

Version 6.1

Document v1 r9

Security Target

Common criteria EAL3+

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
1

Table of contents

1. INTRODUCTION .. 5

1.1. ST identification ... 5

1.2. TOE overview .. 5

1.3. Common Criteria conformance ... 6

1.4. ANSSI referential conformance .. 6

2. TOE DESCRIPTION .. 7

2.1. TOE presentation ... 7

2.1.1. General description ... 7

2.1.2. Zed! technology .. 8

2.1.3. Container and accesses ... 8

2.2. Administration services and roles ... 9

2.2.1. Role definition .. 9

2.2.2. Administration and operation services ... 10

2.2.3. Use case .. 10

2.3. TOE scope and architecture ... 11

2.3.1. Edition standard components ... 11

2.3.2. Edition standard components ... 13

2.3.3. TOE scope .. 14

2.4. Test platform used for TOE evaluation .. 15

3. SECURITY PROBLEM DEFINITION ... 17

3.1. Assets .. 17

3.1.1. User assets .. 17

3.1.2. TOE assets ... 18

3.1.3. Sensible assets summary ... 19

3.2. Assumptions .. 20

3.3. Threats [to TOE sensible assets] .. 22

3.4. Security objectives for the operational environment 24

4. SECURITY OBJECTIVES ... 25

4.1. Security objectives for the TOE .. 25

4.1.1. Access control .. 25

4.1.2. Cryptography ... 25

4.1.3. Container management ... 26

4.1.4. Protections when executing .. 26

4.2. Security objectives for the operational environment 26

4.2.1. TOE use ... 26

4.2.2. Users and administrator training ... 27

4.2.3. Administration .. 28

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
2

5. SECURITY REQUIREMENTS ... 29

5.1. TOE security requirements .. 29

5.1.1. TOE Security functional requirements .. 29

5.1.2. TOE security assurance requirements .. 36

6. TOE SUMMARY SPECIFICATIONS .. 37

7. PROTECTION PROFILE CONFORMANCE ... 39

8. RATIONALE ... 40

8.1. Security objectives rationale .. 40

8.1.1. Assumptions .. 40

8.1.2. Threats .. 43

8.1.3. Organizational security policies ... 47

8.1.4. Summary on the coverage of the objectives ... 51

8.2. Security requirements rationale ... 52

8.2.1. Functional security requirements dependencies .. 52

8.2.2. Assurance security requirements dependencies .. 53

8.2.3. Justification of unsupported dependencies .. 53

8.2.4. Security objectives to functional security requirements mapping rationale 54

8.2.5. Rationale for Assurance Level 3 Augmented ... 58

8.3. Rationale for TOE summary specifications ... 59

8.4. Rationale for Protection Profile conformance claim.................................... 65

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
3

List of figures

Figure 1– Standard edition architecture .. 12

Figure 2 – Limited edition architecture.. 13

Figure 3 – Test platform with Windows Seven ... 15

Figure 4 – Test platform with Windows 10 .. 16

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
4

List of tables

Table 1 : Assets to protect .. 20

Table 2 : TOE functional security requirement ... 29

Table 3 : Security assurance components ... 36

Table 4 : Assumptions to security objectives mapping .. 40

Table 5 : Threats to security objectives mapping ... 43

Table 6 : Organizational security policies to security objectives mapping 47

Table 7 : Coverage of the security objectives by the assumptions, threats and

organizational security policies ... 51

Table 8 : Functional security requirements dependencies 52

Table 9 : Assurance security requirements dependencies 53

Table 10 : Security objectives to functional security requirements mapping 54

Table 11 : TOE summary specifications to functional security requirements mapping

 ... 59

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
5

1. Introduction

1.1. ST identification

Security Target : Zed! version 6.1 build 2120 Security target CC

EAL3+

ST version : PX159534 v1r9 – March 2016

Target of Evaluation (TOE) : - Zed! v6.1 Standard Edition

- Zed! v6.1 Limited Edition

for PC platforms running Microsoft Windows

Seven and Windows 10 (64 bits)

EAL level : EAL3 augmented with ALC_FLR.3 and

AVA_VAN.3 components associated with

analysis of the cryptographic implementation

described in [QUALIF_STD].

Conformance with a PP : None.

CC reference : Common Criteria version 3.1 Revision 4,

Parts 1 to 3 – September 2012

1.2. TOE overview

Zed! is a software security product designed for manufacturing encrypted (and

compressed) file containers either for archiving or for exchange with correspondents

as email attachments or on various portable devices, such as USB sticks.

Zed! will be evaluated for a PC platform with Microsoft Windows Seven and Windows

10 operating systems (64 bits).

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
6

1.3. Common Criteria conformance

This security target is compliant with Common criteria requirements version 3.1,

September 2012:

[CC1] Common Criteria for Information Technology Security Evaluation,

Part 1: Introduction and general model. Version 3.1, Revision 4,

September 2012. CCMB-2012-09-001.

[CC2] Common Criteria for Information Technology Security Evaluation,

Part 2: Security functional requirements. Version 3.1, Revision 4,

September 2012. CCMB-2012-09-002.

[CC3] Common Criteria for Information Technology Security Evaluation,

Part 3: Security Assurance Requirements. Version 3.1, Revision 4,

September 2012. CCMB-2012-09-003.

[CEM] Common Methodology for Information Technology Security

Evaluation, Evaluation Methodology. Version 3.1, Revision 4,

September 2012. CCMB-2012-09-004.

All functional components described in this security target are derived from the part

2 "strict" of the common criteria version 3.1 revision 4 of September 2012. The

selected assurance level "EAL3 augmented" is consistent with part 3 "strict" of the

common criteria version 3.1 revision 4 of September 2012. The assurance level is a

level EAL3 augmented with ALC_FLR.3 and AVA_VAN.3 components.

All interpretations of the common criteria published on the date the evaluation is

starting will be considered.

1.4. ANSSI referential conformance

This security target is compliant with following ANSSI referential:

[QUALIF_STD] Processus de qualification d’un produit de sécurité – niveau

standard – version 1.2, DCSSI.

[CRYPTO_STD] RGS version 2.0 – Annexe B1. Mécanismes cryptographiques :

Règles et recommandations concernant le choix et le

dimensionnement des mécanismes cryptographiques - Version

2.03 du 21 février 2014, ANSSI.

[CLES_STD] RGS version 2.0 – Annexe B2. Gestion des clés cryptographiques :

Règles et recommandations concernant la gestion des clés utilisées

dans les mécanismes cryptographiques - version 2.0 du 8 juin

2012, ANSSI

[AUTH_STD] RGS version 1.0 – Annexe B3. Authentification : Règles et

recommandations concernant les mécanismes d’authentification -

Version 1.0 du 13 janvier 2010, ANSSI.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
7

2. TOE description

2.1. TOE presentation

2.1.1. General description

Nowadays emails are widely used by companies to communicate internally or with

their partners and providers. This communication on a daily basis induces systematic

exchange of sensitive documents. But, most of the exchanged documents are simply

attached to emails, thus guaranteeing no confidentiality for the transmitted data.

Zed! is a security product for computers running Windows, Linux and Mac

operating systems (32 and 64 bits). The Zed! product (available independently or

integrated in ZoneCentral) is designed for manufacturing encrypted (and

compressed) file containers either for archiving or for exchanging with

correspondents as email attachments or on various portable devices, such as USB

sticks. The product also incorporates a mechanism for checking the integrity of the

files stored in the containers.

The use of encrypted containers is highly intuitive and very similar to the use of

"zipped folders" under Windows. The user can copy some files in the container,

rename them, delete them, extract them, etc. Zed! has no file size limit and does

not modify the tree view of files or folders that it copies.

The container can be used as an encrypted storage of files, without modifying their

characteristics (location, name, date and size), in the most possible transparent way

for users. Files encryption/decryption is performed when these files are read/copied

in the container and 'on the fly' (without special handling by the user).

Once the user has created a container, he/she can add accesses for his

correspondents. An access corresponds to an access key (cryptographic key) that a

user owns. This key can either be a password in this case the user does not hold the

access key itself but the password allowing Zed! to calculate it) or an RSA key stored

in a key holder as a key file (RSA certificate found in a certificate file or in LDAP

directories), a smart card, or a Microsoft Windows CSP orCNG container (the key

holder can itself be protected by a PIN code). An access key is used to find (by

decrypting) the encryption information pertaining to container. Zed! also features a

very practical function: the ‘Password Wallet’, which is used to store and reuse the

different passwords of correspondents. And finally, Zed! offers the possibility to hide

the file names in the container: the container seems empty until a valid access key

has been entered.

Zed! is available in a variety of packages:

 Zed! Standard Edition, which contains the complete product

 Zed! Limited Edition, which is free of charge and free for distribution and

usage, and can be used for reading the content of containers and

extracting the files (providing that the correspondent enters a valid access

key). The correspondent can also modify the container (add or suppress

some files) before sending it back to the sender. However, the limited

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
8

edition does not allow the creation of new containers or the access

modification (manage by the original creator of the container). The limited

edition comes in the form of a simple executable file (zedle.exe), easily
portable, eliminating the need to install the program

 Finally, Zed! is also incorporated in the various products of the
ZoneCentral range.

2.1.2. Zed! technology

The internal format of the container is designed to contain files of any size,

independently of each other, and it handles the naming of these files. The container

can be considered as a "virtual folder": its content in terms of files is not

confidential, files content is. The container contains a control file that manages the

accesses and is hidden.

2.1.3. Container and accesses

Each encrypted container is defined by some encryption characteristics (including file

encryption keys, algorithms, etc.) and a user access list. The definition of the

accesses is free, but the product has administration functions and mechanisms to

impose certain accesses or certain access types.

To use a container, a user must have an access key. In the case of Zed! Standard

Edition, the user will be given this key by the Security Officer (called TOE

Administrator in this document). It may be a RSA key hosted in a key holder like a

key file, or a smart card, a Microsoft CSP or CNG container (the key-holder

incorporating most of the time its own authentication device with a confidential

code). Most of the time, the password is chosen by the user depending on the

security policy of the company.

Once the user is authenticated, the access key provided remains valid as long as it

has not been explicitly closed by the user (lock in the standard edition, closure of the

container in the limited edition, session logout or shutdown for example).

When the encrypted container was created, each file protected by the container was

encrypted using keys, and these keys were themselves encrypted with the user

access keys. Obviously, access keys themselves are not stored in the container.

Zed! offers different state-of-the-art security algorithms and mechanisms. It

provides two systems for managing access keys. These systems can be used at the

same time on the same containers: A so-called 'symmetrical' system based on

passwords and keys derived from passwords (ref.: PKCS#5), and a so-called

'asymmetrical' system that uses RSA keys (ref..: PKCS#1 v1.5) embedded in key

files (ref.: PKCS#12) or physical objects (ref.: PKCS#11 and/or CSP/CNG).

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
9

2.2. Administration services and roles

2.2.1. Role definition

Apart from the security officer of the organization which sets the security policy,

there are 4 roles implementing (directly or indirectly) the functionality of the TOE:

 A role operating in the TOE environment only (this role does not concern Zed!

Limited Edition1): the security administrator of the Windows environment

(Windows administrator) in charge of defining rules for use and policies, i.e. the

setting of the product: this "high-level" operation is performed under the

supervision of the security officer who studied the different parameters and

decided values that must be assigned to get the desired behavior of the product.

Policies are signed by the security administrator and verified by Zed! prior to their

application: the policy signature mechanism guarantees that only policies

validated by the administrator are applied on the workstations. While a domain

administrator is authorized to modify the domain's policies, he/she will be unable

to change the Zed! configuration: if he/she modifies any policies, the signature

will become invalid and, as a result, new policies will be refused on the

workstations. Once applied, rules will change only in very exceptional cases. It

should be noted that this role may be declined in several hierarchical roles

corresponding to the different levels of the Windows domains. In this case the

upper levels administrators must prohibit modification of the TOE policies by the

sublevels administrators (domains, domain controllers, workstations).

 The security administrator role (this role does not concern Zed! Limited

Edition1) in charge of TOE installation, policy signature, recovery operations

(including SOS procedure), access key and possibly password distribution to

users. The security administrator can also manage the accesses.

 The access administrator (this role does not concern Zed! Limited Edition1) in

charge of the access management, that is the creation of the first access when

the container is initialized (namely his/her own access) and the addition or

suppression of other accesses.

 A user role that uses the TOE according to the configuration imposed by the

administrators (this role is generally devoted to the correspondents when the

container are exchanged).

It should be noted that, apart from the policies definition usually devolving to a

security officer, the other operations can be performed by different actors depending

on trust and organization.

1 Since the limited edition cannot perform management operations. However the

containers sent to the owners of the limited edition have been configured by these

roles.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
10

2.2.2. Administration and operation services

There is no administration operation on a container apart from the access

management the policy signature. A container ‘lives’ as long as it is not deleted.

Possible operations are (standard edition only):

 Displaying or modify the policies, signing the policies. Note that by default

policies are not signed ; the prior operation of policies signature and their

integration in the installation package are required to benefit from the signing

function.

 The container initialization when the container is accessed for the first time

(corresponds to the creation of the first access).

 Adding, modifying or deleting a user access (implying that the access key is

provided).

 Modifying the access role

 Recovery by the security administrator

 User SOS procedure by the security administrator

Note: The visualization of the container accesses does not require the administrator

role and is available in the limited edition.

Possible operations are:

 The creation of a new container (by the user with the standard edition): this

operation does not require any access key. This operation is not implemented

in Zed! Limited Edition.

 Renaming or deleting a container (in the Windows environment).

 Adding files to the container (drag & drop, insert, copy and paste, etc.): files

are encrypted when they are put in the container, which requires to have

provided the container access key.

 File visualization or files extraction in a container: any "output" of file requires

the container access key so that the files can be decrypted in the container.

 The deletion of files in container.

 Creating and deleting files in the container.

User interface of encrypted containers is similar to compressed files (.zip) in

Windows (drag & drop, insert, copy and paste …).

2.2.3. Use case

Whilst there are various deployment scenarios, the underlying principle remains the

same for users and applications.

The Security Officer defines the product's policies and signs them with his/her

private key. This involves a predefined configuration (policy) that can be mastered

(customization of the installation) or remotely managed (distributed, updated),

either using administration commands provided by the product, or the logistics

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
11

integrated in office automation networks (e.g., domain controllers). These policies

are usually established on a 'high level' within the company by the Security Officer.

The policies define, for example, which encryption algorithm to use, the behavior the

product must adopt in certain cases, the PKCS#11 key holders supported etc.

The software, mastered or not, is then installed on a workstation either manually,

or via download applications available on the market.

Additionally, it is up to the TOE administrator to define (i.e. provide) the user

access keys (e.g., from a PKI). Zed! supports several key management scenarios,

but does not provide the corresponding infrastructure. If a PKI is installed, Zed!

knows how to use its elements (RSA keys, key holders, certificates). If a PKI is only

partly installed, or if there is no PKI, Zed! also knows how to use password access.

When a user creates a new container with the standard edition, he/she becomes the

access administrator, defining the accesses and the roles of its correspondents (by

default the role is simply "user")

Then, only users with valid access keys are allowed to read or copy files in the

container. At the first attempt to access an encrypted file in the container, Zed! asks

for the user access key to decrypt the file (in fact, the schema is more complex, and

this access key is used to decrypt some intermediate keys which themselves encrypt

files). If the user can provide it, then the file can be decrypted (or encrypted, if it is

a creation or a write operation). Otherwise, the access is denied with the usual error

code "unauthorized access". The user authentication is valid for this container until

the session is locked or put in sleep mode (standard edition only), the session is log

out or the workstation is shutdown. As for the zip archives, to "open" (read) a file of

a container, it must first be extracted. The “open” operation automates the

extraction (in the user's temp folder) and activates it. When the container is closed,

the file is encrypted.

2.3. TOE scope and architecture

2.3.1. Edition standard components

Figure 1 shows the architecture of the product: the scope of the TOE is bounded by

dashed lines. The main components are the following:

 « Interface Explorer » implements Windows Shell interfaces to manage

menus and graphics view.

 « ZDU » is a user daemon, instantiated for each Windows user session,

referencing the user keys entered via password, PKCS#11 interface, CSP or

CNG.

 The « ZEP » service controls policies signatures.

 « Zed Engine », coordinates all the treatments;

 The « crypto driver » is the Zed! cryptographic centre: it manages container

keys and performs associated calculations. Keys are never stored out of its

“enclosure”, except when the product is configured to use key holders (as

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
12

PKCS # 11 extensions for smart cards or CSPs/CNGs). This implementation of

the cryptography in kernel-mode strengthens the overall protection level

because the kernel is a location hardly accessible to hacking softwares.

The « keyboard driver » is a keyboard filter: it intercepts at very low level

passwords and confidential codes entered by the user. In this way their values

remain confined at the lowest possible level in the system. These secrets are then

used by the cryptographic driver or given to external engines (CSP/PKCS # 11). This

only concerns passwords managed by Zed !, i.e. those which guaranty access to the

encrypted files. This implementation also strengthens the protection of sensitive

data: they are not sent back to the application level of the system in a location

which is the regular and favorite source of hacking softwares.

Figure 1– Standard edition architecture

Windows Seven / Windows 10 operating system

Crypto driver

ZDU

User

 de la
TOE

Security

administrator

PKCS#11

 de la
TOE

CSP

 de la
TOE

Explorer.exe (menus, graphical view)

Interface Explorer

Zed Engine

Keyboard driver

Access
administrator

ZEP

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
13

2.3.2. Edition standard components

Figure 2 shows the architecture of the product: the scope of the TOE is bounded by

dashed lines. The main components are the following:

 « BROWSER » emulates Windows Explorer.

 « Interface Explorer » manages menus and graphics view.

 « ZCC » is the cryptographic centre of Zed! : it manages keys and performs

associated cryptographic operations. Keys are never stored outside the centre,

except when the product is configured to use key holder (as PKCS#11

extensions for smart cards and CSPs).

 « ZCCA » references the user keys entered via a password entry, the CSP or

the PKCS#11 interface.

 « Zed Engine » coordinates some treatments;

Figure 2 – Limited edition architecture

 Windows Seven / Windows 10 operating system

ZCC ZCCA

Zedle.exe

User

 de la
TOE

PKCS#11

 de la
TOE

CSP

 de la
TOE

Browser

Interface Explorer

Zed engine

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
14

Note that the limited edition does not perform any operation administration

operation.

2.3.3. TOE scope

2.3.3.1 Logical scope

The TOE includes Zed! Standard Edition and Zed! Limited Edition. Zed! integrated in

ZoneCentral is not in the evaluation scope.

Only the build 2120 configured with the following security policies is compliant:

 The P730 policy (password acceptance threshold) must be set to 100% and the

P732 policy (password length) to 12.

 The P381 policy (encryption Mechanism for encrypted containers) must be set to

« CTS » (default value).

 The P399 policy (Format version of encrypted containers and messages) must be

set to « Version 2 ».

 The P383 policy (RSA Encryption Scheme) must be set to « PKCS#1 v2.2 with

SHA-256 ».

 The P382 policy (enable use of AES-NI instruction set) must be set to « No »

(default value).

 The P233 policy (hiding file and folder names of encrypted containers) must be

set to « Always hide ».

 The P292 policy (Hash algorithm used) must be set to « SHA-256 » (default

value)

The evaluation scope is made up of all the components of the software apart from

the following features:

 The GPOSign.exe tool used by the security administrator to sign policies and the

generation of the key to perform this signature. However the signature

verification of the Zed! policies is part of the TOE scope.

 The use of SSO (Single Sign On) mode that allows to automatically open the

encrypted containers when the Windows session is open (but shifts the security

level to Windows or to the third-party SSO component).

2.3.3.2 Physical scope

Zed! will be evaluated, as a product, on a PC platform under the following Microsoft

operating systems: Windows Seven and Windows 10 (64 bits).

Use with different access keys will be evaluated (password and RSA key). In

particular, PKCS#11 dialog between the TOE and the user key holders, PKCS#12

dialog between the TOE and the key files will be also evaluated.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
15

The following elements are not evaluated;

 Windows operating systems;

 Key holders such as USB tokens, key files or CSP/CNG containers.

Zed! software uses user keys (the "access keys") provided by the environment (RSA

keys in key holders or passwords provided by the TOE administrator).

2.4. Test platform used for TOE evaluation

To perform the evaluation of Zed!, the following minimum platforms will be set by

the evaluator (PC stands for virtual machine). The physical type of key holder (smart

card or USB key) being transparent to Zed! (only the PKCS#11 dialogue is

important), the evaluator tests will be performed with a single type of key holder.

Security policies will be activated in accordance with the logical scope defined above.

Policies signature feature requires installation of the TOE with a specially prepared

installation package and careful reference to the documentation for the function.

Platform 1 running Windows Seven 64 bits with standard edition only (build 2120)

and authentication using USB token:

 A domain controller (Windows 2008R2)

 One or two PC running Windows Seven 64 bits with standard edition (build 2120):

a single PC can be used to perform the operations.

Figure 3 – Test platform with Windows Seven

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
16

Platform 2 running Windows 10 64 bits with standard edition and limited edition

(build 2120) and authentication using passwords:

 A domain controller (Windows 2008R2)

 A PC running Windows 10 64 bits with standard edition (build 2120) : container

creation and access management, use of containers

 A PC running Windows 10 64 bits with limited edition (build 2120) : use of

containers

Figure 4 – Test platform with Windows 10

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
17

3. Security problem definition

3.1. Assets

3.1.1. User assets

3.1.1.1 Access keys: D.USER_AUTH

To open any encrypted containers (reading a file, copying a file, access

management) Zed! need user access keys. According to circumstances, it may

manipulate the user password, or the access key itself, or its confidential protection

code.

 Password access: Zed! manages the password entry, its transformation

(derivation) into access key and then the decryption of the encryption key and

the decryption of files encrypted by this access key. The minimum password

strength is configurable in the security policies.

 Access by RSA key hosted in a key file using the PKCS#12 mechanism: Zed!

manages the confidential code entry of the key file, reads and decrypts the key

file with this confidential code, gets the RSA access key and performs the

decryption of the encryption key and the decryption of files encrypted by this

access key.

 Access by RSA key in a logical token accessed through an external PKCS#11

component (this component can handle a memory card, a USB token or any

other hardware or software device): Zed! manages the confidential code entry

of the logical token, submit it to the external component to unlock it. Zed! also

provides the external component with the encryption key of files encrypted by

the public key. The component decrypts the encryption key using its private

key and then transmits it to Zed! which can then perform the decryption of

files.

 Access by RSA key hosted in a logical token accessed through an external

component CSP or CNG (this component can handle a memory card, a USB

token or any other hardware or software device): Zed! does not manage the

confidential code of the logical token entry, it is the external component which

spontaneously does it with its own means, and Zed! does not access the RSA

key and does not perform the unwrapping of the files encryption key. It is

performed by the external component which then transmits the unwrapped key

to Zed!.

Based on these cases, therefore, Zed! manipulates the following sensitive assets: a

password (or a PIN code), and a cryptographic access key. In cases 1 and 2, it

manipulates the two elements, in cases 3 it manipulates the first one, in case 4 no

element is manipulated by Zed!.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
18

It should be noted that Zed! does not generate user access keys: as regards RSA

keys, regardless of the key holder that hosts them and the module that deals with

them, they are always generated by an external tool (generally a PKI), as well as the

potential key holder and the associated confidential code. As far as passwords are

concerned, they are chosen by the security administrator or the first user (access

administrator). The user and its environment (rules and internal procedures,

established by the security officer) are responsible for the quality of these keys, the

protection of the key holder and their proper use.

3.1.1.2 Signature key pair : D.ID_ADMIN

Security policies are signed by the security administrator and verified by Zed! before

their application. The signature key pair (especially the private key) of the

administrator is part of the sensitive assets of this particular user.

3.1.1.3 Encrypted files: D.USER_DATA

Zed! allows to encrypt files and folders in a container (possibility to hide the file

names). Sensitive assets are therefore user files and folders, of all types, stored in

encrypted containers.

Encrypted files in encrypted containers are sensitive user assets protected by the

TOE (which should preserve their stored image in encrypted form without clear copy)

as long as they remain in their encrypted container. An integrity check is performed

when the user open a file in the container.

3.1.2. TOE assets

3.1.2.1 Symmetric keys used to encrypt the files: D.FILE_KEYS

The files of the container are encrypted by an encryption key generated when the

container is initialized. A specific initialization vector is associated to each file. These

assets are encrypted by the access keys and stored in the control file of the

container.

3.1.2.2 Programs : D.PROGRAMS

The TOE operates through its programs (executables, dynamic libraries). The

integrity protection of these programs is provided by the environment: it is

necessary to be a Windows administrator to modify them. These programs are also

signed (authenticode Windows system).

3.1.2.3 Configuration : D.CONFIGURATION

The TOE also operates through policies (this is the Windows term). The integrity

protection of these policies is ensured:

 By the environment (i.e. the Windows policies system): only the highest level

Windows administrator can modify them (if a Windows domain defines a value

for a parameter, then a local administrator of the workstation will not be

authorized to change it).

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
19

 By the product since policies are signed by the security administrator and

verified by Zed! prior to be applied.

3.1.2.4 Control file: D.CONTROL_FILE

This file contains the container label, a unique identifier, some management

information, and the access 'wrappings', i.e. the container encryption keys encrypted

by user access keys authorized to the container. An integrity check is performed on

this control file.

3.1.2.5 Catalogue file : D.CATALOGUE_FILE

This file contains the list of the application files in the container, with their position in

the tree view, the original sizes, timestamps, etc. An integrity check is performed on

this catalogue file.

3.1.3. Sensible assets summary

The following table summarizes the list of sensitive assets protected by Zed! and

indicates the nature of the associated sensitivity.

The qualifiers ‘high’ and ‘low’ of the sensitivity refer to the protection level against

the attack potential referred in the target (Chapter 3.3). A high sensitivity requires a

protection level resistant to the attack corresponding to the targeted level (asset

disclosure, undetected integrity alteration), low sensitivity indicates that the asset

does not have to be protected taking into account the targeted level. For example

policies disclosure brings little interesting information to a potential attacker (general

product configuration) but any policy modification must be controlled or the product

security will be degraded (addition of a recovery access for example).

Note: integrity protection is not the main goal of Zed!. The product goal is to

manage the confidentiality of sensitive assets. However, Zed! includes a mechanism

that checks the integrity of the files before they are opened by the user. Moreover,

Zed! implements functions to detect alterations which would be harmful to its

functioning, or that would induce some defects in its objective to enforce

confidentiality.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
20

Assets Confidentiality Integrity

User assets

Elements of the access keys used by Zed!: password or
possible PIN (D.USER_AUTH)

High NA

Elements of the access keys used by Zed!: access keys
itself if they are directly used by Zed! (D.USER_AUTH)

High High

Signature key pair (D.ID_ADMIN) High High

User files and folders stored in encrypted containers
(D.USER_DATA)

High
Low (but any error
must be notified)

TOE assets

Symmetric keys used to encrypt the files : D.FILE_KEYS High High

Container control file (D.CONTROL_FILE) Low High

Container catalogue file (D. CATALOGUE_FILE) Low High

Zed! configuration (D.CONFIGURATION) Low High

Zed! Programs (D.PROGRAMS) Low High

Table 1 : Assets to protect

3.2. Assumptions

For Zed!, named “the TOE” in the following paragraphs, the following assumptions

on the environment will be taken into account for the evaluation:

A.NON_OBSERV The physical environment for the use of the TOE

enables users to enter their passwords (or PIN

numbers) without being directly observable and

protecting them from other users or hackers to

intercept their passwords or PIN numbers (wireless

keyboard, etc.).

A. SECURE _PC The operational environment does not allow any

attacker to access the hard disk when sensitive data

are processed on the workstation by an authorized

user. The user workstation must ensure effective

protection against eavesdropping and unauthorized

data transmission (correctly configured firewall, up-

to-date antivirus software, anti-spyware, etc.).

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
21

A.TRUST_ADMIN The security administrator and the access

administrator are trustworthy. Windows administrators

are trustworthy people responsible for the policy

configuration (with secure values). All these people

and the users are trained to the TOE usage.

If the correspondents belong to entities managed by

different Windows environment security

administrators, the latter must conjointly guarantee

the use of security policies in compliance with the

requisite levels (in particular, password strength).

A. KEY_STORAGE Users are responsible for the safekeeping in a secure

location and for the non-disclosure of access keys that

are sent to them by a TOE administrator. The TOE

administrator is responsible for the safekeeping in a

secure location and for the non-disclosure of the

recovery access keys and his/her signature key.

A.CERTIFICATES When access keys that possess an X509 certificate are

supplied, the TOE administrator must verify that these

certificates are in fact valid and suitable for TOE

usage.

A.ENV_PROTECT_TOE The technical environment of the TOE ensures the

integrity of the TOE components. The TOE

administration and update are carried out by traine

and authorized people.

A.LOYAL_ENV The runtime environment provides the TOE with exact

date and time to ensure time stamp functions.

A.ENV_RNG The TOE implements mechanisms to provide the

random numbers necessary for the generation of the

secrets.

A.EXT_CRYPTO The access keys generated or stored outside the TOE

must be compliant with [CRYPTO_STD] document for

the standard robustness level.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
22

3.3. Threats [to TOE sensible assets]

We are considering the threats on the sensitive TOE assets. Those relating to the

user assets are covered by the organizational security policies (the product services)

described below.

We can consider that there are three types of threatening agents:

 Unauthorized user that accesses the data of the legitimate user by theft or

illegal access to the workstation. We hypothesize that some other means are

used to protect sensitive data stored on the user workstation (e.g. disk

encryption). However the threatening agent should not be able to open

containers use to store sensitive data on the computer or access sensitive data

that have been temporarily stored in the TOE operational environment when

Zed! was used by the authorized user .

 Eavesdropper, who intercepts the data on the network (without physical

access to the workstation). For example, he/she intercepts a mail with a

container attached and attacks the container by installing or not the Zed!

product (or Zed! Limited Edition) on his/her workstation.

 A person causing or taking advantage of a malfunction.

The considered attacker has an "enhanced-basic" attack potential as defined in the

Common Criteria.

T.COMPONENT_MISUSE A person intercepts a container, get the Zed!

product (or Zed! Limited Edition) and

manipulates, possibly at low level, internal

components of the TOE, to bypass some security

functions by causing or taking advantage of a

malfunction. He can do this by reverse-

engineering programs, or by developing programs

calling internal functions of the TOE, or by

modifying the internal configuration of the TOE or

by using a debugger. Impacted asset is the TOE

program (confidentiality and integrity) and the

configuration (integrity).

By these different means, the attacker must not

succeed to "enter" a container in which he/she has

not access.

T.POLICIES_SECU_INT A person taking advantage of a malfunction

signs the policies in place of the security

administrator (domain policies areas or local

policies if the attacker can access the

workstation). For example, he/she can configure

his/her own recovery access which will be added

automatically when the user will create the next

containers. The impacted asset is the

configuration (integrity).

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
23

T.CONTROL_FILE_CONF An eavesdropper or an unauthorized user

retrieves the control file of the TOE in an attempt

to find protected information. The impacted asset

is therefore the control file of the container

(confidentiality).

For example, the attacker tries to find some

protected information (e.g. encryption keys) from

the encrypted files of the container and from the

TOE control file or tries to decrypt (brute force)

the information stored in the control file.

T.CONTROL_FILE_INT An eavesdropper or an unauthorized user

retrieves the control file of the TOE (stored in the

container) and modifies it in an attempt to add its

own access among authorized accesses (the

attacker can position itself between two

correspondents for example). The impacted asset

is therefore the control file of the TOE (integrity).

The attacker can thus intercept and read the files

exchanged between legitimate correspondents or

send the container to a correspondent (by

usurping the identity of a legitimate user) so that

the correspondent send him sensitive files.

T.CATALOGUE_FILE_INT An eavesdropper or an unauthorized user

retrieves the catalogue file of the TOE (stored in

the container) and modifies it in an attempt to

modify the container tree view. The impacted

asset is therefore the catalogue file of the TOE

(integrity).

The attacker can thus intercept the exchanged

containers and make disappear one or more files

in the container without any detection by the

recipient.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
24

3.4. Security objectives for the operational

environment

OSP.CONFIDENTIALITY The TOE shall offer automatic and systematic

confidentiality protection (encryption) of user sensitive

files that are stored or send (email attachment).

OSP.INTEGRITY The TOE shall provide automatic and systematic integrity

check (hash) of user sensitive files in the containers.

OSP.ACCESS The TOE shall enable users to provide an access key

allowing the access to sensitive files of the container in

which they wish to access. If they cannot provide a valid

key for the container, access must be rejected.

OSP.RECOVERY The TOE shall offer a service to recover sensitive files of

users by using recovery access keys managed by the

security administrator. These keys are systematically and

automatically assigned during container initialization.

The TOE must also provide a remote recovery (SOS

procedure) if the user forgot his/her password or

lost/broken his/her token. This SOS procedure is

performed with a key systematically and automatically

assigned during the creation of the user access list. This

policy applies only to Zed! Standard Edition.

OSP.ADMIN_ACCESS The TOE shall offer a service to manage accesses (Zed!

Standard Edition only).

OSP.POLICIES_VERIF The TOE shall provide a service without (special handling

by the user) that performs the verification of the

signature of security policies signed by the security

administrator's private key (Zed! Standard Edition only).

The application of any new policy is conditioned by the

success of this verification.

OSP.CRYPTO The ANSSI referential ([CRYPTO_STD], [CLES_STD] and

[AUTH_STD]) defined for the ‘standard’ robustness level

must be applied for the key management and for the

cryptographic and authentication mechanisms used in

the TOE.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
25

4. Security objectives

4.1. Security objectives for the TOE

4.1.1. Access control

O.AUTH The TOE shall identify and authenticate users. To do this,

the TOE shall allow access to a container only after

presentation of a valid key for the container.

O.ROLES The TOE shall manage three user roles in an encrypted

container: a 'normal user' role or simply 'user' role (use of

files in the container after presentation of a valid access

key), a ‘access administrator’ role in charge of initializing

the container and adding the authorized accesses and a

'security administrator' role (installation, policies signature,

recovery, access management).

4.1.2. Cryptography

O.ENCRYPTION The TOE shall encrypt and decrypt sensitive data with

cryptographic keys. The TOE shall use different encryption

keys to protect the different containers. The TOE shall

generate encryption keys according to requirements for the

standard robustness level of the cryptographic referential

[CRYPTO_STD] and [CLES_STD] of ANSSI.

O.HASH The TOE shall check the sensitive data integrity with

cryptographic keys different according to the container. The

TOE shall generate these keys according to requirements for

the standard robustness level of the cryptographic

referential [CRYPTO_STD] and [CLES_STD] of ANSSI.

O.KEYS_CLEANING The TOE shall ensure the cleaning of sensitive data

(encryption keys and elements of these keys) in the

memory (RAM) at the end of every operation carried out by

the TOE.

O.ALGO_STD The TOE shall provide random numbers and a choice of

cryptographic algorithms and key sizes consistent with the

state of the art and standards in this field, provided in

[CRYPTO_STD] and supplemented by [CLES_STD] and

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
26

[AUTH_STD].

4.1.3. Container management

O.ADM_ACCESS The TOE shall provide an interface to the security

administrator and to the access administrator to view

accesses and to manage access keys to "containers" (Zed!

Standard Edition only). Users can only view the accesses.

O.RECOVERY The TOE shall provide a mechanism to apply recovery and

SOS access keys (Zed! Standard Edition only).

4.1.4. Protections when executing

O.POLICIES_INT The TOE shall verify the signature of new security policies to

be applied (Zed! Standard Edition only). In case of failure,

applied policies remain unchanged.

4.2. Security objectives for the operational

environment

4.2.1. TOE use

OE.NON_OBSERV The user shall access his/her sensitive

data only when he/she is in a reliable

environment (when he/she is alone or

with people that also need to know).

Passwords shared between

correspondents must be exchanged via

secure organizational channels.

OE.OPERATIONAL_ENV When the user has been authenticated,

the operational environment must

guarantee the confidentiality of the

sensitive data and the authentication

data.

Application note: The hardware must

ensure effective protection against

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
27

eavesdropping and unauthorized data

transmission (correctly configured

firewall, up-to-date antivirus software,

anti-spyware, etc.).

Applications installed on the device must

not interfere with the correct running of

the TOE.

OE.TIMESTAMPING The user must regularly check the

workstation's clock to ensure the good

quality of timestamping functions.

OE.ENV_RNG The operating environment provides

data so that the TOE implements

mechanisms providing random numbers

necessary for the generation of the

secrets.

4.2.2. Users and administrator training

OE.TRAINING The access administrator and the TOE users must

be trained on TOE use and on the importance of IT

security (this includes building awareness

regarding the quality of access keys and their

medium when kept in a key holder). The security

administrator must receive training tailored to this

function.

OE.EXT_CRYPTO The security administrator must be aware of the

importance placed on the quality of the access

keys they provide to the TOE so that they comply

with the state of the art as far as their

implementation is concerned. He/she must also be

aware of the importance of the quality of the

medium for these keys when they are kept in an

external key holder.

OE.KEY_STORAGE Users are responsible for the safekeeping in a

secure location and for the non-disclosure of

access keys that are sent to them by a TOE

administrator. The security administrator is

responsible for the safekeeping in a secure

location and for the non-disclosure of the recovery

access keys.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
28

4.2.3. Administration

OE.TRUST_ADMIN The access and security administrators must be

trustworthy. Windows administrators are

trustworthy people responsible for the

configuration (with secure values) of "policies".

If the correspondents belong to entities managed

by different security administrators, the latter

must conjointly guarantee the use of security

policies in compliance with the requisite levels (in

particular, password strength).

OE.CERTIFICATES When access keys that possess an X509 certificate

are supplied, the security administrator must

verify that these certificates are in fact valid and

suitable for TOE usage. This requirement especially

applies to root certificates called "authenticode",

which can be used to verify TOE integrity.

OE.ENV_PROTECT_TOE The technical environment of the TOE ensures the

integrity of the TOE components and particularly

its programs. The TOE administration and update

are carried out by authorized administrators.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
29

5. Security requirements

5.1. TOE security requirements

Each operation performed on components (assignment, selection, iteration and

refinement) are identified with bold characters.

5.1.1. TOE Security functional requirements

Les composants fonctionnels sélectionnés pour répondre aux objectifs de sécurité de

la TOE sont les suivants :

Selected CC components

FCS_CKM.1 Cryptographic key generation

FCS_CKM.3 Cryptographic key access

FCS_CKM.4 Cryptographic key destruction

FCS_COP.1 Cryptographic operation

FDP_ACC.1 Subset access control

FDP_ACF.1 Security attribute based access control

FDP_ITC.1 Import of user data without security attributes

FDP_RIP.1 Subset residual information protection

FDP_SDI.2 Stored data integrity monitoring and action

FIA_AFL.1 Authentication failure handling

FIA_UAU.2 User authentication before any action

FIA_UID.2 User identification before any action

FMT_MOF.1 Management of security functions behaviour

FMT_MSA.1 Management of security attributes

FMT_MSA.2 Secure security attributes

FMT_MSA.3 Static attribute initialisation

FMT_MTD.1 Management of TSF data

FMT_SMF.1 Specification of Management Functions

FMT_SMR.1 Security roles

Table 2 : TOE functional security requirement

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
30

5.1.1.1 Introduction

The functional security requirements refer to the following subjects:

- Security administrator, access administrator and TOE users with their role

and their access key (allowing to perform or not perform operations on

containers) as security attributes.

The functional security requirements refer to the following objects:

- Containers handled by the TOE users and that contain user sensitive data

(files, keys).

The functional security requirements refer to the following operations:

- Container management (policies, recovery and SOS procedure, access

management)

- Use of containers

5.1.1.2 Class FCS : Cryptographic support

FCS_CKM Cryptographic key management

FCS_CKM.1 Cryptographic key generation

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a

specified cryptographic key generation algorithm

[pseudo_random numbers generation and key

diversification] and specified cryptographic key sizes [128, 192

and 256 bits for symmetric keys and 2048 bits for

asymmetric keys] that meet the following: [ANSSI

cryptographic requirements defined in [CRYPTO_STD] and

[CLES_STD]].

Non editorial refinement:

This component is related to the standard Edition only (the

limited Edition only performs the key diversification to get
the user access key from his/her password).

FCS_CKM.3 Cryptographic key access

FCS_CKM.3.1 The TSF shall perform [keys use] in accordance with a specified

cryptographic key access method [keyboard driver and key

decryption (unwrapping) by the access key] that meets the

following: [None].

Non editorial refinement :

This component is entirely implemented by the standard

edition in charge of all sensitive administrative operations.

But the limited Edition does not have any keyboard driver

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
31

and uses the key decryption only.

FCS_CKM.4 Cryptographic key destruction

FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a

specified cryptographic key destruction method [wiping with

random patterns] that meets the following: [none].

FCS_COP Cryptographic operation

FCS_COP.1 Cryptographic operation

FCS_COP.1.1 The TSF shall perform [hash, encryption, decryption,

signature verification of security policies, key wrapping

and key derivation] in accordance with a specified cryptographic

algorithm [HMAC, SHA-1 (key derivation), SHA-256, RSA,

AES] and cryptographic key sizes [128, 192 and 256 bits for

symmetric keys and 2048 bits for asymmetric keys] that

meet the following: [ANSSI cryptographic requirements

defined in [CRYPTO_STD] and [CLES_STD]].

Non editorial refinement:

The Light Edition only implements file encryption and

decryption so as to key derivation with the associated hash

function.

5.1.1.3 Class FDP: User data protection

FDP_ACC Access control policy

FDP_ACC.1 Subset access control

FDP_ACC.1.1 The TSF shall enforce the [SFP.ACCESS_OBJ] on [

Subjects : Administrator and TOE users

Objects : Container with user files and the control file

Operations: Container management and use].

FDP_ACF Access control functions

FDP_ACF.1 Security attribute based access control

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
32

FDP_ACF.1.1 The TSF shall enforce the [SFP.ACCESS_OBJ] to objects based on

the following: [

Subjects : Administrator and TOE users

Security attributes: User access keys (allowing to open or

not the containers) and role].

Non editorial refinement :

The light Edition only deals with user role (no administrator

role in this edition).

FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an

operation among controlled subjects and controlled objects is

allowed: [

Object : Container

Operation: Container management and use

Rule: successful authentication after access key input for the

associated container with access to the container

management for the access administrator role (access

management only) and for the security administrator role

(all management operations)].

FDP_ACF.1.3 The TSF shall explicitly authorise access of subjects to objects

based on the following additional rules: [Aucune].

FDP_ACF.1.4 The TSF shall explicitly deny access of subjects to objects based on

the following additional rules: [Aucune].

FDP_ITC Import from outside TSF control

FDP_ITC.1 Import of user data without security attributes

FDP_ITC.1.1 The TSF shall enforce the [SFP.ACCESS_OBJ and

SFP.ACCESS_ROLES] when importing user data, controlled under
the SFP, from outside of the TOE.

FDP_ITC.1.2 The TSF shall ignore any security attributes associated with the

user data when imported from outside the TOE.

FDP_ITC.1.3 The TSF shall enforce the following rules when importing user data

controlled under the SFP from outside the TOE: [None].

FDP_RIP Residual information protection

FDP_RIP.1 Subset residual information protection

FDP_RIP.1.1 The TSF shall ensure that any previous information content of a

resource is made unavailable upon the [deallocation of the

resource from] the following objects: [Container encryption

keys and access keys].

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
33

FDP_SDI Stored data integrity monitoring and action

FDP_SDI.2 Stored data integrity monitoring and action

FDP_SDI.2.1 The TSF shall monitor user data stored in containers controlled by

the TSF for [integrity errors] on all objects, based on the

following attributes: [HMAC for each file calculated from the
content and some technical properties of these files].

FDP_SDI.2.2 Upon detection of a data integrity error, the TSF shall [display an

error message].

Non editorial refinement :

The control is performed as soon as the file is opened.

5.1.1.4 Class FIA : Identification and authentication

FIA_AFL Authentication failures

FIA_AFL.1 Authentication failure handling

FIA_AFL.1.1 The TSF shall detect when [five] unsuccessful authentication

attempts occur related to [container opening].

FIA_AFL.1.2 When the defined number of unsuccessful authentication attempts

has been met or surpassed, the TSF shall [temporize the access

to this container].

FIA_UAU User authentication

FIA_UAU.2 User authentication before any action

FIA_UAU.2.1 The TSF shall require each user to be successfully authenticated

before allowing any other TSF-mediated actions on behalf of that

user.

FIA_UID User identification

FIA_UID.2 User identification before any action

FIA_UID.2.1 The TSF shall require each user to be successfully identified before

allowing any other TSF-mediated actions on behalf of that user.

5.1.1.5 Class FMT : Security management

FMT_MOF Management of functions in TSF

FMT_MOF.1 Management of security functions behaviour

FMT_MOF.1.1 The TSF shall restrict the ability to [disable or enable] the

functions [recovery and SOS] to [security administrator].

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
34

Non editorial refinement:

This component is related to the standard Edition only (the
limited edition does not offer any management function).

FMT_MSA Management of security attributes

FMT_MSA.1 Management of security attributes

FMT_MSA.1.1 The TSF shall enforce the [SFP.ACCESS_ROLES] to restrict the

ability to [change_default, modify, delete] the security

attributes [access keys and roles] to [access administrator

and security administrator].

Non editorial refinement:

This component is related to the standard Edition only (the

limited edition does not offer any access management
function).

FMT_MSA.2 Secure security attributes

FMT_MSA.2.1 The TSF shall ensure that only secure values are accepted for
[access keys].

Non editorial refinement:

This component is related to the standard Edition only (the

limited edition does not offer any access management
function).

FMT_MSA.3 Static attribute initialisation

FMT_MSA.3.1 The TSF shall enforce the [SFP.ACCESS_ROLES] to provide

[restrictive] default values for security attributes that are used

to enforce the SFP.

FMT_MSA.3.2 The TSF shall allow the [access administrator and security

administrator] to specify alternative initial values to override the
default values when an object or information is created.

Non editorial refinement:

This component is related to the standard Edition only (the

limited edition does not offer any access management
function).

FMT_MTD

FMT_MTD.1

Management of TSF data

Management of TSF data

FMT_MTD.1.1 The TSF shall restrict the ability to [change_default, modify,
delete] the [policies] to [the security administrator].

Non editorial refinement:

This component is related to the standard Edition only (the

limited edition does not offer any management function).

FMT_SMF Specification of Management Functions

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
35

FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1 The TSF shall be capable of performing the following management
functions: [

- Access management functions

- Recovery and SOS functions]

Non editorial refinement:

This component is related to the standard Edition only (the

limited edition does not offer any management function).

FMT_SMR Security management roles

FMT_SMR.1. Security roles

FMT_SMR.1.1 The TSF shall maintain the roles [security administrator,

access administrator and TOE users].

FMT_SMR.1.2 The TSF shall be able to associate users with roles.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
36

5.1.2. TOE security assurance requirements

As indicated in chapter 3.3, the TOE must demonstrate resistance to penetration

attackers with an Enhanced-Basic attack potential.

The target assurance level is the level:

EAL3 augmented with ALC_FLR.3 and AVA_VAN.3 components

associated with analysis of the cryptographic implementation

described in [QUALIF_STD].

This level corresponds to the selection of following assurance components:

Component Comment

ADV_ARC.1 Security architecture description EAL3

ADV_FSP.3 Functional specification with complete summary EAL3

ADV_TDS.2 Architectural design EAL3

AGD_OPE.1 Operational user guidance EAL3

AGD_PRE.1 Preparative procedures EAL3

ALC_CMC.3 Authorisation controls EAL3

ALC_CMS.3 Implementation representation CM coverage EAL3

ALC_DEL.1 Delivery procedures EAL3

ALC_DVS.1 Identification of security measures EAL3

ALC_FLR.3 Systematic flaw remediation +

ALC_LCD.1 Developer defined life-cycle model EAL3

ASE_CCL.1 Conformance claims EAL3

ASE_ECD.1 Extended components definition EAL3

ASE_INT.1 ST introduction EAL3

ASE_OBJ.2 Security objectives EAL3

ASE_REQ.2 Security requirements EAL3

ASE_SPD.1 Security problem definition EAL3

ASE_TSS.1 TOE summary specification EAL3

ATE_COV.2 Analysis of coverage EAL3

ATE_DPT.1 Testing: basic design EAL3

ATE_FUN.1 Functional testing EAL3

ATE_IND.2 Independent testing - sample EAL3

AVA_VAN.3 Focused vulnerability analysis +

Table 3 : Security assurance components

This assurance level complies with dependencies between CC assurance components

mentioned in CC part 3.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
37

6. TOE summary specifications

The security functions that are performed by the TOE are described in this chapter.

F.ACCESS_CONTROL Access control to containers

This security function is the interface enforcing the access control to open the

containers controlled by the TOE. The TSF allows or denies access to an encrypted

container on the basis of the verification of a “login / authentication” couple provided

by the TOE user. A delay is applied after five consecutive failures.

F.SECURE_INPUT secure input

This security function covers the secure communication of input data using

encryption and decryption functions of encryption keys and the keyboard driver

(standard edition only) when a password or a PIN code of a key file is entered.

F.TOE_CONFIGURATION Modifying the TOE configuration

This security function covers all the TOE configuration operations (initialization and

modification) and ensures that only secure values are accepted. Configuration data

concern the Windows policies which are signed by the security administrator and

operated by the TOE (after successful verification of the signature). These

configuration data define the access types supported, the cryptographic algorithms

(AES 256-bit by default), the password complexity, the control of the certificates

etc… If the verification is correct, the new policies are applied on the workstation.

F.ACCESS_KEY_MANAGEMENT Key management

This security function manages the security attributes: access keys and associated

roles (user, security administrator or access administrator). An access corresponds

to an access key (a cryptographic key) that a user owns in order to obtain the

encryption / decryption elements of the container. If these elements are extracted

for access management operations, the input access key must be associated with

the access (or security) administrator role. This function also manages the recovery

access which is a particular access and the SOS key .

The F.KEY_MANAGEMENT function also performs RSA key generation of access lists,

access key addition and suppression (standard edition) as well as the cryptographic

key accesses (in particular via the pkcs#11 token). It provides the secure cleaning of

these keys in memory after a session locking or sleep mode (standard edition), a

session logout or a system logoff.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
38

F.CRYPTO_OPERATIONS Cryptographic operations implementation

This security feature covers the encryption and HMAC key generations the file

encryption and decryption in the container, the operations related to the data

integrity verification and all the cryptographic operations used by other security

features.

Some cryptographic operations (key generation for example) are not available in the

limited edition.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
39

7. Protection profile conformance

This security target does not claim any compliance with a protection profile.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
40

8. Rationale

8.1. Security objectives rationale

This section provides the mappings between security objectives and the elements

which constitute the definition of the TOE environment (assumptions, organizational

policies and threats).

8.1.1. Assumptions

The table below presents the coverage of the selected assumptions by the security

objectives:

O

E
.N

O
N

_
O

B
S

E
R

V

O
E

.O
P

E
R

A
T

I
O

N
N

A
L
_

E
N

V

O
E

.T
I
M

E
S

T
A

M
P

I
N

G

O
E

.T
R

U
S

T
_

A
D

M
I
N

O
E

.K
E

Y
_

S
T
O

R
A

G
E

O
E

.C
E

R
T

I
F
I
C

A
T

E
S

O
E

.E
N

V
_

P
R

O
T

E
C

T
_

T
O

E

O
E

.T
R

A
I
N

I
N

G

O
E

.E
N

V
_

R
N

G

O
E

.E
X

T
_

C
R

Y
P

T
O

A
s
s
o

m
p

ti
o

n
s

A.NON_OBSERV X

A.SECURE_PC X

A.TRUST_ADMIN X X

A.KEY_STORAGE X X

A.CERTIFICATES X

A.ENV_PROTECT_TOE X X

A.LOYAL_ENV X

A.ENV_RNG X

A.EXT_CRYPTO X

Table 4 : Assumptions to security objectives mapping

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
41

A.NON_OBSERV The physical environment for the use of the TOE

enables users to enter their passwords (or PIN

numbers) without being directly observable and

protecting them from other users or hackers to

intercept their passwords or PIN numbers (wireless

keyboard, etc.).

The OE.NON_OBSERV objective addresses directly this assumption in providing the

user for an adequate environment.

A.SECURE_PC The operational environment does not allow any

attacker to access the hard disk when sensitive data

are processed on the workstation by an authorized

user. The user workstation must ensure effective

protection against eavesdropping and unauthorized

data transmission (correctly configured firewall, up-to-

date antivirus software, anti-spyware, etc.).
The OE.OPERATIONNAL_ENV objective addresses directly this assumption in

providing the user for an adequate environment.

A.TRUST_ADMIN The security administrator and the access administrator

are trustworthy. Windows administrators are

trustworthy people responsible for the policy

configuration (with secure values). All these people and

the users are trained to the TOE usage.

If the correspondents belong to entities managed by

different Windows environment security administrators,

the latter must conjointly guarantee the use of security

policies in compliance with the requisite levels (in

particular, password strength).
The OE.TRUST_ADMIN and OE.TRAINING objectives address this assumption in

employing and training trustworthy people.

A.KEY_STORAGE Users are responsible for the safekeeping in a secure

location and for the non-disclosure of access keys that

are sent to them by a TOE administrator. The TOE

administrator is responsible for the safekeeping in a

secure location and for the non-disclosure of the

recovery access keys and his/her signature key.

The OE.KEY_STORAGE and OE.TRAINING objectives address this assumption in

ensuring that users and administrators are accountable.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
42

A.CERTIFICATES When access keys that possess an X509 certificate are

supplied, the TOE administrator must verify that these

certificates are in fact valid and suitable for TOE usage.

The OE.CERTIFICATES objective addresses directly this assumption.

A.ENV_PROTECT_TOE The technical environment of the TOE ensures the

integrity of the TOE components. The TOE

administration and update are carried out by traine and

authorized people.

The OE.ENV_PROTECT_TOE and OE.TRAINING objectives address this assumption in

ensuring that the programs are not illegally modified and administrators are trained.

A.LOYAL_ENV The runtime environment provides the TOE with exact

date and time to ensure time stamp functions.

The OE.TIMESTAMPING objective addresses directly this assumption.

A.ENV_RNG The TOE implements mechanisms to provide the

random numbers necessary for the generation of the

secrets.

The OE.ENV_RNG objective addresses directly this assumption.

A.EXT_CRYPTO The access keys generated or stored outside the TOE

must be compliant with [CRYPTO_STD] document for

the Standard robustness level.

The OE.EXT_CRYPTO objective addresses directly this assumption.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
43

8.1.2. Threats

The table below presents the coverage of the selected threats by the security

objectives:

O
.A

U
T

H

O
.R

O
L
E

S

O
.

E
N

C
R

Y
P

T
I
O

N

O
.H

A
S

H

O
.

K
E

Y
S

_
C

L
E

A
N

I
N

G

O
.A

L
G

O
_

S
T

D

O
.A

D
M

_
A

C
C

E
S

O
.R

E
C

O
V

E
R

Y

O
.P

O
L
I
C

I
E

S
_

I
N

T

O
E

.T
R

U
S

T
_

A
D

M
I
N

O
E

.
K

E
Y

_
S

T
O

R
A

G
E

T
h

re
a
ts

T.COMPONENT_MISUSE X X X

T.POLICIES_SECU_INT X X X

T.CONTROL_FILE_CONF X X X

T.CONTROL_FILE_INT X X X X

T.CATALOGUE_FILE_INT X X X X

Table 5 : Threats to security objectives mapping

T.COMPONENT_MISUSE A person intercepts a container, get the Zed!

product (or Zed! Limited Edition) and manipulates,

possibly at low level, internal components of the

TOE, to bypass some security functions by

causing or taking advantage of a

malfunction. He can do this by reverse-

engineering programs, or by developing programs

calling internal functions of the TOE, or by

modifying the internal configuration of the TOE or

by using a debugger. Impacted asset is the TOE

program (confidentiality and integrity) and the

configuration (integrity).

By these different means, the attacker must not

succeed to "enter" a container in which he/she has

not access.

 To prevent the threat, the TOE must:

 Ensure that, before any operation on the TOE, authentication is necessary

(O.AUTH).

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
44

 To protect itself, the TOE must:

 Ensure that it is not cryptographically possible to find out encryption keys of the

container without providing a valid access key: the misuse of a TOE component

does not allow to bypass this protection (O.AUTH and O.ALGO_STD).

 Ensure that a misused component does not retain any residues providing a

possible attack path (O.KEYS_CLEANING).

 To limit the threat impact the TOE must:

None

T.POLICIES_SECU_INT A person taking advantage of a malfunction

signs the policies in place of the security

administrator (domain policies areas or local

policies if the attacker can access the

workstation). For example, he/she can configure

his/her own recovery access which will be added

automatically when the user will create the next

containers. The impacted asset is the

configuration (integrity).

 To prevent the threat, the TOE must:

 Ensure that administrators (including the Windows administrators) are

trustworthy people (OE. TRUST_ADMIN);

 Ensure that the security administrator keeps his signature private key in a safe

place (OE. KEYS_STORAGE)

 To protect itself, the TOE must:

 Ensure that it is not possible to apply security policies (and modify the related

configuration file) without policies signature by the private key of the security

officer (O.POLICIES_INT)

 To limit the threat impact the TOE must:

None

T.CONTROL_FILE_CONF An eavesdropper or an unauthorized user

retrieves the control file of the TOE in an attempt

to find protected information. The impacted asset

is therefore the control file of the container

(confidentiality).

For example, the attacker tries to find some

protected information (e.g. encryption keys) from

the encrypted files of the container and from the

TOE control file or tries to decrypt (brute force)

the information stored in the control file.

 To prevent the threat, the TOE must:

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
45

 Ensure that, before any operation on the TOE, authentication is necessary

(O.AUTH).

 To protect itself, the TOE must:

 Ensure that it is not cryptographically possible to find out encryption keys of the

container without providing a valid access key, and that the control file enforces

this requirement (O.AUTH and O.ALGO_STD).

 To limit the threat impact the TOE must:

 Ensure that the internal control files are "cryptographically different" by using

random numbers that does not allow to get information from a control file in

order to attack another one (O.ENCRYPTION and O.ALGO_STD).

T.CONTROL_FILE_INT An eavesdropper or an unauthorized user

retrieves the control file of the TOE (stored in the

container) and modifies it in an attempt to add its

own access among authorized accesses (the

attacker can position itself between two

correspondents for example). The impacted assets

is therefore the control file of the TOE (integrity).

The attacker can thus intercept and read the files

exchanged between legitimate correspondents or

send the container to a correspondent (by

usurping the identity of a legitimate user) so that

the correspondent send him sensitive files.

 To prevent the threat, the TOE must:

 Ensure that, before any operation on the TOE, authentication is necessary

(O.AUTH).

 To protect itself, the TOE must:

 Ensure that it is not possible, cryptographically, to find out container encryption

keys without providing a valid access key : the unauthorized modification of the

control file is prohibited thanks to this mechanism (O.AUTH and O.ALGO_STD);

 Ensure that any integrity violation of the control file will be detected and notified

to the user who opens the container (O.HASH).

 To limit the threat impact the TOE must:

 Ensure that the internal files of the different containers are "cryptographically

different" by using random numbers that does not allow to get information from a

control file in order to attack another one (O.ENCRYPTION and O.ALGO_STD).

T.CATALOGUE_FILE_INT An eavesdropper or an unauthorized user

retrieves the catalogue file of the TOE (stored in

the container) and modifies it in an attempt to

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
46

mofigy the container tree view. The impacted

assets is therefore the catalogue file of the TOE

(integrity).

The attacker can thus intercept the exchanged

containers and make disappear one or more files

in the container without any detection by the

recipient.

 To prevent the threat, the TOE must:

 Ensure that, before any operation on the TOE, authentication is necessary

(O.AUTH).

 To protect itself, the TOE must:

 Ensure that it is not possible, cryptographically, to find out container encryption

keys without providing a valid access key : the unauthorized modification of the

catalogue file is prohibited thanks to this mechanism (O.AUTH and O.ALGO_STD);

 Ensure that any integrity violation of the catalogue file will be detected and

notified to the user who opens the container (O.HASH).

 To limit the threat impact the TOE must:

 Ensure that the internal files of the different containers are "cryptographically

different" by using random numbers that does not allow to get information from a

catalogue file in order to attack another one (O.ENCRYPTION and O.ALGO_STD).

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
47

8.1.3. Organizational security policies

The table below presents the coverage of the selected organizational security policies

by the security objectives:

O
.A

U
T

H

O
.R

O
L
E

S

O
.E

N
C

R
Y

P
T

I
O

N

O
.H

A
S

H

O
.K

E
Y

S
_

C
L
E

A
N

I
N

G

O
.A

L
G

O
_

S
T

D

O
.A

D
M

_
A

C
C

E
S

S

O
.R

E
C

O
V

E
R

Y

O
.P

O
L
I
C

I
E

S
_

I
N

T

O
S

P

OSP.CONFIDENTIALITY X X X

OSP.INTEGRITY X X X

OSP.ACCESS X X

OSP.RECOVERY X X X X

OSP.ADMIN_ACCESS X X X X

OSP.POLICIES_VERIF X

OSP.CRYPTO X

Table 6 : Organizational security policies to security objectives mapping

OSP.CONFIDENTIALITY The TOE shall offer automatic and systematic

confidentiality protection (encryption) of user sensitive

files that are stored or send (email attachment).

Note: This policy concerns the initial creation of the container, and the fact that once

the container is created, any file copied into it is stored encrypted. This policy does

not concern accesses to the container, which are covered by OSP.ACCESS.

 To cover this policy, the TOE must:

 Generates random numbers to create the encryption key of the container

(O.ALGO_STD);

 Encrypt the files in the container (O.ENCRYPTION) ;

 To ensure the implementation of the policy, the TOE must:

 Erase the residual information in memory (information related to encryption keys)

(O.KEYS_CLEANING).

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
48

OSP.INTEGRITY The TOE shall provide automatic and systematic integrity

check (hash) of user sensitive files in the containers.

 To cover this policy, the TOE must:

 Generates random numbers to create the HMAC key of the container

(O.ALGO_STD);

 Calculate a MAC and an HMAC for each file of the container (O.HASH);

 Compute an HMAC in the catalogue file (O.HASH) to detect the deletion of a file

by an attacker.

 To ensure the implementation of the policy, the TOE must:

 Erase the residual information in memory (information related to HMAC keys)

(O.KEYS_CLEANING).

OSP.ACCESS The TOE shall enable users to provide an access key

allowing the access to sensitive files of the container in

which they wish to access. If they cannot provide a valid

key for the container, access must be rejected.

Note: This policy does not concern the access management (adding or deleting an

access enforced by OSP.ADMIN_ACCES), but the use of an access.

 To cover this policy, the TOE must:

 Require each user to be successfully authenticated before accessing a file in the

container (O.AUTH);

 To ensure the implementation of the policy, the TOE must:

 Ensure that only a valid access key is able to recover the container encryption key

(using TOE internal information and internal files (O.AUTH).

 Erase the residual information in memory that is related to intermediary

cryptographic calculations (password derivation) or to the transfer of encryption

keys when they are calculated by an external cryptographic device (token)

(O.KEYS_CLEANING).

OSP.RECOVERY The TOE shall offer a service to recover sensitive files of

users by using recovery access keys managed by the

security administrator. These keys are systematically and

automatically assigned during container initialization. The

TOE must also provides a remote recovery (SOS

procedure) if the user forgot his/her password or

lost/broken his/her token. This SOS procedure is

performed with a key systematically and automatically

assigned during the creation of the user access list. This

policy applies only to Zed! Standard Edition.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
49

 To cover this policy, the TOE must:

 Offers a service to assign recovery and SOS access keys to the container

(O.RECOVERY)

 Require authentication to access the management of the recovery and the SOS

keys (O.AUTH);

 Ensure that the security administrator is the only authorized person performing

recovery and SOS operations (O.ROLES)

 To ensure the implementation of the policy, the TOE must:

 Ensure that only a valid access key is able to recover the container encryption key

(using TOE internal information and internal files (O.AUTH).

 Erase the residual information in memory that is related to intermediary

cryptographic calculations (password derivation) or to the transfer of encryption

keys when they are calculated by an external cryptographic device (token)

(O.KEYS_CLEANING).

OSP.ADMIN_ACCESS The TOE shall offer a service to manage accesses (Zed!

Standard Edition only).

 To cover this policy, the TOE must:

 Require the administrator to be successfully authenticated before performing any

access management on encrypted container (O.AUTH) ;

 Offer an interface to the administrator so that he/she can visualize (the user can

do it also) and manage the container access keys (O.ADM_ACCESS).

 Control that only a user with ‘security or access administrator’ role for a given can

manage the accesses (O.ROLES) ;

 To ensure the implementation of the policy, the TOE must:

 Erase the residual information in memory (information related to access keys)

(O.KEYS_CLEANING).

OSP.POLICIES_VERIF The TOE shall provide a service without (special handling

by the user) that performs the verification of the

signature of security policies signed by the security

administrator's private key (Zed! Standard Edition only).

The application of any new policy is conditioned by the

success of this verification.

 To cover this policy, the TOE must:

 Requires successful signature verification of new policies in order to apply them

(O.POLICIES_INT).

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
50

OSP.CRYPTO The ANSSI referential ([CRYPTO_STD], [CLES_STD] and

[AUTH_STD]) defined for the ‘standard’ robustness level

must be applied for the key management and for the

cryptographic and authentication mechanisms used in the

TOE.

 To cover this policy, the TOE must:

 Provide a choice of cryptographic algorithms and key sizes consistent with the

state of the art and standards in this field (O.ALGO_STD)

 Provide a choice of cryptographic algorithms and key sizes consistent with the

state of the art and standards in this field, provided for in [CRYPTO_STD] and

supplemented by [CLES_STD] for the random number generation and key

generation) (O.ALGO_STD).

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
51

8.1.4. Summary on the coverage of the objectives

The table below presents a summary of the coverage of the security objectives by

the assumptions, threats and organizational security policies:

A
.N

O
N

_
O

B
S

E
R

V

A
.

S
E
C

U
R

E
 _

P
C

A
.T

R
S

U
T
_

A
D

M
I
N

A
.

K
E
Y

_
S

T
O

R
A

G
E

A
.C

E
R

T
I
F
I
C

A
T
E
S

A
.E

N
V

_
P

R
O

T
E
C

T
_

T
O

E

A
.L

O
Y

A
L
_

E
N

V

A
.E

N
V

_
R

N
G

A
.E

X
T
_

C
R

Y
P

T
O

T
.C

O
M

P
O

N
E
N

T
_

M
I
S

U
S

E

T
.P

O
L
I
C

I
E
S

_
S

E
C

U
_

I
N

T

T
.C

O
N

T
R

O
L
_

F
I
L
E
_

C
O

N
F

T
.C

O
N

T
R

O
L
_

F
I
L
E
_

I
N

T

T
.C

A
T
A

L
O

G
U

E
_

F
I
L
E
_

I
N

T

O
S

P
.C

O
N

F
I
D

E
N

T
I
A

L
I
T

Y

O
S

P
.I

N
T
E
G

R
I
T

Y

O
S

P
.A

C
C

E
S

Y

O
S

P
.R

E
C

O
V

E
R

Y

O
S

P
.A

D
M

I
N

_
A

C
C

E
S

S

O
S

P
.P

O
L
I
C

I
E
S

_
V

E
R

I
F

O
S

P
.C

R
Y

P
T
O

S
e
c
u

r
it

y
 o

b
je

c
ti

v
e
s

OE.NON_OBSERV X

OE.OPERATIONAL_ENV X

OE.TIMESTAMPING X

OE.TRUST_ADMIN X X

OE.KEY_STORAGE X X

OE.CERTIFICATES X

OE.ENV_PROTECT_TOE X

OE.TRAINING X X X

OE.ENV_RNG X

OE.EXT_CRYPTO X

O.AUTH X X X X X X X

O.ROLES X X

O.ENCRYPTION X X X X

O.HASH X X X

O.KEYS_CLEANING X X X X X X

O.ALGO_STD X X X X X X X

O.ADM_ACCESS X

O.RECOVERY X

O.POLICIES_INT X X

Table 7 : Coverage of the security objectives by the assumptions, threats

and organizational security policies

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
52

8.2. Security requirements rationale

8.2.1. Functional security requirements dependencies

The table below presents the coverage of the dependencies between selected

functional components:

Component CC-required dependencies Fulfilled dependencies

FCS_CKM.1
[FCS_CKM.2 or FCS_COP.1],

FCS_CKM.4
FCS_COP.1, FCS_CKM.4

FCS_CKM.3

[FDP_ITC.1 or FDP_ITC.2 or
FCS_CKM.1], FCS_CKM.4

FDP_ITC.1, FCS_CKM.1, FCS_CKM.4

FCS_CKM.4
[FDP_ITC.1 or FDP_ITC.2 or

FCS_CKM.1]
FDP_ITC.1, FCS_CKM.1

FCS_COP.1

[FDP_ITC.1 or FDP_ITC.2 or
FCS_CKM.1], FCS_CKM.4

FDP_ITC.1, FCS_CKM.1, FCS_CKM.4

FDP_ACC.1 FDP_ACF.1 FDP_ACF.1

FDP_ACF.1 FDP_ACC.1, FMT_MSA.3 FDP_ACC.1, FMT_MSA.3

FDP_ITC.1
[FDP_ACC.1 or FDP_IFC.1],

FMT_MSA.3
FDP_ACC.1, FMT_MSA.3

FDP_RIP.1 None None

FDP_SDI.2 None None

FIA_AFL.1 FIA_UAU.1 FIA_UAU.2

FIA_UAU.2 FIA_UID.1 FIA_UID.2

FIA_UID.2 None None

FMT_MOF.1 FMT_SMF.1, FMT_SMR.1 FMT_SMF.1, FMT_SMR.1

FMT_MSA.1
[FDP_ACC.1 or FDP_IFC.1],

FMT_SMF.1, FMT_SMR.1
FDP_ACC.1, FMT_SMF.1, FMT_SMR.1

FMT_MSA.2

[FDP_ACC.1 or FDP_IFC.1],
FMT_MSA.1, FMT_SMR.1

FDP_ACC.1, FMT_MSA.1, FMT_SMR.1

FMT_MSA.3 FMT_MSA.1, FMT_SMR.1 FMT_MSA.1, FMT_SMR.1

FMT_MTD.1 FMT_SMR.1, FMT_SMF.1 FMT_SMR.1, FMT_SMF.1

FMT_SMF.1 None None

FMT_SMR.1 FIA_UID.1 FIA_UID.2

Table 8 : Functional security requirements dependencies

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
53

8.2.2. Assurance security requirements dependencies

The table below presents the coverage of the dependencies between selected

assurance components:

Component CC-required Dependencies Fulfilled dependencies

ADV_ARC.1 ADV_FSP.1, ADV_TDS.1 ADV_FSP.3, ADV_TDS.2

ADV_FSP.3 ADV_TDS.1 ADV_TDS.2

ADV_TDS.2 ADV_FSP.3 ADV_FSP.3

AGD_OPE.1 ADV_FSP.1 ADV_FSP.3

AGD_PRE.1 None None

ALC_CMC.3 ALC_CMS.1, ALC_DVS.1, ALC_LCD.1 ALC_CMS.3, ALC_DVS.1, ALC_LCD.1

ALC_CMS.3 None None

ALC_DEL.1 None None

ALC_DVS.1 None None

ALC_FLR.3 None None

ALC_LCD.1 None None

ASE_CCL.1 ASE_INT.1, ASE_ECD.1, ASE_REQ.1 ASE_INT.1, ASE_ECD.1, ASE_REQ.2

ASE_ECD.1 None None

ASE_INT.1 None None

ASE_OBJ.2 ASE_SPD.1 ASE_SPD.1

ASE_REQ.2 ASE_OBJ.2, ASE_ECD.1 ASE_OBJ.2, ASE_ECD.1

ASE_SPD.1 None None

ASE_TSS.1 ASE_INT.1, ASE_REQ.1, ADV_FSP.1 ASE_INT.1, ASE_REQ.2, ADV_FSP.3

ATE_COV.2 ADV_FSP.2, ATE_FUN.1 ADV_FSP.3, ATE_FUN.1

ATE_DPT.1 ADV_ARC.1, ADV_TDS.2, ATE_FUN.1 ADV_ARC.1, ADV_TDS.2, ATE_FUN.1

ATE_FUN.1 ATE_COV.1 ATE_COV.2

ATE_IND.2
ADV_FSP.2, AGD_OPE.1, AGD_PRE.1,

ATE_COV.1, ATE_FUN.1
ADV_FSP.3, AGD_OPE.1, AGD_PRE.1,

ATE_COV.2, ATE_FUN.1

AVA_VAN.3
ADV_ARC.1, ADV_FSP.2, ADV_TDS.3*,
ADV_IMP.1*, AGD_OPE.1, AGD_PRE.1

ADV_ARC.1, ADV_FSP.3, AGD_OPE.1,
AGD_PRE.1

Table 9 : Assurance security requirements dependencies

8.2.3. Justification of unsupported dependencies

* AVA_VAN.3 dependency with ADV_FSP.4, ADV_IMP.1 and ADV_TDS.3 are not

fulfilled in accordance with the assurance package relative to qualification process at

the “standard” robustness level defined by ANSSI [QUALIF_STD].

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
54

8.2.4. Security objectives to functional security

requirements mapping rationale

The table below presents the coverage of the security objectives by the selected

functional security requirements:

Objectifs de sécurité de

la TOE

F
C
S
_
C
K
M

.1

F
C
S
_
C
K
M

.3

F
C
S
_
C
K
M

.4

F
C
S
_
C
O

P
.1

F
D

P
_
A
C
C
.1

F
D

P
_
A
C
F
.1

F
D

P
_
IT

C
.1

F
D

P
_
R
IP

.1

F
D

P
_
S
D

I.
2

F
IA

_
A
F
L
.1

F
IA

_
U

A
U

.2

F
IA

_
U

ID
.2

F
M

T
_
M

O
F
.1

F
M

T
_
M

S
A
.1

F
M

T
_
M

S
A
.2

F
M

T
_
M

S
A
.3

F
M

T
_
M

T
D

.1

F
M

T
_
S
M

F
.1

F
M

T
_
S
M

R
.1

O.AUTH X X X X X X

O.ROLES X X X X X X

O. ENCRYPTION X X X

O.HASH X X X X

O.KEYS_CLEANING X

O.ALGO_STD X X X X

O.ADM_ACCES X X X X X

O.RECOVERY X X X X

O.POLICIES_INT X X

Table 10 : Security objectives to functional security requirements mapping

8.2.4.1 Access control

O.AUTH The TOE shall identify and authenticate users. To do this,

the TOE shall allow access to a container only after

presentation of a valid key for the container.

In order to fulfill this objective:

 The TOE identifies and authenticates each user before allowing any operation

(FIA_UAU.2 and FIA_UID.2) and slowdowns the display of the authentication

window after several unsuccessful authentication attempts (FIA_AFL.1).

 In order to access to an encrypted container, the user must enter his/her access

keys (USB token for example) to be authenticated (FDP_ITC.1).

 Then the TOE enforces an access control policy to the container (FDP_ACC.1)

based on security attributes (FDP_ACF.1).

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
55

O.ROLES The TOE shall manage three user roles in an encrypted

container: a 'normal user' role or simply 'user' role (use of

files in the container after presentation of a valid access

key), a ‘access administrator’ role in charge of initializing

the container and adding the authorized accesses and a

'security administrator' role (installation, policies signature,

recovery, access management).

In order to fulfill this objective:

 The TOE must manage and differentiate the security administrator, access

administrator and user roles (FMT_SMR.1).

 The TOE also controls the user access to containers and to the operations on

containers (FDP_ACC.1), and restricts the access to the users having a valid

access key (FDP_ACF.1).

 Finally the TOE must restrict the ability to manage security functions

(FMT_SMF.1), policies (FMT_MTD.1) and recovery (FMT_MOF.1) to the

administrator.

8.2.4.2 Cryptography

O.ENCRYPTION The TOE shall encrypt and decrypt sensitive data with

cryptographic keys. The TOE shall use different encryption

keys to protect the different containers. The TOE shall

generate encryption keys according to requirements for the

standard robustness level of the cryptographic referential

[CRYPTO_STD] and [CLES_STD] of ANSSI.

In order to fulfill this objective:

 In order to encrypt the files in the container, the TOE must be able to generate

cryptographic keys (FCS_CKM.1) and to access them in a secure way

(FCS_CKM.3), to use them and perform the cryptographic operations in

accordance with different algorithms (FCS_COP.1).

O.HASH The TOE shall check the sensitive data integrity with

cryptographic keys different according to the container. The

TOE shall generate these keys according to requirements for

the standard robustness level of the cryptographic

referential [CRYPTO_STD] and [CLES_STD] of ANSSI.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
56

In order to fulfill this objective:

 In order to calculate the HMAC of the user files, control file and catalogue file of

the container, the TOE must be able to generate cryptographic keys (FCS_CKM.1)

and to access them in a secure way (FCS_CKM.3), to use them and perform the

cryptographic operations in accordance with different algorithms (FCS_COP.1).

 The TOE check the integrity of sensitive files stored in the containers and returns

a warning in case of error detection (FDP_SDI.2).

O.KEYS_CLEANING The TOE shall ensure the cleaning of sensitive data

(encryption keys and elements of these keys) in the

memory (RAM) at the end of every operation carried out by

the TOE.

In order to fulfill this objective:

 The TOE ensures the secure cleaning of keys in the RAM memory (FDP_RIP.1).

O.ALGO_STD The TOE shall provide random numbers and a choice of

cryptographic algorithms and key sizes consistent with the

state of the art and standards in this field, provided in

[CRYPTO_STD] and supplemented by [CLES_STD] and

[AUTH_STD].

In order to fulfill this objective:

 The TOE must be able to implement a method of cryptographic key generation

(FCS_CKM.1), cryptographic key access (FCS_CKM.3) and cryptographic key

destruction (FCS_CKM.4).

 The TOE must perform cryptographic operations in accordance with algorithms

and key sizes specified in (FCS_COP.1).

8.2.4.3 Container management

O.ADM_ACCESS The TOE shall provide an interface to the security

administrator and to the access administrator to view

accesses and to manage access keys to "containers" (Zed!

Standard Edition only). Users can only view the accesses.

In order to fulfill this objective:

 The TOE offers functions to manage the accesses (FMT_SMF.1)

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
57

 The TOE gives access to management function based on the role associated with

users (FMT_SMR.1)

 The TOE ensures that only security and access administrators are allowed to

manage the security attributes of stored objects: keys and roles (FMT_MSA.1).

 The administrators can also define the initialization values of the attributes (such

as the role that is initialized by default to « user ») (FMT_MSA.3).

 The TOE ensures that only secure values are accepted for security attributes

(minimum password strength for example) (FMT_MSA.2).

O.RECOVERY The TOE shall provide a mechanism to apply recovery and

SOS access keys (Zed! Standard Edition only).

In order to fulfill this objective:

 The TOE shall restrict the ability to disable or enable the recovery function

(FMT_SMF.1) to the security administrator (FMT_MOF.1).

 The recovery function is configured in the policies signed by the security

administrator (FMT_MTD.1)

8.2.4.4 Protections when executing

O.POLICIES_INT
The TOE shall verify the signature of new security

policies to be applied (Zed! Standard Edition only). In

case of failure, applied policies remain unchanged.

In order to fulfill this objective:

 The TOE must perform signature verification operations in accordance with

algorithms and key sizes specified in (FCS_COP.1).

 The TOE shall verify that the signature operation was performed by the security

administrator (FMT_MTD.1).

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
58

8.2.5. Rationale for Assurance Level 3 Augmented

The EAL3 assurance level augmented with ALC_FLR.3 and AVA_VAN.3

components associated with analysis of the cryptographic implementation was

chosen to comply with qualification process at the “standard” robustness level

defined by ANSSI [QUALIF_STD]. This assurance level imposes:

 Independent testing performed by the evaluator (the final user is then

ensured that the TOE security functions are implemented as specified)

 Independent vulnerability analysis by the evaluator who will consider an

attacker possessing an Enhanced-Basic (or inferior) attack potential (the final

user is then ensured that the TOE is resistant to penetration attacks

performed by attackers possessing an “enhanced-basic” attack potential).

 A security architecture and a software architecture including implementation

analysis (cryptographic functions only) evaluation to verify any security

malfunctions ;

 Software development good practices (the final user is then ensured that the

cryptographic part of the product was correctly and securely designed and

developed).

 Good practices in maintenance and user support ensuring that all identified

flaws will be corrected and reported to the product users that might be

affected by these anomalies.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
59

8.3. Rationale for TOE summary specifications

The table below presents the coverage of the functional security requirements by the

TOE security functions:

Functional security requirements for the TOE

F
.A

C
C
E
S
S
_
C
O

N
T
R
O

L

F
.S

E
C
U

R
E
_
IN

P
U

T

F
.T

O
E
_
C
O

N
F
IG

U
R
A
T
IO

N

F
.A

C
C
E
S
S
_
K
E
Y
_
M

A
N

A
G

E
M

E
N

T

F
.C

R
Y
P
T
O

_
O

P
E
R
A
T
IO

N
S

FCS_CKM.1 Cryptographic key generation X X

FCS_CKM.3 Cryptographic key access X

FCS_CKM.4 Cryptographic key destruction X

FCS_COP.1 Cryptographic operation X X X X X

FDP_ACC.1 Subset access control X X

FDP_ACF.1 Security attribute based access control X X

FDP_ITC.1 Import of user data without security attributes X

FDP_RIP.1 Subset residual information protection X

FDP_SDI.2 Stored data integrity monitoring and action X

FIA_AFL.1 Authentication failure handling X

FIA_UAU.2 Authentication failure handling X X X

FIA_UID.2 User authentication before any action X X X

FMT_MOF.1 User identification before any action X X

FMT_MSA.1 Management of security functions behaviour X

FMT_MSA.2 Management of security attributes X

FMT_MSA.3 Secure security attributes X

FMT_MTD.1 Static attribute initialisation X

FMT_SMF.1 Management of TSF data X X

FMT_SMR.1 Specification of Management Functions X

Table 11 : TOE summary specifications to functional security requirements

mapping

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
60

FCS_CKM.1 Cryptographic key generation

A key is associated with each container to encrypt and decrypt the files and a HMAC

key. These keys are generated when the container is initialized (standard edition

only). The keys meet the algorithm and length criteria configured in the policies. By

default, they are 256-bit AES keys.

The format of certain user access keys (personal access list) can also be subject to

an intermediate encryption by a RSA key generated by the TOE.

The security functions F.ACCESS_KEY_MANAGEMENT implements the RSA key

generation and F.CRYPTO_OPERATIONS the AES key generation.

FCS_CKM.3 Cryptographic key access

Cryptographic key access managed by the TOE is implemented by the security

function F.SECURE_INPUT to secure input password and PIN codes.

This function is used by the user authentication process.

FCS_CKM.4 Cryptographic key destruction

When a container is deleted, the cryptographic keys used by the container are

destroyed. Similarly when an access is removed (performed only by the standard

edition), the corresponding access key is destroyed.

The security function F.ACCESS_KEY_MANAGEMENT enforces this functional

requirement.

FCS_COP.1 Cryptographic operation

The TOE performs the following cryptographic operations:

 Gets an access key before being able to create a container key (initialization) and

encrypt the container,

 Gets an access key to decrypt (unwrap) the container key and add a new access

key. Then this access key wraps the container key,

 Gets an access key to decrypt the container key and encrypt or decrypt the

container files,

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
61

 Gets an access key to decrypt the HMAC key and perform HMAC of the sensitive

data,

 Gets a password to derive an access key and encrypt or decrypt the container

key,

 Send the container encrypted key to the key holder, then get back the container

key unencrypted by the key holder and decrypt the container files,

 Verifies the policies signature with the security officer certificate.

The security function F.CRYPTO_OPERATIONS implements the encryption and

decryption operations, integrity control as well as cryptographic operations in the

used by other functions.

The functions F.ACCESS_KEY_MANAGEMENT (access key creation) and

F.ACCESS_CONTROL (access key verification) use the functions for deriving keys

from passwords

The security function F.SECURE_INPUT uses wrapping functions to ensure the secure

transfer of keys between the TOE and the key holders.

The security function F.TOE_CONFIGURATION is involved in the access types and

algorithms configurations.

FDP_ACC.1 Subset access control

In order to use a container managed by the TOE, the user must present a valid

access key, associated with the container. This security requirement is implemented

in the TOE by the security functions:

 F.ACCESS_KEY_MANAGEMENT for the configuration of the accesses to the

container by the administrator

 F.ACCESS_CONTROL for the access control to the containers.

FDP_ACF.1 Security attribute based access control

In order to use a container managed by the TOE, the user must present a valid

access key, associated with the container. In order to implement this operation:

 Rights and roles are associated with users (F.ACCESS_KEY_MANAGEMENT),

 and access to container is therefore controlled (F.ACCESS_CONTROL).

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
62

FDP_ITC.1 Import of user data without security attributes

Some data required for the functioning of the TOE are imported from outside of the

TSF as access keys or passwords entered by the user. These are data only, no

security attribute is imported.

The security function F.SECURE_INPUT implements the communication of data

provided as TOE input, and thus covers this requirement.

FDP_RIP.1 Subset residual information protection

This functional requirement is implemented by the security function

F.ACCESS_KEY_MANAGEMENT that performs the secure access key erasing in RAM.

FDP_SDI.2 Stored data integrity monitoring and action

This functional requirement is implemented by F.CRYPTO_OPERATIONS that enforces

all the operations required for checking the integrity of the files.

FIA_AFL.1 Authentication failure handling

When opening a container, the maximum number of attempts to enter the

passwords or PIN is fixed at five. When the number of unsuccessful attempts is

reached, the opening request is rejected and the user must repeat the whole

authentication process (which causes a slowdown between the different

authentication sequences).

The security function F.ACCESS_CONTROL implements this functional requirement.

FIA_UAU.2 User authentication before any action

No container opening is possible on the TOE without a prior phase of user

authentication and identification. For each user authentication, users must enter a

valid access key.

This functional requirement is implemented by:

 F.TOE_CONFIGURATION to configure the authorized access (access type,

password strength, certificate type …),

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
63

 F.ACCESS_CONTROLE to enforce access control,

 F.SECURE_INPUT to secure the communication of input data entering the TOE.

FIA_UID.2 User identification before any action

No container opening is possible on the TOE without a prior phase of user

authentication and identification. For each user authentication, users must enter a

valid access key.

This functional requirement is implemented by:

 F.TOE_CONFIGURATION to configure the authorized access (access type,

password strength, certificate type …),

 F.ACCESS_CONTROLE to enforce access control,

 F.SECURE_INPUT to secure the communication of input data entering the TOE.

FMT_MOF.1 Management of security functions behaviour

Only the security administrator can disable or enable the recovery and SOS

functions.

The security functions F.TOE_CONFIGURATION associated with F.ACCESS_CONTROL

(authentication, recovery and user SOS entry) implement this requirement. Two

dedicated security policies (signed by the security administrator) enable or disable

the use of the recovery and SOS accesses.

FMT_MSA.1 Management of security attributes

Only security and access administrators are allowed to change the default value,

modify, or remove the security attributes "access keys and role".

This security attribute is stored in the control file hidden by Zed!.

The security function F.ACCESS_KEY_MANAGEMENT implements this requirement.

FMT_MSA.2 Secure security attributes

The security function F.TOE_CONFIGURATION (password strength, certificate control

for example) ensures that the security attributes “access keys” are secure (these

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
64

keys are managed by the standard edition only).

FMT_MSA.3 Static attribute initialisation

The TSF allows the security and access administrators to specify initial alternative

values to replace default values when an object or information is created (choosing

the role for example).

The security function F.ACCESS_KEY_MANAGEMENT (changing the role for example)

implements this requirement.

FMT_MTD.1 Management of TSF data

Only the security administrator is allowed to manage security policies.

This requirement is implemented by the security function F.TOE_CONFIGURATION in

charge of verifying the policy signature.

FMT_SMF.1 Specification of Management Functions

The TOE supports the following management functions:

 Access management,

 Recovery (and SOS) operations.

This requirement is implemented by the security functions

F.ACCESS_KEY_MANAGEMENT (access and recovery management) and

F.TOE_CONFIGURATION (policies).

FMT_SMR.1 Security roles

The TOE supports user, access administrator and security administrator roles.

This requirement is implemented by F.ACCESS_KEY_MANAGEMENT that identifies

administrator and user rights depending on their access keys.

Zed! 6.1 – Security Target CC Niveau EAL3+ - PX159534v1r9 – March 2016 - © Prim'X Technologies 2003, 2016
65

8.4. Rationale for Protection Profile conformance

claim

This security target does not claim any compliance with a protection profile. No

rationale is required.

Copyright © Prim'X Technologies 2003, 2016.

