
How the CC Harmonizes with
Secure Software Development Lifecycle

Sep. 11. 2013.

Jinseok Park(1st Author)

CIST(Center for Information Security

Technologies), Korea University

ilysoon7@korea.ac.kr

CIST(Center for Information Security

Technologies), Korea University

skim71@korea.ac.kr

Seungjoo Kim (Corresponding Author)

Overview

CC does not
cover with a

certified product’s
zero-day attack

after certifying it.

removing weaknesses
is very useful for time
and cost for zero-day
attack than removing

vulnerability Harmonize
the CC with the
Secure software
development

lifecycle.

Problems Motivations
Conclusion

Secure software
development
lifecycle can
minimize

 weaknesses for
zero-day attack

CC focuses on
removing

vulnerabilities.

Contents

1. Definitions
2. Motivations
3. Problems
4. How to Fix It in a Nutshell
5. Our Methods in Detail
6. Analyses
7. How to Harmonize CC with SSDLC
8. Conclusion
9. References

4

Definitions

 (Software Security) Weakness
 A type of mistake in software
 Bugs, Errors
 Can be aggravated to (software security)

vulnerabilities (i.e., Zero-day attacks)

 (Software Security) Vulnerability
 An occurrence of a weakness (or multiple

weaknesses) within software

 Zero-day attack
 Weakness is exploited by hackers before the

vendor becomes aware to fix it

5

• S : The set of all software in existence at some point in time
• W : The set of all instance of software weaknesses in S
• Wd : The set of discovered software weaknesses in W
• Wcwe : The set of Identified with a CWE
• V : The set of all vulnerabilities in W
• Vd: The set of all discovered Vulnerabilities in V
• Vcve : The set of Identified with a CVE

<The relationship between weakness and vulnerability [8]>

Definitions

Motivations
  Software bugs or errors are so detrimental that

they cost the U.S economy an estimated $59.5
billion annually. (GDP 0.6%)

 Errors requirements/design stage cost 1X to
fix. But if it is not found until the post-product
release stage, it costs 30 times more to fix.

Requirements

Gathering

and Analysis/

Architectural

Design

Coding/Unit

Test

Integration

and

Component/RAIS

E System Test

Early Customer

Feedback/Beta

Test

Programs

Post-product

Release

1X 5X 10X 15X 30X

[Reference : 1]

Motivations
  The top 10 software vendors have a patch remedy

rate of just over 94% of all vulnerabilities
disclosed.

 But, 47% of all vulnerabilities disclosed in 2012
remain without a remedy.

 A zero-day attack can still be thwarted by
properly-patched software.
 But they are not cost and time effective!

 Economically, many researchers have tried to
remove the vulnerability in software
 To remove weaknesses is very useful for time

and cost.

[Reference : 2-7]

8

Motivations
  If we can remove weaknesses, vulnerabilities and

zero-day attack can also be removed.

 Thus, we are interested in removing design stage's
and implementation stage's weaknesses.
 It is very useful for time and cost to remove

weaknesses

Problems
  The CC philosophy is that the threats to security

and organisational security policy commitments
should be clearly articulated and the proposed
security measures be demonstrably sufficient for
their intended purpose. [9]

 CC focuses on removing vulnerabilities.

 CC does not cover with a certified product’s zero-
day attack after certifying it.

How to Fix It in a Nutshell
  Software Assurance
 The level of confidence that software functions

as intended and is free of vulnerabilities, either
intentionally or unintentionally designed or
inserted as part of the software throughout the
life cycle.

 Secure Software Development Lifecycle
 Software Development Lifecycle + Software

Assurance

 SSDLCs focus on removing weaknesses.

[Reference : 10]

 CC and source code analysis tools are not rivals [11]
 They find different types of vulnerabilities
 If together, they can discover more common

vulnerabilities types

Design

CC

Security
Mechanisms

Other
Areas

Implementation

Weak Audit

I&A Vulnerabilities

Inconsistent Access Control

TOCTTOU

XSS

SQL Injection
Buffer Overflow

tools

How to Fix It in a Nutshell

Common
Criteria Version
3.1 Revision 4

SSDLC(MS-SDL
Version 5.2)

Common Weakness Enumeration
Version 2.4

Static Code
Analysis Tools

 Based on CWE v2.4, CC v3.1, MS-SDL(one of the
famous SSDLCs), static code analysis tools.
 Dynamic analysis tools can remove limited

weaknesses. [12]

How to Fix It in a Nutshell

Our Methods in Detail

 MS-SDL(Microsoft-Security Development Lifecycle)
 Software security assurance process
 A mandatory policy since 2004

[Reference : 13-14]

Our Methods in Detail
  MS-SDL helps you build software, that's more

secure by reducing the number and severity of
vulnerabilities in your code

[Reference : 13]

Our Methods in Detail

 Consistent application of sound security practices
during all phases of a development project will
result in fewer vulnerabilities

[Reference : 14]

Our Methods in Detail
  Static code analysis tools
 Analyze source code and/or compiled version of

code in order to help find security flaws(weaknesses)

 Certificate of CWE compatibility (5 product) [15]
 CodeSonar, Covertiy Quality Advisor/Security

Advisor, HP Fortify Static Code Analyzer, Klocwork
Insight

Our Methods in Detail

 Four different areas :
1. Design(CWE-701)
2. Implementation(CWE-702)
3. Security mechanisms(CWE-254)
4. Other parts(non-security mechanisms)

Our Methods in Detail

View : 29 entries

Category : 176 entries

Weakness – Class : 88 entries

Weakness – Base : 330 entries

Weakness – Variant : 276 entries
Compound Element – Composite : 6 entries
Compound Element – Named Chain : 3 entries

Deprecated : 12 entries

Selected 703 entries

 Total weaknesses: 920 entries, 8 types

Our Methods in Detail

Rank
CWE
Type

CWE-ID : Name
Des
ign

Imple
ment
ation

Secu
rity
Mec
hanis
ms

Static
Code
Analy
sis

Tools

C
V
E

Ent
ry

MS-SDL CC

Des
ign

Im
ple
me
ntat
ion

Veri
fica
tion

SFR SAR

1 Base CWE-89 : SQL Injection ○ ○ ○ 7 ○ ○ ○ ○

2 Base CWE-78 : OS Command Injection ○ ○ ○ 10 ○ ○ ○ ○

3 Base CWE-120 : Classic Buffer Overflow ○ ○ 5 ○ ○ ○ ○

4 Base CWE-79 : Cross-site Scripting ○ ○ ○ 11 ○ ○ ○ ○

5 Variant CWE-306 : Missing Authentication for Critical Function ○ ○ 3 ○ ○ ○ ○ ○

6 Class CWE-862 : Missing Authorization ○ ○ 19 ○ ○ ○ ○ ○

7 Base CWE-798 : Use of Hard-coded Credentials ○ ○ 10 ○ ○ ○

8 Base CWE-311 : Missing Encryption of Sensitive Data ○ ○ ○ 20 ○ ○ ○ ○

9 Base CWE-434 : Unrestricted Upload of File with Dangerous Type ○ ○ 10 ○ ○ ○

10 Base CWE-807 : Reliance on Untrusted Inputs in a Security Decision ○ ○ ○ 5 ○ ○ ○ ○

 For example, CWE/SANS TOP 25

[Reference : 16]

Our Methods in Detail

11 Class CWE-250 : Execution with Unnecessary Privileges ○ ○ ○ 7 ○ ○ ○ ○ ○

12 Composite CWE-352 : Cross-Site Request Forgery(CSRF) ○ 10 ○ ○ ○ ○

13 Class CWE-22 : Path Traversal ○ ○ ○ 11 ○ ○ ○ ○

14 Base CWE-494 : Download of Code Without Integrity Check ○ ○ 4 ○ ○ ○ ○

15 Class CWE-863 : Incorrect Authorization ○ ○ 9 ○ ○ ○ ○ ○

16 Class CWE-829 : Inclusion of Functionality from Untrusted Control Sphere 20 ○ ○ ○ ○ ○

17 Class CWE-732 : Incorrect Permission Assignment for Critical Resource ○ ○ ○ 17 ○ ○ ○ ○ ○

18 Base CWE-676 : Use of Potentially Dangerous Function ○ ○ ○ 6 ○ ○

19 Base CWE-327 : Use of a Broken or Risky Cryptographic Algorithm ○ ○ 8 ○ ○ ○

20 Base CWE-131 : Incorrect Calculation of Buffer Size ○ ○ 14 ○ ○ ○ ○

21 Base CWE-307 : Improper Restriction of Excessive Authentication Attempts ○ ○ 6 ○ ○ ○ ○ ○

22 Variant CWE-601 : Open Redirect ○ ○ 3 ○ ○ ○ ○ ○

23 Base CWE-134 : Uncontrolled Format String ○ ○ 6 ○ ○ ○ ○

24 Base CWE-190 : Integer Overflow or Wraparound ○ ○ 6 ○ ○ ○ ○

25 Base CWE-759 : Use of a One-Way Hash without a Salt 2 ○ ○ ○

 For example, CWE/SANS TOP 25

Analyses

(110)
<387>

(75)
<241>

(523)
<1522>

(260)
<891>

(Total CWE)
<Total CVE>

Design

Implementation

Non-Security
Mechanism

Security
Mechanism

 Divided into four areas(Design, Implementation, Security
mechanism, Non-Security mechanism)

 Distribution of weakness and vulnerabilities in each area

Analyses - CC -

 110<387> 240<857>

73<241>

481<1458>

※ CWE<CVE>

CC

Design

Implementation

Non-Security
Mechanism

Security
Mechanism

 103<335> 208<734>

70<233> 456<1355>

※ CWE<CVE>

MS-
SDL

Design

Implementation

Non-Security
Mechanism

Security
Mechanism

Analyses - MS-SDL -

Analyses - CC and MS-SDL -

11<20>

9
<14>

43
<143>

7<52>

4
<8>

1<0> 12<19>

30<45>

55
<148>

103<335> 197<714>

69<233>

426<1310>

1
<0>

※ CWE<CVE>

MS-
SDL

CC

Design

Implementation

Non-Security
Mechanism

Security
Mechanism

Analyses - Static Code Analysis Tools -

Static Code
Analysis Tools

14<26>

161<461>

69<287>

19<40>

※ CWE<CVE>

Design

Implementation

Non-Security
Mechanism

Security
Mechanism

Analyses - CC & Static Code Analysis Tools -

84<295>
139<447>

56<207> 295<894>

※ CWE<CVE>

14<26>

161<461>

69<287>

19<40>

Design

Implementation

Non-Security
Mechanism

Security
Mechanism

Static Code
Analysis Tools

MS-
SDL

How to Harmonize CC with SSDLC

 SSDLC Process Practice
CC

Security Assurance
Requirements

1.Training Core Security Training ALC_DVS

2.Requirements
Establish Security and Privacy Requirements, Create Quality Gates/Bug Bars,
Perform Security and Privacy Risk Assessments

ASE

ALC_TAT

AVA

3.Design
Establish Design Requirements, Attack Surface Analysis/Reduction, Use
Threat Modeling

ADV

AVA

4.Implementation Use Approved Tools, Deprecate Unsafe Functions, Perform Static Analysis
ATE

ADV_IMP

5.Verfication Perform Dynamic Analysis, Fuzz Testing, Attack Surface Review ATE

6.Release/Response
Create an Incident Response Plan, Conduct Final Security Review, Certify
Release and Archive, Execute Incident Response Plan

AGD

ALC_CMC

AVA

 Proposed Security Assurance Requirements(SAR)
 Now CC + SSDLC’s practice

Conclusion

 The CC and the SSDLC are similar methodologies
for removing vulnerabilities.
 But they find different types of vulnerabilities.

 Static code analysis tools can help removing

weaknesses in CC

 The CC and the SSDLC are not competitors. Rather,
they are complements.

References
1. Gregory Tassey, Ph.D, “The Economic Impact of Inadequate Infrastructure for software Testing,

Planning Report”, 02-3, NIST, May 2002.
2. Paul Wood, “Closing The Window Of Vulnerability: Exploits And Zero-Day Attacks”, Internet security

Threat report”, vol. 17, Symantec, Apr. 2012.
3. Brian McGee, “Vulnerabilities in enterprise software”, IBM X-Force 2012 Mid-year Trend and Risk

Report, Sep. 2012.
4. Gerhard Eschelbeck, “Systems and software threats”, Security Threat Report, Sophos, Jan. 2012.
5. Theresa Lanowitz, “Now Is the Time for Security at the Application Level”, Gartner, Dec. 2005.
6. Joe Jarzombek, “Software Assurance: Enabling Security and Resilience throughout the Software

Lifecycle”, MITRE, Nov. 2012.
7. U.S Department of Homeland Security Web page: https://buildsecurityin.us-cert.gov/swa/forums-

and-working-groups/processes-and-practices/swa-capability-benchmarking
8. Richard Struse, “Software Assurance-Making the Software Ecosystem Rugged”, ICSJWG, Oct. 2011.
9. Common Criteria Recognition Arrangement, “Common Criteria for Information Technology Security

Evaluation Version 3.1 Revision 4”, Sep. 2012.
10. U.S Department of Homeland Security Web page: https://buildsecurityin.us-cert.gov/swa/process-

view/overview
11. Adam O'Brien, “Common Criteria and Source Code Analysis Tools: Competitors or Complement”,

International Common Criteria Conferences 9th, Sep. 2010.
12. B. Chess and C. McGraw, “Static analysis for security,” IEEE Security & Privacy, vol. 2, no. 6, pp. 76~79,

Nov. 2004.
13. Jeff Jones, “Microsoft products: Vulnerabilities reduction after SDL implementation”, Microsoft

Security Blog and Microsoft TechNet Security Blog, Jan. 2008.
14. “Basics of Secure Design Development Test : Secure Software Made Easier”, Microsoft, 2008.
15. Common Weakness Enumeration(CWE) web page : Assessment and Remediation Tool,

http://cwe.mitre.org/compatible/category.html, Jun. 2013.
16. MITRE, “2011 CWE/SANS Top 25 Most Dangerous Software Errors”, Sep. 2011.

Thank you

ilysoon7@korea.ac.kr

mailto:ilysoon7@korea.ac.kr�

Jinseok Park
E-mail : ilysoon7@korea.ac.kr
Facebook : @ilysoon7

Jinseok Park received his B.S. (2010) in computer science from Soongsil University in Korea. also, , He
served as electronic signature and authentication Team of the Korea Information Security Agency
(KISA) for 1 years. Now he is enroll in the M.S. at Korea University. His research interests include
security evaluation, information security and online social network service security. He has many
certificates(CISSP, CISA, Security Product Evaluator, CPPG, Information Processing Engineer)

Seungjoo Kim (Corresponding Author)
E-mail : skim71@korea.ac.kr
Homepage : www.kimlab.net
Facebook, Twitter : @skim71

Prof. Seungjoo Kim received his B.S. (1994), M.S. (1996), and Ph.D. (1999) in information engineering
from Sungkyunkwan University (SKKU) in Korea. Prior to joining the faculty at Korea University (KU)
in 2011, He served as Assistant & Associate Professor of School of Information and Communication
Engineering at SKKU for 7 years. Before that, He served as Director of the Cryptographic Technology
Team and the (CC-based) IT Security Evaluation Team of the Korea Information Security Agency (KISA)
for 5 years. Now he is Full Professor of Graduate School of Information Security at KU, and a
member of KU's Center for Information Security Technologies (CIST). Also, He has served as an
executive committee member of Korean E-Government, and advisory committee members of several
public and private organizations such as National Intelligence Service of Korea, Digital Investigation
Advisory Committee of Supreme Prosecutors' Office, Ministry of Justice, The Bank of Korea,
ETRI(Electronic and Telecommunication Research Institute), and KISA, etc. His research interests
include cryptography, information security and information assurance.

The corresponding author (Seungjoo Kim) acknowledges the support of the
IT R&D program (10043959, Development of EAL 4 level military fusion
security solution for protecting against unauthorized accesses and ensuring a
trusted execution environment in mobile devices) of KEIT/MOTIE and
MSIP(Ministry of Science, ICT & Future Planning), Korea, under the
ITRC(Information Technology Research Center) support program (NIPA-2013-
H0301-13-1003) supervised by the NIPA(National IT Industry Promotion
Agency)

	How the CC Harmonizes with�Secure Software Development Lifecycle
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33

