

NetScout Systems, Inc. nGenius® InfiniStream® (V 4.7 M R 2), nGenius® Performance Manager (V 4.7 M R 2), and nGenius® K 2 (V 4.7 M R 2) Security Target

Version 14.0

April 6, 2010

NetScout Systems, Inc. 310 Littleton Road Westford, MA 01886-4105

DOCUMENT INTRODUCTION

This document provides the basis for an evaluation of a specific Target of Evaluation (TOE), the NetScout nGenius InfiniStream (Version 4.7 MR2 which is build #4.70.603), nGenius Performance Manager (Version 4.7 MR2 which is build #4.70.352), and nGenius K2 (Version 4.7 MR2 which is build #4.70.352). This Security Target (ST) defines a set of assumptions about the aspects of the environment, a list of threats that the product intends to counter, a set of security objectives, a set of security requirements, and the IT security functions provided by the TOE which meet the set of requirements.

REVISION HISTORY

Rev Description

- 1.0 August 1, 2008, initial release
- 2.0 August 12, 2008, incorporated comments from NetScout internal review
- 3.0 November 5, 2008, incorporated updates for Software Version
- 4.0 November 7, 2008, incorporated comments from NetScout internal review
- 5.0 May 7, 2009, addressed Observation Reports and updated software version number
- 6.0 May 8, 2009, incorporated comments from NetScout internal review
- 7.0 May 15, 2009, incorporated comments from NetScout internal review
- 8.0 June 3, 2009, addressed Observation Reports
- 9.0 June 11, 2009, addressed Observation Reports
- 10.0 June 18, 2009, addressed Observation Report
- 11.0 October 9, 2009, addressed Observation Report of Development Evidence
- 12.0 December 3, 2009, updated product/version being evaluated
- 13.0 January 7, 2010, addressed Observation Report
- 14.0 April 6, 2010, included software build numbers

TABLE OF CONTENTS

1. SECURITY TARGET INTRODUCTION	.7
1.1 Security T arget R eference	. 7
1.2 TOE Reference	. 7
1.3 K eywords	. 7
1.4 TOE Overview	
1.4.1 Usage and Major Security Features	.7
1.4.2 TOE type	
1.4.3 Required Non-TOE Hardware/Software/Firmware	. 8
1.4.3.1 nGenius InfiniStream	
1.4.3.2 nGenius Performance Manager	.9
1.4.3.3 Client Systems	
1.5 TOE Description	
1.5.1 TOE Component Descriptions	11
1.5.1.1 nGenius InfiniStream	
1.5.1.2 nGenius Performance Manager	
1.5.1.3 nGenius Performance Manager with nGenius K2	
1.5.2 Physical Boundary	
1.5.3 Logical Boundary	
1.5.3.1 Audit Generation.	
1.5.3.2 Identification and Authentication	
1.5.3.3 Security Management	
1.5.3.4 User Data Protection	
1.6 Evaluated Configuration	
2. CONFORMANCE CLAIMS	15
2.1 Common Criteria Conformance	15
2.2 Protection Profile Conformance	
2.3 Security R equirement Packages	
3. SECURITY PROBLEM DEFINITION	16
3.1 Introduction	
3.2 A ssumptions	
3.3 T hr eats	
3.4 Organisational Security Policies	
4. SECURITY OBJECTIVES.	
4.1 Security Objectives for the TOE	
4.2 Security Objectives for the Operational Environment	18
5. EXTENDED COMPONENTS DEFINITION	19
5.1 Extended Security Functional Components	19
5.2 Extended Security Assurance Components	
6. SECURITY REQUIREMENTS	20
6.1 TOE Security Functional R equirements	
6.1.1 Security Audit (FAU)	
6.1.1.1 FAU_GEN.1 Audit Data Generation	
6.1.1.2 FAU_GEN.2 User Identity Association	

6.1.1.3 FAU_SAR.1 Audit review	
6.1.2 User Data Protection (FDP)	
6.1.2.1 FDP_ACC.1 Subset Access Control	
6.1.2.2 FDP_ACF.1 Security attribute based access control	
6.1.2.3 FDP_IFC.1 Subset Information Flow Control	22
6.1.2.4 FDP_IFF.1 Simple Security Attributes	22
6.1.3 Identification and Authentication (FIA)	23
6.1.3.1 FIA_AFL.1 Authentication Failure Handling	23
6.1.3.2 FIA_ATD.1 User Attribute Definition	23
6.1.3.3 FIA_SOS.1 Verification of Secrets	
6.1.3.4 FIA_UAU.2 User Authentication Before any Action	23
6.1.3.5 FIA_UAU.7 Protected Authentication Feedback	23
6.1.3.6 FIA_UID.2 User Identification Before any Action	
6.1.3.7 FIA_USB.1 User-Subject Binding	23
6.1.4 Security Management (FMT)	24
6.1.4.1 FMT_MOF.1 Management of Security Functions Behaviour	24
6.1.4.2 FMT_MSA.1 Management of Security Attributes	
6.1.4.3 FMT_MSA.3 Static Attribute Initialisation	25
6.1.4.4 FMT_MTD.1 Management of TSF Data	25
6.1.4.5 FMT_SMF.1 Specification of Management Functions	
6.1.4.6 FMT_SMR.1 Security Roles	26
6.2 TOE Security Assurance Requirements	27
6.3 CC Component Hierarchies and Dependencies	27
7. TOE SUMMARY SPECIFICATION	29
7.1 Security Functions	
7.1.1 Audit Generation	
7.1.2 Identification and Authentication	29
7.1.3 Security Management	30
7.1.4 User Data Protection	
8. RATIONALE	32
8.1 Rationale for IT Security Objectives	
8.1.1 Rationale Showing Threats to Security Objectives	
A L / KAHONAIE NNOWING ASSUMPTIONS TO ENVIRONMENT SECURITY UNDECLIVES	32
8.1.2 Rationale Showing Assumptions to Environment Security Objectives	32 33
8.2 Security R equirements R ationale	32 33 34
8.2 Security R equirements R ationale8.2.1 Rationale for Security Functional Requirements of the TOE Objectives	32 33 34 34
8.2 Security R equirements R ationale8.2.1 Rationale for Security Functional Requirements of the TOE Objectives8.2.2 Security Assurance Requirements Rationale	32 33 34 34 36
 8.2 Security R equirements R ationale	32 33 34 34 36 36
8.2 Security R equirements R ationale8.2.1 Rationale for Security Functional Requirements of the TOE Objectives8.2.2 Security Assurance Requirements Rationale	32 33 34 34 36 36 36

LIST OF TABLES

Table 1 -	Minimum InfiniStream Hardware and Operating System Requirements	. 9
Table 2 -	Minimum Management System Hardware and Software Requirements	10
Table 3 -	Minimum Client System Hardware and Browser Requirements	11
Table 4 -	Assumptions	16
Table 5 -	Threats	16
Table 6 -	Security Objectives for the TOE	18
Table 7 -	Security Objectives of the IT Environment	18
Table 8 -	Security Attribute Management Details	24
Table 9 -	TSF Data Management Details	25
Table 10 -	EAL3+ Assurance Requirements	27
Table 11 -	TOE SFR Dependency Rationale	27
Table 12 -	Threats and Assumptions to Security Objectives Mapping	32
Table 13 -	Threats to Security Objectives Rationale	32
Table 14 -	Assumptions to Security Objectives Rationale	34
Table 15 -	SFRs to Security Objectives Mapping	34
Table 16 -	Security Objectives to SFR Rationale	35
Table 17 -	SFRs to TOE Security Functions Mapping	36
Table 18 -	SFR to SF Rationale	37

ACRONYMS LIST

ACL	Access Control List
СС	Common Criteria
C DE	Common Data Export
CLA	Command Line Administrator
CLI	Command Line Interface
E A L 3	E valuation Assurance L evel 3
GB	GigaByte
	Graphical User Interface
	perText Transfer Protocol over Secure Socket Layer
	Identification and Authentication
	Internet Protocol
	Information Technology
	Java R untime E nvir onment
	MegaByte
	Per for mance M anager
	Protection Profile
	Security Function Policy
	Security Target
	Transmission Control Protocol
	Target of Evaluation
	TOE Security Function
	TSF Interface
UDP	User Datagram Protocol
V L A N	Virtual Local Area Network

1. Security Target Introduction

This Security Target (ST) describes the objectives, requirements and rationale for the NetScout nGenius InfiniStream (Version 4.7 MR2), nGenius Performance Manager (Version 4.7 MR2), and nGenius K2 (Version 4.7 MR2). The language used in this Security Target is consistent with the *Common Criteria for Information Technology Security Evaluation, Version 3.1* and all international interpretations through July 22, 2008. As such, the spelling of terms is presented using the internationally accepted English.

1.1 Security Target Reference

NetScout Systems, Inc. nGenius® InfiniStream® (V4.7 MR2), nGenius® Performance Manager (V4.7 MR2), and nGenius® K2 (V4.7 MR2) Security Target, Version 14.0, April 6, 2010.

1.2 TOE Reference

NetScout nGenius InfiniStream (Version 4.7 MR2 which is referring to nGenius InfiniStream 4.70.603), nGenius Performance Manager (Version 4.7 MR2 which is referring to nGenius Performance Manager 4.70.352), and nGenius K2 (Version 4.7 MR2 which is referring to nGenius K2 4.70.352).

1.3 Keywords

nGenius, Sniffer, InfiniStream, Enterprise Management, Capture Engine, Performance Manager, K2, Sniffer Analysis, data mining, frame slicing, capture ports, store, stream, selective recording, slice size, nGenius InfiniStream Appliance, InfiniStream Application, monitored element, service assurance, network management, network monitoring

1.4 TOE Overview

1.4.1 Usage and Major Security Features

The TOE consists of multiple software components that together provide an integrated network management application addressing key performance management disciplines:

- application and network monitoring
- network capacity planning network troubleshooting
- fault prevention
- service level management

The nGenius InfiniStream appliance is a continuous capture platform that records the packetlevel details of enterprise traffic seen by monitoring network links. nGenius InfiniStream application is the software on this platform responsible for performing the capture and storage of the network traffic.

nGenius Performance Manager is a GUI-based management product that may be used to control and monitor the operation of the nGenius InfiniStream application as well as analyze the captured data. The captured data is used to provide efficient top-down KPI-to-Flow-to-Packet ¹analysis and minimize mean time to resolution when network issues occur. The solutions also provide real-time performance monitoring and statistical monitoring of the enterprise network.

nGenius Performance Manager, and nGenius Performance Manager with nGenius K2, are both valid configurations of nGenius Performance Manager which provide various levels of analysis and reporting functionality. Only one is used operationally in each installation. All of the products share common functions which provide the complete set of security functions claimed in this document.

There is a single software installation for nGenius Performance Manager which includes optional modules which are by default disabled and can be enabled if a license is applied. The optional modules provide increased levels of analysis and reporting. These optional modules do not provide any additional security functionality or interfere with security functionality provided by the nGenius Performance Manager base product. nGenius K2 is an optional licensable nGenius Performance Manager module.

nGenius Performance Manager provides the ability to control and monitor the InfiniStream application, perform basic analysis of the captured data, and generate reports. nGenius K2 adds additional analysis functions including KPI alarms and specialized analysis of internal threats². Sniffer Intelligence modules provide specialized analysis functions for distinct application protocols or industries; these modules do not provide any additional security functions.

In support of these functions, the TOE provides the following security functionality:

- Capture and storage of network traffic
- Restricted access to the captured data to protect the contents of that data from unauthorised users
- Management functionality to enable administrators to configure the security functions
- Identification and Authentication (I&A) to provide user-based privileges to the users of the system

1.4.2 TOE type

The TOE type is Network Management.

1.4.3 Required Non-TOE Hardware/Software/Firmware

The individual TOE components execute on different platforms and therefore have different required hardware and software to support them.

In addition, the management product is accessed remotely from client systems using a browser. The requirements for the client systems are also specified.

¹ KPI-to-Flow-to-Packet is the term used to describe the workflow process for how an nGenius Performance Management Solution user can navigate from a high-level alert based on key performance indicators (KPIs) to the relevant flow-based content and then to the actual packet-level information.

² Specialized analysis of internal threats provided by nGenius Security Manager is not claimed as TOE security functionality in this Security Target.

1.4.3.1 nGenius InfiniStream

The nGenius InfiniStream application executes on a dedicated server running a NetScout customized and hardened Linux distribution based on Fedora Core 6 based on kernel 2.6.22. The required hardware and software to support the nGenius InfiniStream application is specified in the following table. To accommodate new, former, and existing customers of either NetScout or Network General (a company acquired by NetScout), this application may be executed on hardware falling into three categories:

- 1. Legacy NetScout hardware hardware that NetScout customers purchased prior to the acquisition of Network General
- 2. Legacy Network General hardware hardware purchased from Network General prior to the acquisition by NetScout
- 3. Current hardware hardware supported for new systems

Table 1 - Minimum InfiniStream Hardware and Operating System Requirements

Category	Minimum Hardware Requirements	Operating System
×		Requirements
Legacy	Intel Xeon processors with 1 MB integrated Advanced	NetScout customized and
NetScout	Transfer Cache at 3.20 GHz, 533 MHz FSB, dual on	hardened Linux
	board 10/100/1000 Mbps LAN ports with Intel 7501	distribution based on
	chip set, 16 GB ECC, registered DDR PC 2100 at	Fedora Core 6 based
	266 MHz (133 x 2), 6 PCI-X (2 @ 133 MHz) slots	on kernel 2.6.22.
	with 3 separate buses.	Net-SNMP v. 5.0.9
	200 GB ATA/133 Drive (OS and applications)	
	3Ware 9500 SATA High Performance RAID	
	4 x 300GB SATA Drives (data storage)	
	2 x 10/100/100 Ethernet ports	
Legacy	Intel Dual Core Xeon 5100 processor at 3.0 GHz, 1333	NetScout customized and
Network	MHz FSB, dual on board LAN ports, with Intel 5000	hardened Linux
General	chip set, 16GB FBD 533 MHz SDRAM, 1 PCI-	distribution based on
	Express (x8) and 2 (133 MHz) PCI-X slots.	Fedora Core 6 based
	1 x 250 GB SATA Drives (OS and applications)	on kernel 2.6.22.
	Areca PCI-Express SATA II RAID Controller	Net-SNMP v. 5.0.9
	5 x 250GB SATA Drives (data storage)	
	4 x 10/100/100 Ethernet ports	
Current	Intel Xeon Processor with Intel Extended Memory 64-bit	NetScout customized and
Hardware	Technology at 3.8 GHz, 800 1MHz FSB, dual on	hardened Linux
	board 10/100/1000 Mbps LAN ports, with Intel	distribution based on
	E7520 Chipset, 16GB DDR2 400 SDRAM, 1 PCI-	Fedora Core 6 based
	Express (x8) and 5 PCI-X slots (3 @ 133MHz)	on kernel 2.6.22.
	2 x 80 GB SATA Drives (OS and applications)	Net-SNMP v. 5.0.9
	LSI/Dell PERC RAID Controller, or 3Ware 9550 SATA	
	RAID Controller	
	5 x 250GB SATA Drives (data storage)	
	2 x 10/100/100 Ethernet ports	

1.4.3.2 nGenius Performance Manager

The management product (whichever one is used for any specific installation) executes on a dedicated system running Linux, Solaris or Windows. The required hardware and software is

specified in the following table (the requirements are the same for all three management products).

Operating System	Minimum Hardware Requirements	Software Requirements
System Linux	RequirementsTwo Dual-Core Xeonprocessors 5130 or better;2.00 GHz, 1333 MHz FSB,4 MB L2 Cache4 GB DDR-2 RAM with swapspace equal to twice thecapacity of physicalmemory5 x 300 GB or 6 x 250 GB harddrives; RAID 5; Ultra 320SCSI, SATA, or SASCD-ROM drive (DVD-ROMdrive recommended)100/1000 Ethernet adapterDual, redundant power supplies	 Red Hat Linux ES 4.0 Update 4 (English) with the following package selections: Desktops X Window System (in Details, select all 42 items) GNOME Desktop Environment (accept defaults, 41/44 items) Applications Editors (in Details, select only vim-enhanced, nedit, emacs) Graphical Internet (in Details, select only FireFox) Text-based Internet (in Details, select only ggv, gpdf, andtetex-xdvi) Authoring and Publishing (full package, 12 items) Servers Server Configuration Tools (in Details, select all except redhat-config-httpd, redhat-switch-mail, and redhat-switch-mail-gnome) Windows File Server (full package, 3 items) Legacy Network Server (in Details, select only rwho, rusers) Development Development Development Tool (accept defaults, 57/75 packages) Legacy Software development (full package, 6 items) System select Administration Tools (full package, 12 items) System Tools (in Details, select all except tn5250, x3270-x11, festival) Printing Support (in Details, select all except hpoj) Miscellaneous No selections JRE v1.5.0_10 JBoss Application Server (version 4.0.4GA) Apache Web Server (version 2.0.63)
Solaris	Two Dual-Core Xeon processors 5130 or better; 2.00 GHz, 1333 MHz FSB, 4 MB L2 Cache 4 GB DDR-2 RAM with swap space equal to twice the capacity of physical memory 5 x 300 GB or 6 x 250 GB hard drives; RAID 5; Ultra 320 SCSI, SATA, or SAS; NTFS formatted	Sybase DBMS (version 10.0.1.3488) Solaris v8 or v9 (English, Japanese) with patches required for Java Runtime Environment (JRE) v1.5.0_10 JRE v1.5.0_10 JBoss Application Server (version 4.0.4GA) Apache Web Server (version 2.0.63) Sybase DBMS (version 10.0.1.3488)

 Table 2 - Minimum Management System Hardware and Software Requirements

Operating	Minimum Hardware	Software Requirements
System	Requirements	
	CD-ROM drive (DVD-ROM	
	drive recommended)	
	100/1000 Ethernet adapter	
	Dual, redundant power supplies	
Windows	Two Dual-Core Xeon	Windows 2003 — Standard or Enterprise with Service
	processors 5130 or better;	Pack 1 (English, Japanese, Simplified Chinese)
	2.00 GHz, 1333 MHz FSB,	OR
	4 MB L2 Cache	Windows 2003 R2 — Standard or Enterprise (English,
	4 GB DDR-2 RAM with swap	Japanese, Simplified Chinese)
	space equal to twice the	JRE v1.5.0_10
	capacity of physical	DirectX 8.1 or higher
	memory	JBoss Application Server (version 4.0.4GA)
	5 x 300 GB or 6 x 250 GB hard	Apache Web Server (version 2.0.63)
	drives; RAID 5; Ultra 320	Sybase DBMS (version 10.0.1.3488)
	SCSI, SATA, or SAS	
	CD-ROM drive (DVD-ROM	
	drive recommended)	
	100/1000 Ethernet adapter	
	Dual, redundant power supplies	

1.4.3.3 Client Systems

 Table 3 - Minimum Client System Hardware and Browser Requirements

Minimum Hardware Requirements	Browser Requirement
800 MHz processor	JRE v1.5.0_10
512 MB RAM	
250 MB available disk space	

1.5 TOE Description

The TOE is a set of software components executed on Linux, Solaris, and/or Windows platforms. The TOE is a network capture and analysis tool intended for use in enterprise environments. The individual components are described in more detail in the following sections.

In the remainder of this document, the term MANAGEMENT is used to describe the common functionality provided by nGenius Performance Manager, or nGenius Performance Manager with nGenius K2. Whenever reference is made to a capability not common to all these products, a more product-specific reference is used.

The MANAGEMENT component provides the mechanism for user interaction with the operational TOE (capturing traffic is transparent to users).

1.5.1 TOE Component Descriptions

1.5.1.1 nGenius InfiniStream

The nGenius InfiniStream application (InfiniStream application) captures a continuous flow of network traffic for each network interface. Stored network traffic can be searched using custom search criteria. Additionally, using Selective Recording or Monitor Element Groups it is possible to omit unwanted network packets from storage during the capture process.

The InfiniStream application executes on a Linux operating system server. The hardware, Linux operating system and 3^{rd} party software are excluded from the TOE. The server this component executes on must be dedicated to this application; no software other than that required by the TOE is installed.

1.5.1.2 nGenius Performance Manager

nGenius Performance Manager (Performance Manager) provides statistics display, data mining, and reporting of network traffic captured by the InfiniStream application. Performance Manager provides the mechanism to access one or more network traffic flows for analysis. Performance Manager provides for the retrieval, analysis, and decode of captured traffic. Performance Manager allows the captured network traffic to be viewed graphically and statistically; it also identifies and diagnoses network problems. Performance Manager includes a framework that enables intelligence modules to be added to the product to provide application protocol- or industry-specific traffic analysis.

Performance Manager provides centralized management functionality to control and monitor InfiniStream application instances, control and monitor InfiniStream appliances and manage configuration parameters within Performance Manager.

Performance Manager provides the ability to generate reports from analysis of the captured data.

Performance Manager functionality is accessed via a web browser executing on a client system. HTTPS is used in order to protect the data being exchanged.³

The Performance Manager application executes on a Linux, Solaris, or Windows server. The hardware, operating system, and all 3^{rd} party software are excluded from the TOE. The server this component executes on must be dedicated to this application; no software other than that required by the TOE is installed.

1.5.1.3 nGenius Performance Manager with nGenius K2

nGenius Performance Manager with nGenius K2 (K2) is a management system including all the Performance Manager capabilities as well as providing additional analytic analysis capabilities to monitor the health of critical business services, additional analytic analysis of potential internal network threats,⁴ and early warning of anomalous changes in application and network performance.

The K2 application executes on a Linux, Solaris, or Windows server. The hardware, operating system, and all 3^{rd} party software are excluded from the TOE. The server this component executes on must be dedicated to this application; no software other than that required by the TOE is installed.

1.5.2 Physical Boundary

The physical boundary of the TOE includes:

³ HTTPS is part of the operational environment and is not being evaluated.

⁴ The specialized analysis of internal threats provided by nGenius Security Manager is not claimed as TOE security functionality in this Security Target.

- A) One or more instances of the InfiniStream application, each executing on a system dedicated to this purpose
- B) One instance of MANAGEMENT, executing on a system dedicated to this purpose. This element may be Performance Manager, or K2 because they provide the same security functionality.
- C) Product Operating Manuals including nGenius InfiniStream Hardware Installation and Administration Guide(Part Number 293-2142 Rev. C), nGenius Performance Manager Installation Guide (Part Number 293-2212 Rev. A), nGenius Performance Manager Online Help version 4.7 MR2, and NetScout's Guide to Configure the Common Criteria Evaluated Configuration (Part Number 733-0157 Rev. A TBD)

Note specifically that the hardware, operating system, and all 3rd party software on each of the systems are excluded from the TOE boundary.

1.5.3 Logical Boundary

The TOE consists of software applications that execute on at least 2 different hardware platforms. These software applications provide audit generation, identification and authentication, security management, and user data protection.

1.5.3.1 Audit Generation

During operation, the TOE generates audit records for system and management events. The audit records are stored on the MANAGEMENT system. The audit record generated can be viewed by all authorised users of the MANAGEMENT system.

1.5.3.2 Identification and Authentication

When users first access the TOE via a web browser, they must provide credentials for Identification and Authentication (I&A) before access is granted to any further TOE capabilities. The TOE validates the credentials against the configured credentials. Upon successful login, security attributes are associated with the user session to control its access.

1.5.3.3 Security Management

The TOE provides management functions directly related to the secure operation of its components and management functions that ensure the strict limitations of access to stored captured network traffic. The TOE provides mechanisms to configure user credentials, user permissions and user access to network traffic. Management functionality is limited to users that have been granted permissions to perform these functions.

1.5.3.4 User Data Protection

The TOE provides user data protection by limiting the data that is captured and limiting individual user access to that data.

Two Selective Recording mechanisms may be configured to limit the data that is stored. Selective Recording per application allows organizations to specify exactly which application protocols they are not interested in capturing so data associated with application protocol is discarded. The Selective Recording slice size provides the mechanism to restrict the amount of bytes captured per packet. By setting the slice size to a low value, the captured data can be limited to information which does not contain sensitive information.

Users can be restricted from accessing data captured from specific InfiniStream application interfaces via Monitored Element Group Restrictions. A Monitored Element Group is a grouping any element that the InfiniStream Application can monitor. A single InfiniStream appliance may have many physical ports and logical interfaces, each of which is an individual monitored element.

1.6 Evaluated Configuration

- 1. Identification and authentication are performed locally by the TOE.
- 2. The MANAGEMENT product is installed as a Standalone Server.
- 3. SNMPv3 functionality provided by the operational environment is used to provide a channel between MANAGEMENT and individual InfiniStream application instances.
- 4. The following optional product components are not installed: nGenius NewsStand for Remote Servers, nGenius Command Line Interface (CLI), nGenius Command Line Administrator (CLA), nGenius Common Data Export (CDE), Command Line Device Tools, Sniffer Analysis, and Standby Server.
- 5. The serviceManager.userAccountLockup.enabled configuration parameter is set to True to force accounts to be locked out for a specified period of time after the configured number of consecutive authentication failures has occurred.
- 6. The "Change Config Server Address" option in the InfiniStream is set to the IP address of the Managing Performance Manager, forcing authentication to be performed by Performance Manager. Administrators are procedurally prohibited from using the InfiniStream local console except for setting the "Change Config Server Address" option and the access list.
- 7. HTTPS/SSL is activated on the MANAGEMENT platform and all connections from remote users to the MANAGEMENT use HTTPS. HTTPS/SSL is provided by the operational environment and beyond the boundary of the TOE being evaluated.
- 8. Access List Security is configured on all InfiniStream application instances to limit the systems that may remotely access the InfiniStream application instances.

2. Conformance Claims

2.1 Common Criteria Conformance

The TOE and the ST is conformant with the Common Criteria (CC) Version 3.1, functional requirements (Part 2) Version 3.1 Revision 2 conformant, and assurance requirements (Part 3) Version 3.1 Revision 2 conformant for EAL3 augmented by ALC_FLR.1 (Basic Flaw Remediation).

2.2 Protection Profile Conformance

The TOE does not claim conformance to any registered Protection Profile.

2.3 Security Requirement Packages

The TOE does not claim conformance to any registered Security Requirement Packages.

3. Security Problem Definition

3.1 Introduction

This chapter defines the nature and scope of the security needs to be addressed by the TOE. Specifically this chapter identifies:

- A) assumptions about the environment,
- B) threats to the assets, and
- C) organisational security policies.

This chapter identifies assumptions as A.assumption, threats as T.threat and policies as P.policy.

3.2 Assumptions

The specific conditions listed in the following subsections are assumed to exist in the TOE environment. These assumptions include both practical realities in the development of the TOE security requirements and the essential environmental conditions on the use of the TOE.

A.Type	Description
A.ENVIRON	The TOE will be located in an environment that provides physical security,
	uninterruptible power, and temperature control required for reliable operation.
A.FIREWALL	The TOE will be located behind a firewall and an Access Control List (ACL)
	will be created on the router between the TOE and the rest of the network to
	provide network security.
A.INSTALL	The Administrator will install and configure the TOE according to the
	administrator guidance and specific organisational security policies.
A.NETWORK	There will be a network that supports communication between distributed
	components of the TOE. This network functions properly.
A.NOEVILADMIN	Administrators are non-hostile and follow the administrator guidance when
	using the TOE. Administration is competent and on-going.

Table 4 -Assumptions

3.3 Threats

The threats identified in the following subsections are addressed by the TOE and the Operational Environment.

 Table 5 Threats

Т.Туре	TOE Threats	
T.COMDIS	A user may access data under TOE control they are not authorised to view	
	by bypassing a security mechanism.	
T.COMINT	An unauthorised user may attempt to compromise the integrity of the data	
	collected by the TOE by bypassing a security mechanism.	
T.COMMS	An unauthorised user may attempt to access TOE and user data during	
	transmission from one TOE component to another TOE component.	
T.LOSSOF	An unauthorised user may attempt to remove, alter, or destroy data	
	collected by the TOE.	
T.MISCFG	An unauthorised user may change the configuration of the TOE causing the	
	collection of data to change from its originally configured intention.	
T.NOHALT	An unauthorised user may attempt to compromise the continuity of the	
	TOE's data collection functionality by halting execution of the TOE.	

Т.Туре	TOE Threats
T.TSF_COMPROMISE	A user or process may cause, through an unsophisticated attack, TSF data
	or executable code to be modified.
T.UNAUTHACCESS	An authorised user may attempt to gain access to TOE and user data
	without proper authorization.
T.UNSECURE_ENVIRO	An unathorised user may attempt to access the server to which the TOE
NMENT	resides or the router that transmits communication between TOE
	components.

3.4 Organisational Security Policies

There are no Organisational Security Policies identified for this TOE.

4. Security Objectives

This section identifies the security objectives of the TOE and the TOE's Operational Environment. The security objectives identify the responsibilities of the TOE and the TOE's Operational Environment in meeting the security needs. Objectives of the TOE are identified as *O.objective*. Objectives that apply to the operational environment are designated as *OE.objective*.

4.1 Security Objectives for the TOE

The TOE must satisfy the following objectives.

O.Type	Security Objective
O.AUDIT	The TOE will provide the capability to detect, create and review records of security-relevant events.
	•
O.MANAGE	The TOE will provide all the functions and facilities necessary to support the
	administrators in their management of the security of the TOE, and restrict these
	functions and facilities from unauthorised use.
O.SELECT	The TOE provides a means to select only certain network traffic or certain types of
	network traffic is captured and stored.
O.TOE_ACCESS	The TOE will provide mechanisms that control a user's logical access to the TOE.
O.TRUNCATE	The TOE provides a means to truncate network traffic before it is captured so that
	sensitive information is not stored or revealed to TOE users.

 Table 6 - Security Objectives for the TOE

4.2 Security Objectives for the Operational Environment

The TOE's operational environment must satisfy the following objectives.

 Table 7 - Security Objectives of the IT Environment

OE.Type	IT Environment Security Objective
OE.COMM	The IT Environment will protect communication between distributed
	components of the TOE from disclosure.
OE.ENVIRON	The Administrator will install the TOE in an environment that provides
	physical security, uninterruptible power, and temperature control required for
	reliable operation.
OE.INFO_STORAGE	The IT Environment will provide secure storage for system data generated by
	the TOE.
OE.INSTALL	The Administrator will install and configure the TOE according to the
	administrator guidance.
OE.NETWORK	The Administrator will install and configure a network that supports
	communication between the distributed TOE components. The administrator
	will ensure that this network functions properly.
OE.NOEVILADMIN	Administrators are non-hostile and follow the administrator guidance when
	using the TOE. Administration is competent and on-going.
OE.OS_PROTECTION	The IT Environment will support TOE self-protection by maintaining a
	domain for its own execution and domains for separate application processes
	that protects itself and the application processes from external interference,
	tampering, or unauthorised disclosure through its own interfaces.
OE.TIME_STAMP	The Operational Environment will provide reliable time stamps for
	accountability purposes.

5. Extended Components Definition

5.1 Extended Security Functional Components

No extended components are included in this document.

5.2 Extended Security Assurance Components

No extended components are included in this document.

6. Security Requirements

This section contains the functional requirements that are provided by the TOE. These requirements consist of functional components from Part 2 of the CC.

The CC defines operations on security requirements. The font conventions listed below state the conventions used in this ST to identify the operations.

Assignment: indicated in italics Selection: indicated in underlined text Assignments within selections: indicated in italics and underlined text

Refinement: indicated with bold text

Iterations of security functional requirements may be included. If so, iterations are specified at the component level and all elements of the component are repeated. Iterations are identified by numbers in parentheses following the component or element (e.g., FAU_ARP.1(1)).

6.1 TOE Security Functional Requirements

The functional requirements are described in detail in the following subsections.

6.1.1 Security Audit (FAU)

6.1.1.1 FAU_GEN.1 Audit Data Generation

FAU_GEN.1.1 The TSF shall be able to generate an audit record of the following auditable events:

- a) Start-up and shutdown of the audit functions⁵;
- b) All auditable events for the not specified level of audit; and
- c) no other auditable events.

FAU_GEN.1.2 The TSF shall record within each audit record at least the following information:

- a) Date and time of the event, type of event, subject identity, and the outcome (success or failure) of the event; and
- b) For each audit event type, based on the auditable event definitions of the functional components included in the PP/ST, *the additional information specified in the Details column of the following table*.

SFR	Audit Event Type	Details
FAU_GEN.1	None	
FAU_GEN.2	None	
FDP_ACC.1	Data uploaded from InfiniStream application	
FDP_ACF.1	Data uploaded from InfiniStream	

⁵ Audit messages are always enabled. There is no explicit message indicating Start-up and shutdown of the audit functions as they cannot be disabled.

SFR	Audit Event Type	Details
	application	
FDP_IFC.1	None	
FDP_IFF.1	None	
FIA_AFL.1	Reaching the threshold for unsuccessful	Userid supplied
	authentication attempts	
FIA_ATD.1	None	
FIA_SOS.1	None	
FIA_UAU.2	Successful logins	Userid supplied
	Unsuccessful logins	
FIA_UAU.7	None	
FIA_UID.2	Successful logins	Userid supplied
	Unsuccessful logins	
FIA_USB.1	None	
FMT_MOF.1	Configuration Change	
FMT_MSA.1	None	
FMT_MSA.3	None	
FMT_MTD.1	None	
FMT_SMF.1	None	
FMT_SMR.1	None	

6.1.1.2 FAU_GEN.2 User Identity Association

FAU_GEN.2.1 For audit events resulting from actions of identified users, the TSF shall be able to associate each auditable event with the identity of the user that caused the event.

6.1.1.3 FAU_SAR.1 Audit review

FAU_SAR.1.1 The TSF shall provide *all authorised users* with the capability to read *all audit information* from the audit records.

FAU_SAR.1.2 The TSF shall provide the audit records in a manner suitable for the user to interpret the information.

6.1.2 User Data Protection (FDP)

6.1.2.1 FDP_ACC.1 Subset Access Control

FDP_ACC.1.1 The TSF shall enforce the User Data Access Security Policy on authorised users, captured data, viewing.

6.1.2.2 FDP_ACF.1 Security attribute based access control

FDP_ACF.1.1 The TSF shall enforce the *User Data Access Security Policy* to objects based on the following:

- A) Subjects: Authorised users
- B) *Objects: Captured data of a specific application protocol*
- C) Subject Security Attributes: Monitored Element Group Restriction, User slice size
- D) Object Security Attributes: Monitored Element Group

FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed: *Authorised user is allowed to view captured data of a Monitored Element Group if they do not have a Monitored Element Group Restriction. The amount of data displayed for each captured packet is limited by the User slice size.*

FDP_ACF.1.3 The TSF shall explicitly authorise access of subjects to objects based on the following additional rules: *if no Monitored Element Group Restrictions are associated with a user, the user has access to all interfaces.*

FDP_ACF.1.4 The TSF shall explicitly deny access of subjects to objects based on the *no further rules*.

6.1.2.3 FDP_IFC.1 Subset Information Flow Control

FDP_IFC.1.1 The TSF shall enforce *information flow control SFP* on *subjects: Monitored Elements, information: network packets, operation: store network packet.*

6.1.2.4 FDP_IFF.1 Simple Security Attributes

FDP_IFF.1.1 The TSF shall enforce *information flow control SFP* based on the following types of subject and information security attributes:

- A) Subjects: Monitored Element
- B) Subject Security Attributes: Capture Port Status, Selective Recording per application, Selective Recording Slice Size
- C) Information: Network packet
- D) Information Security Attributes:
 - 1) Presumed IP Addresses
 - 2) Presumed MAC Addresses
 - 3) Presumed Protocol
 - *4) Presumed TCP Ports*
 - 5) Presumed UDP Ports
 - 6) *Or any combination of the above.*

FDP_IFF.1.2 The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold:

- A) if the Capture Port Status is ON then the received network data packets will be stored per the Selective Recording slice size specified by application protocol.
- B) *if the Selective Recording per application is set to FULL then the all the received data packets for that application protocol will be stored.*
- C) if the Selective Recording per application is set to a numerical value then data packets will be stored per the Selective Recording slice size specified by application protocol.

FDP_IFF.1.3 The TSF shall enforce the *additional information flow control rules:*

- A) The amount of data from a network packet that is stored is limited by the Selective Recording Slice Size.
- B) If both the Global Settings Selective Recording Slice Size and the Interface specific Selective Recording Slice Size are configured is the lesser Slice Size specified is stored.

FDP_IFF.1.4 The TSF shall explicitly authorise an information flow based on the following rules: *no explicit rules*.

FDP_IFF.1.5 The TSF shall explicitly deny an information flow based on the following rules: *If the Selective Recording per application is set to NONE instead of the default of FULL, no traffic for that application protocol is captured.*

6.1.3 Identification and Authentication (FIA)

6.1.3.1 FIA_AFL.1 Authentication Failure Handling

FIA_AFL.1.1 The TSF shall detect when <u>an administrator-configurable positive integer within</u> <u>the range of 1 to 31</u> unsuccessful authentication attempts occur related to <u>attempted logins to</u> <u>MANAGEMENT</u>.

FIA_AFL.1.2 When the defined number of unsuccessful authentication attempts has been <u>met</u>, the TSF shall *prevent login using that account for the configured amount of time*.

6.1.3.2 FIA_ATD.1 User Attribute Definition

FIA_ATD.1.1 The TSF shall maintain the following list of security attributes belonging to individual users: *user ID*, *password*, *roles*, *Monitored Element Group restrictions*, *User slice size*.

6.1.3.3 FIA_SOS.1 Verification of Secrets

FIA_SOS.1.1 The TSF shall provide a mechanism to verify that secrets meet *the following rules:*

- 1. A minimum length of 8 characters.
- 2. At least one numeric value.

6.1.3.4 FIA_UAU.2 User Authentication Before any Action

FIA_UAU.2.1 The TSF shall require each user to be successfully authenticated before allowing any other TSF-mediated actions on behalf of that user.

6.1.3.5 FIA_UAU.7 Protected Authentication Feedback

FIA_UAU.7.1 The TSF shall provide only *obscured feedback* to the user while the authentication is in progress.

6.1.3.6 FIA_UID.2 User Identification Before any Action

FIA_UID.2.1 The TSF shall require each user to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

6.1.3.7 FIA_USB.1 User-Subject Binding

FIA_USB.1.1 The TSF shall associate the following user security attributes with subjects acting on behalf of that user:

- 1. user ID
- 2. roles
- 3. Monitored Element Group restrictions
- 4. User slice size

FIA_USB.1.2 The TSF shall enforce the following rules on the initial association of user security attributes with subjects acting on the behalf of users:

- 1. The user ID is the value associated with the username supplied for a successful login.
- 2. The roles define the set of privileges associated with each user account that has this role associated.
- 3. The Monitored Element Group restrictions are configured for the user account.
- 4. The Selective Recording User Slice Size can be an explicitly configured value for each user account except for the System Administrator role where it is automatically and irrevocably set to Full Packet.

FIA_USB.1.3 The TSF shall enforce the following rules governing changes to the user security attributes associated with subjects acting on the behalf of users: *the security attributes do not change during a session*.

6.1.4 Security Management (FMT)

6.1.4.1 FMT_MOF.1 Management of Security Functions Behaviour

FMT_MOF.1.1 The TSF shall restrict the ability to <u>activate</u>, <u>deactivate</u> the functions *selective recording per application protocol* to *authorised user associated with the Network Administrator role*.

6.1.4.2 FMT_MSA.1 Management of Security Attributes

FMT_MSA.1.1 The TSF shall enforce the *User Data Access Security Policy and information flow control SFP* to restrict the ability to <u>query, modify, delete, *create*</u> the security attributes *specified in the following table* to *authorised roles with the privilege specified in the following table*.

Security Attribute	Applicable Operations	Required Roles
Capture Port Status	Query, Modify	Network Administrator
Monitored Element Group	Query	Approver, Helpdesk, Network Administrator, Network Operator, or System Administrator
	Modify (associating interfaces with Monitored Element Groups)	Approver, Network Administrator
Monitored Element Group Restriction	Query	Approver, Helpdesk, Network Administrator, Network Operator, or System Administrator
	Modify (restricting or unrestricting Monitored Element Groups from	System Administrator

 Table 8 - Security Attribute Management Details

Security Attribute	Applicable Operations	Required Roles
	user accounts)	
Password	Modify	System Administrator
	Modify (the user's own password)	n/a
Roles	Query	Approver, Helpdesk, Network Administrator, Network Operator, or System Administrator
	Modify (roles associated with user accounts)	System Administrator
User ID	Create, Query, Modify, Delete	System Administrator
User Slice Size	Query	Approver, Helpdesk, Network Administrator, Network Operator, or System Administrator
	Modify	System Administrator

Application Note: Users are restricted to modifying information for their own user account if they have any associated Monitored Element Group Restrictions.

6.1.4.3 FMT_MSA.3 Static Attribute Initialisation

FMT_MSA.3.1(1) The TSF shall enforce the *information flow control SFP* to provide <u>permissive</u> default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2(1) The TSF shall allow the *no users* to specify alternative initial values to override the default values when an object or information is created.

FMT_MSA.3.1(2) The TSF shall enforce the *User Data Access control SFP* to provide <u>restrictive</u> default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2(2) The TSF shall allow the *no users* to specify alternative initial values to override the default values when an object or information is created.

6.1.4.4 FMT_MTD.1 Management of TSF Data

FMT_MTD.1 The TSF shall restrict the ability to <u>query</u>, <u>modify</u>, <u>delete</u>, <u>or</u> <u>create</u> the TSF data specified in the following table to authorised roles with the privilege specified in the following table</u>.

TSF Data	Definition	Applicable Operations	Required Role
Global Settings	Active/deactivate	Query	Approver, System
Selective	recording of a specific		Administrator, or Network
Recording per	protocol for all		Administrator
application	InfiniStream application	Modify	Network Administrator
	instances managed by		
	MANAGEMENT		
Global Settings	Specify capture slice size	Query	Approver, System
capture slice size	for all InfiniStream		Administrator, or Network
	application instances		Administrator
	managed by	Modify	Network Administrator
	MANAGEMENT		

 Table 9 - TSF Data Management Details

TSF Data	Definition	Applicable Operations	Required Role
Interface Specific Slice Size	Specify Capture slice size for Interfaces managed by MANAGEMENT	Query Modify	Network Administrator Network Administrator
Monitored Element Group interface set up	Grouping of interfaces to be included within a Monitored Element Group	Create, Modify, Delete Query	System Administrator Approver, Helpdesk, Network Administrator, Network Operator, or System Administrator
Role Privileges	Maintain Privileges associated to predefined user roles	Query, Modify	System Administrator
Configure # of failed attempts before lock out	Maintain counter of sequential authentication failures. If the credentials are not valid, the user is prompted to enter the credentials again. If the user ID is valid but the password is not, the counter of sequential authentication failures for the user ID is also incremented.	Query, Modify	System Administrator
Configure Time out period after failed log in timeout	If the threshold value for consecutive authentication failures is reached, the user account is locked for the configured amount of time after which the counter is reset.	Modify, query	System Administrator
Message Log	Non-network management audit logs	Query	Approver, Helpdesk, Network Administrator, Network Operator, or System Administrator
		Modify	System Administrator, or Network Administrator

6.1.4.5 FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1 The TSF shall be capable of performing the following security management functions: *managing user accounts, configuring capture ports, managing Monitored Element Groups*.

6.1.4.6 FMT_SMR.1 Security Roles

FMT_SMR.1.1 The TSF shall maintain the roles Approver, Helpdesk, Network Administrator, Network Operator, and System Administrator

FMT_SMR.1.2 The TSF shall be able to associate users with roles.

6.2 TOE Security Assurance Requirements

The TOE meets the assurance requirements for EAL3 augmented by ALC_FLR.1 (Basic Flaw Remediation). These requirements are summarized in the following table.

Assurance Class	Component ID
Development	ADV_ARC.1
	ADV_FSP.3
	ADV_TDS.2
Guidance Documents	AGD_OPE.1
	AGD_PRE.1
Life-Cycle Support	ALC_CMC.3
	ALC_CMS.3
	ALC_DEL.1
	ALC_DVS.1
	ALC_FLR.1
	ALC_LCD.1
Tests	ATE_COV.2
	ATE_DPT.1
	ATE_FUN.1
	ATE_IND.2
Vulnerability Assessment	AVA_VAN.2

 Table 10 - EAL3+ Assurance Requirements

6.3 CC Component Hierarchies and Dependencies

This section of the ST demonstrates that the identified SFRs include the appropriate hierarchy and dependencies. The following table lists the TOE SFRs and the SFRs each are hierarchical to, dependent upon and any necessary rationale.

SFR	Hierarchical To	Dependency	Rationale
FAU_GEN.1	No other components.	FPT_STM.1	Satisfied by the IT Environment
			(OE.TIME_STAMP)
FAU_GEN.2	No other components.	FAU_GEN.1,	Satisfied
		FIA_UID.1	Satisfied by FIA_UID.2
FAU_SAR.1	No other components	FAU_GEN.1	Satisfied
FDP_ACC.1	No other components.	FDP_ACF.1	Satisfied
FDP_ACF.1	No other components.	FDP_ACC.1,	Satisfied
		FMT_MSA.3	Satisfied
FDP_IFC.1	No other components.	FDP_IFF.1	Satisfied
FDP_IFF.1	No other components.	FDP_IFC.1,	Satisfied
		FMT_MSA.3	Satisfied
FIA_AFL.1	No other components.	FIA_UAU.1	Satisfied by FIA_UID.2
FIA_ATD.1	No other components.	None	n/a
FIA_SOS.1	No other components.	None	n/a
FIA_UAU.2	FIA_UAU.1	FIA_UID.1	Satisfied by FIA_UID.2
FIA_UAU.7	No other components.	FIA_UAU.1	Satisfied by FIA_UAU.2
FIA_UID.2	FIA_UID.1	None	n/a

 Table 11 - TOE SFR Dependency Rationale

NetScout nGenius InfiniStream,	nGenius Performance Manager, and nGeniu	us K2
	Security Target	

FIA_USB.1	No other components.	FIA_ATD.1	Satisfied
FMT_MOF.1	No other components.	FMT_SMF.1,	Satisfied
		FMT_SMR.1	Satisfied
FMT_MSA.1	No other components.	[FDP_ACC.1 or	Satisfied
		FDP_IFC.1],	Satisfied
		FMT_SMF.1	Satisfied
		FMT_SMR.1	Satisfied
FMT_MSA.3	No other components.	FMT_MSA.1,	Satisfied
(1) and (2)		FMT_SMR.1	Satisfied
FMT_MTD.1	No other components.	FMT_SMF.1,	Satisfied
		FMT_SMR.1	Satisfied
FMT_SMF.1	No other components.	None	n/a
FMT_SMR.1	No other components.	FIA_UID.1	Satisfied by FIA_UID.2

7. TOE Summary Specification

7.1 Security Functions

7.1.1 Audit Generation

The MANAGEMENT application generates and stores audit event records for the following security relevant events:

- 1. Start-up of the MANAGEMENT application. This event is equivalent to the start of the audit function.
- 2. Controlled shutdown of the MANAGEMENT application. Since the audit function cannot be stopped independently of the application, this event is equivalent to stopping the audit function.
- 3. Successful login attempts.
- 4. Logouts.
- 5. Unsuccessful login attempts (the record includes the user ID string input by the user).
- 6. Upload of captured data to the MANAGEMENT application.

All audit event records include the date and time of the event and the type of event. The subject identity (user ID) is included when applicable. Read access of message logs (audit records) is granted to all authorised users of the MANAGEMENT application.

7.1.2 Identification and Authentication

When a user opens a browser to the MANAGEMENT system, the user is prompted to enter their user ID and password. Until the I&A function completes successfully, no access to any other function is available.

When the password is entered, only asterisks are displayed. The MANAGEMENT system performs the I&A function by validating the credentials presented. If the credentials are valid, the following security attributes are bound to the session:

- 1. User ID
- 2. User privileges, based on the union of any privileges configured for each role associated with the user account
- 3. Monitored Element Group restrictions
- 4. Selective Recording User Slice Size can be an explicitly configured value for the each user account except for the System Administrator role where it is automatically and irrevocably set to Full Packet

The user is then presented with the opening GUI for user sessions. The counter of sequential authentication failures for the user ID is also reset to 0.

If the credentials are not valid, the user is prompted to enter the credentials again. If the user ID is valid but the password is not, the counter of sequential authentication failures for the user ID is also incremented. If the threshold value for consecutive authentication failures is reached, the user account is locked for the configured amount of time and the counter is reset to 0.

7.1.3 Security Management

The MANAGEMENT application provides security management functions to authorised users. The user privileges bound to a user's session define the management functions available to each user. The privileges associated with each of the user's associated roles are joined to define the set of privileges for the session.

The User Setup privilege is required to configure the set of privileges associated with each defined role.

The Global Settings privilege is required to configure Global Settings for specifying the traffic types (application protocols) to be captured and (for each protocol) the slice size.

The Monitored Element Group privilege is required to add to or delete interfaces from the set of Monitored Element Groups. The list of Monitored Element Groups may be viewed if the user has the Monitored Element Group or User Accounts privilege.

The Device Configuration privilege is required to view or modify the following InfiniStream application interface parameters:

- 1. Status (enabled or disabled)
- 2. Monitored Element Group
- 3. Interface Capture Slice Size

The User Accounts privilege is required to create, query, modify, or delete userids. That same privilege is required to manage the following per-user attributes:

- 1. Password
- 2. Monitored Element Group restriction (the default is none)
- 3. Associated role(s); if more than one role is associated with a user, the user privileges consist of all privileges assigned to any of the associated roles.
- 4. User Slice Size; by default, users with the Network Administrator role assigned have visibility to the full slice size. Users with the System Administrator role are not allowed to do any on-demand data capture. Users with the Approver, Network Operator or Helpdesk roles can decode up to 64bytes of the packet.

If a user account has a Monitored Element Group restriction, the user is considered to be a "restricted user;" if a restricted user has the User Accounts privilege, that user may only modify parameters for its own account.

All users may change their own password. Whenever a password is changed, the TOE enforces the following rules:

- 1. The password must be at least 8 characters.
- 2. At least one numeric value must be included.

7.1.4 User Data Protection

The MANAGEMENT application limits user access to the network traffic captured by InfiniStream application instances. Raw traffic is captured and saved on the InfiniStream appliances, then retrieved by the MANAGEMENT application. For efficient analysis by the MANAGEMENT application, the InfiniStream application instances also summarize the captured data; the summarized information is periodically retrieved by the MANAGEMENT application. User access restriction checking is always performed by the MANAGEMENT application. The confidentiality of data exchanged between the MANAGEMENT application and InfiniStream application instances is assured by cryptographic functionality and protocols provided by the operational environment.

The following mechanisms are used to limit what information is captured and what subset of that information is available to individual users.

- 1. Only InfiniStream application interfaces that are enabled capture network traffic.
- 2. The Network traffic application protocols captured are determined by the Global Settings.
- 3. Each network packet that is captured is limited by the Selective Recording Slice Size. , The slice size is the lesser of the Selective Recording Global Settings capture slice size and the Interface capture slice size.
- 4. Captured traffic is only available to users without Monitored Element Group restrictions to a Monitored Element Group including the desired InfiniStream application interface. If no Monitored Element Group restrictions are associated with a role, that role has access to all interfaces.

8. Rationale

This chapter provides the rationale for the selection of the IT security requirements, objectives, assumptions and threats. It shows that the IT security requirements are suitable to meet the security objectives, Security Requirements, and TOE security functional.

8.1 Rationale for IT Security Objectives

This section of the ST demonstrates that the identified security objectives are covering all aspects of the security needs. This includes showing that each threat and assumption is addressed by a security objective.

The following table identifies for each threat and assumption, the security objective(s) that address it.

	0.AUDIT	O.MANAGE	O.SELECT	0.TOE_ACCESS	O.TRUNCATE	OE.COMM	X OE.ENVIRON	OE.INFO_STORAGE	OE.INSTALL	OE.NETWORK	OE.NOEVILADMIN	OE.OS_PROTECTION	OE.TIME_STAMP
A.ENVIRON							Х						
A.FIREWALL									Х				
A.INSTALL									Х				
A.NETWORK										Х			
A.NOEVILADMIN											Х		
T.COMDIS			Х		Х							Х	
T.COMINT								Х					
T.COMMS						Х							
T.LOSSOF								Х					
T.MISCFG		Х											
T.NOHALT						Х	Х						
T.TSF_ COMPROMISE		Х										X	
T.UNAUTHACCESS	Х			Х		Х							Х
T.UNSECURE_ENVIR ONMENT									Х				

Table 12 - Threats and Assumptions to Security Objectives Mapping

8.1.1 Rationale Showing Threats to Security Objectives

The following table describes the rationale for the threat to security objectives mapping.

Table 13 - Threats to Security Objectives Rationale

Т.ТҮРЕ	Security Objectives Rationale
T.COMDIS	O.TRUNCATE helps to mitigate this threat by providing a means to limit the

Т.ТҮРЕ	Security Objectives Rationale
	number of bytes captured for each data packet thereby never capturing sensitive
	payload data.
	O.SELECT helps mitigate this threat by providing a means to select only certain network traffic that can be captured.
	OE.OS_PROTECTION contributes to countering this threat by ensuring that the
	OS can protect itself from users within its control. If the OS could not maintain and
	control its domain of execution, it could not be trusted to control access to the
	resources under its control, which includes the executable code of the TOE.
T.COMINT	OE.INFO_STORAGE contributes to mitigating this threat by controlling
	modification of data.
T.COMMS	OE.COMM contributes to mitigating this threat by specifying that the environment
	will protect communications between TOE components thereby limiting access to
T.LOSSOF	TOE and user data during transmission.
1.LUSSUF	OE.INFO_STORAGE contributes to mitigating this threat by controlling deletion of system data records.
	O.MANAGE contributes to mitigating this threat by providing the mechanism that
	only allows users with appropriate privileges the ability to delete information
	collected by the TOE.
	O.TOE_ACCESS contributes to mitigating this threat by providing the mechanism
	that limits access to information collected by the TOE to authorised users.
T.MISCFG	O.MANAGE contributes to mitigating this threat by providing the mechanism that
	only allows users with appropriate privileges the ability to configure the TOE.
T.NOHALT	OE.ENVIRON contributes to countering this threat by specifying that the
	administrator must install the TOE in a physically secure environment with limited access.
	OE.COMM contributes to countering this threat by limited the communication
	channels and specifying that the environment will protect communications between
	TOE components.
T.TSF_COMPR	O.MANAGE is used to dictate who is able to view and modify TSF data, as well as
OMISE	the behavior of TSF functions.
	OE.OS_PROTECTION contributes to countering this threat by ensuring that the
	OS can protect itself from users within its control. If the OS could not maintain and
	control its domain of execution, it could not be trusted to control access to the
T.UNAUTHACC	resources under its control, which includes the executable code of the TOE. O.AUDIT contributes to mitigating this threat by auditing actions performed by
ESS	authorised users and provides visibility of audit logs.
100	O.TOE_ACCESS mitigates this threat by controlling the logical access to the TOE
	and its resources. By constraining how and when authorised users can access the
	TOE, and by mandating the type and strength of the authentication mechanism this
	objective helps mitigate the possibility of an unauthorised user attempting to login
	and masquerade as an authorised user.
	OE.COMM mitigates this threat by protecting TSF data from disclosure when it is transformed between distributed components of the TOE
	transferred between distributed components of the TOE. OE.TIME_STAMP contributes to mitigating this threat by providing a time stamp
	that can be included in the audit records.
T.UNSECURE_E	
NVIRONMENT	OE.INSTALL explains how firewall separation of TOE components contributes to
	security of communication.

8.1.2 Rationale Showing Assumptions to Environment Security Objectives

The following table describes the rationale for the assumption to security objectives mapping.

A.TYPE	Environment Security Objective Rationale
A.ENVIRON	OE.ENVIRON addresses this assumption by restating it as an objective for the
	Administrator to satisfy.
A.FIREWALL	OE.INSTALL addresses this assumption by requiring the administrator to
	configure per guidance documentation. The guidance instructs the Administrator to
	configure a firewall and create an ACL.
A.INSTALL	OE.INSTALL addresses this assumption by restating it as an objective for the
	Administrator to satisfy.
A.NETWORK	OE.NETWORK addresses this assumption by restating it as an objective for the
	Administrator to satisfy.
A.NOEVILADM	OE.NOEVILADMIN addresses this assumption by restating it as an objective for
IN	the Administrator to satisfy.

 Table 14 - Assumptions to Security Objectives Rationale

8.2 Security Requirements Rationale

8.2.1 Rationale for Security Functional Requirements of the TOE Objectives

This section provides rationale for the Security Functional Requirements demonstrating that the SFRs are suitable to address the security objectives.

The following table identifies for each TOE security objective, the SFR(s) that address it.

	X O.AUDIT	O.MANAGE	O.SELECT	O.TOE_ACCESS	O.TRUNCATE
FAU_GEN.1					
FAU_GEN.2	Х				
FAU_SAR.1	Х				
FDP_ACC.1				Х	
FDP_ACF.1 FDP_IFC.1				Х	
FDP_IFC.1			Х		Х
FDP_IFF.1			Х		Х
FIA_AFL.1				Х	
FIA_ATD.1				X X	
FIA_SOS.1				Х	
FIA_UAU.2				Х	
FIA_UAU.7				Х	
FIA_UID.2				Х	
FIA_USB.1				Х	
FMT_MOF.1		Х			
FMT_MSA.1		Х			
FMT_MSA.3		Х			
FMT_MTD.1		Х			
FMT_SMF.1		Х			

Table 15 - SFRs to Security Objectives Mapping

	O.AUDIT	O.MANAGE	O.SELECT	0.TOE_ACCESS	O.TRUNCATE
FMT_SMR.1		Х			

The following table provides the detail of TOE security objective(s).

Table 16 - Security Objectives to SFR Rationale

Security Objective	SFR and Rationale
O.AUDIT	FAU_GEN.1 defines the events that will cause audit records to be generated.
	FAU_GEN.2 requires that the audit records include the userid of the user causing
	the event to occur.
O.MANAGE	FAU_SAR.1 allows visibility to audit logs to all authorised users.FMT_MOF.1 requires that the ability to use particular TOE capabilities be
O.WANAGE	restricted to the users with appropriate permissions.
	FMT_MSA.1 requires that the ability to perform operations on security attributes
	be restricted to users with appropriate permissions.
	FMT_MSA.3 (1) and (2) defines appropriate default security attributes.
	FMT_MTD.1 requires that the ability to manipulate TOE content is restricted to
	users with appropriate role assignment.
	FMT_SMF.1 defines the specific security management functions to be supported.
	FMT_SMR.1 maintains the five predefined user roles and associates users to those
O.SELECT	roles. FDP_IFC.1 defines an information flow control policy to monitored elements
0.SELECT	FDP_IFF.1 defines the selection of what network traffic or what type of network
	traffic is to be captured based on attributes selected.
O.TOE_ACCESS	FIA_AFL.1 requires the TOE to lock out accounts experiencing an administrator
	configured number of failed authentication attempts, which mitigates against brute
	force password attacks.
	FIA_ATD.1 defines the attributes of users, including a user ID that is used by the
	TOE to determine a user's identity and enforce what type of access the user has to
	the TOE (e.g., the TOE associates a user ID with any permissions they have).
	FIA_SOS.1 defines the minimum password requirements for the TOE. FIA_UID.2 requires that a user be identified to the TOE in order to access to
	anything.
	FIA_UAU.2 requires that a user be authenticated by the TOE before accessing
	anything.
	FIA_UAU.7 provides that the authentication data provided by the user is not
	echoed back in plaintext, thus serving to protect that data.
	FIA_USB.1 defines the security attributes bound to a session when I&A is
	successful.
	FDP_ACC.1 and FDP_ACF.1 define security policies based on subject and object attributes and allowed operations to access information protected by the TOE.
O.TRUNCATE	FDP_IFC.1 defines an information flow control policy to monitored elements.
0. IROINCAIL	FDP_IFF.1 defines the amount of network traffic that is to be captured and stored
	based on a selectable number of bytes per data packet, preventing the capturing of
	sensitive data.

8.2.2 Security Assurance Requirements Rationale

8.2.2.1 Rationale for TOE Assurance Requirements Selection

The TOE stresses assurance through vendor actions that are within the bounds of current best commercial practice. The TOE provides, primarily via review of vendor-supplied evidence, independent confirmation that these actions have been competently performed.

The general level of assurance for the TOE is:

- A) Consistent with current best commercial practice for IT development and provides a product that is competitive against non-evaluated products with respect to functionality, performance, cost, and time-to-market.
- B) The TOE assurance also meets current constraints on widespread acceptance, by expressing its claims against EAL3+ from part 3 of the Common Criteria.

8.3 TOE Summary Specification Rationale

This section demonstrates that the TOE's Security Functions completely and accurately meet the TOE SFRs.

The following tables provide a mapping between the TOE's Security Functions and the SFRs and the rationale.

	Audit Generation	Identification and Authentication	Security Management	User Data Protection
FAU_GEN.1	X			
FAU_GEN.2	Х			
FAU_SAR.1	Х			
FDP_ACC.1				Х
FDP_ACF.1				Х
FDP_IFC.1				Х
FDP_IFF.1				Х
FIA_AFL.1		Х		
FIA_ATD.1		Х		
FIA_SOS.1			Х	
FIA_UAU.2		Х		
FIA_UAU.7		X X		
FIA_UID.2		Х		
FIA_USB.1		Х		
FMT_MOF.1			Х	
FMT_MSA.1			Х	
FMT_MSA.3(1)			Х	
FMT_MSA.3(2)			Х	
FMT_MTD.1			Х	

Table 17 - SFRs to TOE Security Functions Mapping

	Audit Generation	Identification and Authentication	Security Management	User Data Protection
FMT_SMF.1			Х	
FMT_SMR.1			Х	

Table 18 - SFR to SF Rationale

SFR	SF and Rationale	
FAU_GEN.1	Audit Generation – The SF restates the audit event records that are	
	generated along with their contents.	
FAU_GEN.2	Audit Generation – Audit event records include the user ID of the user that	
	caused the event to occur (when applicable).	
FAU_SAR.1	Audit Generation- Ability to review audit log by all authorised users.	
FDP_ACC.1	User Data Protection – User access to captured data is restricted.	
FDP_ACF.1	User Data Protection - User access to captured data is restricted by	
	Monitored Element Group Restrictions.	
FDP_IFC.1	User Data Protection – Capturing of network traffic is restricted.	
FDP_IFF.1	User Data Protection - Capturing of network traffic is restricted by the	
	status of the Selective Recording per application setting and the Slice Size.	
FIA_AFL.1	Identification and Authentication – Repeated authentication failures result	
	in the user account being locked out for a period of time.	
FIA_ATD.1	Identification and Authentication – User Security attributes including	
	password, monitored element group restrictions, user slice size, and role(s)	
	are maintained and tied to the user id.	
FIA_SOS.1	Security Management – All configured passwords must adhere to the	
	strength of secret requirements.	
FIA_UAU.2	Identification and Authentication – Successful authentication is required	
	before users gain access to any other functions.	
FIA_UAU.7	Identification and Authentication - Only asterisks are displayed while the	
	password is being entered.	
FIA_UID.2	Identification and Authentication - Successful identification is required	
	before users gain access to any other functions.	
FIA_USB.1	Identification and Authentication – Upon successful identification, the	
	specified security attributes are bound to the user session.	
FMT_MOF.1	Security Management – Roles with the privilege to configure Global	
	Settings may disable and enable this function.	
FMT_MSA.1	Security Management - Users with the required privilege may perform the	
	operations on the specified security attributes.	
FMT_MSA.3(1)	Security Management - Users with the user permission to manage user	
	accounts may change the assigned attributes. The default values are	
	permissive because all traffic is captured.	
FMT_MSA.3(2)	Security Management - Users with the user permission to configure capture	
	ports may change the assigned attributes. The default values are restrictive	
	because user slice size is defined based on user role assignment.	
FMT_MTD.1	Security Management - Users with the required privilege may perform the	
	operations on the specified TSF data.	

SFR	SF and Rationale
FMT_SMF.1	Security Management – The administrative interface includes the ability to manage user accounts, Monitored Elements Groups, and Selective Recording per application.
FMT_SMR.1	Security Management – The five predefined roles are maintained. Users are associated to a predefined role.

8.4 PP Claims Rationale

The rationale for the Protection Profile conformance claims is defined in Section 7.4 Protection Profile Rationale.