9. redhat

Red Hat Enterprise Linux, Version 7.1

Version: 0.21
Status: Released
Last Update: 2016-06-09

Classification: public

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Trademarks

Red Hat and the Red Hat logo are trademarks or registered trademarks of Red Hat, Inc. in the United
States, other countries, or both.

atsec is a trademark of atsec information security GmbH
Linux is a registered trademark of Linus Torvalds.
UNIX is a registered trademark of The Open Group in the United States and other countries.

IBM, IBM logo, bladecenter, eServer, iSeries, 0S/400, , POWER3, POWER4, POWER4+, pSeries,
System p, POWER5, POWER5+, POWER6, POWER6+, POWER7, POWER7+, System x, System z,
S390, xSeries, zSeries, zArchitecture, and z/VM are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries, or both.

Intel, Xeon, and Pentium are trademarks of Intel Corporation in the United States, other countries,
or both.

This document is based in parts on the Red Hat Enterprise Linux Version 6.2 Security Target,
Copyright © 2013 by Red Hat, Inc. and atsec information security corp.

Legal Notice

This document is provided AS IS with no express or implied warranties. Use the information in this
document at your own risk.

This document may be reproduced or distributed in any form without prior permission provided the
copyright notice is retained on all copies. Modified versions of this document may be freely distributed
provided that they are clearly identified as such, and this copyright is included intact.

Revision History

Revision | Date Author(s) Changes to Previous Revision

0.210 2016-06-09 | Stephan Mueller | ST for RHEL 7.1 derived from RHEL 6.2 ST

Version: 0.21 Classification: public Page 2 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Table of Contents

1L [MFeCEI®R sasoooasooossocoosonoasonnanoone000000000000000000005000060000500000000000000000G00000000000050000GC 10
1.1 Security Target Identification ..o e 10

1.2 TOE IdentifiCationcooueiieiiiii it e et e e e e e e e e e e 10
N T 1@ 1 o< PP TP 10
R O] @ V7= V=1 PP 10
1.4.1 Configurations defined with this ST ..., 10

1.4.2 OVerview deSCriphiON ..ottt 10
1.4.2.1 Hardware SPECITICS .oiiiuiiiiiiiiii et eeas 11

1.4.3 Compliance with STIG and other standardscccooiiiiiiiiiii e 11

1.4.4 Required Hardware and SOftWareooiiiiiiiiiiiiii e 11

1.4.5 Intended Method Of USE ...c.uniiiiiiiiiii it e e s 12
1.4.5.1 General-purpose computing environmentc.ccoiiiiiiiiiiiiii e 12

1.4.5.2 Operating ENVIFONMENT it e e e ean e 13

1.4.6 Major SECUNtY FEATUIBSiiiiiiiiiii it e e e e e e eens 13

S T @ T 0 1YY 1 o) [0 S 14
I 0 A o Yl oY U [t o [o PP 14

ST O] = o Yo 10 o F= 1 g L= PP 15
S T A o V=] [of= | PP 15

S Y0200 o To | (o} | PP 15

1.5.2.3 CoNnfigUratiONSciuiiiiiiiii e e e 20

1.5.2.4 TOE ENVIFONMENT ..ottt e et e et e e e e e e eaen s 21

1.5.2.5 Security POliCY MOl ...coouiiiiiiii e e 21

2 CC Conformance Claimcciiicciiiciiiicmrisessissssiasssassssasssaanssaanssaansssanssnnnssnnnssnnnsss 24
3 Security Problem Definitionccciiiiiieiiiiesiiies i snie s s s s rna s snans 25
0 A I oV == L = V2T o T 0 1= o PP 25
R = N 25

3.1.2 Tt AQENES ittt et e e eea e eaes 25

3.1.3 Threats countered by the TOE ... e 25

0 A=Y= ¥ 1o Y o) o o] 1= 27
3.2.1 Environment of use of the TOEcoouiiiiiii e 27
3.2.1.1 PRYSICAI et et e e eea s 27

3.2.1.2 PEISONNEI ettt e e e 27

00 G B o] e Yol =T [= Y PP PP 27

3.2. 1.4 CONNECHIVIEY 1ottt ettt e e e e eaans 28

3.3 Organizational Security POICIESccuiiiiiiiiiiii e e e e e e en e 28

i SEEUHEY OEEINES 0oo0000000000000000000000000000850000600000600000000E0000E0000EG0000G00A00000A000A0000000C 30
O R @] oY =T o V2= 30 o] g o o = 1 PP 30
4.2 Objectives for the Operational ENVIroONMENTtcooiuiiiiiiiiiii e 33
4.3 Security Objectives RatiONaleiiiiiiiiiiiii e e 34
N T A o 1 =T = Yo T 34

G B S U i o] 1= [oy Y PP P PP 36

S [FECEE (@ En S RDEIIIEER coonoooosoo00C 43
Version: 0.21 Classification: public Page 3 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

5.1 Class FCS: CryptographiC SUPPOIT ..o e e 43
5.1.1 Random number generator (RNG)cccooiiiiiiiiiii e e eens 43
5.1.1.1 FCS_RNG.1 - Random number generationc.ccocccciiiiniiieninnenieniinneneennnn 43

5.2 Class FDP: User data proteCtioncoiiiiiiiiiiii e ea e eas 44
5.2.1 Confidentiality protection (FDP_CDP)ooiiiiiiiiiiiieeee e e 44
5.2.1.1 FDP_CDP.1 - Confidentiality for data at restcoiiiiiiiiiiis 44

5.2.2 Access control function (no audit) (FDP_ACF NA) ..o 45
5.2.2.1 FDP_ACF_NA.1 - Access control function (no audit)ccccoeeiiiiiiiiiiiinnnnnnn. 45

6 Security Requirementsc.iccciiiiciiiiiriessiesssiassiasssanssaanssaanssaansaaanssannssnnnssnnns 46
6.1 Security Requirements for the Operational Environmentcooiiiiiiiiiiiineee, 46
6.1.1 General security requirements for the abstract machinec.ccooinnl. 46
6.1.1.1 Subset access control (FDP_ACC.L1(E)) ..cccuiiierniiieiieiiieeeieeei e e 46
6.1.1.2 Security-attribute-based access control (FDP_ACF.1(E))cccoovvviviiiiiiniiinnnns 46
6.1.1.3 Static attribute initialization (FMT_MSA.3(E)) ..icoviiiiiiiiiiiiiieciiecieeee e 47

6.1.2 Security requirements for CPACFE ...t 47
6.1.2.1 Cryptographic operation (CPACF) (FCS_COP.1(2E)) ..c.cviviviiiiiiieiieieieeennnnn. 48

6.2 TOE Security Functional ReqUIremMeNntsc.ooiiiiiiiiiiii e e 48
6.2.1 General-purpose computing enVIiroNMENToiiiiiiiiii e 54
6.2.1.1 Audit data generation (FAU GEN.L)coiiiiiiiiiiiiiieiee e 54
6.2.1.2 User identity association (FAU _GEN.2) ...cciiiiiiiiiiiiiie e e e 55
6.2.1.3 AUudit review (FAU SAR.L) ittt e e eaa s 55
6.2.1.4 Restricted audit review (FAU SAR.2) . i 55
6.2.1.5 Selective audit (FAU SEL.1) ..o e e e e e e ees 56
6.2.1.6 Protected audit trail storage (FAU STG.1) ..ccoooiiiiiiiiiiiiii e 56
6.2.1.7 Action in case of possible audit data loss (FAU_STG.3)cccooiviviiiiinieiennnnn. 56
6.2.1.8 Prevention of audit data 10ss (FAU_STG.4) ..c.iiiiiiiiiiiii e 57
6.2.1.9 Cryptographic key generation (FCS_CKM.1(SYM)) ..cccoiiiiiiiiiiiiiiiiiieeeiieeeennn 57
6.2.1.10 Cryptographic key generation (FCS_CKM.1(RSA)) .ooeiiiiiiiiiiiiiiiiiiieeiieeeen, 58
6.2.1.11 Cryptographic key generation (FCS_CKM.1(DSA)) ..ccoiiiiiiiiiiiiiiiiiieeiieeennn. 59
6.2.1.12 Cryptographic key generation (FCS_CKM.1(ECDSA)) ..ccoiviiiiiiiiiiieeiieaennnn. 59
6.2.1.13 Cryptographic key distribution (SSHv2) (FCS_CKM.2(NET-SSH)) 60
6.2.1.14 Cryptographic key distribution (IKEv1 / IKEv2) (FCS_CKM.2(NET-IKE)) 60
6.2.1.15 Cryptographic key distribution (TLS) (FCS_CKM.2(NET-TLS))cccvnveeee. 61
6.2.1.16 Cryptographic key destruction (FCS_CKM.4)ccoiiiiiiiiiiiiiiiiieeeeeeee, 61
6.2.1.17 Cryptographic operation (FCS_COP.L1(NET)) ..coccvuiiiiiiiiiiiiieiieeieeeieeeeennen 62
6.2.1.18 Cryptographic operation (FCS _COP.1(CP)) .iiiiiiiiiiiiiiiiiiiiiiiiieeiieeineeineenns 64
6.2.1.19 Random number generation (Class DRG.2) (FCS_RNG.1(SSL-DFLT)) 65
6.2.1.20 Random number generation (Class DRG.2) (FCS_RNG.1(SSL-FIPS)) 65
6.2.1.21 Random number generation (Class DRG.2) (FCS_RNG.1(DM-INIT)) 66
6.2.1.22 Random number generation (Class DRG.2) (FCS_RNG.1(DM-RUN)) 66
6.2.1.23 Random number generation (Class DRG.2) (FCS_RNG.1(DM-FIPS)) 67
6.2.1.24 Random number generation (Class DRG.2) (FCS_RNG.1(NSS)) 67
6.2.1.25 Subset access control (FDP_ACC.1(PSO)) .occvriiiiiiiiiiiiie e 68
6.2.1.26 Subset access control (FDP_ACC.1(TSO)) ..oieeeeeriiieeimnineeeeeneeeeennneeeenennns 68

Version: 0.21 Classification: public Page 4 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6.2.1.27 Security attribute based access control (FDP_ACF.1(PSO))cccoeevvuvernnnn. 68
6.2.1.28 Security attribute based access control (FDP_ACF.1(TSO))cccovvvevnernnnn. 70
6.2.1.29 Complete information flow control (FDP_IFC.2(NI))cocoeiiiiiiiiiiiiiiiis 71
6.2.1.30 Simple security attributes (FDP_IFF.1(NI-IPTables))cccociiiiiiiiiiiiieeennnn. 72
6.2.1.31 Import of user data with security attributes (FDP_ITC.2(BA)) ...cccovvvnvennnns 73
6.2.1.32 Full residual information protection (FDP_RIP.2) ...cccoiviiiiiiiiiiiiiiiiiiciieeis 73
6.2.1.33 Full residual information protection of resources (FDP_RIP.3)c...c..... 73
6.2.1.34 Authentication failure handling (FIA_AFL.1) ..ciiiiiiiiiiiceeeeei e 74
6.2.1.35 User attribute definition (FIA_ATD.1(HU)) oo 74
6.2.1.36 User attribute definition (FIA_ATD.1(TU)) oeoiiiiiiiiiiiiiiieeireeneene e eenes 74
6.2.1.37 Verification of secrets (FIA SOS.1) ..o 75
6.2.1.38 Timing of authentication (FIA UAU.1) ..o 75
6.2.1.39 Multiple authentication mechanisms (FIA UAU.5)ocoiiiiiiiiiiiiiiiiiieeenn, 75
6.2.1.40 Protected authentication feedback (FIA_UAU.7) ..o, 76
6.2.1.41 Timing of identification (FIA_UID.1) ..o 76
6.2.1.42 Enhanced User-subject binding (FIA USB.2)coiiiiiiiiiiiiii e 76
6.2.1.43 Failure with preservation of secure state - full buffer overflow protection
(e I 0 (U PSP 79
6.2.1.44 Failure with preservation of secure state - partial buffer overflow protection
(FPT LS. L PART I AL)) ettt e et e et e e et e e e et e e e e e e e et e e eaneeeenas 81
6.2.1.45 Failure with preservation of secure state - user space protecton from kernel
(FPT _FLS.T(INTEL)) teeuuitetnieiit et ettt e ettt e et e e e et et e et e e ek e e et e e e et e e ean e eeanaeeannaes 82
6.2.1.46 Reliable time stamps (FPT_STM.1) ..ot 82
6.2.1.47 Inter-TSF basic TSF data consistency (FPT_TDC.1(BA)) ..cccccoiveiinieiinneaennnn. 82
6.2.1.48 TSF-initiated session locking (FTA SSL.1) ..cooiiiiiiiiiiiiiieee e 82
6.2.1.49 User-initiated locking (FTA_SSL.2) ..o 83
6.2.1.50 Inter-TSF trusted channel (FTP_ITC.1) ..iciiiiiiiiiiiiiiieine e neeneeineenes 83
6.2.2 Linux Container Functionality (not on POWER architecture)ccc.occoiiiiiiis 84
6.2.2.1 Complete access control (Namespaces) (FDP_ACC.2(Namespaces)) 84
6.2.2.2 Complete access control (Linux control groups) (FDP_ACC.2(Cgroup)) 84
6.2.2.3 Complete access control (System Call Filtering) (FDP_ACC.2(SECCOMP))
... 84
6.2.2.4 Security attribute based access control (Namespaces)
(FDP_ACF.1(NAMESPACES)) teeeueteuueiet i eeetuaetetaeeti e eet e e eei e e et e e esa e e ean e ean e eesneeennaeennnnns 85
6.2.2.5 Security attribute based access control (Linux control groups)
(FDP_ACF.1(CQrOUP)) tutetuuetetueent ettt e eetn e eesi e teaa e e ean e aeaa e eeeaaeean e eena s e eanneaennneeeanaeennnaes 86
6.2.2.6 Security attribute based access control (System Call Filtering)
(FDP_ACF_NA.L(SECCOMP)) tiiiiiitiieiii ettt ettt e e e e e e e e e ean e e en e eenaes 86
6.2.2.7 Export of user data with security attributes (FDP_ETC.2(LC)) ...coccovvvvnvennnns 87
6.2.2.8 Import of user data with security attributes (FDP_ITC.2(LC)) ...ccocevvveveennnes 88
6.2.2.9 User identification before any action (FIA_UID.2(LC))ccovveviiiiiiieiniieeennnn. 88
6.2.2.10 Inter-TSF basic TSF data consistency (FPT_TDC.1(LC))occoiverviiieennneennn. 88
6.2.2.11 Management of security attributes (Namespaces)
(FMT_MSA.1(NamespaceS-CACP)) oot e e e e e e e e enaees 88
6.2.2.12 Management of security attributes (Cgroup) (FMT_MSA.1(Cgroup-CACP))
... 88
Version: 0.21 Classification: public Page 5 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6.2.2.13 Management of security attributes (FMT_MSA.1(SECCOMP))c......... 89
6.2.2.14 Static attribute initialisation (Namespaces) (FMT_MSA.3(Namespace-CACP))
... 89
6.2.2.15 Static attribute initialisation (Cgroup) (FMT_MSA.3(Cgroup-CACP)) 89
6.2.2.16 Static attribute initialisation (FMT_MSA.3(SECCOMP)) ...covvviiiiiieiiieeennn. 89
6.2.2.17 Management of TSF data (FMT_MTD.1(LC-COMP)) ...ccoiviiiiiiiiiiiiiiiiiiiinns 89
6.2.3 Confidentiality protection of data at restcooiiiiiii 90
6.2.3.1 Complete access control (FDP_ACC.2(CP)) ...ooevevimiiiiimiiieiieninneeeeiin e 90
6.2.3.2 Security attribute based access control (FDP_ACF.1(CP))ccovveviiviinnnennnn. 90
6.2.3.3 Confidentiality for data at rest (FDP_CDP.1(CP)) ...ooieviiiiiiiiiiieeiieeeieeeeenen 91
6.2.4 Management related functionalitycoooooiiiiiiiiii 91
6.2.4.1 Management of object security attributes (FMT_MSA.1(PSQO))ccceuneees 91
6.2.4.2 Management of object security attributes (FMT_MSA.1(TSQO))ccc.cceunneeee 91
6.2.4.3 Management of security attributes (FMT_MSA.1(CP))ooevveriiiiiiiiiiiiiniens 91
6.2.4.4 Static attribute initialisation (FMT_MSA.3(PSO)) ...cocivviiiiiiiiiiiiiciiiieeeenenn 92
6.2.4.5 Static attribute initialisation (FMT_MSA.3(TSO)) .ooiiiiiiiiiiiiiieeeee e 92
6.2.4.6 Static attribute initialisation (FMT_MSA.3(NI)) ..o, 92
6.2.4.7 Static attribute initialisation (FMT_MSA.3(CP)) ..oeeriiiiiiiiiiee e, 93
6.2.4.8 Security attribute value inheritance (FMT_MSA.4(PSO)) ..cocoviviiiiiiinnieeennn. 93
6.2.4.9 Management of TSF data (FMT_MTD.L1(AE)) ..coiiiiriiiiiiiiiieeieeeeeeeeeeeenn 93
6.2.4.10 Management of TSF data (FMT_MTD.1(AS)) .ooiiiiiiiiiiiiiiiiniienneeneenenns 93
6.2.4.11 Management of TSF data (FMT _MTD.1(AT)) ooiiiiiiiiiiiiiieiiieeeeeeeiiee e 94
6.2.4.12 Management of TSF data (FMT_MTD.1(AF)) .oooiiiiiiiiiiiiiiiincenee e 94
6.2.4.13 Management of TSF data (FMT_MTD.L1(NI)) .oooveiiiiiiiiiiiiieiieeee e 94
6.2.4.14 Management of TSF data (FMT_MTD.1(IAT)) .ooiiiiiiiiiiiiieeieeeeeee e 94
6.2.4.15 Management of TSF data (FMT_MTD.1(IAF)) .ooiiiiiiiiiieeeeeee e 94
6.2.4.16 Management of TSF data (FMT_MTD.1(IAU)) ..ooiriiiiiiiiiiiieieeeeeeee e 95
6.2.4.17 Management of TSF data (FMT_MTD.1(SSH)) ..cccooiiiiiiiiiiiiiiiiii e, 95
6.2.4.18 Management of TSF data (FMT_MTD.1(SSSD)) ..cccceeeiiiiiimiiiiieieniiieeeenennn 95
6.2.4.19 Management of TSF data (FMT_MTD.1(SSL)) .icciiiiiiiiiiiiiiiieee e 95
6.2.4.20 Management of TSF data (FMT_MTD.1(AM-AP)) ...iiiiiiiiiiiiiiiiieeieeeieee 96
6.2.4.21 Management of TSF data (FMT_MTD.1(AM-MR)) .oooiiiiiiiiiiiiee e 96
6.2.4.22 Management of TSF data (FMT_MTD.1(AM-MD))ccccooiiviimiiiiiiiiiiieeeeennn, 96
6.2.4.23 Management of TSF data (FMT_MTD.1(AM-MA)) ..o, 96
6.2.4.24 Management of TSF data (FMT_MTD.1(CP-AN)) ...cccoiiiiiiiiiiiiiiiiieeeieeeennn, 96
6.2.4.25 Management of TSF data (FMT_MTD.1(CP-UD)) ..ccccoiiiiinieiiiiieiieeeieeennnen. 96
6.2.4.26 Revocation (FMT_REV.L(OB])) .eoiiiiiiiiieiiiiieeeiiiieee e siiee e e s sieee e e nineee e 97
6.2.4.27 Revocation (FMT_REV.LI(USR)) oo 97
6.2.4.28 Specification of management functions (FMT SMF.1)cccooviiiiiiiiiniinnnns 97
6.2.4.29 Security management roles (FMT SMR.2) ..oooiiiiiiiiiiiiiieee e 98
B.2.5 MLS MOAE it e et et e e e aa s 99
6.2.5.1 Export of user data with security attributes (FDP_ETC.2(LS))cc.occevuneennn. 99
6.2.5.2 Complete information flow control (FDP_IFC.2(LS)) ..ccovviviiiiiiiiiiieeeiieeennn. 99
6.2.5.3 Hierarchical security attributes (FDP_IFF.2(LS)) ..ccoiviiiiiiiiiiieiiieeiieeeeiees 100
6.2.5.4 Import of user data without security attributes (FDP_ITC.1(LS)) 102
Version: 0.21 Classification: public Page 6 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6.2.5.5 Import of user data with security attributes (FDP_ITC.2(LS))ccc.cccvnneeen 103
6.2.5.6 Management of security attributes (FMT_MSA.L(LS)) ...cccoivieriiiiiiineiinnnns 103
6.2.5.7 Static attribute initialisation (FMT_MSA.3(LS)) .oceviiiiiiiiiiieeeeeee e, 103
6.2.5.8 Inter-TSF basic TSF data consistency (FPT_TDC.1(LS)) ...cccoceeviveiiineiennnens 104

6.3 Security Functional Requirements Rationaleccoiviiiiiiiiiiiiii e 104
LS T0C 0 R @0 V7= = T <P 104
B.3.2 SUM I BNCY oot e 109
6.3.3 Security requirements dependency analysisccooviiiiiiiiiiiiiii e 112
6.4 Security ASSUranCe REQUITEMENTS ...ttt eaas 119
6.4.1 Security Target evaluation (ASE)ociiiiiiiiiiii e 120
6.4.1.1 Conformance claims (ASE_CCL.1) ..ottt eeaee 120

6.5 Security Assurance Requirements Rationalecccoociiiiiiiiiiiiiiini e 121
7 TOE Summary Specificationcccciiiiiiiiiiiiiiiiiis i sriss i sss s s s snans 122
7.1 Support Mechanisms Offered by the IT Environmentcooiiiiiiiiiicieeeas 122
7.2 Cryptographic Support Offered by IT Environmentcooooiiiiiiiiiiiiiiieeeeieeee 123
7.3 TOE Security FUNCLIONAIITY ..ovuiieiiiiiiiicii et e e e e e e e e enas 123
70 T R Y U T [PP PPN 124
7.3. 1.1 Audit functionalityoiiii 124
7.3.1.2 AUIT Erail oeeeei e e 125

7.3.2 CryptographiC SEIVICES ...ciiiiieiiii ettt e e e e e e e e ean e eaees 126
7.3.2.1 Cryptographic NetWOork SErviCeSiiiiiiiiiiiiiiiiiiii e 126

7.3.3 PacCKel fillar oo e 131
7.3.3.1 Network l[ayer filtering ...ccoou oo 131

7.3.4 Identification and Authentication ..o 133
7.3.4.1 PAM-based identification and authentication mechanisms 133
7.3.4.2 User ldentity Changingccooiiiiiiiiiie e 134
7.3.4.3 Authentication Data Managementooviiiiiiiniii e 135
7.3.4.4 SSH key-based authenticationc.coooiiiiiiiiii 135
7.3.4.5 SESSION I0CKING .uuiiiiiiitie et et e 136

7.3.5 Discretionary ACCESS CONLIOl ...uuiiniiiiiii e 136
7.3.5.1 Permission DItS ... 137
7.3.5.2 ACCESS CONLIOl LiSES (ACLS) ttiiuiriniiiiiiiiii ettt ettt e e bea e e enaaeaeenen 137
7.3.5.3 File system ODJECES ...ocviiiiii i 138
7.3.5.4 IPC ObjJECES .uiiiiiiiiii it e e e e 138
7.3.5.5 at and Cron joODS QUEUESoieiiiiiiiiii e e e ens 138
7.3.5.6 Print JOD QUEBUES ... ettt e et e e 138

7.3.6 Mandatory AcCeSSs CONLIOliiniii e 139
7.3.6.1 MLS mode: Multi-level SECUNitY ...ciiiiii 139

7.3.7 Security ManagemeNnt ..o 140
7.3.7.1 Approval and delegation of management functionsc..coceiiiiininnnen. 141
7.3.7.2 MLS mode: Role-based access Controlccooeveiiiiiiiiiiiieiieeeeeeeeennn 141
T.3.7.3 PriVIIEOES oo 142

7.3.8 Runtime Protection MeChaniSmSscciiiiiiiiiiiii e 142
7.3.9 Linux Container (not on POWER architeCture)cccoiiiiiiiiiiiiiiiiiiiiiiieeeeeeen, 142
Version: 0.21 Classification: public Page 7 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

7.3.9.1 LiNUX NaMESPACES ituiiiiiiiiiiiiiii ittt et e et et et et et e et e e et e e e e e e e an s 143

C IR 7] o o] I €] o TU T o =P 148

7.3.9.3 System Call FilEEriNG ..o 149

8 Abbreviations, Terminology and Referencesccciivveerrsinsnnmmmsssmmsssnnnsssnnnnns 151
8.1 ADDreVIatioNS .o 151

S 7072 (=Y 5 2'0] 1 o Uo Yo)Y A PP 151
8.3 RO BIENCES ittt 154
Version: 0.21 Classification: public Page 8 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

List of Tables

Table 1: Mapping of security objectives to threats and policiesccocciiiiiiiiiiiiciicins 34
Table 2: Mapping of security objectives for the Operational Environment to assumptions,
Ereats And POlICIES ouieii e 35
Table 3: Sufficiency of objectives countering threats ..o, 36
Table 4: Sufficiency of objectives holding assumptionsccooviiiiiiiii e 38
Table 5: Sufficiency of objectives enforcing Organizational Security Policiesc........ 41
Table 6: SFRS fOr the TOE ... e e e e e e e e e e e enn s 48
Table 7: Mapping of security functional requirements to security objectives 104
Table 8: Security objectives for the TOE rationalecooiiiiiiiiiicii e 109
Table 9: TOE SFR dependencCy analySiS ..o e 112
L= o LT O AN PP 119
Table 11: SSH implementation NOLES ..o 127
Table 12: TLS implementation NOLES ... 129
Version: 0.21 Classification: public Page 9 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

1 Introduction

1.1 Security Target Identification

Title: Red Hat Enterprise Linux, Version 7.1
Version: 0.21

Status: Released

Date: 2016-06-09

Sponsor: Red Hat, Inc.

Developer: Red Hat, Inc.

Certification Body: BSI
Certification ID: BSI-DSZ-CC-0999
Keywords: Security Target, Common Criteria, Linux Distribution, Embedded Linux

1.2 TOE Identification
The TOE is Red Hat Enterprise Linux Version 7.1.

1.3 TOE Type

The TOE type is a Linux-based general-purpose operating system.

1.4 TOE Overview
1.4.1 Configurations defined with this ST

This security target documents the security characteristics of the Red Hat Enterprise Linux
distribution (abbreviated with RHEL throughout this document).

1.4.2 Overview description

Red Hat Enterprise Linux is a highly-configurable Linux-based operating system which has been
developed to provide a good level of security as required in commercial environments. It also meets
all requirements of the Operating System protection profile [OSPP]. Additional functionality to the
OSPP base is claimed:

® Advanced Management (MLS mode only)
Disk encryption
Labeled Security (MLS mode only)
Runtime protection against programming errors
Linux Container

The TOE can operate in two different modes of operation called “Base mode” and “MLS mode”. In
Base mode the SELinux security module does not enforce a mandatory access control policy for
the general computing environment and does not recognize sensitivity labels of subjects and objects.
SELinux can either be disabled completely, or enabled with a non-MLS policy which only add

Version: 0.21 Classification: public Page 10 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

additional restrictions to the base access control functions without interfering with the “root”
administrator role. In this mode the TOE enforces all security requirements of the [OSPP]. SELinux
must be enabled if the administrator wants to provide virtual machines.

In MLS mode the SELinux security module is configured to enforce the mandatory access control
policy based on the labels of subjects and objects as required by the extended package for labeled
security as well as advanced management. Note that a system in MLS mode can optionally be
configured to use a single sensitivity label for all subjects and objects to provide an operational
mode equivalent to pure role-based access control for advanced management without mandatory
access control.

1.4.2.1 Hardware Specifics

All security functions claimed in this ST apply to all architectures and systems allowed via this ST.
The following exceptions apply and are also marked throughout this document:

e Linux Containers are not available on POWER architecture

® Intel SMEP protection mechanism is only available on Intel x86 CPUs.

1.4.3 Compliance with STIG and other standards

The evaluated configuration draws from many standards, including the US STIG standard. It is
possible to achieve full compliance with STIG in the evaluated configuration. However, to prevent
violation of other configuration standards, the evaluated configuration does not claim full compliance
with STIG.

1.4.4 Required Hardware and Software
The following hardware / firmware allows the installation of the TOE:
The following hardware is allowed:

e HP based on x86 64bit Intel Xeon processors:
O HP Proliant ML series G7, Gen8, Gen9 product line
O HP Proliant DL series G7, Gen8, Gen9 product line
O HP ProLiant BL series G7, Gen8, Gen9 product line
O HP ProLiant SL series G7, Gen8, Gen9 product line

e HP based on AMD64 processors:
O HP Proliant ML series G7, Gen8 product line
O HP Proliant DL series G7, Gen8 product line
O HP ProLiant BL series G7, Gen8 product line
O HP ProLiant SL series G7, Gen8 product line

® Dell based on x86 64bit Intel:
O Dell PowerEdge R920
O Dell PowerEdge R930
O Dell PowerEdge T430, T630, R430, R530, R630, R730, R730xd, M630, M830, FC430,
FC630, FC830, C6320, and Precision R7910
e |IBM System p based on Power 8 processors providing execution environments with PowerVM:
O Big Endian with PowerVM: Tuleta BE model number - Power 835 model 8286-41A

Version: 0.21 Classification: public Page 11 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

o) Little Endian with RHEV for Power 3.6: Power 835 model 8284-22A

e IBM System z based on z/Architecture processors:
zEnterprise EC12 (zEC12)

zEnterprise BC12 (zBC12)

zEnterprise 196 (z196)

zEnterprise 114 (z114)

O 0 O O

The following virtual environment is allowed as an execution environment for the TOE:

e KVM on x86 hardware as provided by RHEL 7 or later
e KVM on POWER LE hardware as provided by RHEV-H 3.6 or later

All hardware must be configured using a RAM with automated error correction mechanism present.
For example ECC RAM would be suitable to cover that requirement.

1.4.5 Intended Method of Use

1.4.5.1 General-purpose computing environment

The TOE is a Linux-based multi-user multi-tasking operating system. The TOE may provide services
to several users at the same time. After successful login, the users have access to a general
computing environment, allowing the start-up of user applications, issuing user commands at shell
level, creating and accessing files. The TOE provides adequate mechanisms to separate the users
and protect their data. Privileged commands are restricted to administrative users.

The TOE can be configured to operate in one of two modes, Base mode and MLS mode, as defined
in section 1.4.2 of this document.

In MLS mode, the TOE uses mandatory access control together with discretionary and role-based
access control. In MLS mode rules are defined to assign sensitivity labels to subjects and objects
and to implement the information flow mandatory access control policy modeled based on the
concept of Bell-LaPadula.

In MLS mode, administrative actions are delegated to specific roles. Any userin a role that is allowed
to perform administrative actions is considered an administrative user. In addition the TOE supports
types that can be associated with objects and domains that can be associated with processes. Roles
are defined by the domains they have access to. A predefined policy file, which is part of the TOE
configuration, defines the rules between domains and types. With this definition of roles and the
access rights implied by the individual roles the TOE implements the role-based access control for
advanced management.

The TOE is intended to operate in a networked environment with other instantiations of the TOE
as well as other well-behaved peer systems operating within the same management domain. All
those systems need to be configured in accordance with a defined common security policy.

It is assumed that responsibility for the safeguarding of the user data protected by the TOE can be
delegated to human users of the TOE if such users are allowed to log on and spawn processes on
their behalf. All user data is under the control of the TOE. The user data is stored in named objects,
and the TOE can associate a description of the access rights to that object with each named object.

The TOE enforces controls such that access to data objects can only take place in accordance with
the access restrictions placed on that object by its owner, and by administrative users. Ownership
of named objects may be transferred under the control of the access control policies implemented
by RHEL.

Version: 0.21 Classification: public Page 12 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Discretionary access rights (e.g. read, write, execute) can be assigned to data objects with respect
to subjects identified with their UID, GID and supplemental GIDs. Once a subject is granted access
to an object, the content of that object may be used freely to influence other objects accessible to
this subject.

In MLS mode, the TOE enforces a mandatory access control policy based on sensitivity labels that
are attached to objects managed by the TOE. The mechanisms to attach those labels to the objects
and assign initial values to those labels are implemented in the SELinux security module which
extends the security mechanisms of the Linux kernel using the loadable security module feature.
SELinux provides a flexible way to define security policies to be enforced for subjects and objects
within the kernel. This evaluation is based on the SELinux policy with MLS support to address the
requirements of the OSPP extended package for Labeled Security and the roles and privileges
required to manage this policy efficiently.

Red Hat Enterprise Linux has significant security extensions compared to standard UNIX systems:

® Access Control Lists
® Domains and type enforcement (MLS mode only)

e Labels assigned to a number of kernel objects within a security context defined and managed
by the SELinux security module (MLS mode only)

® Block device encryption and ensuring the confidentiality of data at rest

e (not on POWER architecture) Strong user space isolation by providing different Linux
Containers. The Linux Containers provide isolation, resource accounting and limitation and
Linux kernel service limitation for different classes of objects.

1.4.5.2 Operating Environment

The TOE permits one or more processors and attached peripheral and storage devices to be used
by multiple applications assigned to different UIDs to perform a variety of functions requiring
controlled shared access to the data stored on the system. With different UIDs proper access
restrictions to resources assigned to processes can be enforced using the access control mechanisms
provided by the TOE. Such installations and usage scenarios are typical for systems accessed by
processes or users local to, or with otherwise protected access to, the computer system.

Note: The TOE provides the platform for installing and running arbitrary services. These additional
services are not part of the TOE. The TOE is solely the operating system which provides the runtime
environment for such services.

All human users, if existent, as well as all services offered by RHEL are assigned unique user
identifiers within the single host system that forms the TOE. This user identifier is used together
with the attributes and roles assigned to the user identifier as the basis for access control decisions.
Except for virtual machine accesses, the TOE authenticates the claimed identity of the user before
allowing the user to perform any further actions. Services may be spawned by the TOE without the
need for user-interaction. The TOE internally maintains a set of identifiers associated with processes,
which are derived from the unique user identifier upon login of the user or from the configured user
identifier for a TOE-spawned service. Some of those identifiers may change during the execution
of the process according to a policy implemented by the TOE.

1.4.6 Major Security Features

The primary security features of the TOE are specified as part of the section 1.5.2.2 logical boundary
description.

Version: 0.21 Classification: public Page 13 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

These primary security features are supported by domain separation and reference mediation,
which ensure that the features are always invoked and cannot be bypassed.

1.5 TOE Description
1.5.1 Introduction

Red Hat Enterprise Linux is a general purpose, multi-user, multi-tasking Linux based operating
system. It provides a platform for a variety of applications.

The RHEL evaluation covers a potentially distributed network of systems running the evaluated
versions and configurations of RHEL as well as other peer systems operating within the same
management domain. The hardware platforms selected for the evaluation consist of machines
which are available when the evaluation has completed and to remain available for a substantial
period of time afterwards.

The TOE Security Functions (TSF) consist of functions of RHEL that run in kernel mode plus some
trusted processes. These are the functions that enforce the security policy as defined in this Security
Target. Tools and commands executed in user mode that are used by an administrative user need
also to be trusted to manage the system in a secure way. But as with other operating system
evaluations they are not considered to be part of this TSF.

The hardware, the BootProm or BIOS firmware and potentially other firmware layers between the
hardware and the TOE are considered to be part of the TOE environment.

The TOE includes standard networking applications, including applications allowing access of the
TOE via cryptographically protected communication channels, such as SSH.

System administration tools include the standard command line tools. A graphical user interface
for system administration or any other operation is not included in the evaluated configuration.

The SELinux security module can be configured to enforce the mandatory access control policy.
The following access control rules are enforced by SELinux:

e Bell-LaPadula access control model is implemented based on labels assigned to subjects
and objects (MLS mode).

e Type enforcement: As part of the SELinux label given to every object and subject in the
system, a role identifier as well as type identifier can be mapped. The type identifier mapped
to subjects is also called a domain. Contrary, a type identifier mapped to an object is called
a type. SELinux access rules between domains and types are provided with the different
SELinux access control policies. Roles are now defined as a collection of domains. Users
can be assigned to one or more roles and inherit the domains assigned to the roles. Based
on these domains, the subject therefore is bound to the SELinux access control rules. With
this definition of roles and the access rights implied by the individual roles the TOE
implements the role-based access control for advanced management (MLS mode).

The TOE environment also includes applications that are not evaluated, but are used as unprivileged
tools to access public system services. For example a network server using a port above 1024 may
be used as a normal application running without root privileges on top of the TOE. The additional
documentation specific for the evaluated configuration provides guidance how to set up such
applications on the TOE in a secure way.

Version: 0.21 Classification: public Page 14 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

1.5.2 TOE boundaries
1.5.2.1 Physical

The Target of Evaluation is based on the following system software:
e Red Hat Enterprise Linux in the above mentioned version

The TOE is supplied on ISO images distributed via the Red Hat Network. The TOE includes a package
holding the additional user and administrator documentation.

The general TOE documentation is also available online at the Red Hat Network.
In addition to the installation media, the following documentation is provided:

e Evaluated Configuration Guide published by Red Hat at the end of the evaluation

® Manual pages for all applications, configuration files and system calls
The hardware applicable to the evaluated configuration is listed above. The analysis of the hardware
capabilities as well as the firmware functionality is covered by this evaluation to the extent that
the following capabilities supporting the security functionality are analyzed and tested:

® Memory separation capability

e Unavailability of privileged processor states to untrusted user code (like the hypervisor
state or the SMM)

® Full testing of the security functionality on all listed hardware systems

1.5.2.2 Logical

All security functions claimed in this ST apply to all architectures and systems allowed via this ST.
The following exceptions apply and are also marked throughout this document:

° Linux Containers are not available on POWER architecture
e Intel SMEP protection mechanism is only available on Intel x86 CPUs.

The primary security features of the TOE are enumerated as follows:
Auditing

The Lightweight Audit Framework (LAF) is designed to be an audit system making Linux
compliant with the requirements from Common Criteria. LAF is able to intercept all system
calls as well as retrieving audit log entries from privileged user space applications. The
subsystem allows configuring the events to be actually audited from the set of all events
that are possible to be audited.

The TOE can be deployed as an audit server that receives audit logs from other TOE instances.
These audit logs are stored locally. The TOE provides search and review facilities to authorized
administrators for all audit logs.

Version: 0.21 Classification: public Page 15 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Cryptographic support

The TOE provides cryptographically secured communication to allow remote entities to log
into the TOE. For interactive usage, the SSHv2 protocol is provided. The TOE provides the
server side as well as the client side applications. Using OpenSSH, password-based and
public-key-based authentication are allowed.

In addition to OpenSSH, the TOE provides IPSec for a cryptographically secured
communication with other remote entities. IPSec is offered together with IKEv1 and IKEv2
for the key negotiating aspect. The implementations of IKEv1l and IKEv2 allow a certificate
based authentication of the remote peer.

To secure the communication between the TOE and remote trusted IPA authentication
databases, the TOE allows the use of TLS.

In addition, the TOE provides confidentiality protected data storage using the device mapper
target dm_crypt. Using this device mapper target, the Linux operating system offers
administrators and users cryptographically protected block device storage space. With the
help of a Password-Based Key-Derivation Function version 2 (PBKDFv2) implemented with
the LUKS mechanism, a user-provided passphrase protects the master volume key which
is the symmetric key for encrypting and decrypting data stored on disk. Any data stored on
the block devices protected by dm_crypt is encrypted and cannot be decrypted unless the
the master volume key for the block device is decrypted with the passphrase processed by
PBKDFv2. With the device mapper mechanism, the TOE allows for transparent encryption
and decryption of data stored on block devices, such as hard disks.

Packet filter

The TOE provides a stateless and stateful packet filter for regular IP-based communication.
OSI Layer 3 (IP) and OSl layer 4 (TCP, UDP, ICMP) network protocols can be controlled using
this packet filter. To allow virtual machines to communicate with the environment, the TOE
provides a bridging functionality. Ethernet frames routed through bridges are controlled by
a separate packet filter which implements a stateless packet filter for the TCP/IP protocol
family.

The packet filtering functionality offered by the TOE is hooked into the TCP/IP stack of the
kernel at different locations. Based on these locations, different filtering capabilities are
applicable. The lower level protocols are covered by the EBTables filter mechanism which
includes the filtering of Ethernet frames including the ARP layer -- EBTables is not covered
in this evaluation. The higher level protocols of TCP/IP are covered with the IPTables
mechanism which allows filtering of IP and TCP, UDP, ICMP packets. In addition, IPTables
offers a stateful packet filter for the mentioned higher level protocols.

Version: 0.21 Classification: public Page 16 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Identification and Authentication

User identification and authentication in the TOE includes all forms of interactive login (e.g.
using the SSH protocol or log in at the local console) as well as identity changes through
the su or sudo command. These all rely on explicit authentication information provided
interactively by a user.

The authentication security function allows password-based authentication. For SSH access,
public-key-based authentication is also supported.

Password quality enforcement mechanisms are offered by the TOE which are enforced at
the time when the password is changed.

The TOE provides a framework to authenticate with remote IPA servers. The SSSD daemon
establishes the connection to the remote authentication stores and provides a local
authentication cache in case the connection is severed. SSSD is integrated with the Linux
authentication mechanism by using a PAM module.

Discretionary Access Control

DAC allows owners of named objects to control the access permissions to these objects.
These owners can permit or deny access for other users based on the configured permission
settings. The DAC mechanism is also used to ensure that untrusted users cannot tamper
with the TOE mechanisms.

In addition to the standard Unix-type permission bits for file system objects as well as IPC
objects, the TOE implements POSIX access control lists. These ACLs allow the specification
of the access to individual file system objects down to the granularity of a single user.

Version: 0.21 Classification: public Page 17 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Mandatory Access Control
The TOE supports mandatory access control based on the following concepts:

e Sensitivity labels which are automatically attached to processes and objects. The
access control policy enforced using these labels is derived from the Bell-LaPadula
access control model.

® Role-based access control is implemented with roles that are defined via types and
domains. A “type” is a security attribute given to an object or a process. The type of
a process is commonly called a “domain”. Policy rules define how domains may
interact with objects bearing types and with other domains. Roles can be assigned
to users and define which user is associated with which domain. A user may have
several roles assigned to him but will always act in one role only. To change from
his current role to another role that has been assigned to the user, the TOE provides
an application which requires re-authentication. The TOE has a hierarchical set of
roles defined in the policy. Those are:

O Root administrator: This is the classical superuser role which is hierarchical
to all other roles,

O System process: This is a role that should be assigned to specific system
processes like daemons,

O System administrator: This is a role for general system administration,

O Security administrator: This is a role for the administration of security (policy
and security contexts),

O Audit administrator: This is a role for administration of the audit policy and
the evaluation of audit records,

O Staff: This is a user role for users allowed to use the newrole and su commands,

O User: This is a general user role without being allowed to use the newrole and
su commands,

Users cannot interfere with these labels. The TOE uses SELinux with an appropriate SELinux
policy to enforce the mandatory access control.

Security Management

The security management facilities provided by the TOE are usable by authorized users
and/or authorized administrators to modify the configuration of TSF.

The TOE allows remote management via OpenSSH. Administrative users can log in remotely
in base as well as in MLS mode and perform the same management tasks as a locally
operating administrator.

Version: 0.21 Classification: public Page 18 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Runtime Protection Mechanisms

The TOE provides mechanisms to prevent or significantly increase the complexity of an
exploitation of common buffer overflow and similar attacks. These mechanisms are used
for the TSF and are available to untrusted code.

Runtime protection against programming errors: The TOE implements multiple
countermeasures against exploitation of programming errors. Standard programming errors,
such as buffer overflows are exploitable using a set of exploitation techniques. The TOE
blocks or significantly increases the challenge to use these techniques with the following
different approaches:

e Prevention of code execution on the process' or thread's stack. This prevents standard
buffer overflow attacks which writes executable code (e.g. the shellcode) into a stack
variable and causes the CPU to execute it.

e The technique called read-only relocation (RELRO) implemented by the Linux loader
and linker marks the memory with the ELF segments holding the global object table
(GOT) and procedure linking table (PLT) after the resolution by the linker but before
the main() function of the application is called as read only. These sections store
offset tables required for the dynamic linking mechanism and, if abused, allow
attackers to modify the jump addresses of object accesses. Marking these memory
segments read-only requires the dynamic linker to resolve all library symbols of
shared libraries during load time of the application. Especially marking the PLT as
read only incurs a significant performance penalty. Therefore, the TOE implements
two types of RELRO: partial and full.

O The full RELRO support implies that for an application and all depending shared
libraries the PLT is set read only in addition to all ELF header sections other
than the data segments. If at least one depending library is not compiled with
full RELRO, the entire application cannot be claimed to have full RELRO. Note,
the TOE code does not use full RELRO.

O Partial RELRO implies that for an application and all depending libraries still
all ELF sections except the data segments are marked read only. But the PLT
is not marked read only in either the application or at least one depending
shared library. If at least one depending library is compiled without RELRO,
the entire application cannot be claimed to have partial RELRO.

e OnIntel CPUs with appropriate support, the SMEP and SMAP functions are used which
prevent the kernel from dereferencing user space memory (except for well-defined
cases) and prevent the execution of code residing in user space memory.

Version: 0.21 Classification: public Page 19 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Linux Container Framework Support (not on POWER architecture)

Linux Containers provide execution environments for processes. These Linux Containers
isolate the processes, ensure resource accounting and limitation as well as Linux kernel
service limitation.

The TOE offers the following mechanisms that together can be used to form a container:

@ Resource accounting and limitation is implemented with Linux control groups. These
control groups track processes and their children and allow resources to be assigned
to and limited for these process groups.

e The TOE provides a namespace separation for different classes of objects maintained
by the TOE. Within a namespace, any subject is only able to access objects associated
with that namespace. Any object outside the namespace is inaccessible by subjects.
Especially, the host software operation and its security behavior cannot be interfered
with from software executing within a namespace. The Linux Namespaces are
intended to separate processes and their resources from each other.

e Linux kernel service limitation is implemented by denying the use of system calls to
a group of processes and their children. The seccomp filter implements the technical
aspect of system call filtering.

The TOE provides the framework mechanisms that must be used by an application in an
appropriate manner to form Linux Containers. Applications outside the TOE, such as Docker
or the LXC tool set make use of those frameworks to form such Linux Containers. Though,
Docker or other applications controlling such containers are not covered by any SFRs in this
Security Target.

To comply with the naming schema from OSPP extended package for virtualization (which
is used as a basis for the SFRs covering the Linux Container support, but not claimed),
containers are also referred to as compartments.

1.5.2.3 Configurations

The evaluated configurations are defined as follows:

e The CC evaluated package set must be selected at install time in accordance with the
description provided in the Evaluated Configuration Guide and installed accordingly.
e During installation time, the administrator selected either the MLS or the Base mode of
operation.
® The TOE supports the use of IPv4 and IPv6, both are also supported in the evaluated
configuration. IPv6 conforms to the following RFCs:
O RFC 2460 specifying the basic IPv6 protocol
O IPv6 source address selection as documented in RFC 3484
O Linux implements several new socket options (IPV6_RECVPKTINFO, IPV6_PKTINFO,
IPV6_RECVHOPOPTS, IPV6_HOPOPTS, IPV6_RECVDSTOPTS, IPV6_DSTOPTS,
IPV6_RTHDRDSTOPTS, IPV6_RECVRTHDR, IPV6_RTHDR, IPV6_RECVHOPOPTS,
IPV6_HOPOPTS, IPV6_{RECV,}TCLASS) and ancillary data in order to support
advanced IPv6 applications including ping, traceroute, routing daemons and others.
The following section introduces Internet Protocol Version 6 (IPv6). For additional
information about referenced socket options and advanced IPv6 applications, see
RFC 3542
Version: 0.21 Classification: public Page 20 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

O Transition from IPv4 to IPv6: dual stack, and configured tunneling according to
RFC 4213.

O Additional RFCs covering various cryptographic aspects are outlined as part of the
Security Functional Requirements.

e The default configuration for identification and authentication are the defined
password-based PAM modules as well as by the key based authentication for OpenSSH.
Support for other authentication options, e.g. smart card authentication, is not included in
the evaluation configuration.

e If the system console is used, it must be connected directly to the TOE and afforded the
same physical protection as the TOE.

Deviations from the configurations and settings specified with the Evaluated Configuration Guide
are not permitted.

The TOE comprises a single system (and optional peripherals) running the TOE software listed.
Cluster configurations touching the state information of security functions are not permitted in the
evaluated configuration. This means it is permissible to install applications which by themselves
offer cluster functionality covering their state, such as JBoss EAP.

1.5.2.4 TOE Environment

Several TOE systems may be interlinked in a network, and individual networks may be joined by
bridges and/or routers, or by TOE systems which act as routers and/or gateways. Each of the TOE
systems implements its own security policy. The TOE does not include any synchronization function
for those policies. As a result a single user may have user accounts on each of those systems with
different UIDs, different roles, and other different attributes. (A synchronization method may
optionally be used, but it not part of the TOE and must not use methods that conflict with the TOE
requirements.)

If other systems are connected to a network they need to be configured and managed by the same
authority using an appropriate security policy that does not conflict with the security policy of the
TOE. All connections between this network and untrusted networks (e. g. the Internet) need to be
protected by appropriate measures such as carefully configured firewall systems that prohibit
attacks from the untrusted networks. Those protections are part of the TOE environment.

1.5.2.5 Security Policy Model

The security policy for the TOE is defined by the security functional requirements in chapter 6. The
following is a list of the subjects and objects participating in the policy.
Subjects:
® Processes acting on behalf of a human user or technical entity.
® Processes acting on behalf of a human user or technical entity providing a virtual machine
environment.
Named objects:
® File system objects in the following allowed file systems:
O XFS - standard file system for general data
O VFAT - special purpose file system for UEFI BIOS support mounted at /boot/efi
O Ext4 - standard file system for general data
O is09660 - 1S09660 file system for CD-ROM and DVD

Version: 0.21 Classification: public Page 21 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

©)

O
O
O

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

tmpfs - the temporary file system backed by RAM
rootfs - the virtual root file system used temporarily during system boot

procfs - process file system holding information about processes, general statistical
data and tunable kernel parameters

sysfs - system-related file system covering general information about resources
maintained by the kernel including several tunable parameters for these resources

devpts - pseudoterminal file system for allocating virtual TTYs on demand

devtmpfs - temporary file system that allows the kernel to generate character or
block device nodes

binfmt_misc - configuration interface allowing the assignment of executable file
formats with user space applications

debugfs - interface for kernel components to provide tunables and configuration
interfaces to user space

selinuxfs - interface for allowing user space components to interact with the SELinux
module inside the kernel, including managing the SELinux policy.

cgroup file system - interface for configuring Linux control groups.
mqueue file system - interface for accessing message queues.
pstore file system - interface for accessing persistently stored kernel crash dumps.

Note that the TOE supports a number of additional virtual (i.e. without backing of persistent
storage) file systems which are only accessible to the TSF - they are not or cannot be
mounted. All above mentioned virtual file systems implement access decisions based DAC
attributes inferred from the underlying process’ DAC attributes. Additional restrictions may
apply for specific objects in this file system.

e Linux Namespace resources (implemented by namespaces for individual object classes) -
(not on POWER architecture):

O
O

O

Version: 0.21

Mount namespace: all file system objects

User namespace: all user identifiers and group identifiers (note: Linux capabilities
are handled in a special way as outlined in FDP_ACC.2(Namespaces).

PID namespace: all process identifiers

IPC namespace: all semaphores, SYSV message queues, POSIX message queues,
shared memory segments

Network namespace:
> IPv4 sockets and its properties including properties of higher-level protocols
» |IPv6 sockets and its properties including properties of higher-level protocols
» unix domain sockets and its properties including properties of higher-level

protocols

» loopback sockets and its properties including properties of higher-level
protocols

» packet sockets and its properties including properties of higher-level
protocols

» packet filter configuration
» XFRM configuration

UTS namespace: Naming of system (hostname, OS version, OS type, OS release)

Classification: public Page 22 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Please note that CPU restrictions and memory range assignments are not listed as part of
Linux namespace resources, because the host system scheduler automatically enforces
CPU restrictions. Also, the host system virtual memory management functionality
automatically enforces the memory range restriction.

e Linux control group resources (implemented by Linux control groups for individual object
classes -- the trailing name in the following list indicates the technical control group name
in the cgroup file system hierarchy) - (not on POWER architecture):

O CPU accounting: cpuacct
O Starting and stopping process groups at once (freezer control group): freezer
O Devices: devices
O CPU utilization (not to be mixed with the cpuset covering NUMA management):
cpu
O Memory range: memory
e Linux system call resources - (not on POWER architecture):
O System call number
O System call parameter

® Inter Process Communication (IPC) objects:
O Semaphores
O Shared memory
) Message queues
O Named pipes
O UNIX domain socket special files

Network sockets (irrespectively of their type - such as Internet sockets, netlink sockets)
Block device objects

at and cron job queues maintained for each user

print job queues maintained for each user

TSF data:
TSF executable code

Subject meta data - all data used for subjects except data which is not interpreted by the
TSF and does not implement parts of the TSF (this data is called user data)

e Named object meta data - all data used for the respective objects except data which is not
interpreted by the TSF and does not implement parts of the TSF (this data is called user
data)

e User accounts, including the security attributes defined by FIA_ATD.1
e Audit records

e Volume keys for dm_crypt block devices and passphrases protecting the master volume
keys

User data:
® Non-TSF executable code used to drive the behavior of subjects
e Data not interpreted by TSF and stored or transmitted using named objects

Version: 0.21 Classification: public Page 23 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

2 CC Conformance Claim

This Security Target is CC Part 2 extended and CC Part 3 conformant, with a claimed Evaluation
Assurance Level of EAL4, augmented by ALC FLR.3.
This Security Target claims conformance to the following Protection Profiles and PP packages:
° [OSPP]: BSI Operating System Protection Profile. Version 2.0 as of 2010; strict conformance.
e [OSPP-AM]: BSI OSPP Extended Package - Advanced Management. Version 2.0 as of 2010;

strict conformance.
e [OSPP-LS]: BSI OSPP Extended Package - Labeled Security. Version 2.0 as of 2010; strict

conformance.
Common Criteria [CC] version 3.1 revision 4 is the basis for this conformance claim.

Version: 0.21 Classification: public Page 24 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

3 Security Problem Definition

3.1 Threat Environment

Threats to be countered by the TOE are characterized by the combination of an asset being subject
to a threat, a threat agent and an adverse action.

The definition of threat agents and protected assets that follows is applicable to the OSPP base, as
well as to the OSPP extended packages, unless noted otherwise.

3.1.1 Assets

Assets to be protected are:
e Storage objects used to store user data and/or TSF data, where this data needs to be
protected from any of the following operations:
O Unauthorized read access
O Unauthorized modification
O Unauthorized deletion of the object
O Unauthorized creation of new objects
O Unauthorized management of object attributes

e Transient storage objects, including network data
® TSF functions and associated TSF data

e The resources managed by the TSF that are used to store the above-mentioned objects,
including the metadata needed to manage these objects.

3.1.2 Threat Agents

Threat agents are external entities that potentially may attack the TOE. They satisfy one or more
of the following criteria:

e External entities not authorized to access assets may attempt to access them either by
masquerading as an authorized entity or by attempting to use TSF services without proper
authorization.

e External entities authorized to access certain assets may attempt to access other assets
they are not authorized to either by misusing services they are allowed to use or by
masquerading as a different external entity.

e Untrusted subjects may attempt to access assets they are not authorized to either by
misusing services they are allowed to use or by masquerading as a different subject.

Threat agents are typically characterized by a number of factors, such as expertise, available
resources, and motivation, with motivation being linked directly to the value of the assets at stake.
The TOE protects against intentional and unintentional breach of TOE security by attackers
possessing an enhanced-basic attack potential.

3.1.3 Threats countered by the TOE
T.ACCESS.TSFDATA

A threat agent might read or modify TSF data without the necessary authorization when the
data is stored or transmitted.

Version: 0.21 Classification: public Page 25 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

T.ACCESS.USERDATA
A threat agent might gain access to user data stored, processed or transmitted by the TOE
without being appropriately authorized according to the TOE security policy.
T.ACCESS.TSFFUNC
A threat agent might use or modify functionality of the TSF without the necessary privilege
to grant itself or others unauthorized access to TSF data or user data.
T.ACCESS.COMM

A threat agent might access a communication channel that establishes a trust relationship
between the TOE and another remote trusted IT system or masquerade as another remote
trusted IT system.

T.RESTRICT.NETTRAFFIC

A threat agent might get access to information or transmit information to other recipients
via network communication channels without authorization for this communication attempt
by the information flow control policy.

T.IA.MASQUERADE

A threat agent might masquerade as an authorized entity including the TOE itself or a part
of the TOE in order to gain unauthorized access to user data, TSF data, or TOE resources.

T.IA.USER

A threat agent might gain access to user data, TSF data or TOE resources with the exception
of public objects without being identified and authenticated.

T.ROLE.SNOOP

An attacker might obtain the rights granted to a role that was delegated to another user.

T.ROLE.DELEGATE

An attacker might delegate rights granted to a role that he does not possess or that he is
not allowed to delegate.

T.DATA_NOT_SEPARATED

The TOE might not adequately separate data on the basis of its sensitivity label, thereby
allowing information to flow illicitly from or to users.

T.ACCESS.COMPENYV (not on POWER architecture)

A threat agent might access the runtime environment of other compartments in an
unauthorized manner.

T.COMM.COMP (not on POWER architecture)

A threat agent might access the data communicated between compartments or between a
compartment and an external entity to read or modify the transferred data.

Version: 0.21 Classification: public Page 26 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

T.ACCESS.CP.USERDATA

A threat agent might gain access to user data at rest which is confidentiality protected
without possessing the authorization of the owner, either at runtime of the TOE or when the
TSF are inactive.

3.2 Assumptions

3.2.1 Environment of use of the TOE

3.2.1.1 Physical
A.PHYSICAL

It is assumed that the IT environment provides the TOE with appropriate physical security,
commensurate with the value of the IT assets protected by the TOE.

3.2.1.2 Personnel
A.MANAGE

The TOE security functionality is managed by one or more competent individuals. The system
administrative personnel are not careless, willfully negligent, or hostile, and will follow and
abide by the instructions provided by the guidance documentation.

Application note: This assumption applies to all administrative personnel and processes with
capabilities operating on the TOE, including all such entities inside Linux Container.

A.AUTHUSER

Authorized users possess the necessary authorization to access at least some of the
information managed by the TOE and are expected to act in a cooperating manner in a
benign environment.

A.TRAINEDUSER

Users are sufficiently trained and trusted to accomplish some task or group of tasks within
a secure IT environment by exercising complete control over their user data.

3.2.1.3 Procedural
A.DETECT

Any modification or corruption of security-enforcing or security-relevant files of the TOE,
user or the underlying platform caused either intentionally or accidentally will be detected
by an administrative user.

A.PEER.MGT

All remote trusted IT systems trusted by the TSF to provide TSF data or services to the TOE,
or to support the TSF in the enforcement of security policy decisions are assumed to be
under the same management control and operate under security policy constraints compatible
with those of the TOE.

Version: 0.21 Classification: public Page 27 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

A.PEER.FUNC

All remote trusted IT systems trusted by the TSF to provide TSF data or services to the TOE,
or to support the TSF in the enforcement of security policy decisions are assumed to correctly
implement the functionality used by the TSF consistent with the assumptions defined for
this functionality.

A.IT.FUNC

The trusted IT systems executing the TOE are assumed to correctly implement the
functionality required by the TSF to enforce the security functions.

A.KEYS
It is assumed that digital certificates, certificate revocation lists (CRLs) used for certificate
validation, private and public keys, as well as passwords used for:
® SSH client authentication,
SSH server authentication,
TLS client authentication,
TLS server authentication,
IKE remote peer authentication,
e Password protecting the disk encryption schema

generated externally or by the TOE, meeting the corresponding standards and providing
sufficient security strength through the use of appropriate key lengths and message digest
algorithms. It is also assumed that Administrators verify the integrity and authenticity of
digital certificates and key material before importing them into the TOE, and verifying that
certificates are sighed using strong hash algorithms.

3.2.1.4 Connectivity
A.CONNECT

All connections to and from remote trusted IT systems and between physically-separate
parts of the TSF not protected by the TSF itself are physically or logically protected within
the TOE environment to ensure the integrity and confidentiality of the data transmitted and
to ensure the authenticity of the communication end points.

3.3 Organizational Security Policies
P.ACCOUNTABILITY

The users of the TOE shall be held accountable for their security-relevant actions within the
TOE.

P.USER

Authority shall only be given to users who are trusted to perform the actions correctly.

Version: 0.21 Classification: public Page 28 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

P.PROTECT_SSH_KEY

When using SSH with key-based authentication, organizational procedures must exist that
ensure users protect their private SSH key component against its use by any other user.

Note: The protection of the key can be established by access permissions to the file holding
the key (when using the OpenSSH client, the key file permissions are automatically verified
and the key is rejected if the permissions are not restrictive), or by encrypting the key with
a passphrase. Making the SSH private key available to any other user is akin to telling that
user the password for password-based authentication.

P.APPROVE

Specific rights assigned to users and controlled by the TSF shall only be exercisable if
approved by a second user.

P.CLEARANCE (MLS mode)

The system must limit information flow between protected resources and authorized users
based on whether the user's sensitivity label is appropriate for the labeled information.

P.LABELED_OUTPUT (MLS mode)

The beginning and end of all paged, hardcopy output must be marked with sensitivity labels
that properly represent the sensitivity label of the output.

P.RESOURCE_LABELS (MLS mode)

All resources accessible by subjects and all subjects must have associated labels identifying
the sensitivity levels of data contained therein.

P.USER_CLEARANCE (MLS mode)

All users must have a clearance level identifying the maximum sensitivity levels of data
they may access.

P.CP.ANCHOR

Users shall control the confidentiality protection anchor for their confidentiality-protected
user data, and reset/replace/modify it if desired.

Version: 0.21 Classification: public Page 29 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

4 Security Objectives

4.1 Objectives for the TOE
O.AUDITING

The TSF must be able to record defined security-relevant events (which usually include
security-critical actions of users of the TOE). The TSF must protect this information and
present it to authorized users if the audit trail is stored on the local system. The information
recorded for security-relevant events must contain the time and date the event happened
and, if possible, the identification of the user that caused the event, and must be in sufficient
detail to help the authorized user detect attempted security violations or potential
misconfiguration of the TOE security features that would leave the IT assets open to
compromise.

O.CRYPTO.NET

The TSF must allow authorized users to remotely access the TOE using a
cryptographically-protected network protocol that ensures integrity and confidentiality of
the transported data and is able to authenticate the end points of the communication. Note
that the same protocols may also be used in the case where the TSF is physically separated
into multiple parts that must communicate securely with each other over untrusted network
connections.

O.DISCRETIONARY.ACCESS

The TSF must control access of subjects and/or users to named resources based on identity
of the object. The TSF must allow authorized users to specify for each access mode which
users/subjects are allowed to access a specific named object in that access mode.

O.NETWORK.FLOW

The TOE shall mediate communication between sets of TOE network interfaces, between a
network interface and the TOE itself, and between subjects in the TOE and the TOE itself in
accordance with its security policy.

O.SUBJECT.COM

The TOE shall mediate communication between subjects acting with different subject security
attributes in accordance with its security policy.

O.1&A

The TOE must ensure that users have been successfully authenticated before allowing any
action the TOE has defined to provide to authenticated users only.

O.MANAGE

The TSF must provide all the functions and facilities necessary to support the authorized
users that are responsible for the management of TOE security mechanisms, must allow
restringing such management actions to dedicated users, and must ensure that only such
authorized users are able to access management functionality.

Version: 0.21 Classification: public Page 30 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

O.TRUSTED_CHANNEL
The TSF must be designed and implemented in a manner that allows for establishing a
trusted channel between the TOE and a remote trusted IT system that protects the user
data and TSF data transferred over this channel from disclosure and undetected modification
and prevents masquerading of the remote trusted IT system.

O.ROLE.DELEGATE
The TOE must allow roles assigned to users for performing security-relevant management
tasks to be delegated to other users in accordance with the security policy.

O.ROLE.MGMT
The TOE must allow security management actions based on roles to be assigned to different
users.

O.ROLE.APPROVE
The TOE must prevent the execution of user actions allowed by a specific right until a second
user with a different right approves this action.

O.LS.CONFIDENTIALITY (MLS mode)
The TOE will control information flow between entities and resources based on the sensitivity
labels of users and resources.

O.LS.PRINT (MLS mode)
The TOE will provide the capability to mark printed output with accurate labels based on
the sensitivity label of the subject requesting the output.

O.LS.LABEL (MLS mode)

The TOE will provide the capability to label all subjects, and all objects accessible by subjects,
to restrict information flow based on the sensitivity labels.

Version: 0.21 Classification: public Page 31 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

O.COMP.CONTAINER (not on POWER architecture)

The TOE container functionality uses the following mechanisms concurrently to implement
an execution environment to confine processes to that execution environment and thus
restricting access of resources and services not assigned to that execution environment.
Operations in the provided execution environment shall have no effect on other instances
of such execution environments or the host system. Each individual mechanism confines
processes where the use of multiple layers ensures multiple lines of defense against attacks.
When combining the individual mechanisms to establish a sandbox, the TOE ensures that
the overall sandbox environment is resistant to stronger attacks than attacks against the
isolated use of each mechanism for sandbox confinements.

The following separation mechanisms are used:

® Seccomp system call access control

e Namespace access control where all types of namespaces are used to establish that
execution environment

e Linux control groups
Note: This objective defines a property of the system that cannot fully be described with
functional SFRs.
O.COMP.RESOURCE_ACCESS (not on POWER architecture)

The TOE will control access of compartments to objects and resources under its control
based on:

® security attributes of the objects,
® security attributes of the compartment that attempts to access the object, and
e the type of access attempted.

The rules that determine access may be based on the value of other TSF data. Access must
be controlled down to individual compartments and objects.

O.COMP.IDENT (not on POWER architecture)
For each access request, the TOE is able to identify the compartment requesting to access
resources, objects or information.

O.CP.USERDATA

The TOE shall be able to protect the confidentiality of user data at rest separately for each
user where the user can select the data which is being maintained under confidentiality
protection.

O.CP.ANCHOR
The TOE shall allow each user to manage the trust anchor for the confidentiality protection
of his own user data.

O.RUNTIME.PROTECTION

The TOE shall offer a runtime protection mechanism for applications to close attacks vectors
based on the following: code execution in specific memory regions, modification of a function's
return address on the stack and modification of certain program in-memory-segments.

Version: 0.21 Classification: public Page 32 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

4.2 Objectives for the Operational Environment
OE.ADMIN

Those responsible for the TOE are competent and trustworthy individuals, capable of
managing the TOE and the security of the information it contains.

OE.REMOTE

If the TOE relies on remote trusted IT systems to support the enforcement of its policy, those
systems provide the functions required by the TOE and are sufficiently protected from any
attack that may cause those functions to provide false results.

OE.INFO_PROTECT

Those responsible for the TOE must establish and implement procedures to ensure that
information is protected in an appropriate manner. In particular:

e All network and peripheral cabling must be approved for the transmittal of the most
sensitive data held by the system. Such physical links are assumed to be adequately
protected against threats to the confidentiality and integrity of the data transmitted.

e DAC protections on security-relevant files (such as audit trails and authentication
databases) shall always be set up correctly.

® Users are authorized to access parts of the data managed by the TOE and are trained
to exercise control over their own data.

OE.INSTALL

Those responsible for the TOE must establish and implement procedures to ensure that the
hardware, software and firmware components that comprise the system are distributed,

installed and configured in a secure manner supporting the security mechanisms provided
by the TOE.

OE.MAINTENANCE

Authorized users of the TOE must ensure that the comprehensive diagnostics facilities
provided by the product are invoked at every scheduled preventative maintenance period.

OE.PHYSICAL

Those responsible for the TOE must ensure that those parts of the TOE critical to enforcement
of the security policy are protected from physical attack that might compromise IT security

objectives. The protection must be commensurate with the value of the IT assets protected
by the TOE.

OE.RECOVER

Those responsible for the TOE must ensure that procedures and/or mechanisms are provided
to assure that after system failure or other discontinuity, recovery without a protection
(security) compromise is achieved.

Version: 0.21 Classification: public Page 33 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

OE.TRUSTED.IT.SYSTEM

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

The remote trusted IT systems implement the protocols and mechanisms required by the
TSF to support the enforcement of the security policy.

These remote trusted IT systems are under the same management domain as the TOE, are
managed based on the same rules and policies applicable to the TOE, and are physically
and logically protected equivalent to the TOE.

OE.IT.SYSTEM

The trusted IT systems executing the TOE supports the enforcement of the security policy.

The required functionality is detailed in section 6.1.

4.3 Security Objectives Rationale

4.3.1 Coverage

The following table provides a mapping of TOE objectives to threats and policies, showing that each
objective counters or enforces at least one threat or policy, respectively.

Objective

Threats / OSPs

O.AUDITING

P.ACCOUNTABILITY

O.CRYPTO.NET

T.ACCESS.TSFDATA
T.ACCESS.TSFFUNC

O.DISCRETIONARY.ACCESS

T.ACCESS.TSFDATA
T.ACCESS.USERDATA

O.NETWORK.FLOW

T.RESTRICT.NETTRAFFIC

O.SUBJECT.COM T.ACCESS.TSFDATA
T.ACCESS.USERDATA

O.I&A T.IA.MASQUERADE
T.IA.USER

O.MANAGE T.ACCESS.TSFFUNC

P.ACCOUNTABILITY
P.USER

O.TRUSTED_CHANNEL

T.ACCESS.USERDATA
T.ACCESS.COMM

O.ROLE.DELEGATE

T.ROLE.SNOOP
T.ROLE.DELEGATE

O.ROLE.MGMT

T.ACCESS.TSFFUNC

O.ROLE.APPROVE

P.APPROVE

O.LS.CONFIDENTIALITY (MLS mode)

T.DATA_NOT_SEPARATED
P.CLEARANCE (MLS mode)
P.USER_CLEARANCE (MLS mode)

Version: 0.21

Classification: public Page 34 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Objective

Threats / OSPs

O.LS.PRINT (MLS mode)

P.LABELED_OUTPUT (MLS mode)

O.LS.LABEL (MLS mode)

P.RESOURCE_LABELS (MLS mode)
P.USER_CLEARANCE (MLS mode)

O.COMP.CONTAINER (not on POWER architecture)

T.ACCESS.COMPENV (not on POWER architecture)
T.COMM.COMP (not on POWER architecture)

O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

T.ACCESS.COMPENV (not on POWER architecture)
T.COMM.COMP (not on POWER architecture)

O.COMP.IDENT (not on POWER architecture)

T.ACCESS.COMPENV (not on POWER architecture)
T.COMM.COMP (not on POWER architecture)

O.CP.USERDATA T.ACCESS.CP.USERDATA
O.CP.ANCHOR P.CP.ANCHOR
O.RUNTIME.PROTECTION T.ACCESS.TSFDATA

T.ACCESS.USERDATA

Table 1: Mapping of security objectives to threats and policies

The following table provides a mapping of the objectives for the Operational Environment to
assumptions, threats and policies, showing that each objective holds, counters or enforces at least

one assumption, threat or policy, respectively.

Objective

Assumptions / Threats / OSPs

OE.ADMIN

A.MANAGE
A.AUTHUSER
A.TRAINEDUSER
A.KEYS

OE.REMOTE

A.CONNECT
T.ACCESS.COMM

OE.INFO_PROTECT

A.PHYSICAL
A.MANAGE
A.AUTHUSER
A.TRAINEDUSER
A.KEYS

P.USER
P.PROTECT_SSH_KEY

OE.INSTALL

A.MANAGE
A.DETECT

OE.MAINTENANCE

A.DETECT

OE.PHYSICAL

A.PHYSICAL

OE.RECOVER

A.MANAGE
A.DETECT

Version: 0.21
Last update: 2016-06-09

Classification: public
Copyright © 2016 by Red Hat and atsec information security

Page 35 of 156

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Objective Assumptions / Threats / OSPs
OE.TRUSTED.IT.SYSTEM A.PEER.MGT

A.PEER.FUNC

A.CONNECT
OE.IT.SYSTEM A.IT.FUNC

Table 2: Mapping of security objectives for the Operational Environment to assumptions,
threats and policies

4.3.2 Sufficiency

The following rationale provides justification that the security objectives are suitable to counter
each individual threat and that each security objective tracing back to a threat, when achieved,
actually contributes to the removal, diminishing or mitigation of that threat.

Threat Rationale for security objectives
T.ACCESS.TSFDATA The threat of accessing TSF data without proper authorization is removed
by:

° O.CRYPTO.NET requiring cryptographically-protected communication
channels for data including user data controlled by the TOE in
transit between trusted IT systems.

° O.DISCRETIONARY.ACCESS requiring that data, including TSF data
stored with the TOE, have discretionary access control protection,

° 0.SUBJECT.COM requiring the TSF to mediate communication
between subjects.

° O.RUNTIME.PROTECTION requiring a runtime protection mechanism
for applications to close attacks vectors based on the following:
code execution in specific memory regions, modification of a
function's return address on the stack and modification of certain
program in-memory-segments.

T.ACCESS.USERDATA The threat of accessing user data without proper authorization is removed
by:

° O.TRUSTED_CHANNEL requiring cryptographically-protected
communication channels for data including user data controlled by
the TOE in transit between trusted IT systems,

° O.DISCRETIONARY.ACCESS requiring that data including user data
stored with the TOE, have discretionary access control protection,

° 0.SUBJECT.COM requiring the TSF to mediate communication
between subjects.

° O.RUNTIME.PROTECTION requiring a runtime protection mechanism
for applications to close attacks vectors based on the following:
code execution in specific memory regions, modification of a
function's return address on the stack and modification of certain
program in-memory-segments.

T.ACCESS.TSFFUNC The threat of accessing TSF functions without proper authorization is
removed by:

Version: 0.21 Classification: public Page 36 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Threat

Rationale for security objectives

° 0O.MANAGE requiring that only authorized users utilize management
TSF functions,

° O.CRYPTO.NET requiring cryptographically-protected communication
channels to limit which TSF functions are accessible to external
entities,

° O.ROLE.MGMT requiring the TOE to allow security management
actions based on roles to be assigned to different users.

T.ACCESS.COMM

The threat of accessing a communication channel that establishes a
trust relationship between the TOE and another remote trusted IT system
is removed by:

° O.TRUSTED_CHANNEL requiring that the TOE implements a trusted
channel between itself and a remote trusted IT system protecting
the user data and TSF data transferred over this channel from
disclosure and undetected modification and prevents masquerading
of the remote trusted IT system,

° OE.REMOTE requiring that those systems providing the functions
required by the TOE are sufficiently protected from any attack that
may cause those functions to provide false results.

T.RESTRICT.NETTRAFFIC

The threat of accessing information or transmitting information to other
recipients via network communication channels without authorization
for this communication attempt is removed by:

° O.NETWORK.FLOW requiring the TOE to mediate the communication
between itself and remote entities in accordance with its security

policy.

T.IA.MASQUERADE

The threat of masquerading as an authorized entity in order to gain
unauthorized access to user data, TSF data or TOE resources is removed
by:

° O.1&A requiring that each entity interacting with the TOE is properly
identified and authenticated before allowing any action the TOE is
defined to provide to authenticated users only.

T.IA.USER

The threat of accessing user data, TSF data or TOE resources without
being identified and authenticated is removed by:

° O.1&A requiring that each entity interacting with the TOE is properly
identified and authenticated before allowing any action the TOE
has defined to provide to authenticated users only.

T.ROLE.SNOOP

The threat of an attacker obtaining the rights granted to a role that was
delegated to another user is removed by:

° O.ROLE.DELEGATE requiring the TOE to allow delegation of roles
to other users in accordance with the security policy.

T.ROLE.DELEGATE

The threat of an attacker delegating rights granted to a role that he does

not possess or that he is not allowed to delegate is removed by:

° O.ROLE.DELEGATE requiring the TOE to allow roles assigned to
users for performing security-relevant management tasks to be
delegated.

Version: 0.21
Last update: 2016-06-09

Classification: public Page 37 of 156

Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Threat

Rationale for security objectives

T.DATA_NOT_SEPARATED

The threat of not adequately separating data on the basis of its sensitivity

label, thereby allowing information to flow illicitly from or to users, is

mitigated by:

° O.LS.CONFIDENTIALITY requiring the TOE to control information
flow between entities and resources, based on the sensitivity labels
of users and resources.

T.ACCESS.COMPENV (not on POWER
architecture)

The threat of utilizing or modifying the runtime environment of
compartments executing on behalf of other users is mitigated by:

° 0O.COMP.RESOURCE_ACCESS (not on POWER architecture) requiring
the TOE to control access of compartments to objects and resources
under its control.

° O.COMP.IDENT (not on POWER architecture) requiring the TOE to
identify the compartment requesting to access resources, objects
or information for each access request.

° O.COMP.CONTAINER (not on POWER architecture) requiring the
TOE to use the the different access control mechanisms effectively.

T.COMM.COMP (not on POWER
architecture)

The threat of accessing the data communicated between compartments
or between a compartment and an external entity is mitigated by:

° O.COMP.RESOURCE_ACCESS (not on POWER architecture) requiring
the TOE to control access of compartments to objects and resources
under its control.

o O.COMP.IDENT (not on POWER architecture) requiring the TOE to
identify the compartment requesting to access resources, objects
or information for each access request.

° O.COMP.CONTAINER (not on POWER architecture) requiring the
TOE to use the the different access control mechanisms effectively.

T.ACCESS.CP.USERDATA

The threat of gaining access to user data at rest which is confidentiality
protected without possessing the authorization of the owner, either at
runtime of the TOE or when the TSF are inactive is removed by:

° O.CP.USERDATA requiring the TOE to be able to protect the
confidentiality of user data at rest separately for each user.

Table 3: Sufficiency of objectives countering threats

The following rationale provides justification that the security objectives for the environment are
suitable to cover each individual assumption, that each security objective for the environment that
traces back to an assumption about the environment of use of the TOE, when achieved, actually
contributes to the environment achieving consistency with the assumption, and that if all security
objectives for the environment that trace back to an assumption are achieved, the intended usage

is supported.

Assumption

Rationale for security objectives

A.PHYSICAL

Version: 0.21

The assumption on the IT environment to provide the TOE with
appropriate physical security, commensurate with the value of the IT
assets protected by the TOE is covered by:

Classification: public Page 38 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Assumption Rationale for security objectives

° OE.INFO_PROTECT requiring the approval of network and peripheral
cabling,

° OE.PHYSICAL requiring physical protection.

A.MANAGE The assumptions on the TOE security functionality being managed by
one or more trustworthy individuals is covered by:

° OE.ADMIN requiring trustworthy personnel managing the TOE,

° OE.INFO_PROTECT requiring personnel to ensure that information
is protected in an appropriate manner,

° OE.INSTALL requiring personnel to ensure that components that
comprise the system are distributed, installed and configured in a
secure manner supporting the security mechanisms provided by
the TOE,

° OE.RECOVER requiring personnel to assure that after system failure
or other discontinuity, recovery without a protection (security)
compromise is achieved.

A.AUTHUSER The assumption on authorized users to possess the necessary

authorization to access at least some of the information managed by
the TOE and to act in a cooperating manner in a benign environment is
covered by:

° OE.ADMIN ensuring that those responsible for the TOE are
competent and trustworthy individuals, capable of managing the
TOE and the security of the information it contains.

° OE.INFO_PROTECT requiring that DAC protections on
security-relevant files (such as audit trails and authentication
databases) shall always be set up correctly and that users are
authorized to access parts of the data maintained by the TOE.

A.TRAINEDUSER

The assumptions on users to be sufficiently trained and trusted to
accomplish some task or group of tasks within a secure IT environment
by exercising complete control over their user data is covered by:

° OE.ADMIN requiring competent personnel managing the TOE.

° OE.INFO_PROTECT requiring that those responsible for the TOE
must establish and implement procedures to ensure that
information is protected in an appropriate manner and that users
are trained to exercise control over their own data.

A.DETECT

Version: 0.21

Last update: 2016-06-09

The assumption that modification or corruption of security-enforcing or
security-relevant files will be detected by an administrative user is
covered by:

° OE.INSTALL requiring an administrative user to ensure that the TOE
is distributed, installed and configured in a secure manner
supporting the security mechanisms provided by the TOE.

° OE.MAINTENANCE requiring an administrative user to ensure that
the diagnostics facilities are invoked at every scheduled
preventative maintenance period, verifying the correct operation
of the TOE.

Classification: public Page 39 of 156

Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Assumption Rationale for security objectives

° OE.RECOVER requiring an administrative user to ensure that
procedures and/or mechanisms are provided to assure that after
system failure or other discontinuity, recovery without a protection
(security) compromise is achieved.

A.PEER.MGT The assumption on all remote trusted IT systems to be under the same
management control and operate under security policy constraints
compatible with those of the TOE is covered by:

° OE.TRUSTED.IT.SYSTEM requiring that these remote trusted IT
systems are under the same management domain as the TOE, and
are managed based on the same rules and policies applicable to
the TOE.

A.PEER.FUNC The assumption on all remote trusted IT systems to correctly implement
the functionality used by the TSF consistent with the assumptions defined
for this functionality is covered by:

° OE.TRUSTED.IT.SYSTEM requiring that the remote trusted IT systems
implement the protocols and mechanisms required by the TSF to
support the enforcement of the security policy.

A.ITFUNC The assumption on trusted IT systems executing the TOE to correctly
implement the functionality required by the TSF to enforce the security
functions is covered by:

° OE.IT.SYSTEM requiring that the trusted IT systems executing the
TOE supports the enforcement of the security policy.

A.KEYS The assumption on the use of strong keys for authentication in
cryptographic protocols required by the TSF to enforce the security
functions is covered by:

° OE.ADMIN requiring that the administrator is sufficiently
knowledgeable including in the realm of cryptography to configure
and use the cryptographic protocols securely.

° OE.INFO_PROTECT requiring that those responsible for the TOE
must establish and implement procedures to ensure that
information is protected in an appropriate manner and that users
are trained to exercise control over their own data.

A.CONNECT The assumption on all connections to and from remote trusted IT systems
and between physically separate parts of the TSF not protected by the
TSF itself are physically or logically protected is covered by:

° OE.REMOTE requiring that remote trusted IT systems provide the
functions required by the TOE and are sufficiently protected from
any attack that may cause those functions to provide false results.

° OE.TRUSTED.IT.SYSTEM demanding the physical and logical
protection equivalent to the TOE.

Table 4: Sufficiency of objectives holding assumptions
Version: 0.21 Classification: public Page 40 of 156

Last update: 2016-06-09

Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

The following rationale provides justification that the security objectives are suitable to cover each
individual organizational security policy (OSP), that each security objective that traces back to an
OSP, when achieved, actually contributes to the implementation of the OSP, and that if all security
objectives that trace back to an OSP are achieved, the OSP is implemented.

OSP

Rationale for security objectives

P.ACCOUNTABILITY

The policy to hold users accountable for their security-relevant actions
within the TOE is implemented by:

° O.AUDITING providing the TOE with audit functionality,
° O.MANAGE allowing the management of this function.

P.USER

The policy to match the trust given to a user and the actions the user is
given authority to perform is implemented by:

° 0.MANAGE allowing appropriately-authorized users to manage the
TSF,

° OE.INFO_PROTECT, which requires that users are trusted to use
the protection mechanisms of the TOE to protect their data.

P.PROTECT_SSH_KEY

The policy to match the trust given to a user to protect his SSH private
key is implemented by:

° OE.INFO_PROTECT, which requires that users are trusted to exercise
the control over their own data.

P.APPROVE

The policy that specific rights assigned to users shall only be exercisable
when approved by a second user is implemented by:
° O.ROLE.APPROVE requiring the TOE to prevent the execution of

user actions allowed by a specific right until a second user with a
different right approves this action.

P.CLEARANCE (MLS mode)

The policy to limit information flow between protected resources and
authorized users based on whether the user's sensitivity label is
appropriate for the labeled information is implemented by:

° O.LS.CONFIDENTIALITY requiring the TOE to control information
flow between entities and resources based on the sensitivity labels
of users and resources.

P.LABELED_OUTPUT (MLS mode)

The policy to provide the capability to mark printed output with accurate

labels based on the sensitivity label of the user causing the output is

implemented by:

° O.LS.PRINT providing the capability to mark printed output with
accurate labels based on the sensitivity label of the user causing
the output.

P.RESOURCE_LABELS (MLS mode)

The policy that resources accessible by subjects and all subjects must
have associated labels identifying the sensitivity levels of data contained
therein is implemented by:

° O.LS.LABEL providing the capability to label all subjects and all

objects accessible by subjects, to restrict the information flow based
on the sensitivity labels.

Version: 0.21

Classification: public Page 41 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

OSP Rationale for security objectives

P.USER_CLEARANCE (MLS mode) The policy that all users must have a clearance level identifying the

maximum sensitivity levels of data they may access is implemented by:

° O.LS.CONFIDENTIALITY requiring the TOE to control information
flow between entities and resources based on the sensitivity labels
of users and resources.

° O.LS.LABEL ensuring that objects and subjects can be labeled such
that the TOE can restrict information flow based on those labels.

P.CP.ANCHOR The policy that users shall control the confidentiality protection anchor
for their confidentiality-protected user data, and reset/replace/modify it
if desired is implemented by:

° O.CP.ANCHOR allowing each user to manage the trust anchor for
the confidentiality protection of his own user data.

Table 5: Sufficiency of objectives enforcing Organizational Security Policies

Version: 0.21 Classification: public Page 42 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

5 Extended Components Definition

The Security Target uses the extended components of FDP_RIP.3 as well as FIA_USB.2 defined by
[OSPP]. They are not re-defined here again.

In addition, the Security Target defines the extended component of FCS_RNG, FDP_CDP, and
FDP_ACF_NA.1 families for usage within this ST.

5.1 Class FCS: Cryptographic support

5.1.1 Random number generator (RNG)
Family behaviour

This family defines quality requirements for the generation of random numbers that are intended
to be used for cryptographic purposes.

Component levelling
FCS_RNG.1 is not hierarchical to any other component within the FCS_RNG family.
Management: FCS_RNG.1

The following actions could be considered for the management functions in FMT:
a) There are no management activities foreseen.

Audit: FCS_RNG.1
The following actions should be auditable if FAU_GEN Security audit data generation is included in
the PP/ST:

a) Minimal: There are no actions defined to be auditable.

b) Basic: There are no actions defined to be auditable.

c) Detailed: There are no actions defined to be auditable.

5.1.1.1 FCS_RNG.1 - Random number generation

Hierarchical to: No other components.
Dependencies: No dependencies.

FCS_RNG.1.1 The TSF shall provide a deterministic random number generator that
implements:

e DRG.2.1: If initialized with a random seed [selection: using PTRNG
of class PTG.2 as random source, using PTRNG of class PTG.3 as
random source, using NPTRNG of class NTG.1 as random source,
[assignment: other requirements for seeding]], the internal state
of the RNG shall [selection: have [assignment: amount of entropy],
have [assignment: work factor], require [assignment: guess work]].

e DRG.2.2: The RNG provides forward secrecy.
e DRG.2.3: The RNG provides backward secrecy.

Version: 0.21 Classification: public Page 43 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

FCS_RNG.1.2 The TSF shall provide random numbers that meet:

° DRG.2.4: The RNG initialized with a random seed [assignment:
requirements for seeding] generates output for which [assignment:
number of strings] strings of bit length 128 are mutually different
with probability [assignment: probability].

e DRG.2.5: Statistical test suites cannot practically distinguish the
random numbers from output sequences of an ideal RNG. The
random numbers must pass test procedure A [assignment: additional
test suites].

Rationale

The quality of the random number generator is defined using this SFR. The quality metric required
in FCS_RNG.1.2 is detailed in the German Scheme AIS 20 and AIS 31.

5.2 Class FDP: User data protection
5.2.1 Confidentiality protection (FDP_CDP)

Component levelling
The FDP_CDP family contains only one component: FDP_CDP.1.
FDP_CDP.1 is therefore not hierarchical to any other component within the FDP_CDP family.

FDP_CDP.1 Confidentiality protection for data at rest, requires that the TSF ensures that the user
data is stored within containers controlled by the TSF protected against accesses while the TSF are
executing as well as when the TSF are not enforced.

Management: FDP_CDP.1

The following actions could be considered for the management functions in FMT:
a) Management of confidentiality protection trust anchor.
Audit: FDP_CDP.1
The following actions should be auditable if FAU_GEN Security audit data generation is included in
the PP/ST:
a) Minimal: The identity of any user or subject using the data storage mechanism.

b) Basic: The identity of any unauthorised user or subject attempting to use the data exchange
mechanisms.

c) Detailed: The identity of any unauthorised user or subject attempting to use the data
exchange mechanisms.

5.2.1.1 FDP_CDP.1 - Confidentiality for data at rest

Hierarchical to: No other components.

Dependencies: [FDP_ACC.1 Subset access control, or
FDP_IFC.2 Complete information flow control]

Version: 0.21 Classification: public Page 44 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

FDP_CDP.1.1 The TSF shall enforce the [assignment: access control SFP(s) and/or
information flow control SFP(s)] to store user data at rest in containers
controlled by the TSF in a manner protected from unauthorised disclosure.

Rationale

This family provides requirements that address the protection of the confidentiality of user data
while it is at rest within containers controlled by the TSF. This family differs from FDP_UCT which
covers the confidentiality to be maintained during the transmission of user data between the TOE
and another IT product.

5.2.2 Access control function (no audit) (FDP_ACF_NA)

Component levelling
FDP_ACF_NA.1 is not hierarchical to any other component within the FDP_ACF family.
Management: FDP_ACF_NA.1

The following actions could be considered for the management functions in FMT:
a) See FDP_ACF1

Audit: FDP_ACF_NA.1

The following actions should be auditable if FAU_GEN Security audit data generation is included in
the PP/ST:

a) Minimal: There are no actions defined to be auditable.
b) Basic: There are no actions defined to be auditable.
c) Detailed: There are no actions defined to be auditable.

5.2.2.1 FDP_ACF_NA.1 - Access control function (no audit)

Hierarchical to: No other components.

Dependencies: FDP_ACC.1 Subset access control
FMT_MSA.3 Static attribute initialisation

FDP_ACF_NA.1.1 (see FDP_ACF.1.1)
FDP_ACF_NA.1.2 (see FDP_ACF.1.2)
FDP_ACF_NA.1.3 (see FDP_ACF.1.3)
FDP_ACF_NA.1.4 (see FDP_ACF.1.4)

Rationale

This family is an exact copy of FDP_ACF.1 as defined in the Common Criteria Part 2 with the one
difference that the audit requirements are dropped. This SFR shall cover mechanisms of the TOE
that affect users, yet auditing of any actions is not appropriate as the data that can be audited is
only applicable in the exact runtime context. Any attempt to apply auditable information later
(which is the initial purpose of audit) provides a meaningless result.

Version: 0.21 Classification: public Page 45 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6 Security Requirements

6.1 Security Requirements for the Operational Environment

Although CC Version 3.1 does not mandate the use of security requirements for the IT environment,
it allows to define the security objectives for the IT environment to the level of detail useful for the
understanding and evaluation of a TOE. In the case of Linux, the security functionality of the TOE
defined in the following sections depends on the supporting functionality defined in this section.
The authors of this Security Target decided to define this functionality using the structure of Security
Functional Requirements.

There are several components in the IT environment that are used by the TOE to implement the
security functional requirements. Those are:

e The instructions and security mechanisms provided by the underlying processor

e The cryptographic support functions offered by a subset of the x86 CPUs. The TOE analyzes
the capabilities of the CPU at runtime and verifies whether the CPU provides these security
mechanisms. If they are provided by the CPU, the TOE uses these mechanisms. Otherwise,
the TOE reverts back to a software implementation. Although these features are
implemented as instructions of the processor and therefore is part of the CPU, it has been
decided by the authors of this Security Target to treat them separate from the other
instructions to allow CPUs without these features.

The cryptographic processor instructions provided by the x86 CPUs are available for all programs.
The claims made in this section are only for the use of those functions by the TSF. While this checks
for the correct implementation of the basic cryptographic algorithms for those instructions, no claim
can be made here for applications not part of the TSF that use those instructions. They may still
use those instructions incorrectly or fail to protect cryptographic keys appropriately.

All SFRs listed in this section provides details to the objective OE.IT.SYSTEM.
6.1.1 General security requirements for the abstract machine

6.1.1.1 Subset access control (FDP_ACC.1(E))

FDP_ACC.1.1
The abstract machine shall enforce the memory access control policy on instructions as
subjects and memory locations and processor registers as objects.

6.1.1.2 Security-attribute-based access control (FDP_ACF.1(E))

FDP_ACF.1.1
The abstract machine shall enforce the memory access control policy to objects based on
the processor state (problem or supervisor).

FDP_ACF.1.2
The abstract machine shall enforce the following rules to determine if an operation among
controlled subjects and controlled objects is allowed: access to memory locations and special
registers is based on the processor state and the state of the memory management unit.
Access to dedicated processor registers is allowed only if the processor is in supervisor state
when the instruction accessing the register is executed.

Version: 0.21 Classification: public Page 46 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

FDP_ACF.1.3
The abstract machine shall explicitly authorize access of subjects to objects based on the
following additional rules: some dedicated processor registers may be read but not modified
when the instruction accessing the register is in problem mode.

FDP_ACF.1.4

The abstract machine shall explicitly deny access of subjects to objects based on the following
rule: none.

Application note
The precise definition of the objects and the rules for the access control policy differ slightly
depending on the processor type. Although the underlying hardware / firmware that enforces
this policy is part of the IT environment, it is analyzed and tested to provide the support
required for the enforcement of the TOE's self-protection. The criteria for the analysis of the
high-level design require the analysis of the underlying hardware and firmware and the
security functional requirements stated here are taken as the basis for this analysis.

6.1.1.3 Static attribute initialization (FMT_MSA.3(E))

FMT_MSA.3.1
The abstract machine shall enforce the memory access control policy to provide permissive
default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2
The abstract machine shall allow the no role to specify alternative initial values to override
the default values when an object or information is created.

Application note
The “default” values in this case are seen as the values the processor has after startup.
They have to be “permissive”, because the initialization routine needs to set up the memory
management unit and the device register. With respect to the hardware, there is no “role”
model implemented, but the access control policy is purely based on a single attribute
(“user” or “supervisor” state) that can not be managed or assigned to a “user”. The attribute
changes under well-defined conditions (when the processor encounters an exception an
interrupt, or when a call gate for a higher ring of privilege is called). The security requirement
FMT_MSA.1 was therefore not applicable because the security attribute cannot be “managed”.
For this reason, there is also no security requirement FMT_SMR.1 included, because there
are no "roles” that need to be managed or assigned to “users”. The dependency of
FMT_MSA.3 to FMT_MSA.1 and FMT_SMR.1 is therefore unresolved.

6.1.2 Security requirements for CPACF

The CPACF instruction set is a feature of IBM System z processors that provides instructions to
perform cryptographic operations. Those instructions are part of the general instruction set of the
processor and available to programs executing in any privilege level. The instructions provide
primitives for an AES implementation. No support for key management, key protection or key
generation is provided. This has to be performed by the software using the instructions. The
instructions are specified in the processor manual.

Version: 0.21 Classification: public Page 47 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6.1.2.1 Cryptographic operation (CPACF) (FCS_COP.1(2E))

FCS_COP.1.1
The CPACF instruction set shall perform encryption and decryption in accordance with a
specified cryptographic algorithm AES in ECB, CTR, XTS, CBC mode and cryptographic key
sizes 128, 192 or 256 bit that meet the following: FIPS 197, November 6, 2001 (AES)
supported by SP800-38A, SP800-38E.

FCS_COP.1.1
The CPACF instruction set shall perform encryption and decryption in accordance with a
specified cryptographic algorithm three-key Triple-DES in ECB, CTR, XTS, CBC mode and
cryptographic key sizes 168 bit that meet the following: SP800-67 supported by SP800-38A,
SP800-38E.

FCS_COP.1.1
The CPACF instruction set shall perform encryption and decryption in accordance with a
specified cryptographic algorithm SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 mode and
no cryptographic key sizes that meet the following: FIPS 180-4.

6.2 TOE Security Functional Requirements

All of the following SFRs are derived from the OSPP supplemented with additional SFRs for add-on
functionality.

The following table shows the SFRs for the TOE, and the operations performed on the components
according to CC part 2: iteration (lter.), refinement (Ref.), assignment (Ass.) and selection (Sel.).

Security Security functional requirement Base Source Operations
functional security
group functional Iter. | Ref. | Ass. | Sel.
component

General-purpose |FAU_GEN.1 Audit data generation OSPP No No | Yes | No

computing

environment FAU_GEN.2 User identity association OSPP No | Yes | No No
FAU_SAR.1 Audit review OSPP No | No | Yes | No
FAU_SAR.2 Restricted audit review OSPP No | No | No | No
FAU_SEL.1 Selective audit OSPP No | Yes | Yes | No
FAU_STG.1 Protected audit trail OSPP No | No | No | Yes
storage
FAU_STG.3 Action in case of OSPP No | Yes | Yes | No
possible audit data loss
FAU_STG.4 Prevention of audit data OSPP No | Yes | Yes | Yes
loss
FCS_CKM.1(SYM) Cryptographic key | FCS_CKM.1 CC Part 2 Yes | Yes | Yes | No
generation
FCS_CKM.1(RSA) Cryptographic key | FCS_CKM.1 CC Part 2 Yes | Yes | Yes | No
generation

Version: 0.21 Classification: public Page 48 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.

Red Hat Enterprise Linux, Version 7.1

Security Security functional requirement Base Source Operations
functional security
group functional Iter. | Ref. | Ass. | Sel.
component
FCS_CKM.1(DSA) Cryptographic key | FCS_CKM.1 CC Part 2 Yes | Yes | Yes | Yes
generation
FCS_CKM.1(ECDSA) Cryptographic |FCS_CKM.1 CC Part 2 Yes | Yes | Yes | No
key generation
FCS_CKM.2(NET-SSH) Cryptographic | FCS_CKM.2 CC Part 2 Yes | No | Yes | No
key distribution (SSHv2)
FCS_CKM.2(NET-IKE) Cryptographic | FCS_CKM.2 CC Part 2 Yes | Yes | Yes | No
key distribution (IKEv1 / IKEv2)
FCS_CKM.2(NET-TLS) Cryptographic | FCS_CKM.2 CC Part 2 Yes | No | Yes | No
key distribution (TLS)
FCS_CKM.4 Cryptographic key CC Part 2 No No | Yes | No
destruction
FCS_COP.1(NET) Cryptographic FCS_COP.1 CC Part 2 Yes | No | Yes | No
operation
FCS_COP.1(CP) Cryptographic FCS_COP1 CC Part 2 Yes | No | Yes | No
operation
FCS_RNG.1(SSL-DFLT) Random FCS_RNG.1 ECD No | Yes | Yes | Yes
number generation (Class DRG.2)
FCS_RNG.1(SSL-FIPS) Random FCS_RNG.1 ECD No | Yes | Yes | Yes
number generation (Class DRG.2)
FCS_RNG.1(DM-INIT) Random FCS_RNG.1 ECD No No | Yes | Yes
number generation (Class DRG.2)
FCS_RNG.1(DM-RUN) Random FCS_RNG.1 ECD No No | Yes | Yes
number generation (Class DRG.2)
FCS_RNG.1(DM-FIPS) Random FCS RNG.1 ECD No | No | Yes | Yes
number generation (Class DRG.2)
FCS_RNG.1(NSS) Random number |FCS_RNG.1 ECD No No | Yes | Yes
generation (Class DRG.2)
FDP_ACC.1(PSO) Subset access FDP_ACC.1 OSPP Yes | No | Yes | No
control
FDP_ACC.1(TSO) Subset access FDP_ACC.1 OSPP Yes | No | Yes | No
control
FDP_ACF.1(PSO) Security attribute |FDP_ACF.1 OSPP Yes | No | Yes | No
based access control
FDP_ACF.1(TSO) Security attribute |FDP_ACF.1 OSPP Yes | No | Yes | No
based access control
Version: 0.21 Classification: public Page 49 of 156

Last update: 2016-06-09

Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security Security functional requirement Base Source Operations
functional security
group functional Iter. | Ref. | Ass. | Sel.
component
FDP_IFC.2(NI) Complete information | FDP_IFC.2 OSPP Yes | No | Yes | No
flow control
FDP_IFF.1(NI-IPTables) Simple FDP_IFF.1 OSPP Yes | Yes | Yes | Yes
security attributes
FDP_ITC.2(BA) Import of user data |FDP_ITC.2 OSPP Yes | No | Yes | No
with security attributes
FDP_RIP.2 Full residual information OSPP No | No | No | Yes
protection
FDP_RIP.3 Full residual information OSPP No | No | No | Yes
protection of resources
FIA_AFL.1 Authentication failure OSPP No | No | Yes | Yes
handling
FIA_ATD.1(HU) User attribute FIA_ATD.1 OSPP Yes | No | Yes | No
definition
FIA_ATD.1(TU) User attribute FIA_ATD.1 OSPP Yes | No | Yes | No
definition
FIA_SOS.1 Verification of secrets OSPP No | No | No | No
FIA_UAU.1 Timing of authentication OSPP No | No | Yes | No
FIA_UAU.5 Multiple authentication OSPP No | No | Yes | No
mechanisms
FIA_UAU.7 Protected authentication OSPP No | No | No | No
feedback
FIA UID.1 Timing of identification OSPP No | No | Yes | No
FIA_USB.2 Enhanced User-subject OSPP No | No | Yes | No
binding
FPT_FLS.1(FULL) Failure with FPT_FLS.1 CC Part 2 Yes | No | Yes | No
preservation of secure state - full
buffer overflow protection
FPT_FLS.1(PARTIAL) Failure with FPT_FLS.1 CC Part 2 Yes | No | Yes | No
preservation of secure state - partial
buffer overflow protection
FPT_FLS.1(INTEL) Failure with FPT_FLS.1 CC Part 2 Yes | Yes | Yes | No
preservation of secure state - user
space protecton from kernel
FPT_STM.1 Reliable time stamps OSPP No | No | No | No
Version: 0.21 Classification: public Page 50 of 156

Last update: 2016-06-09

Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security Security functional requirement Base Source Operations
functional security
group functional Iter. | Ref. | Ass. | Sel.
component

FPT _TDC.1(BA) Inter-TSF basic TSF |FPT _TDC.1 CC Part 2 Yes | No | Yes | No
data consistency
FTA_SSL.1 TSF-initiated session OSPP No | No | Yes | No
locking
FTA _SSL.2 User-initiated locking OSPP No | No | Yes | No
FTP_ITC.1 Inter-TSF trusted channel OSPP No | No | Yes | Yes

Linux Container |FDP_ACC.2(Namespaces) Complete | FDP_ACC.2 CC Part 2 Yes | No | Yes | No

Functionality (not | access control (Namespaces)

on POWER

architecture) FDP_ACC.2(Cgroup) Complete FDP_ACC.2 CC Part 2 Yes | No | Yes | No
access control (Linux control
groups)
FDP_ACC.2(SECCOMP) Complete FDP_ACC.2 CC Part 2 Yes | No | Yes | No
access control (System Call
Filtering)
FDP_ACF.1(Namespaces) Security |FDP_ACF.1 CC Part 2 Yes | No | Yes | No
attribute based access control
(Namespaces)
FDP_ACF.1(Cgroup) Security FDP_ACF.1 CC Part 2 Yes | No | Yes | No
attribute based access control
(Linux control groups)
FDP_ACF_NA.1(SECCOMP) Security | FDP_ACF_NA.1|ECD No | No | Yes | No
attribute based access control
(System Call Filtering)
FDP_ETC.2(LC) Export of user data | FDP_ETC.2 CC Part 2 Yes | No | Yes | No
with security attributes
FDP_ITC.2(LC) Import of user data |FDP_ITC.2 CC Part 2 Yes | No | Yes | No
with security attributes
FIA UID.2(LC) User identification FIA UID.2 CC Part 2 No | Yes | No | No
before any action
FPT_TDC.1(LC) Inter-TSF basic TSF |FPT_TDC.1 CC Part 2 Yes | No | Yes | No
data consistency
FMT_MSA.1(Namespaces-CACP) FMT_MSA.1 CC Part 2 Yes No | Yes | Yes
Management of security attributes
(Namespaces)
FMT_MSA.1(Cgroup-CACP) FMT_MSA.1 CC Part 2 Yes | No | Yes | Yes
Management of security attributes
(Cgroup)

Version: 0.21
Last update: 2016-06-09

Classification: public
Copyright © 2016 by Red Hat and atsec information security

Page 51 of 156

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security Security functional requirement Base Source Operations
functional security
group functional Iter. | Ref. | Ass. | Sel.
component

FMT_MSA.1(SECCOMP) Management | FMT_MSA.1 CC Part 2 Yes | No | Yes | Yes
of security attributes
FMT_MSA.3(Namespace-CACP) FMT_MSA.3 CC Part 2 Yes | No | Yes | Yes
Static attribute initialisation
(Namespaces)
FMT_MSA.3(Cgroup-CACP) Static FMT_MSA.3 CC Part 2 Yes | No | Yes | Yes
attribute initialisation (Cgroup)
FMT_MSA.3(SECCOMP) Static FMT_MSA.3 CC Part 2 Yes | No | Yes | Yes
attribute initialisation
FMT_MTD.1(LC-COMP) Management | FMT_MTD.1 CC Part 2 Yes No | Yes | Yes
of TSF data

Confidentiality FDP_ACC.2(CP) Complete access FDP_ACC.2 CC Part 2 Yes | No | Yes | No

protection of data | control

at rest
FDP_ACF.1(CP) Security attribute FDP_ACF.1 CC Part 2 Yes | No | Yes | No
based access control
FDP_CDP.1(CP) Confidentiality for |FDP_CDP.1 ECD No No | Yes | No
data at rest

Management FMT_MSA.1(PSO) Management of |FMT_MSA.1 OSPP Yes | No | Yes | Yes

related object security attributes

functionality
FMT_MSA.1(TSO) Management of |FMT_MSA.1 OSPP Yes | No | Yes | No
object security attributes
FMT_MSA.1(CP) Management of FMT_MSA.1 CC Part 2 Yes | No | Yes | Yes
security attributes
FMT_MSA.3(PSO) Static attribute FMT_MSA.3 OSPP Yes | No | Yes | No
initialisation
FMT_MSA.3(TSO) Static attribute FMT_MSA.3 OSPP Yes | No | Yes | No
initialisation
FMT_MSA.3(NI) Static attribute FMT_MSA.3 OSPP Yes | No | Yes | Yes
initialisation
FMT_MSA.3(CP) Static attribute FMT_MSA.3 CC Part 2 Yes | No | Yes | Yes
initialisation
FMT_MSA.4(PSO) Security attribute | FMT_MSA.4 OSPP No | No | Yes | No
value inheritance
FMT_MTD.1(AE) Management of TSF | FMT_MTD.1 OSPP Yes | No | Yes | No
data

Version: 0.21

Last update: 2016-06-09

Classification: public
Copyright © 2016 by Red Hat and atsec information security

Page 52 of 156

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Last update: 2016-06-09

Security Security functional requirement Base Source Operations
functional security
group functional Iter. | Ref. | Ass. | Sel.
component

FMT_MTD.1(AS) Management of TSF | FMT_MTD.1 OSPP Yes | No | Yes | Yes
data
FMT_MTD.1(AT) Management of TSF | FMT_MTD.1 OSPP Yes | No | Yes | Yes
data
FMT_MTD.1(AF) Management of TSF | FMT_MTD.1 OSPP Yes | No | Yes | Yes
data
FMT_MTD.1(NI) Management of TSF | FMT_MTD.1 OSPP Yes | No | Yes | Yes
data
FMT_MTD.1(IAT) Management of TSF | FMT_MTD.1 OSPP Yes | No | Yes | No
data
FMT_MTD.1(lIAF) Management of TSF | FMT_MTD.1 OSPP Yes | No | Yes | No
data
FMT_MTD.1(IAU) Management of |FMT_MTD.1 OSPP Yes | Yes | Yes | No
TSF data
FMT_MTD.1(SSH) Management of |FMT_MTD.1 CC Part 2 Yes | No | Yes | Yes
TSF data
FMT_MTD.1(SSSD) Management of | FMT_MTD.1 CC Part 2 Yes | No | Yes | Yes
TSF data
FMT_MTD.1(SSL) Management of |FMT_MTD.1 CC Part 2 Yes | No | Yes | Yes
TSF data
FMT_MTD.1(AM-AP) Management of | FMT_MTD.1 CC Part 2 Yes | No | Yes | Yes
TSF data
FMT_MTD.1(AM-MR) Management |FMT_MTD.1 CC Part 2 Yes | No | Yes | Yes
of TSF data
FMT _MTD.1(AM-MD) Management |FMT MTD.1 CC Part 2 Yes | No | Yes | Yes
of TSF data
FMT_MTD.1(AM-MA) Management |FMT_MTD.1 CC Part 2 Yes | No | Yes | Yes
of TSF data
FMT_MTD.1(CP-AN) Management of | FMT_MTD.1 CC Part 2 Yes | No | Yes | Yes
TSF data
FMT_MTD.1(CP-UD) Management of | FMT_MTD.1 CC Part 2 Yes | No | Yes | Yes
TSF data
FMT_REV.1(OBJ) Revocation FMT_REV.1 OSPP Yes | No | Yes | No
FMT_REV.1(USR) Revocation FMT_REV.1 OSPP Yes | No | Yes | No

Version: 0.21 Classification: public Page 53 of 156

Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security Security functional requirement Base Source Operations
functional security
group functional Iter. | Ref. | Ass. | Sel.
component

FMT_SMF.1 Specification of OSPP No | No | Yes | No
management functions
FMT_SMR.2 Security management CC Part 2 No No | Yes | No
roles

MLS mode FDP_ETC.2(LS) Export of user data |FDP_ETC.2 OSPP Yes | No | Yes | No
with security attributes
FDP_IFC.2(LS) Complete information | FDP_IFC.2 OSPP Yes | No | Yes | No
flow control
FDP_IFF.2(LS) Hierarchical security | FDP_IFF.2 OSPP Yes | Yes | Yes | No
attributes
FDP_ITC.1(LS) Import of user data |FDP_ITC.1 OSPP Yes | No | Yes | No
without security attributes
FDP_ITC.2(LS) Import of user data |FDP_ITC.2 OSPP Yes | No | Yes | No
with security attributes
FMT_MSA.1(LS) Management of FMT_MSA.1 OSPP Yes | Yes | Yes | Yes
security attributes
FMT_MSA.3(LS) Static attribute FMT_MSA.3 OSPP Yes | No | Yes | Yes
initialisation
FPT_TDC.1(LS) Inter-TSF basic TSF |FPT_TDC.1 OSPP Yes | No | Yes | No

data consistency

Table 6: SFRs for the TOE

6.2.1 General-purpose computing environment

6.2.1.1 Audit data generation (FAU GEN.1)

FAU_GEN.1.1 The TSF shall be able to generate an audit record of the following auditable events:
a) Start-up and shutdown of the audit functions;

b) All auditable events for the basic level of audit; and

c¢) all modifications to the set of events being audited;

d) all user authentication attempts;

e) all denied accesses to objects for which the access control policy defined in

the OSPP base applies;

f) explicit modifications of access rights to objects covered by the access control
policies; and

g) i. (MLS mode) Assignment of Users, Roles and Privileges to Roles;
ii. (MLS mode) Deletion of Users, Roles and Privileges from Roles;

Version: 0.21 Classification: public Page 54 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

ifi. (MLS mode) Creation and Deletion of Roles

FAU_GEN.1.2 The TSF shall record within each audit record at least the following information:

a) Date and time of the event, type of event, subject identity (if applicable),
and outcome (success or failure) of the event; and

b) For each audit event type, based on the auditable event definitions of the
functional components included in the PP/ST;

i User identity (if applicable); and

ii. i. (MLS mode) sensitivity labels of subjects, objects, or
information involved;

ii. (MLS mode) for each invocation of a security function, the
administrative role that invoked the security function;

ifi. (MLS mode) for access control action on user data, the
administrative role that invoked the action

6.2.1.2 User identity association (FAU_GEN.2)

FAU_GEN.2.1 For audit events resulting from actions of identified users, the TSF shall be able
to associate each auditable event with the identity of the user consisting of the
user identifier and the identifier of the Linux user namespace the user is confined
to if applicable that caused the event.

Application Note: The TOE maintains a "Login UID", which is inherited by every new process
spawned. This allows the TOE to identify the "real" originator of an event, regardless if he has
changed his real and / or effective and filesystem UID e. g. using the su or sudo commands or
executing a setuid or setgid program. In addition, when using Linux user namespaces, the user
namespace ID must be used in conjunction with the login UID as the login UID is only applicable in
the realm of the user namespace.

6.2.1.3 Audit review (FAU_SAR.1)

FAU_SAR.1.1 The TSF shall provide the root user with the role auditadm_r (role applies
only in MLS mode) with the capability to read all audit information from the
audit records.

FAU_SAR.1.2 The TSF shall provide the audit records in a manner suitable for the user to
interpret the information.

Application Note: The audit records are stored in ASCII format and can therefore be read with a
normal editor or pager. In addition, the TOE provides specific tools that support the interpretation
of the audit trail.

Application Note: The audit trail is stored in a file that is readable to the users with the above
mentioned capabilities only.

6.2.1.4 Restricted audit review (FAU_SAR.2)

FAU_SAR.2.1 The TSF shall prohibit all users read access to the audit records, except those
users that have been granted explicit read-access.

Version: 0.21 Classification: public Page 55 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Application Note: The protection of the audit records is based on the Unix permission bit settings
defined by FDP_ACC.1(PS0) supported by FDP_ACF.1(PS0). In MLS mode, the protection additionally
depends on the roles defined in FMT_SMR.2.

6.2.1.5 Selective audit (FAU_SEL.1)

FAU_SEL.1.1 The TSF shall be able to select the set of events to be audited from the set of all
auditable events based on the following attributes:

a) Type of audit event;

b) Subject or user identity consisting of the user identifier and the identifier
of the Linux user namespace the user is confined to if applicable ;

¢) Outcome (success or failure) of the audit event;
d) Named object identity;

e) Access types on a particular object;

f) System call number;

g) Performing inter-field comparison rule where the specified
comparison rule triggers the audit event;

h) arguments to system calls;

i) access type to file system objects (read, write, execute, change
attributes);

j) MLS mode: Subject sensitivity label;
k) MLS mode: Object sensitivity label;.
) MLS mode: User role.

Application Note: The TOE provides an application that allows specification of the audit rules
which injects the rules into the kernel for enforcement. The Linux kernel auditing mechanism obtains
all audit events and decides based on this rule set whether an event is forwarded to the audit
daemon for storage.

6.2.1.6 Protected audit trail storage (FAU STG.1)

FAU_STG.1.1 The TSF shall protect the stored audit records in the audit trail from unauthorised
deletion.

FAU_STG.1.2 The TSF shall be able to prevent unauthorised modifications to the audit records
in the audit trail.

Application Note: The protection of the audit records is based on the mechanisms explained in
FAU _SAR.1.

6.2.1.7 Action in case of possible audit data loss (FAU_STG.3)

FAU_STG.3.1 The TSF shall notify an authorized administrator if the audit trail exceeds a
root-user selectable, pre-defined size limit of the audit trail or if any of
the following condition is detected that may result in a loss of audit records :
no other condition .

Version: 0.21 Classification: public Page 56 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Application Note: The term "authorized administrator" refers to the user that is notified by the
auditd daemon. This daemon can be configured to notify different users in different ways. The
administrator of the system must ensure that the auditd is configured to send the notification to
the intended recipient.

Application Note: The alarm generated by the TOE can be configured to be a syslog message or
the execution of an administrator-specified application. This message or action of executing the
application is generated when the audit trail capacity exceeds the limit defined in the auditd.conf
file.

Application Note: The information of the threshold limit is done in the configuration file of the
auditd daemon. This file is only writable to the root user.

6.2.1.8 Prevention of audit data loss (FAU_STG.4)
FAU_STG.4.1 The TSF shall be able to ignore the audited events and perform one of
the following administrator-defined actions:
a) Stop all processes that attempt to generate an audit record;
b) Switch to single user mode;
c) Halt the system;
d) Notify the administrator
if the audit trail is full.

Application Note: The SFR lists all configuration possibilities that apply to the case when the audit
trail is full (i.e. the disk is full). Even though the SFR mentions the "ignoring of audit events" separate
from the other options, all options should be seen as equal where the root user can select one of
these options.

6.2.1.9 Cryptographic key generation (FCS_CKM.1(SYM))

FCS_CKM.1.1 The TSF shall generate symmetric cryptographic keys in accordance with a
specified cryptographic key generation algorithm capable of generating a random
bit sequence and specified cryptographic key sizes:

a) AES 128 bits,

b) Triple-DES 168 bits,

c) AES 256 bits,

d) AES: 192 bits

e) HMAC-SHA-1: 160 bits

f) HMAC-SHA-256: 256 bits
g) HMAC-SHA-384: 384 bits
h) HMAC-SHA-512: 512 bits

i) PBKDF2 using SHA-1, SHA-256, SHA-384 or SHA-512 for disk
encryption: key encryption key size equal to the size of the device
encryption key to be protected

that meet the following: cryptographic key generation algorithm based
on:

Version: 0.21 Classification: public Page 57 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

a) the key agreement and key derivation function specified in
FCS_CKM.2(NET-SSH) using random numbers derived from the
random number generator defined in FCS_RNG.1(SSL-DFLT) for use
in OpenSSH applications when FIPS 140-2 mode is not configured;

b) the key agreement and key derivation function specified in
FCS_CKM.2(NET-SSH) using random numbers derived from the
random number generator defined in FCS_RNG.1(SSL-FIPS) for use
in OpenSSH applications when FIPS 140-2 mode is configured;

c¢) FCS_RNG.1(DM-RUN) random number generator for use during
initialization of confidentiality-protected disks during normal
operation of the TOE when FIPS 140-2 mode is not configured.

d) FCS_RNG.1(DM-INIT) for use during initialization of
confidentiality-protected disks at initial installation time when FIPS
140-2 mode is not configured.

e) FCS_RNG.1(DM-FIPS) for use during initialization of
confidentiality-protected disks when FIPS 140-2 mode is configured.

f) the key agreement and key derivation function specified in
FCS_CKM.2(NET-IKE) using random numbers derived from the random
number generator defined in FCS_RNG.1(NSS) for use in Libreswan
IKE applications.

g) the key agreement and key derivation function specified in
FCS_CKM.2(NET-TLS) using random numbers derived from the
random number generator defined in FCS_RNG.1(NSS) for use by
SSSD when FIPS 140-2 mode is not configured;

h) PBKDF2: SP800-132 section 5.4 option 2a.

6.2.1.10 Cryptographic key generation (FCS_CKM.1(RSA))

FCS_CKM.1.1 The TSF shall generate RSA cryptographic keys in accordance with a specified
cryptographic key generation algorithm defined in U.S. NIST FIPS PUB 186-3186-4
appendix B.3 and specified cryptographic key sizes:

a) 2048 bits,
b) 1024 bits,
c) 3072 bits
d) 4096 bits
that meet the following: U.S. NIST FIPS PUB 186-4.

Application Note:

The TOE supports the generation of RSA keys for the OpenSSH host key as well as the OpenSSH
user keys using the ssh-keygen(1) application. The following random number generator is used to
support the key generation:

® FCS RNG.1(SSL-DFLT) for use in OpenSSH applications when FIPS 140-2 mode is not
configured;

® FCS RNG.1(SSL-FIPS) for use in OpenSSH applications when FIPS 140-2 mode is configured;
Application Note:

Version: 0.21 Classification: public Page 58 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

The TOE supports the generation of RSA keys for the IKE and TLS protocols using the certutil(1)
application. The following random number generator is used to support the key generation:
FCS RNG.1(NSS).

6.2.1.11 Cryptographic key generation (FCS_CKM.1(DSA))

FCS_CKM.1.1 The TSF shall generate DSA cryptographic keys in accordance with a specified
cryptographic key generation algorithm defined in U.S. NIST FIPS PUB 186-3186-4
appendix B.1 and specified cryptographic key sizes:

a) L=1024, N=160 bits;
b) L=2048, N=224 bits;
c) L=2048, N=256 bits;
d) L=3072, N=256 bits;
that meet the following: U.S. NIST FIPS PUB 186-4.

Application Note:

The TOE supports the generation of DSA keys for the OpenSSH host key as well as the OpenSSH
user keys using the ssh-keygen(1) application. The following random number generator is used to
support the key generation:

® FCS RNG.1(SSL-DFLT) for use in OpenSSH applications when FIPS 140-2 mode is not
configured;

® FCS RNG.1(SSL-FIPS) for use in OpenSSH applications when FIPS 140-2 mode is configured;
Application Note:

The TOE supports the generation of DSA keys for the IKE and TLS protocols using the certutil(1)
application. The following random number generator is used to support the key generation:
FCS RNG.1(NSS).

6.2.1.12 Cryptographic key generation (FCS_CKM.1(ECDSA))

FCS_CKM.1.1 The TSF shall generate ECDSA cryptographic keys in accordance with a specified
cryptographic key generation algorithm defined in U.S. NIST FIPS PUB 186-4
appendix B.4 and specified cryptographic key sizes defined by the following
curves:

a) NIST primary field curve P-256;
b) NIST primary field curve P-384;
c) NIST primary field curve P-521;
that meet the following: U.S. NIST FIPS PUB 186-4.

Application Note:

The TOE supports the generation of ECDSA keys for the OpenSSH host key as well as the OpenSSH
user keys using the ssh-keygen(1) application. The following random number generator is used to
support the key generation:

® FCS RNG.1(SSL-DFLT) for use in OpenSSH applications when FIPS 140-2 mode is not
configured;

® FCS RNG.1(SSL-FIPS) for use in OpenSSH applications when FIPS 140-2 mode is configured;
Application Note:

Version: 0.21 Classification: public Page 59 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

The TOE supports the generation of ECDSA keys for the IKE and TLS protocols using the certutil(1)
application. The following random number generator is used to support the key generation:
FCS RNG.1(NSS).

6.2.1.13 Cryptographic key distribution (SSHv2) (FCS_CKM.2(NET-SSH))

FCS_CKM.2.1 The TSF shall distribute cryptographic keys in accordance with the following
specified cryptographic key distribution method that meets the following:

a) Diffie-Hellman key agreement method with
diffie-hellman-groupl-shal defined for the SSH protocol by
[RFC4253]: supported by [RFC2409]:;

b) Diffie-Hellman key agreement method with
diffie-hellman-groupl4-shal defined for the SSH protocol by
[RFC4253]- supported by [RFC3526];

c) Diffie-Hellman key agreement method with
diffie-hellman-group-exchange-shal defined for the SSH protocol
by [RFC4253]- together with [RFC4419]:;

d) Diffie-Hellman key agreement method with
diffie-hellman-group-exchange-sha256 defined for the SSH protocol
by [RFC4253]: together with [RFC4419];

e) EC Diffie-Hellman key agreement method with ecdh-sha2-nistp256
defined for the SSH protocol by [RFC4253]- together with
[RFC5656]:;

f) EC Diffie-Hellman key agreement method with ecdh-sha2-nistp384
defined for the SSH protocol by [RFC4253]: together with
[RFC5656]:;

g) EC Diffie-Hellman key agreement method with ecdh-sha2-nistp521
defined for the SSH protocol by [RFC4253]- together with
[RFC5656]:;

h) Public DSS, RSA, ECDSA host key exchange defined for the SSH
protocol by [RFC4253]:;

i) Pseudo-Random-Function for deriving the 1V, the session key and
the HMAC key from the Diffie-Hellman shared secret using the hash
type specified for the selected Diffie-Hellman group as defined for
the SSH protocol by [RFC4253]:.

Application Note: DSS defined in [RFC4253]: for the host key exchange is compliant with DSA
defined in FIPS 186-4.

6.2.1.14 Cryptographic key distribution (IKEv1 / IKEv2)
(FCS_CKM.2(NET-IKE))

FCS_CKM.2.1 The TSF shall distribute cryptographic keys in accordance with the following
specified cryptographic key distribution method that meets the following:

a) Diffie-Hellman key agreement method defined for the IKEv1 protocol
by [RFC2409];

b) Diffie-Hellman key agreement method defined for the IKEv2 protocol
by [RFC5996]:;

Version: 0.21 Classification: public Page 60 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc2409
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc3526
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4419
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4419
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc5656
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc5656
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc5656
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc2409
http://tools.ietf.org/html/rfc5996

c)

d)

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Pseudo-Random-Function for deriving the IV, the session key and
the HMAC key from the Diffie-Hellman shared secret using the hash
type selected as part of the IKEv1l handshake by [RFC2409]:;

Pseudo-Random-Function for deriving the IV, the session key and
the HMAC key from the Diffie-Hellman shared secret using the hash
type selected as part of the IKEv2 handshake by [RFC5996]-;

using all the following Diffie-Hellman Oakley groups defined in [RFC2409],
[RFC3526], [RFC5114]:.:

2 (1024-bit MODP Group)

5 (1536-bit MODP Group)

14 (2048-bit MODP Group)

15 (3072-bit MODP Group)

16 (4096-bit MODP Group)

17 (6144-bit MODP Group)

18 (8192-bit MODP Group)

22 (1024-bit MODP Group with 160-bit Prime Order Subgroup)
23 (2048-bit MODP Group with 224-bit Prime Order Subgroup)
24 (2048-bit MODP Group with 256-bit Prime Order Subgroup)

6.2.1.15 Cryptographic key distribution (TLS) (FCS_CKM.2(NET-TLS))

FCS_CKM.2.1 The TSF shall distribute cryptographic keys in accordance with the following
specified cryptographic key distribution method that meets the following:

a)

b)
c)

Diffie Hellman domain parameters or Elliptic Curve reference
provided by the remote trusted TLS server.

RSA-based key wrapping encapsulating the pre-master secret.
Pseudo-Random-Function for deriving the IV, the session key and
the HMAC key from the master secret using the hash type specified
for TLS 1.1 by [RFC4346]: or by the agreed hash type as specified
for TLS 1.2 by [RFC5246]:.

6.2.1.16 Cryptographic key destruction (FCS_CKM.4)

FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified
cryptographic key destruction method of zerorization that meets the following:
vendor-specific zeroization.

Application Note:

The "vendor-specific zeroization" covers to the following concepts:

® Memory objects: Overwriting the memory with zeros at the time the memory is released.

e Asymmetric key components stored in files: The object reuse functionality for objects
defined with FDP_RIP.2 also covers this SFR.

Version: 0.21
Last update: 2016-06-09

Classification: public Page 61 of 156
Copyright © 2016 by Red Hat and atsec information security

http://tools.ietf.org/html/rfc2409
http://tools.ietf.org/html/rfc5996
http://tools.ietf.org/html/rfc2409
http://tools.ietf.org/html/rfc3526
http://tools.ietf.org/html/rfc5114
http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/rfc5246

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6.2.1.17 Cryptographic operation (FCS_COP.1(NET))

FCS_COP.1.1

Version: 0.21
Last update: 2016-06-09

The TSF shall perform encryption, decryption, integrity verification, peer
authentication in accordance with the following cryptographic algorithms,
cryptographic key sizes and applicable standards:

SSH communication channel encryption using the following ciphers
as defined in [RFC4253]:!:

a)

b)

c)

d)

O e

Three-key TDES in CBC mode (3des-chc);

AES in CBC mode (aes128-cbc, aes192-chc, aes256-cbc);

AES in CTR mode (aesl128-ctr, aes192-ctr, aes256-ctr);

AES in GCM mode (aesl28-gcm, aes256-gcm);

HMAC with SHA-1 (hmac-shal, hmac-shal-etm@openssh.com);

HMAC with SHA-2 (hmac-sha2-256, hmac-sha2-512,
hmac-sha2-256-etm@openssh.com,
hmac-sha2-512-etm@openssh.com) with additional definition
in [RFC6668];

SSH authentication of host as defined in [RFC4252]::

1.

2.

3.

RSA signature verification RSASSA-PKCS1-v1.5 using SHA-1
(ssh-rsa)

DSA with L=1024, N=160 signature verification using SHA-1
(ssh-dss)

ECDSA with signature verification using SHA-2
(ecdsa-sha2-nistp256 with SHA-256, ecdsa-sha2-nistp384 with
SHA-384, ecdsa-sha2-nistp521 with SHA-512).

SSH authentication of user as defined in [RFC4252]:: same ciphers
as specified for SSH authentication of host.

IPSEC with IKE the following mechanisms:

1.

Ciphers for ESP encryption:

i. AES in CBC mode with 128 bits, 192 bits and 256 bits
defined by [RFC3602]- supported by [RFC4307]:..

ii. AES in CTR mode with 128 bits, 192 bits and 256 bits
defined by [RFC4301]- and [RFC4303]:.

iii. TDES in CBC mode with 168 bits defined by [RFC4307]!.

ESP authentication:
i HMAC SHA-1 truncated to 96 bits;

Ciphers for IKE SA encryption:

i. AES in CBC mode with 128 bits, 192 bits and 256 bits
defined by [RFC3602]- supported by [RFC4307]:..

ii. AES in CTR mode with 128 bits, 192 bits and 256 bits
defined by [RFC4301]- and [RFC4303]:.

iii. TDES in CBC mode with 168 bits defined by [RFC4307]!.

IKE SA authentication:
i HMAC SHA-1 truncated to 96 bits;

Classification: public Page 62 of 156
Copyright © 2016 by Red Hat and atsec information security

http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc6668
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc3602
http://www.ietf.org/rfc/rfc4307.txt
http://tools.ietf.org/html/rfc4301
http://tools.ietf.org/html/rfc4303
http://www.ietf.org/rfc/rfc4307.txt
http://tools.ietf.org/html/rfc3602
http://www.ietf.org/rfc/rfc4307.txt
http://tools.ietf.org/html/rfc4301
http://tools.ietf.org/html/rfc4303
http://www.ietf.org/rfc/rfc4307.txt

Version: 0.21
Last update: 2016-06-09

5.

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Peer authentication algorithm:

RSA

e) TLS using by the following TLS cipher strings as defined by
[RFC5246]M

Key agreement Diffie-Hellman

i
ii.
ifi.
iv.
V.
vi.
vii.

viii.

Xi.
Xii.

Xiii.
XiV.

TLS_DHE_RSA WITH_AES_ 128 CBC_SHA
TLS_DHE_DSS_WITH_AES 128 CBC_SHA
TLS_DHE_RSA WITH_AES 256 CBC_SHA
TLS_DHE_DSS_WITH_AES 256 _CBC_SHA
TLS_DHE_RSA WITH_3DES_EDE_CBC_SHA
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
TLS_DHE_RSA WITH_AES 256 CBC_SHA256
TLS_DHE_DSS_WITH_AES 256 CBC_SHA256
TLS_DHE_RSA WITH_AES 128 GCM_SHA256
TLS_DHE_RSA WITH_AES 128 CBC_SHA256
TLS_DHE_RSA WITH_AES 256 _GCM_SHA384
TLS_DHE_DSS_WITH_AES 128 CBC_SHA256
TLS_DHE_DSS_WITH_AES_128 GCM_SHA256
TLS_DHE_DSS_WITH_AES 256 GCM_SHA384

Key agreement EC Diffie-Hellman

i
ii.
ifi.
iv.
V.
vi.
vii.

viii.

Xi.
Xii.

Xiii.
XiV.

TLS_ECDHE_RSA WITH_AES 128 CBC_SHA
TLS_ECDHE_ECDSA WITH_AES_128 CBC_SHA
TLS_ECDHE_RSA WITH_AES 256 CBC_SHA
TLS_ECDHE_ECDSA WITH_AES_ 256 _CBC_SHA
TLS_ECDHE_RSA WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_ECDSA WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_RSA WITH_AES_ 128 GCM_SHA256
TLS_ECDHE_ECDSA WITH_AES_ 128 GCM_SHA256
TLS_ECDHE_RSA WITH_AES 128 CBC_SHA256
TLS_ECDHE_ECDSA WITH_AES_128 CBC_SHA256
TLS_ECDHE_RSA WITH_AES 256 _GCM_SHA384
TLS_ECDHE_RSA WITH_AES 256 CBC_SHA384
TLS_ECDHE_ECDSA WITH_AES 256_GCM_SHA384
TLS_ECDHE_ECDSA WITH_AES 256 _CBC_SHA384

Key exchange RSA

i.
ii.
iii.
iv.
V.

TLS_RSA WITH_AES_ 128 CBC_SHA
TLS_RSA WITH_AES 256 CBC_SHA
TLS_RSA WITH_3DES_EDE_CBC_SHA
TLS_RSA WITH_AES_128 GCM_SHA256
TLS_RSA WITH_AES_128 CBC_SHA256

Classification: public Page 63 of 156

Copyright © 2016 by Red Hat and atsec information security

http://tools.ietf.org/html/rfc5246

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

vi. TLS_RSA_WITH_AES 256 GCM_SHA384
vii. TLS_RSA_ WITH_AES_256_CBC_SHA256

Application Note:
AES-NI (x86) support is disabled in the evaluated configuration.
Application Note:

On IBM System z, the CPU cryptographic support of CPACF is used as specified in the SFR in "a);
2.,3.,4.,5,6.","d); 1." and "d); 2.". Therefore, CPACF covers the SSH and the IPSEC protocols and
not the IKE or TLS protocol.

6.2.1.18 Cryptographic operation (FCS_COP.1(CP))

FCS_COP.1.1 The TSF shall perform encryption, decryption in accordance with a specified
cryptographic algorithm formed with any permutation of the following
types of cryptographic primitives:

a) Ciphers: AES, with key sizes specified in FCS_CKM.1(SYM);
b) Block chaining modes: CBC, XTS defined in SP800-38;
c¢) IV-Handling mechanisms:

1. XTS: plain64 - The initialization vector is the 64-bit little-endian
version of the sector number, padded with zeros if necessary.

2. CBC: essiv - The sector number is encrypted with the bulk cipher
using a salt as key. The salt is derived from the cipher key used
for encrypting the data with via hashing using the hashes of
either SHA-1, SHA-256, SHA-384 and SHA-512.

3. XTS: benbi - The initialization vector is the 64-bit big-endian
version of the sector number, padded with zeros if necessary.

and cryptographic key sizes as allowed by the cipher specifications:
a) AES: [FIPS197]"
b) SHA-1 and SHA-2: [FIPS180-4]"

that meet the following: LUKS-based dm-crypt Linux partition encryption
schema.

Application Note: The list of cryptographic primitives allowed by the TOE may be reduced when
booting the system in FIPS 140-2 compliant mode. The list of allowed cryptographic primitives is
given in the Security Policy for the kernel crypto APl FIPS 140-2 module.

Application Note: The list of cryptographic primitives is consistent with the requirements defined
in BSI TR-02102 version 1.0, except that the XTS block chaining mode is allowed and SHA-1 is
added. XTS is standardized later than the mentioned document and commonly used for disk
encryption mechanisms. Furthermore, the concerns for SHA-1 regarding collisions are not considered
applicable in the context of disk encryption.

Application Note: The master volume key (device encryption key) is encrypted with the same
cipher selected for the data encryption. The key encryption key used to perform the encryption
and decryption operation of the master volume key is obtained via PBKDF2 as defined in

FCS _CKM.1(SYM). Although the PBKDFZ2 derives an ecryption key from the user's passphrase, the

Version: 0.21 Classification: public Page 64 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

strength of that key relates to the strength of the passphrase. As passphrases typically have less
entropy than random numbers, a brute force attack against the passphrase is possible in reasonable
amount of time of several months.

Application Note:
AES-NI (x86) support is disabled in the evaluated configuration.
Application Note:

On IBM System z, the CPU cryptographic support of CPACF is used for all the ciphers specified in
the SFR.

Application Note: This SFR applies to the block device disk encryption functionality offered by
dm-crypt.

6.2.1.19 Random number generation (Class DRG.2) (FCS_RNG.1(SSL-DFLT))

FCS_RNG.1.1 The TSF shall provide a deterministic random number generator that implements:

a) DRG2.1: If initialized with a random seed using /dev/random as random
source, the internal state of the RNG shall have a minentropy of 48 bits.

b) DRG2.2: The DRNG provides forward secrecy.
c) DRG2.3: The DRNG provides backward secrecy.
FCS_RNG.1.2 The TSF shall provide random numbers that meet:

a) DRG.2.4: The RNG instance initialized with a random seed
1. every time the ssh client is invoked
2. every time the ssh-keygen application is invoked
3. every time the sshd server processes a new connection
generates output for which 2**19 strings of bit length 128 are mutually
different with probability of more than 1 - 2**-10.

b) DRG.2.5: The test suite A and no other test suite cannot distinguish the
random numbers from output sequences of ideal RNGs.

Application Note:

The OpenSSH applications use the deterministic RNG from OpenSSL to generate random numbers.
Every time the ssh client is invoked, the ssh-keygen application is used or a new SSH connection
is processed by sshd, the deterministic random number generator is seeded with data from
/dev/random. Note, the OpenSSL library provides two separate deterministic RNGs, the default
used in normal mode and an SP800-90A CTR_DRBG with AES-256 core using a derivation function
without prediction resistance compliant DRNG in FIPS 140-2 mode. This SFR covers the DRNG
provided in default mode.

6.2.1.20 Random number generation (Class DRG.2) (FCS_RNG.1(SSL-FIPS))

FCS_RNG.1.1 The TSF shall provide a deterministic random number generator that implements:

a) DRG2.1: If initialized with a random seed using /dev/random as random
source, the internal state of the RNG shall have a minentropy of 48 bits.

b) DRG2.2: The DRNG provides forward secrecy.
c) DRG2.3: The DRNG provides backward secrecy.

Version: 0.21 Classification: public Page 65 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

FCS_RNG.1.2

Application Note:

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

The TSF shall provide random numbers that meet:

a)

b)

DRG.2.4: The RNG instance initialized with a random seed

1. every time the ssh client is invoked

2. every time the ssh-keygen application is invoked

3. every time the sshd server processes a new connection

generates output for which 2**19 strings of bit length 128 are mutually
different with probability of more than 1 - 2**-10.

DRG.2.5: The test suite A and no other test suite cannot distinguish the
random numbers from output sequences of ideal RNGs.

The OpenSSH applications use the deterministic RNG from OpenSSL to generate random numbers.
Every time the ssh client is invoked, the ssh-keygen application is used or a new SSH connection
is processed by sshd, the deterministic random number generator is seeded with data from
/dev/random. Note, the OpenSSL library provides two separate deterministic RNGs, the default
used in normal mode and an SP800-90A CTR_DRBG with AES-256 core using a derivation function
without prediction resistance compliant DRNG in FIPS 140-2 mode. This SFR covers the DRNG
provided in FIPS 140-2 mode.

6.2.1.21 Random number generation (Class DRG.2) (FCS_RNG.1(DM-INIT))

FCS_RNG.1.1

FCS_RNG.1.2

The TSF shall provide a deterministic random number generator that implements:

a)

b)
c)

DRG2.1: If initialized with a random seed using high-resolution time
stamps of block device access events, human interface device events
and interrupt events , the internal state of the RNG shall have a
minentropy of 48 bits.

DRG2.2: The DRNG provides forward secrecy.

DRG2.3: The DRNG provides backward secrecy.

The TSF shall provide random numbers that meet:

a)

b)

DRG.2.4: The RNG initialized with a random seed during initialization of
the cryptsetup application generates output for which 2**19 strings of
bit length 128 are mutually different with probability of more than 1 -
2**.]10.

DRG.2.5: The test suite A and no other test suite cannot distinguish the
random numbers from output sequences of ideal RNGs.

6.2.1.22 Random number generation (Class DRG.2) (FCS_RNG.1(DM-RUN))

FCS_RNG.1.1

Version: 0.21
Last update: 2016-06-09

The TSF shall provide a deterministic random number generator that implements:

a)

b)
c)

DRG2.1: If initialized with a random seed using /dev/random as random
source, the internal state of the RNG shall have a minentropy of 48 bits.

DRG2.2: The DRNG provides forward secrecy.
DRG2.3: The DRNG provides backward secrecy.

Classification: public Page 66 of 156
Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

FCS_RNG.1.2 The TSF shall provide random numbers that meet:

a) DRG.2.4: The RNG initialized with a random seed during initialization of
the cryptsetup application generates output for which 2**19 strings of
bit length 128 are mutually different with probability of more than 1 -
2**-10.

b) DRG.2.5: The test suite A and no other test suite cannot distinguish the
random numbers from output sequences of ideal RNGs.

6.2.1.23 Random number generation (Class DRG.2) (FCS_RNG.1(DM-FIPS))

FCS_RNG.1.1 The TSF shall provide a deterministic random number generator that implements:

a) DRG2.1: If initialized with a random seed using /dev/random as random
source , the internal state of the RNG shall have a minimum entropy of
48 bits.

b) DRG2.2: The DRNG provides forward secrecy.
c) DRG2.3: The DRNG provides backward secrecy.
FCS_RNG.1.2 The TSF shall provide random numbers that meet:

a) DRG.2.4: The RNG initialized with a random seed during initialization of
the cryptsetup application generates output for which 2**19 strings of
bit length 128 are mutually different with probability of more than 1 -
2**.10.

b) DRG.2.5: The test suite A and no other test suite cannot distinguish the
random numbers from output sequences of ideal RNGs.

Application Note:

In FIPS 140-2 mode, libcryptsetup uses the SP800-90A compliant DRBG (per default it is the HMAC
DRBG with SHA-256 core) provided with libgcrypt which is seeded by /dev/random during normal
operation of the TOE.

Application Note:

In FIPS 140-2 mode, libcryptsetup uses the SP800-90A compliant DRBG (per default it is the HMAC
DRBG with SHA-256 core) provided with libgcrypt which is seeded by /dev/urandom during initial

installation time of the TOE. As no other user and no attacker is assumed to be present during the
the initial installation time, /dev/urandom is considered to provide the same entropy as /dev/random.

6.2.1.24 Random number generation (Class DRG.2) (FCS_RNG.1(NSS))

FCS RNG.1.1 The TSF shall provide a deterministic random number generator that implements:

a) DRG2.1: If initialized with a random seed using high-resolution time
stamps of block device access events, human interface device events
and interrupt events , the internal state of the RNG shall have a
minentropy of 48 bits.

b) DRG2.2: The DRNG provides forward secrecy.
c) DRG2.3: The DRNG provides backward secrecy.
FCS_RNG.1.2 The TSF shall provide random numbers that meet:

a) DRG.2.4: The RNG initialized with a random seed during startup of the
sssd daemon generates output for which 2**19 strings of bit length 128
are mutually different with probability of greater than 1-2**-10.

Version: 0.21 Classification: public Page 67 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Application Note:

b)

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

DRG.2.5: The test suite A and no other test suite cannot distinguish the
random numbers from output sequences of ideal RNGs.

The NSS library uses an SP800-90A Hash DRBG with SHA-256 core using a derivation function
without prediction resistance.

6.2.1.25 Subset access control (FDP_ACC.1(PSO))

FDP_ACC.1.1

The TSF shall enforce the Persistent Storage Object Access Control Policy on

a)
b)

c)

Subjects: all subjects defined with the Security Policy Model;
Objects:

i Persistent Storage Objects of the following type : all file system
objects defined with the Security Policy Model;

ii. no other storage objects;

Operations: read, write, execute (regular files), search (directories).

6.2.1.26 Subset access control (FDP_ACC.1(TSO))

FDP_ACC.1.1

The TSF shall enforce the Transient Storage Object Access Control Policy on

a)
b)

c)

Subjects: all subjects defined with the Security Policy Model;
Objects:

i. Transient Storage Objects of the following type : all IPC objects
defined with the Security Policy Model;

ii. no other storage objects;

Operations: read, receive, write, send.

6.2.1.27 Security attribute based access control (FDP_ACF.1(PSO))

FDP_ACF.1.1

Version: 0.21
Last update: 2016-06-09

The TSF shall enforce the Persistent Storage Object Access Control Policy to
objects based on the following:

a)

b)
c)

Subject security attributes: file system UID, file system GID,
supplemental GIDs;

Object security attributes: owning UID, owning GID;

Access control security attributes maintained for each file system
object governing access to that object:

i. ACL for specific UIDs (ACL_USER),
ii. ACL for specific GIDs (ACL_GROUP),
iiil. Maximum ACL for the file system object (ACL_MASK),

iv. Permission bits for the owning UID (equals to ACL_USER_OB])
when using ACLs),

V. Permission bits for the owning GID (equals to ACL_GROUP_OB]J
when using ACLs),

vi. Permission bits for "world" (equals to ACL_OTHER when using
ACLs),

Classification: public Page 68 of 156
Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

vii. The following permission bits: read, write, execute (for files),
search (for directories),

viii. The following access rights applicable to the file system object:
SAVETXT (directories), immutable (files),

d) Access control security attributes maintained for each partition
holding a file system: read-only, no-execute;

FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an operation among
controlled subjects and controlled objects is allowed:

A subject must have search permission for every element of the
pathname and the requested access for the object. A subject has a
specific type access to an object if one of the following rules hold (the
order of the rules is applicable on a first-match basis):

a) The subject's filesystem UID is identical with the owning UID of the
object and the requested type of access is within the permission
bits defined for the owning UID (permission bits) or by ACL_USER_OB])
(ACLs); or

b) ACLs: The subject's filesystem UID is identical with the UID specified
with ACL_USER of the object and the requested type of access is
within the permission bits defined in ACL_USER; or

c) The subject's filesystem GID or one of the subject's supplemental
GIDs identical with the owning GID and the requested type of access
is within the permission bits defined for the owning GID (permission
bits), or by ACL_GROUP_OB]J when there is no ACL_MASK entry (ACLs),
or by the ACL_MASK entry (ACLs); or

d) ACLs: The subject's filesystem GID or one of the subject's
supplemental GIDs is identical with the GID specified with
ACL_GROUP of the object and the requested type of access is within
the permission bits defined in ACL_GROUP; or

e) The requested type of access is within the permission bits defined
for "world" (permission bits) or by ACL_OTHER (ACLs).

Application Note: The permission bits and the ACLs are inherently consistent as the TOE assigns
the permission bits to ACLs when ACLs are used. Without any ACLs specified for an object, the TOE
only uses the permission bits. If at least one ACL is present or when the ACL management tools
are applied for objects even without any ACL set, the permission bits are interpreted as outlined
above: the ACL entry of ACL_USER_OBJ contains the owning UID permission bits, the ACL entry of
ACL_GROUP_OBJ contains the owning GID permission bits, and the ACL entry of ACL_OTHER contains
the permission bits for "world". The ACL entries of ACL_USER_OBJ, ACL_GROUP_0OBJ and ACL_OTHER
are only a different representation of the permission bits to users, they are not separate attributes
in addition to permission bits. The explicit specification of ACL_ USER_OBJ, ACL_ GROUP_OBJ and
ACL_OTHER in the rule set above in addition to the permission bits is only intended to aid the
evaluator or reader in understanding the overall ruleset.

Application Note: Due to the fact that the permission bits are an inherent part of the ACLs, there
is no precedence issue between permission bits and ACLs.

Version: 0.21 Classification: public Page 69 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

FDP_ACF.1.3

FDP_ACF.1.4

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

The TSF shall explicitly authorise access of subjects to objects based on the
following additional rules:

a)

b)

read and directory search operations are allowed for the subject
with the capability of CAP_DAC_READ_SEARCH;

write and execute operations are allowed for the subject with the
capability of CAP_DAC_OVERRIDE - the execute permission is granted
if the file system object object is marked with at least one executable
bit in its permission settings.

The TSF shall explicitly deny access of subjects to named objects based on the
following rules:

a)
b)
c)
d)

e)

Any file system object in a file system that is mounted as read-only
cannot be modified, created or removed,

A regular file, a directory and a symbolic link in a file system that
is mounted as read-only cannot be written to,

Any file system object marked as immutable cannot be modified or
removed,

A regular file in a file system that is mounted with the no-execute
flag cannot be executed,

Any file system object stored in a directory marked with the SAVETXT
bit cannot be modified or removed by subjects whose file system
UID is not equal to the owning UID of the file system object unless
the subject performing the operation possesses the CAP_FOWNER
capability.

Application Note: The no-execute flag as well as a missing execute bit in the permission bit set
or ACL for the requesting user can only be considered a convenience mechanism to prevent
accidental executions of files. A missing execute permission can be circumvented using the following

approaches:

® a binary file can be opened for reading (if the access control mechanism allows reading)
with the Linux loader Id-linux.so and implicitly executed. Even without a dedicated user
space loader, a user can implement the logic of the loader in an application that is marked
executable to use that logic for executing any file.

e ascriptfile (i.e. any ASCII file starting with a Shebang can be invoked by executing the
interpreter referenced in the Shebang furnishing the ASCII file to be executed as input file.

6.2.1.28 Security attribute based access control (FDP_ACF.1(TSO))

FDP_ACF.1.1

Version: 0.21
Last update: 2016-06-09

The TSF shall enforce the Transient Storage Object Access Control Policy to objects
based on the following:

a)

b)
c)

d)

Subject security attributes: effective UID, file system UID, effective
GID, file system GID, supplemental GIDs;

Object security attributes: owning UID, owning GID;

Access control security attributes maintained for each IPC object
whose name is managed with a file governing access to that object:
see FDP_ACF.1(PSO);

Access control security attributes maintained for any other IPC
object governing access to that object:

i Permission bits for the owning UID,

Classification: public Page 70 of 156
Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

ii. Permission bits for the owning GID,
ili. Permission bits for "world",
iv. The following permission bits: read, write, execute,
FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an operation among
controlled subjects and controlled objects is allowed:
a) IPC object whose name is managed with a file: see FDP_ACF.1(PSO);

b) Any other IPC object: A subject has a specific type access to an
object if one of the following rules hold (the order of the rules is
applicable on a first-match basis):

1. The subject's effective UID is identical with the owning UID of
the object and the requested type of access is within the
permission bits defined for the owning UID; or

2. The subject's effective GID or one of the subject's supplemental
GIDs identical with the owning GID and the requested type of
access is within the permission bits defined for the owning GID;
or

3. The requested type of access is within the permission bits
defined for "world".
FDP_ACF.1.3 The TSF shall explicitly authorise access of subjects to objects based on the
following additional rules:
a) IPCobject whose name is managed with a file: see FDP_ACF.1(PSO);
b) Any other IPC object:
1. read, write, send and receive operations are allowed for the
subject with the capability of CAP_IPC_OWNER.
FDP_ACF.1.4 The TSF shall explicitly deny access of subjects to named objects based on the
following rules:
a) IPCobject whose name is managed with a file: see FDP_ACF.1(PSO);
b) Any other IPC object: none.

6.2.1.29 Complete information flow control (FDP_IFC.2(NI))

FDP_IFC.2.1 The TSF shall enforce the Network Information Flow Control Policy on
a) Subjects:

i unauthenticated external IT entities that send network data to a network
interface of the TOE;

ii. standard Linux processes that send and receive information mediated
by the TOE;
b) Information:
i Network data routed through the TOE;
ii. Network data received by the TOE from an external IT entity;

iii. Network data provided to the TOE by a subject executing on
the TOE intended to be sent to an external IT entity via a
network interface controlled by the TOE;

Version: 0.21 Classification: public Page 71 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

FDP_IFC.2.2

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

and all operations that cause that information to flow to and from subjects covered
by the SFP.

The TSF shall ensure that all operations that cause any information in the TOE to
flow to and from any subject in the TOE are covered by an information flow control

SFP.

6.2.1.30 Simple security attributes (FDP_IFF.1(NI-IPTables))

FDP_IFF.1.1

The TSF shall enforce the Network Information Flow Control Policy based on the
following types of subject and information security attributes:

a)

b)

©Objectinformation security attribute: the logical or physical network interface
through which the network data from an external IT entity entered the TOE
or is intended to be sent out;

TCP/IP information security attributes:

i Source and destination IP address,

ii. Source and destination TCP port number,
ili. Source and destination UDP port number,
iv. Network protocol of TCP, UDP, ICMP

v. TCP header flags of SYN, ACK, FIN, RST, URG, PSH, TCP sequence
numbers

vi. TCP sequence numbers;

Application Note: The refinement is applied due to an obvious error in the OSPP.

FDP_IFF.1.2

FDP_IFF.1.3

Version: 0.21
Last update: 2016-06-09

The TSF shall permit an information flow between a controlled subject and
controlled information via a controlled operation if the following rules hold:

a)

b)

if the set of rules defined in accordance with the security attributes defined
in FDP_IFF.1.3 define that the network data is discarded the network data
shall not be delivered by the TOE to the intended recipient;

if the set of rules defined in accordance with the security attributes defined
in FDP_IFF.1.3 define that the network data is to be delivered unaltered the
network data shall be delivered unaltered by the TOE to the intended
recipient;

if the set of rules defined in accordance with the security attributes defined
in FDP_IFF.1.3 define another action to be taken than discarding the network
data or delivering the data unaltered to the intended recipient, the TOE shall
perform this action.

The TSF shall enforce the following rules:

a)

Information security attribute matching based on the following security
attributes:

IP header information,

UDP header information,
TCP header information,
ICMP type and code,
incoming network interface,
outgoing network interface

NG e

Classification: public Page 72 of 156
Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

b) Matching based on the state of a TCP connection, Statistical analysis
matching;

Performing one or more of the following actions with identified network data:
a) Discard the network data without any further processing, with sending
a notification to the sender;

b) Allow the network data to be processed unaltered by the TOE according to
the routing information maintained by the TOE;

c) No other actions.

FDP_IFF.1.4 The TSF shall explicitly authorise an information flow based on the following rules:
If the network data is not matched by the rule set and the default rule
of the packet filter is ACCEPT then the data is forwarded unaltered based
on the normal operation of the host system's networking stack .

FDP_IFF.1.5 The TSF shall explicitly deny an information flow based on the following rules:
If the network data is not matched by the rule set, one of the following
default rules applies:

a) DROP: the data is discarded.

Application Note: The default rule is configurable where exactly one of the above mentioned
default rules can be selected at any given time.

Application Note: The SFRs FDP_IFF.1(NI-iptables) defines different rule sets implemented by the
TOE covering the FDP_IFF.1 SFR from the OSPP base.

6.2.1.31 Import of user data with security attributes (FDP_ITC.2(BA))

FDP_ITC.2.1 The TSF shall enforce the Persistent Storage Access Control Policy, Transient
Storage Access Control Policy,Network Information Flow Control, no other access
control SFP(s) and/or information flow control SFP(s) when importing user
data, controlled under the SFP, from outside of the TOE.

FDP_ITC.2.2 The TSF shall use the security attributes associated with the imported user data.

FDP_ITC.2.3 The TSF shall ensure that the protocol used provides for the unambiguous
association between the security attributes and the user data received.

FDP_ITC.2.4 The TSF shall ensure that interpretation of the security attributes of the imported
user data is as intended by the source of the user data.

FDP_ITC.2.5 The TSF shall enforce the following rules when importing user data controlled
under the SFP from outside the TOE: No additional importation control rules.

6.2.1.32 Full residual information protection (FDP_RIP.2)

FDP_RIP.2.1 The TSF shall ensure that any previous information content of a resource is made
unavailable upon the allocation of the resource to all objects, subjects or
subject/object related TSF data before the resource is assigned or made available
to another subject or user.

6.2.1.33 Full residual information protection of resources (FDP_RIP.3)

FDP_RIP.3.1 The TSF shall ensure that any previous information content of a resource is made
unavailable upon the allocation of the resource to all subjects or users.

Version: 0.21 Classification: public Page 73 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Application Note: The subject is represented by the data structures inside the kernel forming a
process: all data structures anchored in the task_struct. The user is represented by its attributes
defined by FIA_ATD.1(HU).

6.2.1.34 Authentication failure handling (FIA_AFL.1)

FIA_AFL.1.1

FIA_AFL.1.2

The TSF shall detect when an administrator-configurable number of unsuccessful
authentication attempts for the authentication method of password-based
authentication occur related to consecutive unsuccessful authentication
attempts.

When the defined number of unsuccessful authentication attempts has been
met, surpassed, the TSF shall

a)

b)

c)

For all administrator accounts, "disable" the account for an
authorized administrator configurable time period such that there
can be no more than ten attempts per minute.

For all other accounts, disable the user logon account until it is
re-enabled by the authorized administrator.

For all disabled accounts, any response to an authentication attempt
given to the user shall not be based on the result of that
authentication attempt.

6.2.1.35 User attribute definition (FIA_ATD.1(HU))

FIA_ATD.1.1

The TSF shall maintain the following list of security attributes belonging to
individual human users:

User identifier;

Group memberships;

User password;

Software token verification data;
Security roles;

MLS mode: Sensitivity label;

Application Note: Please see the application note for FIA_UAU.5 for a list of token-based
authentication mechanisms and their associated tokens.

Application Note: The SFR of FIA_ATD.1(LS) from the OSPP extended package for labeled security
is merged into this SFR.

6.2.1.36 User attribute definition (FIA_ATD.1(TU))

FIA_ATD.1.1

Version: 0.21
Last update: 2016-06-09

The TSF shall maintain the following list of security attributes belonging to
individual technical users:

a)

the logical or physical network interface through which the network data
entered the TOE;

identity of the logical or physical external interface through which the user
connected to the TOE;

Container: Namespace mapping and restrictions for each namespace
type;

Classification: public Page 74 of 156
Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

d) Container: Control Group mapping and restrictions for each control
group type;
e) Container: seccomp filter restrictions;

Application Note: Bullet a) of this SFR relates to FDP_IFC.2(NI) and the supporting information
flow control rules specified with the iterations of FDP_IFF.1. In the Common Criteria scheme, external
entities are always considered to be users. Therefore, every network data entity must be specified
as userin this ST.

6.2.1.37 Verification of secrets (FIA_SOS.1)

FIA_SOS.1.1 The TSF shall provide a mechanism to verify that secrets meet the following
quality metric: the probability that a secret can be obtained by an attacker during
the lifetime of the secret is less than 27-20.

Application Note: The TOE password change is implemented using the PAM library. The PAM
module pam_passwdqc.so allows the specification of the quality of new passwords. The evaluated
configuration requires a configuration of the PAM-based password change mechanism that meets
the above mentioned criteria.

Application Note: The Evaluated Configuration Guide contains configuration suggestions for the
password quality mechanism that covers the above mentioned probability. These configuration
suggestions assume the worst-case scenario when attacking these settings.

Application Note: For key-based authentication methods, the evaluation of the RSA, DSA, and
ECDSA keys used for the SSH protocol will show the maximum lifetime of a key depending on its
size.

6.2.1.38 Timing of authentication (FIA_UAU.1)

FIA_UAU.1.1 The TSF shall allow
a) theinformation flow covered by the Network Information Flow Control Policy;
b) Establishing a cryptographically secured network connection;
c) Local console log-in: banner information;
d) SSH log-in: obtaining the list of allowed authentication methods;
on behalf of the user to be performed before the user is authenticated.

FIA_UAU.1.2 The TSF shall require each user to be successfully authenticated before allowing
any other TSF-mediated actions on behalf of that user.

6.2.1.39 Multiple authentication mechanisms (FIA_UAU.5)

FIA_UAU.5.1 The TSF shall provide the following authentication mechanisms:
a) Authentication based on username and password;
b) Authentication based on software token verification data;
c) Authentication based on remote authentication provider
to support user authentication.

Application Note: The TOE is able to maintain the following types of software tokens and their
verification data:

Version: 0.21 Classification: public Page 75 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

® SSH user keys: The TOE as server part is able to store the public part of the SSH user key
for the user account the user wants to access. When the TOE acts as an SSH client, the
TOE is able to store the private part of the SSH user key for the requesting user.

FIA_UAU.5.2 The TSF shall authenticate any user's claimed identity according to the following
rules:

a) Authentication based on username and password is performed for
TOE-originated requests and credentials stored by the TSF;

b) Authentication based on software token verification data is performed for
TOE-originated requests;

c) Users with expired passwords are required to create a new password
after correctly entering the expired password

d) For SSH, both, the password-based and key-based authentication
methods can be enabled at the same time. In this case, the
key-based authentication method is tried before the password-based
authentication. If the key-based authentication succeeds, the user
is authenticated. If the key-based authentication fails, the
password-based authentication is applied. If the password-based
authentication fails, the user login request is denied.

e) For username and password based authentication, the order whether
the remote authentication provider or the local database is accessed
is configurable. If the authentication at either the locally store
credentials or at the remote authentication provider succeeds, the
authenticating user is granted access.

6.2.1.40 Protected authentication feedback (FIA_UAU.7)

FIA_UAU.7.1 The TSF shall provide only obscured feedback to the user while the authentication
is in progress.

6.2.1.41 Timing of identification (FIA_UID.1)

FIA_UID.1.1 The TSF shall allow

a) the information flow covered by the Network Information Flow
Control Policy;

b) Establishing a cryptographically secured network connection;

c) Console log-in: banner information;

d) SSH log-in: obtaining the list of allowed authentication methods;
on behalf of the user to be performed before the user is identified.

FIA_UID.1.2 The TSF shall require each user to be successfully identified before allowing any
other TSF-mediated actions on behalf of that user.

6.2.1.42 Enhanced User-subject binding (FIA_USB.2)

FIA_USB.2.1 The TSF shall associate the following user security attributes with subjects acting
on the behalf of that user:

a) The user identity that is associated with auditable events;

Version: 0.21 Classification: public Page 76 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

b) The user security attributes that are used to enforce the Persistent Storage
Object Access Control Policy;

¢) The user security attributes that are used to enforce the Transient Storage
Object Access Control Policy;

d) The software token that can be used for subsequent identification and
authentication with the TSF or other remote IT systems;

e) Active roles;
f) Active groups;

g) MLS mode: User sensitivity level that is used to enforce the
Multilevel Confidentiality Information Flow Control Policy;

h) The user security attributes that are used to enforce the Namespace
Access Control Policy.

i) The user security attributes that are used to enforce the Linux
Control Group Access Control Policy.

j) The user security attributes that are used to enforce the System
Call Access Control Policy.

Application Note: FIA USB.1(LS) from the OSPP extended package for labeled security is merged
into this SFR.

FIA_USB.2.2 The TSF shall enforce the following rules on the initial association of security
attributes with subjects acting on the behalf of users:

a) Upon successful identification and authentication, the login UID,
the real UID, the filesystem UID and the effective UID shall be those
specified in the user entry for the user that has authenticated
successfully;

b) Upon successful identification and authentication, the real GID, the
filesystem GID and the effective GID shall be those specified via the
primary group membership attribute in the user entry;

c) Upon successful identification and authentication, the supplemental
GIDs shall be those specified via the supplemental group
membership assignment for the user entry;

d) MLS mode: The sensitivity label associated with a subject shall be
within the clearance range of the user.

e) Upon instantiating a Linux Container, the namespaces, Linux control
groups and seccomp filter selected by the Linux Contained
management daemon is associated with the processes representing
the Linux Container.

Application Note: The various subject UIDs are all derived from the same numeric UID per user
entry stored in the /etc/passwd file.

Application Note: The various subject GIDs except the supplemental GIDs are all derived from
the same numeric GID per user entry stored in the /etc/passwd file.

Application Note: The subject's supplemental GIDs are derived from the username to group name
mappings in the /etc/group file. As the TOE only maintains numeric IDs for subjects, the username
and the group names need to be converted before instantiating the subject. The username to UID
mapping is provided in /etc/passwd and the group name to GID mapping is provided in /etc/group.

Version: 0.21 Classification: public Page 77 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Application Note: The initial sensitivity label for each user is maintained in /etc/selinux/mls/seusers.
The clearance range for users is specified in the files /etc/selinux/mls/users/*.

FIA_USB.2.3 The TSF shall enforce the following rules governing changes to the user security
attributes associated with subjects acting on the behalf of users:

a)

b)

c)

d)

e)

f)

g)

The effective and filesystem UID of a subject can be changed by the
use of an executable with the SETUID bit set. In this case the
program is executed with the effective and filesystem UID of the
owning UID of the file storing the program. These newly set effective
and filesystem UIDs are used for the DAC permission validation. The
real and login UID remain unchanged.

The effective and filesystem GID of a subject can be changed by the
use of an executable with the SETGID bit set. In this case the
program is executed with the effective and filesystem GID of the
owhning GID of the file storing the program. These newly set effective
and filesystem GIDs are used for the DAC permission validation. The
real GID remains unchanged.

The real, effective and filesystem UID of a subject can be changed
by the use of the set*uid system call family for the calling
application. These system calls are restricted to processes
possessing the CAP_SETUID capability.

The real, effective and filesystem GID of a subject can be changed
by the use of the set*gid system call family for the calling
application. These system calls are restricted to processes
possessing the CAP_SETUID capability.

The set of supplemental GIDs of a subject can be changed by the
use of the setgroups system call for the calling application. These
system calls are restricted to processes possessing the CAP_SETGID
capability.

The set of effective and inheritable capabilities of a subject can be
changed by the use of an executable with activated file capabilities.
In this case the program obtains the following capabilities when
invoking the file with execve:

1. the process' the effective capability set gains the capabilities
defined by the permitted file capabilities set;

2. the process' inheritable capability set is ANDed with the
inheritable file capability set to form the new process'
inheritable capability set which defines the capability set that
will be retained after an execve system call.

MLS mode: The sensitivity label of any subject can be changed to
a label within the clearance assigned to the effective UID of that
subject. This transition is restricted to subjects possessing the
mlisprocwrite or misprocwritetoclr MLS override attributes.

Application Note: The applications "su" and "sudo" allow the calling user to change the filesystem
and effective UID either to root or to other users provided the authentication to "su" or "sudo" was
successful. Both application uses the SETUID bit with the owning UID of root as well as the set*uid

Version: 0.21
Last update: 2016-06-09

Classification: public Page 78 of 156
Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

system calls to change to other UIDs before spawning a new shell or the given command. As both
applications rest on the above mentioned mechanismes, it is not listed as a separate mechanism to
modify the calling user's UIDs.

Application Note: The mechanism to change the sensitivity label of subjects is implemented by
writing the new label to one of the following files: /proc/<PID>/attr/{current|execve|*create} which
allow the specification of the sensitivity label for the running process (current), for the process
when the execve system call is triggered (execve) or the sensitivity label that is used when create
the next object (*create). The same proc files also exist on a per-thread level.

Application Note: The login UID is set by the PAM modules by inserting the intended UID into the
/proc/<PID>/loginuid file. This file can be written to only by subjects executing with the effective
UID of zero (root) and only for the calling process' own loginuid file. However, there is no application
except the PAM modules which access that proc file which implies that the login UID remains
unchanged after login when operating the TOE. Authorized administrators are not intended to
access that proc file.

Application Note: The Linux Container restrictions cannot be modified.

FIA_USB.2.4 The TSF shall enforce the following rules for the assignment of subject security
attributes not derived from user security attributes when a subject is created:
No rules.

6.2.1.43 Failure with preservation of secure state - full buffer overflow
protection (FPT_FLS.1(FULL))

FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of failures occur:

a) Stack Canary: Modification of a function return address on the
process' or thread's stack to jump to previously known processor
instructions by misusing the following C programming language
constructs (also known as Stack Protector Strong):

1. Functions with stack buffers larger than 8 bytes;
2. Functions using alloca();
3. Functions with local array definitions;

4. Functions having references to local frame addresses;

b) RELRO: Modification of process section other than the sections that
hold compile time initialized data and sections holding the mapping
of all uninitialized variables

for the runtime instances of the following binaries:

i. alluser-provided applications and their depending libraries that are

compiled and linked with the following properties:

1. presence of the ELF program header entry of PT_GNU_STACK
and the absence of the PF_X bit in the p_flags ELF header flags;

2. on x86 systems, presence of the ELF program header entry of
PT_GNU_RELRO with the memory range information covering
the following ELF sections: same as listed in FPT_FLS.1(PARTIAL)
including .got.plt;

Version: 0.21 Classification: public Page 79 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

3. on PPC64 systems, presence of the ELF program header entry
of PT_GNU_RELRO with the memory range information covering
the following ELF sections: same as listed in
FPT_FLS.1(PARTIAL);

4. on PPC64le systems, presence of the ELF program header entry
of PT_GNU_RELRO with the memory range information covering
the following ELF sections: same as listed in
FPT_FLS.1(PARTIAL);

5. on S390 systems, presence of the ELF program header entry of
PT_GNU_RELRO with the memory range information covering
the following ELF sections: same as listed in FPT_FLS.1(PARTIAL)
including .got;

Application Note: The secure state implied with this functionality covers the following aspects
where the following list explains the implication of each bullet above:

a) The ELF header sections listed above are set read-only using the mprotect system call by
the loader before the application gains control. When exploiting buffer overruns, the attacker
cannot modify information in those memory sections. These sections store offset tables
required for the dynamic linking mechanism and, if abused, allow attackers to modify the
jump addresses of object accesses. Full protection against this type of atack can only be
achieved if the application and all depending shared libraries are compiled linked with full
protection enabled. When at least one shared library the application depends on or the
application itself is compiled and linked with partial protection (see FPT FLS.1(PARTIAL)),
only partial protection against this type of attack is available for the given application.

Application Note: The stack protection is enabled when using the GCC compiler option of
-fstack-protector-strong.

Application Note: During standard compilation of applications, the stack execution protection is
enabled. To ensure the presence of the PT_GNU_STACK ELF program header entry and the absence
of the PF_X bit in the p_flags ELF header flags, the following considerations must be applied by a
programmer as any of the following operations disable the stack execution protection:

® The following linker option must not be used: "-z execstack" (gcc: "-WI,-z,execstack").
® The following assembler option must not be used: "--execstack" (gcc: "-Wa,--execstack").

® Modifications of an ELF program header entry in an already compiled binary which change
the PT_GNU_STACK and PF_X flags (like using the execstack(8) application) must not be
performed.

® The application or library code must not contain trampolines such as nested functions

pushed onto the stack which passed as pointers to functions as this would also enable the
stack execution support.

Application Note: To ensure the presence of PT_GNU_RELRO covering the proper ELF sections,
the application must be linked with the provided linker using the linker options of "-z relro -z now"
(using the GCC compiler using the compiler options of "-WI,-z,relro,-z,now" can be used which are
passed to the linker). In addition, an application must be compiled as PIE with the gcc option of
"-fPIE". Contrary, a shared library must be compiled as PIC with the gcc option of "-fPIC".

Application Note: The TOE code does not use full RELRO.

Version: 0.21 Classification: public Page 80 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6.2.1.44 Failure with preservation of secure state - partial buffer overflow
protection (FPT_FLS.1(PARTIAL))

FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of failures occur:

a)

b)

for:

iv.

Version: 0.21
Last update: 2016-06-09

Stack Canary: Modification of a function return address on the
process' or thread's stack to jump to previously known processor
instructions by misusing the following C programming language
constructs (also known as Stack Protector Strong):

1. Functions with stack buffers larger than 8 bytes;

2. Functions using alloca();

3. Functions with local array definitions;

4. Functions having references to local frame addresses;

RELRO: Modification of process sections other than the sections
that hold compile time initialized data, the sections holding the
mapping of all uninitialized variables, and the dynamic procedure
linking table (.got.plt)

all processes provided with the TOE executing as daemons and their
depending libraries

all processes with SUID flag set provided by the TOE and their
depending libraries

all processes with at least one file system capability set provided
by the TOE and their depending libraries

all user-provided applications and their depending libraries that are
compiled and linked with the following properties:

1. presence of the ELF program header entry of PT_GNU_STACK
and the absense of the PT_X bit in the p_flags ELF header flags;

2. on x86 systems, presence of the ELF program header entry of
PT_GNU_RELRO with the memory range information covering
the following ELF sections: .tdata, .init_array, .fini_array, .ctors,
.dtors, .jcr, .data.rel.ro, .dynamic, .got;

3. on PPC64 systems, presence of the ELF program header entry
of PT_GNU_RELRO with the memory range information covering
the following ELF sections: ctors, .dtors, .jcr, .data.rel.ro,
.dynamic, .got

4. on PPCé64le systems, presence of the ELF program header entry
of PT_GNU_RELRO with the memory range information covering
the following ELF sections: ctors, .dtors, .jcr, .data.rel.ro,
.dynamic, .got

5. on S390 systems, presence of the ELF program header entry of
PT_GNU_RELRO with the memory range information covering
the following ELF sections: .interp, .note.ABl-tag,
.note.gnu.build-id, .gnu.hash, .dynsym, .dynstr, .gnu.version,
.ghu.version_r, .rela.dyn, .rela.plt, .init, .plt, .text, .fini, .rodata,
.eh_frame_hdr, .eh_frame, .init_array, .fini_array, .jcr .dynamic

Classification: public Page 81 of 156
Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Application Note: The only difference between full and partial RELRO is that in partial RELRO the
.got.plt ELF section is left unprotected and is therefore read/writable. This difference allows lazy
bindings during the dynamic linking process.

Application Note: All application notes from FPT_FLS.1(FULL) apply except the following.

Application Note: To ensure the presence of PT_GNU_RELRO covering the proper ELF sections,
the application must be linked with the provided linker using the linker options of "-z relro" (using
the GCC compiler using the compiler options of "-WI,-z,relro" can be used which are passed to the
linker). In addition, an application must be compiled as PIE with the gcc option of "-fPIE". Contrary,
a shared library must be compiled as PIC with the gcc option of "-fPIC".

6.2.1.45 Failure with preservation of secure state - user space protecton
from kernel (FPT_FLS.1(INTEL))

FPT_FLS.1.1 On an Intel x86 with SMEP support the Fhe- TSF shall preserve a secure state
when the following types of failures occur:

a) SMEP: Execution of code residing in user space memory by the Linux
kernel;

Application Note: This SFR applies to all all Intel-based systems listed in section 1.4.4.

6.2.1.46 Reliable time stamps (FPT_STM.1)
FPT_STM.1.1 The TSF shall be able to provide reliable time stamps.

6.2.1.47 Inter-TSF basic TSF data consistency (FPT_TDC.1(BA))
FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret the following data
types:

a) Packet filter: protocol headers for the network protocols covered
by the packet filter;

when shared between the TSF and another trusted IT product.
FPT_TDC.1.2 The TSF shall use the following interpretation rules:

a) Packet filter: protocol headers specification provided in RFC 791
(IP), RFC 793 (TCP), RFC 768 (UDP), RFC 792 (ICMP);

when interpreting the TSF data from another trusted IT product.

6.2.1.48 TSF-initiated session locking (FTA_SSL.1)

FTA_SSL.1.1 The TSF shall lock an interactive session to a human user maintained by the TSF
after an administrator-configurable time interval of user inactivity by:

a) clearing or overwriting TSF controlled display devices, making the current
contents unreadable;

b) disabling any activity of the user's TSF controlled access/TSF controlled
display devices other than unlocking the session.

Application Note: The management aspect of configuring the time interval is covered by
FMT MTD.1(SSL).

Version: 0.21 Classification: public Page 82 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

FTA_SSL.1.2

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

The TSF shall require the following events to occur prior to unlocking the session:

a) Successful re-authentication with the credentials of the user owning the
session using password based authentication,;

b) No other events .

6.2.1.49 User-initiated locking (FTA SSL.2)

FTA_SSL.2.1

FTA_SSL.2.2

The TSF shall lock an interactive session maintained by the TSF, by:

a) clearing or overwriting TSF controlled display devices, making the current
contents unreadable;

b) disabling any activity of the user's TSF controlled data access/TSF controlled
display devices other than unlocking the session.

The TSF shall require the following events to occur prior to unlocking the session:

a) Successful re-authentication with the credentials of the user owning the
session using password based authentication,;

b) No other events .

6.2.1.50 Inter-TSF trusted channel (FTP_ITC.1)

FTP_ITC.1.1

Version: 0.21
Last update: 2016-06-09

The TSF shall provide a communication channel between itself and another trusted
IT product that is logically distinct from other communication channels and
provides assured identification of its end points and protection of the channel
data from modification and disclosure using the following mechanisms:

a) Cryptographically-protected communication channel using SSH protocol
version 2 as defined in RFCs 4251, 4252, 4253, and 4254 with a
combination of the following cipher suites defined there:

1. Symmetric ciphers defined in FCS_COP.1(NET) for encryption;

2. Keyed hash algorithms defined in FCS_COP.1(NET) for integrity;
3. Algorithms defined in FCS_CKM.2(NET-SSH) for key exchange;
4

Asymmetric ciphers defined in FCS_COP.1(NET) for public key
encryption;

b) Cryptographically-protected communication channel using TLS as defined
in [RFC5246]- using X.509 certificates and supporting the following
cipher suites defined there: Algorithms defined in FCS_COP.1(NET)

c) Cryptographically-protected communication channel using IPSEC protocol
ESP as defined in [RFC4303]: using the cryptographic algorithms:
1. Symmetric ciphers defined in FCS_COP.1(NET) for ESP

encryption;
2. Keyed hash algorithms defined defined in FCS_COP.1(NET) for
ESP authentication and authentication header protection;

3. Hash algorithms defined in FCS_COP.1(NET) for key negotiation
and SA establishment;

4. Algorithms defined in FCS_CKM.2(NET-IKE) for use in IKE key
establishment;

5. Asymmetric ciphers defined in FCS_COP.1(NET) for Peer
Authentication;

Classification: public Page 83 of 156
Copyright © 2016 by Red Hat and atsec information security

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc4303

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

FTP_ITC.1.2 The TSF shall permit the TSF, another trusted IT product to initiate

communication via the trusted channel.
FTP_ITC.1.3 The TSF shall initiate communication via the trusted channel for all security

functions specified in the ST that interact with remote trusted IT systems and
no other conditions or functions.

Application Note: The SSH protocol implements a bi-directional authentication mechanism as
follows:

® Server-side authentication: the user identification and authentication via user name and
password / SSH user key allows the server to authenticate the client.

e (lient-side authentication: the SSH host key verification performed by the SSH client during
each connection attempt allows the client to authenticate the server.

6.2.2 Linux Container Functionality (not on POWER architecture)
All SFRs in this section do not apply to the POWER architecture.

6.2.2.1 Complete access control (Namespaces) (FDP_ACC.2(Namespaces))

FDP_ACC.2.1 The TSF shall enforce the Namespace Access Control Policy on
a) Subjects: processes;

b) Objects: resources defined in Security Policy Model that are mapped
to Linux namespaces

and all operations among subjects and objects covered by the SFP.

FDP_ACC.2.2 The TSF shall ensure that all operations between any subject controlled by the
TSF and any object controlled by the TSF are covered by an access control SFP.

6.2.2.2 Complete access control (Linux control groups)
(FDP_ACC.2(Cgroup))

FDP_ACC.2.1 The TSF shall enforce the Linux Control Group Access Control Policy on
a) Subjects: processes;

b) Objects: resources defined in Security Policy Model that are mapped
to Linux control groups

and all operations among subjects and objects covered by the SFP.

FDP_ACC.2.2 The TSF shall ensure that all operations between any subject controlled by the
TSF and any object controlled by the TSF are covered by an access control SFP.

6.2.2.3 Complete access control (System Call Filtering)
(FDP_ACC.2(SECCOMP))

FDP_ACC.2.1 The TSF shall enforce the System Call Access Control Policy on
a) Subjects: processes;

b) Objects: resources defined in Security Policy Model that are mapped
to system call resources

and all operations among subjects and objects covered by the SFP.

Version: 0.21 Classification: public Page 84 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

FDP_ACC.2.2 The TSF shall ensure that all operations between any subject controlled by the
TSF and any object controlled by the TSF are covered by an access control SFP.

6.2.2.4 Security attribute based access control (Namespaces)
(FDP_ACF.1(Namespaces))

FDP_ACF.1.1 The TSF shall enforce the Namespace Access Control Policy to objects based
on the following:

a) Subject security attributes:

Memberships to all types of namespaces defined in Security
Policy Model

Zero or more Linux capabilities

b) Object security attributes:

Mount namespace: list of mount points;

PID namespace: process identifiers associated with PID
namespace;

IPC namespace: IPC objects associated with IPC hamespace;

iv. Network namespace: network objects associated with network
namespace;
v. UTS namespace: UTS naming data;
FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an operation among

controlled subjects and controlled objects is allowed:
a) Object accessibility for objects managed with namespaces:

1.

Mount namespace: a subject can only interact with the mount
points and all file system objects in this mount point if that
mount point is part of the mount namespace the subject
requesting the interaction is associated with;

PID namespace: a subject can only interact with another process
by referring to its PID if that process is a member of the PID
namespace or one of its children the subject requesting the
interaction is associated with;

IPC namespace: a subject can only interact with an IPC object
if that IPC object is part of the IPC namespace the subject
requesting the interaction is associated with;

Network namespace: a subject can only interact with the
network objects if that network object is part of the network
namespace the subject requesting the interaction is associated
with;

UTS namespace: a subject can only interact with the system
naming information object of that object is part of the UTS
namespace the subject requesting the interaction is associated
with;

Application Note: Every subject and object is always associated with a
namespace. Per default, every subject and object is part of the root namespace
of the respective namespace trees. Subjects with capabilities part of the root
user namespace are trusted subjects.

Version: 0.21
Last update: 2016-06-09

Classification: public Page 85 of 156
Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Application Note: The mount namespace functionality supports the functionality
of shared and slave mounts. These mount types to not fully enforce the separation
capability defined in this ST and are therefore not considered by this ST. These
mount types can be used and do not interfere with the mount namespace
functionality that provides object isolation for different subjects.

FDP_ACF.1.3 The TSF shall explicitly authorise access of subjects to objects based on the
following additional rules: the creation of objects within a namespace is
allowed even when another object with the same properties exist in
other namespaces regardless of the placement in the tree of namespaces.

Application Note: For example, when creating a user namespace, the same user IDs can be
created and used in different namespaces. Their scope, however, is governed by the rules in

FDP _ACF.1.2 to be local to the respective namespace. This applies to all other namespaces, including
networking: a process can open the same port on the same interface as another process in a
different network namespace -- however, in this case the interface visible in software must be
connected with a different physical device (e.g. ethO in network namespace A is a different physical
device than ethO in network namespace B -- the same applies to the loopback device).

FDP_ACF.1.4 The TSF shall explicitly deny access of subjects to objects based on the following
additional rules: no rules.

6.2.2.5 Security attribute based access control (Linux control groups)
(FDP_ACF.1(Cgroup))

FDP_ACF.1.1 The TSF shall enforce the Linux Control Group Access Control Policy to
objects based on the following:

a) Subject security attributes: Assignment of a process to zero or more
control group controller

b) Object security attributes: For each control group controller:
Resource limit configuration

FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an operation among
controlled subjects and controlled objects is allowed: Processes assigned to
a control group controller can only access resources that are defined
by the control group controller.

FDP_ACF.1.3 The TSF shall explicitly authorise access of subjects to objects based on the
following additional rules: processes not assigned to a control group
controller governing a particular resource class are not limited by the
Linux Control Group Access Control Policy.

FDP_ACF.1.4 The TSF shall explicitly deny access of subjects to objects based on the following
additional rules: no rules.

6.2.2.6 Security attribute based access control (System Call Filtering)
(FDP_ACF _NA.1(SECCOMP))

FDP_ACF_NA.1.1 The TSF shall enforce the System Call Access Control Policy to objects based
on the following:

a) Subject security attributes: Definition of an access control list
associated with a process which specifies:

1. System call number matching rule

Version: 0.21 Classification: public Page 86 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

b)

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

2. System call argument matching rule (optional)
3. Operation that is performed when matching rule is found

Object security attributes:
i. System call number
ii. System call arguments

FDP_ACF_NA.1.2 The TSF shall enforce the following rules to determine if an operation among
controlled subjects and controlled objects is allowed: If a rule set is applicable
to a process and the process invokes a system call, the rule set is
evaluated for all rules that matches the invoked system call, and
(optionally) matches the system call parameter. If multiple rules apply
to the request, the return value for the evaluation of a given system
call will always use the highest precedent value. The following
precedence applies with the highest precedence value first:

1.

2.

5.

SECCOMP_RET KILL: Results in the task exiting immediately without
executing the system call.

SECCOMP_RET_TRAP: Results in the kernel sending a SIGSYS signal
to the triggering task without executing the system call. The
program counter will be as though the system call happened. The
return value register will contain a value indicating an error.
SECCOMP_RET_ERRNO: Results in the lower 16-bits of the return
value being passed to userland as the errno without executing the
system call.

SECCOMP_RET_TRACE: When returned, this value will cause the
kernel to attempt to notify a ptrace()-based tracer prior to executing
the system call. If there is no tracer present, -ENOSYS is returned
to userland and the system call is not executed.

SECCOMP_RET_ALLOW: Results in the system call being executed.

FDP_ACF_NA.1.3 The TSF shall explicitly authorise access of subjects to objects based on the
following additional rules: no rule.

FDP_ACF_NA.1.4 The TSF shall explicitly deny access of subjects to objects based on the following
additional rules: no rules.

6.2.2.7 Export of user data with security attributes (FDP_ETC.2(LC))

FDP_ETC.2.1 The TSF shall enforce the Namespace Access Control Policy when exporting
user data, controlled under the SFP(s), outside of the TOE.

FDP_ETC.2.2 The TSF shall export the user data with the user data's associated security
attributes.

FDP_ETC.2.3 The TSF shall ensure that the security attributes, when exported outside the TOE,
are unambiguously associated with the exported user data.

FDP_ETC.2.4 The TSF shall enforce the following rules when user data is exported from the
TOE: subjects can only send data via the network interfaces associated
with the network namespace assigned to the subject.

Version: 0.21
Last update: 2016-06-09

Classification: public Page 87 of 156
Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6.2.2.8 Import of user data with security attributes (FDP_ITC.2(LC))

FDP_ITC.2.1 The TSF shall enforce the Namespace Access Control Policy when importing
user data, controlled under the SFP, from outside of the TOE.

FDP_ITC.2.2 The TSF shall use the security attributes associated with the imported user data.

FDP_ITC.2.3 The TSF shall ensure that the protocol used provides for the unambiguous
association between the security attributes and the user data received.

FDP_ITC.2.4 The TSF shall ensure that interpretation of the security attributes of the imported
user data is as intended by the source of the user data.

FDP_ITC.2.5 The TSF shall enforce the following rules when importing user data controlled

under the SFP from outside the TOE: subjects can only receive data via the
network interfaces associated with the network namespace the subject
is associated with.

6.2.2.9 User identification before any action (FIA_UID.2(LC))

FIA_UID.2.1 The TSF shall require each usernamespace a subject acting on behalf of a user
is associated with to be successfully identified before allowing any other
TSF-mediated actions on behalf of that user.

Application Note: This SFR applies to the mappings of the different types of namespaces to a
process.

6.2.2.10 Inter-TSF basic TSF data consistency (FPT_TDC.1(LC))

FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret access control
related security attributes when shared between the TSF and another trusted
IT product.

FPT_TDC.1.2 The TSF shall use the information of the physical network interface used
to receive data when interpreting the TSF data from another trusted IT product.

6.2.2.11 Management of security attributes (Namespaces)
(FMT_MSA.1(Namespaces-CACP))

FMT_MSA.1.1 The TSF shall enforce the Namespace Access Control Policy to restrict the
ability to change_default, query, modify, delete the security attributes of
subjects and objects covered by the SFP to
a) User namespace: the owner of the namespace;

b) Other namespaces: the user with the capability of CAP_SYS_ADMIN
outside of any user namespace.

6.2.2.12 Management of security attributes (Cgroup)
(FMT_MSA.1(Cgroup-CACP))

FMT_MSA.1.1 The TSF shall enforce the Linux Control Group Access Control Policy to
restrict the ability to change_default, query, modify, delete, add the security
attributes of subjects and objects covered by the SFP to the user with the
capability of CAP_SYS_ADMIN.

Version: 0.21 Classification: public Page 88 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6.2.2.13 Management of security attributes (FMT_MSA.1(SECCOMP))

FMT_MSA.1.1

The TSF shall enforce the System Call Access Control Policy to restrict the
ability to add the security attributes of subjects and objects covered by the
SFP to

a) the calling process: for adding new rules applicable to this process
only,

b) the kernel: when creating a new process, all security attributes are
inherited from the parent process.

6.2.2.14 Static attribute initialisation (Namespaces)
(FMT_MSA.3(Namespace-CACP))

FMT_MSA.3.1

FMT_MSA.3.2

The TSF shall enforce the Namespace Access Control Policy to provide
restrictive default values for security attributes that are used to enforce the
SFP.

The TSF shall allow the nobody to specify alternative initial values to override
the default values when an object or information is created.

6.2.2.15 Static attribute initialisation (Cgroup) (FMT_MSA.3(Cgroup-CACP))

FMT_MSA.3.1

FMT_MSA.3.2

The TSF shall enforce the Linux Control Group Access Control Policy to
provide restrictive default values for security attributes that are used to enforce
the SFP.

The TSF shall allow the nobody to specify alternative initial values to override
the default values when an object or information is created.

6.2.2.16 Static attribute initialisation (FMT_MSA.3(SECCOMP))

FMT_MSA.3.1

FMT_MSA.3.2

The TSF shall enforce the System Call Access Control Policy to provide
permissive default values for security attributes that are used to enforce the
SFP.

The TSF shall allow the nobody to specify alternative initial values to override
the default values when an object or information is created.

6.2.2.17 Management of TSF data (FMT_MTD.1(LC-COMP))

FMT_MTD.1.1

The TSF shall restrict the ability to initialize the compartment security
attributes to any user for creating a user namespace; the subject with
the Linux capability of CAP_SYS_ADMIN applicable to the namespace the
administrative action applies to for creating any other namespace.

Application Note: This SFR applies to FIA_UID.2(LC).

Version: 0.21

Last update: 2016-06-09

Classification: public Page 89 of 156
Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6.2.3 Confidentiality protection of data at rest

6.2.3.1 Complete access control (FDP_ACC.2(CP))
FDP_ACC.2.1 The TSF shall enforce the Confidentiality Access Control Policy for dm-crypt

on
a) Subjects: all subjects defined with the Security Policy Model
b) Objects:

i. Persistent Storage Objects of the following type : all file system
objects defined with the Security Policy Model.

and all operations among subjects and objects covered by the SFP.

FDP_ACC.2.2 The TSF shall ensure that all operations between any subject controlled by the
TSF and any object controlled by the TSF are covered by an access control SFP.

6.2.3.2 Security attribute based access control (FDP_ACF.1(CP))

FDP_ACF.1.1 The TSF shall enforce the Confidentiality Access Control Policy for dm-crypt
to objects based on the following:

a) Subject security attributes: none as all subjects maintained by the
TOE are covered;

b) Persistent storage object security attributes: all persistent storage
objects located on the protected block device;

c) Block device object security attributes: master volume key used to
encrypt and decrypt and data processed on that block device;

d) User security attributes: passphrase that protects the master volume
key using the LUKS protection mechanism.

Application Note: The SFR mentions two different object attributes that are relevant to the security
policy. The first is the master volume key used to encrypt data stored on the block device. However,
file system objects (which contain the information the user wants to protect) are only covered by

the encryption, if they are stored on the encrypted block device. Therefore, the storage location of
the file system objects is another object security attribute as it decides about the protection status
of the object.

FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an operation among
controlled subjects and controlled objects is allowed:

a) Access granting when TSF are active: Every user with access to the
mount point of the encrypted block device is granted access when
the encrypted block device is unlocked and mounted;

b) Access granting when TSF are active: Every user not in the
possession of the passphrase to unlock the encrypted block device
is denied access to data stored on that block device;

c) Access granting when TSF are inactive: Every user not in the
possession of the passphrase to unlock the encrypted block device
is denied access to data stored on that block device.

Version: 0.21 Classification: public Page 90 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Application Note: The TOE provides the dm_crypt mechanism as a block device encryption. When
the session key for the encryption and decryption operation is provided to the kernel, the encrypted
block device is unlocked. At this point, the contents - the file system - is accessible to the kernel
and can be mounted. If the session key is locked, all data is encrypted on the block device with a
symmetric of either Triple-DES or AES.

FDP_ACF.1.3 The TSF shall explicitly authorise access of subjects to objects based on the
following additional rules: no explicit access authorization to any subject.

Application Note: When the block device is unlocked and mounted, it behaves exactly the same
way as any other mounted file system. Note that any file system specific access control mechanisms
like permission bits, ACLs, and SELinux-based access control are added to the protection mechanism

FDP_ACF.1.4 The TSF shall explicitly deny access of subjects to objects based on the following
additional rules: none.

6.2.3.3 Confidentiality for data at rest (FDP_CDP.1(CP))

FDP_CDP.1.1 The TSF shall enforce the Confidentiality Access Control Policy for dm-crypt
to store user data at rest in containers controlled by the TSF in a manner protected
from unauthorised disclosure.

6.2.4 Management related functionality

6.2.4.1 Management of object security attributes (FMT_MSA.1(PSO))

FMT_MSA.1.1 The TSF shall enforce the Persistent Storage Object Access Control Policy to
restrict the ability to modify, change_default the security attributes of the objects
covered by the SFP to the owner of the object and users with processes
granted the CAP_CHOWN, CAP_FOWNER, CAP_FSETID capabilities.

6.2.4.2 Management of object security attributes (FMT_MSA.1(TSO))

FMT_MSA.1.1 The TSF shall enforce the Transient Storage Object Access Control Policy to restrict
the ability to modify the security attributes of the objects covered by the SFP to
the owner of the object and users with processes granted the CAP_FOWNER
capability.

6.2.4.3 Management of security attributes (FMT_MSA.1(CP))

FMT_MSA.1.1 The TSF shall enforce the Confidentiality Access Control Policy for dm-crypt
to restrict the ability to modify, transfer, delete the security attributes of the
block device objects covered by the SFP to the owner of the object.

Application Note: The SFR applies to the management of the session key that encrypts the data
on the block device. Only the owner, i.e. the user that is in possession of the passphrase protecting
the session, is able to modify the key, to transfer it (i.e. to protect it with an additional passphrase)
or to delete the session key.

Version: 0.21 Classification: public Page 91 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6.2.4.4 Static attribute initialisation (FMT_MSA.3(PSO))

FMT_MSA.3.1 The TSF shall enforce the Persistent Storage Object Access Control Policy to
provide restrictive default values for security attributes that are used to enforce
the SFP.

FMT_MSA.3.2 The TSF shall allow the
a) root user for a global setting applied during logon;

b) each user for a setting applicable to his processes;
c) users with write permissions to a directory for setting default ACLs

to specify alternative initial values to override the default values when an object
or information is created.

Application Note: The global default value for permission bits is specified with the umask value
which specifies the permission bits for newly created objects. This value has an initial setting of
022 or the value specified in /etc/login.defs. Only the root user can manage that initial value as
this file is writable to root only. Users can change their umask value at any time using the umask(2)
system call. For ACLs, the default ACL is provided for for the root directory which, in case of absence
of a default ACL entry is consistent with the umask.

6.2.4.5 Static attribute initialisation (FMT_MSA.3(TSO))

FMT_MSA.3.1 The TSF shall enforce the Transient Storage Object Access Control Policy to provide
restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2 The TSF shall allow the
a) root user for a global setting applied during logon;
b) each user for a setting applicable to his processes

to specify alternative initial values to override the default values when an object
or information is created.

Application Note: The global default value for permission bits is specified with the umask value
which specifies the permission bits for newly created objects. This value has an initial setting of
022 or the value specified in /etc/login.defs. Only the root user can manage that initial value as
this file is writable to root only. Users can change their umask value at any time using the umask(2)
system call.

6.2.4.6 Static attribute initialisation (FMT_MSA.3(NI))

FMT_MSA.3.1 The TSF shall enforce the Network Information Flow Control Policy to provide
permissive default values for security attributes that are used to enforce the
SFP.

FMT_MSA.3.2 The TSF shall allow the users with processes granted the CAP_NET_ADMIN

capability to specify alternative initial values to override the default values
when an object or information is created.

Application Note: The default value specified in this SFR applies to the default for the packet
filter after boot. The administrator can configure alternative default values as outlined in
FDP_IFF.1(NI-IPTables).

Application Note: The iptables command uses a netlink interface to the kernel which requires
that the caller possesses the CAP_NET _ADMIN capability.

Version: 0.21 Classification: public Page 92 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6.2.4.7 Static attribute initialisation (FMT_MSA.3(CP))

FMT_MSA.3.1 The TSF shall enforce the Confidentiality Access Control Policy for dm-crypt
to provide restrictive default values for security attributes that are used to
enforce the SFP.

FMT_MSA.3.2 The TSF shall allow nobody to specify alternative initial values to override the
default values when an object or information is created.

Application Note: Restrictive default values apply to the protection of the session key: the session
key is created and immediately protected with a passphrase. Therefore, only the creator of the
session key is initially able to access the locked block device.

6.2.4.8 Security attribute value inheritance (FMT_MSA.4(PSO))

FMT_MSA.4.1 The TSF shall use the following rules to set the value of security attributes for
Persistent Storage Objects:

a) The newly created object's owning UID is set to the effective UID of
the calling subject;

b) The newly created object's owning GID is set to the effective GID of
the calling subject with the following exception for file system
objects: if the parent directory holding the newly created file system
object is marked with the SETGID permission bit, the owning GID of
the newly created file system object is set to the owning GID of the
parent directory;

c) The newly created object's permission bits are derived from the
calling subject's umask value by masking out the umask bits from
the permission bit set granting full access;

d) The newly created object's ACLs are derived from the default ACL
specified for the parent directory the newly created file system
object is stored in, if existent. Otherwise, no ACL is set.

6.2.4.9 Management of TSF data (FMT_MTD.1(AE))

FMT_MTD.1.1 The TSF shall restrict the ability to query, modify the set of audited events to
processes with the capability CAP_AUDIT_CONTROL.

Application Note: This SFR applies to FAU SEL.1.
Application Note: Using the audit tools which in turn use the netlink interface, an administrator
can configure the audit rules.

6.2.4.10 Management of TSF data (FMT_MTD.1(AS))

FMT_MTD.1.1 The TSF shall restrict the ability to clear delete, configure the storage location
the audit storage to the root user.

Application Note: This SFR applies to FAU_STG.1 where the directory used for storing the audit
trail is configured.

Application Note: The configuration of these parameters is performed with the configuration file
/etc/auditd/auditd.conf which is writable to the root user only.

Version: 0.21 Classification: public Page 93 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6.2.4.11 Management of TSF data (FMT_MTD.1(AT))

FMT_MTD.1.1 The TSF shall restrict the ability to modify add, delete the
a) threshold of the audit trail when an action is performed;
b) action when the threshold is reached
to the root user.
Application Note: This SFR applies to FAU STG.3.
Application Note: The configuration of these parameters is performed with the configuration file
/etc/auditd/auditd.conf which is writable to the root user only.
6.2.4.12 Management of TSF data (FMT_MTD.1(AF))

FMT_MTD.1.1 The TSF shall restrict the ability to modify add, delete the actions to be taken
in case of audit storage failure to the root user.

Application Note: This SFR applies to FAU STG.4.

Application Note: The configuration of these parameters is performed with the configuration file
/etc/auditd/auditd.conf which is writable to the root user only.

6.2.4.13 Management of TSF data (FMT_MTD.1(Nl))

FMT_MTD.1.1 The TSF shall restrict the ability to query, modify, delete change_default the
security attributes for the rules governing the

a) identification of and matching of network data;

b) actions performed on the identified network data;

to users with processes granted the CAP_NET_ADMIN capability.
Application Note: This SFR applies to FDP_IFF.1(NI).
Application Note: The iptables command use a netlink interface to the kernel which requires that
the caller possesses the CAP_NET _ADMIN capability.
6.2.4.14 Management of TSF data (FMT_MTD.1(1AT))

FMT_MTD.1.1 The TSF shall restrict the ability to modify the threshold for unsuccessful
authentication attempts to the root user.

Application Note: This SFR applies to FIA_AFL.1.

Application Note: The configuration of these parameters is performed with the PAM configuration
files which are writable to the root user only.

6.2.4.15 Management of TSF data (FMT_MTD.1(lAF))

FMT_MTD.1.1 The TSF shall restrict the ability to re-enable the authentication to the account
subject to authentication failure to the root user.

Application Note: This SFR applies to FIA_AFL.1.

Application Note: The account locking information is stored in the directory /var/log/faillock. Using
the pam_faillock application which modifies this file, the account can be unlocked. The DAC
permissions of that file ensure that only the root user can write to it.

Version: 0.21 Classification: public Page 94 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6.2.4.16 Management of TSF data (FMT_MTD.1(l1AU))

FMT_MTD.1.1 The TSF shall restrict the ability to initialize, modify, delete the user security
attributes stored in local databases to
a) the root user,

b) users authorized to modify their own authentication data

Application Note: This SFR applies to FIA_ATD.1, FIA_UAU.1, and FIA_UID.1.

Application Note: The configuration of these parameters is performed with the configuration files
/etc/passwd and /etc/shadow which are writable to the root user only. The TOE also supports IPA
as a remote authentication data store. In this case, the TOE does not have the ability to protect
these databases. This is ensured by the assumption of A.PEER.MGT.

6.2.4.17 Management of TSF data (FMT_MTD.1(SSH))

FMT_MTD.1.1 The TSF shall restrict the ability to modify the authentication methods
provided by the OpenSSH server to the root user.

Application Note: This SFR applies to FIA_UAU.5.

Application Note: The configuration of this parameter is performed with the configuration file
/etc/sshd _config which is writable to the root user only.

6.2.4.18 Management of TSF data (FMT_MTD.1(SSSD))

FMT_MTD.1.1 The TSF shall restrict the ability to modify the authentication methods
provided by the SSSD server to the root user.

Application Note: This SFR applies to FIA_UAU.5.

Application Note: The configuration of this parameter is performed with the configuration file
/etc/sssd/sssd.conf which is writable to the root user only.

6.2.4.19 Management of TSF data (FMT_MTD.1(SSL))

FMT_MTD.1.1 The TSF shall restrict the ability to modify the time interval of user inactivity
for locking an interactive session to

a) the root user for system wide settings,
b) each user for his own sessions, if allowed by the root user.

Application Note: This SFR applies to FTA.SSL.1.

Application Note: The time interval is configured in /etc/screenrc which is writable to root only.
Normal users can configure the time interval in ~/.screenrc. The screen application enforcing the
session locking can be configured to execute with /etc/profile or /etc/login.csh. The root user can
place screen execution commands in these Shell startup files that prevent the loading of ~/.screenrc.

Version: 0.21 Classification: public Page 95 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6.2.4.20 Management of TSF data (FMT_MTD.1(AM-AP))

FMT_MTD.1.1 The TSF shall restrict the ability to modify, delete, clear the management of
any TSF data to users allowed to invoke the application managing the
TSF data or to edit the files holding the TSF data only after another user
with the role of the root user has approved the action .

Application Note: The sudo tool allows the root user to specify which application is executed by
what user with which UID. It allows the specification of the rules fine grained down to a single
application for a single user with a single target UID, including root.

6.2.4.21 Management of TSF data (FMT_MTD.1(AM-MR))

FMT_MTD.1.1 The TSF shall restrict the ability to modify, delete, clear the assignment of
roles to users down to the granularity of single users to the authorised
identified roles .

Application Note: Role-based access control is implemented with the Type Enforcement configured
with the SELinux policy.
6.2.4.22 Management of TSF data (FMT_MTD.1(AM-MD))

FMT_MTD.1.1 The TSF shall restrict the ability to delegate, revoke delegation of the
administrative role of root to users granted that role .

Application Note: The delegation is implemented using the sudo command. Every user that is
allowed to use the root user can delegate parts of his responsibility by adding an appropriate rule
into the /etc/sudoers configuration file.

6.2.4.23 Management of TSF data (FMT_MTD.1(AM-MA))

FMT_MTD.1.1 The TSF shall restrict the ability to modify, delete, clear the approval of
administrative actions to the root user.

Application Note: The /etc/sudoers file is accessible to the root user only based on the DAC
permission bits.

6.2.4.24 Management of TSF data (FMT_MTD.1(CP-AN))

FMT_MTD.1.1 The TSF shall restrict the ability to modify the confidentiality protection
anchor to the owner of the dm-crypt partition .

Application Note: The trust anchor is the passphrases that protect the master key for a dm-crypt
partition.

6.2.4.25 Management of TSF data (FMT_MTD.1(CP-UD))

FMT_MTD.1.1 The TSF shall restrict the ability to enable, disable the security attributes
governing the enforcement of the Confidentiality Access Control Polity
on an object to the owner of the dm-crypt partition .

Version: 0.21 Classification: public Page 96 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

6.2.4.26 Revocation (FMT_REV.1(0OB}))

FMT_REV.1.1 The TSF shall restrict the ability to revoke object security attributes defined by
SFPs associated with the corresponding object under the control of the TSF to

a) DAC permissions: owners of the object and authorized administrator;
b) Other security attributes: authorized administrator.

Application Note: The privileges that constitute an authorized administrator are defined in the
above mentioned FMT * SFRs which specify the privileges needed to modify object security attributes.
The same privileges are required to revoke these security attributes.

FMT_REV.1.2 The TSF shall enforce the following rules:

a) The access rights associated with an object shall be enforced when an access
check is made;

b) no specification of other revocation rules.

Application Note: Revocation of security attributes for named objects imply the revocation of
access granted to users other than the owner of the object. Note that the DAC ownership
management (which can be also considered as a form of access revocation) is specified in

FMT _MSA.1(PSO).

Application Note: Sensitivity labels cannot be revoked, they can only be modified as defined by
FMT _MSA.1(LS). This is consistent with the requirement that all subjects and objects must always
bear a label. Therefore, this SFR covers the modification of the sensitivity label which may revoke
access for subjects or users to objects.

6.2.4.27 Revocation (FMT_REV.1(USR))

FMT_REV.1.1 The TSF shall restrict the ability to revoke user security attributes defined by the
SFP associated with the corresponding user under the control of the TSF to
authorized administrators .

Application Note: The privileges that constitute an authorized administrator are defined in the
above mentioned FMT * SFRs which specify the privileges needed to modify object security attributes.
The same privileges are required to revoke these security attributes.

FMT_REV.1.2 The TSF shall enforce the following rules:

a) The enforcement of the revocation of security-relevant authorizations with
the next user-subject binding process during the next authentication of the
user;

b) No other rules

Application Note: The changes are enforced for a new session when the user affected by the
change initiates that new session.

6.2.4.28 Specification of management functions (FMT_SMF.1)

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions:
a) Management of auditing;

) Management of cryptographic network protocols;

) Management of Persistent Storage Object Access Control Policy;

) Management of Network Information Flow Control Policy;

o 0N T

Version: 0.21 Classification: public Page 97 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

e) Management of identification and authentication policy;

f) Management of user security attributes;

g) Management of Compartment Access Control Policy;

h) Management of Compartment Information Flow Control Policy;
i) Management of Linux Container configurations;

j) Management of Multilevel Confidentiality Information Flow Control
Policy.

Application Note: The given list is kept generic intentionally. This ST specifies one iteration of
FMT _MTD.1 per management function required by an SFR. For each FMT_MTD.1 iteration, a
corresponding application note refers to the covered SFR(s).

6.2.4.29 Security management roles (FMT_SMR.2)

FMT _SMR.2.1 The TSF shall maintain the roles:
a) User role with the following rights:
i Users are authorized to modify their own user password;

ii. Users are authorized to modify the access control permissions for the
named objects they own;

iii. no other rights;

b) Configurations stored by user space: administrative users defined
by the access permissions to the configurations mentioned in the
other management SFRs;

¢) Functions provided by the kernel: administrative users defined by
capabilities mentioned in other management SFRs;

d) (MLS mode only) Role-based access control: set of administrative
roles for the role-based access control.

FMT_SMR.2.2 The TSF shall be able to associate users with roles.
FMT_SMR.2.3 The TSF shall ensure that the conditions

a) (MLS mode only) Role of object owners: Object Owners can modify
security attributes for only the objects they own (except for the
sensitivity label);

b) (MLS mode only) The set of RBAC administrative roles: The set of
RBAC administrative roles can modify security attributes for all
objects under the control of TOE (since they automatically inherit
the privileges of all Object Owners);

c) (non-MLS mode only) No role-based access control
are satisfied.

Application Note: Administrative actions can only be performed when the calling subject possesses
the above mentioned capabilities which in the TOE configuration is only provided to processes
executing with the effective UID or file system UID of zero (also called the root user). As the account
for the root user is disabled for direct logon, authorized administrators are defined as users who
are assigned to the "wheel" group. This group allows the use of the "su" application which is the
only way to assume the root user capabilities. In addition, the "sudo" application allows granting
users the privilege to execute commands with a different user ID, including the root user.

Version: 0.21 Classification: public Page 98 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Application Note: Subjects possessing capabilities are still restricted by the MAC policy. To perform
administrative actions, the administrative user must possess the following privileges:
® Respective capability;
® Possessing one or more MLS override attributes to perform operations which are generally
denied by the MAC policy;
® Invocation of the "newrole" command to switch the sensitivity label for obtaining write
access to system configuration files which are protected by a sensitivity label that is not
equal to the sensitivity label of subjects. Please note that an additional access control
mechanism is enforced in addition to the MAC policy which is completely disregarded in
this ST. This additional access control mechanism (called Type Enforcement that is defined
with the SELinux policy which is combined with the MLS policy) adds additional restrictions
on top of the MLS policy. In order to perform administrative tasks, the newrole application

must also be used to switch the subject type and role covered by the Type Enforcement
mechanism.

Application Note: This SFR is hierarchical to the PP SFR of FMT_SMR.1 which satisfies the strict
conformance claim.

6.2.5 MLS mode

6.2.5.1 Export of user data with security attributes (FDP_ETC.2(LS))
FDP_ETC.2.1 The TSF shall enforce the Multilevel Confidentiality Information Flow Control
Policy when exporting user data, controlled under the SFP(s), outside of the TOE.

FDP_ETC.2.2 The TSF shall export the user data with the user data's associated security
attributes.

FDP_ETC.2.3 The TSF shall ensure that the security attributes, when exported outside the TOE,
are unambiguously associated with the exported user data.

FDP_ETC.2.4 The TSF shall enforce the following rules when user data is exported from the
TOE:

a) When data is exported in hardcopy form, each page shall be marked
with a printed representation of the sensitivity label of the subject
requesting the export of the page. By default, this marking shall
appear on both the top and bottom of each printed page.

b) When the data is exported to a device, the security attributes shall
be exported with the data using either:

1. extended tar archive format storing extended attributes with
file system objects,

2. CIPSO network protocol, or

3. IPSEC network protocol with an extension to establish the label
during the IKE-based key negotiation.

6.2.5.2 Complete information flow control (FDP_IFC.2(LS))

FDP_IFC.2.1 The TSF shall enforce the Multilevel Confidentiality Information Flow Control
Policy on
a) Subjects: all subjects defined with the Security Policy Model;
b) Objects: all named objects defined with the Security Policy Model

Version: 0.21 Classification: public Page 99 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

FDP_IFC.2.2

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

and all operations that cause that information to flow among them.

The TSF shall ensure that all operations that cause any information in the TOE to
flow among untrusted subjects and named objects in the TOE are covered by the
Multilevel Confidentiality Information Flow Control Policy.

6.2.5.3 Hierarchical security attributes (FDP_IFF.2(LS))

FDP_IFF.2.1

FDP_IFF.2.2

The TSF shall enforce the Multilevel Confidentiality Information Flow Control
Policy based on the following types of subject and object security attributes:

a) Subject security attributes:

i. Sensitivity label of the subject consisting of at least 8
site-definable hierarchical levels and a set of 60 site definable
non-hierarchical categories;

b) Object security attributes:

i. the sensitivity label of the object consisting of at least 8
site-definable hierarchical levels and a set of 60 site definable
non-hierarchical categories;

The TSF shall permit an information flow between a controlled subject and
controlled object via a controlled operation if the following rules, based on the
ordering relationships between security attributes hold:

a) If the sensitivity label of the subject is greater than or equal to the
sensitivity label of the object, then the flow of information from the
object to the subject is permitted (a read operation);

b) If the sensitivity label of the object is equal to the sensitivity label
of the subject; then the flow of information from the subject to the
object is permitted (a write operation);

c) If the information flow is between objects, the sensitivity label of
the destination object must be greater than or equal to the
sensitivity label of the source object.

Application Note: The TOE only allows the write operation if the labels are equal. As this is more
restrictive that the PP specification, the refinement is considered to be in line with the protection
profile specification.

FDP_IFF.2.3
FDP_IFF.2.4

The TSF shall enforce the no additional rules.
The TSF shall explicitly authorise an information flow based on the following rules:

a) MLS-override attributes assigned to a subject allow that subject to
perform the operation the MLS-override attribute applies to
irrespectively of the sensitivity labels of the subject or object;

b) MLS-override attributes assigned to an object allow every subject
to perform the operation the MLS-override attribute applies to with
that object irrespectively of the sensitivity labels of the subject or
object.

Application Note:

Version: 0.21

Last update: 2016-06-09

Classification: public Page 100 of 156
Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

The following MLS override attributes are defined (note that for most of the below-mentioned
attributes the TOE also defines a twin-attribute with the same override-capability which is only
applicable when additional restrictions are met - the names of these attributes are identical to their
corresponding attribute listed below, extended with the suffix "toclr"):

mlisfdshare
The policy disallows the sharing of file descriptors between levels unless the file descriptor
is authorized to be shared among levels.

mlisfduse
The policy disallows the sharing of file descriptors between levels unless the process is
authorized to shared it among levels.

misfiledowngrade
Make specified domain MLS trusted for lowering the level of files.

mlisfileread
Make specified domain MLS trusted for reading from files at higher levels.

mlisfileupgrade
Make specified domain MLS trusted for raising the level of files.

mlisfilewrite
Make specified domain MLS trusted for writing to files at lower levels.

mlisfilewriteinrange
This attribute has the same meaning as misfilewritetoclr.

mlisipcread
Make specified domain MLS trusted for reading from System V IPC objects at any level.

mlisipcwrite
Make specified domain MLS trusted for writing to System V IPC objects at any level.

misnetread
Make specified domain MLS trusted for reading from sockets at any level.

mlisnetrecvall
Make specified domain MLS trusted for receiving network data from network interfaces or
hosts at any level.

misnetwrite
Make specified domain MLS trusted for writing to sockets at any level.

misnetwriteranged
Same as misnetwritetoclr with even more restrictions on the levels of the process and the
target object.

misprocread
Make specified domain MLS trusted for reading attributes from processes at higher levels
like reading capabilities or scheduling information or performing the ptrace operation.

misprocsetsi
Make specified domain MLS trusted for setting the level of processes it executes.

misprocwrite
Make specified domain MLS trusted for writing to processes at lower levels like sending
signals, setting capabilities, setting the SELinux labels for a process in the proc file.

Version: 0.21 Classification: public Page 101 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

misrangetrans
Make specified domain a target domain for MLS range transitions that change the current

level.

mistrustedobject
Make specified object MLS trusted and exclude it from the MLS checks.

privrangetrans
Allow the specified domain to do a MLS range transition that changes the current level.

Note: The MLS policy specifies additional MLS override attributes. However, those do not cover any
objects present in the TOE as they are intended for applications using the SELinux policy in addition
to the kernel (such as X11 or databases) - none of these applications are installed in the TOE.

FDP_IFF.2.5

FDP_IFF.2.6

The TSF shall explicitly deny an information flow based on the following rules:
trusted subjects with MLS override capabilities can access objects
without being restricted by subject and object labels. Trusted objects
can be accessed by any subject.

The TSF shall enforce the following relationships for any two valid information
flow control security attributes:

a) There exists an ordering function that, given two valid security attributes,
determines if the security attributes are equal, if one security attribute is
greater than the other, or if the security attributes are incomparable with
the following properties:

i. Sensitivity labels are equal if the hierarchical levels of both labels are
equal and the non-hierarchical category sets are identical;

ii. Sensitivity label A is greater than sensitivity label B if the hierarchical
level of A is greater than or equal to the hierarchical level of B, and the
non- hierarchical category set of A is identical to or a superset of the
non-hierarchical category set of B;

iii. Sensitivity labels are incomparable if they are not equal and neither
label is greater than the other as defined in 1 and 2 above;

and

b) There exists a “least upper bound” in the set of security attributes, such
that, given any two valid security attributes, there is a valid security attribute
that is greater than or equal to the two valid security attributes; and

Cc) There exists a “greatest lower bound” in the set of security attributes, such
that, given any two valid security attributes, there is a valid security attribute
that is not greater than the two valid security attributes.

6.2.5.4 Import of user data without security attributes (FDP_ITC.1(LS))

FDP_ITC.1.1

FDP_ITC.1.2

FDP_ITC.1.3

Version: 0.21

Last update: 2016-06-09

The TSF shall enforce the Multilevel Confidentiality Information Flow Control
Policy when importing unlabeled user data controlled under the SFP, from outside
of the TOE.

The TSF shall ignore any label-related security attributes associated with the
unlabeled user data when imported from outside the TOE.

The TSF shall enforce the following rules when importing unlabeled user data
controlled under the SFP from outside the TOE:

a) When importing unlabeled data, the TSF shall allow the

Classification: public Page 102 of 156
Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

1. process possessing the CAP_SYS_ADMIN capability and access
permissions to the mount point for performing the mount
operation;

2. processes possessing MLS override attributes;

3. unprivileged processes possessing no specific MLS;
4. import of unlabeled network data;

to specify that the data is to be labeled with:

1. Mount operation: applying the label of the mount point if the
mounted file system does not support labels;

2. Processes possessing MLS override attributes: labels according
to the rules allowed by the MLS override attribute specification;

3. Unprivileged processes: the process' own label;

4. Unlabeled data: the networking stack automatically labels any
unlabeled data with the label configured by the administrator.

6.2.5.5 Import of user data with security attributes (FDP_ITC.2(LS))

FDP_ITC.2.1 The TSF shall enforce the Multilevel Confidentiality Information Flow Control
Policy when importing labeled user data, controlled under the SFP, from outside
of the TOE.

FDP_ITC.2.2 The TSF shall use the label-related security attributes associated with the imported

labeled user data.

FDP_ITC.2.3 The TSF shall ensure that the protocol used provides for the unambiguous
association between the security attributes and the user data received.

FDP_ITC.2.4 The TSF shall ensure that interpretation of the label-related security attributes
of the imported user data is as intended by the source of the user data.
FDP_ITC.2.5 The TSF shall enforce the following rules when importing user data controlled

under the SFP from outside the TOE: Devices used to import data with
security attributes cannot be used to import data without security
attributes unless the change in device state is performed manually and
is auditable.

6.2.5.6 Management of security attributes (FMT_MSA.1(LS))

FMT_MSA.1.1 The TSF shall enforce the Multilevel Confidentiality Information Flow Control
Policy to restrict the ability to modify the label-related object security attributes

fassignmenttist-of security-attributes} to the role allowed to modify

sensitivity labels of objects .

6.2.5.7 Static attribute initialisation (FMT_MSA.3(LS))

FMT_MSA.3.1 The TSF shall enforce the Multilevel Confidentiality Information Flow Control
Policy to provide restrictive default values for security attributes that are used
to enforce the SFP.

Version: 0.21 Classification: public Page 103 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

FMT_MSA.3.2

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

The TSF shall allow the the authorised identified roles, or users that satisfy
the following rules: users in an administrative role values to specify
alternative initial values to override the default values when an object or
information is created.

6.2.5.8 Inter-TSF basic TSF data consistency (FPT_TDC.1(LS))

FPT_TDC.1.1

FPT_TDC.1.2

The TSF shall provide the capability to consistently interpret label-related
security attributes when shared between the TSF and another trusted IT
product.

The TSF shall use the following network protocols to communicate labels:
a) CIPSO;

b) IPSEC with an extension to establish the label during the IKE-based
key negotiation

when interpreting the TSF data from another trusted IT product.

6.3 Security Functional Requirements Rationale

6.3.1 Coverage

The following table provides a mapping of SFR to the security objectives, showing that each security
functional requirement addresses at least one security objective.

Security functional requirements Objectives
FAU_GEN.1 O.AUDITING
FAU_GEN.2 O.AUDITING
FAU_SAR.1 O.AUDITING
FAU_SAR.2 O.AUDITING
FAU_SEL.1 O.AUDITING
FAU_STG.1 O.AUDITING
FAU STG.3 O.AUDITING
FAU_STG.4 O.AUDITING

FCS_CKM.1(SYM)

O.CRYPTO.NET

FCS_CKM.1(RSA)

O.CRYPTO.NET

FCS_CKM.1(DSA)

O.CRYPTO.NET

FCS_CKM.1(ECDSA) O.CRYPTO.NET
FCS_CKM.2(NET-SSH) O.CRYPTO.NET
FCS_CKM.2(NET-IKE) O.CRYPTO.NET
FCS_CKM.2(NET-TLS) O.CRYPTO.NET
Version: 0.21 Classification: public Page 104 of 156

Last update: 2016-06-09

Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security functional requirements

Objectives

FCS_CKM.4

O.CRYPTO.NET

FCS_COP.1(NET)

O.CRYPTO.NET

FCS_COP.1(CP)

O.CP.USERDATA

FCS_RNG.1(SSL-DFLT)

O.CRYPTO.NET

FCS_RNG.1(SSL-FIPS)

O.CRYPTO.NET

FCS_RNG.1(DM-INIT)

O.CP.USERDATA

FCS_RNG.1(DM-RUN)

O.CP.USERDATA

FCS_RNG.1(DM-FIPS)

O.CP.USERDATA

FCS_RNG.1(NSS)

O.CRYPTO.NET

FDP_ACC.1(PSO)

O.DISCRETIONARY.ACCESS

FDP_ACC.1(TSO)

O.SUBJECT.COM

FDP_ACF.1(PSO)

O.DISCRETIONARY.ACCESS

FDP_ACF.1(TSO)

O.SUBJECT.COM

FDP_IFC.2(NI)

O.NETWORK.FLOW

FDP_IFF.1(NI-IPTables)

O.NETWORK.FLOW

FDP_ITC.2(BA)

O.DISCRETIONARY.ACCESS,
O.NETWORK.FLOW,
O.SUBJECT.COM

FDP_RIP.2

O.AUDITING,
O.CRYPTO.NET,
O.DISCRETIONARY.ACCESS,
O.I&A,

O.NETWORK.FLOW,
O.SUBJECT.COM

FDP_RIP.3

O.AUDITING,
O.CRYPTO.NET,
O.DISCRETIONARY.ACCESS,
O.I&A,

O.NETWORK.FLOW,
O.SUBJECT.COM

FIA_AFL.1

O.I&A

FIA_ATD.1(HU)

O.I&A,
O.LS.LABEL (MLS mode)

FIA_ATD.1(TU)

O.NETWORK.FLOW

FIA_SOS.1

O.I&A

Version: 0.21
Last update: 2016-06-09

Classification: public Page 105 of 156
Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security functional requirements Objectives

FIA UAU.1 O.1&A

FIA_UAU.5 O.1&A

FIA UAU.7 O.1&A

FIA_UID.1 O.1&A,
O.NETWORK.FLOW

FIA_USB.2 O.1&A,

O.LS.LABEL (MLS mode)

FPT_FLS.1(FULL)

O.RUNTIME.PROTECTION

FPT_FLS.1(PARTIAL)

O.RUNTIME.PROTECTION

FPT_FLS.1(INTEL)

O.RUNTIME.PROTECTION

FPT_STM.1

O.AUDITING

FPT_TDC.1(BA)

O.DISCRETIONARY.ACCESS,
O.NETWORK.FLOW,
O.SUBJECT.COM

FTA SSL.1 0.1&A
FTA SSL.2 0.1&A
FTP_ITC.1 O.TRUSTED_CHANNEL

FDP_ACC.2(Namespaces)

O.COMP.CONTAINER (not on POWER architecture),
O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

FDP_ACC.2(Cgroup)

O.COMP.CONTAINER (not on POWER architecture),
O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

FDP_ACC.2(SECCOMP)

O.COMP.CONTAINER (not on POWER architecture),
O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

FDP_ACF.1(Namespaces)

O.COMP.CONTAINER (not on POWER architecture),
O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

FDP_ACF.1(Cgroup)

O.COMP.CONTAINER (not on POWER architecture),
O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

FDP_ACF_NA.1(SECCOMP)

O.COMP.CONTAINER (not on POWER architecture),
O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

FDP_ETC.2(LC)

O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

Version: 0.21
Last update: 2016-06-09

Classification: public Page 106 of 156
Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security functional requirements

Objectives

FDP_ITC.2(LC)

O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

FIA_UID.2(LC)

O.COMP.IDENT (not on POWER architecture)

FPT_TDC.1(LC)

O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

FMT_MSA.1(Namespaces-CACP)

O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

FMT_MSA.1(Cgroup-CACP)

O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

FMT_MSA.1(SECCOMP)

O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

FMT_MSA.3(Namespace-CACP)

O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

FMT_MSA.3(Cgroup-CACP)

O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

FMT_MSA.3(SECCOMP)

O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

FMT_MTD.1(LC-COMP)

O.COMP.RESOURCE_ACCESS (not on POWER
architecture)

FDP_ACC.2(CP)

O.CP.USERDATA

FDP_ACF.1(CP)

O.CP.USERDATA

FDP_CDP.1(CP) O.CP.USERDATA
FMT_MSA.1(PSO) O.MANAGE
FMT_MSA.1(TSO) O.MANAGE

FMT_MSA.1(CP)

O.CP.USERDATA

FMT_MSA.3(PSO) O.MANAGE
FMT_MSA.3(TSO) O.MANAGE
FMT_MSA.3(NI) O.MANAGE
FMT_MSA.3(CP) O.CP.USERDATA
FMT_MSA.4(PSO) O.MANAGE
FMT_MTD.1(AE) O.MANAGE
FMT_MTD.1(AS) O.MANAGE
FMT_MTD.1(AT) O.MANAGE

Version: 0.21
Last update: 2016-06-09

Classification: public
Copyright © 2016 by Red Hat and atsec information security

Page 107 of 156

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security functional requirements Objectives

FMT_MTD.1(AF) O.MANAGE

FMT_MTD.1(NI) O.MANAGE

FMT_MTD.1(IAT) O.MANAGE

FMT_MTD.1(IAF) O.MANAGE

FMT_MTD.1(lIAU) O.MANAGE

FMT_MTD.1(SSH) O.MANAGE

FMT_MTD.1(SSSD) O.MANAGE

FMT_MTD.1(SSL) O.MANAGE

FMT_MTD.1(AM-AP) O.ROLE.APPROVE

FMT_MTD.1(AM-MR) O.ROLE.MGMT

FMT_MTD.1(AM-MD) O.ROLE.DELEGATE

FMT_MTD.1(AM-MA) O.ROLE.APPROVE

FMT_MTD.1(CP-AN) O.CP.ANCHOR

FMT_MTD.1(CP-UD) O.CP.USERDATA

FMT_REV.1(OB]J) O.MANAGE

FMT_REV.1(USR) O.MANAGE

FMT_SMF.1 O.MANAGE

FMT_SMR.2 O.MANAGE

FDP_ETC.2(LS) O.LS.CONFIDENTIALITY (MLS mode),
O.LS.PRINT (MLS mode)

FDP_IFC.2(LS) O.LS.CONFIDENTIALITY (MLS mode)

FDP_IFF.2(LS) O.LS.CONFIDENTIALITY (MLS mode)

FDP_ITC.1(LS) O.LS.CONFIDENTIALITY (MLS mode),
O.LS.LABEL (MLS mode)

FDP_ITC.2(LS) O.LS.CONFIDENTIALITY (MLS mode),
O.LS.LABEL (MLS mode)

FMT_MSA.1(LS) O.LS.LABEL (MLS mode)

FMT_MSA.3(LS) O.LS.LABEL (MLS mode)

Version: 0.21 Classification: public Page 108 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security functional requirements Objectives

FPT_TDC.1(LS)

O.LS.CONFIDENTIALITY (MLS mode),
O.LS.LABEL (MLS mode)

Table 7: Mapping of security functional requirements to security objectives

6.3.2 Sufficiency

The following rationale provides justification for each security objective for the TOE, showing that
the security functional requirements are suitable to meet and achieve the security objectives.

Security objectives

Rationale

O.AUDITING

The events to be audited are defined in [FAU_GEN.1] and are associated
with the identity of the user that caused the event [FAU_GEN.2].
Authorized users are provided the capability to read the audit records
[FAU_SAR.1], while all other users are denied access to the audit records
[FAU_SAR.2]. The authorized user must have the capability to specify
which audit records are generated [FAU_SEL.1]. The TOE prevents the
audit log from being modified or deleted [FAU_STG.1] and ensures that
the audit log is not lost due to resource shortage [FAU STG.3,
FAU_STG.4]. To support auditing, the TOE is able to maintain proper time
stamps [FPT_STM.1].

The protection of reused resources ensures that no data leaks from other
protected sources [FDP_RIP.2, FDP_RIP.3].

O.CRYPTO.NET

The cryptographically-protected network protocol [FCS_COP.1(NET)] is
supported by the generation of symmetric keys [FCS_CKM.1(SYM)], as
well as asymmetric keys [FCS_CKM.1(RSA), FCS_CKM.1(DSA)] where the
functionality is based on the random number generator as defined by
[FCS_RNG.1(SSL-DFLT), FCS_RNG.1(SSL-FIPS), FCS_RNG.1(NSS)]. As part
of the cryptographic network protocol, the TOE securely exchanges the
symmetric key with a remote trusted IT system [FCS_CKM.2(NET-SSH),
FCS_CKM.2(NET-IKE), FCS_CKM.2(NET-TLS)]. The TOE ensures that all
keys are zeroized upon de-allocation [FCS_CKM.4].

The protection of reused resources ensures that no data leaks from other
protected sources [FDP_RIP.2, FDP_RIP.3].

O.DISCRETIONARY.ACCESS

The TSF must control access to resources based on the identity of users
that are allowed to specify which resources they want to access for
storing their data.

The access control policy must have a defined scope of control
[FDP_ACC.1(PSO)]. The rules for the access control policy are defined
[FDP_ACF.1(PSO)]. When import of user data is allowed, the TOE must
ensure that user data security attributes required by the access control
policy are correctly interpreted [FDP_ITC.2(BA), FPT_TDC.1(BA)I.

The protection of reused resources ensures that no data leaks from other
protected sources [FDP_RIP.2, FDP_RIP.3].

Version: 0.21
Last update: 2016-06-09

Classification: public Page 109 of 156

Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security objectives

Rationale

O.NETWORK.FLOW

The network information flow control mechanism controls the information
flowing between different entities [FDP_IFC.2(NI)]. The TOE implements
a rule-set governing the information flow [FDP_IFF.1(NI-IPTables)]. To
facilitate the information flow control, the information must be identified
[FIA_UID.1] based on security attributes the TOE can maintain
[FIA_ATD.1(TU)]. The TOE must ensure that security attributes of the
network data required by the information flow control policy are correctly
interpreted [FDP_ITC.2(BA), FPT_TDC.1(BA)].

The protection of reused resources ensures that no data leaks from other
protected sources [FDP_RIP.2, FDP_RIP.3].

O.SUBJECT.COM

The TSF must control the exchange of data using transient storage
objects between subjects based on the identity of users.

The access control policy must have a defined scope of control
[FDP_ACC.1(TSO)]. The rules for the access control policy are defined
[FDP_ACF.1(TSO)]. When import of user data is allowed, the TOE must
ensure that user data security attributes required by the access control
policy are correctly interpreted [FDP_ITC.2(BA), FPT_TDC.1(BA)].

The protection of reused resources ensures that no data leaks from other
protected sources [FDP_RIP.2, FDP_RIP.3].

O.I&A

The TSF must ensure that only authorized users gain access to the TOE
and its resources. Users authorized to access the TOE must use an
identification and authentication process [FIA_UID.1, FIA_UAU.1]. Multiple
I&A mechanisms are allowed as specified in [FIA_UAU.5]. To ensure
authorized access to the TOE, authentication data is protected
[FIA_ATD.1(HU), FIA_UAU.7]. Proper authorization for subjects acting on
behalf of users is also ensured [FIA_USB.2]. The appropriate strength of
the authentication mechanism is ensured [FIA_SOS.1]. To support the
strength of authentication methods, the TOE is capable of identifying
and reacting to unsuccessful authentication attempts [FIA_AFL.1]. In
addition, user-initiated and TSF-initiated session locking [FTA_SSL.1,
FTA_SSL.2] protect the authenticated user's session.

The protection of reused resources ensures that no data leaks from other
protected sources [FDP_RIP.2, FDP_RIP.3] are present.

O0.MANAGE

Version: 0.21
Last update: 2016-06-09

The TOE provides management interfaces globally defined in [FMT_SMF.1]
for:

) the access control policies [FMT_MSA.1(PSO), FMT_MSA.1(TSO),
FMT_MSA.3(PSO), FMT_MSA.3(TSO)];
) the information flow control policy [FMT_MSA.3(NI), FMT_MTD.1(ND)];

° the auditing aspects [FMT_MTD.1(AE), FMT_MTD.1(AS),
FMT_MTD.1(AT), FMT_MTD.1(AF)];

° the identification and authentication aspects [FMT_MTD.1(IAT),
FMT_MTD.1(IAF), FMT_MTD.1(IAU), FMT_MTD.1(SSH),
FMT_MTD.1(SSSD)].

° the session locking threshold [FMT_MTD.1(SSL)].

Classification: public Page 110 of 156

Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security objectives

Rationale

Persistently stored user data is stored either in hierarchical or relational
fashion, which implies an inheritance of security attributes from parent
object [FMT_MSA.4(PSO)].

The rights management for the different management aspects is defined
with [FMT_SMR.2].

The management interfaces for the revocation of user and object
attributes is provided with [FMT_REV.1(OBJ) and FMT_REV.1(USR)].

O.TRUSTED_CHANNEL

The TOE provides a trusted channel protecting communication between
a remote trusted IT system and itself [FTP_ITC.1].

O.ROLE.DELEGATE

The delegation of roles is defined and specified in [FMT_MTD.1(AM-MD)].

O.ROLE.MGMT

The definition and management of rights based on roles is defined in
[FMT_MTD.1(AM-MR)].

O.ROLE.APPROVE

The approval mechanism for roles is defined with [FMT_MTD.1(AM-AP)],
supported by management of the approval mechanism, i.e., specification
of which roles can approve which operations [FMT_MTD.1(AM-MA)].

O.LS.CONFIDENTIALITY (MLS mode)

The information flow control policy is defined by specifying the subjects,
objects, security attributes and rules in [FDP_IFC.2(LS), FDP_IFF.2(LS)].
Supportive to the enforcement of the policy are the automated label
assignment when exporting data [FDP_ETC.2(LS)] and during the import
of data [FDP_ITC.1(LS), FDP_ITC.2(LS)]. For assigning labels to imported
data, the label information transmitted with the data must be
interpretable by the TOE [FPT_TDC.1(LS)].

O.LS.PRINT (MLS mode)

The addition of label information on exported data during printing is
governed by [FDP_ETC.2(LS)].

O.LS.LABEL (MLS mode)

The assignment of labels to users is performed during user-subject
binding [FIA_USB.2] with security attributes maintained by the TOE
[FIA_ATD.1(HU)]. Object labels are assigned to objects when importing
them into the TOE [FDP_ITC.1(LS), FDP_ITC.2(LS), FPT_TDC.1(LS)]. The
management of labels is allowed for the TOE with [FMT_MSA.1(LS),
FMT_MSA.3(LS)].

O.COMP.CONTAINER (not on POWER
architecture)

The different access control policies for the resources belonging to the
different sandboxes is defined with [FDP_ACC.2], [FDP_ACF.1].

0O.COMP.RESOURCE_ACCESS (not
on POWER architecture)

Version: 0.21
Last update: 2016-06-09

The access control policy for the resources belonging to the different
compartments is defined with [FDP_ACC.2(Namespaces),
FDP_ACC.2(Cgroup)], [FDP_ACF.1(Namespaces), FDP_ACF.1(Cgroup)].

As the TOE shall allow export of data belonging to compartments, the
TOE assigns the security attributes for enforcing the access control policy
to the communicated data as specified with [FDP_ETC.2(LC)],
[FDP_ITC.2(LC)], and [FPT_TDC.1(LC)].

Classification: public Page 111 of 156

Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security objectives

Rationale

The TOE allows the reduction of the attack surface the kernel offers to
compartments by preventing system calls to be executed by
compartments. The specification of the access control of which system
call is given with [FDP_ACC.2(SECCOMP)] and [FDP_ACF_NA.1(SECCOMP)].

Management of the security attributes for the access control policy is
specified with the iterations of [FMT_MSA.1], [FMT_MSA.3] as well as
FMT_MTD.1(LC-COMP).

O.COMP.IDENT (not on POWER
architecture)

The identification of compartments to support the information flow control
and access control policies is established with [FIA_UID.2(LC)].

O.CP.USERDATA

The confidentiality protection mechanism for user data at rest is provided
with the access control policy specified with [FDP_ACC.2] and [FDP_ACF.1]
and supported by the cryptographic operations defined in
[FCS_COP.1(CP)]. In addition, the confidentiality mechanism is defined
with [FDP_CDP.1].

The the confidentiality protection is implemented with cryptographic
mechanisms where the symmetric keys are derived from a random
number generator as defined by [FCS_RNG.1(DM-INIT),
FCS_RNG.1(DM-RUN), FCS_RNG.1(DM-FIPS)].

The management of the confidentiality protection mechanism is covered
by [FMT_MSA.1] and [FMT_MSA.3] covering the general management
aspects. [FMT_MTD.1(CP-UD)] allows owners of user data to select which
of their data is covered by the confidentiality protection mechanism.

O.CP.ANCHOR

The management of the trust anchor for the confidentiality protection
mechanism is specified with [FMT_MTD.1(CP-AN)].

O.RUNTIME.PROTECTION

Using the runtime protection mechanisms offered to applications is
specified by [FPT_FLS.1(FULL), FPT_FLS.1(PARTIAL), FPT_FLS.1(INTEL)].

Table 8: Security objectives for the TOE rationale

6.3.3 Security requirements dependency analysis

The following table demonstrates the dependencies of SFRs modeled in CC Part 2 and how the SFRs
for the TOE resolve those dependencies.

Security functional | Dependencies Resolution

requirement

FAU GEN.1 FPT_STM.1 FPT_STM.1

FAU_GEN.2 FAU_GEN.1 FAU_GEN.1

FIA_UID.1 FIA_UID.1

FAU_SAR.1 FAU_GEN.1 FAU_GEN.1

FAU_SAR.2 FAU_SAR.1 FAU_SAR.1
Version: 0.21 Classification: public Page 112 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.

Red Hat Enterprise Linux, Version 7.1

Security functional | Dependencies Resolution

requirement

FAU_SEL.1 FAU_GEN.1 FAU_GEN.1
FMT_MTD.1 FMT_MTD.1(AE)

FAU_STG.1 FAU_GEN.1 FAU_GEN.1

FAU STG.3 FAU_STG.1 FAU_STG.1

FAU_STG.4 FAU_STG.1 FAU STG.1

FCS_CKM.1(SYM)

[FCS_CKM.2 or FCS_COP.1]

FCS_COP.1(NET)

FCS_CKM.4

FCS_CKM.4

FCS_CKM.1(RSA)

[FCS_CKM.2 or FCS_COP.1]

FCS_COP.1(NET)

FCS_CKM.4

FCS_CKM.4

FCS_CKM.1(DSA)

[FCS_CKM.2 or FCS_COP.1]

FCS_COP.1(NET)

FCS_CKM.4

FCS_CKM.4

FCS_CKM.1(ECDSA)

[FCS_CKM.2 or FCS_COP.1]

FCS_COP.1(NET)

FCS_CKM.4

FCS_CKM.4

FCS_CKM.2(NET-
SSH)

[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1]

FCS_CKM.1
FCS_CKM.1
FCS_CKM.1
FCS_CKM.1

SYM)
RSA)
DSA)
ECDSA)

===

FCS_CKM.4

FCS_CKM.4

FCS_CKM.2(NET-IKE)

[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1]

FCS_CKM.1
FCS_CKM.1
FCS_CKM.1
FCS_CKM.1

SYM)
RSA)
DSA)
ECDSA)

—~ o~ o~ —~

FCS_CKM.4

FCS_CKM.4

FCS_CKM.2(NET-TLS)

[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1]

FCS_CKM.1
FCS_CKM.1
FCS_CKM.1
FCS_CKM.1

SYM)
RSA)
DSA)
ECDSA)

]

FCS_CKM.4

FCS_CKM.4

FCS_CKM.4

[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1]

FCS_CKM.1(SYM)

FCS_COP.1(NET)

[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1] |FCS_CKM.1(SYM)
FCS_CKM.1(RSA)
FCS_CKM.1(DSA)
FCS_CKM.1(ECDSA)

FCS_CKM.4 FCS_CKM.4

Version: 0.21
Last update: 2016-06-09

Classification: public

Copyright © 2016 by Red Hat and atsec information security

Page 113 of 156

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security functional
requirement

Dependencies

Resolution

FCS_COP.1(CP)

[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1]

FCS_CKM.1(SYM)

FCS_CKM.4

FCS_CKM.4

FCS_RNG.1(SSL-
DFLT)

No dependencies.

FCS_RNG.1(SSL-FIPS)

No dependencies.

FCS_RNG.1(DM-INIT)

No dependencies.

FCS_RNG.1(DM-RUN)

No dependencies.

FCS_RNG.1(DM-FIPS)

No dependencies.

FCS_RNG.1(NSS)

No dependencies.

FDP_ACC.1(PSO) FDP_ACF.1 FDP_ACF.1(PSO)
FDP_ACC.1(TSO) FDP_ACF.1 FDP_ACF.1(TSO)
FDP_ACF.1(PSO) FDP_ACC.1 FDP_ACC.1(PSO)
FMT_MSA.3 FMT_MSA.3(PSO)
FDP_ACF.1(TSO) FDP_ACC.1 FDP_ACC.1(TSO)
FMT_MSA.3 FMT_MSA.3(TSO)
FDP_IFC.2(NI) FDP_IFF.1 FDP_IFF.1(NI-IPTables)
FDP_IFF1(NI-IPTa |FDP_IFC.1 FDP_IFC.2(NI)
bles) FMT_MSA.3 FMT_MSA.3(NI)

FDP_ITC.2(BA)

[FDP_ACC.1 or FDP_IFC.1]

FDP_ACC.1(PSO)
FDP_ACC.1(TSO)

[FTP_ITC.1 or FTP_TRP.1]

FTP_ITC.1

FPT_TDC.1 FPT_TDC.1(BA)
FDP_IFC.2-ni
FDP_RIP.2 No dependencies.
FDP_RIP.3 No dependencies.
FIA_AFL.1 FIA_UAU.1 FIA_UAU.1

FIA_ATD.1(HU)

No dependencies.

FIA_ATD.1(TU)

No dependencies.

FIA_SOS.1

No dependencies.

Version: 0.21
Last update: 2016-06-09

Classification: public

Page 114 of 156

Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security functional | Dependencies Resolution
requirement

FIA UAU.1 FIA UID.1 FIA _UID.1
FIA_UAU.5 No dependencies.

FIA UAU.7 FIA UAU.1 FIA UAU.1
FIA_UID.1 No dependencies.

FIA_USB.2 FIA_ATD.1 FIA_ATD.1(HU)

FPT_FLS.1(FULL)

No dependencies.

FPT_FLS.1(PARTIAL)

No dependencies.

FPT_FLS.1(INTEL)

No dependencies.

FPT_STM.1

No dependencies.

FPT_TDC.1(BA)

No dependencies.

FTA SSL.1 FIA UAU.1 FIA UAU.1
FTA SSL.2 FIA_UAU.1 FIA_UAU.1
FTP_ITC.1 No dependencies.
FDP_ACC.2(Names |FDP_ACF.1 FDP_ACF.1(Namespaces)
paces)
FDP_ACC.2(Cgroup) |FDP_ACF.1 FDP_ACC.2(Cgroup)
FDP_ACC.2(SEC FDP_ACF.1 FDP_ACF_NA.1(SECCOMP)
COMP)
FDP_ACF.1(Names FDP_ACC.1 FDP_ACC.2(Namespaces)
paces)
FMT_MSA.3 FMT_MSA.3(Namespace-CACP)
FDP_ACF.1(Cgroup) |FDP_ACC.1 FDP_ACC.2(Cgroup)
FMT_MSA.3 FMT_MSA.3(Cgroup-CACP)
FDP_ACF_NA.1(SEC |FDP_ACC.1 FDP_ACC.2(SECCOMP)
COMP)
FMT_MSA.3 FMT_MSA.3(SECCOMP)

FDP_ETC.2(LC)

[FDP_ACC.1 or FDP_IFC.1]

FDP_ACC.2(Namespaces)

FDP_ITC.2(LC)

[FDP_ACC.1 or FDP_IFC.1]

FDP_ACC.2(Namespaces)

[FTP_ITC.1 or FTP_TRP.1]

FTP_ITC.1

FPT TDC.1

FPT_TDC.1(LC)

FIA_UID.2(LC)

No dependencies.

Version: 0.21
Last update: 2016-06-09

Classification: public

Page 115 of 156

Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security functional
requirement

Dependencies

Resolution

FPT_TDC.1(LC)

No dependencies.

FMT_MSA.1(Names
paces-CACP)

[FDP_ACC.1 or FDP_IFC.1]

FDP_ACC.2(Namespaces)

FMT_SMR.1

FMT_SMR.2

FMT_SMF.1

FMT_SMF.1

FMT_MSA.1(Cgroup-
CACP)

[FDP_ACC.1 or FDP_IFC.1]

FDP_ACC.2(Cgroup)

FMT_SMR.1

FMT_SMR.2

FMT_SMF.1

FMT_SMF.1

FMT_MSA.1(SEC
COMP)

[FDP_ACC.1 or FDP_IFC.1]

FDP_ACC.2(SECCOMP)

FMT_SMR.1 FMT_SMR.2
FMT SMF.1 FMT SMF.1
FMT_MSA.3(Names |FMT MSA.1 FMT_MSA.1(Namespaces-CACP)
pace-CACP)
FMT_SMR.1 FMT_SMR.2
FMT_MSA.3(Cgroup- | FMT_MSA.1 FMT_MSA.1(Namespaces-CACP)
CACP)
FMT_SMR.1 FMT_SMR.2
FMT_MSA.3(SEC FMT_MSA.1 FMT_MSA.1(SECCOMP)
COMP)
FMT_SMR.1 FMT_SMR.2
FMT MTD.1(LC- FMT SMR.1 FMT SMR.2
COMP)
FMT_SMF.1 FMT_SMF.1
FDP_ACC.2(CP) FDP_ACF.1 FDP_ACF.1(CP)
FDP_ACF.1(CP) FDP_ACC.1 FDP_ACC.2(CP)
FMT_MSA.3 FMT_MSA.3(CP)

FDP_CDP.1(CP)

[FDP_ACC.1 or FDP_IFC.2]

FDP_ACC.2(CP)

FMT_MSA.1(PSO)

[FDP_ACC.1 or FDP_IFC.1]

FDP_ACC.1(PSO)

FMT_SMR.1

FMT_SMR.2

FMT_SMF.1

FMT_SMF.1

FMT_MSA.1(TSO)

[FDP_ACC.1 or FDP_IFC.1]

FDP_ACC.1(PSO)

FMT_SMR.1

FMT_SMR.2

FMT_SMF.1

FMT_SMF.1

Version: 0.21
Last update: 2016-06-09

Classification: public

Page 116 of 156

Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security functional
requirement

Dependencies

Resolution

FMT_MSA.1(CP)

[FDP_ACC.1 or FDP_IFC.1]

FDP_ACC.2(CP)

FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT_MSA.3(PSO) |FMT_MSA.1 FMT_MSA.1(PSO)
FMT_SMR.1 FMT_SMR.2
FMT_MSA.3(TSO) |FMT_MSA.1 FMT_MSA.1(TSO)
FMT_SMR.1 FMT_SMR.2
FMT_MSA.3(NI) FMT_MSA.1 See OSPP rationale.
FMT_SMR.1 FMT_SMR.2
FMT_MSA.3(CP) FMT_MSA.1 FMT_MSA.1(CP)
FMT_SMR.1 FMT_SMR.2

FMT_MSA.4(PSO)

[FDP_ACC.1 or FDP_IFC.1]

FDP_ACC.1(PSO)

FMT_MTD.1(AE) FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT_MTD.1(AS) FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT_MTD.1(AT) FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT_MTD.1(AF) FMT SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT_MTD.1(NI) FMT SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT_MTD.1(IAT) FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT_MTD.1(IAF) FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT_MTD.1(IAU) FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1

Version: 0.21
Last update: 2016-06-09

Classification: public

Page 117 of 156

Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security functional | Dependencies Resolution
requirement
FMT_MTD.1(SSH) FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT MTD.1(SSSD) |FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT_MTD.1(SSL) FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT_MTD.1(AM-AP) |FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT_MTD.1(AM-MR) | FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT_MTD.1(AM-MD) | FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT_MTD.1(AM-MA) | FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT MTD.1(CP-AN) |FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT MTD.1(CP-UD) |FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1
FMT_REV.1(OB]J) FMT_SMR.1 FMT_SMR.2
FMT_REV.1(USR) FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 No dependencies.
FMT_SMR.2 FIA UID.1 FIA _UID.1

FDP_ETC.2(LS)

[FDP_ACC.1 or FDP_IFC.1]

FDP_IFC.2(LS)

FDP_IFC.2(LS) FDP_IFF.1 FDP_IFF.2(LS)
FDP_IFF.2(LS) FDP_IFC.1 FDP_IFC.2(LS)
FMT_MSA.3 FMT_MSA.3(LS)

FDP_ITC.1(LS)

[FDP_ACC.1 or FDP_IFC.1]

FDP_IFC.2(LS)

FMT_MSA.3

FMT_MSA.3(LS)

Version: 0.21
Last update: 2016-06-09

Classification: public

Page 118 of 156

Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security functional | Dependencies Resolution

requirement

FDP_ITC.2(LS) [FDP_ACC.1 or FDP_IFC.1] FDP_IFC.2(LS)
[FTP_ITC.1 or FTP_TRP.1] FTP_ITC.1
FPT_TDC.1 FPT_TDC.1(LS)

FMT_MSA.1(LS) [FDP_ACC.1 or FDP_IFC.1] FDP_IFC.2(LS)
FMT_SMR.1 FMT_SMR.2
FMT_SMF.1 FMT_SMF.1

FMT_MSA.3(LS) FMT_MSA.1 FMT_MSA.1(LS)
FMT_SMR.1 FMT_SMR.2

FPT_TDC.1(LS) No dependencies.

Table 9: TOE SFR dependency analysis

6.4 Security Assurance Requirements

The security assurance requirements for the TOE are the Evaluation Assurance Level 4 components,
augmented by ALC FLR.3, as specified in [CC] part 3. No operations are applied to the assurance
components apart from the operation to ASE_CCL.1 as defined in [OSPP].

The security assurance requirements (SARs) for the TOE are the Evaluation Assurance Level 4
components as specified in [CC] part 3, augmented by ALC_FLR.3.

The following table shows the SARs, and the operations performed on the components according
to CC part 3: iteration (lter.), refinement (Ref.), assignment (Ass.) and selection (Sel.).

Security Security assurance requirement Source Operations
assurance class
Iter. | Ref. | Ass. | Sel.
ASE Security ASE_CCL.1 Conformance claims CC Part 3 No | Yes | No | No
Target evaluation
ASE_INT.1 ST introduction CCPart3 No | No | No | No
ASE_SPD.1 Security problem definition CC Part 3 No No No No
ASE_OB]J.2 Security objectives CC Part 3 No | No | No | No
ASE_ECD.1 Extended components definition CC Part 3 No | No | No | No
ASE_REQ.2 Derived security requirements CC Part 3 No | No | No | No
ASE_TSS.1 TOE summary specification CC Part 3 No No No No
ADV Development | ADV_ARC.1 Security architecture description CC Part 3 No | No | No | No
ADV_FSP.4 Complete functional specification CC Part 3 No | No | No | No
Version: 0.21 Classification: public Page 119 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Security Security assurance requirement Source Operations
assurance class

Iter. | Ref. | Ass. | Sel.

ADV_IMP.1 Implementation representation of the |CC Part 3 No No No No

TSF

ADV_TDS.3 Basic modular design CCPart 3 No | No | No | No
AGD Guidance AGD_OPE.1 Operational user guidance CC Part 3 No No No No
documents

AGD_PRE.1 Preparative procedures CCPart 3 No | No | No | No

ALC Life-cycle ALC_CMC.4 Production support, acceptance proce |CC Part 3 No No No No
support dures and automation

ALC_CMS.4 Problem tracking CM coverage CCPart 3 No | No | No | No
ALC_DEL.1 Delivery procedures CC Part 3 No No No No
ALC_DVS.1 Identification of security measures CCPart 3 No | No | No | No
ALC_FLR.3 Systematic flaw remediation CCPart 3 No | No | No | No
ALC_LCD.1 Developer defined life-cycle model CCPart 3 No | No | No | No
ALC_TAT.1 Well-defined development tools CC Part 3 No | No | No | No
ATE Tests ATE_COV.2 Analysis of coverage CC Part 3 No No No No
ATE_DPT.1 Testing: basic design CC Part 3 No | No | No | No
ATE_FUN.1 Functional testing CCPart 3 No | No | No | No
ATE_IND.2 Independent testing - sample CC Part 3 No No No No
AVA Vulnerability | AVA_VAN.3 Focused vulnerability analysis CCPart3 No | No | No | No

assessment

Table 10: SARs

6.4.1 Security Target evaluation (ASE)

6.4.1.1 Conformance claims (ASE_CCL.1)

Developer action elements:

ASE_CCL.1.1D The developer shall provide a conformance claim.
ASE_CCL.1.2D The developer shall provide a conformance claim rationale.

Content and presentation elements:

ASE_CCL.1.1C The conformance claim shall contain a CC conformance claim that identifies the
version of the CC to which the ST and the TOE claim conformance.

Version: 0.21 Classification: public Page 120 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

ASE_CCL.1.2C

ASE_CCL.1.3C

ASE_CCL.1.4C

ASE_CCL.1.5C

ASE_CCL.1.6C

ASE_CCL.1.7C

ASE_CCL.1.8C

ASE_CCL.1.9C

ASE_CCL.1.10C

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

The CC conformance claim shattshould describe the conformance of the ST to CC
Part 2 as either CC Part 2 conformant or CC Part 2 extended.

The CC conformance claim shall describe the conformance of the ST to CC Part
3 as either CC Part 3 conformant or CC Part 3 extended.

The CC conformance claim shall be consistent with the extended components
definition.

The conformance claim shall identify all PPs and security requirement packages
to which the ST claims conformance.

The conformance claim shall describe any conformance of the ST to a package
as either package-conformant or package-augmented.

The conformance claim rationale shall demonstrate that the TOE type is consistent
with the TOE type in the PPs for which conformance is being claimed.

The conformance claim rationale shall demonstrate that the statement of the
security problem definition is consistent with the statement of the security problem
definition in the PPs for which conformance is being claimed.

The conformance claim rationale shall demonstrate that the statement of security
objectives is consistent with the statement of security objectives in the PPs for
which conformance is being claimed.

The conformance claim rationale shall demonstrate that the statement of security
requirements is consistent with the statement of security requirements in the
PPs including the statements marked as "ST-Author Note"and the specification
given in section 8.1 of the OSPP base for which conformance is being claimed.

Evaluator action elements:

ASE_CCL.1.1E

The evaluator shall confirm that the information provided meets all requirements
for content and presentation of evidence.

6.5 Security Assurance Requirements Rationale
The rationale for the refinement of ASE_CCL.1 is provided in [OSPP].

The basis for the justification of EAL4 augmented with ALC_FLR.3 is the threat environment
experienced by the typical consumers of the TOE. This matches the package description for EAL4
(enhanced-basic).

Version: 0.21

Last update: 2016-06-09

Classification: public Page 121 of 156
Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

7 TOE Summary Specification

To allow the reader to gain a full understanding of the functionality offered by the TOE and the
supporting mechanisms provided by the underlying system the TOE security functionality rests on,
the TSS is split into the following parts:

e Discussion of the TOE security functionality

e Documentation of the functionality required from the underlying system to support the
TOE security functionality

7.1 Support Mechanisms Offered by the IT Environment

The security functionality implemented by the TOE rests on features offered by the IT environment.
This section outlines the mechanisms of the IT environment the TOE utilizes

To implement the concept of a reference monitor, the TOE implements a kernel which operates in
a privileged state. The underlying CPU offers such privileged state by restricting numerous processor
instructions to be accessible in that privileged state. In addition, a number of processor registers
used to alter the behavior of the CPU can only be manipulated in privileged mode. This includes
the memory management unit the underlying CPU must offer which can only be configured in
privileged mode. As the TOE is capable of running on different CPU architectures, the following
listing covers the mentioned functionality for the different CPUs:

® x86 architecture: The kernel executes in ring 0 and user space executes in ring 3. In case
the virtualization technique is used, the kernel operates in ring 0 in VM-root mode. User
space operates in ring 3 VM-root mode. A virtual machine guest operates in non-VM-root
mode and is allowed to use all processor rings.

e POWER: The kernel operates in supervisor mode. User space application execute in problem
state. The underlying LPAR hypervisor is assumed to implement a check that hypervisor
calls are only accepted from supervisor state and not from problem state (note, the CPU
allows the invocation of hypervisor calls from problem state).

® z/Architecture: The kernel operates in supervisor mode. User space application execute in
problem state.

In addition to the CPU support for implementing a reference monitor, the TOE uses the following
mechanisms from the underlying IT environment to implement security functions:

e NX bit: The No-eXecute bit for memory pages allow the TOE to mark information stored in
marked memory pages as non-executable. If the CPU is requested to execute code in those
pages, the CPU would raise an exception. The CPU ensures that the NX bit can only be
unset by software executing in privileged mode.

e Timer: The underlying platform provides a clock that allows the TOE to maintain a clock.
The platform ensures that only software operating in privileged mode is able to alter the
clock.

When the TOE executes in a virtual environment, this environment must ensure that the entropy
gathering mechanism of the TOE is unaffected by the virtualization support. The entropy gathering
rests on the following mechanisms which must behave identical to the TOE executing on native
hardware:

e Human Interface Devices (HID): If virtual or real HID are connected to the TOE executing
as a guest operating system, the events triggered by the HID must all originate from human
users. Under no circumstances shall the host automatically trigger HID events such that
the randomness of these HID events provided by humans is non-existent. For example,

Version: 0.21 Classification: public Page 122 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

key strokes by humans always have a random factor in their timing behavior on which the
entropy collection of the TOE rests. The host must not automatically trigger key strokes
that lack that human randomness. This requirement is achieved with the allowed virtual
environment, because KVM together with QEMU does not implement HID which can be
programmed to operate without human intervention.

® Block device events: The virtual environment must ensure that the block device events
from platter-based hard disks (i.e. no Solid State Disks) must be immediately relayed to
the virtual machine. This means that any kind of buffering present in the host must be
disabled for block device events, regardless whether the block device the guest is able to
access is backed by a file, a disk partition in the underlying host, a real physical disk or
any other means. This implies that, for example, block devices backed by RAM in the host
are disallowed in the evaluated configuration of guests. This requirement can be achieved
with the allowed virtual environment of KVM and QEMU using the following constraints:

O Any block devices the TOE "sees" must be backed by real platter-based hard disks.
That can be achieved by either providing a file-based disk backend, a disk partition
from the host or a full physical disk to the guest.

O The host must not use its buffer cache for accesses to the block device backends.
This can be achieved by instructing QEMU to use the O_DIRECT option with the
cache=none with a block device definition.

O The evaluated configuration of the guest must ensure that for any block device
offered by the virtual environment and used by the TOE that does not meet the
above mentioned requirements, including the use of block devices not using
spinning platters, the corresponding SysFS file
"/sys/devices/virtual/block/<DEVICE>/queue/rotational" contains a zero.

e Interrupt events: Interrupt events relayed to the TOE must be based on operations caused
by the TOE. The virtual environment must not send arbitrary interrupts to the TOE, especially
with a fixed timing. This requirement is achieved with the allowed virtual environment,
because KVM together with QEMU does not implement interrupts which can be programmed
to operate without being triggered by TOE requests.

7.2 Cryptographic Support Offered by IT Environment

The IT environment provides various cryptographic support mechanisms that are used by the TSF
to implement various cryptographic services. The evaluated configuration allows the following
cryptographic functions implemented by the IT environment to be used:

e IBM System z CPACEF instruction set: The cryptographic libraries of the TOE utilize CPACF,
if present, to speed up the cryptographic operations needed for different cryptographic
services.

The evaluated configuration allows the mentioned cryptographic support to be used for speeding
up cryptographic operations.

7.3 TOE Security Functionality

The following section explains how the security functions are implemented. The different TOE
security functions cover the various SFR classes.

The primary security features of the TOE are:

e Audit
e Cryptographic services

Version: 0.21 Classification: public Page 123 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Packet filter

Identification and Authentication
Discretionary Access Control

Mandatory Access Control

Security Management

Runtime Protection mechanisms

Linux Container (not on POWER architecture)

7.3.1 Audit

The Lightweight Audit Framework (LAF) is designed to be an audit system for Linux compliant with
the requirements from Common Criteria. LAF is able to intercept all system calls as well as retrieving
audit log entries from privileged user space applications. The subsystem allows configuring the
events to be actually audited from the set of all events that are possible to be audited. Those events
are configured in a specific configuration file and then the kernel is notified to build its own internal
structure for the events to be audited.

7.3.1.1 Audit functionality

The Linux kernel implements the core of the LAF functionality. It gathers all audit events, analyzes
these events based on the audit rules and forwards the audit events that are requested to be
audited to the audit daemon executing in user space.

Audit events are generated in various places of the kernel. In addition, a user space application
can create audit records which needs to be fed to the kernel for further processing.

The audit functionality of the Linux kernel is configured by user space applications which
communicate with the kernel using a specific netlink communication channel. This netlink channel
is also to be used by applications that want to send an audit event to the kernel.

The kernel netlink interface is usable only by applications possessing the following capabilities:

e CAP_AUDIT_CONTROL: Performing management operations like adding or deleting audit
rules, setting or getting auditing parameters;

e CAP_AUDIT WRITE: Submitting audit records to the kernel which in turn forwards the audit
records to the audit daemon.

Based on the audit rules, the kernel decides whether an audit event is discarded or to be sent to
the user space audit daemon for storing it in the audit trail. The kernel sends the message to the
audit daemon again using the above mentioned netlink communication channel. The audit daemon
writes the audit records to the audit trail. An internal queuing mechanism is used for this purpose.
When the queue does not have sufficient space to hold an audit record the TOE switches into single
user mode, is halted or the audit daemon executes an administrator-specified notification action
depending on the configuration of the audit daemon. This ensures that audit records do not get
lost due to resource shortage and the administrator can backup and clear the audit trail to free
disk space for new audit logs.

Access to audit data by normal users is prohibited by the discretionary access control function of
the TOE, which is used to restrict the access to the audit trail and audit configuration files to the
system administrator only.

Version: 0.21 Classification: public Page 124 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

The system administrator can define the events to be audited from the overall events that the
Lightweight Audit Framework offers using simple filter expressions. This allows for a flexible definition
of the events to be audited and the conditions under which events are audited. The system
administrator is also able to define a set of user IDs for which auditing is active or alternatively a
set of user IDs that are not audited.

The system administrator can select the audited events. Individual files can be configured to be
audited by adding them to a watch list that is loaded into the kernel. In addition, audit rules can
be specified to generate audit data based on a large number of different attributes, including:
® Subject or user identifiers
Result of the operation (success/failure)
Object identity
Operation performed on an object
System call number
SELinux label components

The TOE provides a management application that uses the aforementioned netlink interface. This
application is used during boot time to load the audit rules from the configuration file
/etc/audit/audit.rules. The audit rules can be modified at runtime of the system.

This security function covers the SFRs of: FAU_GEN.1, FAU_SEL.1, FAU_STG.3, FAU_STG.4, FPT_STM.1.

7.3.1.2 Audit trail

An audit record consists of one or more lines of text containing fields in a “keyword=value” tagged
format. The following information is contained in all audit record lines:

e Type: indicates the source of the event, such as SYSCALL, PATH, USER_LOGIN, or LOGIN

e Timestamp: Date and time the audit record was generated
e Audit ID: uniqgue numerical event identifier
°

Login ID (“auid”), the user ID of the user authenticated by the system (regardless if the
user has changed his real and / or effective user ID afterwards)

Effective user and group ID: the effective user and group ID of the proces s at the time the
audit event was generated

Success or failure (where appropriate)

(in MLS mode) SELinux label of the subject that caused the event
(in MLS mode) SELinux label of the target object

Process ID of the subject that caused the event (PID)

Hostname or terminal the subject used for performing the operation
Information about the intended operation

This information is followed by event specific data. In some cases, such as SYSCALL event records
involving file system objects, multiple text lines will be generated for a single event, these all have
the same time stamp and audit ID to permit easy correlation.

The audit trail is stored in ASCII text. The TOE provides tools for managing ASCII files that can be
used for post-processing of audit data. The application ausearch allows selective extraction of
records from the audit trail using defined selection criteria. Using the ausearch, the administrator

Version: 0.21 Classification: public Page 125 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

is able to select the information he wants to review. The tools allow the specification of a fine-grained
search pattern where each information component can be searched for, including combinations of
these patterns.

The audit trail is stored in files which are accessible by root only. If the audit trail fills up and reaches
a warning threshold the administrator is notified about reaching the configured level. If the audit
trail is full, the audit daemon rejects fetching new audit logs from the kernel to store them into a
file. The kernel buffer holding audit messages fills up. When the kernel audit message buffer is full,
the kernel suspends every subject that triggered an auditable event until the buffer is cleared again.
This way, operations causing auditable events are prevented. In addition, the audit daemon can
inform the administrator about the full audit trail, can switch to single user mode or halt the system,
depending on the configuration.

This security function covers the SFRs of: FAU_GEN.1, FAU_GEN.2, FAU SAR.1, FAU SAR.2, FAU STG.1.

7.3.2 Cryptographic services

The TOE offers different cryptographic services to protect user data. The following subsections
cover the different types of cryptographic services analyzed as part of the evaluation. Additional
cryptographic mechanisms are active in the TOE which, however, are not subject to the assessments
of this evaluation.

7.3.2.1 Cryptographic network services

The TOE provides cryptographically secured network communication channels to allow remote
users to interact with the TOE. Using one of the following cryptographically secured network channels,
a user can request the following services:

® OpenSSH: The OpenSSH application provides access to the command line interface of the
TOE. Users may employ OpenSSH for interactive sessions as well as for non-interactive
sessions. The console provided via OpenSSH provides the same environment as a local
console. OpenSSH implements the SSHv2 protocol. The cryptographic primitives are provided
by OpenSSL.

e Libreswan / Kernel: The Libreswan application suite implements the IKEv1l and IKEv2
protocols to securely establish the symmetric keys used for an IPSEC tunnel. These keys
are handed to the kernel which implements the IPSEC protocol. The cryptographic primitives
are provided by NSS.

® SSSD: The SSSD information provider connecting to the remote IPA server is able to use
TLS v1.1 or TLS v1.2 for protecting the communication link. The userspace component of
SSSD handles the key material. The cryptographic primitives are provided by NSS.

In addition to the cryptographically secured communication channels, the TOE also provides
cryptographic algorithms for general use.
SSHv2 Protocol

The TOE provides the Secure Shell Protocol Version 2 (SSH v2.0) to allow users from a remote host
to establish a secure connection and perform a logon to the TOE.

The following table documents implementation details concerning the OpenSSH implementation’s
compliance to the relevant standards. It addresses areas where the standards permit different
implementation choices such as optional features.

Version: 0.21 Classification: public Page 126 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Reference Description Implementation Details
[RFC4253]r Compatibility with old SSH The OpenSSH implementation is capable of interoperating
chapter 5 versions with clients and servers using the old 1.x protocol. That

functionality is explicitly disabled in the evaluated
configuration, it permits protocol version 2.0 exclusively.

[RFC4253]c

Compression

OpenSSH supports the OPTIONAL "zlib" compression method.

section 6.2

[RFC4253]¢ Encryption The ciphers supported in the evaluated configuration are listed

section 6.3 in FCS_COP.1(NET) for the SSH protocol.

[RFC4252]: Public Key Authentication This REQUIRED authentication method is supported by

chapter 7 Method: "publickey" OpenSSH but can be disabled by the administrator of the
OpenSSH daemon.

[RFC4252]¢ Password Authentication This SHOULD authentication method is supported by OpenSSH

chapter 8 Method: "password" but can be disabled by the administrator of the OpenSSH
daemon.

[RFC4252]: Password change request and | The OpenSSH implementation supports the optional password

chapter 8 setting new password change mechanism in the evaluated configuration.

[RFC4252]7 |Host-Based Authentication: | This OPTIONAL authentication method is disabled in the

chapter 9 "hostbased" evaluated configuration.

Table 11: SSH implementation notes

The TOE supports the generation of RSA, DSA and ECDSA key pairs. These key pairs are used by
OpenSSH for the host keys as well as for the per-user keys. When a user registers his public key
with the user he wants to access on the server side, a key-based authentication can be performed
instead of a password-based authentication. The key generation mechanism uses the Linux kernel
random number generator. The evaluated configuration permits the import of externally-generated

key pairs.

This security function covers the SFRs of: FCS_CKM.1(RSA), FCS_CKM.1(DSA), FCS_CKM.1(ECDSA).
The TOE supports the following security functions of the SSH v2.0 protocol:

e Establishing a secure communication channel using the following cryptographic functions
provided by the SSH v2.0 protocol:

Encryption as defined in section 4.3 of [RFC4253] - the keys are generated using
the random number generator of the underlying cryptographic library;

Diffie-Hellman key exchange as defined in section 6.1 of [RFC4253]:i;

The keyed hash function
[RFC4253]¢.

for integrity protection as defined in section 4.4 of

Note: The protocol supports more cryptographic algorithms than the ones listed above.
Those other algorithms are not covered by this evaluation and should be disabled or not
used when running the evaluated configuration.

® Performing user authentication using the standard password-based authentication method
the TOE provides for users (password authentication method as defined in chapter 5 of
[RFC4252]d).

Version: 0.21

Last update: 2016-06-09

Classification: public Page 127 of 156

Copyright © 2016 by Red Hat and atsec information security

http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4252

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

® Performing user authentication using a RSA, DSA or ECDSA key-based authentication
method (public key authentication method as defined in chapter 5 of [RFC4252]:).

e Checking the integrity of the messages exchanged and close down the connection in case
an integrity error is detected.

The OpenSSH applications of sshd, ssh and ssh-keygen use the OpenSSL random number generator
seeded by pulling data from /dev/random or /dev/urandom to generate cryptographic keys. OpenSSL
provides different DRNGs depending whether the FIPS 140-2 mode is enabled in the system.

This security function covers the SFRs of: FCS_CKM.1(SYM), FCS_CKM.2(NET-SSH), FCS_CKM.4,
FCS_COP.1(NET), FCS_RNG.1(SSL-DFLT), FCS_RNG.1(SSL-FIPS), FTP_ITC.1, FMT_SMF_RMT.1.

IPSEC and IKEv1 / IKEv2 Protocol Family

The TOE implements the protocol family of IPSEC and IKE with the kernel supported by the Libreswan
user application. IPsec can be split into two aspects which are implemented in different locations:

e Internet Key Exchange: The IKE protocol establishes the mutual session key used for
encrypting the communication. Both endpoints that want to communicate via IPsec-protected
channels must agree on a symmetric key that is used to encrypt data with. In fact, two
keys are exchanged or agreed on, one for each communication direction for the IPSEC SA.
In addition, as part of the IKE protocol the key agreement for the ISAKMP SA is performed
which protects the entire IKE communication. The IKE protocol is implemented by the pluto
daemon and is solely provided with user space code.

® [Psec: Once the keys for the IPSEC SA are exchanged or agreed on, the encryption and
decryption of the actual data that flows over the wire is covered with the IPsec protocols
of ESP, potentially supported by AH. In Linux, the kernel exclusively implements the IPsec
protocol using the keys established with the IKE protocol.

The pluto IKE daemon part of Libreswan implements the IKEv1 and IKEv2 protocol. These protocols
are specified in [RFC2409]: and [RFC5996].

The IPsec implementation of the kernel supports the transport as well as the tunnel mode. This
allows the configuration of a peer-to-peer, a peer-to-network or a network-to-network scenario.

The TOE supports the generation of the RSA, DSA, and ECDSA key pairs used by the client. The key
generation mechanism uses the NSS random number generator. The evaluated configuration also
allows the use of an externally-generated certificate. A widely accepted Certification Authority
might be used to generate and/or sign such a certificate (allowing a wide community trusting this
CA to validate the certificate). In a closed community it might also be sufficient to have one server
within the community to act as a CA. The NSS library provides the functions to set up such a CA,
but those functions are not subject of this Security Target.

The following RFCs are supported for implementing the IPsec protocol family:

e [RFC2401]d, [RFC2402], [RFC2406]c, [RFC2407]: Defining of SPD/SAD, SA, AH, ESP
e [RFC2408]:, [RFC2409]l: ISAKMP, IKEV1
e [RFC3526]: Diffie-Hellman groups
° [RFC5114]: Diffie-Hellman groups
e [RFC5996]: IKEv2
This security function covers the SFRs of: FCS_CKM.1(SYM), FCS_CKM.1(RSA), FCS_CKM.1(DSA),

FCS_CKM.1(ECDSA), FCS_CKM.2(NET-IKE), FCS_CKM.4, FCS_COP.1(NET), FCS_RNG.1(NSS), FTP_ITC.1,
FMT_SMF_RMT.1.

Version: 0.21 Classification: public Page 128 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc2409
http://tools.ietf.org/html/rfc5996
http://tools.ietf.org/html/rfc2401
http://tools.ietf.org/html/rfc2402
http://tools.ietf.org/html/rfc2406
http://tools.ietf.org/html/rfc2407
http://tools.ietf.org/html/rfc2408
http://tools.ietf.org/html/rfc2409
http://tools.ietf.org/html/rfc3526
http://tools.ietf.org/html/rfc5114
http://tools.ietf.org/html/rfc5996

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

TLS

The TOE provides TLSv1.1 and TLSv1.2 to establish communication to a remote server, i.e. the
SFRs claim the TLS client side only. In contrast to the SSH protocol described above, the TLS protocol
performs the support authentication as part by verifying the RSA certificates. The TOE can be
configured using a bi-directional certificate verification where the client side (SSSD IPA client)
validates the server certificate.

The TLS protocol within the TOE tunnels the SSSD IPA communication securely between the TOE
client and a remote IPA server system.

The following RFCs are supported for implementing the TLS protocol:
e [RFC4346]4: TLS 1.1
® [RFC5246]:: TLS 1.2

The following table documents implementation details concerning the NSS implementation’s
compliance to the relevant standards. It addresses areas where the standards permit different
implementation choices such as optional features.

Reference Description Implementation Details

RFC 5246 Handshake protocol overview: | The evaluated configuration always uses server certificates.

section 7.3 certificates Client certificates are used to allow the server to authenticate

the client.

RFC 5246 Random Number Generation |NSS uses data from the Linux kernel random number generator

appendix D.1 |and Seeding to seed the PRNG.

RFC 5246 Certificates and authentication | The evaluated configuration supports verification of certificate

appendix D.2 chains.

RFC 5246 Cipher suites The ciphers supported in the evaluated configuration are listed

appendix D.3 in FCS_COP.1(NET) for the TLS protocol.

RFC 5246 SSLv2, SSLv3, TLSv1.0, The NSS implementation supports the backwards compatible

appendix E TLSv1.1 Backward protocol, but this is disabled in the evaluated configuration.
Combatibility It permits use of TLSv1.1 TLSv1.2 exclusively.

Table 12: TLS implementation notes

The TOE supports the generation of the RSA, DSA, and ECDSA key pairs used by the client. The key
generation mechanism uses the NSS random number generator. The evaluated configuration also
allows the use of an externally-generated certificate. A widely accepted Certification Authority
might be used to generate and/or sign such a certificate (allowing a wide community trusting this
CA to validate the certificate). In a closed community it might also be sufficient to have one server
within the community to act as a CA. The NSS library provides the functions to set up such a CA,
but those functions are not subject of this Security Target.

This security function covers the SFRs of: FCS_CKM.1(SYM), FCS_CKM.1(RSA), FCS_CKM.1(DSA),
FCS _CKM.1(ECDSA), FCS_CKM.2(NET-TLS), FCS_CKM.4, FCS_COP.1(NET), FCS_RNG.1(NSS), FTP_ITC.1,
FMT _SMF_RMT.1.

Version: 0.21 Classification: public Page 129 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/rfc5246

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Confidentiality protected data storage

File system objects are stored on block devices, such as partitions on hard disk. The Linux operating
systems offers the use of an additional layer between the file systems and the physical block device
to encrypt and decrypt any data transmitted between the file system and the block device. The
dm_crypt functionality uses the Linux device mapper to provide such encryption and decryption
operation that is transparent to the file system and therefore to the user.

Before mounting the block device that is protected by the dm_crypt encryption scheme, the owner
of the encrypted block device has to provide a passphrase. This passphrase is used to decrypt the
symmetric master volume key which is injected into the kernel. Using that master volume key
kernel is now able to decrypt (to unlock) the block device and provides access to data stored on
that block device. At this point, the file system can be mounted as the file system can now be read.
In case data is written to the device, it is transparently encrypted using the master volume key.

Once the dm_crypt protected block device is unlocked and mounted, it is accessible as any other
file system. When it is unmounted and locked (i.e. the kernel is informed to discard the master
volume key), all data on the block device is inaccessible. Even administrative users like the root
user is not able to access any data any more. When an administrator would access the raw hardware
hosting the block device, only encrypted data can be read.

For the cryptographic operation, the creator of the dm_crypt block device can select the cipher.
When creating the dm_crypt block device, the master volume key is obtained from a random number
generator and stored on the block device encrypted with the user's passphrase. The used random
number generator depends on the state of the operating system at the time the master volume
key is generated. The key derivation mechanism from the user's password is based on the LUKS
mechanism which is also conformant to the FIPS140-2 cryptographic standard as it follows PBKDFv2.

The encryption and decryption operation of the block device is implemented by the kernel. To
unlock the encrypted master volume key stored on the protected block device, the cryptsetup
application performs the following steps:

1. obtain the user's passphrase

2. apply the LUKS key derivation mechanism on the passphrase

3. read the encrypted master volume key from the block device

4. decrypt the master volume key with the key derived from the user's passphrase
5. inject the decrypted master volume key into the kernel

Using the cryptsetup tool, the master volume key can also be transferred by encrypting it with
another passphrase which can be given to another user. The transfer follows the same steps outlined
for the unlocking operation, but instead of injecting the decrypted session key into the kernel,
cryptsetup fetches the new passphrase from the user, applies the LUKS mechanism on that
passphrase, encrypts the master volume key with the derived key and stores the encrypted session
key in a separate area on the block device. At this point, the master volume key is now stored
encrypted in two separate places.

Similarly, the cryptsetup tool can be used to erase the storage location of one encrypted master
volume key which implies that the user owning the passphrase of the affected encrypted session
key is not able to unlock the block device any more.

During setup time of an encrypted disk, the application cryptsetup uses data out of /dev/random
directly as key material (normal mode, runtime), /dev/urandom directly as key material (normal
mode, initial installation time), from the libgcrypt ANSI X9.31 DRNG seeded by /dev/random (FIPS
140-2 mode, runtime), or from the libgcrypt ANSI X9.31 DRNG seeded by /dev/urandom (FIPS 140-2
mode, initial installation time).

Version: 0.21 Classification: public Page 130 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

This security function covers the SFRs of FCS_COP.1(CP), FCS_RNG.1(DM-INIT), FCS_RNG.1(DM-RUN),
FCS_RNG.1(DM-FIPS), FDP_ACC.2(CP), FDP_ACF.1(CP), FDP_CDP.1, FMT_MSA.1(CP), FMT_MSA.3(CP),
FMT_MTD.1(CP-AN), FMT_MTD.1(CP-UD).

7.3.3 Packet filter

The Linux kernel's network stack implementation follows the layering structure of the network
protocols. It implements the code for handling the link layer as well as the network layer. For those
layers, independent filter mechanism are provided:

e Network layer: netfilter/iptables implements the filtering mechanism for non-bridge
interfaces

7.3.3.1 Network layer filtering

Netfilter

Netfilter is a framework for packet mangling, implemented in the Linux kernel network stack handling
the network layer. The netfilter framework comprises of the following parts:

e The IP stack defines five hooks which are well-defined points in a network packet's traversal
of the IP protocol stack. Each of the hooks, the network stack will call the netfilter framework
allowing it to operate on the entire packet. Note: the netfilter framework provides such
hooks in a number of network protocol implementations, but the TOE only supports IP as
outlined above. Therefore, the ST specification only covers the IP protocol.

e The netfilter framework provides register functions for other kernel parts to listen to the
different hooks. When a packet traverses one of the hooks and passed to the netfilter
framework, it invokes every registered kernel part. These kernel parts then can examine
the packet and possible alter it. As part of the examination, these kernel parts can instruct
the netfilter framework to discard the packet, to allow it to pass, or to queue it to user
space.

e When a packet is marked to be queued to user space, the netfilter framework handles the
asynchronous communication with user space.

The netfilter framework implements the five hooks at the following points in the packet traversal
chain:

e When the packet enters the network layer of the TOE and after applying some sanity
checks, but before the routing table is consulted, the NF_IP_PRE_ROUTING hook is triggered.

® After passing the routing table decision and the routing code marks the packet to be
targeted for another host, the NF_IP_FORWARD hook is triggered.

e After passing the routing table decision and the routing code marks the packet to be
targeted for the local system, the NF_IP_LOCAL IN hook is triggered.

® When the packet traversed all of the network stack and is about to be placed on the wire
again, the NF_IP_POST_ROUTING hook is triggered.

e When a packet is generated locally, the NF_IP_LOCAL_OUT hook is triggered before the
routing table is consulted.

IPTables

All communication on the network layer can be controlled by the IPTables framework.

Version: 0.21 Classification: public Page 131 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

The TOE implements a packet filter as part of the network stack provided with the Linux kernel.
The combination of IPTables and netfilter implements the packet filter which provides stateful and
stateless packet filtering for network communication by inspecting the IP header, the TCP header,
UDP header and/or ICMP header of every network packet that passes the network stack.

The packet selection system called IP Tables uses the netfilter framework to implement the actual
packet filtering logic on the network layer for the TCP/IP protocol family.

Note: IPTables is able to perform Network Address Translation (NAT) as well as Port Address
Translation (PAT) for simple as well as more complex protocols. This mechanism is out of scope for
the evaluation. Furthermore, packet mangling support is provided with IPTables which is also out
of scope for the evaluation.

IPTables registers all hooks provided by the netfilter framework. The NAT/PAT mechanism uses the
pre-routing and post-routing hooks whereas the packet filtering capability is enforced on the local-in,
local-out and forwaring hooks.

IPTables consists of the following two components:

e In-kernel packet filter enforcement: The kernel-side of IPTables use the netfilter framework
as indicated above. Three lists of packet filter rules are enforced by the kernel mechanism:
one for each netfilter framework hook that applies to packet filtering. When a packet is
analyzed by the IPTables kernel modules, they first select the applicable list based on the
hook where the netfilter framework triggered IPTables. Each list contains zero or more
rules which are iterated sequentially. A rule consists of a matching part (also called the
"match extension") and an action part (also called the "target extension"). When a rule is
applied to a packet, the kernel modules first applies the matching part of the rule. If the
packet matches, the action part is enforced. If the action part contains a decision of the
fate of the packet (to accept it, to drop it, or to drop it and sending a notification to the
sender), the rule list validation stops for this packet. If the action part contains a modification
instruction or log instruction for the packet, the rule list validation continues after performing
this operation. When the rule list is iterated through and a packet could not be matched
by a rule with a decision action (accept, drop), the default decision action applicable to the
list is enforced. This default action is either to accept the packet, to drop the packet, or to
drop the packet and send a notification to the sender.

® User space configuration application: The user space application iptables(1) allows the
configuration of the IPTables kernel components. The application allows the specification
of one rule per invocation where a rule contains the above mentioned matching part and
action part. The tool also allows modification or deletion of existing rules as well as
configuration of the default action. When using the tool, each invocation must specify the
netfilter framework hook to which the rule applies to. See the man page of iptables(1) for
more details.

This security function covers the SFRs of:
° Packet filtering rules: FDP_IFC.2(NI), FDP_IFF.1(NI-*)

e Interpretation of network protocol: FIA_UID.1, FDP_ITC.2, FPT_TDC.1(BA)
® Maintenance of rules: FIA_ATD.1(TU)

Version: 0.21 Classification: public Page 132 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

7.3.4 ldentification and Authentication

User identification and authentication in the TOE includes all forms of interactive login (e.g. using
the SSH protocol or log in at the local console) as well as identity changes through the su and sudo
commands. These all rely on explicit authentication information provided interactively by a user.
In addition, the key-based authentication mechanism of the OpenSSH server is another form of of
authentication.

7.3.4.1 PAM-based identification and authentication mechanisms

Linux uses a suite of libraries called the "Pluggable Authentication Modules" (PAM) that allow an
administrative user to choose how PAM-aware applications authenticate users. The TOE provides
PAM modules that implement all the security functionality to:

e Provides login control and establishing all UIDs, GIDs and login ID for a subject
e Ensure the quality of passwords

° Enforce limits for accounts (such as the number of maximum concurrent sessions allowed
for a user)

e Enforce the change of passwords after a configured time including the password quality
enforcement

e Enforcement of locking of accounts after failed login attempts.
e Restriction of the use of the root account to certain terminals
e Restriction of the use of the su and sudo commands

® In MLS mode, it sets up of the sensitivity label and file system name space

The login processing sets the real, file system effective and login UID as well as the real, effective,
file system GID and the set of supplemental GIDs of the subject that is created. It is of course up
to the client application usually provided by a remote system to protect the user’s entry of a
password correctly (e. g. provide only obscured feedback).

During login processing, the user is shown a banner. After successful authentication, the login time
is recorded.

When configuring the OpenSSH server, the administrator is allowed to enable SSH key-based
authentication in addition or instead of the username/password based authentication. When a user
can successfully authenticate using the SSH key-based authentication based on a private SSH key
in his possession, the TOE grants the user access.

SSSD is a system daemon with the primary function of providing access to identity and authentication
remote resource through a common framework that can provide caching and offline support to the
system. It provides PAM and NSS modules. It provides also a better database to store local users
as well as extended user data. SSSD can be configured to use a native IPA domain (that is, an IPA
identity provider with IPA authentication). One of the primary benefits of SSSD is offline
authentication. This solves the case of users having a separate corporate account and a local
machine account because of the common requirement to implement a Virtual Private Network
(VPN). SSSD can cache remote identities and authentication credentials. This means that a user
can still authenticate with these remote identities even when a machine is offline. In an SSSD
system, a user only needs to manage one account. SSSD integrates with the PAM and NSS framework
and can therefore be used together with PAM modules for local credential stores.

Version: 0.21 Classification: public Page 133 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

After a successful identification and authentication, the TOE initiates a session for the user and
spawns the initial login shell as the first process the user can interact with. The TOE provides a
mechanism to lock a session either automatically after a configurable period of inactivity for that
session or upon the user's request.

This security function covers the SFRs of FDP_RIP.3, FIA_AFL.1, FIA SOS.1, FIA_UAU.1, FIA UID.1,
FIA_UAU.5, FIA_UAU.7, FIA_USB.2.

7.3.4.2 User ldentity Changing

Users can change their identity (i.e., switch to another identity) using one of the following commands
provided with the TOE:

su command

The su command is intended for a switch to a another identity that establishes a new login
session and spawns a new shell with the new identity. When invoking su, the user must
provide the credentials associated with the target identity - i.e. when the user wants to
switch to another user ID, it has to provide the password protecting the account of the target
user.

The primary use of the su command within the TOE is to allow appropriately authorized
individuals the ability to assume the root identity to perform administrative actions. In this
system the capability to login as the root identity has been restricted to defined terminals
only. In addition the use of the su command to switch to root has been restricted to users
belonging to a special group. Users that don’t have access to a terminal where root login is
allowed and are not member of that special group will not be able to switch their real, file
system and effective user ID to root even if they would know the authentication information
for root. Note that when a user executes a program that has the setuid bit set, only the
effective user ID and file system ID are changed to that of the owner of the file containing
the program while the real user ID remains that of the caller. The login ID is neither changed
by the su command nor by executing a program that has the setuid or setgid bit set as it is
used for auditing purposes.

sudo command

The sudo command is intended for giving users permissions to execute commands with
another user identity. When invoking sudo, the user has to authenticate with this credentials.
Sudo is associated with sophisticated ruleset that can be engaged to specify which:

e source user ID

e originating from which host

® can access a command, a command with specific configuration flags, or all commands
within a directory

e with which new user identity.

When switching identities, the real, file system and effective user ID and real, file system and
effective group ID are changed to the one of the user specified in the command (after successful
authentication as this user).

Note: The login ID is not retained for the following special case:

1. User Alogs into the system.
2. User A uses su to change to user B.

Version: 0.21 Classification: public Page 134 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

3. User B now edits the cron or at job queue to add new jobs. This operation is appropriately
audited with the proper login ID.

4. Now when the new jobs are executed as user B, the system does not provide the audit
information that the jobs are created by user A.

The su command invokes the common authentication mechanism to validate the supplied
authentication.

This security function covers the SFRs of FIA_USB.2.

7.3.4.3 Authentication Data Management

Each TOE instance maintains its own set of users with their passwords and attributes. Although the
same human user may have accounts on different servers interconnected by a network and running
an instantiation of the TOE, those accounts and their parameter are not synchronized on different
TOE instances. As a result the same user may have different user names, different user Ids, different
passwords and different attributes on different machines within the networked environment. Existing
mechanism for synchronizing this within the whole networked system are not subject to this
evaluation.

Each TOE instance within the network maintains its own administrative database by making all
administrative changes on the local TOE instance. System administration has to ensure that all
machines within the network are configured in accordance with the requirements defined in this
Security Target.

The file /etc/passwd contains for each user the user’'s name, the id of the user, an indicator whether
the password of the user is valid, the principal group id of the user and other (not security relevant)
information. The file /etc/shadow contains for each user a hash of the user's password, the userid,
the time the password was last changed, the expiration time as well as the validity period of the
password and some other information that are not subject to the security functions as defined in
this Security Target. Users are allowed to change their passwords by using the passwd command.
This application is able to read and modify the contents of /etc/shadow for the user’s password
entry, which would ordinarily be inaccessible to a non-privileged user process. Users are also warned
to change their passwords at login time if the password will expire soon, and are prevented from
logging in if the password has expired.

The time of the last successful logins is recorded in the directory /var/log/faillock where one file per
user is kept.

The TOE displays informative banners before or during the login to users. The banners can be
specified with the files /etc/issue for log ins via the physical console or /etc/issue.net for remote log
ins, such as via SSH. When performing a log in on the physical console, the banner is displayed
above the username and password prompt. For log ins via SSH, the banner is displayed to the
remote peer during the SSH-session handshake takes place. The remote SSH client will display the
banner to the user. When using the provided OpenSSH client, the banner is displayed when the
user instructs the OpenSSH client to log into the remote system.

This security function covers the SFRs of FIA_ATD.1.

7.3.4.4 SSH key-based authentication

In addition to the PAM-based authentication outlined above, the OpenSSH server is able to perform
a key-based authentication. When a user wants to log on, instead of providing a password, the user
applies his SSH key. After a successful verification, the OpenSSH server considers the user as
authenticated and performs the PAM-based operations as outlined above.

Version: 0.21 Classification: public Page 135 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

To establish a key-based authentication, a user first has to generate an RSA, DSA, or ECDSA key
pair. The private part of the key pair remains on the client side. The public part is copied to the
server into the file .ssh/authorized_keys which resides in the home directory of the user he wants
to log on as. When the login operation is performed the SSHv2 protocol tries to perform the
"publickey" authentication using the private key on the client side and the public key found on the
server side. The operations performed during the publickey authentication is defined in [RFC4252]¢
chapter 7.

Users have to protect their private key part the same way as protecting a password. Appropriate
permission settings on the file holding the private key is necessary. To strengthen the protection
of the private key, the user can encrypt the key where a password serves as key for the encryption
operation. See ssh-keygen(1) for more information.

This security function covers the SFRs of FIA_UAU.1, FIA_UID.1, FIA_UAU.5, FIA_SOS.1.

7.3.4.5 Session locking

The TOE uses the screen(1) application which locks the current session of the user either after an
administrator-specified time of inactivity or upon the user's request.

To unlock the session, the user must supply his password. Screen uses PAM to validate the password
and allows the user to access his session after a successful validation.

This security function covers the SFRs of FTA_SSL.1, FTA_SSL.2.

7.3.5 Discretionary Access Control

The general policy enforced is that subjects (i.e., processes) are allowed only the accesses specified
by the policies applicable to the object the subject requests access to. Further, the ability to
propagate access permissions is limited to those subjects who have that permission, as determined
by the policies applicable to the object the subject requests access to.

A subject may possess one or more of the following capabilities which provide the following
exemptions from the DAC mechanism:

e CAP _DAC_OVERRIDE: A process with this capability is exempt from all restrictions of the
discretionary access control and can perform any action desired. For the execution of a
file, the permission bit vector of that file must contain at least one execute bit.

e CAP_DAC_READ_SEARCH: A process with this capability overrides all DAC restrictions
regarding read and search on files and directories.

e CAP_CHOWN: A process with this capability is allowed to make arbitrary changes to a file's
UID or GID.

® CAP_CHOWN: Setting permissions and ownership on objects even if the process' UID does
not match the UID of the object.

e CAP_FSETID: Don't clear SUID and SGID permission bits when a file is modified.

DAC provides the mechanism that allows users to specify and control access to objects that they
own. DAC attributes are assigned to objects at creation time and remain in effect until the object
is destroyed or the object attributes are changed. DAC attributes exist for, and are particular to,
each type of named object known to the TOE. DAC is implemented with permission bits and, when
specified, ACLs.

The outlined DAC mechanism applies only to named objects which can be used to store or transmit
user data. Other named objects are also covered by the DAC mechanism but may be supplemented
by further restrictions. These additional restrictions are out of scope for this evaluation. Examples

Version: 0.21 Classification: public Page 136 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

http://tools.ietf.org/html/rfc4252

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

of objects which are accessible to users that cannot be used to store or transmit user data are:
virtual file systems externalizing kernel data structures (such as most of procfs, sysfs, binfmt_misc)
and process signals.

During creation of objects, the TSF ensures that all residual contents is removed from that object
before making it accessible to the subject requesting the creation.

When data is imported into the TOE (such as when mounting disks created by other trusted systems),
the TOE enforces the permission bits and ACLs applied to the file system objects.

7.3.5.1 Permission bits

The TOE supports standard UNIX permission bits to provide one form of DAC for file system objects
in all supported file systems. There are three sets of three bits that define access for three categories
of users: the owning user, users in the owning group, and other users. The three bits in each set
indicate the access permissions granted to each user category: one bit for read (r), one for write
(w) and one for execute (x). Note that write access to file systems mounted as read only (e. g.
CD-ROM) is always rejected (the exceptions are character and block device files which can still be
written to as write operations do not modify the information on the storage media). Also, write
access to file system objects marked as immutable is always rejected. The SAVETXT attribute is
used for world-writable temp directories preventing the removal of files by users other than the
owner.

Each process has an inheritable “umask” attribute which is used to determine the default access
permissions for new objects. It is a bit mask of the user/group/other read/write/execute bits, and
specifies the access bits to be removed from new objects. For example, setting the umask to “002”
ensures that new objects will be writable by the owner and group, but not by others. The umask is
defined by the administrator in the /etc/login.defs file or 022 by default if not specified.

This security function covers the SFRs of FDP_ACC.1(PSO), FDP_ACF.1(PSO), FDP_RIP.2,
FPT_TDC.1(BA).
7.3.5.2 Access Control Lists (ACLs)

The TOE provides support for POSIX type ACLs to define a fine grained access control on a user
basis. ACLs are supported for all file system objects stored with the following file systems:

e ext4
e XFS
e tmpfs

An ACL entry contains the following information:

® A tag type that specifies the type of the ACL entry
® A qualifier that specifies an instance of an ACL entry type

® A permission set that specifies the discretionary access rights for processes identified by
the tag type and qualifier

An ACL contains exactly one entry of three different tag types (called the "required ACL entries”
forming the "minimum ACL"). The standard UNIX file permission bits as described in the previous
section are represented by the entries in the minimum ACL.

A default ACL is an additional ACL which may be associated with a directory. This default ACL has
no effect on the access to this directory. Instead the default ACL is used to initialize the ACL for
any file that is created in this directory. If the new file created is a directory it inherits the default

Version: 0.21 Classification: public Page 137 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

ACL from its parent directory. When an object is created within a directory and the ACL is not defined
with the function creating the object, the new object inherits the default ACL of its parent directory
as its initial ACL.

7.3.5.3 File system objects

Access to file system objects is generally governed by permission bits. For the above mentioned
file system, ACLs are supported.

File system objects access checks are performed when the object is initially opened, and are not
checked on each subsequent access. Changes to access controls (i.e., revocation) are effective
with the next attempt to open the object.

7.3.5.4 IPC objects

The TOE implements the following standard types of IPC mechanisms:

® SYSV Shared Memory
® SYSV and POSIX Message Queues
® SYSV Semaphores

Access to the above mentioned IPC mechanisms are governed by UNIX permission bits.

As the IPC objects of UNIX domain socket special files and Named Pipes are represented as file
system objects, the access control mechanism covering file system objects are applicable to these
IPC mechanisms too.

The TOE maintains IPC object types where each process has its own namespace for that object
type: sockets - including network sockets. Access to the socket is only possible by the process
whose socket namespace contains the socket reference. Setting of permissions for such objects
can be handled using file descriptor passing.

This security function covers the SFRs of FDP_ACC.1(TSO), FDP_ACF.1(TSO).

7.3.5.5 at and cron jobs queues

at and cron jobs can only be accessed (read/added/modified/deleted) by the owning user. The TOE
maintains at and cron job queues for each user.

The root user can always access every at or cron job queue.

The at or cron jobs are started with the UIDs/GIDs of the creator of the job.

7.3.5.6 print job queues

In the SELinux-enabled mode, the TOE maintains print job queues for each sensitivity label and
applies the MLS access control rules when listing or deleting jobs on top of the access restrictions
outlined beforehand. A user who has submitted a print job with label A cannot view the print jobs
or request the deletion of his print jobs from print queue for label A when he is logged in with label
B. The root user is also restricted by the SELinux rule set.

Each print output is generated with the label written on the front and last page as well as header
and footer of each page.

Version: 0.21 Classification: public Page 138 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

7.3.6 Mandatory Access Control

The TOE supports mandatory access control using sensitivity labels automatically attached to
processes and objects. This policy is enforced by the SELinux security module and the TOE specific
SELinux policy.

The name "mandatory" access control is based on the fact that only authorized administrators can
set and modify any labels assigned to objects or subject. Therefore, the access control is not at the
discretion of a user like for DAC.

SELinux together together with its policy is used to implement the multi-level system (MLS) policy.
The MLS policy is applied to regular users and all resources these users can access. The MLS policy
also implements and enforces the role-based access control functionality. This MLS policy also
implements and enforces the role-based access control policy.

7.3.6.1 MLS mode: Multi-level security
Sensitivity labels consist of a hierarchical part (the level) and a non-hierarchical set of categories.

The SELinux security module attaches a “sensitivity label” as part of the security context to the
objects defined in Security Policy specification. Note: these sensitivity labels are not assigned to
virtual machines and their resources since the applied multi-category functionality is more restrictive
than the multi-level security.

During login in time, the TOE assigns a SELinux label to the process spawned for the newly logged
in user based on the label assigned to the user by the administrator. If the user is assigned to more
than one label, the user can choose which label he wants to utilize for the session. The label attached
to the new process will be retained during when child processes are created (i.e. during for as well
as execution of a file).

Processes are subjects with associated security contexts. When sending signals using the kill system
call, the target process behaves like an object.

In addition a process as a subject also has a security context attached. Each process has an effective
or “low” sensitivity label (consisting of a hierarchical level and zero or more categories), and a
separate “process clearance” or “high” sensitivity label which must dominate the effective label.
The effective level is used for all access checks except for processes with the a specific MLS override
attribute. Access control is performed based on the sensitivity labels of the process and the object
the process interacts with.

When access attempts by a subject onto an object covered by the Discretionary Access Control are
performed, the Mandatory Access Control policy is only enforced after the Discretionary Access
Control policy allowed the access attempt. In case the Discretionary Access Control policy denies
the access attempt, the denial decision is immediately returned to the calling subject.

Attaching the security context to those objects, evaluating the security context in case of access
attempts and managing the security context of subjects and objects is performed by functions that
SELinux provides for the kernel hooks defined in the LSM framework. The functions at those hooks
ensure that all subjects and objects obtain a security context (including a sensitivity label) when
they are created in accordance with the rules of the mandatory access control policy.

This security function covers the SFRs of FDP_IFC.2(LS), FDP_IFF.2(LS), FIA_USB.2, FIA_ATD.1(HU).

at and cron jobs queues

The TOE maintains at and cron job queues for each sensitivity label per user and applies the
mandatory access control rules when accessing these queues.

Version: 0.21 Classification: public Page 139 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Processes spawned by at or cron are assigned the sensitivity label of the creator of the job.

Export/Import of labeled and unlabeled data

The system supports import and export of unlabeled data from/to single level devices. Changes in
device level must be performed manually by the administrator and are auditable.

A data archiving tool permits import and export of labeled filesystem data when used by
administrators by creating archives that preserve label information.

The TOE IPsec implementation allows assigning labels to network objects and enforcing the
mandatory access control policy based on those labels.

The TOE supports the export of labeled data via a multi-level printer. That printer must be connected
to the parallel or USB port. However, the printer cannot be connected via an Ethernet connection
as this would allow users to directly access the printer, bypassing the TOE-provided print spooler.
The print spooler obtains the label of the process causing the printout and ensures that each page
contains the label information. In addition, the print spooler ensures that the banner and trailer
page of a print job contains the label information of the printout.

This security function covers the SFRs of FDP_ETC.2(LS), FDP_ITC.1(LS), FDP_ITC.2(LS),
FDP_TDC.1(LS).

7.3.7 Security Management

The security management facilities provided by the TOE are usable by authorized users and/or
authorized administrators to modify the configuration of TSF. The configuration of TSF are hosted
in the following locations:

e Configuration files (or TSF databases)
e Data structures maintained by the kernel and within the kernel memory

The TOE provides applications to authorized users as well as authorized administrators to perform
various administrative tasks. These applications are documented as part of the administrator and
user guidance. These applications are either used to modify configuration files or to access
parameters controlled and enforced by the kernel via kernel-provided interfaces to user space.

Configuration options are stored in different configuration files. These files are protected using the
DAC mechanisms against unauthorized access where usually the root user only is allowed to write
to the files. In some special cases (like for /etc/shadow), the file is even readable to the root user
only. It is the task of the persons responsible for setting up and administrating the system to ensure
that the access control features of the TOE are used throughout the lifetime of the system to protect
those databases. These configuration files are accessed using applications which are able to interpret
the contents of these configuration files. Each TOE instance maintains its own TSF database.
Synchronizing those databases is not performed in the evaluated configuration. If such
synchronization is required by an organization it is the responsibility of an administrative user of
the TOE to achieve this either manually or with some automated assistance.

When the MLS mode is active, the configuration files are also protected with SELinux. The protection
implements the role-based access control mechanism allowing only dedicated roles to access
certain configuration files.

To access data structures maintained by the kernel, applications use the kernel-provided interfaces,
such as system calls, virtual file systems, netlink sockets, and device files. These kernel interfaces
are restricted to authorized administrators or authorized users, if applicable, by either using DAC
(for virtual file system objects) or special kernel-internal verification checks for each interface.

Version: 0.21 Classification: public Page 140 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

The TOE provides security management applications for all security-relevant settings listed
throughout this ST, i.e. all FMT_MSA.1 and FMT_MTD.1 iterations.

7.3.7.1 Approval and delegation of management functions

Using the sudo command, authorized administrators can approve that other users can perform
management tasks. Once the administrator approves the operation, the /etc/sudoers file is modified
to grant the user the right to perform the administrative operation.

Using the /etc/sudoers file, the administrator can specify the approval rules based on the following
fine-grained properties:

e Specification of the command that can be executed. The command may contain wild cards.
® Specification of the target user ID or group ID the command shall be executed with.

e Specification of the user ID or group ID (where all members of the group are covered) which
are allowed by this rule.

Using the sudo command and the associated /etc/sudoers configuration file, the administrative
users, i.e. the users allowed to use the root UID are allowed to delegate parts or all of their authority
to other users.

This security function covers all SFRs of FMT MTD.1(AM-MD), FMT _MTD.1(AM-AP),
FMT_MTD.1(AM-MA).

7.3.7.2 MLS mode: Role-based access control

The TOE allows defining roles in the SELinux policy by assigning the domain types to the role to
which a user in that role may transition. Each subject has a single active role at all times.

Each user has a set of permitted roles and a default role (both defined by the administrator) and
may select an active role using the newrole command from the set of permitted roles. Rules in the
policy also define which transitions between roles are allowed. Role transition requests succeed
only if the new role is in the set of permitted roles for the current user, and if the policy allows a
transition from the current role to the new role.

Administrators can define additional roles using SELinux loadable policy modules defined using the
checkmodule, semodule_package, and semodule utilities as documented in the Evaluated
Configuration Guide. A role definition consists of a set of permitted role transitions to or from that
role, and a set of SELinux domains which correspond to rights associated with the role. Additional
roles may be administrative roles with permission to use domains that have specific privileges,
including DAC and MAC override capabilities. The policy tools ensure that role definitions may only
be removed from the system if the rule is not included in the permitted rule set for any user.

RBAC access checks are performed whenever a subject accesses an object, with the permission
based on the subject’s domain, the object’s type, and the operation attempted. The RBAC policy
covers all objects covered by the DAC policy. SELinux “allow” rules define the specific access rights
to object types for the domains that are associated with the role. Any access attempt from a domain
to an object type that is not explicitly permitted by a SELinux “allow” rule is rejected.

Role-based access checks can veto actions that would normally be permitted by DAC or MAC rules,
but can never permit something that would be denied according to DAC or MAC rules. Access is
permitted only if all applicable policies (DAC, RBAC, and MLS) agree that the access is permitted.

Version: 0.21 Classification: public Page 141 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Whenever an operation would result in an illegal SELinux context for a subject or object, for example
an invalid combination of role and SELinux user class, the operation will fail and leave the subject
and object properties unchanged (for modifying operations), or refuse creation (for creating
operations). This ensures that subjects always have exactly one active role.

This security function covers the SFRs of FMT_MTD.1(AM-MR), FMT_SMR.2.

7.3.7.3 Privileges

Privileges to perform administrative actions are maintained by the TOE. These privileges are
separated into privileges to act on data or access functionality in user space and in kernel space.

Functionality accessible in user space are applications that can be invoked by users. Also, data
accessible in user space is either data maintained with an application or data stored in persistent
or transient storage objects. Privileges are controlled by permissions to invoke applications and to
access data. For example, the configuration files including the user databases of /etc/passwd and
/etc/shadow are accessible to the root user only. Therefore, the root user is given the privilege to
perform modifications on this configuration data which constitutes administrative actions.

Functionality and data maintained by the kernel must be accessed using system calls. The kernel
implements a privilege check for functions and data that shall not be accessible by normal users.
These privileges are controlled with capabilities that can be assigned to processes. If a process is
assigned with a capability, it is allowed to request special operations that other processes cannot.
To implement consistency with the Unix legacy, processes with the effective UID of zero are implicitly
given all capabilities. However, these processes may decide to drop capabilities. Such capabilities
are marked by names with the prefix of "CAP_" throughout this document. The Linux kernel
implements many more capabilities than mentioned in this document. These unmentioned
capabilities protect functions that do not directly cover SFR functionality but need to be protected
to ensure the integrity of the system and its resources.

7.3.8 Runtime Protection Mechanisms

The TOE provides functionality to mitigate the effects of a potentially present buffer overrun
vulnerability in applications. This mitigation mechanism covers the following aspects:

e Adding a guard variable to functions with vulnerable objects which is checked for correctness
after a function ends and before the function pointed to by the return address is evaluated.
This guard variable is also known as Stack Canary. The variable is a random number which
is generated during startup of an application and used throughout the lifetime of the
process.

e Marking the runtime memory of all parts of a binary as read-only apart from heap data
before the loaded application gains control. This support is enabled for dedicated TSF
applications and specifically compiled user applications. Partial protection is also possible
which implies that also the .got.plt section is marked read/writable.

On Intel CPUs starting with vy Bridge, the CPU feature SMEP is employed which prevents the kernel
to execute code located in user space memory.

This security function covers the SFR of FPT_FLS.1(FULL), FPT_FLS.1(PARTIAL), FPT_FLS.1(INTEL)

7.3.9 Linux Container (not on POWER architecture)

Linux Containers is the implementation of user space "virtualization". Various user space processes
operate in their own execution environment called a Linux Container which is isolated from other
Linux Containers. An application executing in a Linux Container cannot distinguish the execution

Version: 0.21 Classification: public Page 142 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

environment from a native system. This process cannot interact with processes associated to other
Linux Containers. Processes that are not assigned to a Linux Container have the ability to affect
the operation of processes inside Linux Containers.

Linux containers are not supported on the POWER CPU architecture.

When comparing Linux Containers to traditional virtualization environments, the following similarities
are visible:

e A Linux Container is logically equivalent to a virtual machine.

® The set of processes executing outside a Linux Container are equivalent to processes
executing on a virtualization host outside a virtual machine. Those applications have the
ability to affect the operation of virtual machines or Linux Containers, respectively.

e Linux Containers are isolated from one another as virtual machines are. The processes
inside a Linux Container cannot interact with processes of other Linux Containers.

The key differences between virtual machines and Linux Containers is that Linux Containers only
virtualize the user space. All processes of all Linux Containers execute on the very same instance
of the Linux kernel. This also implies that unlike virtual machine monitors, Linux Containers do not
need special support from the underlying hardware.

To implement Linux Containers different technical mechanisms offered by the Linux kernel are
used jointly. The following mechanisms are used -- these mechanisms are detailed in the subsequent
sections:

e Linux namespaces implement the isolation support between processes (see section 7.3.9.1).

e Linux control groups, also called "cgroups", implement the resource assignment and
resource limitation enforcement for processes (see section 7.3.9.2).

e Limitation of Linux kernel services is enforced by filtering Linux system call. This mechanism
is also called seccomp-filter (see section 7.3.9.3).

As the Linux kernel offers no policy enforcement on how these mechanisms are used, a user space
framework to manage, configure, and control Linux Containers is provided. This user space framework
is called Docker which uses the services implemented by systemd. Docker consists of a set of
applications providing a backend registry and administrative interfaces. When a Linux Container
is instantiated, Docker instructs systemd to set up the Linux control groups, instantiates the Linux
namespaces needed for the Linux container, and potentially sets up the system call filtering
mechanism.

The Docker user space framework, however, is not subject to any claims in that ST. The ST claims
the functionality that allows user space containers to be created.

7.3.9.1 Linux Namespaces

The purpose of each namespace is to wrap a particular global system resource in an abstraction
that makes it appear to the processes within the namespace as if they are part of an isolated
instance of the global resource. With the namespace, multiple instances of a resource can be
associated with the same set of meta data.

Currently, the following namespaces are used by the TOE:

mount namespaces
One use of mount namespaces is to create environments that are similar to chroot jails, but
more secure and flexible. Mount nhamespaces can be nested, so that mounts from a master
are automatically propagated to its slaves.

Version: 0.21 Classification: public Page 143 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

UTS namespaces
Allow for each container to have its own hostname and NIS domain name.

IPC namespaces
Each IPC namespace has its own set of System V IPC identifiers and its own POSIX message
queue filesystem.

PID namespaces
Isolation of process IDs within a namespace allows for the same PID to be assigned to
different processes in different namespaces, thus allowing migration of processes from one
host to another without changing its PID. Processes within a PID namespace can only "see"
(and therefore signal) PIDs of the same namespace (or PID namespaces nested below). Each
PID namespace can have their own init (PID 1) process. The PID 1 process is vital for the
entire user space as it acts as the default parent process reaper when a parent of a process
terminates.

network namespaces
Each container can have its own network device and its own applications that bind to the
per-namespace port number space; suitable routing rules in the host system can direct
network packets to the network device associated with a specific container. This allows,
e.g., for multiple web servers in different containers to bind to port 80. The network device
can only be accessed via the interfaces exported by the kernel through the networking
stack. Direct access to the physical device is not given.

A namespace is another indirection when resolving an object for performing operations on that
object. The Security Policy Model outlines the different classes of objects namespaces are
implemented.

The kernel uses two categories of namespaces which have different rules associated with them.
The first category is the set of namespaces covering regular kernel objects. The second category
is the user namespace which not only acts as an indirection layer for the kernel object maintaining
the process credentials, but also serves as an arbiter of the privileges a process is associated with.
The following subsections discuss the different classes of namespaces in detail.

Kernel object namespaces

All object classes except the user namespace listed in Security Policy Model implement a similar
approach for an indirection layer to access kernel objects. This section outlines the architecture of
the indirection layers. The explanation applies to all different namespaces unless otherwise noted.

A namespace is a data structure which maintains references to objects associated with the respective
namespace. For example, a PID namespace maintains a list of process IDs. An UTS namespace
simply holds a string with the system naming information. The Security Policy Model outlines the
kernel objects maintained for each type of namespace.

A collection of namespaces is maintained where one instance of each type of namespace is
referenced. This collection of namespaces is called the NSProxy. During boot, the kernel creates
the initial NSProxy which contains the references to the initial namespaces of each type of
namespace. At the time of creation of these initial namespaces, no kernel objects of the types
maintained by the different namespaces yet exist. The idea now is that when kernel objects of the
types outlined in the Security Policy Model are created, they kernel associates them with the
namespace the calling subject is associated with. For example, if a process creates a child process,
the kernel now looks up the PID namespace the calling process is associated with and associates
the new process with the PID namespace of the calling process.

Version: 0.21 Classification: public Page 144 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Every process must be associated with exactly one instance of every type of namespace. That
association is established by assigning a reference to an NSProxy to each process. In case a new
combination of namespaces is to be created, for example by switching to a new mount namespace,
a new NSProxy is created with a reference to the existing namespaces and a reference to the new
mount namespace.

Processes are the only acting entities in the system. Only processes can perform operations on the
kernel objects that are covered by the different types of namespaces, including creation, modification
and destruction. Every time a process performs an operation on these objects, the kernel resolves
the NSProxy of the calling process. With this NSProxy, the kernel now can obtain a reference to the
namespace instance the kernel object shall be found in and tries to resolve this object. If the object
cannot be resolved with this namespace, the object is defined to not exist for the calling process.

The following description about the mount namespace example shall enlighten the reader how
namespaces are utilized. This example starts at boot time and follows through various operations
a process can perform.

Init mount namespace

During boot time, the init mount namespace is created and associated with the init NSProxy.
This operation is performed before any user space process exists. The kernel associates
that init NSProxy with the very first process it creates. That very first process is filled by the
kernel when it starts /sbin/init to perform the userspace initialization. The init process is now
associated with the init NSProxy and therefore with the init mount namespace. Baring any
special operations on namespaces, any process forked by init are associated with the init
NSProxy and the init mount namespace. When the initialization step of mounting all file
systems from /etc/fstab is performed, the kernel uses the NSProxy of the process performing
the mount operation. As no namespace-specific operations are yet performed, the kernel
resolves the init NSProxy and with it the init mount namespace. The mounted file systems
are now held and referenced by the init mount namespace.

For any process that tries to perform operations on the mount point, the kernel converts
the name of or the file descriptor to the file system object into a kernel internal
representation. During that conversion, the mount namespace the mount point is associated
with is resolved. Only when this namespace is identical to the mount namespace pointed
to by the NSProxy, the operation is performed.

Any process that tries to perform operations on the file system object, the kernel must
resolve the file system object from either the path name or the file descriptor. During
resolution, the kernel walks the tree of mount points associated with the process.

Version: 0.21 Classification: public Page 145 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

New mount namespace

A process now may instruct the kernel to a new mount namespace for itself. For this
operation, the kernel creates a new NSProxy with a new mount namespace for the process.
The kernel also duplicates the references to the tree of mount points to make a private copy
for the calling process. When the process now performs an operation on the mount points,
including mounting a new file system, the change is reflected in the new mount namespace
and in the tree of mount points. As this tree of mount points is not shared with other
processes, that modification remains private to the process.

When process with a new mount namespace mounts a new file system, it can access the
file system objects on that file system. If another process wanted to access the same file
system, it will not be able to do so as the mount point does not exist for his tree of mount
points. Thus, the kernel would return an error.

It is possible that a file system is mounted at a different mount point for a process with a
new mount namespace than for another process. For example, /dev/sdb3 could be mounted
under /mnt/rootns for the process that is yet part of the init mount namespace. The process
with a new namespace may mount /dev/sdb3 under /mnt/newns. The file system object of
A on that file system is to be accessed via /mnt/rootns/A for the first process and via
/mnt/newns/A for the second process. If, however, the first process tries to access
/mnt/newns/A, the kernel would access a different file system object, because /mnt/newns
is no mount point to /dev/sdb3 for the first process.

A similar approach is made for employing the other namespaces. Every time the kernel needs to
access a kernel object, it tries to resolve the calling process NSProxy and the stored namespace
reference to resolve the object pointed to by the namespace.

To ensure a smooth transition of operations on kernel objects to handle namespace operations,
the following approach is taken by developers: the mentioned namespace functionality is only
applicable to an object and operation if the developer added appropriate code to the kernel. If code
handling the namespace functionality is missing, e.g. the object is not yet made "namespace-aware",
the object is automatically and implicitly assigned to the init namespace.

This security function covers the SFRs of FDP_ACC.2(Namespaces), FDP_ACF.1(Namespaces),
FIA_UID.2.

Network Namespace

All Linux namespaces have only relevance local to the operating system with one exception: the
networking namespace. The networking namespace allows the isolated management of network
devices and TCP/IP stack configuration from the rest of the host system. After creation of the network
namespace, no network device is assigned and therefore cannot be managed. Nonetheless, the
TCP/IP stack configuration exported via the proc interface can be used to configure the TCP/IP stack
behavior.

The configuration changes are private to the namespace and are not visible or enforced outside of
the network namespace. To allow a smooth development, each configuration variable must be
explicitly "enlightened" within the kernel to be namespace-aware. That means, only when additional
functionality surrounding the processing of the variable is added to the kernel to implement the
namespace isolation and layer, that variable can be used within a network namespace. For any
configuration variable that has no specific code in the kernel making it "namespace-aware", this
variable has a global impact to every namespace. However, to alter such configuration variables,

Version: 0.21 Classification: public Page 146 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

the variable is implicitly defined to belong to the init network namespace. This means that the
calling process must possess capabilities that are enforced in the init namespace to alter this
variable.

The administrator of the host system (i.e. the administrator in the init namespaces) can decide to
assign a network device to the network namespace. When assigning a device to a network
namespace, it will be removed from the namespace it is currently part of and is exclusively assigned
to the target network namespace. The network namespace with an assigned network device now
has exclusive control over that namespace. That means that processes possessing capabilities in
that network namespace can perform administrative operation on that network interface like
enabling or disabling the network interface, configuring its IP address and any other administrative
operation on that network interface. The administrative operations are limited to the operations
allowed by the kernel via the networking stack. Thus, direct access of the hardware of the network
device is impossible. When re-assigning a network device to a different namespace, the residual
information that remains in the network stack only needs to be reset to prevent accidental
information leakage.

With an exclusive network device assigned to a namespace, regular networking operation can
commence. The IP address assigned to the network interface allows network software associated
with that network namespace to communicate with external entities. The IP address allows the
kernel to associate any traffic, either ingress or egress, to be associated with the originating network
namespace. With this capability, processes associated with different network namespace may use
the same listening ports for ingress or source ports for egress traffic.

Separate network namespaces implicitly contain an isolated instance of the localhost network
interface. That means, processes assigned to one namespace can only access localhost IP addresses
and ports instantiated by processes belonging to the same network namespace.

When assigning an existing process to a different network namespace, existing communication
links are retained even when the establishment of such a communication link would be prohibited
by the namespace configuration. In such a case, a bridge between the target network namespace
and the originating network namespace for the duration of the network session is established. The
same applies to file system objects when a process already has a file descriptor and is reassigned
to a new mount namespace.

This security function covers the SFRs of FDP_ETC.2(LC), FDP_ITC.2(LC), FPT_TDC.1(LC).

Namespace Administration

When creating a new process without namespace-specific options, the new process inherits the
namespace assignments of the mother process. As mentioned above, the first process created by
the kernel during boot is assigned to the init namespaces of each namespace type.

A new user namespace can be created by unprivileged processes. Any other namespace type can
only be created by a process holding the CAP_SYS_ADMIN capability. During creation of a namespace,
at least one process must be assigned to that new namespace. A new namespace can either be
created with clone system call flags, or using the unshare system call. The association of an existing
process with a namespace can be altered using either the setns system call or by using the
/proc/PID/ns directory.

Even though an unprivileged process can create a new user namespace, the user ID visible outside
that namespace cannot be altered by an unprivileged process. Using the proc interface, a process
with CAP_SYS_ADMIN can assign a new user ID to a process associated with a user namespace that
is enforced on any operations requiring a user ID that is not namespace-aware.

Version: 0.21 Classification: public Page 147 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

This security function covers the SFRs of FMT_MSA.1(Namespaces-CACP),
FMT_MSA.3(Namespace-CACP), FMT_MTD.1(LC-COMP).

7.3.9.2 Control Groups

Control Groups provide a mechanism for aggregating/partitioning sets of tasks, and all their future
children, into hierarchical groups with specialized behavior.

At any one time there may be multiple active hierarchies of task cgroups. Each hierarchy is a
partition of all tasks in the system.

User-level code may create and destroy cgroups by name in an instance of the cgroup virtual file
system, specify and query to which cgroup a task is assigned, and list the task PIDs assigned to a
cgroup. Those creations and assignments only affect the hierarchy associated with that instance
of the cgroup file system.

On their own, the only use for cgroups is for simple job tracking. The intention is that other
subsystems hook into the generic cgroup support to provide new attributes for cgroups, such as
accounting/limiting the resources which processes in a cgroup can access. Different controllers use
the cgroup framework to implement resource tracking and enforcement of policies. These controllers
cover:

e Block IO Controller: Two 10 control policies are implemented. First one is proportional weight
time based division of disk policy. The priorities of the I/O scheduling process can be altered
using this policy. The second policy is throttling policy which can be used to specify upper
I/0O rate limits on devices.

® CPU Accounting Controller: This controller implements CPU accounting usage for groups
of processes.

® cpusets controller: This controller allows assignment of CPUs and memory nodes (as
compared to memory sizes) to a set of processes.

° Device controller: The device controller allows the specification of a whitelist of devices
which are accessible to a group of processes.

® Freezer controller: This controller is used for checkpointing and restarting process groups.
When a process group is checkpointed, the operation of all processes of that group is
suspended. In the suspended mode, operations on that group can take place such scheduling
of resources as needed by the administrator. After completion of this operation, the group
of processes is restarted.

® HugeTLB controller: The HugeTLB controller allows to limit the HugeTLB usage per control
group and enforces the controller limit during page fault.

® Memory resource controller: The memory controller isolates the memory behavior of a
group of tasks from the rest of the system. Process groups can be given a memory range
that the collection of all processes of the group together are limited to.

° Network classifier controller: The Network classifier cgroup provides an interface to tag
network packets with a class identifier (classid). The Traffic Controller (tc) can be used to
assign different priorities to packets from different cgroups. Also, Netfilter (iptables) can
use this tag to perform actions on such packets.

e Network priority controller: The Network priority cgroup provides an interface to allow an
administrator to dynamically set the priority of network traffic generated by various
applications.

® Resource counter controller: The resource counter, is supposed to facilitate the resource
management by controllers by providing common information for accounting.

Version: 0.21 Classification: public Page 148 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

The kernel cgroup framework provides the minimum essential kernel mechanisms required to
efficiently implement such control groups. It has minimal impact on the system fast paths, and
provides hooks for the specific controller mentioned above.

Multiple hierarchy support is provided to allow for situations where the division of tasks into cgroups
is distinctly different for different subsystems - having parallel hierarchies allows each hierarchy
to be a natural division of tasks, without having to handle complex combinations of tasks that would
be present if several unrelated subsystems needed to be forced into the same tree of cgroups.

At one extreme, each resource controller or subsystem could be in a separate hierarchy; at the
other extreme, all subsystems would be attached to the same hierarchy.

The Linux control group framework exports a virtual file system which is accessible to a trusted
administrator only. The systemd application provides an API that accesses this virtual file system.
The Docker user space framework uses this systemd APl to set up the environment for Linux
Containers.

This security function covers the SFRs of FDP_ACC.2(Cgroup), FDP_ACF.1(Cgroup),
FMT_MSA.1(Cgroup-CACP), FMT_MSA.3(Cgroup-CACP).

7.3.9.3 System Call Filtering

A large number of system calls are exposed to every userland process with many of them going
unused for the entire lifetime of the process. As system calls change and mature, bugs are found
and eradicated. A certain subset of userland applications benefit by having a reduced set of available
system calls. The resulting set reduces the total kernel surface exposed to the application. System
call filtering is meant for use with those applications.

Seccomp filtering provides a means for a process to specify a filter for incoming system calls. The
filter is expressed as a Berkeley Packet Filter (BPF) program, as with socket filters, except that the
data operated on is related to the system call being made: system call number and the system call
arguments. This allows for expressive filtering of system calls using a filter program language with
a long history of being exposed to userland and a straightforward data set.

Additionally, BPF makes it impossible for users of seccomp to fall prey to time-of-check-time-of-use
(TOCTOU) attacks that are common in system call interposition frameworks. BPF programs may
not de-reference pointers which constrains all filters to solely evaluating the system call arguments
directly.

Using the prctl system call, BPF rules are injected into the kernel where the rules specify:

e System call number
e Optionally system call arguments
e Action to be performed when a rule is matched

A system call filtering rule is matched when the system call number invoked by the process matches
one in the rule in the rule set. In addition, if system call arguments are specified in the rule, these
arguments must also match.

The rule set is evaluated completely by the kernel for each system call to identify all rules applicable
to the call. The rule action with the highest precedence is used for the process. The reason for this
approach is that processes can add new rules to an existing rule set without privilege. Considering
that the rule with the highest precedence is to be used, processes can therefore only further restrict
the ruleset (i.e. have less system calls at their disposal). As the rule set is inherited during fork, a
mother process can define limits for a newly created child process that this child process and all
its children are bound to.

Version: 0.21 Classification: public Page 149 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

This security function covers the SFRs of FDP_ACC.2(SECCOMP), FDP_ACF_NA.1(SECCOMP),
FMT_MSA.1(SECCOMP), FMT_MSA.3(SECCOMP).

Version: 0.21 Classification: public Page 150 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

8 Abbreviations, Terminology and References

8.1 Abbreviations

ACL
Access Control List

API
Application Programming Interface

IPA
"Identity, Policy and Audit" management framework which is provided mainly by the FreelPA
software.

KVM
Kernel Virtualized Machine

HTTP
Hypertext Transfer Protocol

SFR
Security Functional Requirement

SSL
Secure Sockets Layer

ST
Security Target

TCP/IP
Transmission Control Protocol / Internet Protocol

TLS
Transport Layer Security

TOE
Target of Evaluation

TSF
TOE Security Functionality

VM
Virtual Machine

VPN
Virtual Private Network

8.2 Terminology

This section contains definitions of technical terms that are used with a meaning specific to this
document. Terms defined in the [CC] are not reiterated here, unless stated otherwise.

Authentication Data
Authentication data is the data used by users or remote entities to authenticate their claimed
identity.

Version: 0.21 Classification: public Page 151 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Authorized Administrator

This term refers to a user in one of the defined administrative roles of a Linux system. The TOE
associates the user with the UID of zero and named "root" with administrative authorities.
Effectively, the UID zero is assigned with all Linux capabilities known to the Linux kernel. Every
user who is allowed to log on as that root user, or to switch their UID to the root user is considered
an authorized administrator. In addition, any user who is able to execute applications which
grant one or more Linux capabilities to be used in an unconditional manner is considered an
authorized administrator. Note: the process executing on behalf of the root user must possess
MLS override attributes to perform management aspects of the Mandatory Access Control Policy.

Category
A category is the non-hierarchical category of the lower MLS label defined with an SELinux label.
Note: an SELinux label consists of four parts where the MLS label is one of them. The MLS label
in turn is split into a higher and a lower MLS label part.

Classification
A sensitivity label associated with an object.

Clearance
A sensitivity label associated with a subject or user.

DAC
Discretionary Access Control implemented with permission bits and ACLs.

Data
Arbitrary bit sequences on persistent or transient storage media.

Dominate
Sensitivity label A dominates sensitivity label B if the hierarchical level of A is greater than or
equal to the hierarchical level of B, and the category set of label A is a proper subset of or equal
to the category set of label B. (cf. Incomparable sensitivity labels).

Guest
Software executing within a virtual machine environment. There can be zero or more guests
executing concurrently on the host system.

Host
The host system provides the Linux environment that controls and manages the virtual machines.
The host provides the execution environment for every virtual machine.

Information
Any data held within a server, including data in transit between systems.

iIoMMU
Input / Output Memory Management Unit. This MMU allows the setup of multiple DMA areas for
different virtual machines.

KVM
Kernel-based Virtual Machine.

MLS
Multi-level security

Named Object
In Linux, those objects that are covered by access control policies. The list of objects defined
as named objects is provided with FDP_ACC.1.

Version: 0.21 Classification: public Page 152 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Object
For Linux, objects are defined by FDP_ACC.1.

OSPP
Operating System Protection Profile

OSPP EP
Operating System Protection Profile Extended Package

PAM
Pluggable Authentication Module - the authentication functionality provided with Linux is highly
configurable by selecting and combining different modules implementing different aspects of
the authentication process.

Product
The term product is used to define software components that comprise the Linux system.

QEMU
The QEMU software component implements the virtual devices and virtual resources for virtual
machines. There is one instance of QEMU per virtual machine. The QEMU software component
is also identified as the "kvm" application on the host system.

SELinux
Linux kernel LSM module that is able to implement arbitrary security policies. An SELinux policy
distributed with the TOE implements multi-level or multi-category security.

Sensitivity Label
The TOE attaches a sensitivity label to each named object. This label consists of a hierarchical
sensitivity level and a set of zero or more categories. The policy defines the number and names
of the sensitivity levels and categories.

Subject
There are two classes of subjects in Red Hat Enterprise Linux: i) untrusted internal subject - this
is a Linux process running on behalf of some user or providing an arbitrary service, running
outside of the TSF (for example, with no privileges); ii) trusted internal subject - this is a Linux
process running as part of the TSF (for example: service daemons and the process implementing
the identification and authentication of users).

Target Of Evaluation (TOE)
The TOE is defined as the Red Hat Enterprise Linux operating system, running and tested on
the hardware and firmware specified in this Security Target. The BootPROM firmware as well
as the hardware are not part of the TOE.

Technical user
Entity that interacts with the TOE which is not directly controlled by a human, such as
applications, remote systems that autonomously or semi-autonomously interact with the TOE.

User
Any individual/person or technical entity (such as a service added by the administrator on top
of the TOE) who has a unique user identifier and who interacts with the product.

User Security Attributes
Defined by functional requirement FIA_ATD.1, every user is associated with a number of security
attributes which allow the TOE to enforce its security functions on this user. This also includes
the user clearance which defines the maximum sensitivity label a user can have access to.

Version: 0.21 Classification: public Page 153 of 156
Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Virtual devices
See virtual resources for a generic explanation. This definition applies also to virtual devices,
but with a focus to devices, such as disks, network cards, graphics cards, and similar.

Virtual machine
A virtual machine is an execution environment where the software executing within the virtual
machine has access to the processor's user and supervisor state and resources defined by the
host system. Resources include the number of processors, RAM size, physical devices, virtualized
devices, communication channels to other virtual machines and the host system. For the KVM
environment a virtual machine environment is controlled and provided by the Linux kernel
hypervisor functionality plus the QEMU application instantiated for each virtual machine.

Virtual machine environment
See virtual machine.

Virtual resources
Virtual resources are resources that either do not physically exist and do not exist in the host
system. Virtual resources are implemented by the virtual machine environment and are provided
to the respective virtual machine. For example, virtual resources are special exceptions that
can be triggered from the virtual machine environment to request services from the host system,
such as para-virtualized drivers. Virtual devices can be considered one form of virtual resources.

8.3 References

CcC Common Criteria for Information Technology Security Evaluation

Version 3.1R4

Date September 2012

Location http://www.commoncriteriaportal.org/files/ccfiles/CC
PART1V3.1R4.pdf

Location http://www.commoncriteriaportal.org/files/ccfiles/CC
PART2V3.1R4.pdf

Location http://www.commoncriteriaportal.org/files/ccfiles/CC

PART3V3.1R4.pdf

FIPS180-4 Secure Hash Standard

Date March 2012

Location http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
FIPS197 Advanced Encryption Standard

Date 2001-11-26

Location http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
OSPP BSI Operating System Protection Profile

Version 2.0

Date 2010
OSPP-AM BSI OSPP Extended Package - Advanced Management

Version 2.0

Date 2010
Version: 0.21 Classification: public Page 154 of 156

Last update: 2016-06-09 Copyright © 2016 by Red Hat and atsec information security

http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R4.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R4.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R4.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

OSPP-LS

RFC2401

RFC2402

RFC2406

RFC2407

RFC2408

RFC2409

RFC3526

RFC3602

RFC4252

RFC4253

RFC4301

RFC4303

Version: 0.21
Last update: 2016-06-09

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

BSI OSPP Extended Package - Labeled Security

Version 2.0

Date 2010

Security Architecture for the Internet Protocol
Date November 1998

Location http://tools.ietf.org/html/rfc2401

IP Authentication Header

Date November 1998

Location http://tools.ietf.org/html/rfc2402

IP Encapsulating Security Payload (ESP)

Date November 1998

Location http://tools.ietf.org/html/rfc2406
The Internet IP Security Domain of Interpretation for ISAKMP
Date November 1998

Location http://tools.ietf.org/html/rfc2407

Internet Security Association and Key Management Protocol (ISAKMP)
Date November 1998

Location http://tools.ietf.org/html/rfc2408
The Internet Key Exchange (IKE)

Date November 1998

Location http://tools.ietf.org/html/rfc2409

More Modular Exponential (MODP) Diffie-Hellman groups for Internet
Key Exchange (IKE)

Date May 2003

Location http://tools.ietf.org/html/rfc3526

The AES-CBC Cipher Algorithm and Its Use with IPsec

Date September 2003

Location http://tools.ietf.org/html/rfc3602

The Secure Shell (SSH) Authentication Protocol

Date January 2006

Location http://tools.ietf.org/html/rfc4252

The Secure Shell (SSH) Transport Layer Protocol

Date January 2006

Location http://tools.ietf.org/html/rfc4253

Security Architecture for the Internet Protocol

Date December 2005

Location http://tools.ietf.org/html/rfc4301

IP Encapsulating Security Payload (ESP)

Date December 2005

Location http://tools.ietf.org/html/rfc4303
Classification: public Page 155 of 156

Copyright © 2016 by Red Hat and atsec information security

http://tools.ietf.org/html/rfc2401
http://tools.ietf.org/html/rfc2402
http://tools.ietf.org/html/rfc2406
http://tools.ietf.org/html/rfc2407
http://tools.ietf.org/html/rfc2408
http://tools.ietf.org/html/rfc2409
http://tools.ietf.org/html/rfc3526
http://tools.ietf.org/html/rfc3602
http://tools.ietf.org/html/rfc4252
http://tools.ietf.org/html/rfc4253
http://tools.ietf.org/html/rfc4301
http://tools.ietf.org/html/rfc4303

RFC4307

RFC4346

RFC4419

RFC5114

RFC5246

RFC5656

RFC5996

RFC6668

Version: 0.21
Last update: 2016-06-09

Red Hat, Inc.
Red Hat Enterprise Linux, Version 7.1

Cryptographic Algorithms for Use in the Internet Key Exchange Version
2 (IKEv2)

Author(s) J. Schiller

Date 2005-12-01

Location http://www.ietf.org/rfc/rfc4307.txt

The Transport Layer Security (TLS) Protocol Version 1.1
Date April 2006

Location http://tools.ietf.org/html/rfc4346

Diffie-Hellman Group Exchange for the Secure Shell (SSH) Transport
Layer Protocol

Date March 2006

Location http://tools.ietf.org/html/rfc4419

Additional Diffie-Hellman Groups for Use with IETF Standards
Date January 2008

Location http://tools.ietf.org/html/rfc5114

The Transport Layer Security (TLS) Protocol Version 1.2

Date August 2008

Location http://tools.ietf.org/html/rfc5246

Elliptic Curve Algorithm Integration in the Secure Shell Transport Layer
Date December 2009

Location http://tools.ietf.org/html/rfc5656

Internet Key Exchange Protocol Version 2 (IKEv2)

Date September 2010

Location http://tools.ietf.org/html/rfc5996

SHA-2 Data Integrity Verification for the Secure Shell (SSH) Transport
Layer Protocol

Date July 2012
Location http://tools.ietf.org/html/rfc6668
Classification: public Page 156 of 156

Copyright © 2016 by Red Hat and atsec information security

http://www.ietf.org/rfc/rfc4307.txt
http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/rfc4419
http://tools.ietf.org/html/rfc5114
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5656
http://tools.ietf.org/html/rfc5996
http://tools.ietf.org/html/rfc6668

	Revision History
	Table of Contents
	List of Tables
	1 Introduction
	1.1 Security Target Identification
	1.2 TOE Identification
	1.3 TOE Type
	1.4 TOE Overview
	1.4.1 Configurations defined with this ST
	1.4.2 Overview description
	1.4.2.1 Hardware Specifics

	1.4.3 Compliance with STIG and other standards
	1.4.4 Required Hardware and Software
	1.4.5 Intended Method of Use
	1.4.5.1 General-purpose computing environment
	1.4.5.2 Operating Environment

	1.4.6 Major Security Features

	1.5 TOE Description
	1.5.1 Introduction
	1.5.2 TOE boundaries
	1.5.2.1 Physical
	1.5.2.2 Logical
	1.5.2.3 Configurations
	1.5.2.4 TOE Environment
	1.5.2.5 Security Policy Model

	2 CC Conformance Claim
	3 Security Problem Definition
	3.1 Threat Environment
	3.1.1 Assets
	3.1.2 Threat Agents
	3.1.3 Threats countered by the TOE

	3.2 Assumptions
	3.2.1 Environment of use of the TOE
	3.2.1.1 Physical
	3.2.1.2 Personnel
	3.2.1.3 Procedural
	3.2.1.4 Connectivity

	3.3 Organizational Security Policies

	4 Security Objectives
	4.1 Objectives for the TOE
	4.2 Objectives for the Operational Environment
	4.3 Security Objectives Rationale
	4.3.1 Coverage
	4.3.2 Sufficiency

	5 Extended Components Definition
	5.1 Class FCS: Cryptographic support
	5.1.1 Random number generator (RNG)
	5.1.1.1 FCS_RNG.1 - Random number generation

	5.2 Class FDP: User data protection
	5.2.1 Confidentiality protection (FDP_CDP)
	5.2.1.1 FDP_CDP.1 - Confidentiality for data at rest

	5.2.2 Access control function (no audit) (FDP_ACF_NA)
	5.2.2.1 FDP_ACF_NA.1 - Access control function (no audit)

	6 Security Requirements
	6.1 Security Requirements for the Operational Environment
	6.1.1 General security requirements for the abstract machine
	6.1.1.1 Subset access control (FDP_ACC.1(E))
	6.1.1.2 Security-attribute-based access control (FDP_ACF.1(E))
	6.1.1.3 Static attribute initialization (FMT_MSA.3(E))

	6.1.2 Security requirements for CPACF
	6.1.2.1 Cryptographic operation (CPACF) (FCS_COP.1(2E))

	6.2 TOE Security Functional Requirements
	6.2.1 General-purpose computing environment
	6.2.1.1 Audit data generation (FAU_GEN.1)
	6.2.1.2 User identity association (FAU_GEN.2)
	6.2.1.3 Audit review (FAU_SAR.1)
	6.2.1.4 Restricted audit review (FAU_SAR.2)
	6.2.1.5 Selective audit (FAU_SEL.1)
	6.2.1.6 Protected audit trail storage (FAU_STG.1)
	6.2.1.7 Action in case of possible audit data loss (FAU_STG.3)
	6.2.1.8 Prevention of audit data loss (FAU_STG.4)
	6.2.1.9 Cryptographic key generation (FCS_CKM.1(SYM))
	6.2.1.10 Cryptographic key generation (FCS_CKM.1(RSA))
	6.2.1.11 Cryptographic key generation (FCS_CKM.1(DSA))
	6.2.1.12 Cryptographic key generation (FCS_CKM.1(ECDSA))
	6.2.1.13 Cryptographic key distribution (SSHv2) (FCS_CKM.2(NET-SSH))
	6.2.1.14 Cryptographic key distribution (IKEv1 / IKEv2) (FCS_CKM.2(NET-IKE))
	6.2.1.15 Cryptographic key distribution (TLS) (FCS_CKM.2(NET-TLS))
	6.2.1.16 Cryptographic key destruction (FCS_CKM.4)
	6.2.1.17 Cryptographic operation (FCS_COP.1(NET))
	6.2.1.18 Cryptographic operation (FCS_COP.1(CP))
	6.2.1.19 Random number generation (Class DRG.2) (FCS_RNG.1(SSL-DFLT))
	6.2.1.20 Random number generation (Class DRG.2) (FCS_RNG.1(SSL-FIPS))
	6.2.1.21 Random number generation (Class DRG.2) (FCS_RNG.1(DM-INIT))
	6.2.1.22 Random number generation (Class DRG.2) (FCS_RNG.1(DM-RUN))
	6.2.1.23 Random number generation (Class DRG.2) (FCS_RNG.1(DM-FIPS))
	6.2.1.24 Random number generation (Class DRG.2) (FCS_RNG.1(NSS))
	6.2.1.25 Subset access control (FDP_ACC.1(PSO))
	6.2.1.26 Subset access control (FDP_ACC.1(TSO))
	6.2.1.27 Security attribute based access control (FDP_ACF.1(PSO))
	6.2.1.28 Security attribute based access control (FDP_ACF.1(TSO))
	6.2.1.29 Complete information flow control (FDP_IFC.2(NI))
	6.2.1.30 Simple security attributes (FDP_IFF.1(NI-IPTables))
	6.2.1.31 Import of user data with security attributes (FDP_ITC.2(BA))
	6.2.1.32 Full residual information protection (FDP_RIP.2)
	6.2.1.33 Full residual information protection of resources (FDP_RIP.3)
	6.2.1.34 Authentication failure handling (FIA_AFL.1)
	6.2.1.35 User attribute definition (FIA_ATD.1(HU))
	6.2.1.36 User attribute definition (FIA_ATD.1(TU))
	6.2.1.37 Verification of secrets (FIA_SOS.1)
	6.2.1.38 Timing of authentication (FIA_UAU.1)
	6.2.1.39 Multiple authentication mechanisms (FIA_UAU.5)
	6.2.1.40 Protected authentication feedback (FIA_UAU.7)
	6.2.1.41 Timing of identification (FIA_UID.1)
	6.2.1.42 Enhanced User-subject binding (FIA_USB.2)
	6.2.1.43 Failure with preservation of secure state - full buffer overflow protection (FPT_FLS.1(FULL))
	6.2.1.44 Failure with preservation of secure state - partial buffer overflow protection (FPT_FLS.1(PARTIAL))
	6.2.1.45 Failure with preservation of secure state - user space protecton from kernel (FPT_FLS.1(INTEL))
	6.2.1.46 Reliable time stamps (FPT_STM.1)
	6.2.1.47 Inter-TSF basic TSF data consistency (FPT_TDC.1(BA))
	6.2.1.48 TSF-initiated session locking (FTA_SSL.1)
	6.2.1.49 User-initiated locking (FTA_SSL.2)
	6.2.1.50 Inter-TSF trusted channel (FTP_ITC.1)

	6.2.2 Linux Container Functionality (not on POWER architecture)
	6.2.2.1 Complete access control (Namespaces) (FDP_ACC.2(Namespaces))
	6.2.2.2 Complete access control (Linux control groups) (FDP_ACC.2(Cgroup))
	6.2.2.3 Complete access control (System Call Filtering) (FDP_ACC.2(SECCOMP))
	6.2.2.4 Security attribute based access control (Namespaces) (FDP_ACF.1(Namespaces))
	6.2.2.5 Security attribute based access control (Linux control groups) (FDP_ACF.1(Cgroup))
	6.2.2.6 Security attribute based access control (System Call Filtering) (FDP_ACF_NA.1(SECCOMP))
	6.2.2.7 Export of user data with security attributes (FDP_ETC.2(LC))
	6.2.2.8 Import of user data with security attributes (FDP_ITC.2(LC))
	6.2.2.9 User identification before any action (FIA_UID.2(LC))
	6.2.2.10 Inter-TSF basic TSF data consistency (FPT_TDC.1(LC))
	6.2.2.11 Management of security attributes (Namespaces) (FMT_MSA.1(Namespaces-CACP))
	6.2.2.12 Management of security attributes (Cgroup) (FMT_MSA.1(Cgroup-CACP))
	6.2.2.13 Management of security attributes (FMT_MSA.1(SECCOMP))
	6.2.2.14 Static attribute initialisation (Namespaces) (FMT_MSA.3(Namespace-CACP))
	6.2.2.15 Static attribute initialisation (Cgroup) (FMT_MSA.3(Cgroup-CACP))
	6.2.2.16 Static attribute initialisation (FMT_MSA.3(SECCOMP))
	6.2.2.17 Management of TSF data (FMT_MTD.1(LC-COMP))

	6.2.3 Confidentiality protection of data at rest
	6.2.3.1 Complete access control (FDP_ACC.2(CP))
	6.2.3.2 Security attribute based access control (FDP_ACF.1(CP))
	6.2.3.3 Confidentiality for data at rest (FDP_CDP.1(CP))

	6.2.4 Management related functionality
	6.2.4.1 Management of object security attributes (FMT_MSA.1(PSO))
	6.2.4.2 Management of object security attributes (FMT_MSA.1(TSO))
	6.2.4.3 Management of security attributes (FMT_MSA.1(CP))
	6.2.4.4 Static attribute initialisation (FMT_MSA.3(PSO))
	6.2.4.5 Static attribute initialisation (FMT_MSA.3(TSO))
	6.2.4.6 Static attribute initialisation (FMT_MSA.3(NI))
	6.2.4.7 Static attribute initialisation (FMT_MSA.3(CP))
	6.2.4.8 Security attribute value inheritance (FMT_MSA.4(PSO))
	6.2.4.9 Management of TSF data (FMT_MTD.1(AE))
	6.2.4.10 Management of TSF data (FMT_MTD.1(AS))
	6.2.4.11 Management of TSF data (FMT_MTD.1(AT))
	6.2.4.12 Management of TSF data (FMT_MTD.1(AF))
	6.2.4.13 Management of TSF data (FMT_MTD.1(NI))
	6.2.4.14 Management of TSF data (FMT_MTD.1(IAT))
	6.2.4.15 Management of TSF data (FMT_MTD.1(IAF))
	6.2.4.16 Management of TSF data (FMT_MTD.1(IAU))
	6.2.4.17 Management of TSF data (FMT_MTD.1(SSH))
	6.2.4.18 Management of TSF data (FMT_MTD.1(SSSD))
	6.2.4.19 Management of TSF data (FMT_MTD.1(SSL))
	6.2.4.20 Management of TSF data (FMT_MTD.1(AM-AP))
	6.2.4.21 Management of TSF data (FMT_MTD.1(AM-MR))
	6.2.4.22 Management of TSF data (FMT_MTD.1(AM-MD))
	6.2.4.23 Management of TSF data (FMT_MTD.1(AM-MA))
	6.2.4.24 Management of TSF data (FMT_MTD.1(CP-AN))
	6.2.4.25 Management of TSF data (FMT_MTD.1(CP-UD))
	6.2.4.26 Revocation (FMT_REV.1(OBJ))
	6.2.4.27 Revocation (FMT_REV.1(USR))
	6.2.4.28 Specification of management functions (FMT_SMF.1)
	6.2.4.29 Security management roles (FMT_SMR.2)

	6.2.5 MLS mode
	6.2.5.1 Export of user data with security attributes (FDP_ETC.2(LS))
	6.2.5.2 Complete information flow control (FDP_IFC.2(LS))
	6.2.5.3 Hierarchical security attributes (FDP_IFF.2(LS))
	6.2.5.4 Import of user data without security attributes (FDP_ITC.1(LS))
	6.2.5.5 Import of user data with security attributes (FDP_ITC.2(LS))
	6.2.5.6 Management of security attributes (FMT_MSA.1(LS))
	6.2.5.7 Static attribute initialisation (FMT_MSA.3(LS))
	6.2.5.8 Inter-TSF basic TSF data consistency (FPT_TDC.1(LS))

	6.3 Security Functional Requirements Rationale
	6.3.1 Coverage
	6.3.2 Sufficiency
	6.3.3 Security requirements dependency analysis

	6.4 Security Assurance Requirements
	6.4.1 Security Target evaluation (ASE)
	6.4.1.1 Conformance claims (ASE_CCL.1)

	6.5 Security Assurance Requirements Rationale

	7 TOE Summary Specification
	7.1 Support Mechanisms Offered by the IT Environment
	7.2 Cryptographic Support Offered by IT Environment
	7.3 TOE Security Functionality
	7.3.1 Audit
	7.3.1.1 Audit functionality
	7.3.1.2 Audit trail

	7.3.2 Cryptographic services
	7.3.2.1 Cryptographic network services

	7.3.3 Packet filter
	7.3.3.1 Network layer filtering

	7.3.4 Identification and Authentication
	7.3.4.1 PAM-based identification and authentication mechanisms
	7.3.4.2 User Identity Changing
	7.3.4.3 Authentication Data Management
	7.3.4.4 SSH key-based authentication
	7.3.4.5 Session locking

	7.3.5 Discretionary Access Control
	7.3.5.1 Permission bits
	7.3.5.2 Access Control Lists (ACLs)
	7.3.5.3 File system objects
	7.3.5.4 IPC objects
	7.3.5.5 at and cron jobs queues
	7.3.5.6 print job queues

	7.3.6 Mandatory Access Control
	7.3.6.1 MLS mode: Multi-level security

	7.3.7 Security Management
	7.3.7.1 Approval and delegation of management functions
	7.3.7.2 MLS mode: Role-based access control
	7.3.7.3 Privileges

	7.3.8 Runtime Protection Mechanisms
	7.3.9 Linux Container (not on POWER architecture)
	7.3.9.1 Linux Namespaces
	7.3.9.2 Control Groups
	7.3.9.3 System Call Filtering

	8 Abbreviations, Terminology and References
	8.1 Abbreviations
	8.2 Terminology
	8.3 References

