

Ucard UBJ31-G11 V1.1

Security Target Lite

V1.0

Version V1.0

Writer UBIVELOX

Date 2012-09-20

 2

History

Document Revision Modification Approval date Writer

V1.0 Final confirmation 2012-09-20 UBIVELOX

 3

Table of Contents
Table of Contents .. 3

1 ST Introduction ... 6

1.1 ST reference .. 6

1.2 TOE reference .. 6

1.3 TOE overview ... 6

1.4 TOE description .. 7

1.4.1 TOE Architecture .. 7

1.4.2 TOE security functionality... 8

1.4.3 TOE environment .. 10

1.4.4 TOE Life Cycle .. 11

1.4.5 The user and roles .. 12

1.5 ST organization .. 12

1.6 Conventions ... 13

2 Conformance claims ... 14

2.1 CC conformance claim... 14

2.2 PP claim ... 14

2.3 Package claim ... 14

2.4 Conformance rationale .. 14

2.4.1 Conformance rationale for the TOE type ... 14

2.4.2 Conformance rationale for the security problem definition 14

2.4.3 Conformance rationale for security objectives .. 17

2.4.4 Conformance rationale for security requirements ... 20

3 Security Aspects ... 27

3.1 Confidentiality... 27

3.2 Integrity .. 28

3.3 Unauthorized execution .. 28

3.4 Bytecode verification .. 29

3.4.1 CAP file verification ... 29

3.4.2 Integrity and authentication .. 30

3.4.3 Linking and verification ... 30

3.5 Card management .. 30

3.6 Services .. 32

4 Security problem definition .. 34

4.1 Assets.. 34

4.1.1 User Data ... 34

4.1.2 TSF Data ... 35

4.2 Threats .. 36

 4

4.2.1 Confidentiality ... 36

4.2.2 Integrity ... 36

4.2.3 Identity usurpation ... 37

4.2.4 Unauthorized execution .. 37

4.2.5 Denial of service .. 38

4.2.6 Card management .. 38

4.2.7 Services .. 38

4.2.8 Miscellaneous ... 39

4.2.9 Additional threats.. 39

4.2.10 Compatibility statement of threats .. 40

4.3 Organisational security policies ... 41

4.3.1 OSPs from [JCSPP] ... 41

4.3.2 Additional OSPs ... 41

4.3.3 Compatibility statement of OSPs ... 43

4.4 Assumptions ... 43

4.4.1 Assumptions from [JCSPP] .. 43

4.4.2 Additional assumptions .. 43

4.4.3 Compatibility statement of assumptions ... 44

5 Security objectives .. 45

5.1 Security objectives for the TOE .. 45

5.1.1 Identification .. 45

5.1.2 Execution ... 45

5.1.3 Services .. 46

5.1.4 Object deletion ... 46

5.1.5 Applet management ... 46

5.1.6 Reassignment ... 47

5.1.7 Additional security objectives for the TOE ... 48

5.1.8 Compatibility statement of security objectives for the TOE 50

5.2 Security objectives for the operational environment ... 51

5.2.1 Security objectives for the operational environment from [JCSPP]................... 51

5.2.2 Additional Security objectives for the operational environment 51

5.2.3 Compatibility statement of security objectives for the operational

environment .. 52

5.3 Security objectives rationale .. 52

5.3.1 Threats .. 52

5.3.2 Organisational security policies ... 58

5.3.3 Assumptions.. 59

5.3.4 SPD and security objectives ... 60

6 Extended components definition ... 66

 5

6.1 Definition of the Family FCS_RNG .. 66

7 Security requirements ... 67

7.1 Security functional requirements .. 67

7.1.1 CoreG_LC security functional requirements ... 72

7.1.2 InstG security functional requirements .. 88

7.1.3 ADELG security functional requirements .. 91

7.1.4 RMIG security functional requirements .. 94

7.1.5 ODELG security functional requirements ... 97

7.1.6 CarG security functional requirements .. 98

7.1.7 CMGRG security functional requirements .. 102

7.1.8 SCPG security functional requirements ... 107

7.1.9 Compatibility statement of SFRs .. 108

7.2 Security assurance requirements .. 109

7.2.1 Compatibility statement of SARs ... 109

7.3 Security requirements rationale ... 109

7.3.1 Security objectives for the TOE .. 109

7.3.2 Rationale tables of security objectives for the TOE and SFRs 114

7.3.3 Dependencies ... 122

7.3.4 Rationale for the security assurance requirements... 126

7.3.5 ALC_DVS.2 sufficiency of security measures .. 126

7.3.6 AVA_VAN.5 advanced methodical vulnerability analysis 126

8 TOE summary specification ... 127

8.1 Security Functionality .. 127

8.1.1 SF.AccessControl ... 127

8.1.2 SF.Audit .. 130

8.1.3 SF.Cryptography ... 131

8.1.4 SF.Authentication ... 134

8.1.5 SF.SecureManagement .. 135

8.1.6 SF.Transaction ... 136

8.1.7 SF.Hardware ... 136

9 Annexes ... 138

9.1 References .. 138

9.2 Terms and definitions ... 139

9.3 Abbreviated terms .. 143

 6

1 ST Introduction

1.1 ST reference

Title Ucard UBJ31-G11 V1.1 Security Target Lite V1.0

Version Version 1.0

Date 2012.09.20

Author(s) UBIVELOX

CC level EAL4+ (ALC_DVS.2, AVA_VAN.5)

Key word Smart card, COS, IC, Java card, Global Platform
Table1. ST reference

1.2 TOE reference

name Ucard UBJ31-G11 V1.1

version Version 1.1

chip identifier SB23YR80B

chip certificate reference ANSSI-CC-2010/02
Table2. TOE reference

1.3 TOE overview

The TOE Type is a smartcard(Java Card Platform), which is composed of operative
system Embedded software and IC SB23YR80B.

The TOE is compliant with Java Card 2.2.2(Java Card 2.2.2 Runtime Environment
Specification [JCRE], Java Card 2.2.2 Virtual Machine Specification [JCVM], Java
Card 2.2.2 Application Programming Interfaces [JCAPI]) and Visa GlobalPlatform
2.1.1-configuration 3 standards.

It provides the security level of EAL4+ augmented with ALC_DVS.2 and AVA_VAN.5
and allows loading and deleting applications, which are developed by the customers.
Thus, it allows for multiple applications to run on a single TOE and provides security
features to ensure secure interoperability of applications.

The TOE processes personal information in secure manner. By using this secure
information, the TOE can improve the reliability.
The TOE provides a wide area of physical protection measures and implements the
logical security measures; refer to 1.4.2 for TOE security functionality.
By using the TOE, the final user can store private key, personal certificates, personal
information or buy something or use transport system in safety.

The examples of TOE intended usage are:
• Financial applications, like Credit/Debit ones, stored value purse, or electronic
commerce, among others.
• Transport and ticketing, granting pre-paid access to a transport system like the
metro and bus lines of a city.

 7

• Telephony, through the subscriber identification module (SIM) for digital mobile
telephones.
• Personal identification, for granting access to secured sites or providing
identification credentials to participants of an event.
• Electronic passports and identity cards.
• Secure information storage, like health records, or health insurance cards.
• Loyalty programs, like the “Frequent Flyer” points awarded by airlines. Points are
added and deleted from the card memory in accordance with program rules. The
total value of these points may be quite high and they must be protected against
improper alteration in the same way that currency value is protected.

1.4 TOE description

1.4.1 TOE Architecture

The TOE consists of:
• Smart card platform (SCP) (parts of the IC SB23YR80B and Operation System)
• Embedded software (Java Card Virtual Machine (JCVM), Java Card Runtime
Environment (JCRE), Java Card API (JCAPI), Card Manager & GP API)

Figure1. TOE Architecture

The IC provides:
- maintain the integrity and the confidentiality of the content of the Security IC
memories as required by the context of the Security IC Embedded Software and
- maintain the correct execution of the Security IC embedded Software.

The Native Layer includes operating system and NESCRTPT library (NesLib). It
provides the basic functionalities (memory management, I/O management and

 8

cryptographic libraries) with native interface with the dedicated IC. The cryptographic
library provides high-level routines to perform RSA, SHA, AES and ECC operation
using NESCRYPT for highly secure IC.

The Java Card virtual machine (JCVM) is responsible for ensuring language-level
security; the JCRE provides additional security features for Java Card technology-
enabled devices.

The basic runtime security feature imposed by the JCRE enforces isolation of
applets using an applet firewall. It prevents objects created by one applet from being
used by another applet without explicit sharing. This prevents unauthorized access
to the fields and methods of class instances, as well as the length and contents of
arrays.
The applet firewall is considered as the most important security feature. It enables
complete isolation between applets or controlled communication through additional
mechanisms that allow them to share objects when needed. The JCRE allows such
sharing using the concept of “shareable interface objects” (SIO) and static public
variables. The JCVM should ensure that the only way for applets to access any
resources are either through the JCRE or through the Java Card API (or other
vendor-specific APIs). This objective can only be guaranteed if applets are correctly
typed.
The Card Manager is conformant to the VISA Global Platform Card Specification
2.1.1 and is responsible for the management of applets in the card.

The delivered TOE component is as below.

Classification
(Delivery Type)

TOE & TOE component Name

TOE SW ROM code
(ROM file + EEPROM file)

UBJ31-G11_DEL

HW Chip Identifier SB23YR80B

Guidance
Documents
(File)

Operational user guidance Operational User Guidance

Preparative procedures Preparative procedures

Table3. TOE Component

1.4.2 TOE security functionality

The TOE complies with four major industry standards:
• Sun’s Java Card 2.2.2, which consists of the Java Card 2.2.2 Virtual Machine
(JCVM) [JCVM222], Java Card 2.2.2 Runtime Environment (JCRE) and the Java
Card 2.2.2 [JCRE222], Application Programming Interface (JCAPI). [JCAPI222]
• The Global Platform Card Specification version 2.1.1 [GP]
- Delegated Management is not support and APDU command conforms to Visa
GlobalPlatform 2.1.1 Card Implementation Requirements v2.0.
• Visa GlobalPlatform 2.1.1 Card Implementation Requirements v2.0 [VGP]
- Implemented by Configuration 3 (Multiple Security Domains and DAP Verification)
• Finance IC card standard revision - Open platform – October 2010 [FICCS]

 9

According to the [FICCS], only Korean Package for cryptography algorithm SEED
has implemented on the TOE.

The TOE provides a wide area of physical protection measures and implements the
logical security measures, being them:
• Cryptographic algorithms and functionality:

a. DES (56 bit keys) for en/decryption (CBC and ECB)
b. TDES (112, 168 bit keys) for en/decryption (CBC and ECB)
c. AES (Advanced Encryption Standard) with key length of 128, 192 and
256 bit for en/decryption (CBC and ECB)
d. RSA (512 up to 2048 bits keys) for key generation
e. RSA (512 up to 2048 bits keys) en/decryption and signature generation and
verification
f. RSA CRT (512 up to 2048 bits keys) for key generation
g. RSA CRT (512 up to 2048 bits keys) en/decryption and signature generation
and verification
h. Hash Algorithm - SHA-1, SHA-256
i. ECDSA (112 up to 521 bits keys) for signature generation and verification
j. SEED (128 bit keys) for en/decryption
k. Random number generation according to class P2 of AIS-31
l. CRC (16 bit)

• Java Card 2.2.2 functionality:
a. Remote Method Invocation
Supports the remote methods that can be invoked remotely from CAD.
b. Multiple Logical Channel.
Supports multiple logical channels which allow a terminal to open up to eight
channels (contact 4 channels and contactless 4 channels) with the smart card, one
session per logical channel. (Logical channels functionality is described in detail in
[GP] & [VGP])
c. Garbage Collector
Reclaims deallocated data automatically during the execution of a program

d. Firewall
The mechanism in the Java Card technology for ensuring applet isolation and object
sharing. The firewall prevents an applet in one context from unauthorized access to
objects owned by the Java Card RE or by an applet in another context.

• Global Platform 2.1.1 functionality:
a. Issuer Security Domain.
Operates as the mandatory on-card representative of the Card Issuer which has
capability of loading, installing, and deleting application that belong either to the
Card Issuer or to other Application Provider.
b. Supplementary Security Domain.
Operates as the on-card representative of an Application Provider or Controlling
Authority.
c. Public key DAP Verification.
Supports verification of application code integrity and authenticity before the
application code is loaded, installed and made available to the Cardholder on
behalf of an Application Provider.
d. Mandated DAP Verification.

 10

Supports verification of application code integrity and authenticity before the
application code is loaded, installed and made available to the Cardholder on
behalf of a Controlling Authority.
e. Secure Channel Protocol 02.
Provides a secure communication channel between a card and an off-card entity
during an Application Session.
f. CVM interface supporting Global PIN.
Provides support for CVM management which is responsible for Cardholder
verification, including velocity checking.

• General Functionalities:
a. Communication protocols:

- ISO 7816 T=0
- ISO 7816 T=1
- ISO 14443 T=CL Type B (contact-less)

b. Support various baud rates for Communication Protocols.
c. Protection against Physical Probing and against malfunctions.
d. Security data integrity.
e. Security alarms in case of detect a security violation.
f. Atomicity of critical operations.

1.4.3 TOE environment

The TOE requires a CAD device and an application that implements communication
with the card in order to operate in a correct way. These are not included under the
TOE scope.

CAD device APDU TOE
Figure2. TOE environment

Applications installed on a TOE can be selected for execution when the card is
inserted into a CAD device.

The examples of TOE intended usage are:
• Financial applications, like Credit/Debit ones, stored value purse, or electronic
commerce, among others.
• Transport and ticketing, granting pre-paid access to a transport system like the
metro and bus lines of a city.
• Telephony, through the subscriber identification module (SIM) for digital mobile
telephones.
• Personal identification, for granting access to secured sites or providing

 11

identification credentials to participants of an event.
• Electronic passports and identity cards.
• Secure information storage, like health records, or health insurance cards.
• Loyalty programs, like the “Frequent Flyer” points awarded by airlines. Points are
added and deleted from the card memory in accordance with program rules. The
total value of these points may be quite high and they must be protected against
improper alteration in the same way that currency value is protected.

1.4.4 TOE Life Cycle

The TOE life cycle is part of the product life cycle, i.e. the Java Card platform with
applications, which goes from product development to its usage by the final user.

Phase
1

Security IC
Embedded
Software
Development

The IC Embedded Software Developer is in charge of
• smartcard embedded software development including the
development of Java applets
• specification of IC pre-personalization requirements.

Phase
2

Security IC
Development

The IC Developer
• designs the IC,
• develops IC Dedicated Software,
• provides information, software or tools to the IC Embedded
Software Developer, and
• receives the smartcard embedded software from the
developer, through trusted delivery and verification
procedures.
From the IC design, IC Dedicated Software and Smartcard
Embedded Software, the IC Developer
• constructs the smartcard IC database, necessary for the IC
photomask fabrication.

Phase
3

Security IC
Manufacturing

The IC Manufacturer is responsible for
• producing the IC through three main steps: IC
manufacturing, IC testing, and IC pre-personalization

The IC Mask Manufacturer
• generates the masks for the IC manufacturing based upon
an output from the smartcard IC
database

Phase
4

Security IC
packaging

The IC Packaging Manufacturer is responsible for
• IC packaging and testing.

Phase
5

Composite
Product
Integration

The Composite Product Manufacturer is responsible for
•smart card product finishing process and testing.

Phase
6

Personalization The Personaliser is responsible for
• smart card (including applet) personalization and final tests.
Other applets may be loaded onto the chip at the
personalization process.

Phase
7

Operational
Usage

The Consumer of Composite Product is responsible
for
• smartcard product delivery to the smartcard end-user, and
the end of life process.

Table4. TOE Life Cycle

 12

The evaluation process is limited to phases 1 to 3.
The delivery of the JCS is either in phase 3.
The delivery of the smart card product is in phase 7.

1.4.5 The user and roles

The users of the TOE include the following people and institutions
IC Embedded Software Developer
The IC Embedded Software Developer is the organization responsible for designing
and implementing the software masked on the IC. This includes the following
components of the TOE: Card Manager, Java Card Runtime Environment, and
Operating System.
IC Developer
The IC Developer designs the chip and its Dedicated Software (DS).
Manufacturers
The IC Manufacturer integrates the Embedded Software within the IC. This is usually
known as the "masking" process.
The IC Packaging Manufacturer integrates the masked IC with the carrier (a plastic
card, a passport booklet, etc) in accordance with the Card Issuer’s requirements.
The Composite Product Manufacturer is store, pre-personalize the JCS and
potentially conduct tests on behalf of the IC Embedded Software Developer.
Personalizer
The Smart Card Personalizer personalizes the card by loading the cardholder data
as well as cryptographic keys and PINs. For this TOE, the personalizer is the Card
Issuer.
Card Administrator
The person or organization that has ultimate control of the card, within the policy
constraints set by the Card Issuer, with regard to card content and card Life Cycle
management.
End-user, Signatory, Card Holder
The Signatory is the End-user in the usage phase (phase 7) and owns the TOE. The
card is personalized with his or her identification and secrets.

1.5 ST organization

Chapter 1 provides narrative descriptions of the TOE.
Chapter 2 shows the ST claims conformance to the CC, PP and package.
Chapter 3 describes the main security issues of the Java Card System and its
environment addressed in the [JCSPP] with which ST claims conformance.
Chapter 4 describes threats, organizational security policies, and assumptions on the
TOE and/or TOE operational environment.
Chapter 5 describes how the solution to the security problem is divided between
objectives for the TOE and security objectives for the operational environment of the
TOE.
Chapter 6 describes new components those not included in [CCPART2] or
[CCPART3].
Chapter 7 describes security requirements where a translation of the security
objectives for the TOE into SFRs. Additionally, this chapter defines the SARs.
Chapter 8 describes a TOE summary specification which shows how the SFRs are

 13

implemented in the TOE.
Chapter 9 provides references to other documents, terms and definitions, and
abbreviated terms.

1.6 Conventions

The notation, formatting and conventions used in this ST are consistent with the
[JCSPP].
The CC allows several operations to be performed on functional requirements;
assignment, iteration, refinement and selection. Each of these operations is used in
this ST, and they are also consistent with the [JCSPP].
Iteration: The ST author performs an iteration operation by including multiple
requirements based on the same component. The result of iteration is marked by ‘/’
with unique name following the component identifier, e.g., FDP_ACC.2/FIREWALL.
Assignment: An assignment operation occurs where a given component contains
an element with a parameter that may be set by the ST author. It is used to assign
specific values to unspecified parameters (e.g. password length). The result of
assignment is shown in bold text.
Selection: The selection operation occurs where a given component contains an
element where a choice from several items has to be made by the ST author. The
result of selection is shown in bold text.
Refinement: The ST author performs a refinement by altering that requirement by
fulfilling refinement rules specified in the CC. The result of refinement is shown in
bold text with ‘refinement’ notification.

Also, “Application Notes” are provided to help to clarify the intent of a requirement,

identify implementation choices or to define "Pass/Fail" criteria for a requirement.
Application Notes will follow relevant requirements where appropriate. There are two
types of application note, i.e. from [JCSPP] and [ST].

 14

2 Conformance claims

2.1 CC conformance claim

The ST claims the conformance to the following version of the CC:

- Common Criteria for Information Technology Security Evaluation, Part 1:
Introduction and general model, July 2009, Version 3.1 Revision 3 Final,
CCMB-2009-07-001 [CCPART1]

- Common Criteria for Information Technology Security Evaluation, Part 2:
Security functional requirements, July 2009, Version 3.1 Revision 3 Final,
CCMB-2009-07-002 [CCPART2]

- Common Criteria for Information Technology Security Evaluation, Part 2:
Security assurance requirements, July 2009, Version 3.1 Revision 3 Final,
CCMB-2009-07-003 [CCPART3]

Conformance to the CC is claimed as follows:
- Part 2: extended
- Part 3: conformant

2.2 PP claim

The ST claims conformance to the Java CardTM System Protection Profile Open
Configuration, Version 2.6, April 19, 2010 [JCSPP].
The TOE is composite TOE based on the certified IC chip. The IC chip has been
certified separately according to [ICST] claiming [PP0035].

2.3 Package claim

The ST claims conformance to EAL4+ augmented with ALC_DVS.2 and AVA_VAN.5
as stated in [JCSPP].

2.4 Conformance rationale

2.4.1 Conformance rationale for the TOE type

The TOE type of [JCSPP] is Java Card System (JCRE, JCVM and JCAPI) along with
the additional native code embedded in a Smart Card Platform. And [JCSPP]
requires that the TOE type of the ST that declares conformity to [JCSPP] is the
Smart Card Platform (IC and OS) along with the native application (if any), pre-
issuance applets (if any) and Java Card System.
The TOE type of this ST is the Smart Card Platform along with Java Card System
and Card Manager. There is no native application or pre-issuance applets on the
TOE.
Therefore, the TOE type is consistent with the TOE type in [JCSPP].

2.4.2 Conformance rationale for the security problem
definition

 15

The following table shows the security problem definition in this ST is consistent with
those of [JCSPP].

[JCSPP] ST Rationale

T.CONFID-APPLI-
DATA

T.CONFID-APPLI-
DATA

Same

T.CONFID-JCS-
CODE

T.CONFID-JCS-
CODE

Same

T.CONFID-JCS-
DATA

T.CONFID-JCS-
DATA

Same

T.INTEG-APPLI-
CODE

T.INTEG-APPLI-
CODE

Same

T.INTEG-APPLI-
CODE.LOAD

T.INTEG-APPLI-
CODE.LOAD

Same

T.INTEG-APPLI-
DATA

T.INTEG-APPLI-
DATA

Same

T.INTEG-APPLI-
DATA.LOAD

T.INTEG-APPLI-
DATA.LOAD

Same

T.INTEG-JCS-
CODE

T.INTEG-JCS-
CODE

Same

T.INTEG-JCS-
DATA

T.INTEG-JCS-
DATA

Same

T.SID.1 T.SID.1 Same

T.SID.2 T.SID.2 Same

T.EXE-CODE.1 T.EXE-CODE.1 Same

T.EXE-CODE.2 T.EXE-CODE.2 Same

T.EXE-CODE-
REMOTE

T.EXE-CODE-
REMOTE

Same

T.NATIVE T.NATIVE Same

T.RESOURCES T.RESOURCES Same

T.DELETION T.DELETION Same

T.INSTALL T.INSTALL Same

T.OBJ-DELETION T.OBJ-DELETION Same

T.PHYSICAL T.PHYSICAL Same

- T.ACCESS Due to the scope of the TOE in the ST,
this threat is additionally defined for the
Smart Card Platform and GP.

- T.OS_OPERATE Due to the scope of the TOE in the ST,
this threat is additionally defined for the
Smart Card Platform and GP.

- T.LEAKAGE Due to the scope of the TOE in the ST,
this threat is additionally defined for the
Smart Card Platform and GP.

- T.FAULT Due to the scope of the TOE in the ST,
this threat is additionally defined for the
Smart Card Platform and GP.

- T.RND Due to the scope of the TOE in the ST,
this threat is additionally defined for the

 16

[JCSPP] ST Rationale

Smart Card Platform and GP.

OSP.VERIFICATIO
N

OSP.VERIFICATIO
N

Same

A.DELETION OSP.DELETION Originally this organizational security
policy was addressed under an
assumption A.DELETION in the
[JCSPP]. The TOE includes the Card
Manager to delete applets securely, thus
the ST author moved the related
assumption to the section of the security
organizational policy to address this
security aspects properly.

- OSP.ROLES Due to the scope of the TOE in the ST,
this OSP is additionally defined for the
Smart Card Platform and GP.

- OSP.INITIAL_LIFE
CYCLE_STATES

Due to the scope of the TOE in the ST,
this OSP is additionally defined for the
Smart Card Platform and GP.

- OSP.CARD_ADMI
NISTRATOR_PRE-
APPROVAL

Due to the scope of the TOE in the ST,
this OSP is additionally defined for the
Smart Card Platform and GP.

- OSP.APPLICATIO
N_PROVIDER_PR
E-APPROVAL

Due to the scope of the TOE in the ST,
this OSP is additionally defined for the
Smart Card Platform and GP.

- OSP.LOAD_FILE_
VERIFICATION

Due to the scope of the TOE in the ST,
this OSP is additionally defined for the
Smart Card Platform and GP.

- OSP.APPLICATIO
N_CODE_VERIFIC
ATION

Due to the scope of the TOE in the ST,
this OSP is additionally defined for the
Smart Card Platform and GP.

- OSP.SECURE_CO
MMUNICATION

Due to the scope of the TOE in the ST,
this OSP is additionally defined for the
Smart Card Platform and GP.

- OSP.CARDHOLDE
R_VERIFICATION

Due to the scope of the TOE in the ST,
this OSP is additionally defined for the
Smart Card Platform and GP.

- OSP.PROD_PROC
ESS

Due to the scope of the TOE in the ST,
this OSP is additionally defined for the
Smart Card Platform and GP.

- OSP.CRYPTO Due to the scope of the TOE in the ST,
this OSP is additionally defined for the
Smart Card Platform and GP.

A.APPLET A.APPLET Same

A.VERIFICATION A.VERIFICATION Same

- A.KEY_MANAGEM
ENT

Due to the scope of the TOE in the ST,
this assumption is additionally defined for
the Smart Card Platform and GP.

 17

[JCSPP] ST Rationale

- A.CVM Due to the scope of the TOE in the ST,
this assumption is additionally defined for
the Smart Card Platform and GP.

- A.ACTORS Due to the scope of the TOE in the ST,
this assumption is additionally defined for
the Smart Card Platform and GP.

2.4.3 Conformance rationale for security objectives

The following table shows the security objectives in this ST is consistent with those
of [JCSPP].

[JCSPP] ST Rationale

O.SID O.SID Same

O.FIREWALL O.FIREWALL Same

O.GLOBAL_ARRA
YS_CONFID

O.GLOBAL_ARRA
YS_CONFID

Same

O.GLOBAL_ARRA
YS_INTEG

O.GLOBAL_ARRA
YS_INTEG

Same

O.NATIVE O.NATIVE Same

O.OPERATE O.OPERATE Same

O.REALLOCATIO
N

O.REALLOCATIO
N

Same

O.RESOURCES O.RESOURCES Same

O.ALARM O.ALARM Same

O.CIPHER O.CIPHER Same

O.KEY-MNGT O.KEY-MNGT Same

O.PIN-MNGT O.PIN-MNGT Same

O.REMOTE O.REMOTE Same

O.TRANSACTION O.TRANSACTION Same

O.OBJ-DELETION O.OBJ-DELETION Same

O.DELETION O.DELETION Same

O.LOAD O.LOAD Same

O.INSTALL O.INSTALL Same

OE.CARD-
MANAGEMENT

O.CARD-
MANAGEMENT

Originally this security objective was
addressed under OE.CARD-
MANAGEMENT in the [JCSPP]. The
TOE includes the Card Manager to
manage applets securely, thus the ST
author reassigned the related security
objective for the operational environment
to the security objective for the TOE to
address this security aspects properly.

OE.SCP.IC O.SCP.IC Originally this security objective was
addressed under OE.SCP.IC in the
[JCSPP]. The TOE includes the SCP,
especially the certified IC chip, and TOE

 18

[JCSPP] ST Rationale

is a subject to the composite evaluation
against the [COMP-EVAL], thus the ST
author reassigned the related security
objective for the operational environment
to the security objective for the TOE to
address this security aspects properly.

OE.SCP.RECOVE
RY

O.SCP.RECOVER
Y

Originally this security objective was
addressed under OE.SCP.RECOVERY
in the [JCSPP]. The TOE includes the
SCP, especially the certified IC chip, and
TOE is a subject to the composite
evaluation against the [COMP-EVAL],
thus the ST author reassigned the
related security objective for the
operational environment to the security
objective for the TOE to address this
security aspects properly.

OE.SCP.SUPPOR
T

O.SCP.SUPPORT Originally this security objective was
addressed under OE.SCP.SUPPORT in
the [JCSPP]. The TOE includes the
SCP, especially the certified IC chip, and
TOE is a subject to the composite
evaluation against the [COMP-EVAL],
thus the ST author reassigned the
related security objective for the
operational environment to the security
objective for the TOE to address this
security aspects properly.

- O.PROTECT_DAT
A

Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

- O.OS_OPERATE Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

- O.SIDE_CHANNEL Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

- O.FAULT_PROTE
CT

Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

- O.RND Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

 19

[JCSPP] ST Rationale

- O.ROLES Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

- O.CARD_ADMIN Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

- O.APPLICATION_
PROVIDER_PRE-
APPROVAL

Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

- O.LOAD_FILE_VE
RIFICATION

Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

- O.APPLICATION_
CODE_VERIFICAT
ION

Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

- O.SECURE_COM
M

Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

- O.CARDHOLDER_
VERIFICATION

Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

OE.APPLET OE.APPLET Same

OE.VERIFICATION OE.VERIFICATION Same

- OE.ACTORS Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

- OE.INITIAL_LIFEC
YCLE_STATES

Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

- OE.PROD_PROCE
SS

Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

- OE.KEY_MANAGE
MENT

Due to the scope of the TOE in the ST,
this security objective is additionally
defined for the Smart Card Platform and
GP.

- OE.CVM Due to the scope of the TOE in the ST,

 20

[JCSPP] ST Rationale

this security objective is additionally
defined for the Smart Card Platform and
GP.

2.4.4 Conformance rationale for security requirements

The following table shows the security requirements in this ST is consistent with
those of [JCSPP].

 CoreG_LC

[JCSPP] ST Rationale

FDP_ACC.2.1/FIR
EWALL

FDP_ACC.2.1/FIR
EWALL

Same

FDP_ACC.2.2/FIR
EWALL

FDP_ACC.2.2/FIR
EWALL

Same

FDP_ACF.1.1/FIR
EWALL

FDP_ACF.1.1/FIR
EWALL

Same

FDP_ACF.1.2/FIR
EWALL

FDP_ACF.1.2/FIR
EWALL

Same

FDP_ACF.1.3/FIR
EWALL

FDP_ACF.1.3/FIR
EWALL

Same

FDP_ACF.1.4/FIR
EWALL

FDP_ACF.1.4/FIR
EWALL

Same

FDP_IFC.1.1/JCV
M

FDP_IFC.1.1/JCV
M

Same

FDP_IFF.1.1/JCVM FDP_IFF.1.1/JCVM Same

FDP_IFF.1.2/JCVM FDP_IFF.1.2/JCVM Same

FDP_IFF.1.3/JCVM FDP_IFF.1.3/JCVM Assignment operation completed.
“equivalent”

FDP_IFF.1.4/JCVM FDP_IFF.1.4/JCVM Assignment operation completed.
“equivalent”

FDP_IFF.1.5/JCVM FDP_IFF.1.5/JCVM Assignment operation completed.
“equivalent”

FDP_RIP.1.1/OBJ
ECTS

FDP_RIP.1.1/OBJ
ECTS

Same

FMT_MSA.1.1/JCR
E

FMT_MSA.1.1/JCR
E

Same

FMT_MSA.1.1/JCV
M

FMT_MSA.1.1/JCV
M

Same

FMT_MSA.2.1/FIR
EWALL_JCVM

FMT_MSA.2.1/FIR
EWALL_JCVM

Same

FMT_MSA.3.1/FIR
EWALL

FMT_MSA.3.1/FIR
EWALL

Same

FMT_MSA.3.2/FIR
EWALL

FMT_MSA.3.2/FIR
EWALL

Same

FMT_MSA.3.1/JCV FMT_MSA.3.1/JCV Same

 21

[JCSPP] ST Rationale

M M

FMT_MSA.3.2/JCV
M

FMT_MSA.3.2/JCV
M

Same

FMT_SMF.1.1 FMT_SMF.1.1/CO
RE

Editorial refinement operation performed
for the component/element name for
consistent naming convention.
Requirement itself is all the same.

FMT_SMR.1.1 FMT_SMR.1.1/CO
RE

Editorial refinement operation performed
for the component/element name for
consistent naming convention.
Requirement itself is all the same.

FMT_SMR.1.2 FMT_SMR.1.2/CO
RE

Editorial refinement operation performed
for the component/element name for
consistent naming convention.
Requirement itself is all the same.

FCS_CKM.1.1 FCS_CKM.1.1/CO
RE

Editorial refinement operation performed
for the component/element name for
consistent naming convention.
Assignment operation completed.
“more restrictive”

FCS_CKM.2.1 FCS_CKM.2.1/CO
RE

Editorial refinement operation performed
for the component/element name for
consistent naming convention.
Assignment operation completed.
“more restrictive”

FCS_CKM.3.1 FCS_CKM.3.1/CO
RE

Editorial refinement operation performed
for the component/element name for
consistent naming convention.
Assignment operation completed.
“more restrictive”

FCS_CKM.4.1 FCS_CKM.4.1/CO
RE

Editorial refinement operation performed
for the component/element name for
consistent naming convention.
Assignment operation completed.
“more restrictive”

FCS_COP.1.1 FCS_COP.1.1/CO
RE

Editorial refinement operation performed
for the component/element name for
consistent naming convention.
Assignment operation completed.
“more restrictive”

FDP_RIP.1.1/ABO
RT

FDP_RIP.1.1/ABO
RT

Same

FDP_RIP.1.1/APD
U

FDP_RIP.1.1/APD
U

Same

FDP_RIP.1.1/bArra
y

FDP_RIP.1.1/bArra
y

Same

FDP_RIP.1.1/KEY FDP_RIP.1.1/KEY Same

 22

[JCSPP] ST Rationale

S S

FDP_RIP.1.1/TRA
NSIENT

FDP_RIP.1.1/TRA
NSIENT

Same

FDP_ROL.1.1/FIR
EWALL

FDP_ROL.1.1/FIR
EWALL

Same

FDP_ROL.1.2/FIR
EWALL

FDP_ROL.1.2/FIR
EWALL

Same

FAU_ARP.1.1 FAU_ARP.1.1/CO
RE

Editorial refinement operation performed
for the component/element name for
consistent naming convention.
Assignment operation completed.
“more restrictive”

FDP_SDI.2.1 FDP_SDI.2.1/COR
E

Editorial refinement operation performed
for the component/element name for
consistent naming convention.
Assignment operation completed.
“more restrictive”

FDP_SDI.2.2 FDP_SDI.2.2/COR
E

Editorial refinement operation performed
for the component/element name for
consistent naming convention.
Assignment operation completed.
“more restrictive”

FPR_UNO.1.1 FPR_UNO.1.1/CO
RE

Editorial refinement operation performed
for the component/element name for
consistent naming convention.
Assignment operation completed.
“more restrictive”

FPT_FLS.1.1 FPT_FLS.1.1/COR
E

Editorial refinement operation performed
for the component/element name for
consistent naming convention.
Requirement itself is all the same.

FPT_TDC.1.1 FPT_TDC.1.1/COR
E

Editorial refinement operation performed
for the component/element name for
consistent naming convention.
Requirement itself is all the same.

FPT_TDC.1.2 FPT_TDC.1.2/COR
E

Editorial refinement operation performed
for the component/element name for
consistent naming convention.
Assignment operation completed.
“more restrictive”

FIA_ATD.1.1/AID FIA_ATD.1.1/AID Same

FIA_UID.2.1/AID FIA_UID.2.1/AID Same

FIA_USB.1.1/AID FIA_USB.1.1/AID Same

FIA_USB.1.2/AID FIA_USB.1.2/AID Assignment operation completed.
“more restrictive”

FIA_USB.1.3/AID FIA_USB.1.3/AID Assignment operation completed.
“equivalent”

 23

[JCSPP] ST Rationale

FMT_MTD.1.1/JCR
E

FMT_MTD.1.1/JCR
E

Same

FMT_MTD.3.1/JCR
E

FMT_MTD.3.1/JCR
E

Same

 InstG

[JCSPP] ST Rationale

FDP_ITC.2.1/Install
er

FDP_ITC.2.1/Install
er

Same

FDP_ITC.2.2/Install
er

FDP_ITC.2.2/Install
er

Same

FDP_ITC.2.3/Install
er

FDP_ITC.2.3/Install
er

Same

FDP_ITC.2.4/Install
er

FDP_ITC.2.4/Install
er

Same

FDP_ITC.2.5/Install
er

FDP_ITC.2.5/Install
er

Same

FMT_SMR.1.1/Inst
aller

FMT_SMR.1.1/Inst
aller

Same

FMT_SMR.1.2/Inst
aller

FMT_SMR.1.2/Inst
aller

Same

FPT_FLS.1.1/Instal
ler

FPT_FLS.1.1/Instal
ler

Same

FPT_RCV.3.1/Insta
ller

FPT_RCV.3.1/Insta
ller

Assignment operation completed.
“equivalent”

FPT_RCV.3.2/Insta
ller

FPT_RCV.3.2/Insta
ller

Assignment operation completed.
“more restrictive”

FPT_RCV.3.3/Insta
ller

FPT_RCV.3.3/Insta
ller

Assignment operation completed.
“more restrictive”

FPT_RCV.3.4/Insta
ller

FPT_RCV.3.4/Insta
ller

Same

 ADELG

[JCSPP] ST Rationale

FDP_ACC.2.1/ADE
L

FDP_ACC.2.1/ADE
L

Same

FDP_ACC.2.2/ADE
L

FDP_ACC.2.2/ADE
L

Same

FDP_ACF.1.1/ADE
L

FDP_ACF.1.1/ADE
L

Same

FDP_ACF.1.2/ADE
L

FDP_ACF.1.2/ADE
L

Same

FDP_ACF.1.3/ADE
L

FDP_ACF.1.3/ADE
L

Same

FDP_ACF.1.4/ADE FDP_ACF.1.4/ADE Same

 24

[JCSPP] ST Rationale

L L

FDP_RIP.1.1/ADE
L

FDP_RIP.1.1/ADE
L

Same

FMT_MSA.1.1/AD
EL

FMT_MSA.1.1/AD
EL

Same

FMT_MSA.3.1/AD
EL

FMT_MSA.3.1/AD
EL

Same

FMT_MSA.3.2/AD
EL

FMT_MSA.3.2/AD
EL

Same

FMT_SMF.1.1/ADE
L

FMT_SMF.1.1/ADE
L

Same

FMT_SMR.1.1/AD
EL

FMT_SMR.1.1/AD
EL

Same

FMT_SMR.1.2/AD
EL

FMT_SMR.1.2/AD
EL

Same

FPT_FLS.1.1/ADE
L

FPT_FLS.1.1/ADE
L

Same

 RMIG

[JCSPP] ST Rationale

FDP_ACC.2.1/JCR
MI

FDP_ACC.2.1/JCR
MI

Same

FDP_ACC.2.2/JCR
MI

FDP_ACC.2.2/JCR
MI

Same

FDP_ACF.1.1/JCR
MI

FDP_ACF.1.1/JCR
MI

Same

FDP_ACF.1.2/JCR
MI

FDP_ACF.1.2/JCR
MI

Same

FDP_ACF.1.3/JCR
MI

FDP_ACF.1.3/JCR
MI

Same

FDP_ACF.1.4/JCR
MI

FDP_ACF.1.4/JCR
MI

Same

FDP_IFC.1.1/JCR
MI

FDP_IFC.1.1/JCR
MI

Same

FDP_IFF.1.1/JCR
MI

FDP_IFF.1.1/JCR
MI

Same

FDP_IFF.1.2/JCR
MI

FDP_IFF.1.2/JCR
MI

Same

FDP_IFF.1.3/JCR
MI

FDP_IFF.1.3/JCR
MI

Assignment operation completed.
“equivalent”

FDP_IFF.1.4/JCR
MI

FDP_IFF.1.4/JCR
MI

Assignment operation completed.
“equivalent”

FDP_IFF.1.5/JCR
MI

FDP_IFF.1.5/JCR
MI

Assignment operation completed.
“equivalent”

FMT_MSA.1.1/EXP
ORT

FMT_MSA.1.1/EXP
ORT

Same

 25

[JCSPP] ST Rationale

FMT_MSA.1.1/RE
M_REFS

FMT_MSA.1.1/RE
M_REFS

Same

FMT_MSA.3.1/JCR
MI

FMT_MSA.3.1/JCR
MI

Same

FMT_MSA.3.2/JCR
MI

FMT_MSA.3.2/JCR
MI

Same

FMT_REV.1.1/JCR
MI

FMT_REV.1.1/JCR
MI

Same

FMT_REV.1.2/JCR
MI

FMT_REV.1.2/JCR
MI

Same

FMT_SMF.1.1/JCR
MI

FMT_SMF.1.1/JCR
MI

Same

FMT_SMR.1.1/JCR
MI

FMT_SMR.1.1/JCR
MI

Same

FMT_SMR.1.2/JCR
MI

FMT_SMR.1.2/JCR
MI

Same

 ODELG

[JCSPP] ST Rationale

FDP_RIP.1.1/ODE
L

FDP_RIP.1.1/ODE
L

Same

FPT_FLS.1.1/ODE
L

FPT_FLS.1.1/ODE
L

Same

 CarG

[JCSPP] ST Rationale

FCO_NRO.2.1/CM FCO_NRO.2.1/CM Same

FCO_NRO.2.2/CM FCO_NRO.2.2/CM Same

FCO_NRO.2.3/CM FCO_NRO.2.3/CM Assignment operation completed.
“more restrictive”

FDP_IFC.2.1/CM FDP_IFC.2.1/CM Refinement operation performed.
“more restrictive”

FDP_IFC.2.2/CM FDP_IFC.2.2/CM Same

FDP_IFF.1.1/CM FDP_IFF.1.1/CM Assignment operation completed.
“more restrictive”

FDP_IFF.1.2/CM FDP_IFF.1.2/CM Assignment operation completed.
“more restrictive”

FDP_IFF.1.3/CM FDP_IFF.1.3/CM Assignment operation completed.
“equivalent”

FDP_IFF.1.4/CM FDP_IFF.1.4/CM Assignment operation completed.
“equivalent”

FDP_IFF.1.5/CM FDP_IFF.1.5/CM Assignment operation completed.
“equivalent”

FDP_UIT.1.1/CM FDP_UIT.1.1/CM Selection operation completed.
“more restrictive”

 26

[JCSPP] ST Rationale

FDP_UIT.1.2/CM FDP_UIT.1.2/CM Same

FIA_UID.1.1/CM FIA_UID.1.1/CM Assignment operation completed.
“more restrictive”

FIA_UID.1.2/CM FIA_UID.1.2/CM Same

FMT_MSA.1.1/CM FMT_MSA.1.1/CM Selection and Assignment operation
completed.
“more restrictive”

FMT_MSA.3.1/CM FMT_MSA.3.1/CM Same

FMT_MSA.3.2/CM FMT_MSA.3.2/CM Assignment operation completed.
“equivalent”

FMT_SMF.1.1/CM FMT_SMF.1.1/CM Assignment operation completed.
“more restrictive”

FMT_SMR.1.1/CM FMT_SMR.1.1/CM Assignment operation completed.
“more restrictive”

FMT_SMR.1.2/CM FMT_SMR.1.2/CM Same

FTP_ITC.1.1/CM FTP_ITC.1.1/CM Same

FTP_ITC.1.2/CM FTP_ITC.1.2/CM Same

FTP_ITC.1.3/CM FTP_ITC.1.3/CM Same

 CMGRG & SCPG

All Security Functional Requirement in these two groups are additionally required
due to the scope of the TOE in the ST, which includes the Smart Card Platform and
GP.

 Security Assurance Requirements

All Security Assurance Requirements in the ST are same as stated in [JCSPP].

 27

3 Security Aspects

[ST] Application note: The ST accepts all security aspects of the [JCSPP] and simply
restates them for easy understanding of security concerns for readers.

This chapter describes the main security issues of the Java Card System and its
environment addressed in the [JCSPP], called “security aspects”, in a CC-
independent way. In addition to this, they also give a semi-formal framework to
express the CC security environment and objectives of the TOE. They can be
instantiated as assumptions, threats, objectives (for the TOE and the environment)
or organizational security policies. For instance, we will define hereafter the following
aspect:

#.OPERATE (1) The TOE must ensure continued correct operation of its security
functions. (2) The TOE must also return to a well-defined valid state before a service
request in case of failure during its operation.

TSFs must be continuously active in one way or another; this is called “OPERATE”.
The [JCSPP] may include an assumption, called “A.OPERATE”, stating that it is
assumed that the TOE ensures continued correct operation of its security functions,
and so on. However, it may also include a threat, called “T.OPERATE”, to be
interpreted as the negation of the statement #.OPERATE. In this example, this
amounts to stating that an attacker may try to circumvent some specific TSF by
temporarily shutting it down. The use of “OPERATE” is intended to ease the
understanding of this document.

This section presents security aspects that will be used in the remainder of this
document. Some being quite general, we give further details, which are numbered
for easier cross-reference within the document. For instance, the two parts of
#.OPERATE, when instantiated with an objective “O.OPERATE”, may be met by
separate SFRs in the rationale. The numbering then adds further details on the
relationship between the objective and those SFRs.

3.1 Confidentiality

#.CONFID-APPLI-DATA Application data must be protected against unauthorized

disclosure. This concerns logical attacks at runtime in
order to gain read access to other application’s data.

#.CONFID-JCS-CODE Java Card System code must be protected against
unauthorized disclosure. Knowledge of the Java Card
System code may allow bypassing the TSF. This
concerns logical attacks at runtime in order to gain a
read access to executable code, typically by executing
an application that tries to read the memory area where
a piece of Java Card System code is stored.

#.CONFID-JCS-DATA Java Card System data must be protected against
unauthorized disclosure. This concerns logical attacks at
runtime in order to gain a read access to Java Card

 28

System data. Java Card System data includes the data
managed by the Java Card RE, the Java Card VM and
the internal data of Java Card platform API classes as
well.

3.2 Integrity

#.INTEG-APPLI-CODE Application code must be protected against unauthorized

modification. This concerns logical attacks at runtime in
order to gain write access to the memory zone where
executable code is stored. In post-issuance application
loading, this threat also concerns the modification of
application code in transit to the card.

#.INTEG-APPLI-DATA Application data must be protected against unauthorized
modification. This concerns logical attacks at runtime in
order to gain unauthorized write access to application
data. In post-issuance application loading, this threat
also concerns the modification of application data
contained in a package in transit to the card. For
instance, a package contains the values to be used for
initializing the static fields of the package.

#.INTEG-JCS-CODE Java Card System code must be protected against
unauthorized modification. This concerns logical attacks
at runtime in order to gain write access to executable
code.

#.INTEG-JCS-DATA Java Card System data must be protected against
unauthorized modification. This concerns logical attacks
at runtime in order to gain write access to Java Card
System data. Java Card System data includes the data
managed by the Java Card RE, the Java Card VM and
the internal data of Java Card API classes as well.

3.3 Unauthorized execution

#.EXE-APPLI-CODE Application (byte) code must be protected against

unauthorized execution. This concerns (1) invoking a
method outside the scope of the accessibility rules
provided by the access modifiers of the Java
programming language ([JAVASPEC], §6.6); (2) jumping
inside a method fragment or interpreting the contents of
a data memory area as if it was executable code; (3)
unauthorized execution of a remote method from the
CAD.

#.EXE-JCS-CODE Java Card System bytecode must be protected against
unauthorized execution. Java Card System bytecode
includes any code of the Java Card RE or API. This
concerns (1) invoking a method outside the scope of the
accessibility rules provided by the access modifiers of
the Java programming language ([JAVASPEC], §6.6);

 29

(2) jumping inside a method fragment or interpreting the
contents of a data memory area as if it was executable
code. Note that execute access to native code of the
Java Card System and applications is the concern of
#.NATIVE.

#.FIREWALL The Firewall shall ensure controlled sharing of class
instances1, and isolation of their data and code between
packages (that is, controlled execution contexts) as well
as between packages and the JCRE context. An applet
shall not read, write, compare a piece of data belonging
to an applet that is not in the same context, or execute
one of the methods of an applet in another context
without its authorization.

#.NATIVE Because the execution of native code is outside of the
JCS TSF scope, it must be secured so as to not provide
ways to bypass the TSFs of the JCS. Loading of native
code, which is as well outside those TSFs, is submitted
to the same requirements. Should native software be
privileged in this respect, exceptions to the policies must
include a rationale for the new security framework they
introduce.

3.4 Bytecode verification

#.VERIFICATION Bytecode must be verified prior to being executed.

Bytecode verification includes (1) how well-formed CAP
file is and the verification of the typing constraints on the
bytecode, (2) binary compatibility with installed CAP files
and the assurance that the export files used to check the
CAP file correspond to those that will be present on the
card when loading occurs.

3.4.1 CAP file verification

Bytecode verification includes checking at least the following properties: (3) bytecode
instructions represent a legal set of instructions used on the Java Card platform; (4)
adequacy of bytecode operands to bytecode semantics; (5) absence of operand
stack overflow/underflow; (6) control flow confinement to the current method (that is,
no control jumps to outside the method); (7) absence of illegal data conversion and
reference forging; (8) enforcement of the private/public access modifiers for class
and class members; (9) validity of any kind of reference used in the bytecode (that is,
any pointer to a bytecode, class, method, object, local variable, etc actually points to
the beginning of piece of data of the expected kind); (10) enforcement of rules for
binary compatibility (full details are given in [JCVM22], [JVM], [JCBV]). The actual
set of checks performed by the verifier is implementation-dependent, but shall at

1 This concerns in particular the arrays, which are considered as instances of the Object class

in the Java programming language.

 30

least enforce all the “must clauses” imposed in [JCVM22] on the bytecode and the
correctness of the CAP files’ format.

As most of the actual Java Card VMs do not perform all the required checks at
runtime, mainly because smart cards lack memory and CPU resources, CAP file
verification prior to execution is mandatory. On the other hand, there is no
requirement on the precise moment when the verification shall actually take place,
as far as it can be ensured that the verified file is not modified thereafter. Therefore,
the bytecode can be verified either before the loading of the file on to the card or
before the installation of the file in the card or before the execution, depending on the
card capabilities, in order to ensure that each bytecode is valid at execution time.
This Protection Profile assumes bytecode verification is performed off-card.

Another important aspect to be considered about bytecode verification and
application downloading is, first, the assurance that every package required by the
loaded applet is indeed on the card, in a binary-compatible version (binary
compatibility is explained in [JCVM22] §4.4), second, that the export files used to
check and link the loaded applet have the corresponding correct counterpart on the
card.

3.4.2 Integrity and authentication

Verification off-card is useless if the application package is modified afterwards. The
usage of cryptographic certifications coupled with the verifier in a secure module is a
simple means to prevent any attempt of modification between package verification
and package installation. Once a verification authority has verified the package, it
signs it and sends it to the card. Prior to the installation of the package, the card
verifies the signature of the package, which authenticates the fact that it has been
successfully verified. In addition to this, a secured communication channel is used to
communicate it to the card, ensuring that no modification has been performed on it.

Alternatively, the card itself may include a verifier and perform the checks prior to the
effective installation of the applet or provide means for the bytecode to be verified
dynamically. On-card bytecode verifier is out of the scope of the [JCSPP].

3.4.3 Linking and verification

Beyond functional issues, the installer ensures at least a property that matters for
security: the loading order shall guarantee that each newly loaded package
references only packages that have been already loaded on the card. The linker can
ensure this property because the Java Card platform does not support dynamic
downloading of classes.

3.5 Card management

#.CARD-MANAGEMENT (1) The card manager (CM) shall control the access to

card management functions such as the installation,
update or deletion of applets. (2) The card manager shall
implement the card issuer’s policy on the card.

 31

#.INSTALL (1) The TOE must be able to return to a safe and
consistent state when the installation of a package or an
applet fails or be cancelled (whatever the reasons). (2)
Installing an applet must have no effect on the code and
data of already installed applets. The installation
procedure should not be used to bypass the TSFs. In
short, it is an atomic operation, free of harmful effects on
the state of the other applets. (3) The procedure of
loading and installing a package shall ensure its integrity
and authenticity.

#.SID (1) Users and subjects of the TOE must be identified. (2)
The identity of sensitive users and subjects associated
with administrative and privileged roles must be
particularly protected; this concerns the Java Card RE,
the applets registered on the card, and especially the
default applet and the currently selected applet (and all
other active applets in Java Card System 2.2.x). A
change of identity, especially standing for an
administrative role (like an applet impersonating the Java
Card RE), is a severe violation of the Security Functional
Requirements (SFR). Selection controls the access to
any data exchange between the TOE and the CAD and
therefore, must be protected as well. The loading of a
package or any exchange of data through the APDU
buffer (which can be accessed by any applet) can lead to
disclosure of keys, application code or data, and so on.

#OBJ-DELETION (1) Deallocation of objects should not introduce security
holes in the form of references pointing to memory zones
that are not longer in use, or have been reused for other
purposes. Deletion of collection of objects should not be
maliciously used to circumvent the TSFs. (2) Erasure, if
deemed successful, shall ensure that the deleted class
instance is no longer accessible.

#DELETION (1) Deletion of installed applets (or packages) should not
introduce security holes in the form of broken references
to garbage collected code or data, nor should they alter
integrity or confidentiality of remaining applets. The
deletion procedure should not be maliciously used to
bypass the TSFs. (2) Erasure, if deemed successful,
shall ensure that any data owned by the deleted applet is
no longer accessible (shared objects shall either prevent
deletion or be made inaccessible). A deleted applet
cannot be selected or receive APDU commands.
Package deletion shall make the code of the package no
longer available for execution. (3) Power failure or other
failures during the process shall be taken into account in
the implementation so as to preserve the SFRs. This
does not mandate, however, the process to be atomic.
For instance, an interrupted deletion may result in the

 32

loss of user data, as long as it does not violate the SFRs.
The deletion procedure and its characteristics (whether
deletion is either physical or logical, what happens if the
deleted application was the default applet, the order to
be observed on the deletion steps) are implementation-
dependent. The only commitment is that deletion shall
not jeopardize the TOE (or its assets) in case of failure
(such as power shortage). Deletion of a single applet
instance and deletion of a whole package are
functionally different operations and may obey different
security rules. For instance, specific packages can be
declared to be undeletable (for instance, the Java Card
API packages), or the dependency between installed
packages may forbid the deletion (like a package using
super classes or super interfaces declared in another
package).

3.6 Services

#.ALARM The TOE shall provide appropriate feedback upon

detection of a potential security violation. This
particularly concerns the type errors detected by the
bytecode verifier, the security exceptions thrown by the
Java Card VM, or any other security-related event
occurring during the execution of a TSF.

#.OPERATE (1) The TOE must ensure continued correct operation of
its security functions. (2) In case of failure during its
operation, the TOE must also return to a well-defined
valid state before the next service request.

#.RESOURCES The TOE controls the availability of resources for the
applications and enforces quotas and limitations in order
to prevent unauthorized denial of service or malfunction
of the TSFs. This concerns both execution (dynamic
memory allocation) and installation (static memory
allocation) of applications and packages.

#.CIPHER The TOE shall provide a means to the applications for
ciphering sensitive data, for instance, through a
programming interface to low-level, highly secure
cryptographic services. In particular, those services must
support cryptographic algorithms consistent with
cryptographic usage policies and standards.

#.KEY-MNGT The TOE shall provide a means to securely manage
cryptographic keys. This includes: (1) Keys shall be
generated in accordance with specified cryptographic
key generation algorithms and specified cryptographic
key sizes, (2) Keys must be distributed in accordance
with specified cryptographic key distribution methods, (3)
Keys must be initialized before being used, (4) Keys
shall be destroyed in accordance with specified

 33

cryptographic key destruction methods.
#.PIN-MNGT The TOE shall provide a means to securely manage PIN

objects. This includes: (1) Atomic update of PIN value
and try counter, (2) No rollback on the PIN-checking
function, (3) Keeping the PIN value (once initialized)
secret (for instance, no clear-PIN-reading function), (4)
Enhanced protection of PIN’s security attributes (state,
try counter…) in confidentiality and integrity.

#.SCP The smart card platform must be secure with respect to
the SFRs. Then: (1) After a power loss, RF signal loss or
sudden card removal prior to completion of some
communication protocol, the SCP will allow the TOE on
the next power up to either complete the interrupted
operation or revert to a secure state. (2) It does not allow
the SFRs to be bypassed or altered and does not allow
access to other low-level functions than those made
available by the packages of the Java Card API. That
includes the protection of its private data and code
(against disclosure or modification) from the Java Card
System. (3) It provides secure low-level cryptographic
processing to the Java Card System. (4) It supports the
needs for any update to a single persistent object or
class field to be atomic, and possibly a low-level
transaction mechanism. (5) It allows the Java Card
System to store data in “persistent technology memory”
or in volatile memory, depending on its needs (for
instance, transient objects must not be stored in non-
volatile memory). The memory model is structured and
allows for low–level control accesses (segmentation fault
detection). (6) It safely transmits low-level exceptions to
the TOE (arithmetic exceptions, checksum errors), when
applicable. Finally, it is required that (7) the IC is
designed in accordance with a well-defined set of
policies and standards (for instance, those specified in
[PP0035]), and will be tamper resistant to actually
prevent an attacker from extracting or altering security
data (like cryptographic keys) by using commonly
employed techniques (physical probing and
sophisticated analysis of the chip). This especially
matters to the management (storage and operation) of
cryptographic keys.

#.TRANSACTION The TOE must provide a means to execute a set of
operations atomically. This mechanism must not
jeopardise the execution of the user applications. The
transaction status at the beginning of an applet session
must be closed (no pending updates).

 34

4 Security problem definition

This chapter describes the security aspects of the TOE environment as assets to be
protected, threats, organisational security policies, and assumptions.

4.1 Assets

Assets are security-relevant elements to be directly protected by the TOE.
Confidentiality of assets is always intended with respect to un-trusted people or
software, as various parties are involved during the first stages of the smart card
product life-cycle; details are given in threats hereafter.
Assets may overlap, in the sense that distinct assets may refer (partially or wholly) to
the same piece of information or data. For example, a piece of software may be
either a piece of source code (one asset) or a piece of compiled code (another
asset), and may exist in various formats at different stages of its development (digital
supports, printed paper). This separation is motivated by the fact that a threat may
concern one form at one stage, but be meaningless for another form at another
stage.
The assets to be protected by the TOE are listed below. They are grouped according
to whether it is data created by and for the user (User data) or data created by and
for the TOE (TSF data). For each asset it is specified the kind of dangers that weigh
on it.

4.1.1 User Data

D.APP_CODE
The code of the applets and libraries loaded on the card.
To be protected from unauthorized modification.

D.APP_C_DATA
Confidential sensitive data of the applications, like the data contained in an object, a
static field of a package, a local variable of the currently executed method, or a
position of the operand stack.
To be protected from unauthorized disclosure.

D.APP_I_DATA
Integrity sensitive data of the applications, like the data contained in an object, a
static field of a package, a local variable of the currently executed method, or a
position of the operand stack.
To be protected from unauthorized modification.

D.APP_KEYs
Cryptographic keys owned by the applets.
To be protected from unauthorized disclosure and modification.

D.PIN
Any end-user's PIN.

 35

To be protected from unauthorized disclosure and modification.

4.1.2 TSF Data

D.API_DATA
Private data of the API, like the contents of its private fields.
To be protected from unauthorized disclosure and modification.

D.CRYPTO
Cryptographic data used in runtime cryptographic computations, like a seed used to
generate a key.
To be protected from unauthorized disclosure and modification.

D.JCS_CODE
The code of the Java Card System.
To be protected from unauthorized disclosure and modification.

D.JCS_DATA
The internal runtime data areas necessary for the execution of the Java Card VM,
such as, for instance, the frame stack, the program counter, the class of an object,
the length allocated for an array, any pointer used to chain data-structures.
To be protected from unauthorized disclosure or modification.

D.SEC_DATA
The runtime security data of the Java Card RE, like, for instance, the AIDs used to
identify the installed applets, the currently selected applet, and the current context of
execution and the owner of each object.
To be protected from unauthorized disclosure and modification.

D.OS_DATA
The platform data including the GP registry and other OS data.
To be protected from unauthorized disclosure and modification.
[ST] Application note:
The ST author considered this additional TSF data as security-relevant due to the
scope of the TOE including GP as Card Manager.

D.OS_CODE
The platform code.
To be protected from unauthorized disclosure and modification.
[ST] Application note:
The ST author considered this additional TSF data as security-relevant due to the
scope of the TOE including GP as Card Manager.

D.ISD_KEYS
The GP Issuer Security Domain keys.
To be protected from unauthorized disclosure and modification.
[ST] Application note:
The ST author considered this additional TSF data as security-relevant due to the
scope of the TOE including GP as Card Manager.

 36

D.SD_KEYS
The GP additional Security Domain keys.
To be protected from unauthorized disclosure and modification.
[ST] Application note:
The ST author considered this additional TSF data as security-relevant due to the
scope of the TOE including GP as Card Manager.

4.2 Threats

This section introduces the threats to the assets against which specific protection
within the TOE or its environment is required. Several groups of threats are
distinguished according to the configuration chosen for the TOE and the means used
in the attack. The classification is also inspired by the components of the TOE that
are supposed to counter each threat.

4.2.1 Confidentiality

T.CONFID-APPLI-DATA
The attacker executes an application to disclose data belonging to another
application. See #.CONFID-APPLI-DATA for details.
Directly threatened asset(s): D.APP_C_DATA, D.PIN and D.APP_KEYs.

T.CONFID-JCS-CODE
The attacker executes an application to disclose the Java Card System code. See
#.CONFID-JCS-CODE for details.
Directly threatened asset(s): D.JCS_CODE.

T.CONFID-JCS-DATA
The attacker executes an application to disclose data belonging to the Java Card
System. See #.CONFID-JCS-DATA for details.
Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA and
D.CRYPTO.

4.2.2 Integrity

T.INTEG-APPLI-CODE
The attacker executes an application to alter (part of) its own code or another
application's code. See #.INTEG-APPLI-CODE for details.
Directly threatened asset(s): D.APP_CODE.

T.INTEG-APPLI-CODE.LOAD
The attacker modifies (part of) its own or another application code when an
application package is transmitted to the card for installation. See #.INTEG-APPLI-
CODE for details.
Directly threatened asset(s): D.APP_CODE.

T.INTEG-APPLI-DATA

 37

The attacker executes an application to alter (part of) another application's data. See
#.INTEG-APPLI-DATA for details.
Directly threatened asset(s): D.APP_I_DATA, D.PIN and D.APP_KEYs.

T.INTEG-APPLI-DATA.LOAD
The attacker modifies (part of) the initialization data contained in an application
package when the package is transmitted to the card for installation. See #.INTEG-
APPLI-DATA for details.
Directly threatened asset(s): D.APP_I_DATA and D_APP_KEY.

T.INTEG-JCS-CODE
The attacker executes an application to alter (part of) the Java Card System code.
See #.INTEG-JCS-CODE for details.
Directly threatened asset(s): D.JCS_CODE.

T.INTEG-JCS-DATA
The attacker executes an application to alter (part of) Java Card System or API data.
See #.INTEG-JCS-DATA for details.
Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA and
D.CRYPTO.

Other attacks are in general related to one of the above, and aimed at disclosing or
modifying on-card information. Nevertheless, they vary greatly on the employed
means and threatened assets, and are thus covered by quite different objectives in
the sequel. That is why a more detailed list is given hereafter.

4.2.3 Identity usurpation

T.SID.1
An applet impersonates another application, or even the Java Card RE, in order to
gain illegal access to some resources of the card or with respect to the end user or
the terminal. See #.SID for details.
Directly threatened asset(s): D.SEC_DATA (other assets may be jeopardized should
this attack succeed, for instance, if the identity of the JCRE is usurped), D.PIN and
D.APP_KEYs.

T.SID.2
The attacker modifies the TOE's attribution of a privileged role (e.g. default applet
and currently selected applet), which allows illegal impersonation of this role. See
#.SID for further details.
Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized
should this attack succeed, depending on whose identity was forged).

4.2.4 Unauthorized execution

T.EXE-CODE.1
An applet performs an unauthorized execution of a method. See #.EXE-JCS-CODE
and #.EXE-APPLI-CODE for details.
Directly threatened asset(s): D.APP_CODE.

 38

T.EXE-CODE.2
An applet performs an execution of a method fragment or arbitrary data. See #.EXE-
JCS-CODE and #.EXE-APPLI-CODE for details.
Directly threatened asset(s): D.APP_CODE.

T.EXE-CODE-REMOTE
The attacker performs an unauthorized remote execution of a method from the CAD.
See #.EXE-APPLI-CODE for details.
Directly threatened asset(s): D.APP_CODE.
[JCSPP] Application note:
This threat concerns version 2.2.x of the Java Card RMI, which allow external users
(that is, other than on-card applets) to trigger the execution of code belonging to an
on-card applet. On the contrary, T.EXE-CODE.1 is restricted to the applets under the
TSF.

T.NATIVE
An applet executes a native method to bypass a TOE Security Function such as the
firewall. See #.NATIVE for details.
Directly threatened asset(s): D.JCS_DATA.

4.2.5 Denial of service

T.RESOURCES
An attacker prevents correct operation of the Java Card System through
consumption of some resources of the card: RAM or NVRAM. See #.RESOURCES
for details.
Directly threatened asset(s): D.JCS_DATA.

4.2.6 Card management

T.DELETION
The attacker deletes an applet or a package already in use on the card, or uses the
deletion functions to pave the way for further attacks (putting the TOE in an insecure
state). See #.DELETION for details).
Directly threatened asset(s): D.SEC_DATA and D.APP_CODE.

T.INSTALL
The attacker fraudulently installs post-issuance of an applet on the card. This
concerns either the installation of an unverified applet or an attempt to induce a
malfunction in the TOE through the installation process. See #.INSTALL for details.
Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized
should this attack succeed, depending on the virulence of the installed application).

4.2.7 Services

T.OBJ-DELETION
The attacker keeps a reference to a garbage collected object in order to force the
TOE to execute an unavailable method, to make it to crash, or to gain access to a

 39

memory containing data that is now being used by another application. See #.OBJ-
DELETION for further details.
Directly threatened asset(s): D.APP_C_DATA, D.APP_I_DATA and D.APP_KEYs.

4.2.8 Miscellaneous

T.PHYSICAL
The attacker discloses or modifies the design of the TOE, its sensitive data or
application code by physical (opposed to logical) tampering means. This threat
includes IC failure analysis, electrical probing, unexpected tearing, and DPA. That
also includes the modification of the runtime execution of Java Card System or SCP
software through alteration of the intended execution order of (set of) instructions
through physical tampering techniques.
This threatens all the identified assets.
This threat refers to the point (7) of the security aspect #.SCP, and all aspects
related to confidentiality and integrity of code and data.

4.2.9 Additional threats

Following threats apply to more generic attacks on the Smart Card Platform and GP
software. Threat agent does not use application but observes OS behavior or uses
GP specific commands.

T.ACCESS
Unauthorized access to sensitive information stored in memories in order to disclose
or to corrupt the TOE data. This includes any consequences of bad or incorrect user
authentication by the TOE.
[ST] Application note:
This threat addresses several methods of attacks:
- An attacker may determine Application data and GP data through observation of
the results of repetitive insertion of selected data
- An attacker may penetrate on-card security through reuse of a completed (or
partially completed) operation by an authorized user
- An attacker may search the entire user-accessible data space to identify GP and
Application data such as PINs by example if CVM option is selected
- An attacker may defeat the card’s Security Functions through a cryptographic
attack against the algorithm or through a brute-force attack on the function inputs
- An attacker may exploit commands, particularly test and debug commands, which
were necessary for another part of the card life cycle but are not presently allowed,
to expose GP data or sensitive Application data.

T.OS_OPERATE
Modification of the correct Software behavior by unauthorized use of TOE or use of
incorrect or unauthorized instructions or commands or sequence of commands, in
order to obtain an unauthorized execution of the TOE code.
[ST] Application note:
- An attacker may determine security relevant information cause the card to
malfunction or otherwise compromise security through introduction of invalid inputs
- An attacker may force the card into an insecure Life Cycle state through

 40

inappropriate termination of selected operations.

T.LEAKAGE
An attacker may exploit information which is leaked from the TOE during usage of
the Smart Card in order to disclose the Software behavior and Application Data
handling (TSF data or User data). No direct contact with the Smart Card Internals is
required here. Leakage may occur through emanations, variations in power
consumption, I/O characteristics, clock frequency, or by changes in processing time
requirements. One example is the Differential Power Analysis (DPA).
[ST] Application note:
- An attacker may exploit GP data that is leaked from the card during normal usage
- An attacker may observe multiple uses of resources or services and, by linking
these observations, deduce information that that may reveal GP or Application data.

T.FAULT
An attacker may cause a malfunction of TSF by applying environmental stress in
order to (1) deactivate or modify security features or functions of the TOE or (2)
deactivate or modify security functions of the Smart Card. This may be achieved by
operating the Smart Card outside the normal operating conditions.
[ST] Application note:
- An attacker may induce errors in GP data through exposure of the card to
environmental stress
- An attacker may perform simultaneous attacks with the result that the card’s
Security Functions become unstable or some part of the GP data is degraded
resulting in exposure of GP data or sensitive Application data.

T.RND
Deficiency of Random Numbers.
An attacker may predict or obtain information about random numbers generated by
the TOE security service for instance because of a lack of entropy of the random
numbers provided.
An attacker may gather information about the random numbers produced by the
TOE security service. Because unpredictability is the main property of random
numbers this may be a problem in case they are used to generate cryptographic
keys. Here the attacker is expected to take advantage of statistical properties of the
random numbers generated by the TOE. Malfunctions or premature ageing are also
considered which may assist in getting information about random numbers.

4.2.10 Compatibility statement of threats

Threats in [ICST] are all based on the PP [PP0035] except for one additional threat.
The relevant threats of the [ICST] are not contradictory to those of the composite ST.

[ICST] composite ST

BSI.T.Leak-Inherent T.PHYSICAL, T.LEAKAGE
These threats address inherent information leakage
such as DPA.

BSI.T.Phys-Probing T.PHYSICAL
This threat addresses physical probing attack.

 41

[ICST] composite ST

BSI.T.Malfunction T.FAULT
This threat addresses malfunction due to environmental
stress.

BSI.T.Phys-Manipulation T.PHYSICAL
This threat addresses physical manipulation.

BSI.T.Leak-Forced T.PHYSICAL, T.OS_OPERATE, T.FAULT
These threats address forced information leakage
which is not inherent but caused by the attacker.

BSI.T.Abuse-Func T.ACCESS
This threat addresses abuse of functionality of the
TOE.

BSI.T.RND T.RND
This threat addresses deficiency of random numbers.

AUG4.T.Mem-Access T.ACCESS
This threat addresses memory access violation.

4.3 Organisational security policies

This section describes the organizational security policies to be enforced with
respect to the TOE environment.

4.3.1 OSPs from [JCSPP]

OSP.VERIFICATION
This policy shall ensure the consistency between the export files used in the
verification and those used for installing the verified file. The policy must also ensure
that no modification of the file is performed in between its verification and the signing
by the verification authority. See #.VERIFICATION for details.

OSP.DELETION
Deletion of applets through the card manager shall be secure. See #.DELETION for
details.
[ST] Application note:
Originally this organizational security policy was addressed under an assumption
A.DELETION in the [JCSPP]. The TOE includes the Card Manager to delete applets
securely, thus the ST author moved the related assumption to the section of the
security organizational policy to address this security aspects properly.

4.3.2 Additional OSPs

OSP.ROLES
The TOE shall recognize the following roles associated with:
- Card Administrator,
- Application Provider
- End-user (Card Holder).

OSP.INITIAL_LIFECYCLE_STATES

 42

Card shall be moved in OP_READY state before any GP function or service is used.
Card shall be issued to Cardholders with the card set to SECURED life cycle state.
A security domain shall be moved into the PERSONALIZED life cycle state before
any security domain User or Application uses the services of that Security Domain.

OSP.CARD_ADMINISTRATOR_PRE-APPROVAL
Only the Card Administrator shall be allowed to perform Card Content Management
Functions (CCMFs).

OSP.APPLICATION_PROVIDER_PRE-APPROVAL
The Application Provider allows the Card Administrator to perform CCMFs for its own
Applications as well as personalizing and managing some Application(s) specific
data (or keys).

OSP.LOAD_FILE_VERIFICATION
Integrity and authenticity of the Load File shall be verified and shall always be carried
out successfully prior to Application Load File installation. This shall take place on-
card.

OSP.APPLICATION_CODE_VERIFICATION
Byte code verification and other forms of Application Code Verification is a
requirement and shall always be carried out successfully prior to Application Load
File on-card installation. This shall take place off-card. Application Code Verification
shall at least include the algorithms necessary to establish that the Application would
pass all omitted runtime checks.

OSP.SECURE_COMMUNICATION
Only the minimum security requirements for GP commands as defined by [VGP] are
required.

OSP.CARDHOLDER_VERIFICATION
A Cardholder Verification method common to several Applications is required.
Applications may also use Application-specific Cardholder Verification methods.

OSP.PROD_PROCESS
Procedures ensure protection of the TOE material/information that is stored outside
the TOE and used for TOE initialization and personalization, to maintain integrity and
confidentiality of the TOE and of its manufacturing and test operations to prevent any
possible copy, modification, retention, theft or unauthorized use).
Appropriate functionality testing of the TOE is used TOE initialization and
personalization phases.

OSP.CRYPTO
The TOE shall provide the following specific cryptographic functionality to the
application provider:

– Data Encryption Standard (DES),

– Triple Data Encryption Standard (3DES),

 43

– Advanced Encryption Standard (AES),

– Elliptic Curves Cryptography on GF(p),

– Secure Hashing (SHA-1, SHA-256),

– Rivest-Shamir-Adleman (RSA, RSA-CRT),

– Prime Number Generation.

– Elliptic Curve Digital Signature Algorithm (ECDSA)

– SEED

4.3.3 Compatibility statement of OSPs

OSPs in [ICST] are all based on the PP [PP0035] except for one additional OSP.
The relevant OSPs of the [ICST] are not contradictory to those of the composite ST.

[ICST] composite ST

BSI.P.Process-TOE OSP.PROD_PROCESS
This OSP is related to manufacturing and development
of the TOE, this addresses protection during TOE
development and production.

AUG1.P.Add-Functions OSP.CRYPTO
This OSP addresses specific cryptographic functionality
provided by TOE.

4.4 Assumptions

This section introduces the assumptions made on the environment of the TOE.

4.4.1 Assumptions from [JCSPP]

A.APPLET
Applets loaded post-issuance do not contain native methods. The Java Card
specification explicitly "does not include support for native methods" ([JCVM22],
§3.3) outside the API.

A.VERIFICATION
All the bytecodes are verified at least once, before the loading, before the installation
or before the execution, depending on the card capabilities, in order to ensure that
each bytecode is valid at execution time.

4.4.2 Additional assumptions

A.KEY_MANAGEMENT
It is assumed that cryptographic keys, which are stored outside the TOE and which
are used for secure communication and authentication between Smart Card and
terminals are protected in their own (off-card) storage environment.
[ST] Application note:

 44

This is to assume that the secret keys used in terminals or systems are correctly
protected for confidentiality in their own environment, as the disclosure of such
information which is shared with the TOE but is not under the TOE control, may
compromise the security of the TOE.

A.CVM
It is assumed that the CVM values are generated maintained and used off card in a
secure manner during personalization phases.
It is assumed that the Card Holder keeps his personal code secret.

A.ACTORS
It is assumed that the Card Administrator is the sole Application Provider and also
plays the roles of Application Loader and Verification Authority.

4.4.3 Compatibility statement of assumptions

Assumptions in [ICST] are all based on the PP [PP0035]. The relevant assumptions
of the [ICST] are not contradictory to those of the composite ST.

[ICST] composite ST

BSI.A.Process-Sec-IC Assumptions in [ICST] are related to the development
and manufacturing phases and are covered by the OSP
OSP.PROD_PROCESS therefore considered as being
fulfilled automatically.

BSI.A.Plat-Appl

BSI.A.Resp-Appl

 45

5 Security objectives

5.1 Security objectives for the TOE
This section defines the security objectives to be achieved by the TOE.

5.1.1 Identification

O.SID
The TOE shall uniquely identify every subject (applet, or package) before granting it
access to any service.

5.1.2 Execution

O.FIREWALL
The TOE shall ensure controlled sharing of data containers owned by applets of
different packages or the JCRE and between applets and the TSFs. See
#.FIREWALL for details.

O.GLOBAL_ARRAYS_CONFID
The TOE shall ensure that the APDU buffer that is shared by all applications is
always cleaned upon applet selection.
The TOE shall ensure that the global byte array used for the invocation of the install
method of the selected applet is always cleaned after the return from the install
method.

O.GLOBAL_ARRAYS_INTEG
The TOE shall ensure that only the currently selected applications may have a write
access to the APDU buffer and the global byte array used for the invocation of the
install method of the selected applet.

O.NATIVE
The only means that the Java Card VM shall provide for an application to execute
native code is the invocation of a method of the Java Card API, or any additional API.
See #.NATIVE for details.

O.OPERATE
The TOE must ensure continued correct operation of its security functions. See
#.OPERATE for details.

O.REALLOCATION
The TOE shall ensure that the re-allocation of a memory block for the runtime areas
of the Java Card VM does not disclose any information that was previously stored in
that block.

O.RESOURCES
The TOE shall control the availability of resources for the applications. See
#.RESOURCES for details.

 46

5.1.3 Services

O.ALARM
The TOE shall provide appropriate feedback information upon detection of a
potential security violation. See #.ALARM for details.

O.CIPHER
The TOE shall provide a means to cipher sensitive data for applications in a secure
way. In particular, the TOE must support cryptographic algorithms consistent with
cryptographic usage policies and standards. See #.CIPHER for details.

O.KEY-MNGT
The TOE shall provide a means to securely manage cryptographic keys. This
concerns the correct generation, distribution, access and destruction of
cryptographic keys. See #.KEY-MNGT.

O.PIN-MNGT
The TOE shall provide a means to securely manage PIN objects. See #.PIN-MNGT
for details.
[JCSPP] Application note:
PIN objects may play key roles in the security architecture of client applications. The
way they are stored and managed in the memory of the smart card must be carefully
considered, and this applies to the whole object rather than the sole value of the PIN.
For instance, the try counter's value is as sensitive as that of the PIN.

O.REMOTE
The TOE shall provide restricted remote access from the CAD to the services
implemented by the applets on the card. This particularly concerns the Java Card
RMI services introduced in version 2.2.x of the Java Card platform.

O.TRANSACTION
The TOE must provide a means to execute a set of operations atomically. See
#.TRANSACTION for details.

O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION and O.CIPHER are actually
provided to applets in the form of Java Card APIs. Vendor-specific libraries can also
be present on the card and made available to applets; those may be built on top of
the Java Card API or independently. These proprietary libraries will be evaluated
together with the TOE.

5.1.4 Object deletion

O.OBJ-DELETION
The TOE shall ensure the object deletion shall not break references to objects. See
#.OBJ-DELETION for further details.

5.1.5 Applet management

 47

O.DELETION
The TOE shall ensure that both applet and package deletion perform as expected.
See #.DELETION for details.

O.LOAD
The TOE shall ensure that the loading of a package into the card is safe.
[JCSPP] Application note:
Usurpation of identity resulting from a malicious installation of an applet on the card
may also be the result of perturbing the communication channel linking the CAD and
the card. Even if the CAD is placed in a secure environment, the attacker may try to
capture, duplicate, permute or modify the packages sent to the card. He may also try
to send one of its own applications as if it came from the card issuer. Thus, this
objective is intended to ensure the integrity and authenticity of loaded CAP files.

O.INSTALL
The TOE shall ensure that the installation of an applet performs as expected (See
#.INSTALL for details).

5.1.6 Reassignment

O.CARD-MANAGEMENT
The TOE shall control the access to card management functions such as the
installation, update or deletion of applets. It shall also implement the card issuer's
policy on the card.
The card manager of the TOE is an application with specific rights, which is
responsible for the administration of the smart card. This component will in practice
be tightly connected with the rest part of the TOE, which in turn shall very likely rely
on the card manager for the effective enforcing of some of its security functions.
Typically the card manager of the TOE shall be in charge of the life cycle of the
whole card, as well as that of the installed applications (applets). The card manager
of the TOE should prevent that card content management (loading, installation,
deletion) is carried out, for instance, at invalid states of the card or by non-authorized
actors. It shall also enforce security policies established by the card issuer.
[ST] Application note:
Originally this security objective was addressed under OE.CARD-MANAGEMENT in
the [JCSPP]. The TOE includes the Card Manager to manage applets securely, thus
the ST author reassigned the related security objective for the operational
environment to the security objective for the TOE to address this security aspects
properly.

O.SCP.IC
The TOE shall provide all IC security features against physical attacks.
This security objective for the TOE refers to the point (7) of the security aspect
#.SCP:
 It is required that the IC is designed in accordance with a well-defined set of

policies and Standards (likely specified in another protection profile), and will be
tamper resistant to actually prevent an attacker from extracting or altering
security data (like cryptographic keys) by using commonly employed techniques
(physical probing and sophisticated analysis of the chip). This especially matters

 48

to the management (storage and operation) of cryptographic keys.
[ST] Application note:
Originally this security objective was addressed under OE.SCP.IC in the [JCSPP].
The TOE includes the SCP, especially the certified IC chip, and TOE is a subject to
the composite evaluation against the [COMP-EVAL], thus the ST author reassigned
the related security objective for the operational environment to the security objective
for the TOE to address this security aspects properly.

O.SCP.RECOVERY
If there is a loss of power, or if the smart card is withdrawn from the CAD while an
operation is in progress, the TOE must allow the TOE itself to eventually complete
the interrupted operation successfully, or recover to a consistent and secure state.
This security objective for the TOE refers to the security aspect #.SCP(1): The TOE
must be secure with respect to the SFRs. Then after a power loss or sudden card
removal prior to completion of some communication protocol, the TOE will allow the
TOE itself on the next power up to either complete the interrupted operation or revert
to a secure state.
[ST] Application note:
Originally this security objective was addressed under OE.SCP.RECOVERY in the
[JCSPP]. The TOE includes the SCP, especially the certified IC chip, and TOE is a
subject to the composite evaluation against the [COMP-EVAL], thus the ST author
reassigned the related security objective for the operational environment to the
security objective for the TOE to address this security aspects properly.

O.SCP.SUPPORT
The TOE shall support the TSFs of the TOE itself.
This security objective for the TOE refers to the security aspects 2, 3, 4 and 5 of
#.SCP:
(2) It does not allow the TSFs to be bypassed or altered and does not allow access
to other low-level functions than those made available by the packages of the API.
That includes the protection of its private data and code (against disclosure or
modification) from the Java Card System.
(3) It provides secure low-level cryptographic processing to the Java Card System.
(4) It supports the needs for any update to a single persistent object or class field to
be atomic, and possibly a low-level transaction mechanism.
(5) It allows the Java Card System to store data in "persistent technology memory"
or in volatile memory, depending on its needs (for instance, transient objects must
not be stored in non-volatile memory). The memory model is structured and allows
for low-level control accesses (segmentation fault detection).
[ST] Application note:
Originally this security objective was addressed under OE.SCP.SUPPORT in the
[JCSPP]. The TOE includes the SCP, especially the certified IC chip, and TOE is a
subject to the composite evaluation against the [COMP-EVAL], thus the ST author
reassigned the related security objective for the operational environment to the
security objective for the TOE to address this security aspects properly.

5.1.7 Additional security objectives for the TOE

O.PROTECT_DATA

 49

The TOE shall ensure that sensitive information stored in memories is protected
against unauthorized disclosure and any corruption or unauthorized modification.
Moreover, the TOE shall ensure that sensitive information stored in memories is
protected against unauthorized access.
The TOE has to provide appropriate security mechanisms to avoid fraudulent access
to any sensitive data, such as passwords, cryptographic keys or authentication data.
This is obvious for secret information, but also applies to access controlled
information

O.OS_OPERATE
The TOE must ensure continued correct operation of its security functions.
Especially, the TOE must prevent the unauthorized use of TOE or use of incorrect or
unauthorized instructions or commands or sequence of commands.
If there is a loss of power, or if the smart card is withdrawn from the CAD while an
operation is in progress, the SCP must allow the TOE to eventually complete the
interrupted operation successfully, or recover to a consistent and secure state.

O.SIDE_CHANNEL
The TOE must provide protection against disclosure of confidential data (User Data
or TSF data) stored and/or processed in the Smart Card IC:
- By measurement and analysis of the shape and amplitude of signals (for example
on the power, clock, or I/O lines),
- By measurement and analysis of the time between events found by measuring
signals (for example on the power, clock, or I/O lines).
Especially, the software must be designed to avoid interpretations of signals
extracted, intentionally or not, from the hardware part of the TOE (for instance,
Power Supply, Electro Magnetic emissions).

O.FAULT_PROTECT
The TOE must ensure its correct operation even outside the normal operating
conditions where reliability and secure operation has not been proven or tested. This
is to prevent errors. The environmental conditions may include voltage, clock
frequency, temperature, or external energy fields that can be applied on all interfaces
of the TOE (physical or electrical).

O.RND
The TOE will ensure the cryptographic quality of random number generation. For
instance random numbers shall not be predictable and shall have sufficient entropy.
The TOE will ensure that no information about the produced random numbers is
available to an attacker since they might be used for instance to generate
cryptographic keys.

O.ROLES
The TOE shall recognize the following roles associated with:
- Card Administrator,
- Application Provider
- End-user (Card Holder).

O.CARD_ADMIN

 50

The TOE shall provide the Card Administrator with mean to perform secure CCMFs.

O.APPLICATION_PROVIDER_PRE-APPROVAL
The TOE shall allow the Application Provider to allow the Card Administrator to
perform CCMFs for its own Applications as well as personalizing and managing
some Application(s) specific data (or keys).

O.LOAD_FILE_VERIFICATION
The TOE shall provide means to verify the integrity and authenticity of the Load File.
This verification shall always be carried out successfully prior to Application Load
File installation. This shall take place on-card.

O.APPLICATION_CODE_VERIFICATION
The TOE shall provide means to confirm that byte code and other forms of
Application Code Verification has been performed prior to Application Load File on-
card installation. This shall take place off-card.
[ST] Application note:
This objective is related to P.APPLICATION_CODE_VERIFICATION. In this case
the verification is performed outside the TOE but the TOE is required to provide
means to verify that the operation has been performed

O.SECURE_COMM
The TOE shall provide secure communication protocol as defined by [VGP].

O.CARDHOLDER_VERIFICATION
The TOE shall provide Cardholder Verification method in accordance with the
P.CARDHOLDER_VERIFICATION policy.

5.1.8 Compatibility statement of security objectives for the
TOE

Security objectives for the TOE in [ICST] are all based on the PP [PP0035] except
for two additional security objectives. The relevant security objectives for the TOE of
the [ICST] are not contradictory to those of the composite ST.

[ICST] composite ST

BSI.O.Leak-Inherent O.SCP.IC, O.SIDE_CHANNEL
These security objectives address inherent information
leakage such as DPA.

BSI.O.Phys-Probing O.SCP.IC
This security objective addresses physical probing
attack.

BSI.O.Malfunction O.FAULT_PROTECT, O.OS_OPERATE
This security objective addresses malfunction due to
environmental stress.

BSI.O.Phys-Manipulation O.SCP.IC
This security objective addresses physical
manipulation.

 51

[ICST] composite ST

BSI.O.Leak-Forced O.SCP.IC, O.OS_OPERATE, O.FAULT_PROTECT
These security objective address forced information
leakage which is not inherent but caused by the
attacker.

BSI.O.Abuse-Func There is no direct relevant security objective.
O.SCP.IC, O.OS_PROTECT
These security objectives address abuse of
functionality of the TOE indirectly.

BSI.O.Identification There is no relevant security objective for the TOE.
Instead, this is addressed by OE.PROD_PROCESS.
This OSP is related to manufacturing and development
of the TOE, this addresses protection during TOE
development and production.

BSI.O.RND O.RND
This security objective addresses deficiency of random
numbers.

AUG1.O.Add-Functions O.CIPHER
This security objective addresses specific cryptographic
functionality provided by TOE.

AUG4.O.Mem-Access O.PROTECT_DATA
This security objective addresses memory access
violation.

5.2 Security objectives for the operational environment

This section introduces the security objectives to be achieved by the environment.

5.2.1 Security objectives for the operational environment
from [JCSPP]

OE.APPLET
No applet loaded post-issuance shall contain native methods.

OE.VERIFICATION
All the bytecodes shall be verified at least once, before the loading, before the
installation or before the execution, depending on the card capabilities, in order to
ensure that each bytecode is valid at execution time. See #.VERIFICATION for
details.

5.2.2 Additional Security objectives for the operational
environment

OE.ACTORS
The Card Administrator is the sole Application Provider and also plays the roles of
Application Loader and Verification Authority.

OE.INITIAL_LIFECYCLE_STATES

 52

After Card manufacturing and initialization, the card administrator shall move the
Card in the OP_READY state before any GP function or service is used.
The card Issuer shall issue the card to the Cardholders with the card set to
SECURED life cycle state.
A security domain shall be moved into the PERSONALIZED life cycle state before
any security domain User or Application uses the services of that Security Domain.

OE.PROD_PROCESS
Appropriate functionality testing of the TOE shall be used in during initialization,
personalization and other operations before Issuance.
During these operations, security procedures shall be used to maintain confidentiality
and integrity of the TOE manufacturing and test data.

OE.KEY_MANAGEMENT
During the TOE usage, the terminal or system in interaction with the TOE shall
ensure the protection of their own keys by operational means and/or procedures.

OE.CVM
The CVM values shall be generated, maintained and used off card in a secure
manner during personalization phases.
The Card Holder keeps his personal code secret.

5.2.3 Compatibility statement of security objectives for the
operational environment

Security objectives for the operational environment in [ICST] are all based on the PP
[PP0035]. The relevant security objectives for the operational environment of the
[ICST] are not contradictory to those of the composite ST.

[ICST] composite ST

BSI.OE.Process-Sec-IC Security objectives for the operational environment in
[ICST] are related to the development and manufacturing
phases and are covered by OE.PROD_PROCESS
therefore considered as being fulfilled automatically.

BSI.OE.Plat-Appl

BSI.OE.Resp-Appl

5.3 Security objectives rationale

5.3.1 Threats

5.3.1.1 Confidentiality

T.CONFID-APPLI-DATA
This threat is countered by the security objective for the operational environment
regarding bytecode verification (OE.VERIFICATION). It is also covered by the
isolation commitments stated in the (O.FIREWALL) objective. It relies in its turn on
the correct identification of applets stated in (O.SID). Moreover, as the firewall is
dynamically enforced, it shall never stop operating, as stated in the (O.OPERATE)
objective.

 53

As the firewall is a software tool automating critical controls, the objective O.ALARM
asks for it to provide clear warning and error messages, so that the appropriate
countermeasure can be taken.
The objectives O.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover
this threat by controlling the access to card management functions and by checking
the bytecode, respectively.
The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support
the O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related
to the threats that these latter objectives contribute to counter.
As applets may need to share some data or communicate with the CAD,
cryptographic functions are required to actually protect the exchanged information
(O.CIPHER). Remark that even if the TOE shall provide access to the appropriate
TSFs, it is still the responsibility of the applets to use them. Keys, PIN's are particular
cases of an application's sensitive data (the Java Card System may possess keys as
well) that ask for appropriate management (O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION). If the PIN class of the Java Card API is used, the objective
(O.FIREWALL) shall contribute in covering this threat by controlling the sharing of
the global PIN between the applets.
Other application data that is sent to the applet as clear text arrives to the APDU
buffer, which is a resource shared by all applications. The disclosure of such data is
prevented by the security objective O.GLOBAL_ARRAYS_CONFID.
Finally, any attempt to read a piece of information that was previously used by an
application but has been logically deleted is countered by the O.REALLOCATION
objective. That objective states that any information that was formerly stored in a
memory block shall be cleared before the block is reused.

T.CONFID-JCS-CODE
This threat is countered by the list of properties described in the (#.VERIFICATION)
security aspect. Bytecode verification ensures that each of the instructions used on
the Java Card platform is used for its intended purpose and in the intended scope of
accessibility. As none of those instructions enables reading a piece of code, no Java
Card applet can therefore be executed to disclose a piece of code. Native
applications are also harmless because of the objective O.NATIVE, so no application
can be run to disclose a piece of code.
The (#.VERIFICATION) security aspect is addressed in this ST by the objective for
the environment OE.VERIFICATION.
The objectives O.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover
this threat by controlling the access to card management functions and by checking
the bytecode, respectively.

T.CONFID-JCS-DATA
This threat is covered by bytecode verification (OE.VERIFICATION) and the isolation
commitments stated in the (O.FIREWALL) security objective. This latter objective
also relies in its turn on the correct identification of applets stated in (O.SID).
Moreover, as the firewall is dynamically enforced, it shall never stop operating, as
stated in the (O.OPERATE) objective.
As the firewall is a software tool automating critical controls, the objective O.ALARM
asks for it to provide clear warning and error messages, so that the appropriate
countermeasure can be taken.

 54

The objectives O.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover
this threat by controlling the access to card management functions and by checking
the bytecode, respectively.
The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support
the O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related
to the threats that these latter objectives contribute to counter.

5.3.1.2 Integrity

T.INTEG-APPLI-CODE
This threat is countered by the list of properties described in the (#.VERIFICATION)
security aspect. Bytecode verification ensures that each of the instructions used on
the Java Card platform is used for its intended purpose and in the intended scope of
accessibility. As none of these instructions enables modifying a piece of code, no
Java Card applet can therefore be executed to modify a piece of code. Native
applications are also harmless because of the objective O.NATIVE, so no application
can run to modify a piece of code.
The (#.VERIFICATION) security aspect is addressed in this configuration by the
objective for the environment OE.VERIFICATION.
The objectives O.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover
this threat by controlling the access to card management functions and by checking
the bytecode, respectively.

T.INTEG-APPLI-CODE.LOAD
This threat is countered by the security objective O.LOAD which ensures that the
loading of packages is done securely and thus preserves the integrity of packages
code.
By controlling the access to card management functions such as the installation,
update or deletion of applets the objective O.CARD-MANAGEMENT contributes to
cover this threat.

T.INTEG-APPLI-DATA
This threat is countered by bytecode verification (OE.VERIFICATION) and the
isolation commitments stated in the (O.FIREWALL) objective. This latter objective
also relies in its turn on the correct identification of applets stated in (O.SID).
Moreover, as the firewall is dynamically enforced, it shall never stop operating, as
stated in the (O.OPERATE) objective.
As the firewall is a software tool automating critical controls, the objective O.ALARM
asks for it to provide clear warning and error messages, so that the appropriate
countermeasure can be taken.
The objectives O.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover
this threat by controlling the access to card management functions and by checking
the bytecode, respectively.
The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support
the O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related
to the threats that these latter objectives contribute to counter.
Concerning the confidentiality and integrity of application sensitive data, as applets
may need to share some data or communicate with the CAD, cryptographic functions
are required to actually protect the exchanged information (O.CIPHER). Remark that

 55

even if the TOE shall provide access to the appropriate TSFs, it is still the
responsibility of the applets to use them. Keys and PIN's are particular cases of an
application's sensitive data (the Java Card System may possess keys as well) that
ask for appropriate management (O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION).
If the PIN class of the Java Card API is used, the objective (O.FIREWALL) is also
concerned.
Other application data that is sent to the applet as clear text arrives to the APDU
buffer, which is a resource shared by all applications. The integrity of the information
stored in that buffer is ensured by the objective O.GLOBAL_ARRAYS_INTEG.
Finally, any attempt to read a piece of information that was previously used by an
application but has been logically deleted is countered by the O.REALLOCATION
objective. That objective states that any information that was formerly stored in a
memory block shall be cleared before the block is reused.

T.INTEG-APPLI-DATA.LOAD
This threat is countered by the security objective O.LOAD which ensures that the
loading of packages is done securely and thus preserves the integrity of applications
data.
By controlling the access to card management functions such as the installation,
update or deletion of applets the objective O.CARD-MANAGEMENT contributes to
cover this threat.

T.INTEG-JCS-CODE
This threat is countered by the list of properties described in the (#.VERIFICATION)
security aspect. Bytecode verification ensures that each of the instructions used on
the Java Card platform is used for its intended purpose and in the intended scope of
accessibility. As none of these instructions enables modifying a piece of code, no
Java Card applet can therefore be executed to modify a piece of code. Native
applications are also harmless because of the objective O.NATIVE, so no application
can be run to modify a piece of code.
The (#.VERIFICATION) security aspect is addressed in this configuration by the
objective for the environment OE.VERIFICATION.
The objectives O.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover
this threat by controlling the access to card management functions and by checking
the bytecode, respectively.

T.INTEG-JCS-DATA
This threat is countered by bytecode verification (OE.VERIFICATION) and the
isolation commitments stated in the (O.FIREWALL) objective. This latter objective
also relies in its turn on the correct identification of applets stated in (O.SID).
Moreover, as the firewall is dynamically enforced, it shall never stop operating, as
stated in the (O.OPERATE) objective.
As the firewall is a software tool automating critical controls, the objective O.ALARM
asks for it to provide clear warning and error messages, so that the appropriate
countermeasure can be taken.
The objectives O.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover
this threat by controlling the access to card management functions and by checking
the bytecode, respectively.
The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support

 56

the O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related
to the threats that these latter objectives contribute to counter.

5.3.1.3 Identity usurpation

T.SID.1
As impersonation is usually the result of successfully disclosing and modifying some
assets, this threat is mainly countered by the objectives concerning the isolation of
application data (like PINs), ensured by the (O.FIREWALL). Uniqueness of subject-
identity (O.SID) also participates to face this threat. It should be noticed that the AIDs,
which are used for applet identification, are TSF data.
In this configuration, usurpation of identity resulting from a malicious installation of an
applet on the card is covered by the objective O.INSTALL.
The installation parameters of an applet (like its name) are loaded into a global array
that is also shared by all the applications. The disclosure of those parameters (which
could be used to impersonate the applet) is countered by the objectives
O.GLOBAL_ARRAYS_CONFID and O.GLOBAL_ARRAYS_INTEG.
The objective O.CARD-MANAGEMENT contributes, by preventing usurpation of
identity resulting from a malicious installation of an applet on the card, to counter this
threat.

T.SID.2
This is covered by integrity of TSF data, subject-identification (O.SID), the firewall
(O.FIREWALL) and its good working order (O.OPERATE).
The objective O.INSTALL contributes to counter this threat by ensuring that installing
an applet has no effect on the state of other applets and thus can't change the TOE's
attribution of privileged roles.
The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support
the O.OPERATE objective of the TOE, so they are indirectly related to the threats
that this latter objective contributes to counter.

5.3.1.4 Unauthorized execution

T.EXE-CODE.1
Unauthorized execution of a method is prevented by the objective
OE.VERIFICATION. This threat particularly concerns the point (8) of the security
aspect #VERIFICATION (access modifiers and scope of accessibility for classes,
fields and methods). The O.FIREWALL objective is also concerned, because it
prevents the execution of non-shareable methods of a class instance by any subject
apart from the class instance owner.

T.EXE-CODE.2
Unauthorized execution of a method fragment or arbitrary data is prevented by the
objective OE.VERIFICATION. This threat particularly concerns those points of the
security aspect related to control flow confinement and the validity of the method
references used in the bytecodes.

T.EXE-CODE-REMOTE
The O.REMOTE security objective contributes to prevent the invocation of a method

 57

that is not supposed to be accessible from outside the card.

T.NATIVE
This threat is countered by O.NATIVE which ensures that a Java Card applet can
only access native methods indirectly that is, through an API. OE.APPLET also
covers this threat by ensuring that no native applets shall be loaded in post-issuance.
In addition to this, the bytecode verifier also prevents the program counter of an
applet to jump into a piece of native code by confining the control flow to the
currently executed method (OE.VERIFICATION).

5.3.1.5 Denial of service

T.RESOURCES
This threat is directly countered by objectives on resource-management
(O.RESOURCES) for runtime purposes and good working order (O.OPERATE) in a
general manner.
Consumption of resources during installation and other card management operations
are covered, in case of failure, by O.INSTALL.
It should be noticed that, for what relates to CPU usage, the Java Card platform is
single-threaded and it is possible for an ill-formed application (either native or not) to
monopolize the CPU. However, a smart card can be physically interrupted (card
removal
or hardware reset) and most CADs implement a timeout policy that prevent them
from being blocked should a card fails to answer. Finally, the objectives
O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the
O.OPERATE and O.RESOURCES objectives of the TOE, so they are indirectly
related to the threats that these latter objectives contribute to counter.

5.3.1.6 Card management

T.DELETION
This threat is covered by the O.DELETION security objective which ensures that
both applet and package deletion perform as expected.
The objective O.CARD-MANAGEMENT controls the access to card management
functions and thus contributes to cover this threat.

T.INSTALL
This threat is covered by the security objective O.INSTALL which ensures that the
installation of an applet performs as expected and the security objectives O.LOAD
which ensures that the loading of a package into the card is safe.
The objective O.CARD-MANAGEMENT controls the access to card management
functions and thus contributes to cover this threat.

5.3.1.7 Services

T.OBJ-DELETION
This threat is covered by the O.OBJ-DELETION security objective which ensures
that object deletion shall not break references to objects.

 58

5.3.1.8 Miscellaneous

T.PHYSICAL
This threat is covered by O.SCP.IC. Physical protections rely on the underlying
platform and are therefore an environmental issue.

5.3.1.9 Additional threats

T.ACCESS
This threat is covered by O.PROTECT_DATA which addresses the protection of
data stored in the TOE from unauthorized disclosure and any corruption or
unauthorized modification.

T.OS_OPERATE
This threat is covered by O.OS_OPERATE which requires to ensure continue correct
operation of the TOE regarding incorrect usage or power loss with recovery of a
secure state.

T.LEAKAGE
This threat is covered by O.SIDE_CHANNEL that requires protection against
disclosure of confidential data by measurements and analysis of signals emitted by
the TOE.

T.FAULT
This threat is covered by O.FAULT_PROTECT that requires correct behavior of the
TOE when operating outside the normal range.

T.RND
This threat is covered by O.RND that requires the cryptographic quality of random
number generation.

5.3.2 Organisational security policies

5.3.2.1 OSPs from [JCSPP]

OSP.VERIFICATION
This policy is upheld by the security objective of the environment OE.VERIFICATION
which guarantees that all the bytecodes shall be verified at least once, before the
loading, before the installation or before the execution in order to ensure that each
bytecode is valid at execution time.

OSP.DELETION
This policy is upheld by the environmental objective O.CARD-MANAGEMENT which
controls the access to card management functions such as deletion of applets.

5.3.2.2 Additional OSPs

OSP.ROLES

 59

This policy is upheld by O.ROLES which requires roles to be recognized in the TOE.

OSP.INITIAL_LIFECYCLE_STATES
This policy is upheld by OE.INITIAL_LIFECYCLE_STATES which specifies
appropriate roles to move card state.

OSP.CARD_ADMINISTRATOR_PRE-APPROVAL
This policy is upheld by O.CARD_ADMIN which requires the TOE to provide means
to perform secure CCMFs to Card Administrator.

OSP.APPLICATION_PROVIDER_PRE-APPROVAL
This policy is upheld by O.APPLICATION_PROVIDER_PRE-APPROVAL which
requires the TOE to provide means for the Application Provider to allow the Card
Administrator to perform CCMFs for its own Applications.

OSP.LOAD_FILE_VERIFICATION
This policy is upheld by O.LOAD_FILE_VERIFICATION which requires the TOE to
provide means to verify the integrity and authenticity of the Load File.

OSP.APPLICATION_CODE_VERIFICATION
This policy is upheld by O.APPLICATION_CODE_VERIFICATION which requires
the TOE to provide means to verify that byte code and other forms of application
code verification has been performed.

OSP.SECURE_COMMUNICATION
This policy is upheld by O.SECURE_COMM which requires the TOE to provide
secure communication protocol as defined by [VGP].

OSP.CARDHOLDER_VERIFICATION
This policy is upheld by O.CARDHOLDER_VERIFICATION which requires the TOE
to provide Cardholder Verification method in accordance with the policy.

OSP.PROD_PROCESS
This policy is upheld by OE.PROD_PROCESS which specifies manufacturing and
development of the TOE.

OSP.CRYPTO
This policy is upheld by O.CIPHER which requires the TOE to provide specific
cryptographic functionality to the application provider.

5.3.3 Assumptions

5.3.3.1 Assumptions from [JCSPP]

A.APPLET
This assumption is upheld by the security objective for the operational environment
OE.APPLET which ensures that no applet loaded post-issuance shall contain native
methods.

 60

A.VERIFICATION
This assumption is upheld by the security objective for the operational environment
OE.VERIFICATION which guarantees that all the bytecodes shall be verified at least
once, before the loading, before the installation or before the execution in order to
ensure that each bytecode is valid at execution time.

5.3.3.2 Additional Assumptions

A.KEY_MANAGEMENT
This assumption is upheld by the security objective for the operational environment
OE.KEY_MANAGEMENT which guarantees secure management of cryptographic
keys which is shared with the TOE but is not under the TOE control, may
compromise the security of the TOE.

A.CVM
This assumption is upheld by the security objective for the operational environment
OE.CVM which guarantees that the CVM values are generated maintained and used
off card in a secure manner during personalization phases and the Card Holder
keeps his personal code secret.

A.ACTORS
This assumption is upheld by the security objective for the operational environment
OE.ACTORS which guarantees that the Card Administrator is the sole Application
Provider and also plays the roles of Application Loader and Verification Authority.

5.3.4 SPD and security objectives

Threats Security Objectives Rationale

T.CONFID-APPLI-DATA O.SCP.RECOVERY,
O.SCP.SUPPORT,
O.CARD-MANAGEMENT,
OE.VERIFICATION,
O.SID,
O.OPERATE,
O.FIREWALL,
O.GLOBAL_ARRAYS_CONFID,
O.ALARM, O.TRANSACTION,
O.CIPHER,
O.PIN-MNGT,
O.KEY-MNGT,
O.REALLOCATION

Section 5.3.1.1

T.CONFID-JCS-CODE OE.VERIFICATION,
O.CARD-MANAGEMENT,
O.NATIVE

Section 5.3.1.1

T.CONFID-JCS-DATA O.SCP.RECOVERY,
O.SCP.SUPPORT,
O.CARD-MANAGEMENT,

Section 5.3.1.1

 61

Threats Security Objectives Rationale

OE.VERIFICATION,
O.SID,
O.OPERATE,
O.FIREWALL,
O.ALARM

T.INTEG-APPLI-CODE O.CARD-MANAGEMENT,
OE.VERIFICATION,
O.NATIVE

Section 5.3.1.2

T.INTEG-APPLI-CODE.LOAD O.LOAD,
O.CARD-MANAGEMENT

Section 5.3.1.2

T.INTEG-APPLI-DATA O.SCP.RECOVERY,
O.SCP.SUPPORT,
O.CARD-MANAGEMENT,
OE.VERIFICATION,
O.SID,
O.OPERATE,
O.FIREWALL,
O.GLOBAL_ARRAYS_INTEG,
O.ALARM,
O.TRANSACTION,
O.CIPHER, O.PIN-MNGT,
O.KEY-MNGT,
O.REALLOCATION

Section 5.3.1.2

T.INTEG-APPLI-DATA.LOAD O.LOAD,
O.CARD-MANAGEMENT

Section 5.3.1.2

T.INTEG-JCS-CODE O.CARD-MANAGEMENT,
OE.VERIFICATION,
O.NATIVE

Section 5.3.1.2

T.INTEG-JCS-DATA O.SCP.RECOVERY,
O.SCP.SUPPORT,
O.CARD-MANAGEMENT,
OE.VERIFICATION,
O.SID,
O.OPERATE,
O.FIREWALL,
O.ALARM

Section 5.3.1.2

T.SID.1 O.CARD-MANAGEMENT,
O.FIREWALL,
O.GLOBAL_ARRAYS_CONFID,
O.GLOBAL_ARRAYS_INTEG,
O.INSTALL, O.SID

Section 5.3.1.3

T.SID.2 O.SCP.RECOVERY,
O.SCP.SUPPORT,
O.SID,
O.OPERATE,
O.FIREWALL,
O.INSTALL

Section 5.3.1.3

 62

Threats Security Objectives Rationale

T.EXE-CODE.1 OE.VERIFICATION,
O.FIREWALL

Section 5.3.1.4

T.EXE-CODE.2 OE.VERIFICATION Section 5.3.1.4

T.EXE-CODE-REMOTE O.REMOTE Section 5.3.1.4

T.NATIVE OE.VERIFICATION,
OE.APPLET,
O.NATIVE

Section 5.3.1.4

T.RESOURCES O.INSTALL,
O.OPERATE,
O.RESOURCES
O.SCP.RECOVERY,
O.SCP.SUPPORT

Section 5.3.1.5

T.DELETION O.DELETION,
O.CARD-MANAGEMENT

Section 5.3.1.6

T.INSTALL O.INSTALL,
O.LOAD,
O.CARD-MANAGEMENT

Section 5.3.1.6

T.OBJ-DELETION O.OBJ-DELETION Section 5.3.1.7

T.PHYSICAL O.SCP.IC Section 5.3.1.8

T.ACCESS O.PROTECT_DATA Section 5.3.1.9

T.OS_OPERATE O.OS_OPERATE Section 5.3.1.9

T.LEAKAGE O.SIDE_CHANNEL Section 5.3.1.9

T.FAULT O.FAULT_PROTECT Section 5.3.1.9

T.RND O.RND Section 5.3.1.9
Table5. Threats and Security Objectives - Coverage

Security Objectives Threats

O.SID T.CONFID-APPLI-DATA,
T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA,
T.INTEG-JCS-DATA,
T.SID.1,
T.SID.2

O.FIREWALL T.CONFID-APPLI-DATA,
T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA,
T.INTEG-JCS-DATA,
T.SID.1,
T.SID.2,
T.EXE-CODE.1

O.GLOBAL_ARRAYS_CONFID T.CONFID-APPLI-DATA,
T.SID.1

O.GLOBAL_ARRAYS_INTEG T.INTEG-APPLI-DATA,
T.SID.1

O.NATIVE T.CONFID-JCS-CODE,
T.INTEG-APPLI-CODE,
T.INTEG-JCS-CODE,

 63

Security Objectives Threats

T.NATIVE

O.OPERATE T.CONFID-APPLI-DATA,
T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA,
T.INTEG-JCS-DATA,
T.SID.2,
T.RESOURCES

O.REALLOCATION T.CONFID-APPLI-DATA,
T.INTEG-APPLI-DATA

O.RESOURCES T.RESOURCES

O.ALARM T.CONFID-APPLI-DATA,
T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA,
T.INTEG-JCS-DATA

O.CIPHER T.CONFID-APPLI-DATA,
T.INTEG-APPLI-DATA

O.KEY-MNGT T.CONFID-APPLI-DATA,
T.INTEG-APPLI-DATA

O.PIN-MNGT T.CONFID-APPLI-DATA,
T.INTEG-APPLI-DATA

O.REMOTE T.EXE-CODE-REMOTE

O.TRANSACTION T.CONFID-APPLI-DATA,
T.INTEG-APPLI-DATA

O.OBJ-DELETION T.OBJ-DELETION

O.DELETION T.DELETION

O.LOAD T.INTEG-APPLI-CODE.LOAD,
T.INTEG-APPLI-DATA.LOAD,
T.INSTALL

O.INSTALL T.SID.1,
T.SID.2,
T.RESOURCES,
T.INSTALL

O.CARD-MANAGEMENT T.CONFID-APPLI-DATA,
T.CONFID-JCS-CODE,
T.CONFID-JCS-DATA,
T.INTEG-APPLI-CODE,
T.INTEG-APPLI-CODE.LOAD,
T.INTEG-APPLI-DATA,
T.INTEG-APPLI-DATA.LOAD,
T.INTEG-JCS-CODE,
T.INTEG-JCS-DATA,
T.SID.1,
T.DELETION,T.INSTALL

O.SCP.IC T.PHYSICAL

O.SCP.RECOVERY T.CONFID-APPLI-DATA,
T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA,

 64

Security Objectives Threats

T.INTEG-JCS-DATA,
T.SID.2,
T.RESOURCES

O.SCP.SUPPORT T.CONFID-APPLI-DATA,
T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA,
T.INTEG-JCS-DATA,
T.SID.2,
T.RESOURCES

O.PROTECT_DATA T.ACCESS

O.OS_OPERATE T.OS_OPERATE

O.SIDE_CHANNEL T.LEAKAGE

O.FAULT_PROTECT T.FAULT

O.RND T.RND

OE.APPLET T.NATIVE

OE.VERIFICATION T.CONFID-APPLI-DATA,
T.CONFID-JCS-CODE,
T.CONFID-JCS-DATA,
T.INTEG-APPLI-CODE,
T.INTEG-APPLI-DATA,
T.INTEG-JCS-CODE,
T.INTEG-JCS-DATA,
T.EXE-CODE.1,
T.EXE-CODE.2,
T.NATIVE

Table6. Security Objectives and Threats - Coverage

OSPs Security Objectives Rationale

OSP.VERIFICATION OE.VERIFICATION Section 5.3.2.1

OSP.DELETION O.CARD-MANAGEMENT Section 5.3.2.1

OSP.ROLES O.ROLES Section 5.3.2.2

OSP.INITIAL_LIFECYCLE_STA
TES

OE.INITIAL_LIFECYCLE_STAT
ES

Section 5.3.2.2

OSP.CARD_ADMINISTRATOR
_PRE-APPROVAL

O.CARD_ADMIN Section 5.3.2.2

OSP.APPLICATION_PROVIDE
R_PRE-APPROVAL

O.APPLICATION_PROVIDER_
PRE-APPROVAL

Section 5.3.2.2

OSP.LOAD_FILE_VERIFICATI
ON

O.LOAD_FILE_VERIFICATION Section 5.3.2.2

OSP.APPLICATION_CODE_VE
RIFICATION

O.APPLICATION_CODE_VERI
FICATION

Section 5.3.2.2

OSP.SECURE_COMMUNICATI
ON

O.SECURE_COMM Section 5.3.2.2

OSP.CARDHOLDER_VERIFIC
ATION

O.CARDHOLDER_VERIFICATI
ON

Section 5.3.2.2

OSP.PROD_PROCESS OE.PROD_PROCESS Section 5.3.2.2

OSP.CRYPTO O.CIPHER Section 5.3.2.2

 65

Table7. OSPs and Security Objectives- Coverage

Assumptions Security Objectives for the
Operational Environment

Rationale

A.APPLET OE.APPLET Section 5.3.3.1

A.VERIFICATION OE.VERIFICATION Section 5.3.3.1

A.KEY_MANAGEMENT OE.KEY_MANAGEMENT Section 5.3.3.2

A.CVM OE.CVM Section 5.3.3.2

A.ACTORS OE.ACTORS Section 5.3.3.2
Table8. Assumptions and Security Objectives for the Operational Environment - Coverage

 66

6 Extended components definition

Application note:
The following extended component is from [PP0035] which is conformance claimed
by the [ICST].

6.1 Definition of the Family FCS_RNG

To define the security functional requirements of the TOE an additional family
(FCS_RNG) of the Class FCS (cryptographic support) is defined here. This family
describes the functional requirements for random number generation used for
cryptographic purposes.

FCS_RNG Generation of random numbers

Family behavior:
This family defines quality requirements for the generation of random numbers which
are intended to be use for cryptographic purposes.

Component leveling:

FCS_RNG.1 Generation of random numbers requires that random

numbers meet a defined quality metric.
Management: FCS_RNG.1

There are no management activities foreseen.
Audit: FCS_RNG.1

There are no actions defined to be auditable.
FCS_RNG.1 Random number generation
Hierarchical to: No other components.
Dependencies: No dependencies.
FCS_RNG.1.1 The TSF shall provide a [selection: physical, non-physical true,

deterministic, hybrid] random number generator that implements:
[assignment: list of security capabilities].

FCS_RNG.1.2 The TSF shall provide random numbers that meet [assignment: a
defined quality metric].

[ST] Application
Note:

A physical random number generator (RNG) produces the random
number by a noise source based on physical random processes.
A non-physical true RNG uses a noise source based on non-
physical random processes like human interaction (key strokes,
mouse movement). A deterministic RNG uses a random seed to
produce a pseudorandom output. A hybrid RNG combines the
principles of physical and deterministic RNGs.

 67

7 Security requirements

7.1 Security functional requirements
This section states the security functional requirements for the TOE. The TOE SFRs
are arranged into groups, according to the scope defined for the TOE, CMGRG is
added for the Card Manager and SCPG is added for the smart card platform.

Group Description Remark

Core with
Logical
Channels
(CoreG_LC)

The CoreG_LC contains the requirements concerning the
runtime environment of the Java Card System
implementing logical channels. This includes the firewall
policy and the requirements related to the Java Card API.
Logical channels are a Java Card specification version
2.2 feature. This group is the union of requirements from
the Core (CoreG) and the Logical channels (LCG) groups
defined in [PP/0305] (cf. Java Card System Protection
Profile Collection [PP JCS]).

[JCSPP]

Installation
(InstG)

The InstG contains the security requirements concerning
the installation of post-issuance applications. It does not
address card management issues in the broad sense, but
only those security aspects of the installation procedure
that are related to applet execution.

Applet
deletion
(ADELG)

The ADELG contains the security requirements for
erasing installed applets from the card, a feature
introduced in Java Card specification version 2.2.

Remote
Method
Invocation
(RMIG)

The RMIG contains the security requirements for the
remote method invocation feature, which provides a new
protocol of communication between the terminal and the
applets. This was introduced in Java Card specification
version 2.2.

Object
deletion
(ODELG)

The ODELG contains the security requirements for the
object deletion capability. This provides a safe memory
recovering mechanism. This is a Java Card specification
version 2.2 feature.

Secure
carrier
(CarG)

The CarG group contains minimal requirements for
secure downloading of applications on the card. This
group contains the security requirements for preventing,
in those configurations that do not support on-card static
or dynamic bytecode verification, the installation of a
package that has not been bytecode verified, or that has
been modified after bytecode verification.

Card
manager
(CMGRG)

The CMGRG group contains the security requirements for
the card manager. This group contains the security
requirements for a policy for controlling access to card
content management operations and for expressing card
issuer security concerns. Also, this group contains the
security requirements to fulfill GP specific objectives.

[JCSPP]
Additions

 68

Group Description Remark

Smart card
Platform
(SCPG)

The SCPG group contains the security requirements for
the smart card platform, that is, operating system and
chip that the Java Card System is implemented upon.

Subjects are active components of the TOE that (essentially) act on the behalf of
users. The users of the TOE include people or institutions (like the applet developer,
the card issuer, and the verification authority), hardware (like the CAD where the
card is inserted or the PCD) and software components (like the application packages
installed on the card). Some of the users may just be aliases for other users. For
instance, the verification authority in charge of the bytecode verification of the
applications may be just an alias for the card issuer.

Subjects (prefixed with an "S") are described in the following table:

Subject Description

S.ADEL The applet deletion manager which also acts on behalf of the card
issuer. It may be an applet ([JCRE22], §11), but its role asks
anyway for a specific treatment from the security viewpoint. This
subject is unique and is involved in the ADEL security policy defined
in §7.1.3.1.

S.APPLET Any applet instance.

S.BCV The bytecode verifier (BCV), which acts on behalf of the verification
authority who is in charge of the bytecode verification of the
packages. This subject is involved in the PACKAGE LOADING
security policy defined in §7.1.7.

S.CAD The CAD represents the actor that requests, by issuing commands
to the card, for RMI services. It also plays the role of the off-card
entity that communicates with the S.INSTALLER.

S.INSTALLER The installer is the on-card entity which acts on behalf of the card
issuer. This subject is involved in the loading of packages and
installation of applets.

S.JCRE The runtime environment under which Java programs in a smart
card are executed.

S.JCVM The bytecode interpreter that enforces the firewall at runtime.

S.LOCAL Operand stack of a JCVM frame, or local variable of a JCVM frame
containing an object or an array of references.

S.MEMBER Any object's field, static field or array position.

S.PACKAGE A package is a namespace within the Java programming language
that may contain classes and interfaces, and in the context of Java
Card technology, it defines either a user library, or one or several
applets.

S.OPEN The central on-card administrator that owns the GlobalPlatform
Registry

S.ISD On-card entity providing support for the control, security, and
communication requirements of the Card Issuer

S.SD Supplementary Security Domain to identify an Application Provider’s
or Controlling Authorities’ Security Domain

 69

Subject Description

Supplementary Security Domain for Application Provider or
Controlling Authority is installed on the TOE, and can be activated if
necessary

Objects (prefixed with an "O") are described in the following table:

Object Description

O.APPLET Any installed applet, its code and data.

O.CODE_PKG The code of a package, including all linking information. On
the Java Card platform, a package is the installation unit.

O.JAVAOBJECT Java class instance or array. It should be noticed that KEYS,
PIN, arrays and applet instances are specific objects in the
Java programming language.

O.REMOTE_MTHD A method of a remote interface.

O.REMOTE_OBJ A remote object is an instance of a class that implements one
(or more) remote interfaces. A remote interface is one that
extends, directly or indirectly, the interface java.rmi.Remote
([JCAPI22]).

O.RMI_SERVICE These are instances of the class javacardx.rmi.RMIService.
They are the objects that actually process the RMI services.

O.ROR A remote object reference. It provides information concerning:
(i) the identification of a remote object and (ii) the
Implementation class of the object or the interfaces
implemented by the class of the object. This is the object's
information to which the CAD can access.

O.CARD_CONTENT Code, Application information, and Application data contained
in the card that is under the responsibility of the OPEN e.g.
Executable Load Files, Application instances, etc
They are subject to Card Content Management Functions
(CCMFs)

O.REGISTRY A container of information related to Card Content
management.

Information (prefixed with an “I”) is described in the following table:

Information Description

I.APDU Any APDU sent to or from the card through the communication
channel.

I.DATA JCVM Reference Data: objectref addresses of APDU buffer, JCRE-
owned instances of APDU class and byte array for install method.

I.RORD Remote object reference descriptors which provide information
concerning: (i) the identification of the remote object and (ii) the
implementation class of the object or the interfaces implemented by
the class of the object. The descriptor is the only object’s
information to which the CAD can access.

Security attributes linked to these subjects, objects and information are described in

 70

the following table with their values:

Security
Attribute

Description

Active Applets The set of the active applets’ AIDs. An active applet is an applet
that is selected on at least one of the logical channels.

Applet
Selection
Status

“Selected” or “Deselected”.

Applet’s
version number

The version number of an applet (package) indicated in the export
file.

Class Identifies the implementation class of the remote object.

Context Package AID or “Java Card RE”.

Currently
Active Context

Package AID or “Java Card RE”.

Dependent
package AID

Allows the retrieval of the Package AID and Applet’s version
number ([JCVM22], §4.5.2).

ExportedInfo Boolean (indicates whether the remote object is exportable or not).

Identifier The Identifier of a remote object or method is a number that
uniquely identifies the remote object or method, respectively.

LC Selection
Status

Multiselectable, Non-multiselectable or “None”.

LifeTime CLEAR_ON_DESELECT or PERSISTENT (*).

Owner The Owner of an object is either the applet instance that created
the object or the package (library) where it has been defined (these
latter objects can only be arrays that initialize static fields of the
package). The owner of a remote object is the applet instance that
created the object.

Package AID The AID of each package indicated in the export file.

Registered
Applets

The set of AID of the applet instances registered on the card.

Remote An object is Remote if it is an instance of a class that directly or
indirectly implements the interface java.rmi.Remote.

Resident
Packages

The set of AIDs of the packages already loaded on the card.

Returned
References

The set of remote object references that have been sent to the
CAD during the applet selection session. This attribute is
implementation dependent.

Selected
Applet Context

Package AID or “None”.

Sharing Standards, SIO, Java Card RE entry point or global array.

Static
References

Static fields of a package may contain references to objects. The
Static References attribute records those references.

AID Any security domain AID or application/executable load
file/executable module AID
Stored in the GlobalPlatform Registry

Life Cycle
State

Life Cycle State of the card and application
Stored in the GlobalPlatform Registry

 71

Security
Attribute

Description

Privilege Privileges for each application including security domain
Stored in the GlobalPlatform Registry

Verified Card content has been verified by associated security domain.

SecureChannel Secure channel between TOE and CAD has been established.

SecurityLevel Security level between TOE and CAD, i.e. 0 (none), 1(MAC), or 3
(both encryption and MAC).

(*) Transient objects of type CLEAR_ON_RESET behave like persistent objects in
that they can be accessed only when the Currently Active Context is the object’s
context.

Operations (prefixed with “OP”) are described in the following table. Each operation
has parameters given between brackets, among which there is the “accessed object”,
the first one, when applicable. Parameters may be seen as security attributes that
are under the control of the subject performing the operation.

Operation Description

OP.ARRAY_ACCESS(O.JAVAOBJECT, field) Read/Write an array component.

OP.CREATE(Sharing, LifeTime) (*) Creation of an object (new or
makeTransient call).

OP.DELETE_APPLET(O.APPLET,...) Delete an installed applet and its
objects, either logically or
physically.

OP.DELETE_PCKG(O.CODE_PKG,...) Delete a package, either logically
or physically.

OP.DELETE_PCKG_APPLET(O.CODE_PKG,...) Delete a package and its
installed applets, either logically
or physically.

OP.GET_ROR(O.APPLET,...) Retrieves the initial remote object
reference of a RMI based applet.
This reference is the seed which
the CAD client application needs
to begin remote method
invocations.

OP.INSTANCE_FIELD(O.JAVAOBJECT, field) Read/Write a field of an instance
of a class in the Java
programming language.

OP.INVK_VIRTUAL(O.JAVAOBJECT, method,
arg1,...)

Invoke a virtual method (either on
a class instance or an array
object).

OP.INVK_INTERFACE(O.JAVAOBJECT,
method, arg1,...)

Invoke an interface method.

OP.INVOKE(O.RMI_SERVICE,...) Requests a remote method
invocation on the remote object.

OP.JAVA(...) Any access in the sense of

 72

Operation Description

[JCRE22], §6.2.8. It stands for

one of the operations
OP.ARRAY_ACCESS,
OP.INSTANCE_FIELD,
OP.INVK_VIRTUAL,
OP.INVK_INTERFACE,
OP.THROW,
OP.TYPE_ACCESS.

OP.PUT(S1,S2,I) Transfer a piece of information I
from S1 to S2.

OP.RET_RORD(S.JCRE,S.CAD,I.RORD) Send a remote object reference
descriptor to the CAD.

OP.THROW(O.JAVAOBJECT) Throwing of an object (athrow,
see [JCRE22], §6.2.8.7).

OP.TYPE_ACCESS(O.JAVAOBJECT, class) Invoke checkcast or instanceof
on an object in order to access to
classes (standard or shareable
interfaces objects).

OP.MAC(O.CARD_CONTENT) Verify card content to be loaded
and installed by GP.

OP.DAP(O.CARD_CONTENT) Authenticate card content to be
loaded and installed by GP (DAP
Verification).

OP.CCMF(O.CARD_CONTENT, O.REGISTRY) Perform card content
management function: loading
and installation, removal,
extradition, status transition

OP.SEND(…) Send a message through the
communication channel

OP.RECEIVE(…) Receive a message through the
communication channel

(*) For this operation, there is no accessed object. This rule enforces that shareable
transient objects are not allowed. For instance, during the creation of an object, the
JavaCardClass attribute's value is chosen by the creator.

7.1.1 CoreG_LC security functional requirements

This group is focused on the main security policy of the Java Card System, known as
the firewall.

7.1.1.1 FIREWALL POLICY

FDP_ACC.2/FIREWALL Complete access control

FDP_ACC.2.1/FIREWALL The TSF shall enforce the FIREWALL access control
SFP on S.PACKAGE, S.JCRE, S.JCVM, O.JAVAOBJECT and all operations

 73

among subjects and objects covered by the SFP.
Refinement:
The operations involved in the policy are:
 OP.CREATE,
 OP.INVK_INTERFACE,
 OP.INVK_VIRTUAL,
 OP.JAVA,
 OP.THROW,
 OP.TYPE_ACCESS.

FDP_ACC.2.2/FIREWALL The TSF shall ensure that all operations between any
subject controlled by the TSF and any object controlled by the TSF are covered by
an access control SFP.

[JCSPP] Application note:
It should be noticed that accessing array's components of a static array, and more
generally fields and methods of static objects, is an access to the corresponding
O.JAVAOBJECT.

FDP_ACF.1/FIREWALL Security attribute based access control

FDP_ACF.1.1/FIREWALL The TSF shall enforce the FIREWALL access control
SFP to objects based on the following:

Subject/Object Security attributes

S.PACKAGE LC Selection Status

S.JCVM Active Applets, Currently Active Context

S.JCRE Selected Applet Context

O.JAVAOBJECT Sharing, Context, LifeTime

FDP_ACF.1.2/FIREWALL The TSF shall enforce the following rules to determine if
an operation among controlled subjects and controlled objects is allowed:
 R.JAVA.1 ([JCRE22], §6.2.8): S.PACKAGE may freely perform

OP.ARRAY_ACCESS, OP.INSTANCE_FIELD, OP.INVK_VIRTUAL,
OP.INVK_INTERFACE, OP.THROW or OP.TYPE_ACCESS upon any
O.JAVAOBJECT whose Sharing attribute has value "JCRE entry point" or
"global array".

 R.JAVA.2 ([JCRE22], §6.2.8): S.PACKAGE may freely perform
OP.ARRAY_ACCESS, OP.INSTANCE_FIELD, OP.INVK_VIRTUAL,
OP.INVK_INTERFACE or OP.THROW upon any O.JAVAOBJECT whose
Sharing attribute has value "Standard" and whose Lifetime attribute has
value "PERSISTENT" only if O.JAVAOBJECT's Context attribute has the
same value as the active context.

 R.JAVA.3 ([JCRE22], §6.2.8.10): S.PACKAGE may perform
OP.TYPE_ACCESS upon an O.JAVAOBJECT whose Sharing attribute has
value "SIO" only if O.JAVAOBJECT is being cast into (checkcast) or is
being verified as being an instance of (instanceof) an interface that extends
the Shareable interface.

 R.JAVA.4 ([JCRE22], §6.2.8.6): S.PACKAGE may perform
OP.INVK_INTERFACE upon an O.JAVAOBJECT whose Sharing attribute

 74

has the value "SIO", and whose Context attribute has the value "Package
AID", only if the invoked interface method extends the Shareable interface
and one of the following conditions applies:
a) The value of the attribute Selection Status of the package whose AID

is "Package AID" is "Multiselectable",
b) The value of the attribute Selection Status of the package whose AID

is "Package AID" is "Non-multiselectable", and either "Package AID" is
the value of the currently selected applet or otherwise "Package AID"
does not occur in the attribute Active Applets.

 R.JAVA.5: S.PACKAGE may perform OP.CREATE only if the value of the
Sharing parameter is "Standard".

FDP_ACF.1.3/FIREWALL The TSF shall explicitly authorise access of subjects to
objects based on the following additional rules:
 1) The subject S.JCRE can freely perform OP.JAVA(") and OP.CREATE,

with the exception given in FDP_ACF.1.4/FIREWALL, provided it is the
Currently Active Context.

 2) The only means that the subject S.JCVM shall provide for an application
to execute native code is the invocation of a Java Card API method
(through OP.INVK_INTERFACE or OP.INVK_VIRTUAL).

FDP_ACF.1.4/FIREWALL The TSF shall explicitly deny access of subjects to
objects based on the following additional rules:
 1) Any subject with OP.JAVA upon an O.JAVAOBJECT whose LifeTime

attribute has value "CLEAR_ON_DESELECT" if O.JAVAOBJECT's Context
attribute is not the same as the Selected Applet Context.

 2) Any subject attempting to create an object by the means of OP.CREATE
and a "CLEAR_ON_DESELECT" LifeTime parameter if the active context is
not the same as the Selected Applet Context.

[JCSPP] Application note:
FDP_ACF.1.4/FIREWALL:

• The deletion of applets may render some O.JAVAOBJECT inaccessible, and
the Java Card RE may be in charge of this aspect. This can be done, for
instance, by ensuring that references to objects belonging to a deleted
application are considered as a null reference. Such a mechanism is
implementation-dependent.

In the case of an array type, fields are components of the array ([JVM], §2.14,
§2.7.7), as well as the length; the only methods of an array object are those inherited
from the Object class.
The Sharing attribute defines four categories of objects:

• Standard ones, whose both fields and methods are under the firewall policy,

• Shareable interface Objects (SIO), which provide a secure mechanism for
inter-applet communication,

• JCRE entry points (Temporary or Permanent), who have freely accessible
methods but protected fields,

• Global arrays, having both unprotected fields (including components; refer to
JavaCardClass discussion above) and methods.

When a new object is created, it is associated with the Currently Active Context. But
the object is owned by the applet instance within the Currently Active Context when

 75

the object is instantiated ([JCRE22], §6.1.3). An object is owned by an applet
instance, by the JCRE or by the package library where it has been defined (these
latter objects can only be arrays that initialize static fields of packages).
([JCRE22], Glossary) Selected Applet Context. The Java Card RE keeps track of the
currently selected Java Card applet. Upon receiving a SELECT command with this
applet's AID, the Java Card RE makes this applet the Selected Applet Context. The
Java Card RE sends all APDU commands to the Selected Applet Context.
While the expression "Selected Applet Context" refers to a specific installed applet,
the relevant aspect to the policy is the context (package AID) of the selected applet.
In this policy, the "Selected Applet Context" is the AID of the selected package.
([JCRE22], §6.1.2.1) At any point in time, there is only one active context within the
Java Card VM (this is called the Currently Active Context).
It should be noticed that the invocation of static methods (or access to a static field)
is not considered by this policy, as there are no firewall rules. They have no effect on
the active context as well and the "acting package" is not the one to which the static
method belongs to in this case.
It should be noticed that the Java Card platform, version 2.2.x and version 3 Classic
Edition, introduces the possibility for an applet instance to be selected on multiple
logical channels at the same time, or accepting other applets belonging to the same
package being selected simultaneously. These applets are referred to as
multiselectable applets. Applets that belong to a same package are either all
multiselectable or not ([JCVM22], §2.2.5). Therefore, the selection mode can be
regarded as an attribute of packages. No selection mode is defined for a library
package.
An applet instance will be considered an active applet instance if it is currently
selected in at least one logical channel. An applet instance is the currently selected
applet instance only if it is processing the current command. There can only be one
currently selected applet instance at a given time. ([JCRE22], §4).

FDP_IFC.1/JCVM Subset information flow control

FDP_IFC.1.1/JCVM The TSF shall enforce the JCVM information flow control
SFP on S.JCVM, S.LOCAL, S.MEMBER, I.DATA and OP.PUT(S1, S2, I).

[JCSPP] Application note:
It should be noticed that references of temporary Java Card RE entry points, which
cannot be stored in class variables, instance variables or array components, are
transferred from the internal memory of the Java Card RE (TSF data) to some stack
through specific APIs (Java Card RE owned exceptions) or Java Card RE invoked
methods (such as the process(APDU apdu)); these are causes of OP.PUT(S1,S2,I)
operations as well.

FDP_IFF.1/JCVM Simple security attributes

FDP_IFF.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP
based on the following types of subject and information security attributes:

Subject/Information Security attributes

S.JCVM Currently Active Context

 76

FDP_IFF.1.2/JCVM The TSF shall permit an information flow between a controlled
subject and controlled information via a controlled operation if the following rules
hold:
 An operation OP.PUT(S1, S.MEMBER, I.DATA) is allowed if and only if the

Currently Active Context is "Java Card RE";
 Other OP.PUT operations are allowed regardless of the Currently Active

Context's value.

FDP_IFF.1.3/JCVM The TSF shall enforce the none.

FDP_IFF.1.4/JCVM The TSF shall explicitly authorise an information flow based on
the following rules: none.

FDP_IFF.1.5/JCVM The TSF shall explicitly deny an information flow based on the
following rules: none.

[JCSPP] Application note:
The storage of temporary Java Card RE-owned objects references is runtime-
enforced ([JCRE22], §6.2.8.1-3).
It should be noticed that this policy essentially applies to the execution of bytecode.
Native methods, the Java Card RE itself and possibly some API methods can be
granted specific rights or limitations through the FDP_IFF.1.3/JCVM to
FDP_IFF.1.5/JCVM elements. The way the Java Card virtual machine manages the
transfer of values on the stack and local variables (returned values, uncaught
exceptions) from and to internal registers is implementation-dependent. For instance,
a returned reference, depending on the implementation of the stack frame, may
transit through an internal register prior to being pushed on the stack of the invoker.
The returned bytecode would cause more than one OP.PUT operation under this
scheme.

FDP_RIP.1/OBJECTS Subset residual information protection

FDP_RIP.1.1/OBJECTS The TSF shall ensure that any previous information content
of a resource is made unavailable upon the allocation of the resource to the
following objects: class instances and arrays.

[JCSPP] Application note:
The semantics of the Java programming language requires for any object field and
array position to be initialized with default values when the resource is allocated
[JVM], §2.5.1.

FMT_MSA.1/JCRE Management of security attributes

FMT_MSA.1.1/JCRE The TSF shall enforce the FIREWALL access control SFP to
restrict the ability to modify the security attributes Selected Applet Context to the
Java Card RE.

[JCSPP] Application note:
The modification of the Selected Applet Context should be performed in accordance
with the rules given in [JCRE22], §4 and [JCVM22], §3.4.

FMT_MSA.1/JCVM Management of security attributes

FMT_MSA.1.1/JCVM The TSF shall enforce the FIREWALL access control SFP
and the JCVM information flow control SFP to restrict the ability to modify the

 77

security attributes Currently Active Context and Active Applets to the Java Card
VM (S.JCVM).

[JCSPP] Application note:
The modification of the Currently Active Context should be performed in accordance
with the rules given in [JCRE22], §4 and [JCVM22], §3.4.

FMT_MSA.2/FIREWALL_JCVM Secure security attributes

FMT_MSA.2.1/FIREWALL_JCVM The TSF shall ensure that only secure values are
accepted for all the security attributes of subjects and objects defined in the
FIREWALL access control SFP and the JCVM information flow control SFP.

[JCSPP] Application note:
The following rules are given as examples only. For instance, the last two rules are
motivated by the fact that the Java Card API defines only transient arrays factory
methods.
Future versions may allow the creation of transient objects belonging to arbitrary
classes; such evolution will naturally change the range of "secure values" for this
component.

• The Context attribute of an O.JAVAOBJECT must correspond to that of an
installed applet or be "Java Card RE".

• An O.JAVAOBJECT whose Sharing attribute is a Java Card RE entry point or
a global array necessarily has "Java Card RE" as the value for its Context
security attributes.

• An O.JAVAOBJECT whose Sharing attribute value is a global array
necessarily has "array of primitive type" as a JavaCardClass security
attribute's value.

• Any O.JAVAOBJECT whose Sharing attribute value is not "Standard" has a
PERSISTENT-LifeTime attribute's value.

• Any O.JAVAOBJECT whose LifeTime attribute value is not PERSISTENT
has an array type as JavaCardClass attribute's value.

FMT_MSA.3/FIREWALL Static attribute initialisation

FMT_MSA.3.1/FIREWALL The TSF shall enforce the FIREWALL access control
SFP to provide restrictive default values for security attributes that are used to
enforce the SFP.

FMT_MSA.3.2/FIREWALL [Editorially Refined] The TSF shall not allow any role
to specify alternative initial values to override the default values when an object or
information is created.

[JCSPP] Application note:
FMT_MSA.3.1/FIREWALL

• Objects' security attributes of the access control policy are created and
initialized at the creation of the object or the subject. Afterwards, these
attributes are no longer mutable (FMT_MSA.1/JCRE). At the creation of an
object (OP.CREATE), the newly created object, assuming that the
FIREWALL access control SFP permits the operation, gets its Lifetime and
Sharing attributes from the parameters of the operation; on the contrary, its

 78

Context attribute has a default value, which is its creator's Context attribute
and AID respectively ([JCRE22], §6.1.3). There is one default value for the
Selected Applet Context that is the default applet identifier's Context, and one
default value for the Currently Active Context that is "Java Card RE".

• The knowledge of which reference corresponds to a temporary entry point
object or a global array and which does not is solely available to the Java
Card RE (and the Java Card virtual machine).

FMT_MSA.3.2/FIREWALL

• The intent is that none of the identified roles has privileges with regard to the
default values of the security attributes. It should be noticed that creation of
objects is an operation controlled by the FIREWALL access control SFP. The
operation shall fail anyway if the created object would have had security
attributes whose value violates FMT_MSA.2.1/FIREWALL_JCVM.

FMT_MSA.3/JCVM Static attribute initialisation

FMT_MSA.3.1/JCVM The TSF shall enforce the JCVM information flow control
SFP to provide restrictive default values for security attributes that are used to
enforce the SFP.

FMT_MSA.3.2/JCVM [Editorially Refined] The TSF shall not allow any role to
specify alternative initial values to override the default values when an object or
information is created.

FMT_SMF.1/CORE Specification of Management Functions

FMT_SMF.1.1/CORE The TSF shall be capable of performing the following
management functions:
 modify the Currently Active Context, the Selected Applet Context and the

Active Applets

FMT_SMR.1/CORE Security roles

FMT_SMR.1.1/CORE The TSF shall maintain the roles:
 Java Card RE (JCRE),
 Java Card VM (JCVM).

FMT_SMR.1.2/CORE The TSF shall be able to associate users with roles.

7.1.1.2 APPLICATION PROGRAMMING INTERFACE

The following SFRs are related to the Java Card API.
The whole set of cryptographic algorithms is generally not implemented because of
limited memory resources and/or limitations due to exportation. Therefore, the
following requirements only apply to the implemented subset.
It should be noticed that the execution of the additional native code is not within the
TSF. Nevertheless, access to API native methods from the Java Card System is
controlled by TSF because there is no difference between native and interpreted
methods in their interface or invocation mechanism.

FCS_CKM.1/CORE Cryptographic key generation

 79

FCS_CKM.1.1/CORE The TSF shall generate cryptographic keys in accordance with
a specified cryptographic key generation algorithm listed in the following table and
specified cryptographic key sizes listed in the following table that meet the
following: standards listed in the following table.

Label Crypto Algorithm Crypto Key Sizes Standards

Protected RSA
key generation

RSA public and
private keys
computation
algorithm,
protected against
side channel
attacks

512 up to 2048
bits

FIPS PUB 140-2
ISO/IEC 9796-2
PKCS #1 V2.1

class KeyPair
class KeyBuilder

[JCAPI222]

DES/3DES class KeyBuilder DES: 56 effective
bits (64bits)
3DES 2 keys:
112 effective bits
(128bits)
3DES 3 keys:
168 effective bits
(192bits)

[JCAPI222]

AES class KeyBuilder 128, 192 and 256
bits

[JCAPI222]

ECC class KeyBuilder 112 up to 521
bits

[JCAPI222]

SEED class KeyBuilder 128 bits [JCAPI222]
[FICCS]

[JCSPP] Application note:

• The keys can be generated and diversified in accordance with [JCAPI22]
specification in classes KeyBuilder and KeyPair (at least Session key
generation).

• This component shall be instantiated according to the version of the Java
Card API applying to the security target and the implemented algorithms
([JCAPI22], [JCAPI221], [JCAPI222] and [JCAPI3]).

[ST] Application note:

• The class KeyPair will be used to generate a RSA key pair.

• The class KeyBuilder will be used to generate storage objects for key values,
the storage object will be used by FCS_CKM.2/CORE.

FCS_CKM.2/CORE Cryptographic key distribution

FCS_CKM.2.1/CORE The TSF shall distribute cryptographic keys in accordance
with a specified cryptographic key distribution method listed in the following table
that meets the following: standards listed in the following table.

 80

Label Crypto Key Distribution Method Standards

RSA setExponent
setModulus
setDP1
setDQ1
setP
setPQ
setQ

[JCAPI222]

DES/3DES setKey [JCAPI222]

AES setKey [JCAPI222]

ECC setA
setB
setFieldFP
setG
setK
setR
setS
setW

[JCAPI222]

SEED setKey [JCAPI222]

setKey [FICCS]

[JCSPP] Application note:

• Command SetKEY that meets [JCAPI22] specification.

• This component shall be instantiated according to the version of the Java
Card API applying to the security target and the implemented algorithms
([JCAPI22], [JCAPI221], [JCAPI222] and [JCAPI3]).

[ST] Application note:

• FCS_CKM.2/CORE will set key values within storage object generated by
FCS_CKM.1/CORE.

FCS_CKM.3/CORE Cryptographic key access

FCS_CKM.3.1/CORE The TSF shall perform access to the keys listed in the
following table in accordance with a specified cryptographic key access method
methods defined in the following table that meets the following: standard listed
in the following table.

Label Crypto Key Access Method Standards

RSA keys methods packages
javacard.security and
javacardx,crypto

[JCAPI222]

DES/3DES methods packages
javacard.security and
javacardx,crypto

[JCAPI222]

AES methods packages
javacard.security and
javacardx,crypto

[JCAPI222]

 81

ECC methods packages
javacard.security and
javacardx,crypto

[JCAPI222]

SEED methods packages
javacard.security and
javacardx,crypto

[JCAPI222]

and koreanpackage [FICCS]

[JCSPP] Application note:

• The keys can be accessed as specified in [JCAPI22] Key class.

• This component shall be instantiated according to the version of the Java
Card API applicable to the security target and the implemented algorithms
([JCAPI22], [JCAPI221], [JCAPI222] and [JCAPI3]).

FCS_CKM.4/CORE Cryptographic key destruction

FCS_CKM.4.1/CORE The TSF shall destroy cryptographic keys in accordance with
a specified cryptographic key destruction method listed in the following table that
meets the following: standard listed in the following table.

Label Crypto Key Destruction Method Standards

RSA keys clearKey() method [JCAPI222]

DES/3DES clearKey() method [JCAPI222]

AES clearKey() method [JCAPI222]

ECC clearKey() method [JCAPI222]

SEED clearKey() method [JCAPI222]

clearKey() method [FICCS]

[JCSPP] Application note:

• The keys are reset as specified in [JCAPI22] Key class, with the method
clearKey(). Any access to a cleared key for ciphering or signing shall throw
an exception.

• This component shall be instantiated according to the version of the Java
Card API applicable to the security target and the implemented algorithms
([JCAPI22], [JCAPI221], [JCAPI222] and [JCAPI3]).

FCS_COP.1/CORE Cryptographic operation

FCS_COP.1.1/CORE The TSF shall perform cryptographic operations listed in
the following table in accordance with a specified cryptographic algorithm listed in
the following table and cryptographic key sizes listed in the following table that
meet the following: standards listed in the following table.

Label Crypto Operations Crypto
Algorithm

Crypto
Key
Sizes

Standards

DES / 3DES
operation

encryption,
decryption

Data
Encryption

56
effective

FIPS PUB 46-3
ISO/IEC 9797-1

 82

- in Cipher Block
Chaining (CBC)
mode
- in Electronic
Code Book (ECB)
mode
- in CBC-MAC
operating modes

Standard
(DES)

bits
(64bits)

ISO/IEC 10116

Triple Data
Encryption
Standard
(3DES)

2 keys:
112
effective
bits
(128bits)
3 keys:
168
effective
bits
(192bits)

RSA
operation

RSA recovery
(encryption),
RSA signature
(decryption)
without the
Chinese
Remainder
Theorem,
RSA signature
(decryption) with
the Chinese
Remainder
Theorem

Rivest,
Shamir &
Adleman’s

512 up
to 2048
bits

PKCS #1 V2.1

AES
operation

cipher operation,
inverse cipher
operation

Advanced
Encryption
Standard

128, 192
and 256
bits

FIPS PUB 197

ECDSA
operation

general point
addition,
point expansion,
point
compression,
public scalar
multiplication,
private scalar
multiplication

Elliptic
Curves
Cryptography
on
GF(p)

112 up
to 521
bits

IEEE 1363-
2000,
chapter 7
IEEE 1363a-
2004

SEED
operations

cipher operation,
inverse cipher
operation

 128 bits ISO/IEC 18033-
3,
IETF RFC 4269

SHA-1
operation

SHA-1 (secure
hash function)

revised
Secure Hash
Algorithm
(SHA-1)

N/A FIPS PUB 180-
1
FIPS PUB 180-
2
SO/IEC 10118-
3:1998

SHA-256
operation

SHA-256 (secure
hash function)

revised
Secure Hash

N/A FIPS PUB 180-
1

 83

Algorithm
(SHA-256)

FIPS PUB 180-
2
SO/IEC 10118-
3:1998

[JCSPP] Application note:

• The TOE shall provide a subset of cryptographic operations defined in
[JCAPI22] (see javacardx.crypto.Cipher and javacardx.security packages).

• This component shall be instantiated according to the version of the Java
Card API applicable to the security target and the implemented algorithms
([JCAPI22], [JCAPI221], [JCAPI222] and [JCAPI3]).

FDP_RIP.1/ABORT Subset residual information protection

FDP_RIP.1.1/ABORT The TSF shall ensure that any previous information content of
a resource is made unavailable upon the deallocation of the resource from the
following objects: any reference to an object instance created during an aborted
transaction.

[JCSPP] Application note:
The events that provoke the de-allocation of a transient object are described in

[JCRE22], §5.1.

FDP_RIP.1/APDU Subset residual information protection

FDP_RIP.1.1/APDU The TSF shall ensure that any previous information content of a
resource is made unavailable upon the allocation of the resource to the following
objects: the APDU buffer.

[JCSPP] Application note:
The allocation of a resource to the APDU buffer is typically performed as the result of
a call to the process() method of an applet.

FDP_RIP.1/bArray Subset residual information protection

FDP_RIP.1.1/bArray The TSF shall ensure that any previous information content of
a resource is made unavailable upon the deallocation of the resource from the
following objects: the bArray object.

[JCSPP] Application note:
A resource is allocated to the bArray object when a call to an applet's install()
method is performed. There is no conflict with FDP_ROL.1 here because of the
bounds on the rollback mechanism (FDP_ROL.1.2/FIREWALL): the scope of the
rollback does not extend outside the execution of the install() method, and the de-
allocation occurs precisely right after the return of it.

FDP_RIP.1/KEYS Subset residual information protection

FDP_RIP.1.1/KEYS The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the
following objects: the cryptographic buffer (D.CRYPTO).

[JCSPP] Application note:
The javacard.security & javacardx.crypto packages do provide secure interfaces to

 84

the cryptographic buffer in a transparent way. See javacard.security.KeyBuilder and
Key interface of [JCAPI22].

FDP_RIP.1/TRANSIENT Subset residual information protection

FDP_RIP.1.1/TRANSIENT The TSF shall ensure that any previous information
content of a resource is made unavailable upon the deallocation of the resource
from the following objects: any transient object.

[JCSPP] Application note:

• The events that provoke the de-allocation of any transient object are
described in [JCRE22], §5.1.

• The clearing of CLEAR_ON_DESELECT objects is not necessarily
performed when the owner of the objects is deselected. In the presence of
multiselectable applet instances, CLEAR_ON_DESELECT memory
segments may be attached to applets that are active in different logical
channels. Multiselectable applet instances within a same package must
share the transient memory segment if they are concurrently active
([JCRE22], §4.2.

FDP_ROL.1/FIREWALL Basic rollback

FDP_ROL.1.1/FIREWALL The TSF shall enforce the FIREWALL access control
SFP and the JCVM information flow control SFP to permit the rollback of the
operations OP.JAVA and OP.CREATE on the object O.JAVAOBJECT.

FDP_ROL.1.2/FIREWALL The TSF shall permit operations to be rolled back within
the scope of a select(), deselect(), process(), install() or uninstall() call,
notwithstanding the restrictions given in [JCRE22], §7.7, within the bounds of
the Commit Capacity ([JCRE22], §7.8), and those described in [JCAPI22].

[JCSPP] Application note:
Transactions are a service offered by the APIs to applets. It is also used by some
APIs to guarantee the atomicity of some operation. This mechanism is either
implemented in Java Card platform or relies on the transaction mechanism offered
by the underlying platform.
Some operations of the API are not conditionally updated, as documented in
[JCAPI22] (see for instance, PIN-blocking, PIN-checking, update of Transient
objects).

7.1.1.3 CARD SECURITY MANAGEMENT

FAU_ARP.1/CORE Security alarms

FAU_ARP.1.1/CORE The TSF shall take one of the following actions:
 throw an exception,
 lock the card session,
 reinitialize the Java Card System and its data,
 mute the card when exceeding predefined number of secure channel

establishment failure,
upon detection of a potential security violation.

Refinement:

 85

The "potential security violation" stands for one of the following events:

• CAP file inconsistency,

• typing error in the operands of a bytecode,

• applet life cycle inconsistency,

• card tearing (unexpected removal of the Card out of the CAD) and
power failure,

• abort of a transaction in an unexpected context, (see
abortTransaction(), [JCAPI22] and ([JCRE22], §7.6.2)

• violation of the Firewall or JCVM SFPs,

• unavailability of resources,

• array overflow,

• other runtime errors related to applet’s failure (like uncaught
exceptions).

[JCSPP] Application note:

• The developer shall provide the exhaustive list of actual potential security
violations the TOE reacts to. For instance, other runtime errors related to
applet's failure like uncaught exceptions.

• The bytecode verification defines a large set of rules used to detect a
"potential security violation". The actual monitoring of these "events" within
the TOE only makes sense when the bytecode verification is performed on-
card.

• Depending on the context of use and the required security level, there are
cases where the card manager and the TOE must work in cooperation to
detect and appropriately react in case of potential security violation. This
behavior must be described in this component. It shall detail the nature of the
feedback information provided to the card manager (like the identity of the
offending application) and the conditions under which the feedback will occur
(any occurrence of the java.lang.SecurityException exception).

• The "locking of the card session" may not appear in the policy of the card
manager. Such measure should only be taken in case of severe violation
detection; the same holds for the re-initialization of the Java Card System.
Moreover, the locking should occur when “clean" re-initialization seems to be
impossible.

• The locking may be implemented at the level of the Java Card System as a
denial of service (through some systematic "fatal error" message or return
value) that lasts up to the next "RESET" event, without affecting other
components of the card (such as the card manager). Finally, because the
installation of applets is a sensitive process, security alerts in this case
should also be carefully considered herein.

FDP_SDI.2/CORE Stored data integrity monitoring and action

FDP_SDI.2.1/CORE The TSF shall monitor user data stored in containers controlled
by the TSF for integrity errors on all objects, based on the following attributes:
checksum of D.APP_I_DATA, D.APP_KEYs, D.PIN.

 86

FDP_SDI.2.2/CORE Upon detection of a data integrity error, the TSF shall take
actions defined in FAU_ARP.1/CORE.

[JCSPP] Application note:

• Although no such requirement is mandatory in the Java Card specification, at
least an exception shall be raised upon integrity errors detection on
cryptographic keys, PIN values and their associated security attributes. Even
if all the objects cannot be monitored, cryptographic keys and PIN objects
shall be considered with particular attention by ST authors as they play a key
role in the overall security.

• It is also recommended to monitor integrity errors in the code of the native
applications and Java Card applets.

• For integrity sensitive application, their data shall be monitored
(D.APP_I_DATA): applications may need to protect information against
unexpected modifications, and explicitly control whether a piece of
information has been changed between two accesses. For example,
maintaining the integrity of an electronic purse's balance is extremely
important because this value represents real money. Its modification must be
controlled, for illegal ones would denote an important failure of the payment
system.

• A dedicated library could be implemented and made available to developers
to achieve better security for specific objects, following the same pattern that
already exists in cryptographic APIs, for instance.

FPR_UNO.1/CORE Unobservability

FPR_UNO.1.1/CORE The TSF shall ensure that any user and subject are unable
to observe the operation End-user (Card Holder) authentication using PIN and
cryptographic operations on PIN code and cryptographic keys by TSF.

[JCSPP] Application note:
Although it is not required in [JCRE22] specifications, the non-observability of
operations on sensitive information such as keys appears as impossible to
circumvent in the smart card world. The precise list of operations and objects is left
unspecified, but should at least concern secret keys and PIN codes when they exists
on the card, as well as the cryptographic operations and comparisons performed on
them.

FPT_FLS.1/CORE Failure with preservation of secure state

FPT_FLS.1.1/CORE The TSF shall preserve a secure state when the following
types of failures occur: those associated to the potential security violations
described in FAU_ARP.1/CORE.

[JCSPP] Application note:
The Java Card RE Context is the Current context when the Java Card VM begins
running after a card reset ([JCRE22], §6.2.3) or after a proximity card (PICC)
activation sequence ([JCRE222]). Behavior of the TOE on power loss and reset is
described in [JCRE22], §3.6 and §7.1. Behavior of the TOE on RF signal loss is
described in [JCRE222], §3.6.1.

 87

FPT_TDC.1/CORE Inter-TSF basic TSF data consistency

FPT_TDC.1.1/CORE The TSF shall provide the capability to consistently interpret
the CAP files, the bytecode and its data arguments when shared between the
TSF and another trusted IT product.

FPT_TDC.1.2/CORE The TSF shall use
 the rules defined in [JCVM22] specification,
 the API tokens defined in the export files of reference implementation,
 the rules defined in [VGP]
 the rules defined in the [ISO7816], [ISO14443], [EMV42] and [EMVCL201]
when interpreting the TSF data from another trusted IT product.

[JCSPP] Application note:
Concerning the interpretation of data between the TOE and the underlying Java
Card platform, it is assumed that the TOE is developed consistently with the SCP
functions, including memory management, I/O functions and cryptographic functions.
[ST] Application note:
Therefore, the sharing between the TSF and another trusted IT product includes the
sharing between the JCS and Card Manager.

7.1.1.4 AID MANAGEMENT

FIA_ATD.1/AID User attribute definition

FIA_ATD.1.1/AID The TSF shall maintain the following list of security attributes
belonging to individual users:
 Package AID,
 Applet's version number,
 Registered applet AID,
 Applet Selection Status ([JCVM22], §6.5).
Refinement:
"Individual users" stand for applets.

FIA_UID.2/AID User identification before any action

FIA_UID.2.1/AID The TSF shall require each user to be successfully identified
before allowing any other TSF-mediated actions on behalf of that user.

[JCSPP] Application note:

• By users here it must be understood the ones associated to the packages (or
applets) that act as subjects of policies. In the Java Card System, every
action is always performed by an identified user interpreted here as the
currently selected applet or the package that is the subject's owner. Means of
identification are provided during the loading procedure of the package and
the registration of applet instances.

• The role Java Card RE defined in FMT_SMR.1/CORE is attached to an IT
security function rather than to a "user" of the CC terminology. The Java
Card RE does not "identify" itself to the TOE, but it is part of it.

FIA_USB.1/AID User-subject binding

FIA_USB.1.1/AID The TSF shall associate the following user security attributes with

 88

subjects acting on the behalf of that user: Package AID.

FIA_USB.1.2/AID The TSF shall enforce the following rules on the initial association
of user security attributes with subjects acting on the behalf of users: The Package
AID of a package being loaded is not already present within O.REGISTRY.

FIA_USB.1.3/AID The TSF shall enforce the following rules governing changes to
the user security attributes associated with subjects acting on the behalf of users:
none.

[JCSPP] Application note:
The user is the applet and the subject is the S.PACKAGE. The subject security
attribute "Context" shall hold the user security attribute "package AID".

FMT_MTD.1/JCRE Management of TSF data

FMT_MTD.1.1/JCRE The TSF shall restrict the ability to modify the list of
registered applets' AIDs to the JCRE.

[JCSPP] Application note:

• The installer and the Java Card RE manage other TSF data such as the
applet life cycle or CAP files, but this management is implementation
specific. Objects in the Java programming language may also try to query
AIDs of installed applets through the lookupAID(...) API method.

• The installer, applet deletion manager or even the card manager may be
granted the right to modify the list of registered applets' AIDs in specific
implementations (possibly needed for installation and deletion; see
#.DELETION and #.INSTALL).

FMT_MTD.3/JCRE Secure TSF data

FMT_MTD.3.1/JCRE The TSF shall ensure that only secure values are accepted for
the registered applets’ AIDs.

7.1.2 InstG security functional requirements

This group consists of the SFRs related to the installation of the applets, which
addresses security aspects outside the runtime. The installation of applets is a
critical phase, which lies partially out of the boundaries of the firewall, and therefore
requires specific treatment. In this PP, loading a package or installing an applet
modeled as importation of user data (that is, user application's data) with its security
attributes (such as the parameters of the applet used in the firewall rules).

FDP_ITC.2/Installer Import of user data with security attributes

FDP_ITC.2.1/Installer The TSF shall enforce the PACKAGE LOADING
information flow control SFP when importing user data, controlled under the SFP,
from outside of the TOE.

FDP_ITC.2.2/Installer The TSF shall use the security attributes associated with the
imported user data.

FDP_ITC.2.3/Installer The TSF shall ensure that the protocol used provides for the
unambiguous association between the security attributes and the user data received.

 89

FDP_ITC.2.4/Installer The TSF shall ensure that interpretation of the security
attributes of the imported user data is as intended by the source of the user data.

FDP_ITC.2.5/Installer The TSF shall enforce the following rules when importing
user data controlled under the SFP from outside the TOE:
Package loading is allowed only if, for each dependent package, its AID
attribute is equal to a resident package AID attribute, the major (minor) Version
attribute associated to the dependent package is lesser than or equal to the
major (minor) Version attribute associated to the resident package ([JCVM22],
§4.5.2).

[JCSPP] Application note:
FDP_ITC.2.1/Installer:

• The most common importation of user data is package loading and applet
installation on the behalf of the installer. Security attributes consist of the
shareable flag of the class component, AID and version numbers of the
package, maximal operand stack size and number of local variables for each
method, and export and import components (accessibility).

FDP_ITC.2.3/Installer:

• The format of the CAP file is precisely defined in [JCVM22] specifications; it
contains the user data (like applet's code and data) and the security
attributes altogether. Therefore there is no association to be carried out
elsewhere.

FDP_ITC.2.4/Installer:

• Each package contains a package Version attribute, which is a pair of major
and minor version numbers ([JCVM22], §4.5). With the AID, it describes the
package defined in the CAP file. When an export file is used during
preparation of a CAP file, the versions numbers and AIDs indicated in the

export file are recorded in the CAP files ([JCVM22], §4.5.2): the dependent

packages Versions and AIDs attributes allow the retrieval of these
identifications. Implementation-dependent checks may occur on a case-by-
case basis to indicate that package files are binary compatible. However,
package files do have "package Version Numbers" ([JCVM22]) used to
indicate binary compatibility or incompatibility between successive
implementations of a package, which obviously directly concern this
requirement.

FDP_ITC.2.5/Installer:

• A package may depend on (import or use data from) other packages already
installed. This dependency is explicitly stated in the loaded package in the
form of a list of package AIDs.

• The intent of this rule is to ensure the binary compatibility of the package with
those already on the card ([JCVM22], §4.4).

• The installation (the invocation of an applet's install method by the installer)
is implementation dependent ([JCRE22], §11.2).

• Other rules governing the installation of an applet, that is, its registration to
make it SELECTable by giving it a unique AID, are also implementation
dependent (see, for example, [JCRE22], §11).

 90

FMT_SMR.1/Installer Security roles

FMT_SMR.1.1/Installer The TSF shall maintain the roles: Installer.

FMT_SMR.1.2/Installer The TSF shall be able to associate users with roles.

FPT_FLS.1/Installer Failure with preservation of secure state

FPT_FLS.1.1/Installer The TSF shall preserve a secure state when the following
types of failures occur: the installer fails to load/install a package/applet as
described in [JCRE22] §11.1.4.

[JCSPP] Application note:
The TOE may provide additional feedback information to the card manager in case
of potential security violations (see FAU_ARP.1/CORE).

FPT_RCV.3/Installer Automated recovery without undue loss

FPT_RCV.3.1/Installer When automated recovery from none is not possible, the
TSF shall enter a maintenance mode where the ability to return to a secure state is
provided.

FPT_RCV.3.2/Installer For package/applet load/installation failures, the TSF
shall ensure the return of the TOE to a secure state using automated procedures.

FPT_RCV.3.3/Installer The functions provided by the TSF to recover from failure or
service discontinuity shall ensure that the secure initial state is restored without
exceeding 0% for loss of TSF data or objects under the control of the TSF.

FPT_RCV.3.4/Installer The TSF shall provide the capability to determine the objects
that were or were not capable of being recovered.

[JCSPP] Application note:
FPT_RCV.3.1/Installer:

• This element is not within the scope of the Java Card specification, which
only mandates the behavior of the Java Card System in good working order.
Further details on the "maintenance mode" shall be provided in specific
implementations. The following is an excerpt from [CC2], p298: In this
maintenance mode normal operation might be impossible or severely
restricted, as otherwise insecure situations might occur. Typically, only
authorised users should be allowed access to this mode but the real details
of who can access this mode is a function of FMT: Security management. If
FMT: Security management does not put any controls on who can access
this mode, then it may be acceptable to allow any user to restore the system
if the TOE enters such a state. However, in practice, this is probably not
desirable as the user restoring the system has an opportunity to configure
the TOE in such a way as to violate the SFRs.

FPT_RCV.3.2/Installer:

• Should the installer fail during loading/installation of a package/applet, it has
to revert to a "consistent and secure state". The Java Card RE has some
clean up duties as well; see [JCRE22], §11.1.5 for possible scenarios.
Precise behavior is left to implementers. This component shall include
among the listed failures the deletion of a package/applet. See ([JCRE22],
11.3.4) for possible scenarios. Precise behavior is left to implementers.

• Other events such as the unexpected tearing of the card, power loss, and so

 91

on, are partially handled by the underlying hardware platform (see [PP0035])
and, from the TOE's side, by events "that clear transient object" and
transactional features. See FPT_FLS.1.1/CORE, FDP_RIP.1/TRANSIENT,
FDP_RIP.1/ABORT and FDP_ROL.1/FIREWALL.

FPT_RCV.3.3/Installer:

• The quantification is implementation dependent, but some facts can be
recalled here. First, the SCP ensures the atomicity of updates for fields and
objects, and a power-failure during a transaction or the normal runtime does
not create the loss of otherwise-permanent data, in the sense that memory
on a smart card is essentially persistent with this respect (EEPROM). Data
stored on the RAM and subject to such failure is intended to have a limited
lifetime anyway (runtime data on the stack, transient objects' contents).
According to this, the loss of data within the TSF scope should be limited to
the same restrictions of the transaction mechanism.

7.1.3 ADELG security functional requirements

This group consists of the SFRs related to the deletion of applets and/or packages,
enforcing the applet deletion manager (ADEL) policy on security aspects outside the
runtime. Deletion is a critical operation and therefore requires specific treatment.
This policy is better thought as a frame to be filled by ST implementers.

FDP_ACC.2/ADEL Complete access control

FDP_ACC.2.1/ADEL The TSF shall enforce the ADEL access control SFP on
S.ADEL, S.JCRE, S.JCVM, O.JAVAOBJECT, O.APPLET and O.CODE_PKG and
all operations among subjects and objects covered by the SFP.
Refinement:
The operations involved in the policy are:
 OP.DELETE_APPLET,
 OP.DELETE_PCKG,
 OP.DELETE_PCKG_APPLET.

FDP_ACC.2.2/ADEL The TSF shall ensure that all operations between any subject
controlled by the TSF and any object controlled by the TSF are covered by an
access control SFP.

FDP_ACF.1/ADEL Security attribute based access control

FDP_ACF.1.1/ADEL The TSF shall enforce the ADEL access control SFP to
objects based on the following:

Subject/Object Security attributes

S.JCVM Active Applets

S.JCRE Selected Applet Context, Registered Applets, Resident
Packages

O.CODE_PKG Package AID, Dependent Package AID, Static
References

O.APPLET Applet Selection Status

O.JAVAOBJECT Owner, Remote

 92

FDP_ACF.1.2/ADEL The TSF shall enforce the following rules to determine if an
operation among controlled subjects and controlled objects is allowed:
In the context of this policy, an object O is reachable if and only one of the
following conditions hold:
 (1) the owner of O is a registered applet instance A (O is reachable from A),
 (2) a static field of a resident package P contains a reference to O (O is

reachable from P),
 (3) there exists a valid remote reference to O (O is remote reachable),
 (4) there exists an object O' that is reachable according to either (1) or (2)

or (3) above and O' contains a reference to O (the reachability status of O is
that of O').

The following access control rules determine when an operation among
controlled subjects and objects is allowed by the policy:
 R.JAVA.14 ([JCRE22], §11.3.4.1, Applet Instance Deletion): S.ADEL may

perform OP.DELETE_APPLET upon an O.APPLET only if,
(1) S.ADEL is currently selected,
(2) there is no instance in the context of O.APPLET that is active in any
logical channel and
(3) there is no O.JAVAOBJECT owned by O.APPLET such that either
O.JAVAOBJECT is reachable from an applet instance distinct from
O.APPLET, or O.JAVAOBJECT is reachable from a package P, or
([JCRE22], §8.5) O.JAVAOBJECT is remote reachable.

 R.JAVA.15 ([JCRE22], §11.3.4.1, Multiple Applet Instance Deletion): S.ADEL
may perform OP.DELETE_APPLET upon several O.APPLET only if,
(1) S.ADEL is currently selected,
(2) there is no instance of any of the O.APPLET being deleted that is active
in any logical channel and
(3) there is no O.JAVAOBJECT owned by any of the O.APPLET being
deleted such that either O.JAVAOBJECT is reachable from an applet
instance distinct from any of those O.APPLET, or O.JAVAOBJECT is
reachable from a package P, or ([JCRE22], §8.5) O.JAVAOBJECT is remote
reachable.

 R.JAVA.16 ([JCRE22], §11.3.4.2, Applet/Library Package Deletion): S.ADEL
may perform OP.DELETE_PCKG upon an O.CODE_PKG only if,
(1) S.ADEL is currently selected,
(2) no reachable O.JAVAOBJECT, from a package distinct from
O.CODE_PKG that is an instance of a class that belongs to O.CODE_PKG,
exists on the card and
(3) there is no resident package on the card that depends on O.CODE_PKG.

 R.JAVA.17 ([JCRE22], §11.3.4.3, Applet Package and Contained Instances
Deletion): S.ADEL may perform OP.DELETE_PCKG_APPLET upon an
O.CODE_PKG only if,
(1) S.ADEL is currently selected,
(2) no reachable O.JAVAOBJECT, from a package distinct from
O.CODE_PKG, which is an instance of a class that belongs to
O.CODE_PKG exists on the card,
(3) there is no package loaded on the card that depends on O.CODE_PKG,
and
(4) for every O.APPLET of those being deleted it holds that: (i) there is no

 93

instance in the context of O.APPLET that is active in any logical channel
and (ii) there is no O.JAVAOBJECT owned by O.APPLET such that either
O.JAVAOBJECT is reachable from an applet instance not being deleted, or
O.JAVAOBJECT is reachable from a package not being deleted, or

([JCRE22], §8.5) O.JAVAOBJECT is remote reachable.

FDP_ACF.1.3/ADEL The TSF shall explicitly authorise access of subjects to objects
based on the following additional rules: none.

FDP_ACF.1.4/ADEL [Editorially Refined] The TSF shall explicitly deny access of
any subject but S.ADEL to O.CODE_PKG or O.APPLET for the purpose of
deleting them from the card.

[JCSPP] Application note:
FDP_ACF.1.2/ADEL:

• This policy introduces the notion of reachability, which provides a general
means to describe objects that are referenced from a certain applet instance
or package.

• S.ADEL calls the "uninstall" method of the applet instance to be deleted, if
implemented by the applet, to inform it of the deletion request. The orders in
which these calls and the dependencies checks are performed are out of the
scope of this protection profile.

FDP_RIP.1/ADEL Subset residual information protection

FDP_RIP.1.1/ADEL The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the
following objects: applet instances and/or packages when one of the deletion
operations in FDP_ACC.2.1/ADEL is performed on them.

[JCSPP] Application note:
Deleted freed resources (both code and data) may be reused, depending on the way
they were deleted (logically or physically). Requirements on de-allocation during
applet/package deletion are described in [JCRE22], §11.3.4.1, §11.3.4.2 and
§11.3.4.3.

FMT_MSA.1/ADEL Management of security attributes

FMT_MSA.1.1/ADEL The TSF shall enforce the ADEL access control SFP to
restrict the ability to modify the security attributes Registered Applets and
Resident Packages to the Java Card RE.

FMT_MSA.3/ADEL Static attribute initialisation

FMT_MSA.3.1/ADEL The TSF shall enforce the ADEL access control SFP to
provide restrictive default values for security attributes that are used to enforce the
SFP.

FMT_MSA.3.2/ADEL The TSF shall allow the following role(s): none, to specify
alternative initial values to override the default values when an object or information
is created.

FMT_SMF.1/ADEL Specification of Management Functions

 94

FMT_SMF.1.1/ADEL The TSF shall be capable of performing the following
management functions: modify the list of registered applets' AIDs and the
Resident Packages.

FMT_SMR.1/ADEL Security roles

FMT_SMR.1.1/ADEL The TSF shall maintain the roles: applet deletion manager.

FMT_SMR.1.2/ADEL The TSF shall be able to associate users with roles.

FPT_FLS.1/ADEL Failure with preservation of secure state

FPT_FLS.1.1/ADEL The TSF shall preserve a secure state when the following types
of failures occur: the applet deletion manager fails to delete a package/applet as
described in [JCRE22], §11.3.4.

[JCSPP] Application note:

• The TOE may provide additional feedback information to the card manager in
case of a potential security violation (see FAU_ARP.1/CORE).

• The Package/applet instance deletion must be atomic. The "secure state"
referred to in the requirement must comply with Java Card specification
([JCRE22], §11.3.4.)

7.1.4 RMIG security functional requirements

This group specifies the policies that control the access to the remote objects and
the flow of information that takes place when the RMI service is used. The rules
relate mainly to the lifetime of the remote references. Information concerning remote
object references can be sent out of the card only if the corresponding remote object
has been designated as exportable. Array parameters of remote method invocations
must be allocated on the card as global arrays. Therefore, the storage of references
to those arrays must be restricted as well. The JCRMI policy embodies both an
access control and an information flow control policy.

FDP_ACC.2/JCRMI Complete access control

FDP_ACC.2.1/JCRMI The TSF shall enforce the JCRMI access control SFP on
S.CAD, S.JCRE, O.APPLET, O.REMOTE_OBJ, O.REMOTE_MTHD, O.ROR,
O.RMI_SERVICE and all operations among subjects and objects covered by the
SFP.
Refinement:
The operations involved in this policy are:
 OP.GET_ROR,
 OP.INVOKE.

FDP_ACC.2.2/JCRMI The TSF shall ensure that all operations between any subject
controlled by the TSF and any object controlled by the TSF are covered by an
access control SFP.

FDP_ACF.1/JCRMI Security attribute based access control

FDP_ACF.1.1/JCRMI The TSF shall enforce the JCRMI access control SFP to
objects based on the following:

 95

Subject/Object Security attributes

S.JCRE Selected Applet Context

O.REMOTE_OBJ Owner, Class, Identifier, ExportedInfo

O.REMOTE_MTHD Identifier

O.RMI_SERVICE Owner, Returned References

FDP_ACF.1.2/JCRMI The TSF shall enforce the following rules to determine if an
operation among controlled subjects and controlled objects is allowed:
 R.JAVA.18: S.CAD may perform OP.GET_ROR upon O.APPLET only if

O.APPLET is the currently selected applet, and there exists an
O.RMI_SERVICE with a registered initial reference to an O.REMOTE_OBJ
that is owned by O.APPLET.

 R.JAVA.19: S.JCRE may perform OP.INVOKE upon O.RMI_SERVICE,
O.ROR and O.REMOTE_MTHD only if O.ROR is valid (as defined in
[JCRE22], §8.5) and it belongs to the Returned References of
O.RMI_SERVICE, and if the Identifier of O.REMOTE_MTHD matches one of
the remote methods in the Class of the O.REMOTE_OBJ to which O.ROR
makes reference.

FDP_ACF.1.3/JCRMI The TSF shall explicitly authorise access of subjects to
objects based on the following additional rules: none.

FDP_ACF.1.4/JCRMI [Editorially Refined] The TSF shall explicitly deny access of
any subject but S.JCRE to O.REMOTE_OBJ and O.REMOTE_MTHD for the
purpose of performing a remote method invocation.

[JCSPP] Application note:
FDP_ACF.1.2/JCRMI:

• The validity of a remote object reference is specified as a lifetime
characterization. The security attributes involved in the rules for determining
valid remote object references are the Returned References of the
O.RMI_SERVICE and the Active Applets (see FMT_REV.1.1/JCRMI and
FMT_REV.1.2/JCRMI). The precise mechanism by which a remote method is
invoked on a remote object is defined in detail in ([JCRE22], §8.5.2 and
[JCAPI22]).

• Note that the owner of an O.RMI_SERVICE is the applet instance that
created the object. The attribute Returned References lists the remote object
references that have been sent to the S.CAD during the applet selection
session. This attribute is implementation dependent.

FDP_IFC.1/JCRMI Subset information flow control

FDP_IFC.1.1/JCRMI The TSF shall enforce the JCRMI information flow control
SFP on S.JCRE, S.CAD, I.RORD and OP.RET_RORD(S.JCRE,S.CAD,I.RORD).

[JCSPP] Application note:
FDP_IFC.1.1/JCRMI:

• Array parameters of remote method invocations must be allocated on the
card as global arrays objects. References to global arrays cannot be stored
in class variables, instance variables or array components. The control of the

 96

flow of that kind of information has already been specified in
FDP_IFC.1.1/JCVM.

• A remote object reference descriptor is sent from the card to the CAD either
as the result of a successful applet selection command ([JCRE22], §8.4.1),
and in this case it describes, if any, the initial remote object reference of the
selected applet; or as the result of a remote method invocation
([JCRE22],§8.3.5.1).

FDP_IFF.1/JCRMI Simple security attributes

FDP_IFF.1.1/JCRMI The TSF shall enforce the JCRMI information flow control
SFP based on the following types of subject and information security attributes:

Subject/Information Security attributes

I.RORD ExportedInfo

FDP_IFF.1.2/JCRMI The TSF shall permit an information flow between a controlled
subject and controlled information via a controlled operation if the following rules
hold: OP.RET_RORD(S.JCRE, S.CAD, I.RORD) is permitted only if the attribute
ExportedInfo of I.RORD has the value "true" ([JCRE22], §8.5).

FDP_IFF.1.3/JCRMI The TSF shall enforce the none.

FDP_IFF.1.4/JCRMI The TSF shall explicitly authorise an information flow based on
the following rules: none.

FDP_IFF.1.5/JCRMI The TSF shall explicitly deny an information flow based on the
following rules: none.

[JCSPP] Application note:
The ExportedInfo attribute of I.RORD indicates whether the O.REMOTE_OBJ which
I.RORD identifies is exported or not (as indicated by the security attribute
ExportedInfo of the O.REMOTE_OBJ).

FMT_MSA.1/EXPORT Management of security attributes

FMT_MSA.1.1/EXPORT The TSF shall enforce the JCRMI access control SFP to
restrict the ability to modify the security attributes: ExportedInfo of
O.REMOTE_OBJ to its owner applet.

[JCSPP] Application note:
The Exported status of a remote object can be modified by invoking its methods
export() and unexport(), and only the owner of the object may perform the invocation
without raising a SecurityException
(javacard.framework.service.CardRemoteObject). However, even if the owner of the
object may provoke the change of the security attribute value, the modification itself
can be performed by the Java Card RE.

FMT_MSA.1/REM_REFS Management of security attributes

FMT_MSA.1.1/REM_REFS The TSF shall enforce the JCRMI access control SFP
to restrict the ability to modify the security attributes Returned References of
O.RMI_SERVICE to its owner applet.

 97

FMT_MSA.3/JCRMI Static attribute initialisation

FMT_MSA.3.1/JCRMI The TSF shall enforce the JCRMI access control SFP and the
JCRMI information flow control SFP to provide restrictive default values for security
attributes that are used to enforce the SFP.

FMT_MSA.3.2/JCRMI The TSF shall allow the following role(s): none, to specify
alternative initial values to override the default values when an object or information
is created.

[JCSPP] Application note:
FMT_MSA.3.1/JCRMI:

• Remote objects' security attributes are created and initialized at the creation
of the object, and except for the ExportedInfo attribute, the values of the
attributes are not longer modifiable. The default value of the Exported
attribute is true. There is one default value for the Selected Applet Context
that is the default applet identifier's context, and one default value for the
active context, that is "Java Card RE".

FMT_MSA.3.2/JCRMI:

• The intent is to have none of the identified roles to have privileges with
regards to the default values of the security attributes. It should be noticed
that creation of objects is an operation controlled by the FIREWALL access
control SFP.

FMT_REV.1/JCRMI Revocation

FMT_REV.1.1/JCRMI [Editorially Refined] The TSF shall restrict the ability to
revoke the Returned References of O.RMI_SERVICE to the Java Card RE.

FMT_REV.1.2/JCRMI The TSF shall enforce the rules that determine the lifetime
of remote object references.

[JCSPP] Application note:
The rules are described in [JCRE22], §8.5.

FMT_SMF.1/JCRMI Specification of Management Functions

FMT_SMF.1.1/JCRMI The TSF shall be capable of performing the following
management functions:
 modify the security attribute ExportedInfo of O.REMOTE_OBJ,
 modify the security attribute Returned References of O.RMI_SERVICE.

FMT_SMR.1/JCRMI Security roles

FMT_SMR.1.1/JCRMI The TSF shall maintain the roles: applet.

FMT_SMR.1.2/JCRMI The TSF shall be able to associate users with roles

[JCSPP] Application note:
Applets own remote interface objects and may choose to allow or forbid their
exportation, which is managed through a security attribute.

7.1.5 ODELG security functional requirements

 98

The following requirements concern the object deletion mechanism. This mechanism
is triggered by the applet that owns the deleted objects by invoking a specific API
method.

FDP_RIP.1/ODEL Subset residual information protection

FDP_RIP.1.1/ODEL The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the
following objects: the objects owned by the context of an applet instance
which triggered the execution of the method
javacard.framework.JCSystem.requestObjectDeletion().

[JCSPP] Application note:

• Freed data resources resulting from the invocation of the method
javacard.framework.JCSystem.requestObjectDeletion() may be reused.
Requirements on de-allocation after the invocation of the method are
described in [JCAPI22].

• There is no conflict with FDP_ROL.1 here because of the bounds on the
rollback mechanism: the execution of requestObjectDeletion() is not in the
scope of the rollback because it must be performed in between APDU
command processing, and therefore no transaction can be in progress.

FPT_FLS.1/ODEL Failure with preservation of secure state

FPT_FLS.1.1/ODEL The TSF shall preserve a secure state when the following types
of failures occur: the object deletion functions fail to delete all the unreferenced
objects owned by the applet that requested the execution of the method.

[JCSPP] Application note:
The TOE may provide additional feedback information to the card manager in case
of potential security violation (see FAU_ARP.1/CORE).

7.1.6 CarG security functional requirements

This group includes requirements for preventing the installation of packages that has
not been bytecode verified, or that has been modified after bytecode verification.

FCO_NRO.2/CM Enforced proof of origin

FCO_NRO.2.1/CM The TSF shall enforce the generation of evidence of origin for
transmitted application packages at all times.

FCO_NRO.2.2/CM [Editorially Refined] The TSF shall be able to relate the
identity of the originator of the information, and the application package contained
in the information to which the evidence applies.

FCO_NRO.2.3/CM The TSF shall provide a capability to verify the evidence of origin
of information to recipient given immediate verification of origin.

[JCSPP] Application note:
FCO_NRO.2.1/CM:

• Upon reception of a new application package for installation, the card
manager shall first check that it actually comes from the verification authority.
The verification authority is the entity responsible for bytecode verification.

 99

FCO_NRO.2.3/CM:

• The exact limitations on the evidence of origin are implementation
dependent. In most of the implementations, the card manager performs an
immediate verification of the origin of the package using an electronic
signature mechanism, and no evidence is kept on the card for future
verifications.

FDP_IFC.2/CM Complete information flow control

FDP_IFC.2.1/CM The TSF shall enforce the PACKAGE LOADING information
flow control SFP on S.INSTALLER, S.BCV, S.CAD and I.APDU and all operations
that cause that information to flow to and from subjects covered by the SFP.
Refinement:
The operations involved in the policy are:
 OP.SEND
 OP.RECEIVE

FDP_IFC.2.2/CM The TSF shall ensure that all operations that cause any
information in the TOE to flow to and from any subject in the TOE are covered by an
information flow control SFP.

[JCSPP] Application note:

• The subjects covered by this policy are those involved in the loading of an
application package by the card through a potentially unsafe communication
channel.

• The operations that make information to flow between the subjects are those
enabling to send a message through and to receive a message from the
communication channel linking the card to the outside world. It is assumed
that any message sent through the channel as clear text can be read by an
attacker. Moreover, an attacker may capture any message sent through the
communication channel and send its own messages to the other subjects.

• The information controlled by the policy is the APDUs exchanged by the
subjects through the communication channel linking the card and the CAD.
Each of those messages contain part of an application package that is
required to be loaded on the card, as well as any control information used by
the subjects in the communication protocol.

FDP_IFF.1/CM Simple security attributes

FDP_IFF.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow
control SFP based on the following types of subject and information security
attributes: subjects, information and the security attributes listed in the
following table.

Subject/Information Security attributes

S.INSTALLER SecureChannel, SecurityLevel

S.BCV None

S.CAD None

I.APDU SecurityLevel, Verified

 100

Security attributes Values

SecureChannel Boolean (True or False)

SecurityLevel 0 (none)
1 (MAC)
3 (Both Encryption and MAC)

Verified Boolean (True or False)

FDP_IFF.1.2/CM The TSF shall permit an information flow between a controlled
subject and controlled information via a controlled operation if the following rules
hold:
 An information flow between S.CAD (on the behalf of S.BCV) and

S.INSTALLER is allowed if and only if the following conditions are all
satisfied:
 SecureChannel of S.INSTALLER has the value ‘True’,
 SecurityLevel of I.APDU meets SecurityLevel of S.INSTALLER
 Verified of I.APDU is ‘True’.

FDP_IFF.1.3/CM The TSF shall enforce the none.

FDP_IFF.1.4/CM The TSF shall explicitly authorise an information flow based on the
following rules: none.

FDP_IFF.1.5/CM The TSF shall explicitly deny an information flow based on the
following rules: none.

[JCSPP] Application note:
FDP_IFF.1.1/CM:

• The security attributes used to enforce the PACKAGE LOADING SFP are
implementation dependent. More precisely, they depend on the
communication protocol enforced between the CAD and the card. For
instance, some of the attributes that can be used are: (1) the keys used by
the subjects to encrypt/decrypt their messages; (2) the number of pieces the
application package has been split into in order to be sent to the card; (3) the
ordinal of each piece in the decomposition of the package, etc. See for
example Appendix D of [GP].

FDP_IFF.1.2/CM:

• The precise set of rules to be enforced by the function is implementation
dependent. The whole exchange of messages shall verify at least the
following two rules: (1) the subject S.INSTALLER shall accept a message
only if it comes from the subject S.CAD; (2) the subject S.INSTALLER shall
accept an application package only if it has received without modification and
in the right order all the APDUs sent by the subject S.CAD.

FDP_UIT.1/CM Data exchange integrity

FDP_UIT.1.1/CM The TSF shall enforce the PACKAGE LOADING information
flow control SFP to receive user data in a manner protected from modification,
deletion, insertion, and replay errors.

FDP_UIT.1.2/CM [Editorially Refined] The TSF shall be able to determine on
receipt of user data, whether modification, deletion, insertion, replay of some of

 101

the pieces of the application sent by the CAD has occurred.

[JCSPP] Application note:
Modification errors should be understood as modification, substitution,
unrecoverable ordering change of data and any other integrity error that may cause
the application package to be installed on the card to be different from the one sent
by the CAD.

FIA_UID.1/CM Timing of identification

FIA_UID.1.1/CM The TSF shall allow Get Data, Select Applet, Manage Channel
on behalf of the user to be performed before the user is identified.

FIA_UID.1.2/CM The TSF shall require each user to be successfully identified before
allowing any other TSF-mediated actions on behalf of that user.

[JCSPP] Application note:
The list of TSF-mediated actions is implementation-dependent, but package
installation requires the user to be identified. Here by user is meant the one(s) that in
the Security Target shall be associated to the role(s) defined in the component
FMT_SMR.1/CM.

FMT_MSA.1/CM Management of security attributes

FMT_MSA.1.1/CM The TSF shall enforce the PACKAGE LOADING information
flow control SFP to restrict the ability to query and modify the security attributes
SecureChannel, SecurityLevel and Verified to Card Administrator.

FMT_MSA.3/CM Static attribute initialisation

FMT_MSA.3.1/CM The TSF shall enforce the PACKAGE LOADING information
flow control SFP to provide restrictive default values for security attributes that are
used to enforce the SFP.

FMT_MSA.3.2/CM The TSF shall allow the none to specify alternative initial values
to override the default values when an object or information is created.

FMT_SMF.1/CM Specification of Management Functions

FMT_SMF.1.1/CM The TSF shall be capable of performing the following
management functions: management of security attributes for PACKAGE
LOADING information flow control SFP.

FMT_SMR.1/CM Security roles

FMT_SMR.1.1/CM The TSF shall maintain the roles Card Administrator and
Application Provider.

FMT_SMR.1.2/CM The TSF shall be able to associate users with roles.

FTP_ITC.1/CM Inter-TSF trusted channel

FTP_ITC.1.1/CM The TSF shall provide a communication channel between itself
and another trusted IT product that is logically distinct from other communication
channels and provides assured identification of its end points and protection of the
channel data from modification or disclosure.

 102

FTP_ITC.1.2/CM [Editorially Refined] The TSF shall permit the CAD placed in the
card issuer secured environment to initiate communication via the trusted
channel.

FTP_ITC.1.3/CM The TSF shall initiate communication via the trusted channel for
loading/installing a new application package on the card.

[JCSPP] Application note:
There is no dynamic package loading on the Java Card platform. New packages can
be installed on the card only on demand of the card issuer.

7.1.7 CMGRG security functional requirements

This group contains the security requirements for the card manager. Also, this group
contains the security requirements to fulfill GP specific objectives.
The security requirements below help to define a policy for controlling access to card
content management operations and for expressing card issuer security concerns.
This policy shall be highly dependent on the particular security and card
management architecture present in the card. Therefore the policy should be
accordingly refined when developing conformant Security Targets.

FDP_ACC.1/CMGR Subset access control

FDP_ACC.1.1/CMGR The TSF shall enforce the CARD CONTENT MANAGEMENT
access control SFP on the following list of subjects, objects, and operations.
 Subjects: S.OPEN, S.ISD, S.SD
 Objects: O.CARD_CONTENT, O.REGISTRY
 Operations: OP.MAC(O.CARD_CONTENT), OP.DAP(O.CARD_CONTENT),

OP.CCMF(O.CARD_CONTENT, O.REGISTRY)

FDP_ACF.1/CMGR Security attribute based access control

FDP_ACF.1.1/CMGR The TSF shall enforce the CARD CONTENT MANAGEMENT
access control SFP to objects based on the following security attributes.

Subject/Object Security attributes

S.OPEN None

S.ISD AID, Privilege, Life Cycle State

S.SD AID, Privilege, Life Cycle State

O.CARD_CONTENT AID, Verified

O.REGISTRY None

Security attributes Values

AID Application ID

Privilege Application Privileges defined in [GP]

Life Cycle State card: OP_READY, INITIALIZED, SECURED,
CARD_LOCKED, TERMINATED
security domain: INSTALLED, SELECTABLE,
PERSONALIZED, LOCKED

Verified Boolean (True or False)

 103

[ST] Application note:
Security domain for Application Provider can have either privilege ‘Security Domain
Privilege’, ‘Security Domain with DAP Verification Privilege’, or any other application
specific privileges. Security Domain for Controlling Authority can have privilege
‘Security Domain with Mandated DAP Verification Privilege’.
ISD inherits the Life Cycle State of the card.

FDP_ACF.1.2/CMGR The TSF shall enforce the following rules to determine if an
operation among controlled subjects and controlled objects is allowed:
 R.GP.1 Only S.ISD shall be allowed to request S.OPEN to perform

OP.CCMF upon O.CARD_CONTENT and O.REGISTRY.
 R.GP.2 S.SD shall allow S.ISD to request S.OPEN to perform OP.CCMF

upon its own O.CARD_CONTENT and O.REGISTRY.
 R.GP.3 S.ISD shall be allowed to perform OP.MAC upon

O.CARD_CONTENT.
 R.GP.4 If any activated S.SD with Privilege ‘Security Domain with Mandated

DAP Verification Privilege’, the S.SD shall perform OP.DAP upon every
O.CARD_CONTENT before S.OPEN performs OP.CCMF (for loading and
installation).

 R.GP.5 If any activated S.SD with Privilege ‘Security Domain with DAP
Verification Privilege’, the S.SD shall perform OP.DAP upon its own
O.CARD_CONTENT before S.OPEN performs OP.CCMF (for loading and
installation).

 R.GP.6 S.OPEN shall be allowed to perform OP.CCMF(for loading and
installation) upon O.CARD_CONTENT and O.REGISTRY if and only if the
following conditions are all satisfied:
 Verified of O.CARD_CONTENT has the value ‘True’,
 OP.DAP on O.CARD_CONTENT is successful (if any activated S.SD

mentioned in R.GP.4 and R.GP.5),
 the AID of O.CARD_CONTENT is not already present within

O.REGISTRY,
 the associated S.SD’s AID exists within O.REGISTRY and has the

relevant Privilege,
 and S.ISD’ or S.SD’s Life Cycle State has valid value.

 R.GP.7 S.OPEN shall be allowed to OP.CCMF (for removal except for
S.SD’s own removal) upon O.CARD_CONTENT and O.REGISTRY if and
only if the following conditions are all satisfied:
 the AID of O.CARD_CONTENT has an entry within O.REGISTRY,
 the AID of O.CARD_CONTENT (including application data) is not

currently selected or referenced.
 R.GP.8 S.OPEN shall be allowed to OP.CCMF (for extradition) upon

O.CARD_CONTENT and O.REGISTRY if and only if the following conditions
are all satisfied:
 the AID of O.CARD_CONTENT has an entry within O.REGISTRY,
 the S.SD requesting the extradition is the Security Domain associated

with the AID of O.CARD_CONTENT,
 Privilege of the S.SD is Security Domain,
 and S.ISD’ or S.SD’s Life Cycle State has valid value.

FDP_ACF.1.3/CMGR The TSF shall explicitly authorize access of subjects to objects

 104

based on the following additional rules:
 R.GP.9 S.ISD and S.SD shall require only the minimum security

requirements for GP commands as defined by [VGP].

FDP_ACF.1.4/CMGR The TSF shall explicitly deny access of subjects to objects
based on the following additional rules:
 R.GP.10 If Life Cycle State of S.ISD is CARD_LOCKED or TERMINATED,

S.ISD shall deny requesting S.OPEN to perform OP.CCMF upon
O.CARD_CONTENT and O.REGISTRY.

 R.GP.11 If one of the conditions under R.GP.6 fails, S.OPEN shall deny
performing OP.CCMF (for loading and installation) upon
O.CARD_CONTENT and O.REGISTRY.

 R.GP.12 If one of the conditions under R.GP.7 fails, S.OPEN shall deny
performing OP.CCMF (for remove) upon O.CARD_CONTENT and
O.REGISTRY.

 R.GP.13 If one of the conditions under R.GP8 fails, S.OPEN shall deny
performing OP.CCMF (for extradition) upon O.CARD_CONTENT and
O.REGISTRY.

 R.GP.14 If a CCMF process is already in progress on another logical
channel, S.OPEN shall deny performing OP.CCMF upon
O.CARD_CONTENT and O.REGISTRY.

FMT_MSA.1/CMGR Management of security attributes

FMT_MSA.1.1/CMGR The TSF shall enforce the CARD CONTENT MANAGEMENT
access control SFP to restrict the ability to modify, delete, and create the security
attributes listed in the following table to OPEN.

Abilities Security attributes

modify, delete, create AID, Privilege, and Life Cycle State

modify Verified

FMT_MSA.3/CMGR Static attribute initialisation

FMT_MSA.3.1/CMGR The TSF shall enforce the CARD CONTENT MANAGEMENT
access control SFP to provide restrictive default values for security attributes that
are used to enforce the SFP.

FMT_MSA.3.2/CMGR The TSF shall allow the none to specify alternative initial
values to override the default values when an object or information is created.

FMT_SMF.1/CMGR Specification of Management Functions

FMT_SMF.1.1/CMGR The TSF shall be capable of performing the following
management functions: management of security attributes for CARD CONTENT
MANAGEMENT access control SFP, which are stored within GlobalPlatform
Registry.

FMT_SMR.1/CMGR Security roles

FMT_SMR.1.1/CMGR The TSF shall maintain the roles: Card Administrator,
Application Provider, and End-user (Card Holder).

 105

FMT_SMR.1.2/CMGR The TSF shall be able to associate users with roles.

FIA_UID.1/CMGR Timing of identification

FIA_UID.1.1/CMGR The TSF shall allow Get Data, Select Applet, Manage
Channel on behalf of the user to be performed before the user is identified.

FIA_UID.1.2/CMGR The TSF shall require each user to be successfully identified
before allowing any other TSF-mediated actions on behalf of that user.

FIA_AFL.1/GP Authentication failure handling

FIA_AFL.1.1/GP The TSF shall detect when 10 (for the Secure Channel
Establishment) and 3 (for the CVM, configurable by Application with CVM
privilege) unsuccessful authentication attempts occur related to the Secure
Channel Establishment and the CVM.

FIA_AFL.1.2/GP When the defined number of unsuccessful authentication attempts
has been met, the TSF shall terminate the card (for Secure Channel
Establishment) and block the PIN (for the CVM).

[ST] Application note:
Basic authentication failure handling applies to any authentication feature managed
by the OS or GP.
And to GP when CVM is included.

FIA_ATD.1/GP User attribute definition

FIA_ATD.1.1/GP The TSF shall maintain the following list of security attributes
belonging to individual users:
 Card Administrator: AID, Life Cycle State, Privilege, ISD Keys
 Application Provider: AID, Life Cycle State, Privilege, SD Keys
 End-user (Card Holder): AID, Privilege, CVM State, Retry Limit, Retry

Counter.

[ST] Application note:
These are the security attributes associated to GP configuration defined users (e.g.
Roles).

FIA_UAU.1/GP Timing of authentication

FIA_UAU.1.1/GP The TSF shall allow Get Data, Select Applet, Manage Channel
on behalf of the user to be performed before the user is authenticated.

FIA_UAU.1.2/GP The TSF shall require each user to be successfully authenticated
before allowing any other TSF-mediated actions on behalf of that user.

[ST] Application note:
Developer should identify in all transactions which operations are allowed before
authentication is performed.

FIA_UAU.4/GP Single-use authentication mechanisms

FIA_UAU.4.1/GP The TSF shall prevent reuse of authentication data related to the
Secure Channel Establishment.

 106

FIA_USB.1/GP User-subject binding

FIA_USB.1.1/GP The TSF shall associate the following user security attributes with
subjects acting on the behalf of that user: AID.

FIA_USB.1.2/GP The TSF shall enforce the following rules on the initial association
of user security attributes with subjects acting on the behalf of users: none.

FIA_USB.1.3/GP The TSF shall enforce the following rules governing changes to
the user security attributes associated with subjects acting on the behalf of users:
Only privileged Applications shall be allowed to access management services
for user security attributes.

[ST] Application notes:
FIA_USB is related in JCSPP to AID (see 4.1.1.4) but has to be applies also to User
security attributes defined in GP configurations

FMT_MOF.1/GP Management of security functions behavior

FMT_MOF.1.1/GP The TSF shall restrict the ability to disable, enable, modify the
behavior of the functions listed in the following table to Card Administrator.

Abilities Functions

enable
modify the behavior of

CCMFs

disable transition to previous card life cycle phase

[ST] Application note:
This SFR applies to OS and GP modification of security function behavior ,by
example Loading key for next life-cycle state, disabling previous phase.

FMT_MSA.2/GP Secure security attributes

FMT_MSA.2.1/GP The TSF shall ensure that only secure values are accepted for
Verified and Authenticated.

[ST] Application note:
Requirement for the TSF to ensure that only secure values Secure are accepted for
security attributes applies to JCRE and BCV groups. It shall be applied to GP
especially for attributes related to P.LOAD_FILE_VERIFICATION and
P.APPLICATION_CODE_VERIFICATION policies

FMT_MTD.1/GP Management of TSF data

FMT_MTD.1.1/GP The TSF shall restrict the ability to modify, delete, and create
the GlobalPlatform Registry to Card Administrator.

[ST] Application note:
Application Provider also can perform management of TSF data for its own
application by allowing Card Administrator to perform that function.

FMT_SMF.1/GP Specification of Management Functions

FMT_SMF.1.1/GP The TSF shall be capable of performing the following
management functions:
 enable and modify the behavior of CCMFs,
 disable transition to previous card life cycle phase,

 107

 modify, delete, and create the GlobalPlatform Registry.

Application note:
The SFR should be aligned with FMT of GP

FPT_TST.1/GP TSF testing

FPT_TST.1.1/GP The TSF shall run a suite of self tests during initial start-up to
demonstrate the correct operation of the TSF.

FPT_TST.1.1/GP The TSF shall provide authorised users with the capability to verify
the integrity of parts of TSF data(D.API_DATA, D.CRYPTO, D.JCS_CODE,
D.JCS_DATA, D.SEC_DATA, D.OS_DATA, D.OS_CODE, D.ISD_KEYS,
D.SD_KEYS).

FPT_TST.1.3/GP The TSF shall provide authorised users with the capability to verify
the integrity of parts of TSF(Card manager, GP API, JCRE, JCVM, JCAPI)

7.1.8 SCPG security functional requirements

This group contains the security requirements for the smart card platform, that is,
operating system and chip that the Java Card System is implemented upon. These
requirements apply to the GP platform.

FCS_RNG.1/SCP Random number generation

FCS_RNG.1.1/SCP The TSF shall provide a physical random number generator
that implements a total failure test of the random source.

FCS_RNG.1.2/SCP The TSF shall provide random numbers that meet P2 class of
BSI-AIS31.

[ST] Application note:
This requirement comes from the [ICST].

FPT_FLS.1/SCP Failure with preservation of secure state

FPT_FLS.1.1/SCP The TSF shall preserve a secure state when the following types
of failures occur: exposure to operating conditions which may not be tolerated
according to the requirement FRU_FLT.1 and where therefore a malfunction
could occur.

[ST] Application note:
This requirement comes from FPT_FLS.1 in the [ICST].

FPT_PHP.3/SCP Resistance to physical attack

FPT_PHP.3.1/SCP The TSF shall resist physical manipulation and physical
probing to the TSF by responding automatically such that the TSP is not violated.

[ST] Application note:
This requirement comes from the [ICST].

FPT_RCV.3/SCP Automated recovery without undue loss

FPT_RCV.3.1/SCP When automated recovery from none is not possible, the TSF
shall enter a maintenance mode where the ability to return the TOE to a secure state

 108

is provided.

FPT_RCV.3.2/SCP For all cases, the TSF shall ensure the return of the TOE to a
secure state using automated procedures.

FPT_RCV.3.3/SCP The functions provided by the TSF to recover from failure or
service discontinuity shall ensure that the secure initial state is restored without
exceeding 0% for loss of TSF data or objects within the TSC.

FPT_RCV.3.4/SCP The TSF shall provide the capability to determine the objects
that were or were not capable of being recovered.

FPT_RCV.4/SCP Function recovery

FPT_RCV.4.1/SCP The TSF shall ensure that reading from and writing to static
and objects’ fields interrupted by power loss have the property that the SF either
completes successfully, or for the indicated failure scenarios, recovers to a
consistent and secure state.

[ST] Application note:
This requirement comes from the specification of the Java Card platform but is
obviously supported in the implementation by a low-level mechanism of the smart
Card.

FRU_FLT.1/SCP Degraded fault tolerance

FRU_FLT.1.1/SCP The TSF shall ensure the operation of JCS and CM capabilities
when the following failures occur: lack of EEPROM, random number generator
failure, crypto co-processor failure, RAM read/write failure, card tearing, and
power failure.

[ST] Application note :
This requirement shall be used to specify the list of SCP capabilities supporting the
Java Card System/CM that will still be operational at the occurrence of the
mentioned failures (EEPROM worn out, lack of EEPROM, random generator failure).
The minimum can be the function that allows to reset /mute /block the card in case of
failure

7.1.9 Compatibility statement of SFRs

SFRs for the TOE in [ICST] are all based on the PP [PP0035], and the [ICST]
specifies some additional SFRs. The relevant SFRs for the TOE of the [ICST] are not
contradictory to those of the composite ST.

[ICST] composite ST

FRU_FLT.2 FRU_FLT.1/SCP

FPT_FLS.1 FPT_FLS.1/SCP

FMT_LIM.1 not applicable

FMT_LIM.2 not applicable

FAU_SAS.1 not applicable

FPT_PHP.3 FPT_PHP.3/SCP

FDP_ITT.1 FPR_UNO.1/CORE

FPT_ITT.1 FPR_UNO.1/CORE

 109

[ICST] composite ST

FDP_IFC.1 FPR_UNO.1/CORE

FCS_RNG.1 FCS_RNG.1/SCP

FCS_COP.1 FCS_COP.1/CORE

FCS_CKM.1 FCS_CKM.1/CORE

FDP_ACC.2 FDP_ACC.2/FIREWALL
FDP_ACC.2/ADEL
FDP_ACC.2/JCRMI
FDP_ACC.1/CMGR

FDP_ACF.1 FDP_ACF.1/FIREWALL
FDP_ACF.1/ADEL
FDP_ACF.1/JCRMI
FDP_ACF.1/CMGR

FMT_MSA.3 FMT_MSA.3/FIREWALL
FMT_MSA.3/ADEL
FMT_MSA.3/JCRMI
FMT_MSA.3/CMGR

FMT_MSA.1 FMT_MSA.1/JCRE
FMT_MSA.1/ADEL
FMT_MSA.1/EXPORT
FMT_MSA.1/REM_REFS
FMT_MSA.1/CMGR

7.2 Security assurance requirements

The security assurance requirement level is EAL4 augmented with ALC_DVS.2 and
AVA_VAN.5.

7.2.1 Compatibility statement of SARs

The composite ST claims conformance to the same assurance package included in
the [ICST], therefore the security assurance requirements of the composite ST
represent a subset of those of the [ICST].

7.3 Security requirements rationale

7.3.1 Security objectives for the TOE

7.3.1.1 Identification

O.SID Subjects' identity is AID-based (applets, packages), and is met by the
following SFRs: FDP_ITC.2/Installer, FIA_ATD.1/AID, FMT_MSA.1/JCRE,
FMT_MSA.1/JCVM, FMT_MSA.1/REM_REFS, FMT_MSA.1/EXPORT,
FMT_MSA.1/ADEL, FMT_MSA.1/CM, FMT_MSA.3/JCRMI, FMT_MSA.3/ADEL,
FMT_MSA.3/FIREWALL, FMT_MSA.3/JCVM, FMT_MSA.3/CM, FMT_SMF.1/CM,
FMT_SMF.1/ADEL, FMT_SMF.1/ADEL, FMT_SMF.1/JCRMI, FMT_MTD.1/JCRE
and FMT_MTD.3/JCRE.
Lastly, installation procedures ensure protection against forgery (the AID of an applet

 110

is under the control of the TSFs) or re-use of identities (FIA_UID.2/AID,
FIA_USB.1/AID).

7.3.1.2 Execution

O.FIREWALL This objective is met by the FIREWALL access control policy
FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL, the JCVM information flow
control policy (FDP_IFF.1/JCVM, FDP_IFC.1/JCVM), the JCRMI access control
policy (FDP_ACC.2/JCRMI, FDP_ACF.1/JCRMI) and the functional requirement
FDP_ITC.2/Installer. The functional requirements of the class FMT
(FMT_MTD.1/JCRE, FMT_MTD.3/JCRE, FMT_SMR.1/Installer, FMT_SMR.1/CORE,
FMT_SMF.1/CORE, FMT_SMR.1/ADEL, FMT_SMR.1/JCRMI, FMT_SMF.1/ADEL,
FMT_SMF.1/JCRMI, FMT_SMF.1/CM, FMT_MSA.1/CM, FMT_MSA.3/CM,
FMT_SMR.1/CM, FMT_MSA.2/FIREWALL_JCVM, FMT_MSA.3/FIREWALL,
FMT_MSA.3/JCVM, FMT_MSA.1/ADEL, FMT_MSA.3/ADEL, FMT_MSA.1/EXPORT,
FMT_MSA.1/REM_REFS, FMT_MSA.3/JCRMI, FMT_MSA.1/JCRE,
FMT_MSA.1/JCVM, FMT_REV.1/JCRMI) also indirectly contribute to meet this
objective.

O.GLOBAL_ARRAYS_CONFID Only arrays can be designated as global, and the
only global arrays required in the Java Card API are the APDU buffer and the global
byte array input parameter (bArray) to an applet's install method. The clearing
requirement of these arrays is met by (FDP_RIP.1/APDU and FDP_RIP.1/bArray
respectively). The JCVM information flow control policy (FDP_IFF.1/JCVM,
FDP_IFC.1/JCVM) prevents an application from keeping a pointer to a shared buffer,
which could be used to read its contents when the buffer is being used by another
application.
Protection of the array parameters of remotely invoked methods, which are global as
well, is covered by the general initialization of method parameters
(FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FDP_RIP.1/ADEL and FDP_RIP.1/TRANSIENT).

O.GLOBAL_ARRAYS_INTEG This objective is met by the JCVM information flow
control policy (FDP_IFF.1/JCVM, FDP_IFC.1/JCVM), which prevents an application
from keeping a pointer to the APDU buffer of the card or to the global byte array of
the applet's install method. Such a pointer could be used to access and modify it
when the buffer is being used by another application.

O.NATIVE This security objective is covered by FDP_ACF.1/FIREWALL: the only
means to execute native code is the invocation of a Java Card API method. This
objective mainly relies on the environmental objective OE.APPLET, which uphold the
assumption A.APPLET.

O.OPERATE The TOE is protected in various ways against applets' actions
(FPT_TDC.1/CORE), the FIREWALL access control policy FDP_ACC.2/FIREWALL
and FDP_ACF.1/FIREWALL, and is able to detect and block various failures or
security violations during usual working (FPT_FLS.1/ADEL, FPT_FLS.1/CORE,
FPT_FLS.1/ODEL, FPT_FLS.1/Installer, FAU_ARP.1/CORE). Its security-critical
parts and procedures are also protected: safe recovery from failure is ensured

 111

(FPT_RCV.3/Installer), applets' installation may be cleanly aborted
(FDP_ROL.1/FIREWALL), communication with external users and their internal
subjects is well-controlled (FDP_ITC.2/Installer, FIA_ATD.1/AID, FIA_USB.1/AID) to
prevent alteration of TSF data (also protected by components of the FPT class).
Almost every objective and/or functional requirement indirectly contributes to this one
too.

O.REALLOCATION This security objective is satisfied by the following SFRs:
FDP_RIP.1/APDU, FDP_RIP.1/bArray, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FDP_RIP.1/TRANSIENT, FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS,
FDP_RIP.1/ADEL, which imposes that the contents of the re-allocated block shall
always be cleared before delivering the block.

O.RESOURCES The TSFs detects stack/memory overflows during execution of
applications (FAU_ARP.1/CORE, FPT_FLS.1/ADEL, FPT_FLS.1/CORE,
FPT_FLS.1/ODEL, FPT_FLS.1/Installer). Failed installations are not to create
memory leaks (FDP_ROL.1/FIREWALL, FPT_RCV.3/Installer) as well. Memory
management is controlled by the TSF (FMT_MTD.1/JCRE, FMT_MTD.3/JCRE,
FMT_SMR.1/Installer, FMT_SMR.1/CORE, FMT_SMF.1/CORE, FMT_SMR.1/ADEL,
FMT_SMR.1/JCRMI, FMT_SMF.1/ADEL, FMT_SMF.1/JCRMI, FMT_SMF.1/CM and
FMT_SMR.1/CM).

7.3.1.3 Services

O.ALARM This security objective is met by FPT_FLS.1/Installer, FPT_FLS.1,
FPT_FLS.1/ADEL, FPT_FLS.1/ODEL which guarantee that a secure state is
preserved by the TSF when failures occur, and FAU_ARP.1/CORE which defines
TSF reaction upon detection of a potential security violation.

O.CIPHER This security objective is directly covered by FCS_CKM.1/CORE,
FCS_CKM.2/CORE, FCS_CKM.3/CORE, FCS_CKM.4/CORE and
FCS_COP.1/CORE. The SFR FPR_UNO.1/CORE contributes in covering this
security objective and controls the observation of the cryptographic operations which
may be used to disclose the keys.

O.KEY-MNGT This relies on the same security functional requirements as
O.CIPHER, plus FDP_RIP.1 and FDP_SDI.2/CORE as well. Precisely it is met by
the following components: FCS_CKM.1/CORE, FCS_CKM.2/CORE,
FCS_CKM.3/CORE, FCS_CKM.4/CORE, FCS_COP.1/CORE, FPR_UNO.1/CORE,
FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS, FDP_RIP.1/APDU, FDP_RIP.1/bArray,
FDP_RIP.1/ABORT, FDP_RIP.1/KEYS, FDP_RIP.1/ADEL and
FDP_RIP.1/TRANSIENT.

O.PIN-MNGT This security objective is ensured by FDP_RIP.1/ODEL,
FDP_RIP.1/OBJECTS, FDP_RIP.1/APDU, FDP_RIP.1/bArray, FDP_RIP.1/ABORT,
FDP_RIP.1/KEYS, FDP_RIP.1/ADEL, FDP_RIP.1/TRANSIENT, FPR_UNO.1/CORE,
FDP_ROL.1/FIREWALL and FDP_SDI.2/CORE security functional requirements.
The TSFs behind these are implemented by API classes. The firewall security
functions FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL shall protect the

 112

access to private and internal data of the objects.

O.REMOTE The access to the TOE's internal data and the flow of information from
the card to the CAD required by the JCRMI service is under control of the JCRMI
access control policy (FDP_ACC.2/JCRMI, FDP_ACF.1/JCRMI) and the JCRMI
information flow control policy (FDP_IFC.1/JCRMI, FDP_IFF.1/JCRMI). The security
functional requirements of the class FMT (FMT_MSA.1/EXPORT,
FMT_MSA.1/REM_REFS, FMT_MSA.3/JCRMI, FMT_REV.1/JCRMI and
FMT_SMR.1/JCRMI) included in the group RMIG also contribute to meet this
objective.

O.TRANSACTION Directly met by FDP_ROL.1/FIREWALL, FDP_RIP.1/ABORT,
FDP_RIP.1/ODEL, FDP_RIP.1/APDU, FDP_RIP.1/bArray, FDP_RIP.1/KEYS,
FDP_RIP.1/ADEL, FDP_RIP.1/TRANSIENT and FDP_RIP.1/OBJECTS (more
precisely, by the element FDP_RIP.1.1/ABORT).

7.3.1.4 Object deletion

O.OBJ-DELETION This security objective specifies that deletion of objects is secure.
The security objective is met by the security functional requirements
FDP_RIP.1/ODEL and FPT_FLS.1/ODEL.

7.3.1.5 Applet management

O.DELETION This security objective specifies that applet and package deletion must
be secure. The non-introduction of security holes is ensured by the ADEL access
control policy (FDP_ACC.2/ADEL, FDP_ACF.1/ADEL). The integrity and
confidentiality of data that does not belong to the deleted applet or package is a by-
product of this policy as well. Non-accessibility of deleted data is met by
FDP_RIP.1/ADEL and the TSFs are protected against possible failures of the
deletion procedures (FPT_FLS.1/ADEL, FPT_RCV.3/Installer). The security
functional requirements of the class FMT (FMT_MSA.1/ADEL, FMT_MSA.3/ADEL,
FMT_SMR.1/ADEL) included in the group ADELG also contribute to meet this
objective.

O.LOAD This security objective specifies that the loading of a package into the card
must be secure. Evidence of the origin of the package is enforced (FCO_NRO.2/CM)
and the integrity of the corresponding data is under the control of the PACKAGE
LOADING information flow policy (FDP_IFC.2/CM, FDP_IFF.1/CM) and
FDP_UIT.1/CM. Appropriate identification (FIA_UID.1/CM) and transmission
mechanisms are also enforced (FTP_ITC.1/CM).

O.INSTALL This security objective specifies that installation of applets must be
secure. Security attributes of installed data are under the control of the FIREWALL
access control policy (FDP_ITC.2/Installer), and the TSFs are protected against
possible failures of the installer (FPT_FLS.1/Installer, FPT_RCV.3/Installer).

7.3.1.6 Reassignment

 113

O.CARD-MANAGEMENT This security objective specifies card management
functions, and the security functional requirements FDP_ACC.1/CMGR,
FDP_ACF.1/CMGR, FMT_MSA.1/CMGR, FMT_MSA.3/CMGR, FMT_SMF.1/CMGR,
FMT_SMR.1/CMGR, FIA_UID.1/CMGR in CMGRG contribute to meet this objective.

O.SCP.IC This security objective specifies IC security features against physical
attacks, and the security functional requirement FPT_PHP.3/SCP and
FPR_UNO.1/CORE in SCPG contributes to meet this objective.

O.SCP.RECOVERY This security objective specifies recovery function after
abnormal situation, and the security functional requirements FPT_FLS.1/SCP,
FPT_RCV.3/SCP, FRU_FLT.1/SCP in SCPG contribute to meet this objective.

O.SCP.SUPPORT This security objective specifies IC platform’s supportive functions
for TOE operation, and the security functional requirements FPT_RCV.3/SCP,
FPT_RCV.4/SCP, FCS_RNG.1/SCP in SCPG contributes to meet this objective.

7.3.1.7 Additional security objectives for the TOE

O.PROTECT_DATA This security objective specifies protection of sensitive
information stored in memories. This security objective is satisfied by the following
SFRs: FCS_CKM.1/CORE, FCS_CKM.2/CORE, FCS_CKM.3/CORE,
FCS_CKM.4/CORE, FCS_COP.1/CORE, FDP_ACC.1/CMGR, FDP_ACF.1/CMGR,
FDP_RIP.1/OBJECTS, FDP_RIP.1/ABORT, FDP_RIP.1/APDU, FDP_RIP.1/bArray,
FDP_RIP.1/KEYS, FDP_RIP.1/TRANSIENT, FDP_SDI.2/CORE, FIA_AFL.1/GP,
FIA_ATD.1/GP, FIA_UAU.1/GP, FIA_UID.1/CMGR, FIA_USB.1/GP,
FPR_UNO.1/CORE, which impose access control to sensitive information through
cryptography, user identification and authentication, access control policy, the
cleared contents of the re-allocated block, and the unobservability of operations on
sensitive information.

O.OS_OPERATE This security objective specifies continued correct operation of
security functions. This security objective is directly satisfied by the following SFRs:
FDP_SDI.2/CORE, FIA_AFL.1/GP, FIA_ATD.1/GP, FMT_MSA.2/GP,
FPT_FLS.1/SCP, FPT_RCV.3/SCP, FPT_RCV.4/SCP, FPT_TST.1/GP,
FRU_FLT.1/SCP, which imposes integrity check, secure security attributes, and
secure smart card platform.

O.SIDE_CHANNEL This security objective specifies protection against disclosure of
confidential data stored and/or processed in the smart card IC. This security
objective is directly satisfied by FPR_UNO.1/CORE.

O.FAULT_PROTECT This security objective specifies protection against incorrect
operation due to environmental conditions. This security objective is satisfied by
FPT_FLS.1/SCP, FPT_PHP.3/SCP, which impose physical protection of the TOE.

O.RND This security objective is directly satisfied by FCS_RND.1/SCP.

O.ROLES This security objective is satisfied by the following SFRs: FIA_AFL.1/GP,

 114

FIA_ATD.1/GP, FIA_USB.1/GP, FMT_SMR.1/CMGR, which imposes roles to be
recognized in the TOE.

O.CARD_ADMIN This security objective is satisfied by the following SFRs:
FIA_ATD.1/GP, FIA_USB.1/GP, FMT_MOF.1/GP, FMT_MSA.1/CMGR,
FMT_MSA.3/CMGR, FMT_MTD.1/GP, FMT_SMF.1/GP, which imposes the Card
Administrator with means to perform secure CCMFs.

O.APPLICATION_PROVIDER_PRE-APPROVAL This security objective is satisfied
by the following SFRs: FIA_ATD.1/GP, FMT_MOF.1/GP, FMT_MSA.1/CMGR,
FMT_SMF.1/GP, which imposes Application Provider to allow the Card Administrator
to perform CCMFs.

O.LOAD_FILE_VERIFICATION This security objective is satisfied by the following
SFRs: FMT_MSA.1/CMGR, FMT_MSA.2/GP, FMT_MSA.3/CMGR,
FMT_SMR.1/CMGR, which imposes load file verification function.

O.APPLICATION_CODE_VERIFICATION This security objective is satisfied by the
following SFRs: FDP_ITC.1/Installer, FMT_MSA.1/CMGR, FMT_MSA.2/GP,
FMT_MSA.3/CMGR, FMT_SMR.1/CMGR, which imposes means to verify that the
byte code and other forms of application code verification has been performed.

O.SECURE_COMM This security objective is satisfied by the following SFRs:
FCS_CKM.3/CORE, FCS_COP.1/CORE, FIA_UAU.4/GP, which imposes secure
channel.

O.CARDHOLDER_VERIFICATION This security objective is satisfied
FIA_AFL.1/GP, FIA_ATD.1/GP, FIA_USB.1/GP, which imposes user authentication.

7.3.2 Rationale tables of security objectives for the TOE and
SFRs

Security Objectives
for the TOE

SFRs Rationale

O.SID FIA_ATD.1/AID, FIA_UID.2/AID,
FMT_MSA.1/JCRE, FMT_MSA.3/JCRMI,
FMT_MSA.1/REM_REFS,
FMT_MSA.1/EXPORT, FMT_MSA.1/ADEL,
FMT_MSA.3/ADEL, FMT_MSA.3/FIREWALL,
FMT_MSA.1/CM, FMT_MSA.3/CM,
FDP_ITC.2/Installer, FMT_SMF.1/CM,
FMT_SMF.1/ADEL, FMT_SMF.1/JCRMI,
FMT_MTD.1/JCRE, FMT_MTD.3/JCRE,
FIA_USB.1/AID, FMT_MSA.1/JCVM,
FMT_MSA.3/JCVM

Section
7.3.1.1

O.FIREWALL FDP_IFC.1/JCVM, FDP_IFF.1/JCVM,
FMT_SMR.1/Installer, FMT_MSA.1/CM,
FMT_MSA.3/CM, FMT_SMR.1/CM,

Section
7.3.1.2

 115

Security Objectives
for the TOE

SFRs Rationale

FMT_MSA.3/FIREWALL, FMT_SMR.1,
FMT_MSA.1/ADEL, FMT_MSA.3/ADEL,
FMT_SMR.1/ADEL, FMT_MSA.1/EXPORT,
FMT_MSA.1/REM_REFS, FMT_MSA.3/JCRMI,
FMT_REV.1/JCRMI, FMT_SMR.1/JCRMI,
FMT_MSA.1/JCRE, FDP_ITC.2/Installer,
FDP_ACC.2/JCRMI, FDP_ACF.1/JCRMI,
FDP_ACC.2/FIREWALL,
FDP_ACF.1/FIREWALL, FMT_SMF.1/ADEL,
FMT_SMF.1/JCRMI, FMT_SMF.1/CM,
FMT_SMF.1, FMT_MSA.2/FIREWALL_JCVM,
FMT_MTD.1/JCRE, FMT_MTD.3/JCRE,
FMT_MSA.1/JCVM, FMT_MSA.3/JCVM

O.GLOBAL_ARRAY
S_CONFID

FDP_IFC.1/JCVM, FDP_IFF.1/JCVM,
FDP_RIP.1/bArray, FDP_RIP.1/APDU,
FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS,
FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FDP_RIP.1/ADEL, FDP_RIP.1/TRANSIENT

Section
7.3.1.2

O.GLOBAL_ARRAY
S_INTEG

DP_IFC.1/JCVM, FDP_IFF.1/JCVM Section
7.3.1.2

O.NATIVE FDP_ACF.1/FIREWALL Section
7.3.1.2

O.OPERATE FAU_ARP.1, FDP_ROL.1/FIREWALL,
FIA_ATD.1/AID, FPT_FLS.1/ADEL, FPT_FLS.1,
FPT_FLS.1/ODEL, FPT_FLS.1/Installer,
FDP_ITC.2/Installer, FPT_RCV.3/Installer,
FDP_ACC.2/FIREWALL,
FDP_ACF.1/FIREWALL, FPT_TDC.1,
FIA_USB.1/AID

Section
7.3.1.2

O.REALLOCATION FDP_RIP.1/ABORT, FDP_RIP.1/APDU,
FDP_RIP.1/bArray, FDP_RIP.1/KEYS,
FDP_RIP.1/TRANSIENT, FDP_RIP.1/ADEL,
FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS

Section
7.3.1.2

O.RESOURCES FAU_ARP.1, FDP_ROL.1/FIREWALL,
FMT_SMR.1/Installer, FMT_SMR.1,
FMT_SMR.1/ADEL, FMT_SMR.1/JCRMI,
FPT_FLS.1/Installer, FPT_FLS.1/ODEL,
FPT_FLS.1, FPT_FLS.1/ADEL,
FPT_RCV.3/Installer, FMT_SMR.1/CM,
FMT_SMF.1/ADEL, FMT_SMF.1/JCRMI,
FMT_SMF.1/CM, FMT_SMF.1,
FMT_MTD.1/JCRE, FMT_MTD.3/JCRE

Section
7.3.1.2

O.ALARM FPT_FLS.1/Installer, FPT_FLS.1,
FPT_FLS.1/ADEL, FPT_FLS.1/ODEL,
FAU_ARP.1

Section
7.3.1.3

O.CIPHER FCS_CKM.1, FCS_CKM.2, FCS_CKM.3, Section

 116

Security Objectives
for the TOE

SFRs Rationale

FCS_CKM.4, FCS_COP.1, FPR_UNO.1 7.3.1.3

O.KEY-MNGT FCS_CKM.1, FCS_CKM.2, FCS_CKM.3,
FCS_CKM.4, FCS_COP.1, FPR_UNO.1,
FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS,
FDP_RIP.1/APDU, FDP_RIP.1/bArray,
FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FDP_SDI.2, FDP_RIP.1/ADEL,
FDP_RIP.1/TRANSIENT

Section
7.3.1.3

O.PIN-MNGT FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS,
FDP_RIP.1/APDU, FDP_RIP.1/bArray,
FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FPR_UNO.1, FDP_RIP.1/ADEL,
FDP_RIP.1/TRANSIENT,
FDP_ROL.1/FIREWALL, FDP_SDI.2,
FDP_ACC.2/FIREWALL,
FDP_ACF.1/FIREWALL

Section
7.3.1.3

O.REMOTE FDP_ACC.2/JCRMI, FDP_ACF.1/JCRMI,
FDP_IFC.1/JCRMI, FDP_IFF.1/JCRMI,
FMT_MSA.1/EXPORT,
FMT_MSA.1/REM_REFS, FMT_MSA.3/JCRMI,
FMT_REV.1/JCRMI, FMT_SMR.1/JCRMI

Section
7.3.1.3

O.TRANSACTION FDP_ROL.1/FIREWALL, FDP_RIP.1/ABORT,
FDP_RIP.1/ODEL, FDP_RIP.1/APDU,
FDP_RIP.1/bArray, FDP_RIP.1/KEYS,
FDP_RIP.1/ADEL, FDP_RIP.1/TRANSIENT,
FDP_RIP.1/OBJECTS

Section
7.3.1.3

O.OBJ-DELETION FDP_RIP.1/ODEL, FPT_FLS.1/ODEL Section
7.3.1.4

O.DELETION FDP_ACC.2/ADEL, FDP_ACF.1/ADEL,
FDP_RIP.1/ADEL, FPT_FLS.1/ADEL,
FPT_RCV.3/Installer, FMT_MSA.1/ADEL,
FMT_MSA.3/ADEL, FMT_SMR.1/ADEL

Section
7.3.1.5

O.LOAD FCO_NRO.2/CM, FDP_IFC.2/CM,
FDP_IFF.1/CM, FDP_UIT.1/CM, FIA_UID.1/CM,
FTP_ITC.1/CM

Section
7.3.1.5

O.INSTALL FDP_ITC.2/Installer, FPT_RCV.3/Installer,
FPT_FLS.1/Installer

Section
7.3.1.5

O.CARD-
MANAGEMENT

FDP_ACC.1/CMGR, FDP_ACF.1/CMGR,
FMT_MSA.1/CMGR, FMT_MSA.3/CMGR,
FMT_SMF.1/CMGR, FMT_SMR.1/CMGR,
FIA_UID.1/CMGR

Section
7.3.1.6

O.SCP.IC FPT_PHP.3/SCP, FPR_UNO.1/CORE Section
7.3.1.6

O.SCP.RECOVERY FPT_FLS.1/SCP, FPT_RCV.3/SCP,
FRU_FLT.1/SCP

Section
7.3.1.6

O.SCP.SUPPORT FPT_RCV.3/SCP, FPT_RCV.4/SCP, Section

 117

Security Objectives
for the TOE

SFRs Rationale

FCS_RNG.1/SCP 7.3.1.6

O.PROTECT_DATA FCS_CKM.1/CORE, FCS_CKM.2/CORE,
FCS_CKM.3/CORE, FCS_CKM.4/CORE,
FCS_COP.1/CORE, FDP_ACC.1/CMGR,
FDP_ACF.1/CMGR, FDP_RIP.1/OBJECTS,
FDP_RIP.1/ABORT, FDP_RIP.1/APDU,
FDP_RIP.1/bArray, FDP_RIP.1/KEYS,
FDP_RIP.1/TRANSIENT, FDP_SDI.2/CORE,
FIA_AFL.1/GP, FIA_ATD.1/GP, FIA_UAU.1/GP,
FIA_UID.1/CMGR, FIA_USB.1/GP,
FPR_UNO.1/CORE

Section
7.3.1.7

O.OS_OPERATE FDP_SDI.2/CORE, FIA_AFL.1/GP,
FIA_ATD.1/GP, FMT_MSA.2/GP,
FPT_FLS.1/SCP, FPT_RCV.3/SCP,
FPT_RCV.4/SCP, FPT_TST.1/GP,
FRU_FLT.1/SCP

Section
7.3.1.7

O.SIDE_CHANNEL FPR_UNO.1/CORE Section
7.3.1.7

O.FAULT_PROTECT FPT_FLS.1/SCP, FPT_PHP.3/SCP Section
7.3.1.7

O.RND FCS_RND.1/SCP Section
7.3.1.7

O.ROLES FIA_AFL.1/GP, FIA_ATD.1/GP, FIA_USB.1/GP,
FMT_SMR.1/CMGR

Section
7.3.1.7

O.CARD_ADMIN FIA_ATD.1/GP, FIA_USB.1/GP,
FMT_MOF.1/GP, FMT_MSA.1/CMGR,
FMT_MSA.3/CMGR, FMT_MTD.1/GP,
FMT_SMF.1/GP

Section
7.3.1.7

O.APPLICATION_P
ROVIDER_PRE-
APPROVAL

FIA_ATD.1/GP, FMT_MOF.1/GP,
FMT_MSA.1/CMGR, FMT_SMF.1/GP

Section
7.3.1.7

O.LOAD_FILE_VERI
FICATION

FMT_MSA.1/CMGR, FMT_MSA.2/GP,
FMT_MSA.3/CMGR, FMT_SMR.1/CMGR

Section
7.3.1.7

O.APPLICATION_C
ODE_VERIFICATIO
N

FDP_ITC.2/Installer, FMT_MSA.1/CMGR,
FMT_MSA.2/GP, FMT_MSA.3/CMGR,
FMT_SMR.1/CMGR

Section
7.3.1.7

O.SECURE_COMM FCS_CKM.3/CORE, FCS_COP.1/CORE,
FIA_UAU.4/GP

Section
7.3.1.7

O.CARDHOLDER_V
ERIFICATION

FIA_AFL.1/GP, FIA_ATD.1/GP, FIA_USB.1/GP Section
7.3.1.7

Table9. Security Objectives for the TOE and SFRs - Coverage

 SFRs Security Objectives for the TOE

CoreG_LC FDP_ACC.2/FIREWALL O.FIREWALL, O.OPERATE, O.PIN-
MNGT

FDP_ACF.1/FIREWALL O.FIREWALL, O.NATIVE,

 118

 SFRs Security Objectives for the TOE

O.OPERATE, O.PIN-MNGT

FDP_IFC.1/JCVM O.FIREWALL,
O.GLOBAL_ARRAYS_CONFID,
O.GLOBAL_ARRAYS_INTEG

FDP_IFF.1/JCVM O.FIREWALL,
O.GLOBAL_ARRAYS_CONFID,
O.GLOBAL_ARRAYS_INTEG

FDP_RIP.1/OBJECTS O.GLOBAL_ARRAYS_CONFID,
O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION,
O.REALLOCATION,
O.PROTECT_DATA

FMT_MSA.1/JCRE O.SID, O.FIREWALL

FMT_MSA.1/JCVM O.SID, O.FIREWALL

FMT_MSA.2/FIREWALL_JC
VM

O.FIREWALL

FMT_MSA.3/FIREWALL O.SID, O.FIREWALL

FMT_MSA.3/JCVM O.SID, O.FIREWALL

FMT_SMF.1/CORE O.FIREWALL, O.RESOURCES

FMT_SMR.1/CORE O.FIREWALL, O.RESOURCES

FCS_CKM.1/CORE O.CIPHER, O.KEY-MNGT,
O.PROTECT_DATA

FCS_CKM.2/CORE O.CIPHER, O.KEY-MNGT,
O.PROTECT_DATA

FCS_CKM.3/CORE O.CIPHER, O.KEY-MNGT,
O.PROTECT_DATA,
O.SECURE_COMM

FCS_CKM.4/CORE O.CIPHER, O.KEY-MNGT,
O.PROTECT_DATA

FCS_COP.1/CORE O.CIPHER, O.KEY-MNGT,
O.PROTECT_DATA,
O.SECURE_COMM

FDP_RIP.1/ABORT O.GLOBAL_ARRAYS_CONFID,
O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION,
O.REALLOCATION,
O.PROTECT_DATA

FDP_RIP.1/APDU O.GLOBAL_ARRAYS_CONFID,
O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION,
O.REALLOCATION,
O.PROTECT_DATA

FDP_RIP.1/bArray O.GLOBAL_ARRAYS_CONFID,
O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION,
O.REALLOCATION,
O.PROTECT_DATA

 119

 SFRs Security Objectives for the TOE

FDP_RIP.1/KEYS O.GLOBAL_ARRAYS_CONFID,
O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION,
O.REALLOCATION,
O.PROTECT_DATA

FDP_RIP.1/TRANSIENT O.GLOBAL_ARRAYS_CONFID,
O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION,
O.REALLOCATION,
O.PROTECT_DATA

FDP_ROL.1/FIREWALL O.OPERATE, O.RESOURCES,
O.PIN-MNGT, O.TRANSACTION

FAU_ARP.1/CORE O.OPERATE, O.RESOURCES,
O.ALARM

FDP_SDI.2/CORE O.KEY-MNGT, O.PIN-MNGT,
O.PROTECT_DATA,
O.OS_OPERATE

FPR_UNO.1/CORE O.CIPHER, O.KEY-MNGT, O.PIN-
MNGT, O.SCP.IC,
O.PROTECT_DATA,
O.SIDE_CHANNEL

FPT_FLS.1/CORE O.OPERATE, O.RESOURCES,
O.ALARM

FPT_TDC.1/CORE O.OPERATE

FIA_ATD.1/AID O.SID, O.OPERATE

FIA_UID.2/AID O.SID

FIA_USB.1/AID O.SID, O.OPERATE

FMT_MTD.1/JCRE O.SID, O.FIREWALL,
O.RESOURCES

FMT_MTD.3/JCRE O.SID, O.FIREWALL,
O.RESOURCES

InstG FDP_ITC.2/Installer O.SID, O.FIREWALL, O.OPERATE,
O.INSTALL

FMT_SMR.1/Installer O.FIREWALL, O.RESOURCES

FPT_FLS.1/Installer O.OPERATE, O.RESOURCES,
O.ALARM, O.INSTALL

FPT_RCV.3/Installer O.OPERATE, O.RESOURCES,
O.DELETION, O.INSTALL

ADELG FDP_ACC.2/ADEL O.DELETION

FDP_ACF.1/ADEL O.DELETION

FDP_RIP.1/ADEL O.GLOBAL_ARRAYS_CONFID,
O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION, O.DELETION,
O.REALLOCATION

FMT_MSA.1/ADEL O.SID, O.FIREWALL, O.DELETION

FMT_MSA.3/ADEL O.SID, O.FIREWALL, O.DELETION

FMT_SMF.1/ADEL O.SID, O.FIREWALL,

 120

 SFRs Security Objectives for the TOE

O.RESOURCES

FMT_SMR.1/ADEL O.FIREWALL, O.RESOURCES,
O.DELETION

FPT_FLS.1/ADEL O.OPERATE, O.RESOURCES,
O.ALARM, O.DELETION

RMIG FDP_ACC.2/JCRMI O.FIREWALL, O.REMOTE

FDP_ACF.1/JCRMI O.FIREWALL, O.REMOTE

FDP_IFC.1/JCRMI O.REMOTE

FDP_IFF.1/JCRMI O.REMOTE

FMT_MSA.1/EXPORT O.SID, O.FIREWALL, O.REMOTE

FMT_MSA.1/REM_REFS O.SID, O.FIREWALL, O.REMOTE

FMT_MSA.3/JCRMI O.SID, O.FIREWALL, O.REMOTE

FMT_REV.1/JCRMI O.FIREWALL, O.REMOTE

FMT_SMF.1/JCRMI O.SID, O.FIREWALL,
O.RESOURCES

FMT_SMR.1/JCRMI O.FIREWALL, O.RESOURCES,
O.REMOTE

ODELG FDP_RIP.1/ODEL O.GLOBAL_ARRAYS_CONFID,
O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION, O.OBJ-
DELETION, O.REALLOCATION

FPT_FLS.1/ODEL O.OPERATE, O.RESOURCES,
O.ALARM, O.OBJ-DELETION

CarG FCO_NRO.2/CM O.LOAD

FDP_IFC.2/CM O.LOAD

FDP_IFF.1/CM O.LOAD

FDP_UIT.1/CM O.LOAD

FIA_UID.1/CM O.LOAD

FMT_MSA.1/CM O.SID, O.FIREWALL

FMT_MSA.3/CM O.SID, O.FIREWALL

FMT_SMF.1/CM O.SID, O.FIREWALL,
O.RESOURCES

FMT_SMR.1/CM O.FIREWALL, O.RESOURCES

FTP_ITC.1/CM O.LOAD

CMGRG FDP_ACC.1/CMGR O.CARD-MANAGEMENT,
O.PROTECT_DATA

FDP_ACF.1/CMGR O.CARD-MANAGEMENT,
O.PROTECT_DATA

FMT_MSA.1/CMGR O.CARD-MANAGEMENT,
O.CARD_ADMIN,
O.APPLICATION_PROVIDER_PRE-
APPROVAL,
O.LOAD_FILE_VERIFICATION,
O.APPLICATION_CODE_VERIFICAT
ION

FMT_MSA.3/CMGR O.CARD-MANAGEMENT,
O.CARD_ADMIN,

 121

 SFRs Security Objectives for the TOE

O.LOAD_FILE_VERIFICATION,
O.APPLICATION_CODE_VERIFICAT
ION

FMT_SMF.1/CMGR O.CARD-MANAGEMENT

FMT_SMR.1/CMGR O.CARD-MANAGEMENT, O.ROLES,
O.LOAD_FILE_VERIFICATION,
O.APPLICATION_CODE_VERIFICAT
ION

FIA_UID.1/CMGR O.CARD-MANAGEMENT,
O.PROTECT_DATA

FIA_AFL.1/GP O.PROTECT_DATA,
O.OS_OPERATE, O.ROLES,
O.CARDHOLDER_VERIFICATION

FIA_ATD.1/GP O.PROTECT_DATA,
O.OS_OPERATE, O.ROLES,
O.CARD_ADMIN,
O.APPLICATION_PROVIDER_PRE-
APPROVAL,
O.CARDHOLDER_VERIFICATION

FIA_UAU.1/GP O.PROTECT_DATA

FIA_UAU.4/GP O.SECURE_COMM

FIA_USB.1/GP O.PROTECT_DATA, O.ROLES,
O.CARD_ADMIN,
O.CARDHOLDER_VERIFICATION

FMT_MOF.1/GP O.CARD_ADMIN,
O.APPLICATION_PROVIDER_PRE-
APPROVAL

FMT_MSA.2/GP O.OS_OPERATE,
O.LOAD_FILE_VERIFICATION,
O.APPLICATION_CODE_VERIFICAT
ION

FMT_MTD.1/GP O.CARD_ADMIN

FMT_SMF.1/GP O.CARD_ADMIN,
O.APPLICATION_PROVIDER_PRE-
APPROVAL

FPT_TST.1/GP O.OS_OPERATE

SCPG FCS_RNG.1/SCP O.SCP.SUPPORT, O.RND

FPT_FLS.1/SCP O.SCP.RECOVERY,
O.OS_OPERATE,
O.FAULT_PROTECT

FPT_PHP.3/SCP O.SCP.IC, O.FAULT_PROTECT

FPT_RCV.3/SCP O.SCP.RECOVERY,
O.SCP.SUPPORT, O.OS_OPERATE

FPT_RCV.4/SCP O.SCP.SUPPORT, O.OS_OPERATE

FRU_FLT.1/SCP O.SCP.RECOVERY,
O.OS_OPERATE

Table10. SFRs and Security Objectives for the TOE

 122

7.3.3 Dependencies

7.3.3.1 SFRs dependencies

SFRs CC Dependencies Satisfied Dependencies

FDP_ACC.2/FIREWALL FDP_ACF.1 FDP_ACF.1/FIREWALL

FDP_ACF.1/FIREWALL FDP_ACC.1
FMT_MSA.3

FDP_ACC.2/FIREWALL
FMT_MSA.3/FIREWALL

FDP_IFC.1/JCVM FDP_IFF.1 FDP_IFF.1/JCVM

FDP_IFF.1/JCVM FDP_IFC.1
FMT_MSA.3

FDP_IFC.1/JCVM
FMT_MSA.3/JCVM

FDP_RIP.1/OBJECTS No dependencies

FMT_MSA.1/JCRE [FDP_ACC.1 or
FDP_IFC.1]
FMT_SMR.1
FMT_SMF.1

FDP_ACC.2/FIREWALL

FMT_SMR.1/CORE
FMT_SMF.1/CORE

FMT_MSA.1/JCVM [FDP_ACC.1 or
FDP_IFC.1]
FMT_SMR.1
FMT_SMF.1

FDP_ACC.2/FIREWALL
FDP_IFC.1/JCVM
FMT_SMR.1/CORE
FMT_SMF.1/CORE

FMT_MSA.2/FIREWALL_
JCVM

[FDP_ACC.1 or
FDP_IFC.1]
FMT_MSA.1
FMT_SMR.1

FDP_ACC.2/FIREWALL
FDP_IFC.1/JCVM
FMT_MSA.1/JCRE
FMT_MSA.1/JCVM
FMT_SMR.1

FMT_MSA.3/FIREWALL FMT_MSA.1
FMT_SMR.1

FMT_MSA.1/JCRE
FMT_MSA.1/JCVM
FMT_SMR.1

FMT_MSA.3/JCVM FMT_MSA.1
FMT_SMR.1

FMT_MSA.1/JCVM
FMT_SMR.1

FMT_SMF.1/CORE No dependencies

FMT_SMR.1/CORE FIA_UID.1 FIA_UID.2/AID

FCS_CKM.1/CORE [FCS_CKM.2 or
FCS_COP.1]
FCS_CKM.4

FCS_CKM.2/CORE

FCS_CKM.4/CORE

FCS_CKM.2/CORE [FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]
FCS_CKM.4

FCS_CKM.1/CORE
FCS_CKM.4/CORE

FCS_CKM.3/CORE [FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]
FCS_CKM.4

FCS_CKM.1/CORE
FCS_CKM.4/CORE

FCS_CKM.4/CORE [FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]

FCS_CKM.1/CORE

FCS_COP.1/CORE [FDP_ITC.1 or

 123

SFRs CC Dependencies Satisfied Dependencies

FDP_ITC.2 or
FCS_CKM.1]
FCS_CKM.4

FCS_CKM.1/CORE
FCS_CKM.4/CORE

FDP_RIP.1/ABORT No dependencies

FDP_RIP.1/APDU No dependencies

FDP_RIP.1/bArray No dependencies

FDP_RIP.1/KEYS No dependencies

FDP_RIP.1/TRANSIENT No dependencies

FDP_ROL.1/FIREWALL [FDP_ACC.1 or
FDP_IFC.1]

FDP_ACC.2/FIREWALL
FDP_IFC.1/JCVM

FAU_ARP.1/CORE FAU_SAA.1 Not satisfied

FDP_SDI.2/CORE No dependencies

FPR_UNO.1/CORE No dependencies

FPT_FLS.1/CORE No dependencies

FPT_TDC.1/CORE No dependencies

FIA_ATD.1/AID No dependencies

FIA_UID.2/AID No dependencies

FIA_USB.1/AID FIA_ATD.1 FIA_ATD.1/AID

FMT_MTD.1/JCRE FMT_SMR.1
FMT_SMF.1

FMT_SMR.1/CORE
FMT_SMF.1/CORE

FMT_MTD.3/JCRE FMT_MTD.1 FMT_MTD.1/JCRE

FDP_ITC.2/Installer [FDP_ACC.1 or
FDP_IFC.1]
[FTP_ITC.1 or
FTP_TRP.1]
FPT_TDC.1

FDP_IFC.2/CM
FTP_ITC.1/CM

FPT_TDC.1

FMT_SMR.1/Installer FIA_UID.1 Not satisfied

FPT_FLS.1/Installer No dependencies

FPT_RCV.3/Installer AGD_OPE.1 AGD_OPE.1

FDP_ACC.2/ADEL FDP_ACF.1 FDP_ACF.1/ADEL

FDP_ACF.1/ADEL FDP_ACC.1
FMT_MSA.3

FDP_ACC.2/ADEL,
FMT_MSA.3/ADEL

FDP_RIP.1/ADEL No dependencies

FMT_MSA.1/ADEL [FDP_ACC.1 or
FDP_IFC.1]
FMT_SMR.1
FMT_SMF.1

FDP_ACC.2/ADEL

FMT_SMR.1/ADEL
FMT_SMF.1/ADEL

FMT_MSA.3/ADEL FMT_MSA.1
FMT_SMR.1

FMT_MSA.1/ADEL
FMT_SMR.1/ADEL

FMT_SMF.1/ADEL No dependencies

FMT_SMR.1/ADEL FIA_UID.1 Not satisfied

FPT_FLS.1/ADEL No dependencies

FDP_ACC.2/JCRMI FDP_ACF.1 FDP_ACF.1/JCRMI

FDP_ACF.1/JCRMI FDP_ACC.1
FMT_MSA.3

FDP_ACC.2/JCRMI
FMT_MSA.3/JCRMI

FDP_IFC.1/JCRMI FDP_IFF.1 FDP_IFF.1/JCRMI

FDP_IFF.1/JCRMI FDP_IFC.1 FDP_IFC.1/JCRMI,

 124

SFRs CC Dependencies Satisfied Dependencies

FMT_MSA.3 FMT_MSA.3/JCRMI

FMT_MSA.1/EXPORT [FDP_ACC.1 or
FDP_IFC.1]
FMT_SMR.1
FMT_SMF.1

FDP_ACC.2/JCRMI

FMT_SMR.1/JCRMI
FMT_SMF.1/JCRMI

FMT_MSA.1/REM_REFS [FDP_ACC.1 or
FDP_IFC.1]
FMT_SMR.1
FMT_SMF.1

FDP_ACC.2/JCRMI

FMT_SMR.1/JCRMI
FMT_SMF.1/JCRMI

FMT_MSA.3/JCRMI FMT_MSA.1
FMT_SMR.1

FMT_MSA.1/EXPORT
FMT_MSA.1/REM_REFS
FMT_SMR.1/JCRMI

FMT_REV.1/JCRMI FMT_SMR.1 FMT_SMR.1/JCRMI

FMT_SMF.1/JCRMI No dependencies

FMT_SMR.1/JCRMI FIA_UID.1 FIA_UID.2/AID

FDP_RIP.1/ODEL No dependencies

FPT_FLS.1/ODEL No dependencies

FCO_NRO.2/CM FIA_UID.1 FIA_UID.1/CM

FDP_IFC.2/CM FDP_IFF.1 FDP_IFF.1/CM

FDP_IFF.1/CM FDP_IFC.1
FMT_MSA.3

FDP_IFC.2/CM
FMT_MSA.3/CM

FDP_UIT.1/CM [FDP_ACC.1 or
FDP_IFC.1]
[FTP_ITC.1 or
FTP_TRP.1]

FDP_IFC.2/CM
FTP_ITC.1/CM

FIA_UID.1/CM No dependencies

FMT_MSA.1/CM [FDP_ACC.1 or
FDP_IFC.1]
FMT_SMR.1
FMT_SMF.1

FDP_IFC.2/CM
FMT_SMR.1/CM
FMT_SMF.1/CM

FMT_MSA.3/CM FMT_MSA.1
FMT_SMR.1

FMT_MSA.1/CM
FMT_SMR.1/CM

FMT_SMF.1/CM No dependencies

FMT_SMR.1/CM FIA_UID.1 FIA_UID.1/CM

FTP_ITC.1/CM No dependencies

FDP_ACC.1/CMGR FDP_ACF.1 FDP_ACF.1/CMGR

FDP_ACF.1/CMGR FDP_ACC.1
FMT_MSA.3

FDP_ACC.1/CMGR
FMT_MSA.3/CMGR

FMT_MSA.1/CMGR [FDP_ACC.1 or
FDP_IFC.1]
FMT_SMR.1
FMT_SMF.1

FDP_ACC.1/CMGR

FMT_SMR.1/CMGR
FMT_SMF.1/CMGR

FMT_MSA.3/CMGR FMT_MSA.1
FMT_SMR.1

FMT_MSA.1/CMGR
FMT_SMR.1/CMGR

FMT_SMF.1/CMGR No dependencies

FMT_SMR.1/CMGR FIA_UID.1 FIA_UID.1/CMGR

FIA_UID.1/CMGR No dependencies

 125

SFRs CC Dependencies Satisfied Dependencies

FIA_AFL.1/GP FIA_UAU.1 FIA_UAU.1/GP

FIA_ATD.1/GP No dependencies

FIA_UAU.1/GP FIA_UID.1 FIA_UID.1/CMGR

FIA_UAU.4/GP No dependencies

FIA_USB.1/GP FIA_ATD.1 FIA_ATD.1/GP

FMT_MOF.1/GP FMT_SMR.1
FMT_SMF.1

FMT_SMR.1/CMGR
FMT_SMF.1/GP

FMT_MSA.2/GP [FDP_ACC.1 or
FDP_IFC.1]
FMT_MSA.1
FMT_SMR.1

FDP_ACC.1/CMGR

FMT_MSA.1/CMGR
FMT_SMR.1/CMGR

FMT_MTD.1/GP FMT_SMR.1
FMT_SMF.1

FMT_SMR.1/CMGR
FMT_SMF.1/GP

FMT_SMF.1/GP No dependencies

FPT_TST.1/GP No dependencies

FCS_RNG.1/SCP No dependencies

FPT_FLS.1/SCP No dependencies

FPT_PHP.3/SCP No dependencies

FPT_RCV.3/SCP AGD_OPE.1 AGD_OPE.1

FPT_RCV.4/SCP No dependencies

FRU_FLT.1/SCP FPT_FLS.1 FPT_FLS.1/SCP
Table11. SFRs Dependencies

The dependency FIA_UID.1 of FMT_SMR.1/Installer is unsupported. This ST does
not require the identification of the "installer" since it can be considered as part of the
TSF.

The dependency FIA_UID.1 of FMT_SMR.1/ADEL is unsupported. This ST does not
require the identification of the "deletion manager" since it can be considered as part
of the TSF.

The dependency FAU_SAA.1 of FAU_ARP.1/CORE is unsupported. The
dependency of FAU_ARP.1/CORE on FAU_SAA.1 assumes that a "potential
security violation" generates an audit event. On the contrary, the events listed in
FAU_ARP.1/CORE are self-contained (arithmetic exception, ill-formed bytecodes,
access failure) and ask for a straightforward reaction of the TSFs on their occurrence
at runtime. The JCVM or other components of the TOE detect these events during
their usual working order. Thus, there is no mandatory audit recording in this ST.

7.3.3.2 SARs dependencies

EALs in the CC consist of an appropriate combination of assurance components ad
described in the CC Part 3. Each EAL includes no more than one component of each
assurance family and all assurance dependencies of every component are
addressed.
The composite ST augments tow assurance component ALC_DVS.2 and
AVA_VAN.5, their dependencies are satisfied.

 126

SARs CC Dependencies Satisfied Dependencies

ALC_DVS.2 No dependencies

AVA_VAN.5 ADV_ARC.1
ADV_FSP.4
ADV_IMP.1
ADV_TDS.3
AGD_OPE.1
AGD_PRE.1
ATE_DPT.1

ADV_ARC.1
ADV_FSP.4
ADV_IMP.1
ADV_TDS.3
AGD_OPE.1
AGD_PRE.1
ATE_DPT.1

Table12. SARs Dependencies

7.3.4 Rationale for the security assurance requirements

EAL4 is required for this type of TOE and product since it is intended to defend
against sophisticated attacks. This evaluation assurance level allows a developer to
gain maximum assurance from positive security engineering based on good
practices. EAL4 represents the highest practical level of assurance expected for a
commercial grade product. In order to provide a meaningful level of assurance that
the TOE and its embedding product provide an adequate level of defense against
such attacks: the evaluators should have access to the low level design and source
code. The lowest for which such access is required is EAL4.

7.3.5 ALC_DVS.2 sufficiency of security measures

Development security is concerned with physical, procedural, personnel and other
technical measures that may be used in the development environment to protect the
TOE and the embedding product. The standard ALC_DVS.1 requirement mandated
by EAL4 is not enough. Due to the nature of the TOE and embedding product, it is
necessary to justify the sufficiency of these procedures to protect their confidentiality
and integrity. ALC_DVS.2 has no dependencies.

7.3.6 AVA_VAN.5 advanced methodical vulnerability analysis

The TOE is intended to operate in hostile environments. AVA_VAN.5 "Advanced
methodical vulnerability analysis" is considered as the expected level for Java Card
technology-based products hosting sensitive applications, in particular in payment
and identity areas. AVA_VAN.5 has dependencies on ADV_ARC.1, ADV_FSP.1,
ADV_TDS.3, ADV_IMP.1, AGD_PRE.1 and AGD_OPE.1. All of them are satisfied by
EAL4.

 127

8 TOE summary specification
This section provides a description of the security functions and assurance
measures of the TOE that meet the TOE security requirements.

8.1 Security Functionality
The following table provides a list of all security functions

No Security function Description

1 SF.AccessControl enforces the access control

2 SF.Audit Audit functionality

3 SF.Cryptography Cryptographic key management & operation

4 SF.Authentication Identification and authentication

5 SF.SecureManagement Secure management of TOE resources

6 SF.Transaction Transaction management

7 SF.Hardware TSF of the underlying IC

8.1.1 SF.AccessControl
This security function ensures the access and information flow control policies of the
TOE:

CARD CONTENT MANAGEMENT access control SFP on the following list of
subjects, objects, operations and security attributes(see 7.1.7 FDP_ACC.1/CMGR
and 7.1.7 FDP_ACF.1/CMGR) loading/installing a new application package on the
card via a trusted channel (see 7.1.6 FTP_ITC.1/CM).

Subject/Object Security attributes

S.OPEN None

S.ISD AID, Privilege, Life Cycle State

S.SD AID, Privilege, Life Cycle State

O.CARD_CONTENT AID, Verified

O.REGISTRY None

Security attributes Values

AID Application ID

Privilege Application Privileges defined in [GP]

Life Cycle State card: OP_READY, INITIALIZED, SECURED,
CARD_LOCKED, TERMINATED
security domain: INSTALLED, SELECTABLE,
PERSONALIZED, LOCKED

Verified Boolean (True or False)

FIREWALL access control SFP on S.PACKAGE, S.JCRE, S.JCVM,
O.JAVAOBJECT and all operations among subjects and objects covered by the SFP
(see 7.1.1.1 FDP_ACC.2/FIREWALL and 7.1.1.1 FDP_ACF.1/FIREWALL)

Subject/Object Security attributes

S.PACKAGE LC Selection Status

 128

S.JCVM Active Applets, Currently Active Context

S.JCRE Selected Applet Context

O.JAVAOBJECT Sharing, Context, LifeTime

JCRMI access control SFP on S.CAD, S.JCRE, O.APPLET, O.REMOTE_OBJ,
O.REMOTE_MTHD, O.ROR, O.RMI_SERVICE and all operations among subjects
and objects covered by the SFP (see 7.1.4 FDP_ACC.2/JCRMI, 7.1.4
FDP_ACF.1/JCRMI)

Subject/Object Security attributes

S.JCRE Selected Applet Context

O.REMOTE_OBJ Owner, Class, Identifier, ExportedInfo

O.REMOTE_MTHD Identifier

O.RMI_SERVICE Owner, Returned References

ADEL access control SFP on S.ADEL, S.JCRE, S.JCVM, O.JAVAOBJECT,
O.APPLET and O.CODE_PKG and all operations among subjects and objects
covered by the SFP.(see 7.1.3 FDP_ACC.2/ADEL, 7.1.3 FDP_ACF.1/ADEL)

Subject/Object Security attributes

S.JCVM Active Applets

S.JCRE Selected Applet Context, Registered Applets,
Resident
Packages

O.CODE_PKG Package AID, Dependent Package AID, Static
References

O.APPLET Applet Selection Status

O.JAVAOBJECT Owner, Remote

JCVM information flow control SFP on S.JCVM, S.LOCAL, S.MEMBER, I.DATA
and OP.PUT(S1, S2, I). (see 7.1.1.1 FDP_IFC.1/JCVM and 7.1.1.1
FDP_IFF.1/JCVM).

Subject/Information Security attributes

S.JCVM Currently Active Context

 An operation OP.PUT(S1, S.MEMBER, I.DATA) is allowed if and only if the

Currently Active Context is "Java Card RE";
 other OP.PUT operations are allowed regardless of the Currently Active

Context's value.
JCRMI information flow control SFP on S.JCRE, S.CAD, I.RORD and
OP.RET_RORD(S.JCRE,S.CAD,I.RORD). (see 7.1.4 FDP_IFC.1/JCRMI, 7.1.4
FDP_IFF.1/JCRMI)

Subject/Information Security attributes

I.RORD ExportedInfo

 OP.RET_RORD(S.JCRE, S.CAD, I.RORD) is permitted only if the attribute

 129

ExportedInfo of I.RORD has the value "true" ([JCRE22], §8.5).
PACKAGE LOADING information flow control SFP on S.INSTALLER, S.BCV,
S.CAD and I.APDU and all operations.(see 7.1.6 FDP_IFC.2/CM, 7.1.6
FDP_IFF.1/CM)

Subject/Information Security attributes

S.INSTALLER SecureChannel, SecurityLevel

S.BCV None

S.CAD None

I.APDU SecurityLevel, Verified

Security attributes Values

SecureChannel Boolean (True or False)

SecurityLevel 0 (none)
1 (MAC)
3 (Both Encryption and MAC)

Verified Boolean (True or False)

 An information flow between S.CAD (on the behalf of S.BCV) and S.INSTALLER
is allowed if and only if the following conditions are all satisfied:
 SecureChannel of S.INSTALLER has the value ‘True’,
 SecurityLevel of I.APDU meets SecurityLevel of S.INSTALLER
 Verified of I.APDU is ‘True’.

Only the JCRE (S.JCRE) can modify the security attributes Selected Applet Context,
modify the security attributes Registered Applets and Resident Packages and can
modify the list of registered applets' AIDs (see 7.1.1.1 FMT_MSA.1/JCRE, 7.1.3
FMT_MSA.1/ADEL, 7.1.1.4 FMT_MTD.1/JCRE, 7.1.1.1 FMT_SMF.1/CORE, 7.1.1.1
FMT_SMR.1/CORE, 7.1.3 FMT_SMR.1/ADEL)

Only the JCRE (S.JCRE) can revoke the Returned References of O.RMI_SERVICE.
(see 7.1.4 FMT_REV.1/JCRMI)
The TSF enforce the rules that determine the lifetime of remote object references.
(see 7.1.4 FMT_REV.1/JCRMI)

Only the JCVM (S.JCVM) can modify the security attributes Currently Active Context
and Active Applets and can modify the list of registered applets' AIDs (see 7.1.1.1
FMT_MSA.1/JCVM, 7.1.3 FMT_SMF.1/ADEL, 7.1.1.1 FMT_SMF.1/CORE, 7.1.1.1
FMT_SMR.1/CORE)

Its owner applet can modify the security attributes: ExportedInfo of O.REMOTE_OBJ
and can modify the security attributes Returned References of O.RMI_SERVICE
(see 7.1.4 FMT_MSA.1/EXPORT, 7.1.4 FMT_SMF.1/JCRMI, 7.1.4
FMT_MSA.1/REM_REFS, 7.1.4 FMT_SMR.1/JCRMI)

Card Administrator is allowed query and modify the SecureChannel, SecurityLevel
and Verified and can modify, delete, and create the GlobalPlatform Registry. (see
7.1.6 FMT_MSA.1/CM, 7.1.7 FMT_MTD.1/GP, 7.1.6 FMT_SMF.1/CM, 7.1.6
FMT_SMR.1/CM)

 130

OPEN can modify, delete, and create the security attributes listed in the following
table. (see 7.1.7 FMT_MSA.1/CMGR, 7.1.7 FMT_SMR.1/CMGR, 7.1.7
FMT_SMF.1/CMGR, 7.1.7 FMT_SMF.1/GP)

Abilities Security attributes

modify, delete, create AID, Privilege, and Life Cycle State

modify Verified

Only secure values are accepted for Verified and Authenticated. (see 7.1.7
FMT_MSA.2/GP)
Only secure values are accepted for the registered applets’ AIDs. (see 7.1.1.4
FMT_MTD.3/JCRE)

The TSF ensure that only secure values are accepted for all the security attributes of
subjects and objects defined in the FIREWALL access control SFP and the JCVM
information flow control SFP(see 7.1.1.1 FMT_MSA.2/FIREWALL_JCVM)

Restrictive default values are used for the security attributes, which cannot be
overwritten (see 7.1.7 FMT_MSA.3/CMGR, 7.1.1.1 FMT_MSA.3/FIREWALL, 7.1.1.1
FMT_MSA.3/JCVM, 7.1.3 FMT_MSA.3/ADEL, 7.1.4 FMT_MSA.3/JCRMI, 7.1.6
FMT_MSA.3/CM)

The TSF enforce the PACKAGE LOADING information flow control SFP when
importing user data, controlled under the SFP, from outside of the TOE.
The TSF use the security attributes associated with the imported user data.
The TSF ensure that the protocol used provides for the unambiguous association
between the security attributes and the user data received.
The TSF ensure that interpretation of the security attributes of the imported user data
is as intended by the source of the user data.
The TSF enforce the following rules when importing user data controlled under the
SFP from outside the TOE:
Package loading is allowed only if, for each dependent package, its AID attribute is
equal to a resident package AID attribute, the major (minor) Version attribute
associated to the dependent package is lesser than or equal to the major (minor)
Version attribute associated to the resident package ([JCVM22], §4.5.2).(see 7.1.2
FDP_ITC.2/Installer, 7.1.2 FMT_SMR.1/Installer)

8.1.2 SF.Audit
SF.Audit shall be able to accumulate or combine in monitoring the following
auditable events and indicate a potential violation of the TSP

TSF throw an exception, lock the card session, reinitialize the Java Card System and
its data or mute the card when exceeding predefined number of secure channel
establishment failure upon detection of a potential security violation.(7.1.1.3
FAU_ARP.1/CORE, 7.1.1.3 FPT_FLS.1/CORE)

The "potential security violation" stands for one of the following events:

 131

• CAP file inconsistency,

• typing error in the operands of a bytecode,

• applet life cycle inconsistency,

• card tearing (unexpected removal of the Card out of the CAD) and power
failure,

• abort of a transaction in an unexpected context, (see abortTransaction(),
[JCAPI22] and ([JCRE22], §7.6.2)

• violation of the Firewall or JCVM SFPs,

• unavailability of resources,

• array overflow,

• other runtime errors related to applet’s failure (like uncaught exceptions).

8.1.3 SF.Cryptography
This TSF is responsible for secure cryptographic key management. Cryptographic
operation is provided by the following TSF. This TSF provides the following
functionality:

Generation of DES keys with length of 64Bit. (see 7.1.1.2 FCS_CKM.1/CORE).
Generation of TDES keys with length of 128 and 192 Bit (see 7.1.1.2
FCS_CKM.1/CORE).
Generation of AES keys with length of 128, 192, and 256 Bit(see 7.1.1.2
FCS_CKM.1/CORE).
Generation of SEED keys with length of 128 Bit(see 7.1.1.2 FCS_CKM.1/CORE).
Generation of RSA keys with length from 512 to 2048 Bit(see 7.1.1.2
FCS_CKM.1/CORE).
Generation of EC over GF(p) keys with length from 112 to 521 Bit (see 7.1.1.2
FCS_CKM.1/CORE).

Label Crypto Algorithm Crypto Key Sizes Standards

Protected RSA
key generation

RSA public and
private keys
computation
algorithm,
protected against
side channel
attacks

512 up to 2048
bits

FIPS PUB 140-2
ISO/IEC 9796-2
PKCS #1 V2.1

class KeyPair
class KeyBuilder

[JCAPI222]

DES/3DES class KeyBuilder DES: 56 effective
bits (64bits)
3DES 2 keys:
112 effective bits
(128bits)
3DES 3 keys:
168 effective bits
(192bits)

[JCAPI222]

 132

AES class KeyBuilder 128, 192 and 256
bits

[JCAPI222]

ECC class KeyBuilder 112 up to 521
bits

[JCAPI222]

SEED class KeyBuilder 128 bits [JCAPI222]
[FICCS]

Distribution of DES/TDES, AES, SEED keys with the method setKey of Java Card
API (see 7.1.1.2 FCS_CKM.2/CORE).
Distribution of RSA keys with the method setExponent and setModulus of Java Card
API(see 7.1.1.2 FCS_CKM.2/CORE).
Distribution of EC over GF(p) keys with the method setA, setB, setFieldFP, setG,
setK, and setR of Java Card API (see 7.1.1.2 FCS_CKM.2/CORE).

Label Crypto Key Distribution Method Standards

RSA setExponent
setModulus
setDP1
setDQ1
setP
setPQ
setQ

[JCAPI222]

DES/3DES setKey [JCAPI222]

AES setKey [JCAPI222]

ECC setA
setB
setFieldFP
setG
setK
setR
setS
setW

[JCAPI222]

SEED setKey [JCAPI222]

setKey [FICCS]

Management of DES/TDES, AES, SEED, ECC and RSA- keys with
methods/commands defined in packages javacard.security and javacardx.crypto of
Java Card API (see 7.1.1.2 FCS_CKM.3/CORE).

Label Crypto Key Access Method Standards

RSA keys methods packages
javacard.security and
javacardx,crypto

[JCAPI222]

DES/3DES methods packages
javacard.security and
javacardx,crypto

[JCAPI222]

AES methods packages
javacard.security and

[JCAPI222]

 133

javacardx,crypto

ECC methods packages
javacard.security and
javacardx,crypto

[JCAPI222]

SEED methods packages
javacard.security and
javacardx,crypto

[JCAPI222]

and koreanpackage [FICCS]

Destruction of DES/TDES, AES, SEED, ECC and RSA- keys by physically
overwriting the keys by method clearKey of Java Card API (see 7.1.1.2
FCS_CKM.4/CORE).

Label Crypto Key Destruction Method Standards

RSA keys clearKey() method [JCAPI222]

DES/3DES clearKey() method [JCAPI222]

AES clearKey() method [JCAPI222]

ECC clearKey() method [JCAPI222]

SEED clearKey() method [JCAPI222]

clearKey() method [FICCS]

Cryptographic algorithms and functionality(see 7.1.1.2 FCS_COP.1/CORE):

Label Crypto Operations Crypto
Algorithm

Crypto
Key
Sizes

Standards

DES / 3DES
operation

encryption,
decryption
- in Cipher Block
Chaining (CBC)
mode
- in Electronic
Code Book (ECB)
mode
- in CBC-MAC
operating modes

Data
Encryption
Standard
(DES)

56
effective
bits
(64bits)

FIPS PUB 46-3
ISO/IEC 9797-1
ISO/IEC 10116

Triple Data
Encryption
Standard
(3DES)

2 keys:
112
effective
bits
(124bits)
3 keys:
168
effective
bits
(192bits)

RSA
operation

RSA recovery
(encryption),
RSA signature
(decryption)
without the
Chinese
Remainder
Theorem,

Rivest,
Shamir &
Adleman’s

512 up
to 2048
bits

PKCS #1 V2.1

 134

RSA signature
(decryption) with
the Chinese
Remainder
Theorem

AES
operation

cipher operation,
inverse cipher
operation

Advanced
Encryption
Standard

128, 192
and 256
bits

FIPS PUB 197

ECDSA
operation

general point
addition,
point expansion,
point
compression,
public scalar
multiplication,
private scalar
multiplication

Elliptic
Curves
Cryptography
on
GF(p)

112 up
to 521
bits

IEEE 1363-
2000,
chapter 7
IEEE 1363a-
2004

SEED
operations

cipher operation,
inverse cipher
operation

 128 bits ISO/IEC 18033-
3,
IETF RFC 4269

SHA-1
operation

SHA-1 (secure
hash function)

revised
Secure Hash
Algorithm
(SHA-1)

N/A FIPS PUB 180-
1
FIPS PUB 180-
2
SO/IEC 10118-
3:1998

SHA-256
operation

SHA-256 (secure
hash function)

revised
Secure Hash
Algorithm
(SHA-256)

N/A FIPS PUB 180-
1
FIPS PUB 180-
2
SO/IEC 10118-
3:1998

8.1.4 SF.Authentication
The TSF provides the following functionality with respect to card manager
(administrator) authentication:

Get Data, Select Applet and Manage Channel are possible before authentication
(see 7.1.6 FIA_UID.1/CM, 7.1.7 FIA_UID.1/CMGR, 7.1.7 FIA_UAU.1/GP).

The TSF terminate the card when 10 unsuccessful Secure Channel Establishment
(see 7.1.7 FIA_AFL.1/GP).
The TSF block the PIN when 3 unsuccessful CVM (see 7.1.7 FIA_AFL.1/GP).

The TSF prevent reuse of authentication data related to the Secure Channel
Establishment.(see 7.1.7 FIA_UAU.4/GP)

 135

8.1.5 SF.SecureManagement
The TSF provide a secure management of TOE resources:

The TSF makes any previous information content of a resource unavailable upon
(see 7.1.1.1 FDP_RIP.1/OBJECTS, 7.1.1.2 FDP_RIP.1/APDU, 7.1.1.2
FDP_RIP.1/bArray, 7.1.1.2 FDP_RIP.1/TRANSIENT, 7.1.1.2 FDP_RIP.1/ABORT
and 7.1.1.2 FDP_RIP.1/KEYS, 7.1.3 FDP_RIP.1/ADEL, 7.1.5 FDP_RIP.1/ODEL):
- allocation of class instances, arrays, and the APDU buffer,
- de-allocation of bArray object, any transient object, any reference to an object
instance created during an aborted transaction, cryptographic buffer (D.CRYPTO),
applet instances and/or packages when one of the deletion operations, and the
objects owned by the context of an applet instance which triggered the execution of
the method

The TSF monitors user data checksum of D.APP_CODE, D.APP_I_DATA, D.PIN,
D.APP_KEYs for integrity errors. If an error occurs, the TSF take actions defined in
FAU_ARP.1/CORE (see 7.1.1.3 FDP_SDI.2/CORE).

The TSF ensures that any user and subject are unable to observe operations on PIN
code and cryptographic keys by TSF (see 7.1.1.3 FPR_UNO.1/CORE).

The TSF preserve a secure state when the following types of failures occur:

• the installer fails to load/install a package/applet as described in [JCRE22]
§11.1.4.(see 7.1.2 FPT_FLS.1/Installer)

• the applet deletion manager fails to delete a package/applet as described in
[JCRE22], §11.3.4.(see 7.1.3 FPT_FLS.1/ADEL)

• the object deletion functions fail to delete all the unreferenced objects owned
by the applet that requested the execution of the method.(see 7.1.5
FPT_FLS.1/ODEL)

CAP files, the bytecode and its data arguments are consistently interpreted using the
following rules (see 7.1.1.3 FPT_TDC.1/CORE):

• the rules defined in [JCVM22] specification,

• the API tokens defined in the export files of reference implementation,

• the rules defined in [VGP]

• the rules defined in the [ISO7816], [ISO14443], [EMV42] and [EMVCL201]
TSF maintain the following list of security attributes belonging to individual users:

• Package AID,

• Applet's version number,

• Registered applet AID,

• Applet Selection Status ([JCVM22], §6.5).

• Card Administrator: AID, Life Cycle State, Privilege, ISD Keys

• Application Provider: AID, Life Cycle State, Privilege, SD Keys

• End-user (Card Holder): AID, Privilege, CVM State, Retry Limit, Retry
Counter.

 136

(see 7.1.1.4 FIA_ATD.1/AID, 7.1.1.4 FIA_UID.2/AID, 7.1.1.4 FIA_USB.1/AID, 7.1.7
FIA_ATD.1/GP and 7.1.7 FIA_USB.1/GP).

The TSF run a suite of self-tests during initial start-up to demonstrate the correct
operation of the TSF, to verify the integrity of parts of TSF data and to verify the
integrity of stored parts of TSF. (see 7.1.7 FPT_TST.1/GP).

The TSF enforce the generation of evidence of origin for transmitted application
packages at all times. The TSF be able to relate the identity of the originator of the
information, and the application package contained in the information to which the
evidence applies. The TSF provide a capability to verify the evidence of origin of
information to recipient given immediate verification of origin.(see 7.1.6
FCO_NRO.2/CM)

The TSF enforce the PACKAGE LOADING information flow control SFP to receive
user data in a manner protected from modification, deletion, insertion, and replay
errors(see 7.1.6 FDP_UIT.1/CM)

The TSF restrict the ability to disable, enable, modify the behavior of the functions
listed in the following table to Card Administrator. (see 7.1.7 FMT_MOF.1/GP)

8.1.6 SF.Transaction
The TSF permits the rollback of operations OP.JAVA, OP.CREATE on object
O.JAVAOBJECT. These operations can be rolled back within the calls: select(),
deselect(), process(), install() or uninstall() call, notwithstanding the restrictions given
in [JCRE22], §7.7, within the bounds of the Commit Capacity ([JCRE22], §7.8), and
those described in [JCAPI22].(see 7.1.1.2 FDP_ROL.1/FIREWALL, 7.1.2
FPT_RCV.3/Installer)
Transactions are a service offered by the APIs to applets. It is also used by some
APIs to guarantee the atomicity of some operation. This mechanism is either
implemented in Java Card platform or relies on the transaction mechanism offered
by the underlying platform.
Some operations of the API are not conditionally updated, as documented in
[JCAPI22] (see for instance, PIN-blocking, PIN-checking, update of Transient
objects).

8.1.7 SF.Hardware
The certified hardware (part of the TOE) features the following TSF. The exact
formulation can be found in the hardware security target:

Protection against Physical Manipulation (see 7.1.8 FCS_RNG.1/SCP, 7.1.8
FPT_PHP.3/SCP)

The TSF ensure the operation of JCS and CM capabilities when the following
failures occur: lack of EEPROM, random number generator failure, crypto co-
processor failure, RAM read/write failure, card tearing, and power failure.(see 7.1.8
FRU_FLT.1/SCP)

When automated recovery from none is not possible, the TSF enter a maintenance

 137

mode where the ability to return the TOE to a secure state is provided. For all cases,
the TSF ensure the return of the TOE to a secure state using automated procedures.
The functions provided by the TSF to recover from failure or service discontinuity
ensure that the secure initial state is restored without exceeding 0% for loss of TSF
data or objects within the TSC. The TSF provide the capability to determine the
objects that were or were not capable of being recovered. (see 7.1.8
FPT_RCV.3/SCP)

The TSF ensure that reading from and writing to static and objects’ fields interrupted
by power loss have the property that the SF either completes successfully, or for the
indicated failure scenarios, recovers to a consistent and secure state. (see 7.1.8
FPT_RCV.4/SCP)

The TSF preserve a secure state when the following types of failures occur:

• exposure to operating conditions which may not be tolerated according to the
requirement FRU_FLT.1 and where therefore a malfunction could occur.(see
7.1.8 FPT_FLS.1/SCP)

 138

9 Annexes

9.1 References

[CCPART1] Common Criteria for Information Technology Security Evaluation,

Part 1: Introduction and general model, July 2009, Version 3.1
Revision 3 Final, CCMB-2009-07-001

[CCPART2] Common Criteria for Information Technology Security Evaluation,
Part 2: Security functional requirements, July 2009, Version 3.1
Revision 3 Final, CCMB-2009-07-002

[CCPART3] Common Criteria for Information Technology Security Evaluation,
Part 2: Security assurance requirements, July 2009, Version 3.1
Revision 3 Final, CCMB-2009-07-003

[COMP-
EVAL]

Composite product evaluation for Smart Cards and similar devices,
September 2007, Version 1.0 Revision 1, CCDB-2007-09-001

[JCSPP] Java CardTM System Protection Profile Open Configuration, Version
2.6, 19 April 2010

[PP0035] Security IC Platform Protection Profile, Version 1.0, 15 July 2007
[PP JCS] Java Card Protection Profile Collection, Version 1.0b, August 2003,

registered and certified by the French certification body (ANSSI)
under the following references: [PP/0303] “Minimal Configuration”,

[PP/0304] “Standard 2.1.1 Configuration”, [PP/0305] “Standard 2.2

Configuration” and [PP/0306] “Defensive Configuration”.
[ICST] SA23YR48B / SB23YR48B / SA23YR80B / SB23YR80B SECURITY

TARGET - PUBLIC VERSION, Rev 02.01, issued November 2009
[JCRE22] Java Card Platform, version 2.2 Runtime Environment (Java Card

RE) Specification. June 2002. Published by Sun Microsystems, Inc.
[JCVM22] Java Card Platform, version 2.2 Virtual Machine (Java Card VM)

Specification. June 2002. Published by Sun Microsystems, Inc.
[JCRE222] Java Card Platform, version 2.2.2 Runtime Environment (Java Card

RE) Specification. March 2006. Published by Sun Microsystems, Inc.
[JCVM222] Java Card Platform, version 2.2.2 Virtual Machine (Java Card VM)

Specification. Beta release, October 2005. Published by Sun
Microsystems, Inc.

[JCAPI222] Java Card Platform, version 2.2.2 Application Programming
Interface, March 2006. Published by Sun Microsystems, Inc.

[GP] GlobalPlatform Card Specification, Version 2.1.1, March 2003
[VGP] Visa GlobalPlatform 2.1.1 Card Implementation Requirements,

Version 2.0, July 2007
[JAVASPEC] The Java Language Specification. Third Edition, May 2005. Gosling,

Joy, Steele and Bracha. ISBN 0-321-24678-0.
[JVM] The Java Virtual Machine Specification. Lindholm, Yellin. ISBN 0-

201-43294-3.
[JCBV] Java Card Platform, version 2.2 Off-Card Verifier. June 2002. White

paper. Published by Sun Microsystems, Inc.
[FICCS] Finance IC card standard revision - Open platform – October 2010

 139

[EMV42] EMV Integrated Circuit Card Specifications for Payment Systems
Book 1 Application Independent ICC to Terminal Interface
Requirements Version 4.2 June 2008

[ISO7816] ISO/IEC 7816-3 Part 3: Cards with contacts – Electrical interface and
transmission protocols 2006-11-01

[EMVCL201] EMV
Contactless Specifications for
Payment Systems EMV Contactless Communication
Protocol Specification Version 2.0.1 July 2009

[ISO14443] ISO/IEC 14443-3 Part 3: Initialization and anticollision 1999-06-11

9.2 Terms and definitions

Application Protocol Data
Unit(APDU)

Standard communication command protocol between
smartcard and CAD

Application (Applet) The name is given to a Java Card technology-based
user application. An application is the basic piece of
code that can be selected for execution from outside the
card. Each application on the card is uniquely identified
by its AID.

Application instance Instance of an Executable Module after it has been

installed and made selectable.

Application Protocol Data
Unit(APDU)

Standard communication messaging protocol between a
card accepting device and a smart card

Application Provider Entity that owns an application and is responsible for the

application's behavior

bytecode verifier The bytecode verifier is the software component

performing a static analysis of the code to be loaded on
the card. It checks several kinds of properties, like the
correct format of CAP files and the enforcement of the
typing rules associated to bytecodes. If the component is
placed outside the card, in a secure environment, then it
is called an off-card verifier. If the component is part of
the embedded software of the card it is called an on-card
verifier.

CAD Card Acceptance Device, or card reader. The device

where the card is inserted, and which is used to
communicate with the card.

CAP file A file in the Converted applet format. A CAP file contains

a binary representation of a package of class es that can
be installed on a device and used to execute the
package ’s class es on a Java Card virtual machine. A

 140

CAP file can contain a user library, or the code of one or
more applets

Card Content Code and Application information (but not Application

data) contained in the card that is under the
responsibility of the OPEN e.g. Executable Load Files,
Application instances, etc

Cardholder The end user of a card

Cardholder Verification
Method (CVM)

A method to ensure that the person presenting the card
is the person to whom the card was issued

Context A context is an object-space partition associated to a

package . Applets within the same Java technology-
based package belong to the same context. The firewall
is the boundary between contexts

Card Manager Generic term for the 3 card management entities of a

GlobalPlatform card i.e. the OPEN, Issuer Security
Domain and the Cardholder Verification Method Services
provider

Currently selected applet The applet has been selected for execution in the current

session. The JCRE keeps track of the currently selected
Java
Card applet. Upon receiving a SELECT command from
the
CAD with this applet’s AID , the JCRE makes this applet
the
currently selected applet. The JCRE sends all APDU
commands to the currently selected applet

DAP Block Part of the Load File used for ensuring Load File Data

Block verification

DAP Verification A mechanism used by a Security Domain to verify that a

Load File Data
Block is authentic

Default applet The applet that is selected after a card reset

Domain Issuer Security Domain :

On-card entity providing support for the control, security,
and communication requirements of the Card Issuer
Security Domain :
On-card entity providing support for the control, security,
and communication requirements of the Application
Provider

 141

ES(Embedded Software) it is defined as the software embedded in the Smart Card

Integrated Circuit. The ES may be in any part of the non-
volatile memories of the Smart Card IC.

Executable File Actual on-card container of one or more Executable

Modules. It may reside in immutable persistent memory
or may be created in mutable persistent memory as the
resulting image of an Executable Load File.

Executable Load File An Executable File that is in transit to the smart card.

Executable Module Contains the on-card executable code of a single

application present within an Executable Load File

Firewall The mechanism in the Java Card technology for

ensuring applet isolation and object sharing. The firewall
prevents an applet in one context from unauthorized
access to objects owned by the JCRE or by an applet in
another context.

GP Global Platform, GP is an organization that has been

established by leading companies from the payments
and communications industries, the government sector
and the vendor community, and is the first to promote a
global infrastructure for smart card implementation
across multiple industries. Its goal is to reduce barriers
hindering the growth of cross-industry, multiple
Application smart cards. The smart card issuers will
continue to have the freedom to choose from a variety of
cards, terminals and back-end systems.

GlobalPlatform Registry A container of information related to Card Content

management

IC Integrated Circuit , Electronic component(s) designed to

perform processing and/or memory functions

Installer The installer is the on-card application responsible for

the installation of applets on the card. It may perform (or
delegate) mandatory security checks according to the
card issuer policy (for bytecode-verification, for
instance), loads and link package s (CAP file (s)) on the
card to a suitable form for the JCVM to execute the code
they contain. It is a subsystem of what is usually called
“card manager”; as such, it can be seen as the portion of
the card manager that belongs to the TOE. The installer
has an AID that uniquely identifies him, and may be
implemented as a Java Card applet. However, it is

 142

granted specific privileges on an implementation-specific
manner

Interface A special kind of Java programming language class ,

which declares methods, but provides no implementation
for them. A class may be declared as being the
implementation of an interface, and in this case must
contain an implementation for each of the methods
declared by the interface.

JCRE The Java Card runtime environment consists of the Java

Card virtual machine, the Java Card API, and its
associated native methods. This notion concerns all
those dynamic features that are specific to the execution
of a Java program in a smart card, like applet lifetime,
applet isolation and object sharing, transient objects, the
transaction mechanism, and so on.

JCRE Entry Point An object owned by the JCRE context but accessible by

any application. These methods are the gateways
through which applets request privileged JCRE system
services: the instance methods associated to those
objects may be invoked from any context, and when that
occurs, a context switch to the JCRE context is
performed.

JCRMI Java Card Remote Method Invocation is the Java Card

System, version 2.2.2, mechanism enabling a client
application running on the CAD platform to invoke a
method on a remote object on the card. Notice that in
Java Card System, version 2.1.1, the only method that
may be invoked from the CAD is the process method of
the applet class

JCVM The embedded interpreter of bytecodes. The JCVM is

the component that enforces separation between
applications (firewall) and enables secure data sharing.

Issuer Security Domain On-card entity providing support for the control, security,

and communication requirements of the Card Issuer

logical channel A logical link to an application on the card. A new feature

of the Java Card System, version 2.2.2, that enables the
opening of up to four simultaneous sessions with the
card, one per logical channel. Commands issued to a
specific logical channel are forwarded to the active
applet on that logical channel.

Object deletion The Java Card System, version 2.2.2, mechanism

 143

ensures that any unreferenced persistent (transient)
object owned by the current context is deleted. The
associated memory space is recovered for reuse prior to
the next card reset.

Open Platform
Environment (OPEN)

The central on-card administrator that owns the
GlobalPlatform Registry

Package A package is a name space within the Java

programming language that may contain class es and
interface s. A package defines either a user library, or
one or more applet definitions. A package is divided in
two sets of files: export files (which exclusively contain
the public interface information for an entire package of
class es, for external linking purposes; export files are
not used directly in a Java Card virtual machine) and
CAP file s.

Transient object An object whose contents are not preserved across CAD

sessions. The contents of these objects are cleared at
the end of the current CAD session or when a card reset
is performed. Writes to the fields of a transient object are
not affected by transactions.

9.3 Abbreviated terms

AID Application Identifier
APDU Application Data Protocol Unit
API Application Programming Interface
ATR Answer-to-Reset
CAD Card Acceptance Device
CAP Converted Applet
CC Common Criteria
CVM Cardholder Verification Method
DAP Data Authentication Pattern
DES Data Encryption Standard
EAL Evaluation Assurance Level
EMV Europay, MasterCard, and Visa; used to refer to the ICC

Specifications for Payment Systems
GP Global Platform
ICC Integrated Circuit Card
ISD Issuer Security Domain
ISO International Organization for Standardization
JCRE Java Card Runtime Environment
JCVM Java Card Virtual Machine
JCAPI Java Card API
JCS Java Card System
MAC Message Authentication Code
OPEN Open Platform Environment

 144

OS Operating System
OSP Organisational Security Policy
PIN Personal Identification Number
PP Protection Profile
RAM Random Access Memory
ROM Read-only Memory
RSA Rivest / Shamir / Adleman asymmetric algorithm
SCP Secure Channel Protocol
SD Security Domain
ST Security Target
SIO An object of a class implementing a shareable interface
TOE Target Of Evaluation
TSF TOE Security Functionality
VM Virtual Machine

