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Overview 

CC does not 
cover with a 

certified product’s 
zero-day attack 

after certifying it. 

removing weaknesses  
is very useful for time 
and cost for zero-day 
attack than removing 

vulnerability Harmonize 
the CC with the 
Secure software 
development 

lifecycle. 

Problems Motivations 
Conclusion 

Secure software 
development 
lifecycle can 
minimize 

 weaknesses for 
zero-day attack 

CC focuses on 
removing 

vulnerabilities. 
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Definitions 

 (Software Security) Weakness 
 A type of mistake in software 
 Bugs, Errors 
 Can be aggravated to (software security) 

vulnerabilities (i.e., Zero-day attacks) 
 

 (Software Security) Vulnerability 
 An occurrence of a weakness (or multiple 

weaknesses) within software 
 

 Zero-day attack 
 Weakness is exploited by hackers before the 

vendor becomes aware to fix it 
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• S : The set of all software in existence at some point in time 
• W : The set of all instance of software weaknesses in S 
• Wd : The set of discovered software weaknesses in W 
• Wcwe : The set of Identified with a CWE  
• V : The set of all vulnerabilities in W 
• Vd: The set of all discovered Vulnerabilities in V 
• Vcve : The set of Identified with a CVE  

<The relationship between weakness and vulnerability [8]> 

Definitions 



Motivations 
  Software bugs or errors are so detrimental that 

they cost the U.S economy an estimated $59.5 
billion annually. (GDP 0.6%) 
 

 Errors requirements/design stage cost 1X to 
fix.  But if it is not found until the post-product 
release stage, it costs 30 times more to fix. 
 

 
 

 
 

Requirements 

Gathering  

and Analysis/  

Architectural 

Design  

Coding/Unit  

Test  

Integration 

and  

Component/RAIS

E System Test 

Early Customer  

Feedback/Beta 

Test  

Programs  

Post-product  

Release  

1X 5X 10X 15X 30X 

[Reference : 1] 



Motivations 
  The top 10 software vendors have a patch remedy 

rate of just over 94% of all vulnerabilities 
disclosed. 
 

 But, 47% of all vulnerabilities disclosed in 2012 
remain without a remedy. 
 

 A zero-day attack can still be thwarted by 
properly-patched software.  
 But they are not cost and time effective! 

 

 Economically, many researchers have tried to 
remove the vulnerability in software 
 To remove weaknesses is very useful for time 

and cost. 
 

 
 

[Reference : 2-7] 
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Motivations 
  If we can remove weaknesses, vulnerabilities and 

zero-day attack can also be removed. 
 

 Thus, we are interested in removing design stage's 
and implementation stage's weaknesses. 
 It is very useful for time and cost to remove 

weaknesses 
 
 
 
 



Problems 
  The CC philosophy is that the threats to security 

and organisational security policy commitments 
should be clearly articulated and the proposed 
security measures be demonstrably sufficient for 
their intended purpose. [9] 
 

 CC focuses on removing vulnerabilities. 
 

 CC does not cover with a certified product’s zero-
day attack after certifying it. 
 

 
 
 



How to Fix It in a Nutshell 
  Software Assurance 
 The level of confidence that software functions 

as intended and is free of vulnerabilities, either 
intentionally or unintentionally designed or 
inserted as part of the software throughout the 
life cycle. 

 
 Secure Software Development Lifecycle 
 Software Development Lifecycle + Software 

Assurance 
 

 SSDLCs focus on removing weaknesses. 
 

 
 

[Reference : 10] 



 CC and source code analysis tools are not rivals [11] 
 They find different types of vulnerabilities  
 If together, they can discover more common 

vulnerabilities types 
 
 
 

 

Design 

CC 

Security 
Mechanisms 

Other 
Areas 

Implementation 

Weak Audit 

I&A Vulnerabilities 

Inconsistent Access Control 

TOCTTOU 

XSS 

SQL Injection 
Buffer Overflow 

tools 

How to Fix It in a Nutshell 
 



Common 
Criteria Version 
3.1 Revision 4 

SSDLC(MS-SDL 
Version 5.2) 

Common Weakness Enumeration 
Version 2.4 

Static Code 
Analysis Tools 

 Based on CWE v2.4, CC v3.1, MS-SDL(one of the 
famous SSDLCs), static code analysis tools. 
 Dynamic analysis tools can remove limited 

weaknesses. [12] 
 

How to Fix It in a Nutshell 



Our Methods in Detail 

 
 
 

 

 MS-SDL(Microsoft-Security Development Lifecycle) 
 Software security assurance process 
 A mandatory policy since 2004 

[Reference : 13-14] 



Our Methods in Detail 
  MS-SDL helps you build software, that's more 

secure by reducing the number and severity of 
vulnerabilities in your code 

[Reference : 13] 



Our Methods in Detail 
 

 
 
 

 

 Consistent application of sound security practices 
during all phases of a development project will 
result in fewer vulnerabilities 
 
 
 

 

[Reference : 14] 



Our Methods in Detail 
  Static code analysis tools 
 Analyze source code and/or compiled version of 

code in order to help find security flaws(weaknesses) 
 

 Certificate of CWE compatibility (5 product) [15] 
 CodeSonar, Covertiy Quality Advisor/Security 

Advisor, HP Fortify Static Code Analyzer, Klocwork 
Insight 

 



Our Methods in Detail 

 Four different areas :  
1. Design(CWE-701) 
2. Implementation(CWE-702) 
3. Security mechanisms(CWE-254) 
4. Other parts(non-security mechanisms) 



Our Methods in Detail 

View : 29 entries 

Category : 176 entries 

Weakness – Class : 88 entries 

Weakness – Base : 330 entries 

Weakness – Variant : 276 entries 
Compound Element – Composite : 6 entries 
Compound Element – Named Chain : 3 entries 

Deprecated : 12 entries 

Selected 703 entries 

 Total weaknesses: 920 entries, 8 types 



Our Methods in Detail 

Rank 
CWE 
Type 

CWE-ID : Name 
Des
ign 

Imple
ment
ation 

Secu
rity 
Mec
hanis
ms 

Static 
Code 
Analy
sis 

Tools 

C 
V 
E 
 

Ent
ry 

MS-SDL CC 

Des
ign 

Im
ple
me
ntat
ion 
 

Veri
fica
tion 

SFR SAR 

1 Base CWE-89 : SQL Injection ○ ○   ○ 7 ○ ○ ○   ○ 

2 Base CWE-78 : OS Command Injection ○ ○   ○ 10 ○ ○ ○   ○ 

3 Base CWE-120 : Classic Buffer Overflow   ○   ○ 5 ○ ○ ○   ○ 

4 Base CWE-79 : Cross-site Scripting ○ ○   ○ 11 ○ ○ ○   ○ 

5 Variant CWE-306 : Missing Authentication for Critical Function  ○   ○ 3 ○ ○ ○ ○ ○ 

6 Class CWE-862 : Missing Authorization  ○ ○   19 ○ ○ ○ ○ ○ 

7 Base CWE-798 : Use of Hard-coded Credentials  ○   ○ 10 ○     ○ ○ 

8 Base CWE-311 : Missing Encryption of Sensitive Data ○ ○ ○ 20 ○   ○ ○ ○ 

9 Base CWE-434 : Unrestricted Upload of File with Dangerous Type ○ ○   10   ○   ○ ○ 

10 Base CWE-807 : Reliance on Untrusted Inputs in a Security Decision  ○ ○ ○ 5 ○ ○ ○   ○ 

 For example, CWE/SANS TOP 25 

[Reference : 16] 



Our Methods in Detail 

11 Class CWE-250 : Execution with Unnecessary Privileges ○   ○ ○ 7 ○ ○ ○ ○ ○ 

12 Composite CWE-352 : Cross-Site Request Forgery(CSRF) ○       10 ○ ○   ○ ○ 

13 Class CWE-22 : Path Traversal ○ ○   ○ 11 ○ ○ ○   ○ 

14 Base CWE-494 : Download of Code Without Integrity Check ○ ○     4 ○ ○   ○ ○ 

15 Class CWE-863 : Incorrect Authorization  ○ ○     9 ○ ○ ○ ○ ○ 

16 Class CWE-829 : Inclusion of Functionality from Untrusted Control Sphere          20 ○ ○ ○ ○ ○ 

17 Class CWE-732 : Incorrect Permission Assignment for Critical Resource  ○ ○   ○ 17 ○ ○ ○ ○ ○ 

18 Base CWE-676 : Use of Potentially Dangerous Function  ○ ○   ○ 6   ○     ○ 

19 Base CWE-327 : Use of a Broken or Risky Cryptographic Algorithm ○   ○   8 ○     ○ ○ 

20 Base CWE-131 : Incorrect Calculation of Buffer Size   ○   ○ 14 ○ ○ ○   ○ 

21 Base CWE-307 : Improper Restriction of Excessive Authentication Attempts ○   ○   6 ○ ○ ○ ○ ○ 

22 Variant CWE-601 : Open Redirect ○ ○     3 ○ ○ ○ ○ ○ 

23 Base CWE-134 : Uncontrolled Format String   ○   ○ 6 ○ ○ ○   ○ 

24 Base CWE-190 : Integer Overflow or Wraparound   ○   ○ 6 ○ ○ ○   ○ 

25 Base CWE-759 : Use of a One-Way Hash without a Salt         2 ○     ○ ○ 

 For example, CWE/SANS TOP 25 



Analyses 

(110) 
<387> 

(75) 
<241> 

(523) 
<1522> 

(260) 
<891> 

(Total CWE) 
<Total CVE> 

Design 

Implementation 

Non-Security 
Mechanism 

Security 
Mechanism 

 Divided into four areas(Design, Implementation, Security 
mechanism, Non-Security mechanism) 

 Distribution of weakness and vulnerabilities in each area 

 



Analyses - CC - 

 
 
 

 110<387> 240<857> 

73<241> 

481<1458> 

※ CWE<CVE>  

CC 

Design 

Implementation 

Non-Security 
Mechanism 

Security 
Mechanism 



 
 
 

 103<335> 208<734> 

70<233> 456<1355> 

※ CWE<CVE>  

MS-
SDL 

Design 

Implementation 

Non-Security 
Mechanism 

Security 
Mechanism 

Analyses - MS-SDL - 



Analyses - CC and MS-SDL - 

 
 
 

 

11<20> 

9 
<14> 

43 
<143> 

7<52> 

4 
<8> 

1<0> 12<19> 

30<45> 

55 
<148> 

103<335> 197<714> 

69<233> 

426<1310> 

1 
<0> 

※ CWE<CVE>  

MS-
SDL 

CC 

Design 
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Non-Security 
Mechanism 

Security 
Mechanism 



Analyses - Static Code Analysis Tools - 

Static Code 
Analysis Tools 

14<26> 

161<461> 

69<287> 

19<40> 

※ CWE<CVE>  

Design 

Implementation 

Non-Security 
Mechanism 

Security 
Mechanism 



Analyses - CC & Static Code Analysis Tools - 

84<295> 
139<447> 

56<207> 295<894> 

※ CWE<CVE>  

14<26> 

161<461> 

69<287> 

19<40> 

Design 

Implementation 

Non-Security 
Mechanism 

Security 
Mechanism 

Static Code 
Analysis Tools 

MS-
SDL 



How to Harmonize CC with SSDLC   

 
 
 

 SSDLC Process Practice 
CC 

Security Assurance 
Requirements 

1.Training Core Security Training ALC_DVS 

2.Requirements 
Establish Security and Privacy Requirements, Create Quality Gates/Bug Bars, 
Perform Security and Privacy Risk Assessments 

ASE  

ALC_TAT 

AVA 

3.Design 
Establish Design Requirements, Attack Surface Analysis/Reduction, Use 
Threat Modeling 

ADV 

AVA 

4.Implementation Use Approved Tools, Deprecate Unsafe Functions, Perform Static Analysis 
ATE 

ADV_IMP 

5.Verfication Perform Dynamic Analysis, Fuzz Testing, Attack Surface Review ATE 

6.Release/Response 
Create an Incident Response Plan, Conduct Final Security Review, Certify 
Release and Archive, Execute Incident Response Plan 

AGD 

ALC_CMC 

AVA 

 Proposed Security Assurance Requirements(SAR) 
 Now CC + SSDLC’s practice 



Conclusion 

 The CC and the SSDLC are similar methodologies 
for removing vulnerabilities. 
 But they find different types of vulnerabilities. 

 
 Static code analysis tools can help removing 

weaknesses in CC 
 

 The CC and the SSDLC are not competitors. Rather, 
they are complements. 
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