Application of Engineering “Best” Practices in Common Criteria

Pulei Xiong, PhD
EWA-Canada
September 12th, 2013
Outline

- Introduction
- Model-Driven CC Analysis Tool
- Structured & Guided CC VA Framework
- Threat-Driven MD PP Development
- Conclusions
Introduction

- Long-standing concerns in CC:
 - the **reliability** (consistency) of evaluation results
 - the **cost-efficiency and effectiveness** of evaluation process
 - the **applicability** of CC certificates

- These issues in general are commonly addressed in the relevant engineering disciplines, such as:
 - Software Engineering
 - Quality Engineering
 - Security Engineering

- In this presentation, we will share our recent efforts on applying engineering “best” practices in CC
An EWA-Canada IR&D project initiated in 2011 to support CC evaluation
 - Document review (Validation)
 - Test analysis (Validation & Verification)

Model-Driven approach to CC analysis
 - Formalization of Evaluation Evidence
 - Tool Support

A Java program tool and a backend database built upon the CC model
Java Program Screenshots

Threats
T.ADMIN_ERROR
T.MALICIOUS_APPS
T.NETWORK_ATTACK
T.NETWORK_EAVESDROP
T.PHYSICAL_ACCESS
T.TSF_FAILURE
T.UNAUTHORIZED_ACCESS
T.UNAUTHORIZED_UPDATE
T.UNDETECTED_ACTIONS
T.USER_DATA_REUSE

Organization Security
P.ACCESS_BANNER
P.ADMIN
P.DEVICE_PROVISION
P.NOTIFY

Assumptions
A.CONNECTIVITY
A.MOBILE_DEVICE
A.NO_GENERAL_PURPOSE
A.PHYSICAL
A.PROPER_ADMIN
A.PROPER_USER
A.TIMESTAMP
A.TRUSTED_ADMIN

Usage of the Tool

- **Document Review**
 - "Syntax" check of a large number of associations, e.g. consistency & dependency, that need to be kept correct among the artifacts
 - Assist with "semantic" validation of the key artifacts, e.g. it can generate a view of threat vs. SFRs to help assess if a threat has been sufficiently countered by the SFR(s)

- **Test Analysis**
 - Leverage test analysis for **strategic test sampling**
 - Test coverage analysis against assurance activities
 - Test coverage analysis against TSFI, SFR, Threat …
A Bigger View: Tool Support in CC Eco-System

Tool Support for All Stakeholders in the Entire CC Life Cycle:

- Better documents quality → Shorter certification cycle
- Well-structured evidences → Appropriate test sampling
- Used for PP development & evaluation
Outline

✓ Introduction

✓ Model-Driven CC Analysis Tool

➢ Structured & Guided CC VA Framework

➢ Threat-Driven MD PP Development

➢ Conclusions
Structured & Guided CC VA Framework

- An EWA-Canada IR&D project to support VA in CC lab
 - focusing on what to test & how to test

- Presented at the 4th CCUF-CCDB Workshop

- “Structured” and “Guided”
 - Structured: Methodology vs. Goal, to achieve repeatable & consistent results
 - Guided: Compliant to CC (limited scope, conditional conclusions); to provide “Ready-to-Use” support

- A Two-Layer Structure
 - Conceptual Architecture
 - TOE Technology-specific implementation
CC VA Framework (Conceptual)
Implementation: CC VA for MD

- **Generic vs. TOE Technology-specific**
 - **Generic**: CEM VA Matrix
 - **TOE specific**: Test Requirements, Test Cases, Test Platform

- **Defined Test Requirements**
 - **Source**: CEM, MD PP, Web researches
 - **Scope**: TOE, and don’t forget OE!

- **Abstract Test Suite** for mobile devices
 - **Mobile OS & Firmware**
 - **Applications**: native, Web-based
 - **Network communications**
Test Lab for mobile device security testing
 - Based on open source technologies

Capabilities
 - Explore the file system on a mobile device
 - Intercept & manipulate web application traffic
 - Attack WiFi network, e.g. WPA dictionary attack, MITM attack
 - Static code analysis (reverse engineering)
 - and more …

Structured & Guided: Test Requirement → Test Design → Test Execution → Test Analysis
Outline

✓ Introduction

✓ Model-Driven CC Analysis Tool

✓ Structured & Guided CC VA Framework

➢ Threat-Driven MD PP Development

➢ Conclusions
The Mobile Device PP TC was established ~ Nov 2010
- Consisting of a number of CBs, vendors, consultants, and labs

The MD PP was under active development until the end of 2012
- The latest version 1.8 was internally released in Nov 2012

It was then taken as the basis of the NIAP MD PP

A Mobile "Space" Meeting was held at the 3rd CCUF-CCDB Workshop (May 2013, Ottawa Canada)
Essentially, PP development is a practice of Requirements Engineering

- **Elicit**: security problems, security requirements
- **Analyze**: to clarify, classify & validate
- **Specify**: using CC SFRs

Particular challenges to PP development

- **Diversities** in a TC: different opinions
- Obstacles to efficient **communication**
- Limited **resources**: volunteer-based
Understand the Quality Criteria for PPs: Consistent (Traceable), Self-justified (Rationale), Applicable & Feasible

Identify Key Artifacts and their Associations in a PP

Conceptual Model: establish context (scope, entities & relationships, assumptions) for problem domain

Use/Misuse Cases: an efficient tool for system analysis: elicit the threats to the TOE and the protected assets

Threat-Driven Approach: to develop & justify SFRs

Specification of Cryptographic SFRs in a CC scheme agnostic way: acceptable to more nations
Conclusions

- While CC & CEM provides a well-engineered framework for IT security evaluation, to date the application of engineering practices in CC cannot be considered adequate.

- Shared our recent efforts in such engineering research & practices to address the long-standing concerns, in terms of:
 - Formalization of Evaluation Evidence
 - Tool Support
 - Process Optimization

- To provoke insightful thoughts and discussions in CC community; collaborate to pursue opportunities of further studies and practices in this field.
Comments?

Contacts

Pulei Xiong, PhD
EWA-Canada
613-230-6067 x 1243
pxiong@ewa-canada.com

Mark Gauvreau
CC Lab Manager
EWA-Canada
613-230-6067 x 1222
mgauvreau@ewa-canada.com

Erin Connor
Director
EWA-Canada
613-230-6067 x 1214
econnor@ewa-canada.com