
ExperItem Title collaborative Protection Profile for Full Drive Encryption –
Authorization Acquisition

Reviewer Paul Gallagher, NZ

Item Identifier FDE-AA-cPP v0.2 Review Date 1 December 2014

Version; Date: 0.2; 2014-09-05

Notes :-

Severity 1 Significant - Impact the correct or efficient operation of the item. Needs discussion during a review meeting.

2 Moderate - Normally clarifications or proposed improvements to the item which are unlikely to impact other areas. Probably doesn’t need discussing
at a review meeting.

3 Minor - Does not affect the correct operation or interpretation of the item. These are usually syntax and format errors which have no effect on the
meaning or interpretation of the item.

No. Location Comment Suggested Change Severity Action

No. Location Comment Suggested Change Severity Action

1. Section
1.2

Need for separate AA and EE
documents.
NOTED that Table 1 Page 10 does not
identify a case where an AA or EE
solution can stand in isolation: each
requires a compatible other.
NOTED that requirements on the API
for discrete solutions is not defined, and
is a “hard problem” to solve anyway.
NOTED community already intends to
provide guidance on evaluations using
both elements together.
NOTED that most text is repeated in
each document: a combined cPP would
not be substantially longer than either
existing AA or EE document.

Collapse the AA and EE documents
to a single document.
Even if a vendor only provides the
AA or EE element, they must still
operate with the other element in a
provably secure way. Therefore it
seems logical and efficient to
require the complete solution be
presented to any evaluation.

2 Experience has shown it is
problematic to require
developers to come into
evaluation with a partner to
provide a complete solution.
While it is true that both
pieces are needed, one
developer’s product should
not be held up in evaluation
due to issues with another
product. These products
work with a number of
different products, and
should not be tied to
whatever partner they can
come into an evaluation
with. The iTC believes that
this is the best approach and
allows flexibility for
developers to manage the
evaluation of their product.
Therefore, the two cPP
approach will remain.

No. Location Comment Suggested Change Severity Action

2. Section
3.2:
A.TRUST
ED_CHA
NNEL

Disagree with the assertion that in a
situation where independent products are
used for AA and EE, that physical close
proximity mitigates any threat that an
actor may interpose itself in the channel
between the two.
An AA solution will almost certainly
rely on a software-based actor on the
host system. While I can “see” the
bridge between an ID token and the host
system, I will have no assured way of
knowing if a malicious process is also
operating on the host system, for
example to tap information exchanges
between the AA and EE. As we have not
mandated any requirements on the API
between the AA and EE, this represents
a legitimate attack vector, and is not
mitigated by proximity of components,
as stated.

Either:
- Collapse the AA and EE

requirements to a single set, or:
- Provide additional provable

elements to the API to get the
assurance we require.

However, I believe this latter path
may be too difficult to reasonably
achieve.

1 If there is a threat on the
host system, then the data
contained within the product
must be assumed to be
compromised, since the data
is only encrypted on the
TOE, whenever it reaches
the host it is in the clear. No
change to the cPP or SD.

No. Location Comment Suggested Change Severity Action

3. Section
3.2:
A.PLATF
ORM_ST
ATE

This clause as stated actually allows a
HDD encryption system to fail in the
event malware hits the host PC, and still
meet an “acceptable” level in terms of
meeting this cPP. This is an arguably
unrealistic “get out of gaol free’ card.
We need to run assured products in
untrusted environments. I can never
guarantee, for example, that a PC is
malware free. What I instead need to do
is provide guarantees that a security
mechanism will remain trustworthy in
all reasonable expected states of its
environment. If I don’t actually get that
guarantee, I am looking at a worthless
product.

Replace this requirement by one
that requires the solution either
operate correctly in all reasonably
expected host system states
(including potentially
compromised) or as the only
alternative, to fall into a fail-safe
state.

1 As with comment 2 above, if
the host is compromised the
TOE cannot be expected to
provide any protections.
FDE components do not
provide anti-virus/anti-
malware protection, so it is
unreasonable for the FDE
product to protect against
all potential malware
infections.

No. Location Comment Suggested Change Severity Action

4. Section
3.2:
A.SINGL
E_USE_E
T

Seems a user-unfriendly restriction, and
in many cases probably a technically
unnecessary restriction. Under this, a
user who interacts with “n” solutions
will have to carry a large pocket full of
“n” tokens – neither popular nor
desirable. Users get very creative when
it comes to avoidance of this kind of
setup and are more likely to do stupid
things, like leave the tokens with/in the
devices. As the information on the token
has to be considered benign (i.e. like any
public key split) there seems no real
problem in allowing a single token to
hold multiple public keys, and therefore
if the system implementer has a
mechanism to identify and use the
correct key from within a collection, we
should not prevent this happening.

Remove limitation: allow tokens to
hold multiple credentials, but
require that the stored credentials
are benign to all systems except the
target system.

2 The use of tokens is not
required. This assumption is
in place to limit the
proliferation of the tokens
such that they may be
gathered through another
use, captured, and then used
to compromise the data on
the FDE – e.g., a user may
use the token in another host
(that may be not secured)
and the token could be
extracted. The iTC will
discuss this change in the
next version of the cPP.

5. Section
4.1:
OE.SING
LE_USE_
ET

Refer comments for
A.SINGLE_USE_ET

 2 Please see above

6. Section
4.1:
OE.PLAT
FORM_S
TATE

Refer comment above for
A.PLATFORM_STATE

 Please see above

No. Location Comment Suggested Change Severity Action

7. Section
5.1:
Cryptogra
phic Key
Destructio
n

No failure notification. The requirement
as stated record the key erasure
processes, and the subsequent read-
verification steps to confirm erasure.
However in the (normally inevitable)
event that the verification fails, while we
intuitively know that this means the
device has failed, there is no
requirement on the system to actually
react to this (the system could continue
to operate in spite of the failure) nor to
notify that the event has happened, nor
any guidance on how the system should
react to these events.
NOTE ALSO: that while the comment is
targeted at this one particular action, in
general, any requirement to notify event
failures is missing from the cPP.

- Add a requirement for a failure
alert in the system API,

- Require a fail-safe mode of
operation from this point

- Levy requirements on the
management functions to
provide active alerting in the
event a failure condition has
been detected.

Also, review other sections for
potential need for failure
notifications.

1 This is an area that will be
explored further in the next
version of the cPP.

8. Appendix
E: Key
Managem
ent

Since the key token forms a significant
part of the solution, I would expect the
vendor to also disclose a description of
all physical media, the purpose and
format of all elements stored on this
media, and the mechanisms by which
data is written and erased from the
media.

- Expand requirements for the
vendor’s key management
essay.

2 The iTC will discuss this
change in the next version of
the cPP.

