
Automating Security Testing

Mark Fallon
Senior Release Manager

Oracle



Some Ground Rules

There are no silver bullets
You can not test security into a product
Testing however, can help discover a large 
percentage of implementation issues
Automation of that testing is essential

– It allows the process to scale
– It reduces cost for continued maintenance
– It helps ensure repeatability in process

Security testing is an essential part of the overall 
development process



Development Process

Ever growing number of development processes 
available
Some organizations will use different processes for 
different projects 
Artifacts for security testing remain the same

– Code
– Generated objects e.g. binaries, class files
– Running systems

Other areas of software assurance are potentially 
more significantly impacted

– Some areas of the process needs to be adapted to ensure 
assurance requirements are met



Code Scanning
Code scanning is the first phase of our automated 
security checks
Can start as soon as the first lines of code are 
committed to the project
Helps to provide instant feedback to developers
Can help enforce coding rules

– Avoid poor coding styles
– Enforce use of mandated functions

Can reliably find a number of data flow & semantic 
issues e.g.:

– Format String
– Injection Attacks – SQL, Process, XML
– Certain classes of buffer overflow



Rolling Out Tools

Three step program:
1. Eliminate the noise:

– Need to present a sanitized list of issues to developers
Builds trust in tool
Makes best use of their time

2. Eliminate the backlog
– Time needs to be added to the schedule
– Helps to build awareness and momentum

3. Make it part of daily development
– Provide immediate feedback to developers
– Stops the build up of new issues



Automated Testing

Second phase of our automated security 
testing
This testing starts as soon as there is running 
code
Three areas of automated tests:

– Targeted 
– Generated
– Leverage



Targeted Tests
New functional/unit tests written to exercise a specific feature

– Standard functional tests for security functionality
Transparent Data Encryption

– Unit tests for feature that are used in security contexts
random numbers

Destructive Protocol tests 
– Typically done with a parameterized client
– Different attack vectors or combinations can be easily automated
– Stateful protocols require more effort, problem may not be with 

initial connection
Domain expert usually required to write these tests
Some 3rd party test suites available in this area

– Usually available for public protocols
http, ftp, LDAP etc.

– Need to be evaluated for coverage
How much / which versions of protocols covered
Types of attacks they try.

– Deployment issues need to be accessed
Fit into current testing infrastructure



Generated Tests
Automate what others are trying against our system

– Similar approach to application scanners
Generated to find classes of vulnerabilities across an entire 
attack surface
Most success with PL/SQL and code loaded into database

– Data dictionary helps drive automation
List of PL/SQL functions – (attack surface)
Provides type information

- Helps with generating parameterized attacks
Need to be careful of false negatives

– Certain functions will require some state to execute
– If that state is evaluated before vulnerable parameter is, the call 

maybe rejected before we hit the potential issue
– Test harness is updated with necessary code to create a valid 

state and this is passed in when testing the other parameters 



Design To Test For Security

Features and diagnostics that exist as part of the 
product that can be leveraged for security testing
New features have been added to specifically enable 
better security testing

– As these are destructive they are typically enabled by 
relinking a new object into the server.

These can be used the following ways
– In combination with the generated or targeted tests to help 

find issues
– To inject errors to test for robustness
– To turn existing functional tests into security tests



Leverage Testing
Large body of functional regressions tests have 
already been written as product has matured.

– Database product has some 250,000 nightly 
regressions

These tests can be leveraged in two ways
– Add extra checks to the results looking for specific issues
– Enable diagnostic or specific tests features to find classes 

of issues.
This can also be done with 3rd Party tools like memory 
debuggers

Some examples of extra checks are:
– Scanning trace and log files looking for information leakage
– Checking for file / process permissions on install tests



In Combination With Other 
Tests

Done with diagnostics to highlight issues.
Diagnostics have been added to help in support 
situations, typically enabled by an event.
Example:

– Database does it’s own memory management
– We can enables extra checking and protected pages, to 

detect overruns and corruption
– Would be turned on when running the generated PL/SQL 

tests
Some of this can also be achieved with 3rd party 
memory tools – valgrind, Purity etc.



In Combination With Other 
Tests

Testing features added to the product to 
leverage existing tests
Enabled through relinking of binaries

– Literal blow-up tests
Parser maximizes size of all string literals
Turns 250,000 functional tests, into 250,000 buffer 
overflow tests

Testing features added to the product to 
enable destructive tests

– Robustness testing done with Iterative Kill Test



Application Scanners

Application scanners used in final stages of 
automated security testing
Language agnostic – black box testing against 
running applications
Like code scanners lengthy evaluation process 
performed

– Some had been used internally before

Will only test exposed interfaces



Application Scanners

Type of issues we see them finding
– Parameter manipulation
– SQL injection
– Directory Traversal, XSS
– Deployment issues

http error code checks
Apache configuration checks



Vulnerability Coverage

How do you know you are done?
Testers familiar with the concept of code coverage
With security testing it is not that you touched a code 
block but how it was touched
Vulnerability Coverage – a metric in progress

– Enumerate the attack surface
API’s, command line, open ports etc.

– Enumerate the attack vectors
SQL injection, buffer overflow, XSS

– Augment test scripts, tool results to log combinations
This metric can be done to help measure 
completeness of the automated security tests



Acknowledgements

Security Program Office
Security Assurance Group
Integration team
QA team
PL/SQL group
VOS group


	Automating Security Testing
	Some Ground Rules
	Development Process
	Code Scanning
	Rolling Out Tools
	Automated Testing
	Targeted Tests
	Generated Tests
	Design To Test For Security
	Leverage Testing
	In Combination With Other Tests
	In Combination With Other Tests
	Application Scanners
	Application Scanners
	Vulnerability Coverage
	Acknowledgements

