increasing rigour, scope, and/or depth) and from the addition of assurance components from other assurance families (i.e. adding new requirements).

These EALs consist of an appropriate combination of assurance components as described in Chapter 7 of this CC Part 3. More precisely, each EAL includes no more than one

component of each assurance family and all assurance dependencies of every component are addressed.

While the EALs are defined in the CC, it is possible to represent other combinations of assurance. Specifically, the notion of "augmentation" allows the addition of assurance components (from assurance families not already included in the EAL) or the substitution of assurance components (with another hierarchically higher assurance component in the same assurance family) to an EAL. Of the assurance constructs defined in the CC, only EALs may be augmented. The notion of an "EAL minus a constituent assurance component" is not recognised by the standard as a valid claim. Augmentation carries with it the obligation on the part of the claimant to justify the utility and added value of the added assurance component to the EAL. An EAL may also be augmented with extended assurance requirements.

Evaluation assurance level 1 (EAL 1) - functionally tested (chapter 8.3)

"Objectives

EAL 1 is applicable where some confidence in correct operation is required, but the threats to security are not viewed as serious. It will be of value where independent assurance is required to support the contention that due care has been exercised with respect to the protection of personal or similar information.

EAL 1 requires only a limited security target. It is sufficient to simply state the SFRs that the TOE must meet, rather than deriving them from threats, OSPs and assumptions through security objectives.

EAL 1 provides an evaluation of the TOE as made available to the customer, including independent testing against a specification, and an examination of the guidance documentation provided. It is intended that an EAL 1 evaluation could be successfully conducted without assistance from the developer of the TOE, and for minimal outlay.

An evaluation at this level should provide evidence that the TOE functions in a manner consistent with its documentation."

Evaluation assurance level 2 (EAL 2) - structurally tested (chapter 8.4)

"Objectives

EAL 2 requires the co-operation of the developer in terms of the delivery of design information and test results, but should not demand more effort on the part of the developer than is consistent with good commercial practise. As such it should not require a substantially increased investment of cost or time.

EAL 2 is therefore applicable in those circumstances where developers or users require a low to moderate level of independently assured security in the absence of ready availability of the complete development record. Such a situation may arise when securing legacy systems, or where access to the developer may be limited."

Evaluation assurance level 3 (EAL 3) - methodically tested and checked (chapter 8.5)

"Objectives

EAL 3 permits a conscientious developer to gain maximum assurance from positive security engineering at the design stage without substantial alteration of existing sound development practises.

EAL 3 is applicable in those circumstances where developers or users require a moderate level of independently assured security, and require a thorough investigation of the TOE and its development without substantial re-engineering."

Evaluation assurance level 4 (EAL 4) - methodically designed, tested, and reviewed (chapter 8.6)

"Objectives

EAL 4 permits a developer to gain maximum assurance from positive security engineering based on good commercial development practises which, though rigorous, do not require substantial specialist knowledge, skills, and other resources. EAL 4 is the highest level at which it is likely to be economically feasible to retrofit to an existing product line.

EAL 4 is therefore applicable in those circumstances where developers or users require a moderate to high level of independently assured security in conventional commodity TOEs and are prepared to incur additional security-specific engineering costs."

Evaluation assurance level 5 (EAL 5) - semiformally designed and tested (chapter 8.7)

"Objectives

EAL 5 permits a developer to gain maximum assurance from security engineering based upon rigorous commercial development practises supported by moderate application of specialist security engineering techniques. Such a TOE will probably be designed and developed with the intent of achieving EAL 5 assurance. It is likely that the additional costs attributable to the EAL 5 requirements, relative to rigorous development without the application of specialised techniques, will not be large.

EAL 5 is therefore applicable in those circumstances where developers or users require a high level of independently assured security in a planned development and require a rigorous development approach without incurring unreasonable costs attributable to specialist security engineering techniques."

Evaluation assurance level 6 (EAL 6) - semiformally verified design and tested (chapter 8.8)

"Objectives

EAL 6 permits developers to gain high assurance from application of security engineering techniques to a rigorous development environment in order to produce a premium TOE for protecting high value assets against significant risks.

EAL 6 is therefore applicable to the development of security TOEs for application in high risk situations where the value of the protected assets justifies the additional costs."

Evaluation assurance level 7 (EAL 7) - formally verified design and tested (chapter 8.9)

"Objectives

EAL 7 is applicable to the development of security TOEs for application in extremely high risk situations and/or where the high value of the assets justifies the higher costs. Practical application of EAL 7 is currently limited to TOEs with tightly focused security functionality that is amenable to extensive formal analysis."

Assurance Class	Assurance Family	Assurance Components by Evaluation Assurance Level						
		EAL 1	EAL 2	EAL 3	EAL 4	EAL 5	EAL 6	EAL 7
Development	ADV_ARC		1	1	1	1	1	1
	ADV_FSP	1	2	3	4	5	5	6
	ADV_IMP				1	1	2	2
	ADV_INT					2	3	3
	ADV_SPM						1	1
	ADV_TDS		1	2	3	4	5	6
Guidance Documents	AGD_OPE	1	1	1	1	1	1	1
	AGD_PRE	1	1	1	1	1	1	1
Life cycle Support	ALC_CMC	1	2	3	4	4	5	5
	ALC_CMS	1	2	3	4	5	5	5
	ALC_DEL		1	1	1	1	1	1
	ALC_DVS			1	1	1	2	2
	ALC_FLR							
	ALC_LCD			1	1	1	1	2
	ALC_TAT				1	2	3	3
Security Target Evaluation	ASE_CCL	1	1	1	1	1	1	1
	ASE_ECD	1	1	1	1	1	1	1
	ASE_INT	1	1	1	1	1	1	1
	ASE_OBJ	1	2	2	2	2	2	2
	ASR_REQ	1	2	2	2	2	2	2
	ASE_SPD		1	1	1	1	1	1
	ASE_TSS	1	1	1	1	1	1	1
Tests	ATE_COV		1	2	2	2	3	3
	ATE_DPT			1	1	3	3	4
	ATE_FUN		1	1	1	1	2	2
	ATE_IND	1	2	2	2	2	2	3
Vulnerability assessment	AVA_VAN	1	2	2	3	4	5	5

Table 1: Evaluation assurance level summary"

Class AVA: Vulnerability assessment (chapter 16)

"The AVA: Vulnerability assessment class addresses the possibility of exploitable vulnerabilities introduced in the development or the operation of the TOE."

Vulnerability analysis (AVA_VAN) (chapter 16.1)

"Objectives

Vulnerability analysis is an assessment to determine whether potential vulnerabilities identified, during the evaluation of the development and anticipated operation of the TOE or by other methods (e.g. by flaw hypotheses or quantitative or statistical analysis of the security behaviour of the underlying security mechanisms), could allow attackers to violate the SFRs.

Vulnerability analysis deals with the threats that an attacker will be able to discover flaws that will allow unauthorised access to data and functionality, allow the ability to interfere with or alter the TSF, or interfere with the authorised capabilities of other users."

D. Annexes

List of annexes of this certification report

- Annex A: Security Target provided within a separate document.
- Annex B: Evaluation results regarding development and production environment

This page is intentionally left blank.

Annex B of Certification Report BSI-DSZ-CC-0952-V2-2016

Evaluation results regarding development and production environment

The IT product STARCOS 3.5 ID GCC C3 (Target of Evaluation, TOE) has been evaluated at an approved evaluation facility using the Common Methodology for IT Security Evaluation (CEM), Version 3.1 extended by advice of the Certification Body for components beyond EAL 5 and guidance specific for the technology of the product for conformance to the Common Criteria for IT Security Evaluation (CC), Version 3.1.

As a result of the TOE certification, dated 16 December 2016, the following results regarding the development and production environment apply. The Common Criteria assurance requirements ALC – Life cycle support (i.e. ALC_CMC.4, ALC_CMS.4, ALC_DEL.1, ALC_DVS.2, ALC_LCD.1, ALC_TAT.1)

are fulfilled for the development and production sites <u>of the TOE</u> listed below:

- a) Giesecke & Devrient GmbH, Development Center Germany, Zamdorferstrasse 88, 81677 Munich, Germany, Site Certificate BSI-DSZ-CC-S-0070-2016 [22] (Development)
- b) SMT1, SMARTRAC TECHNOLOGY Ltd. (Thailand),142 Moo, Hi-Tech Industrial Estate, Tambon BanLaean, Amphor Bang-pa-In, 13160 Ayutthaya, Thailand, Site Certificate BSI-DSZ-CC-S-0057-2015 [23] (Inlay embedding)
- c) Giesecke & Devrient Slovakia, s.r.o., Dolné Hony11, 94901 Nitra, Slovakia, Site Certificate BSI-DSZ-CC-S-0062-2016 [24] (Storage facility)
- d) Bundesdruckerei GmbH, Site for ePassport,eCover, eID card, RP card, -inlay Production of Bundesdruckerei GmbH, Germany, Site Certificate BSI-DSZ-CC-S-0053-2016 [25] (Initialisation and inlay embedding)

For development and production sites regarding the chip platform please refer to the certification report BSI-DSZ-CC-0829-V2-2015 [16].

For the sites listed above, the requirements have been specifically applied in accordance with the Security Target [6]. The evaluators verified, that the threats, security objectives and requirements for the TOE life cycle phases up to delivery (as stated in the Security Target [6] and [8]) are fulfilled by the procedures of these sites.

This page is intentionally left blank.