

Secure Audio Switch

Security Target Lite

iSAS

EWSE23EN90002 V2.1

HISTORY CHART

VERSION	DATE	CHANGED CHAPTERS	CAUSE OF CHANGE	AUTHOR
1.0	2012-05-09	All sections	Initial Version	Döderlein
2.0	2021-10-06	All sections	Update based on EWSE2390001_22	Madarász
2.1	2022-02-02	1.1	Review comments	Stokluska

Total number of pages: 81

FREQUENTIS AG

Innovationsstr. 1, 1100 Vienna, Austria, http://www.frequentis.com/ Vienna Commercial Court, FN 72115 b, ATU 14715600

All rights reserved. No part of the document may be reproduced, processed, or distributed in any formor by any means, electronic or mechanical, for any purpose, without the written permission of FREQUENTIS AG.

Company or product names mentioned in this document may be subject to protection under trademark law, brand law, or patent law.

electronically released
2022-02-02

CONTENTS

1	Security Target Introduction	7
1.1	Security Target Reference	7
1.2	TOE Reference	7
1.3 1.3.1 1.3.2 1.3.3	TOE Overview Use and major security features of the TOE TOE Type Required non-TOE hardware/software/firmware	8 9
1.4 1.4.1 1.4.2 1.4.2.1 1.4.2.2 1.4.2.3	TOE Description Application context Security Boundaries Physical Scope Logical Scope Out of Scope	11 11 12
1.5	TOE Overview and Description Consistency	15
2	Conformance claims	17
2.1	CC Conformance Claim	17
2.2	PP Claims, Package Claim	17
2.3	Conformance Rationale	17
3	Security Problem Definition	18
3.1	Assets	18
3.2	User	18
3.3	Threat Agents	19
3.4	Assumptions	19
3.5	Threats	21
3.6	Organizational Security Policies	24
4	Security Objectives	25
4.1	Security Objectives for the TOE	25
4.2	Security Objectives for the Operational Environment	26
4.3 4.3.1 4.3.2 4.3.3	Security Objectives Rationale Coverage of the TOE Security Objectives Coverage of the Assumptions Countering the Threats Coverage of the Security Objectives for the Operational Environment	28 30 31
4.3.4	Coverage of the Security Objectives for the Operational Environment	33

4.3.5	Conclusion	35
5	Extended Component Definition	36
6	Security Requirements	37
6.1	Security Functional Requirements (SFRs)	37
6.1.1	Terms and definition for information flow control SFPs	
6.1.1.1	Information flow control SFPs	
6.1.1.2	Information	
6.1.1.3	Subjects	
6.1.1.4	Security Attributes	40
6.1.2	Security audit (Class FAU)	42
6.1.2.1	FAU_ARP.1 Security alarms	42
6.1.2.2	FAU_SAA.1 Potential violation analysis	42
6.1.3	User data protection (Class FDP)	42
6.1.3.1	FDP_ETC.1 Export of user data without security attributes	42
6.1.3.2	FDP_IFC.1_TX Subset information flow control – Voice TX	43
6.1.3.3	FDP_IFC.1_RX Subset information flow control – Voice RX	43
6.1.3.4	FDP_IFC.1_UI Subset information flow control – UI Data	
6.1.3.5	FDP_IFF.1_TX Simple security attributes - Voice TX	
6.1.3.6	FDP_IFF.1_RX Simple security attributes – Voice RX	
6.1.3.7	FDP_IFF.1_UI Simple security attributes – UI data	
6.1.3.8	FDP_IFF.5_TX No illicit information flows – Voice TX	
6.1.3.9	FDP_IFF.5_RX No illicit information flows – Voice RX	
6.1.3.10	FDP_IFF.5_UI No illicit information flows – UI Data	
6.1.3.11	FDP_ITC.1_TX Import of user data without security attributes – Voice TX	
6.1.3.12	FDP_ITC.1_RX Import of user data without security attributes – Voice RX	
6.1.4	Security management (Class FMT)	
6.1.4.1	FMT_MSA.1_TX Management of security attributes – Voice TX	
6.1.4.2	FMT_MSA.1_RX Management of security attributes – Voice RX	
6.1.4.3	FMT_MSA.3_TX Static attribute initialization – Voice TX	
6.1.4.4	FMT_MSA.3_RX Static attribute initialization – Voice RX	
6.1.4.5	FMT_SMF.1 Specification of Management Functions	
6.1.5	Protection of the TSF (Class FPT)	
6.1.5.1	FPT_FLS.1 Failure with preservation of secure state	
6.2	Security Assurance Requirements (SARs)	50
6.3	Security Requirements Rationale	
6.3.1	SFRs rationale	
6.3.1.1	Tracing between SFRs and security objectives	
6.3.1.2	Justification of tracing between SFRs and security objectives	
6.3.1.3	Fulfilment of TOE SFR dependencies	
6.3.1.4	Mutual support and internal consistency of security requirements	
6.3.2	SAR rationale	
6.3.3	Conclusion	61
7	TOE Security Summary Specification	62
7.1	TOE Security Functions	62
7.1.1	Voice Information Flow Control (TSF.VFC)	
7.1.1.1	PTT Handling	
7.1.1.2	TX Selector	

7.1.1.3	RX Selector	63
7.1.2	Management Interface (TSF.MNI)	64
7.1.2.1	Trusted Status Interface	
7.1.2.2	Remote Control Device	64
7.1.2.3	Remote Control Interface to RED VCS	64
7.1.3	User Interface Data Flow Control (TSF.DFC)	65
7.1.4	Protection of TSF (TSF.PRT)	66
7.1.4.1	Fail Secure	66
7.1.5	Mapping of SFR to TSF	66
7.2	Assurance Measure	73
8	References	74
9	Glossary	75
10	Abbreviations	81

ILLUSTRATIONS

Fig. 1:	TOE and its Environment	8
Fig. 2:	TOE and Operator Position Equipment - Operation via Touch Entry Device	10
Fig. 3:	TOE and Operator Position Equipment - Operation via Remote Control Device	11
Fig. 4:	MOD iSAS-P Front (Left) and Rear (Right) View	12
Fig. 5:	Remote Control Device MOD iSAS-RC 02	12
Fig. 6:	Logical Scope of the TOE	13
- 4 D.		
TABI	LES	
Tab. 1:	Security Target Reference	7
Tab. 2:	TOE Reference	
Tab. 3:	TOE Overview and Description Consistency	
Tab. 4:	TOE Users	18
Tab. 5:	Threat Agents	
Tab. 6:	Mapping of Objectives to Assumptions, Threats and Policies	
Tab. 7:	TOE Security Functional Requirements	
Tab. 8:	Information flow control SFPs	
Tab. 9:	Information	
Tab. 10:	Subjects	
Tab. 11:	Information Security Attributes	
Tab. 12:	Subject Security Attributes	
Tab. 13:	Security Assurance Requirements	
Tab. 14:	Tracing of SFRs to the Security Objectives	
Tab. 15:	Mapping of OT.Tx_Flow_Control to SFRs	
Tab. 16:	Mapping of OT.Rx_Flow_Control to SFRs	
Tab. 17:	Mapping of OT. Acoustic_Coupling to SFRs	
Tab. 18:	Mapping of OT.Mediate_Data to SFRs	
Tab. 19:	Security Requirements Dependencies	
Tab. 20:	Mapping of SFR to the TSF	
Tab. 21:	Mapping of FDP_IFF.1_TX to TSFs	
Tab. 22:	Mapping of FDP_IFF.1_RX to TSFs	
Tab. 23:	Mapping of FDP_IFF.1_UI to TSFs	/1

1 Security Target Introduction

This section describes the Target of Evaluation (TOE) in a narrative way on three levels of abstraction:

- the Security Target (ST) reference and the TOE reference, which provide identification material for the ST and the TOE that the ST refers to
- the TOE overview, which briefly describes the TOE
- the TOE description, which describes the TOE in more detail.

1.1 Security Target Reference

ST Name:	iSAS Security Target
ST Version:	2.2
ST Document Number:	EWSE23EN90001
Authors:	Frequentis AG
Keywords:	Secure audio switch, Trusted audio switch, Red/Black separation, Audio interface

Tab. 1: Security Target Reference

The security target reference corresponds to complete security target.

1.2 TOE Reference

Developer Name:	Frequentis AG
TOE Name:	iSAS
Release	1.0

Tab. 2: TOE Reference

TOE firmware and hardware reference

For TOE acceptance procedure including TOE identification please refer to acceptance procedures described in [PRE] in section 2.1.

Please refer to certification report for approved [PRE] document versions.

1.3 TOE Overview

1.3.1 Use and major security features of the TOE

The TOE, hereinafter referred to as a Secure Audio Switch (iSAS), is installed in settings were a user (S.User) needs to operate CLASSIFIED and UNCLASSIFIED voice communication via a common user interface and the same set of audio devices (see Fig. 1).

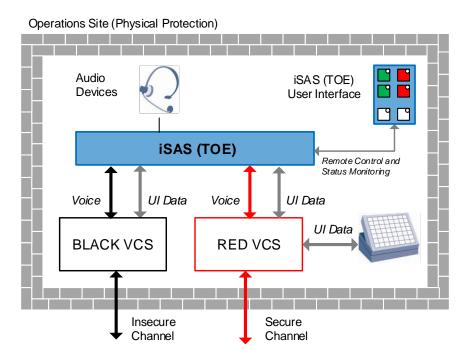


Fig. 1: TOE and its Environment

The CLASSIFIED and UNCLASSIFIED voice information is processed by dedicated, physically separated voice communication systems (RED and BLACK VCS) and transmitted via secure or insecure communication channels. The TOE and the VCSs are installed in a physically protected operations site.

In operation, the user (S.User) can control the voice transmission path (Microphone_Inputs) separately from the voice reception path (Earpiece Outputs).

The TOE connects the Microphone_Inputs to either the RED VCS or the BLACK VCS. To switch between RED and BLACK VCS the user (S.User) must perform some specific action (e.g., push a button, turn a knob, etc.). The TOE then visually indicates whether the Microphone_Inputs are connected to the BLACK or RED VCS.

The TOE connects the Earpiece_Outputs to either the RED VCS or BLACK VCS or to both VCSs (mixed signal). To switch between the RED, BLACK and BOTH mode the user (S.User) must perform some specific action (e.g., push a button, turn a knob, etc.). The TOE then visually indicates whether the Earpiece_Outputs are connected to the BLACK VCS, RED VCS or to both VCSs.

A common user interface (e.g., touch entry device), which is integrated into the RED VCS controls both the RED and the BLACK VCS. The TOE mediates the flow of user interface data (User_Interface_Data) between the RED VCS and the BLACK VCS in order to prevent the User_Interface_Data from being misused to bypass the separation of CLASSIFIED and UNCLASSIFIED voice information.

The TOE does not have - and in fact specifically precludes - any features that permit voice information to be shared or transferred between the BLACK and RED VCS via the TOE.

The TOE provides two separated interfaces for communication with RED and BLACK VCS.

TOE requires the following firmware (see section 1.2 and Fig. 6):

- Firmware for dedicated Secure Processing (SEC/INSEC Processing Unit)
- Firmware for dedicated Insecure Processing (Secure and Insecure Transfer Unit)

1.3.2 TOE Type

The TOE is a device that permits a user (S.User) to operate CLASSIFIED and UNCLASSIFIED voice communication via a common user interface and the same set of audio devices. The user can rely on the TOE unique architecture to keep the CLASSIFIED and UNCLASSIFIED voice information completely separate.

1.3.3 Required non-TOE hardware/software/firmware

The TOE is intended for use with Frequentis VCS. The digital format of the audio signal as well as other control signals are not intended for connection with general purpose voice communication systems. Additionally, the TOE requires the following non-TOE hardware:

- Audio device(s)
- RED VCS including the user interface (e.g., touch entry device)
- BLACK VCS
- Power supply

1.4 TOE Description

The TOE description provides general description of the security capabilities of the TOE in more detail including the wider application context into which the TOE will fit.

1.4.1 Application context

This chapter describes the typical usage of the TOE at an operator working position together with a Frequentis VCS. The operator position equipment is designed for console mounting (see Fig. 2, Fig. 3). The user (S.User) operates both VCSs via a touch entry device (TED) that is integrated into the RED operator position electronic.

The TOE is an audio interface device providing flow control between the audio devices and the operator position electronics of the RED and BLACK VCS. The TOE is connected to the RED and BLACK operator position electronics via fibre optics.

In order to cover possible installation scenarios, the TOE is composed of two separate hardware subsystems: The actual secure audio switch and the optional remote-control device (MOD iSAS-RC 02).

Depending on the space available, the secure audio switch (MOD iSAS-P) is operated in one of the following ways:

- Operation via Touch Entry Device (see Fig. 2): The operator switches the audio devices between RED and BLACK VCS via the touch entry device. Additionally, the TOE provides assured visual indication at the MOD iSAS-P housing whether the Microphone_Inputs/Earpiece_Outputs are connected to the BLACK or RED VCS. The touch entry device is out of scope of the TOE. Therefore, this setup requires that the MOD iSAS-P is mounted visible, and the operator regularly checks the assured indication at the MOD iSAS-P housing.
- Operation via Remote Control Device MOD iSAS-RC 02 (see Fig. 3): If the assured indication directly at MOD iSAS-P housing is not visible to the operator, the TOE is operated via a remote-control device. The remote-control device implements the Key and Lamp functionality in a separate housing designed for console mounting. The remote-control device MOD iSAS-RC 02 is part of the TOE.

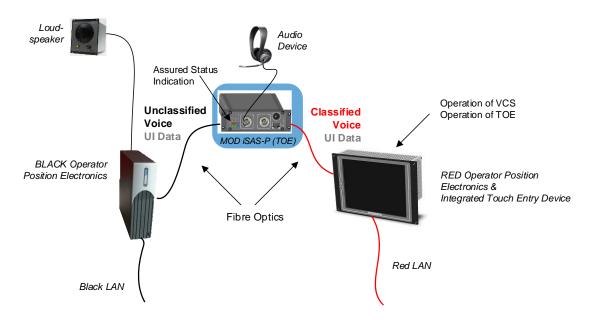


Fig. 2: TOE and Operator Position Equipment – Operation via Touch Entry Device

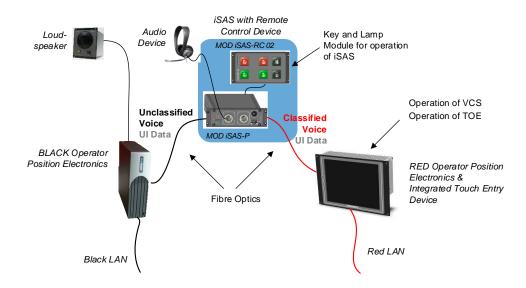


Fig. 3: TOE and Operator Position Equipment- Operation via Remote Control Device

During normal operation the TOE is used by a single user/operator (S.User). During training a coach can connect an audio device in parallel to the operator/trainee. In this case the VCS provides the coach with the possibility to override the operator.

The TOE provides audio interfaces for the following set of audio devices:

- Operator audio devices:
 - Binaural/Monaural Headset (OP_Headset)
 - Handset
 - Handheld Microphone
 - Loudspeaker
- Coach audio devices:
 - Binaural/Monaural Headset (CO_Headset)

In order to support this set of audio devices the TOE can handle multiple receive (RX) and transmit (TX) audio streams from both the RED and BLACK VCS.

1.4.2 Security Boundaries

1.4.2.1 Physical Scope

The physical scope of the TOE consists of:

- MOD iSAS-P hardware
- MOD iSAS-RC 02 hardware
- Associated guidance documentation.

The MOD iSAS-P hardware consists of the following main components:

- Secure/Insecure Processing Unit (S/I-PU) Programmable Logic Device (PLD), firmware where the security function of the MOD iSAS-P is implemented
- Secure Transfer Unit (SEC-TU) Programmable Logic Device (PLD)
- Insecure Transfer Unit (INSEC-TU) Programmable Logic Device (PLD)
- Mechanics

The front and rear view of the TOE is shown in Fig. 4.

Fig. 4: MOD iSAS-P Front (Left) and Rear (Right) View

The Remote-Control Device MOD iSAS-RC 02 provides Key and Lamp functionality (see Fig. 5):

Fig. 5: Remote Control Device MOD iSAS-RC 02

1.4.2.2 Logical Scope

The TOE logical scope and boundary consists of the security functions/features provided/controlled by the TOE.

The TOE provides the following security functions (see also Fig. 6):

- Voice Information Flow Control (TSF.VFC)
- User Interface Data Flow Control (TSF.DFC)
- Management Interface (TSF.MNI)
- Protection of TSF (TSF.PRT)

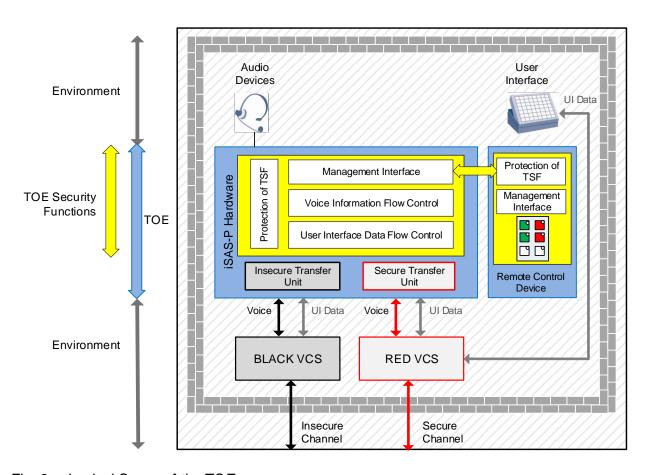


Fig. 6: Logical Scope of the TOE

Voice Information Flow Control

Microphone_Inputs are switched either to the RED or BLACK VCS by a common TX selector. The TX selector provides two positions:

- SECURE: Transmission of CLASSIFIED Voice Information
- INSECURE: Transmission of UNCLASSIFIED Voice Information

The TX selector is controlled by the user (S.User).

Each audio device has its dedicated Push To Talk (PTT) input. The user (S.User) needs to press PTT for voice transmission. The TOE disconnects inactive Microphone_Inputs (no PTT).

All voice information received from the RED and BLACK VCS is routed to the Earpiece_Outputs according to a common RX selector. The RX selector provides three positions:

- SECURE: Reception of CLASSIFIED voice information
- INSECURE: Reception of UNCLASSIFIED voice information
- BOTH: Simultaneous reception of CLASSIFIED and UNCLASSIFIED voice information

The RX selector is controlled by the user (S.User).

User Interface Data Flow Control

The operator uses a common user interface (e.g., touch entry device) to control both the RED and the BLACK VCS. The common user interface – that is part of the RED VCS – communicates the User_Interface_Data to the BLACK VCS via the TOE.

The TOE mediates the flow of User_Interface_Data between the RED VCS and the BLACK VCS in order to prevent the user interface connection from being misused to bypass the Voice Information Flow Control.

Management Interface

The TOE provides an assured indication of the RX and TX state via LEDs at the MOD iSAS-P housing.

The TOE includes remote control (MOD iSAS-RC 02) with a key and lamp functionality.

Additionally, the TOE provides a remote-control interface for operation via an external user interface that is part of the RED VCS (e.g., touch entry device).

Protection of TSF

The TOE provides a Fail Secure security function.

1.4.2.3 Out of Scope

The following firmware and hardware features are outside the scope of the defined TSF and are therefore not evaluated:

- Audio device(s)
- RED VCS including the user interface (e.g., touch entry device)
- BLACK VCS
- Power supply

1.5 TOE Overview and Description Consistency

The following table demonstrates the consistency between TOE overview and TOE description.

Statement in the TOE overview (major security feature)

The TOE, hereinafter referred to as a Secure Audio Switch (iSAS), is installed in settings were a user (S.User) needs to operate CLASSIFIED and UNCLASSIFIED voice communication via a common user interface and the same set of audio devices (see Fig. 1)

The CLASSIFIED and UNCLASSIFIED voice information is processed by dedicated, physically separated voice communication systems (RED and BLACK VCS) and transmitted via secure or insecure communication channels. The TOE and the VCSs are installed in a physically protected operations site.

In operation, the user (S.User) can control the voice transmission path (Microphone_Inputs) separately from the voice reception path (Earpiece_Outputs).

The TOE connects the Microphone_Inputs to either the RED VCS or the BLACK VCS.

The TOE connects the Earpiece_Outputs to either the RED VCS or BLACK VCS or to both VCSs (mixed signal).

The TOE does not have - and in fact specifically precludes - any features that permit voice information to be shared or transferred between the BLACK and RED VCS via the TOE.

A common user interface (e.g., touch entry device), which is integrated into the RED VCS controls both the RED and the BLACK VCS. The TOE mediates the flow of user interface data (User_Interface_Data) between the RED VCS and the BLACK VCS in order to prevent the User_Interface_Data from being misused to bypass the separation of CLASSIFIED and UNCLASSIFIED voice information.

Statement in the TOE description (logical scope of the TOE)

Voice Information Flow Control (TSF.VFC)

Microphone_Inputs are switched either to the RED or BLACK VCS by a common TX selector. The TX selector provides two positions:

- SECURE: Transmission of CLASSIFIED Voice Information
- INSECURE: Transmission of UNCLASSIFIED Voice Information

The TX selector is controlled by the user (S.User).

Each audio device has its dedicated Push To Talk (PTT) input. The user (S.User) needs to press PTT for voice transmission. The TOE disconnects inactive Microphone Inputs (no PTT).

All voice information received from the RED and BLACK VCS is routed to the Earpiece_Outputs according to a common RX selector. The RX selector provides three positions:

- SECURE: Reception of CLASSIFIED voice information
- INSECURE: Reception of UNCLASSIFIED voice information
- BOTH: Simultaneous reception of CLASSIFIED and UNCLASSIFIED voice information

The RX selector is controlled by the user (S.User).

User Interface Data Flow Control (TSF.DFC)

The operator uses a common user interface (e.g., touch entry device) to control both the RED and the BLACK VCS. The common user interface – that is part of the RED VCS – communicates the User_Interface_Data to the BLACK VCS via the TOE.

The TOE mediates the flow of User_Interface_Data between the RED VCS and the BLACK VCS in order to prevent the user interface connection from being misused to bypass the Voice Information Flow Control.

Statement in the TOE overview (major security feature)	Statement in the TOE description (logical scope of the TOE)					
To switch between RED and BLACK VCS the user (S.User) must perform some specific action (e.g., push a button, turn a knob, etc.). The TOE then visually indicates whether the Microphone_Inputs are connected to the BLACK or RED VCS. To switch between the RED, BLACK and BOTH mode the user (S.User) must perform some specific action (e.g., push a button, turn a knob, etc.). The TOE then visually indicates whether the Earpiece_Outputs are connected to the BLACK VCS, RED VCS or to both VCSs.	Management Interface The TOE provides an assured indication of the RX and TX state via LEDs at the MOD iSAS-P housing. The TOE includes remote control MOD iSAS-RC 02 with a key and lamp functionality. Additionally, the TOE provides a remote-control interface for operation via an external user interface that is part of the RED VCS (e.g., touch entry device)					
-	Protection of TSF The TOE provides a Fail Secure security function. TOE prevents that the Microphone_Inputs are erroneously connected to the BLACK VCS in the event of a single failure of the TSF.					

Tab. 3: TOE Overview and Description Consistency

2 Conformance claims

2.1 CC Conformance Claim

This Security Target and the TOE:

- claims conformance to CC version 3.1 R5
- is CC Part 2 conformant
- is CC Part 3 conformant

2.2 PP Claims, Package Claim

This Security Target:

- does not claim conformance to any Protection Profile (PP)
- is EAL 4 augmented by components:
 - ASE TSS.2
 - ADV_INT.3
 - AVA_VAN.5

2.3 Conformance Rationale

PP-related conformance claim rationale:

This ST does not claim conformance to any PP, so there is no rationale related to this.

Package-related conformance claim rationale:

This ST is EAL4 augmented, as ASE_TSS.2, ADV_INT.3 and AVA_VAN.5 were added to the EAL 4 package. The EAL4 package as well as the additional assurance components contain no uncompleted operations.

3 Security Problem Definition

This section analyses and defines the security problem that is to be addressed.

3.1 Assets

The only asset identified for the TOE is the CLASSIFIED voice information processed by the TOE for which a loss of confidentiality must be prevented.

3.2 User

The TOE can be simultaneously used by up to two types of users:

- Operator: During normal operation the TOE is used by a single user the Operator. The
 Operator communicates with the TOE and VCS via a set of audio devices
 (OP_Headset, Handset, Handheld, Loudspeaker).
- Coach: For training purposes a Coach can connect an audio device (CO_Headset) in parallel to the Operator. In this case the VCS (not the TOE) provides the Coach with the possibility to override the Operator.

All users with physical access to the TOE have the permission to use any of its audio devices and/or operate the TX and RX selector. Therefore, the TOE does not identify the users and assign them to different roles. From the point of the TOE a single role exists – the S.User (see Tab. 4).

Subject	Remark
S.User	All users of the TOE (Operator and Coach) that communicate
	with the TOE via any of its audio devices and/or operate the TX and RX selector. S.User has physical access to the TOE.

Tab. 4: TOE Users

3.3 Threat Agents

Following threat agents where identified that can adversely act on the assets.

Threat Agent	Adverse Action
TA.External	A human or a process acting on his behalf being located outside the TOE and outside the operations site. The goal of the TA.External is to pick up CLASSIFIED wice information. TA.External has access to nearly unlimited resources in terms of money and time. Therefore, the TA.External has a high attack potential in terms of CC.
TA.User	An end-user of the TOE with no intent to perform unauthorized actions. TA.User may unintentionally perform an unauthorized action and thereby facilitate TA.External access to CLASSIFIED voice information.
TA.Technician	A person responsible to install and maintain the TOE with no intent to perform unauthorized actions. TA.Technician may unintentionally perform an unauthorized action and thereby facilitate TA.External access to CLASSIFIED voice information.
TA.Malfunction	A Malfunction of the TOE might facilitate TA.External access to CLASSIFIED voice information. Malfunctions to be considered are limited to single failures.

Tab. 5: Threat Agents

3.4 Assumptions

The TOE and the RED and BLACK VCS are installed in a physically protected area (operations site), at least approved for the highest security level of information handled in the TOE.

ATEMPEST_Facility Tempest Facility Zone

The TOE is operated in a TEMPEST facility zone that allows the use of COTS products for the processing of the highest security level of information handled in the TOE.

ATEMPEST_Evaluation Prevention of compromising emanation

The TOE is subject to a TEMPEST evaluation, which is carried out independent of the Common Criteria certification.

The TEMPEST evaluation of the TOE prevents unacceptable compromising electromagnetic emissions and ensure that the interface to the BLACK VCS does not contain unintentional CLASSIFIED voice information.

ATraining User Training

All users are trained in the correct use of the TOE and VCS and follow the operational guidelines.

A.Clearance User Clearance

All users have a minimum clearance for the highest security level of information handled in the TOE and are authorized for all information handled by the TOE.

User activity shall be monitored to the extent that sanctions can be applied when malfeasance occurs.

Alnstallation TOE Installation and Maintenance

The TOE is installed and maintained according to the installation and maintenance guidelines.

A.Headset Headsets devices

Appropriate headsets and associated cables prevent unacceptable acoustic coupling between:

- Earpiece and microphone of the audio device.
- Ambient noise and microphone

Note: This assumption does not hold for the handset and handheld.

AVCS Separation of RED and BLACK VCS

The voice information transmitted by the RED VCS is strictly separated from the voice information transmitted by the BLACK VCS. Vulnerabilities associated with the VCS or its connections to the TOE are a concern of the application scenario and not the TOE.

All communication channels of the RED VCS that leave the operations site are either encrypted with approved crypto devices or implemented as approved circuits (secure channels). Vulnerabilities associated with the RED communication channels are a concern of the application scenario and not the TOE.

ARED_VCS_Accreditation Accreditation of RED VCS

The RED VCS is accredited for the highest security classification processed in the system.

3.5 Threats

This section shows the threats that are to be countered by the TOE, its operational environment, or a combination of the two.

T.Illicit Information Flow

CLASSIFIED voice information might be transferred to insecure channels.

Threat Agent:

- TA.External
- TA.Malfunction in combination with TA.External

Endangered Asset:

Confidentiality of CLASSIFIED voice information

Adverse Action:

- The TOE insufficiently protects CLASSIFIED voice information from being transferred to the BLACK VCS. Persons (TA.External) outside the physically protected area pick up the CLASSIFIED voice information from the insecure channels.
- A malfunction in the TOE causes CLASSIFIED voice information to be transferred to the BLACK VCS. Persons (TA.External) outside the physically protected area pick up the CLASSIFIED voice information from the insecure channels.

T.Tx_Indication_Spoofing

A user may think that he is speaking via a secure channel while he is actually speaking via an insecure channel.

Threat Agent:

- TA.User in combination with TA.External
- TA.Malfunction in combination with TA.User and TA.External

Endangered Asset:

Confidentiality of CLASSIFIED voice information

Adverse Action:

The user may think that the Microphone_Inputs are connected to the RED VCS while
they are actually connected to the BLACK VCS. The user then speaks CLASSIFIED.
The CLASSIFIED voice information is transmitted to the BLACK VCS and is picked up
from the insecure channels by persons (TA.External) outside the physically protected
area.

 TOE malfunction gives the user an indication that the Microphone_Inputs are not connected to the BLACK VCS, while in reality the Microphone_Inputs are connected to the BLACK VCS. The user then speaks CLASSIFIED. The CLASSIFIED voice information is transmitted to the BLACK VCS and is picked up from the insecure channels by persons (TA.External) outside the physically protected area.

T.Rx Indication Spoofing

A user may think that he is hearing UNCLASSIFIED voice information while he is actually hearing CLASSIFIED voice information.

Threat Agent:

- TA.User in combination with TA.External
- TA.Malfunction in combination with TA.User and TA.External

Endangered Asset:

Confidentiality of CLASSIFIED voice information

Adverse Action:

- The user may think the Earpiece_Outputs are not connected to RED VCS while they are actually connected. The user activates an audio device then speaks UNCLASSIFIED. The CLASSIFIED voice information from the earpiece of the audio device is picked up by the microphone and transmitted to the BLACK VCS. Persons (TA.External) outside the physically protected area pick up the CLASSIFIED voice information from the insecure channels.
- TOE malfunction gives the user an indication that the Earpiece_Outputs are not connected to the RED VCS, while in reality the Earpiece_Outputs are connected to the RED VCS. The user activates an audio device then speaks UNCLASSIFIED. The CLASSIFIED voice information from the earpiece of the audio device is picked up by the microphone and transmitted to the BLACK VCS. Persons (TA.External) outside the physically protected area pick up the CLASSIFIED voice information from the insecure channels.

T.Acoustic_Coupling

Microphones connected to insecure channels might pick up CLASSIFIED speech.

Threat Agent:

TA.User in combination with TA.External

Endangered Asset:

Confidentiality of CLASSIFIED voice information

Adverse Action:

- When the microphone is connected to the BLACK VCS, and the earpiece is connected
 to the RED VCS the microphone might pick up CLASSIFIED voice information from the
 earphone. The CLASSIFIED voice information is transmitted to the BLACK VCS and
 picked up from insecure channels by persons (TA.External) outside the physically
 protected area.
- When the microphone is connected to the BLACK VCS and another user (TA.User) in the room TA.User speaks CLASSIFIED voice information this CLASSIFIED voice information might be picked up by the microphone. The CLASSIFIED voice information is transmitted to the BLACK VCS and picked from insecure channels by persons (TA.External) outside the physically protected area.

T.Non-Permissible_Data_Inbound

A threat agent with access to the BLACK VCS may send non-permissible data through the TOE that result in gaining access to CLASSIFIED voice information in TOE or the RED VCS.

Threat Agent:

TA.External

Endangered Asset:

Confidentiality of CLASSIFIED voice information

Adverse Action:

TA.External gains access to the BLACK VCS via the external interfaces leaving the
operations sites. Subsequently TA.External modifies the BLACK VCS. The modified
BLACK VCS sends non-permissible data through the User_Interface_Data connection
to the RED VCS. The non-permissible data result in the BLACK VCS gaining access to
CLASSIFIED voice information. The BLACK VCS forwards the CLASSIFIED information
to persons (TA.External) outside the physically protected area via insecure channels.

T.Non-Permissible_Data_Outbound

A threat agent with access to the RED VCS may send non-permissible data through the TOE that result in CLASSIFIED voice information being transferred to the BLACK VCS. This voice information may be monitored by an attacker and used to his advantage.

Threat Agent:

TA.External

Endangered Asset:

Confidentiality of CLASSIFIED voice information

Adverse Action:

• TA.External gains access to the RED as well as the BLACK VCS via the external interfaces leaving the operations sites. Subsequently TA.External modifies the RED VCS and the BLACK VCS. The modified RED VCS misuses the User_Interface_Data connection to the BLACK VCS in order to transfer a continuous CLASSIFIED voice stream. The BLACK VCS forwards this information to Persons (TA.External) outside the physically protected area via insecure channels. This enables TA.External to monitor the CLASSIFIED voice communication and use this information to his advantage.

Note: Due to the assumptions concerning the operational environment no threat of physical tampering exists, if the TOE is installed at the operations site. Protection against physical tampering prior to installation at the operations site is implicitly provided by the assurance packet chosen for the TOE (Family ALC_DEL - Delivery procedures).

Note: Protection against logical tampering (modification of TSF code or data structures) is implicitly provided by the assurance packet chosen for the TOE (ADV.ARC.1).

3.6 Organizational Security Policies

The security target identifies no organization security policies (OSPs) to which the TOE must comply.

4 Security Objectives

4.1 Security Objectives for the TOE

OT.Tx Status

Transmission Status indication

The user shall unambiguously be made aware whether the Microphone_Inputs are connected to a BLACK VCS.

OT.Rx Status

Receive Status Indication

The user shall unambiguously be made aware whether the Earpiece_Outputs are connected to a RED VCS.

OT.Tx Flow Control

Transmission Flow Control

Voice information from the Microphone_Inputs assigned to the RED VCS by the user shall not be transferred to the BLACK VCS.

OT.Rx Flow Control

Receive Flow Control

Classified voice information received from the RED VCS shall not be transferred to the BLACK VCS.

Voice information received from the RED and BLACK VCS shall be routed to the Earpiece_Outputs according to the user selection (SECURE/INSECURE/BOTH).

OT.Acoustic_Coupling

Prevention of Acoustic Coupling

To prevent unacceptable acoustic coupling via audio devices, the TOE shall ensure the following:

- Inactive Microphone_Inputs (no PTT) shall be disconnected.
- If transmission via the handset or Handheld is active (PTT), the TOE shall prevent that CLASSIFIED voice information is received from the RED VCS while the Microphone_Inputs are connected to the BLACK VCS.
- If the handset is not in use (ON-Hook), the TOE shall prevent that voice information is received by the handset.
- The Loudspeaker Output shall only be connected to the BLACK VCS.

OT.Mediate Data

Mediation of user interface data

The TOE shall mediate the flow of User_Interface_Data between the RED VCS and the BLACK VCS in order to prevent the user interface connection from being misused to:

- Access classified voice information from the BLACK VCS.
- Transmit comprehensible voice information continuously from the RED VCS to the BLACK VCS.

OT.Fail_Secure

Fail Secure Behaviour

The TOE shall prevent that the Microphone_Inputs are erroneously connected to the BLACK VCS in the event of a single failure of the TSF.

4.2 Security Objectives for the Operational Environment

OE.Physical_Protection Physical Protection of Operations Site

The operation site shall have physical protection, which is at least approved for the highest level of information handled in the TOE.

OE.TEMPEST_Facility

Tempest Facility Zone

The TOE shall be operated in a TEMPEST facility zone that allows the use of COTS products for the processing of the highest security level of information handled in the TOE.

OE.TEMPEST_Evalutation

Prevention of compromising emanation

The TOE shall be subject to a TEMPEST evaluation, which is carried out independent of the Common Criteria certification.

The TEMPEST evaluation of the TOE shall prevent unacceptable compromising electromagnetic emissions and ensure that the interface to the BLACK VCS does not contain unintentional CLASSIFIED voice information.

OE.Physical_Access

Physical Access of TOE

Only authorized persons shall be given physical access to the TOE.

OE.Clearance

Clearance of TOE Users

All users shall have a minimum clearance for the maximum-security level of information handled in the TOE. User activity shall be monitored, and user shall be accountable for their actions.

OE.Installation

Installation and Maintenance of TOE

The TOE shall be installed and maintained according to the installation and maintenance guidelines.

The installation shall assure that the RX and TX status of the TOE is visible to the operator.

OE.User_Training

User Training

The users shall be trained to use the TOE.

• If the TOE is controlled via an external user interface, that is not part of the TOE, the operators shall be trained to check the assured RX and TX status indication at the TOE.

OE.Headset

Use of Appropriate Headset

Appropriate Headsets shall be used in order to prevent unacceptable acoustic coupling between:

- Earpiece and microphone, when receiving CLASSIFIED voice information while transmitting UNCLASSIFIED voice information.
- A neighbouring user and the microphone of the user, when the neighbouring user is talking CLASSIFIED information while the user transmits UNCLASSIFIED voice information.

${\tt OE.Neighbour_Acoustic_Coupling}$

Prevention of Acoustic Coupling from Neighbouring Users

Each user shall be made aware of the TX state of ongoing transmission of a neighbouring user. Operational procedures, not technical solutions shall regulate concurrent use of CLASSIFIED and UNCLASSIFIED conversations to prevent acoustic coupling of CLASSIFIED conversations to be transmitted on UNCLASSIFIED communication channels.

OE.VCS

Separation of RED and BLACK VCS

The voice information transmitted by the RED VCS shall be strictly separated (logical or physical) from the voice information transmitted by the BLACK VCS.

All communication channels of the RED VCS that leave the operations site either shall be encrypted with approved crypto devices or implemented as approved circuits (secure channels).

OE.RED VCS Accreditation

Accreditation of RED VCS

The RED VCS shall be accredited for the highest security classification processed in the system.

4.3 Security Objectives Rationale

Assumptions - Threats- Policies / Security Objectives	OT.Tx_Status	OT.Rx_Status	OT.Tx_Flow_Control	OT.Rx_Flow_Control	OT.Acoustic_Coupling	OT.Mediate_Data	OT.Fail_Secure	OE.Physical_Protection	OE.TEPMEST_Facility	OE.TEMPEST_Evaluation	OE.Physical_Access	OE.Clearance	OE.Installation	OE.User_Training	OE.Headset	OE.Neighbour_Acoustic_Coupling	OE.VCS	OE.RED_VCS_Accreditation
A.Physical_Protection								Х			Х		Х					
A.TEMPEST_Facility									X									
A.TEMPEST_Evaluation										Х								
A.Training														Х				
A.Clearance												Х						
A.Installation													Х					
A.Headset															Х			
A.VCS																	X	
A.RED_VCS_Accreditation																		Х
T.IIIicit_Information_Flow			Х	Х			Х											
T.Tx_Indication_Spoofing	Х						Х						Х					
T.Rx_Indication_Spoofing		Х			X								Х		Х			
T.Acoustic_Coupling					X										Х	Х		
T.Non-Permissible_Data_Inbound						Х												
T.Non-Permissible_Data_Outbound						Х												Х

Tab. 6: Mapping of Objectives to Assumptions, Threats and Policies

4.3.1 Coverage of the TOE Security Objectives

OT.Tx_Status

OT.Tx_Status can be traced back to the threat T.Tx_Indication_Spoofing as OT.Tx_Status describes that the user shall be unambiguously made aware whether the Microphone_Inputs are connected to the BLACK VCS.

OT.Rx Status

OT.Rx_Status can be traced back to the threat T.Rx_Indication_Spoofing as OT.Rx_Status describes that the user shall be unambiguously made aware whether the Earpiece_Outputs are connected to the RED VCS.

OT.Tx Flow Control

OT.Tx_Flow_Control can be traced back to the threat T.Illicit_Information_Flow as OT.Tx_Flow_Control describes that voice information from the Microphone_Inputs assigned to the RED VCS by the user shall not be transferred to the BLACK VCS.

OT.Rx_Flow_Control

OT.Rx_Flow_Control can be traced back to the threat T.Illicit_Information_Flow as OT.Rx_Flow_Control describes that voice information from the RED VCS shall not be transferred to the BLACK VCS and the voice information received from the RED and BLACK VCS shall be routed to the Earpiece_Outputs according to the user selection.

OT.Acoustic_Coupling

OT.Acoustic_Coupling can be traced back to the threat T.Acoustic_Coupling and T.Rx_Indication_Spoofing as OT.Acoustic_Coupling describes that unacceptable acoustic coupling via audio devices shall be prevented by the TOE.

OT.Mediate_Data

OT.Mediate_Data can be traced back to the threat T.Non-Permissible_Data_Inbound and T.Non-Permissible_Data_Outbound as OT.Mediate_Data describes that the TOE shall mediate the flow of User_Interface_Data between the RED VCS and the BLACK VCS in order to prevent the user interface connection from being misused to bypass the separation of CLASSIFIED and UNCLASSIFIED voice information.

OT.Fail Secure

OT.Fail_Secure can be traced back to the threats T.Illicit_Information_Flow and TX_Indication_Spoofing. OT.Faile_Secure describes that the TOE shall prevent the Microphone_Inputs from being erroneously connected to the BLACK VCS in the event of a single failure.

4.3.2 Coverage of the Assumptions

A.Physical_Protection

The assumption A.Physical_Protection is upheld by the Security Objectives for the environment OE.Physical Protection, OE.Physical Access and OE.Installation.

OE.Physical_Protection describes that the operation site shall have physical protection, which is at least approved for the highest level of information handled in the TOE.

OE.Physical_Access describes that the only authorized persons shall be given physical access to the TOE.

OE.Installation describes that the TOE shall be installed and maintained accordingly to the installation and maintenance guidelines.

ATEMPEST_Facility

The assumption A.TEMPEST_Facility is covered by OE.TEMPEST_Facility.

ATEMPEST_Evaluation

The assumption A.TEMPEST_Evaluation is covered by OE.TEMPEST_Evaluation.

A.Training

The assumption A.Training is covered by OE.User_Training.

A.Clearance

The assumption A.Clearance is covered by OE.Clearance.

AInstallation

The assumption A.Installation is covered by OE.Installation.

A.Headset

The assumption A.Headset is covered by OE.Headset.

A.VCS

The assumption A.VCS is covered by OE.VCS.

ARED_VCS_Accreditation

The assumption A.RED VCS Accreditation is covered by OE.RED VCS Accreditation.

4.3.3 Countering the Threats

T.Illicit Information Flow

T.lllicit_Information_Flow is removed by security objectives for the TOE (OT.Tx_Flow_Control, OT.Rx_Flow_Control, OT.Fail_Secure).

OT.Tx_Flow_Control, OT.Rx_Flow_Control remove the threat that the TOE insufficiently protects CLASSIFIED voice information from being transferred to the BLACK VCS as OT.Tx_Flow_Control and OT.Rx_Flow_Control describe the flow control rules that shall be enforced by the TSF.

OT.Fail_Secure removes the threat that a malfunction of the TOE might result in CLASSIFIED information being transferred to insecure channels as OT.Fail_Secure describes that the TOE shall prevent the Microphone_Inputs from being erroneously connected to the BLACK VCS in the event of a single failure of the TSF.

T.Tx_Indication_Spoofing

T.Tx_Indication_Spoofing is removed by a combination of security objectives for the TOE (OT.Tx_Status and OT.Fail_Secure) and security objectives for the environment (OE.Installation).

OE.Installation removes the threat that the user does not know whether he is speaking via a secure or insecure channel as OE.Installation describes that the installation shall assure that the TX status of the TOE is visible to the operator.

OT.Tx_Status removes the threat that the user may think the Microphone_Inputs connected to the RED VCS while they are actually connected to the BLACK VCS as OT.Tx_Status describes that the user shall unambiguously be made aware whether the Microphone_Inputs are connected to a BLACK VCS.

OT.Fail_Secure removes the threat that a malfunction gives the user an indication that the Microphone_Inputs are not connected to the BLACK VCS, while in reality the Microphone_Inputs are connected to the BLACK VCS as OT.Fail_Secure describes that the TOE shall prevent the Microphone_Inputs from being erroneously connected to the BLACK VCS in the event of a single failure.

T.Rx Indication Spoofing

T.Rx_Indication_Spoofing is removed by a combination of security objectives for the TOE (OT.Rx_Status and OT.Acoustic_Coupling) and security objectives for the environment (OE.Installation, OE.Headset).

OE.Installation removes the threat that the user does not know whether he is hearing a secure or insecure channel as OE.Installation describes that the installation shall assure that the RX status of the TOE is visible to the operator.

OT.Rx_Status removes the threat that the user may think the Earpiece_Outputs not connected to RED VCS while it is actually connected to the RED VCS as OT.Rx_Status describes that the user shall unambiguously be made aware whether the Earpiece_Outputs are connected to a RED VCS.

OE.Headset together with OT.Acoustic_Coupling mitigates the consequences of the user getting a wrong RX indication due to a malfunction as OE.Headset prevents unacceptable acoustic coupling for the headset while OT.Acoustic_Coupling prevents unacceptable acoustic coupling for other audio devices.

T.Acoustic_Coupling

T.Acoustic_Coupling is removed by a combination of security objectives for TOE (OT.Acoustic_Coupling) and security objectives for the environment (OE.Headset and OE.Neighbour_Acoustic_Coupling).

If headsets are used, OE.Headset removes the threat that microphones connected to insecure channels might pick up CLASSIFIED speech, as OE.Headset describes that this headset shall prevent unacceptable acoustic coupling.

If handset or Handheld are used, OT.Acoustic_Coupling removes the threat that microphones connected to insecure channels might pick up CLASSIFIED speech from an audio device connected to the TOE, as OT.Acoustic_Coupling describes that:

 the TOE shall prevent reception of CLASSIFIED voice information from the RED VCS while the Microphone_Inputs are connected to the BLACK VCS, if the handset or Handheld is active (PTT).

Therefore, the microphones of the handset or Handheld cannot pick up CLASSIFIED speech while they are connected to the BLACK VCS.

OT.Acoustic_Coupling mitigates the threat that microphones connected to insecure channels might pick up CLASSIFIED speech from a neighbouring position, as it describes that:

- inactive Microphone_Inputs (no PTT) shall be disconnected.
- the Loudspeaker_Output shall only be connected to the BLACK VCS.
- the TOE shall prevent that voice information is received by the handset, if the handset is not in use (ON-Hook).

OE.Neighbour_Acoustic_Coupling removes the threat that microphones connected to insecure channels might pick up CLASSIFIED speech from a neighbouring position, as it describes that each user shall be made aware of the TX state of ongoing transmission of a neighbouring user and operational procedures shall regulate concurrent use of CLASSIFIED and UNCLASSIFIED conversations.

T.Non-Permissible_Data_Inbound

T.Non-Permissible_Data_Inbound is removed by OT.Mediate_Data.

OT.Mediate_Data removes the threat that a threat agent, which gains access to the BLACK VCS, may send non-permissible data through the TOE, that result in gaining access to CLASSIFIED voice information, as this objective describes that the TOE shall mediate the flow of User_Interface_Data between the RED VCS and the BLACK VCS in order to prevent the user interface connection from being misused to access CLASSIFIED voice information from the BLACK VCS.

T.Non-Permissible Data Outbound

T.Non-Permissible_Data_Outbound is removed by a combination of security objectives for TOE (OT.Mediate_Data) and security objectives for the environment (OE.RED_VCS_Accreditation).

OE.RED_VCS_Accreditation mitigates the threat that a threat agent, which gains access to the RED VCS, may transfer CLASSIFIED voice information to the BLACK VCS, as the objective states that the RED VCS is accredited for the highest security classification processed in the system. Therefore, security measures resulting from the accreditation of the RED VCS mitigate the threat of malicious attacks originating from the RED VCS.

OT.Mediate_Data removes the threat that non-permissible data sent from the RED VCS to the BLACK VCS via the TOE might be used to monitor the communication of a user as the objective states that the TOE shall mediate the flow of User_Interface_Data between the RED VCS and the BLACK VCS in order to prevent the user interface connection from being misused to continuously transmit comprehensible CLASSIFIED voice information.

4.3.4 Coverage of the Security Objectives for the Operational Environment OE.Physical_Protection

OE.Physical_Protection can be traced back to the assumption A.Physical_Protection as OE.Physical_Protection describes that the operation site shall have physical protection, which is at least approved for the highest level of information handled in the TOE.

OE.TEMPEST_Facility

OE.Physical_Protection can be traced back to the assumption A.TEMPEST_Facility as OE.TEMPEST_Facility describes that the TOE shall be operated in a TEMPEST facility zone that allows the use of COTS products for the processing of the highest security level of information handled in the TOE.

OE.TEMPEST Evalutation

OE.TEMPEST_Evalutation can be traced back to the assumption A.TEMPEST_Evalutation as OE.TEMPEST_Evalutation describes that the TOE shall be subject to a TEMPEST evaluation, which is carried out independent of the Common Criteria certification.

OE.Physical Access

OE.Physical_Access can be traced back to the assumption A.Physical_Protection as OE.Physical_Access describes that only authorized persons shall be given physical access to the TOE.

OE.Clearance

OE.Clearance can be traced back to the assumption A.Clearance as OE.Clearance describes that all users shall have a minimum clearance for the maximum-security level of information handled in the TOE. User activity shall be monitored, and the user shall be accountable for their actions.

OE.Installation

OE.Installation can be traced back to assumptions (A.Physical_Protection, A. Installation) and threats (T.Tx_Indication_Spoofing, T.Rx_Indication_Spoofing) as OE.Installation describes that the TOE shall be installed and maintained according to the installation and maintenance guidelines as well as that the installation shall assure that the RX and TX status of the TOE is visible to the operator.

OE.User_Training

 OE.User_Training can be traced back to the assumption A.Training as OE.User_Training describes that the users shall be trained to use the TOE.

OE.Headset

OE.Headset can be traced back to assumptions (A.Headset) and threats
 (T.Acoustic_Coupling and T.Rx_Indication_Spoofing) as OE.Headset describes that
 appropriate Headsets shall be used in order to prevent unacceptable acoustic coupling.

OE.Neighbour_Acoustic_Coupling

OE.Neighbour_Acoustic_Coupling can be traced back to the threat T.Acoustic_Coupling as OE.Neighbour_Acoustic_Coupling describes that each user shall be made aware of the TX state of ongoing transmission of a neighbouring user. Operational procedures, not technical solutions shall regulate concurrent use of CLASSIFIED and UNCLASSIFIED conversations to prevent acoustic coupling of CLASSIFIED conversations to be transmitted on UNCLASSIFIED communication channels.

OE.VCS

OE.VCS can be traced back to the assumption A.VCS as OE.VCS describes that the voice information transmitted by the RED VCS shall be strictly separated (logical or physical) from the voice information transmitted by the BLACK VCS.

All communication channels of the RED VCS that leave the operations site either shall be encrypted with approved crypto devices or implemented as approved circuits (secure channels).

OE.RED_VCS_Accreditation

OE.RED_VCS_Accreditation can be traced back to assumptions (A.RED_VCS_Accreditation) and threats (T.Non-Permissible_Data_Outbound) as OE.RED_VCS_Accreditation describes that the RED VCS shall be accredited for the highest security classification processed in the system.

4.3.5 Conclusion

Based on the security objectives and the security objectives rationale it is obvious, that the security problem as defined in ASE_SPD is solved. All threats are countered, all OSPs are enforced, and all assumptions are upheld.

5 Extended Component Definition

This ST does not contain extended SFRs or extended SARs.

6 Security Requirements

6.1 Security Functional Requirements (SFRs)

This section contains the functional requirements that are provided by the TOE. These requirements consist exclusively of functional components from Part 2 of the Common Criteria (CC).

Words which appear in *italics* are tailoring of requirement definitions via an assignment operation.

Words which appear in **bold** are tailoring of requirement definitions via a selection operation.

Words which appear in **bold italics** are tailoring of requirement definitions via a selection operation followed by an assignment operation.

Iterations are identified by appending an identification ("_RX", "_TX", "_Ul") to the short name of iterated components and elements.

	The Tab. 7	list the functional	components	included i	in this ST.
--	------------	---------------------	------------	------------	-------------

Component	Name
FAU_ARP.1	Security alarms
FAU_SAA.1	Potential violation analysis
FDP_ETC.1	Export of user data without security attributes
FDP_IFC.1	Subset Information flow control policy
FDP_IFF.1	Simple security attributes
FDP_IFF.5	No illicit information flows
FDP_ITC.1	Import of user data without security attributes
FMT_MSA.1	Management of security attributes
FMT_MSA.3	Static attribute initialisation
FMT_SMF.1	Specification of Management Functions
FPT_FLS.1	Failure with preservation of secure state

Tab. 7: TOE Security Functional Requirements

6.1.1 Terms and definition for information flow control SFPs

This section contains terms and definitions used in the subsequent SFRs to define the information flow control SFPs. The terms and definitions are listed here by category. In addition, the glossary (see chapter 9) also contains these terms and definitions in alphabetical order.

6.1.1.1 Information flow control SFPs

The following table lists the information flow control SFPs defined in the subsequent SFRs.

SFP	Description
TX_SFP	Information flow control SFP for transmission of voice information
	(Voice_TX_Information).
RX_SFP	Information flow control SFP for reception of voice information
	(Voice_RX_Information).
Data_SFP	Information flow control SFP for communication of user interface data
	(User_Interface_Data).

Tab. 8: Information flow control SFPs

6.1.1.2 Information

The following table lists the information under control of the information flow control SFPs.

Information	Description	SFP
Voice_TX_Information	Voice information from the user indented for transmission to the VCS.	TX_SFP
Voice_RX_Information	Voice information from the VCS indented for reception by the user.	RX_SFP
User_Interface_Data	The user controls both the RED and the BLACK VCS via a common user interface. User_Interface_Data is information that is communicated via the TOE for this purpose.	Data_SFP

Tab. 9: Information

6.1.1.3 Subjects

The following table lists the subjects under control of the information flow control SFPs.

Note: For the definition of the SFPs this ST makes use of the term "subject" as defined in Common Criteria, Version 3.1, Release 2, Part 2, Annex F.5 [1]. This ST describes subjects of the SPF in the generic sense of input/output channels and interfaces of the TOE.

Subject	Description	SFP		
Analogue Audio Inputs				
Microphone_Inputs	Microphone inputs of the TOE to all audio devices: Mic_Input_OP_Headset and Mic_Input_CO_Headset and Mic_Input_Handset and Mic_Input_Handheld	TX_SFP		
Mic_Input_OP_Headset	Microphone input of the TOE to the binaural/monaural headset for use by the operator.			
Mic_Input_CO_Headset	Microphone input of the TOE to the binaural/monaural headset for use by the coach.			
Mic_Input_Handset	Microphone input of the TOE to the handset.			
Mic_Input_Handheld	Microphone input of the TOE to the handheld microphone.			
Analogue Audio Outputs				
Earpiece_Outputs	Earpiece outputs of the TOE to the headsets and speaker of the handset: Ear_Output_OP_Headset and Ear_Output_CO_Headset and Ear_Output_Handset Loudspeaker_Output	RX_SFP		
Ear_Output_OP_Headset	Earpiece output of the TOE to the binaural/monaural headset for use by the operator.			
Ear_Output_CO_Headset	D_Headset Earpiece output of the TOE to the binaural/monaural headset for use by the coach.			
Ear_Output_Handset	Speaker output of the TOE to the handset.			
Loudspeaker_Output				
Interfaces to VCSs				
RED_VCS_Interface	Interface of the TOE to the RED VCS.	TX_SFP,		
BLACK_VCS_Interface	Interface of the TOE to the BLACK VCS.	RX_SFP, Data_SFP		

Tab. 10: Subjects

6.1.1.4 Security Attributes

The following table lists the **information security attributes**.

Information	Security Attribute	Description
Voice_TX_Information, Voice_RX_Information	CLASSIFIED	CLASSIFIED information is information regarded as sensitive by the security authorities for the owners of the TOE (e.g., Information up to the German Classification Level VS-GEHEIM or equivalent NATO/national classification levels).
	UNCLASSIFIED	UNCLASSIFIED information is information regarded as not sensitive to disclosure by the security authorities for the owners of the TOE. (e.g., Information up to the German Classification Level VS-NfD or equivalent NATO/national classification levels).
User_Interface_Data	Transport_Data_Frame	The data frames of the transport level protocol used to communicate User_Interface_Data via the TOE.
	Checksum of the Transport_Data_Frame	The transport data frame includes a checksum in order to detect transmission errors.
	Application_Protocol	The application-level protocol used to communicate User_Interface_Data via the TOE.
	Application_Message_Type	The application message type defines the semantic of an Application_Protocol message. E.g.: The application message type "OBJ STATE CHANGED": means that a state of an object at the common user interface has changed (e.g., a button was pressed).
	Payload_Data_Rate	Number of Payload bits that are communicated via the TOE per unit of time. Payload is all content of User_Interface_Data that is not inspected
		for semantic correctness by the TOE (e.g. the numeric value identifying the object at the common user interface).

Tab. 11: Information Security Attributes

The following table lists the **subject security attributes**.

Subject	Security Attribute	Description
Earpiece_Outputs	SECURE	Security attribute of a subject that is allowed to receive CLASSIFIED Voice_RX_Information.
	INSECURE	Security attribute of a subject that is allowed to receive UNCLASSIFIED Voice_RX_Information
	ВОТН	Security attribute of a subject that is allowed to receive CLASSIFIED as well as UNCLASSIFIED Voice_RX_Information

Tab. 12: Subject Security Attributes

6.1.2 Security audit (Class FAU)

This section specifies the security audit requirements.

6.1.2.1 FAU_ARP.1 Security alarms

FAU_ARP.1.1

The TSF shall take [

The following actions:

- visually indicate a failure to warn the S.User,
- immediately stop transmission of User_Interface_Data and
- stop operation after a defined time (giving the S.User the possibility to react accordingly)]

upon detection of a potential security violation.

6.1.2.2 FAU_SAA.1 Potential violation analysis

FAU_SAA.1.1

The TSF shall be able to apply a set of rules in monitoring the audited events and based upon these rules indicate a potential violation of the enforcement of the SFRs.

FAU SAA.1.2

The TSF shall enforce the following rules for monitoring audited events:

- a) Accumulation or combination of [none] known to indicate a potential security violation;
- b) [Violations of at least one of the following Data_SFP rules even though the User_Interface_Data message has been transmitted error-free (Transport_Data_Frame is syntactically correct and the Checksum of the Transport_Data_Frame is correct):
 - The Application_Protocol is syntactically correct
 - The Application_Message_Type is permissible
 - The Payload_Data_Rate from RED_VCS_Interface to BLACK_VCS_Interface (Outbound) does not exceed the data rate required for comprehensive continuous voice transmission].

6.1.3 User data protection (Class FDP)

This section specifies the information flow control requirements.

6.1.3.1 FDP_ETC.1 Export of user data without security attributes

FDP ETC.1.1

The TSF shall enforce the [information flow control TX_SFP and RX_SFP] when exporting user data, controlled under the SFP(s), outside of the TOE.

FDP_ETC.1.2

The TSF shall export the user data without the user data's associated security attributes.

6.1.3.2 FDP_IFC.1_TX Subset information flow control – Voice TX

FDP IFC.1.1 TX

The TSF shall enforce the [information flow control TX_SFP] on [the following subjects:

- Microphone_Inputs
 - Mic_Input_OP_Headset
 - Mic_Input_CO_Headset
 - Mic_Input_Handset
 - Mic_Input_Handheld
- RED_VCS_Interface
- BLACK_VCS_Interface

For the following information:

Voice_TX_Information].

6.1.3.3 FDP_IFC.1_RX Subset information flow control – Voice RX

FDP_IFC.1.1_RX

The TSF shall enforce the [information flow control RX_SFP] on [the following subjects:

- Earpiece_Outputs
 - Ear_Output_OP_Headset
 - Ear_Output_CO_Headset
 - Ear_Output_Handset
- Loudspeaker_Output
- RED_VCS_Interface
- BLACK_VCS_Interface

for the following information:

Voice_RX_Information].

6.1.3.4 FDP_IFC.1_UI Subset information flow control – UI Data

FDP IFC.1.1 UI

The TSF shall enforce the [information flow control Data_SFP] on [

the following subjects:

- RED VCS Interface
- BLACK_VCS_Interface

For the following information:

User_Interface_Data].

6.1.3.5 FDP_IFF.1_TX Simple security attributes – Voice TX

FDP_IFF.1.1_TX

The TSF shall enforce the [information flow control TX_SFP] based on the following types of subject and information security attributes: [

- Voice_TX_Information security attributes (as determined by the TX selector)
 - CLASSIFIED
 - UNCLASSIFIED].

FDP_IFF.1.2_TX

The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [

Active Voice Transmission (PTT active):

- CLASSIFIED Voice_TX_Information shall be transmitted to the RED_VCS_Interface
- UNCLASSIFIED Voice_TX_Information shall be transmitted to the BLACK_VCS_Interface].

FDP IFF.1.3 TX

The TSF shall enforce the [no additional information flow control SFP rules].

FDP_IFF.1.4_TX

The TSF shall explicitly authorize an information flow based on the following rules: [none].

FDP IFF.1.5 TX

The TSF shall explicitly deny an information flow based on the following rules: [none].

6.1.3.6 FDP_IFF.1_RX Simple security attributes – Voice RX

FDP IFF.1.1 RX

The TSF shall enforce the [information flow control RX_SFP] based on the following types of subject and information security attributes: [

- Voice_RX_Information security attributes is determined by the source
 - CLASSIFIED
 - UNCLASSIFIED
- Earpiece_Outputs security attributes are determined by the RX selector:
 - SECURE, if RX selector = SECURE
 - INSECURE; if RX selector = INSECURE
 - BOTH, if RX selector = BOTH].

FDP_IFF.1.2_RX

The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [

Voice Reception:

- CLASSIFIED Voice_RX_Information shall be received by the Earpiece_Outputs, if its security attribute (determined by the RX selector) is SECURE
- UNCLASSIFIED Voice_RX_Information shall be received by the Earpiece_Outputs, if its security attribute (determined by the RX selector) is INSECURE
- CLASSIFIED Voice_RX_Information as well as the UNCLASSIFIED
 Voice_RX_Information shall be received by the Earpiece_Outputs, if its security attribute (determined by the RX selector) is BOTH
- UNCLASSIFIED Voice_RX_Information shall be received by the Loudspeaker_Output].

FDP_IFF.1.3_RX

The TSF shall enforce the [no additional information flow control SFP rules].

FDP_IFF.1.4_RX

The TSF shall explicitly authorize an information flow based on the following rules: [none].

FDP IFF.1.5 RX

The TSF shall explicitly deny an information flow based on the following rules: [

Voice Reception:

- CLASSIFIED Voice_RX_Information shall not be received if UNCLASSIFIED
 Voice_TX_Information is transmitted via the Mic_Input_Handset or Mic_Input_Handheld
 (PTT active)
- The CLASSIFIED Voice_RX_Information shall not be received by the Ear_Output_Handset, if the handset is inactive (ON-Hook)].

6.1.3.7 FDP_IFF.1_UI Simple security attributes – UI data

FDP IFF.1.1 UI

The TSF shall enforce the [information flow control Data_SFP] based on the following types of subject and information security attributes: [

- Transport_Data_Frame
- Checksum of the Transport_Data_Frame
- Application_Protocol
- Application_Message_Type
- Payload_Data_Rate].

FDP IFF.1.2 UI

The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [

User Interface (UI) Data Transmission between RED_VCS_Interface and BLACK_VCS_Interface (both directions):

- The Transport_Data_Frame is syntactically correct
- The Checksum of the Transport_Data_Frame is correct
- The Application_Protocol is syntactically correct
- The Application_Message_Type is permissible].

FDP_IFF.1.3_UI

The TSF shall enforce the [no additional information flow control SFP rules].

FDP_IFF.1.4_UI

The TSF shall explicitly authorize an information flow based on the following rules: [none].

FDP_IFF.1.5_UI

The TSF shall explicitly deny an information flow based on the following rules: [User Interface (UI) Data Transmission:

 The Payload_Data_Rate from RED_VCS_Interface to BLACK_VCS_Interface (Outbound) exceeds the data rate required for comprehensive continuous voice transmission].

6.1.3.8 FDP_IFF.5_TX No illicit information flows – Voice TX

FDP_IFF.5.1 _TX

The TSF shall ensure that no illicit information flows exist to circumvent [TX_SFP].

6.1.3.9 FDP_IFF.5_RX No illicit information flows – Voice RX FDP_IFF.5.1_RX

The TSF shall ensure that no illicit information flows exist to circumvent [RX_SFP].

6.1.3.10 FDP_IFF.5_UI No illicit information flows – UI Data FDP_IFF.5.1_UI

The TSF shall ensure that no illicit information flows exist to circumvent [Data_SFP].

6.1.3.11 FDP_ITC.1_TX Import of user data without security attributes – Voice TX FDP_ITC.1.1_TX

The TSF shall enforce the [information flow control TX_SFP] when importing user data, controlled under the SFP, from outside of the TOE.

FDP_ITC.1.2_TX

The TSF shall ignore any security attributes associated with the user data when imported from outside the TOE.

FDP ITC.1.3 TX

The TSF shall enforce the following rules when importing user data controlled under the SFP from outside the TOE: [

- Voice_TX_Information is imported from the Microphone_Inputs, if the corresponding PTT is active
- Voice_TX_Information security attributes are determined by the TX selector:
 - CLASSIFIED, if TX selector = SECURE
 - UNCLASSIFIED; if TX selector = INSECURE].

6.1.3.12 FDP_ITC.1_RX Import of user data without security attributes – Voice RX FDP_ITC.1.1_RX

The TSF shall enforce the [information flow control RX_SFP] when importing user data, controlled under the SFP, from outside of the TOE.

FDP_ITC.1.2_RX

The TSF shall ignore any security attributes associated with the user data when imported from outside the TOE.

FDP_ITC.1.3_RX

The TSF shall enforce the following rules when importing user data controlled under the SFP from outside the TOE: [

- Voice_RX_Information security attributes are determined by the VCS interface:
 - CLASSIFIED, if reception via RED_VCS_Interface
 - UNCLASSIFIED, if reception via BLACK VCS Interface].

6.1.4 Security management (Class FMT)

This section specifies the management of several aspects of the TSF.

6.1.4.1 FMT_MSA1_TX Management of security attributes – Voice TX FMT_MSA1.1_TX

The TSF shall enforce the [information flow control TX_SFP] to restrict the ability to [set, indicate] the security attributes [CLASSIFIED / UNCLASSIFIED of Voice_TX_Information] to [S.User].

6.1.4.2 FMT_MSA1_RX Management of security attributes – Voice RX FMT_MSA1.1_RX

The TSF shall enforce the [information flow control RX_SFP] to restrict the ability to [set, indicate] the security attributes [SECURE/INSECURE/BOTH of the Earpiece_Outputs] to [S.User].

6.1.4.3 FMT MSA3 TX Static attribute initialization – Voice TX

FMT MSA3.1 TX

The TSF shall enforce the [information flow control TX_SFP] to provide [restrictive] default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2_TX

The TSF shall allow the [none] to specify alternative initial values to override the default values when an object or information is created.

6.1.4.4 FMT MSA3 RX Static attribute initialization – Voice RX

FMT_MSA.3.1_RX

The TSF shall enforce the [information flow control RX_SFP] to provide [restrictive] default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2_RX

The TSF shall allow the [none] to specify alternative initial values to override the default values when an object or information is created.

6.1.4.5 FMT_SMF.1 Specification of Management Functions

FMT SMF.1.1

The TSF shall be capable of performing the following management functions: [

- Set the state of the TX selector
- Set the state of the RX selector
- Set the PTT state
- Assured indication of the TX selector state to the S.User
- Assured indication of the RX selector state to the S.User
- Assured indication of the PTT state to the S.User

during normal TOE operation].

6.1.5 Protection of the TSF (Class FPT)

This section relates to the integrity of the mechanisms that constitute the TSF.

6.1.5.1 FPT_FLS.1 Failure with preservation of secure state

FPT FLS.1.1

The TSF shall preserve a secure state when the following types of failures occur: [Single failure of the TSF implementing the information flow control TX_SFP].

6.2 Security Assurance Requirements (SARs)

Assurance requirement components are those of Evaluation Assurance Level 4 (EAL 4; Methodically designed, tested and reviewed) augmented by ASE_TSS.2, ADV_INT.3 and AVA_VAN.5.

Assurance Class	Assurance components
ADV: Development	ADV_ARC.1 Security architecture description
	ADV_FSP.4 Complete functional specification
	ADV_IMP.1 Implementation representation of the TSF
	ADV_INT.3 Minimally complex internals
	ADV_TDS.3 Basic modular design
AGD: Guidance documents	AGD_OPE.1 Operational user guidance
	AGD_PRE.1 Preparative procedures
ALC: Life-cycle support	ALC_CMC.4 Production support, acceptance procedures and automation
	ALC_CMS.4 Problem tracking CM coverage
	ALC_DEL.1 Delivery procedures
	ALC_DVS.1 Identification of security measures
	ALC_LCD.1 Developer defined life-cycle model
	ALC_TAT.1 Well-defined development tools
ASE: Security Target evaluation	ASE_CCL.1 Conformance claims
	ASE_ECD.1 Extended components definition
	ASE_INT.1 ST introduction
	ASE_OBJ.2 Security objectives
	ASE_REQ.2 Derived security requirements
	ASE_SPD.1 Security problem definition
	ASE_TSS.2 TOE summary specification with architectural design summary

Assurance Class	Assurance components
ATE: Tests	ATE_COV.2 Analysis of coverage
	ATE_DPT.1 Testing: basic design
	ATE_FUN.1 Functional testing
	ATE_IND.2 Independent testing - sample
AVA: Vulnerability assessment	AVA_VAN.5 Advanced methodical vulnerability analysis

Tab. 13: Security Assurance Requirements

6.3 Security Requirements Rationale

6.3.1 SFRs rationale

6.3.1.1 Tracing between SFRs and security objectives

Security Objectives / Security Functional Requirements	FAU_ARP.1	FAU_SAA.1	FDP_ETC.1	FDP_IFC.1_TX	FDP_IFC.1_RX	FDP_IFC.1_UI	FDP_IFF.1_TX	FDP_IFF.1_RX	FDP_IFF.1_UI	FDP_IFF.5_TX	FDP_IFF.5_RX	FDP_IFF.5_UI	FDP_ITC.1_TX	FDP_ITC.1_RX	FMT_MSA.1_TX	FMT_MSA.1_RX	FMT_MSA.3_TX	FMT_MSA.3_RX	FMT_SMF.1	FPT_FLS.1
OT.Tx_Status																			Х	
OT.Rx_Status																			х	
OT.Tx_Flow_Control			х	X			х			х			х		х		х		х	
OT.Rx_Flow_Control			х		x			х			х			х		х		х	х	
OT.Acoustic_Coupling								х					х							
OT.Mediate_Data	х	х				x			х			х								
OT.Fail_Secure																				х

Tab. 14: Tracing of SFRs to the Security Objectives

6.3.1.2 Justification of tracing between SFRs and security objectives

OT.Tx_Status

OT.Tx_Status, which requires that the user shall unambiguously be made aware whether the Microphone_Inputs are connected to a BLACK VCS, is directly fulfilled by FMT_SMF.1, as this requires the status indication of the TX selector and PTT to the S.User.

OT.Rx_Status

OT.Rx_Status, which requires that the user shall unambiguously be made aware whether the Earpiece_Outputs are connected to a RED VCS, is directly fulfilled by FMT_SMF.1 as this requires the status indication of the RX selector to the S.User.

OT.Tx_Flow_Control

OT.Tx_Flow_Control, which requires that the voice information from the Microphone_Inputs assigned to the RED VCS by the user shall not be transferred to the BLACK VCS, is fulfilled by a combination of

- FDP_ETC.1,
- FDP IFC.1 TX,
- FDP_IFF.1_TX,
- FDP IFF.5 TX,
- FDP_ITC.1_TX,
- FMT_MSA.1_TX,
- FMT_MSA.3_TX and
- FMT_SMF.1.

FDP_IFC.1_TX defines the information flow control policy for voice transmission (TX_SFP) as well the information (Voice_TX_Information) and subjects (Microphone_Inputs, RED_VCS_Interface, BLACK_VCS_Interface) und control of this SFP.

FDP_ITC.1_TX requires that voice information from the Microphone_Inputs is imported as CLASSIFIED or UNCLASSIFIED according to the setting of the TX selector.

FDP_IFF.1_TX defines the information flow control rules that prevent CLASSIFIED voice information to be transferred to the BLACK_VCS_Interface.

FDP_IFF.5_TX requires the flow control policy for voice transmission to cover the elimination of all illicit information flows.

The following table juxtaposes OT.Tx_Flow_Control with the corresponding key SFR (note that "(...)" denotes an omission of a phrase from the original text).

OT.Tx_Flow_Control	SFRs
Voice information from the Microphone_Inputs assigned to the RED VCS by the user shall not be transferred to the BLACK VCS.	 FDP_ITC.1.3_TX: The TSF shall enforce the following rules when importing user data controlled under the SFP from outside the TOE: [() Voice_TX_Information security attributes are determined by the TX selector: CLASSIFIED, if TX selector = SECURE UNCLASSIFIED; if TX selector = INSECURE]. FDP_IFF.1.2_TX: The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [Active Voice Transmission (PTT active): CLASSIFIED Voice_TX_Information shall be transmitted to the RED_VCS_Interface UNCLASSIFIED Voice_TX_Information shall be transmitted to the BLACK_VCS_Interface]. FDP_IFF.5_TX: The TSF shall ensure that no illicit information flows exist to circumvent [information flow control TX_SFP].

Tab. 15: Mapping of OT.Tx_Flow_Control to SFRs

FDP_ETC.1 requires that voice information is exported to the VCS without security attributes. As there are physically different interfaces to the RED and BLACK VCS, security attribute information is neither expected nor required.

FMT_MSA.1_TX, FMT_MSA.3_TX and FMT_SMF.1 describe the management of the security attributes. The S.User can set and query the TX selector and PTT.

OT.Rx_Flow_Control

OT.Rx_Flow_Control, which requires that voice information received from the RED VCS shall not be transferred to the BLACK VCS and that voice information received from the RED and BLACK VCS shall be routed to the Earpiece_Outputs of the audio devices according to the user selection, is fulfilled by a combination of

- FDP_ETC.1,
- FDP_IFC.1_RX,
- FDP_IFF.1_RX,
- FDP_IFF.5_RX,
- FDP_ITC.1_RX,
- FMT_MSA.1_RX,
- FMT_MSA.3_RX and
- FMT SMF.1.

FDP_IFC.1_RX defines the information flow control policy for voice reception (RX_SFP) as well the information (Voice_RX_Information) and subjects (Earpiece_Outputs, Loudspeaker_Output, RED_VCS_Interface, BLACK_VCS_Interface) und control of this SFP.

FDP_ITC.1_RX requires that voice information is imported as CLASSIFIED or UNCLASSIFIED depending whether it originates from the RED_VCS_Interface or BLACK_VCS_Interface.

FDP_IFF.1_RX defines the information flow control rules that enforces that CLASSIFIED and UNCLASSIFIED voice information is routed to the Earpiece_Outputs of the audio devices according to the RX selection (SECURE/INSECURE/BOTH) and prevents voice information received from the RED_VCS_Interface to be transferred to the BLACK_VCS_Interface.

FDP_IFF.5_RX requires the flow control policy for voice reception to cover the elimination of all illicit information flows.

The following table juxtaposes OT.Rx_Flow_Control with the corresponding key SFR (note that "(...)" denotes an omission of a phrase from the original text).

OT.Rx_Flow_Control	SFRs
Classified voice information received from the RED VCS shall not be transferred to the BLACK VCS. Voice information received from the	FDP_IFF.5_RX: The TSF shall ensure that no illicit information flows exist to circumvent [information flow control RX_SFP]. FDP_ITC.1.3 RX:
RED and BLACK VCS shall be routed to the Earpiece_Outputs according to the user selection (SECURE/INSECURE/BOTH).	The TSF shall enforce the following rules when importing user data controlled under the SFP from outside the TOE: [() Voice_RX_Information security attributes are determined by
	 the VCS interface: CLASSIFIED, if reception via RED_VCS_Interface UNCLASSIFIED, if reception via BLACK_VCS_Interface]. FDP_IFF.1.2_RX: The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [Voice Reception:
	 CLASSIFIED Voice_RX_Information shall be received by the Earpiece_Outputs, if its security attribute (determined by the RX selector) is SECURE UNCLASSIFIED Voice_RX_Information shall be received
	 by the Earpiece_Outputs, if its security attribute (determined by the RX selector) is INSECURE CLASSIFIED Voice_RX_Information as well as the UNCLASSIFIED Voice_RX_Information shall be received by the Earpiece_Outputs, if its security attribute (determined by the RX selector) is BOTH. ()].

Tab. 16: Mapping of OT.Rx_Flow_Control to SFRs

FDP_ETC.1 requires that voice information is exported to the Earpiece_Outputs without security attributes as the audio devices neither expect nor require security attributes.

FMT_MSA.1_RX, FMT_MSA.3_RX and FMT_SMF.1 describe the management of the security attributes. The S.User can set and guery the RX.

OT.Acoustic_Coupling

OT.Acoustic_Coupling, which requires unacceptable acoustic coupling via audio devices is prevented, is fulfilled by a combination of

- FDP_IFF.1_RX and
- FDP_ITC.1_TX.

FDP_ITC_TX.1 prevents that voice information is imported from the Microphone_Inputs when voice transmission is not active (no PTT).

The information flow control rules as defined in FDP_IFF.1_RX ensures that

- the Loudspeaker_Output only receives UNCLASSIFED information and
- prevents that CLASSIFIED voice information is received while the Mic_Input_Handset or Mic_Input_Handheld is connected to the BLACK VCS (PTT active).
- No voice information is received by the Ear_Output_Handset, if the handset is not in use (ON-Hook).

The following table juxtaposes OT.Acoustic_Coupling with the corresponding key SFR (note that "(...)" denotes an omission of a phrase from the original text).

OT.Acoustic_Coupling	SFRs
To prevent unacceptable acoustic coupling via audio devices, the TOE shall ensure the following: Inactive Microphone_Inputs (no PTT) shall be disconnected.	FDP_ITC.1_TX: The TSF shall enforce the following rules when importing user data controlled under the SFP from outside the TOE: [• Voice_TX_Information is imported from the Microphone_Inputs, if the corresponding PTT is active. ()].
If transmission via the handset or Handheld is active (PTT), the TOE shall prevent that CLASSIFIED voice information is received from the RED VCS while the Microphone_Inputs are connected to the BLACK VCS.	FDP_IFF.1.5_RX: The TSF shall explicitly deny an information flow based on the following rules: [Voice Reception: • CLASSIFIED Voice_RX_Information shall not be received, if UNCLASSIFIED Voice_TX_Information is transmitted via the Mic_Input_Handset or Mic_Input_Handheld (PTT active) ()].
If the handset is not in use (ON-Hook), the TOE shall prevent that voice information is received by the handset.	FDP_IFF.1.5_RX: The TSF shall explicitly deny an information flow based on
The Loudspeaker_Output shall only be connected to the BLACK VCS.	The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [Voice Reception: () UNCLASSIFIED Voice_RX_Information shall be received by the Loudspeaker_Output].

Tab. 17: Mapping of OT.Acoustic_Coupling to SFRs

OT.Mediate Data

OT.Mediate_Data, which requires that the TOE shall mediate the flow of User_Interface_Data between the RED VCS and the BLACK VCS in order to prevent the user interface connection from being misused, is fulfilled by a combination of

- FAU ARP.1,
- FAU_SAA.1,
- FDP_IFC.1_UI,
- FDP_IFF.1_UI and
- FDP_IFF.5_UI.

FAU_ARP.1 defines the automatic response, if the TOE detects a potential security violation (user interface connection is being misused to bypass the Voice Information Flow Control).

FAU_SAA.1 defines the rules to detect a potential security violation. A potential security violation exists, if - even though the message has been transmitted error-free (Transport_Data_Frame is syntactically correct and the Checksum of the Transport_Data_Frame is correct) - the message violates one of the Data_SFP rules.

FDP_IFC.1_UI defines the information flow control policy for User_Interface_Data transmission (Data_SFP) as well the information (User_Interface_Data) and subjects (RED_VCS_Interface, BLACK_VCS_Interface) und control of this SFP.

FDP_IFF.1_UI defines the information flow control rules that prevent the user interface connection from being misused to access CLASSIFIED voice information from the BLACK_VCS_Interface or continuously transmit comprehensive CLASSIFIED voice information from the RED_VCS_Interface to the BLACK_VCS_Interface.

FDP_IFF.5_UI requires the flow control policy for User_Interface_Data transmission to cover the elimination of all illicit information flows.

The following table juxtaposes OT.Mediate_Data with the corresponding key SFR (note that "(...)" denotes an omission of a phrase from the original text).

OT.Mediate_Data	SFRs
The TOE shall mediate the flow of User_Interface_ Data between the RED VCS and the BLACK VCS in order to prevent the user interface connection from being misused to:	FAU_ARP.1.1: The TSF shall take [The following actions: • visually indicate a failure to warn the S.User, • immediately stop transmission of User_Interface_Data and • stop operation after a defined time (giving the S.User the possibility to react accordingly)] upon detection of a potential security violation. FAU_SAA.1.1: The TSF shall be able to apply a set of rules in monitoring the audited events and based upon these rules indicate a potential violation of the enforcement of the SFRs.
	FAU_SAA.1.2: The TSF shall enforce the following rules for monitoring audited events: a) Accumulation or combination of [none] known to indicate a potential security violation; b) [Violations of at least one of the following Data_SFP rules even though the User_Interface_Data message has been transmitted error-free (Transport_Data_Frame is syntactically correct and the Checksum of the Transport_Data_Frame is correct): • The Application_Protocol is syntactically correct • The Application_Message_Type is permissible • The Payload_Data_Rate from RED_VCS_Interface to BLACK_VCS_Interface (Outbound) does not exceed the data rate required for comprehensive continuous voice transmission].
Access classified voice information from the BLACK VCS.	FDP_IFF.1.2_UI: The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [User Interface (UI) Data Transmission between RED_VCS_Interface and BLACK_VCS_Interface (both directions): The Transport_Data_Frame is syntactically correct The Checksum of the Transport_Data_Frame is correct The Application_Protocol is syntactically correct The Application_Message_Type is permissible].
Transmit comprehensibl e voice information continuously from the RED VCS to the BLACK VCS.	FDP_IFF1.5_UI: The TSF shall explicitly deny an information flow based on the following rules: [User Interface (UI) Data Transmission: • The Payload_Data_Rate from RED_VCS_Interface to BLACK_VCS_Interface (Outbound) exceeds the data rate required for comprehensive continuous voice transmission]. FDP_IFF.1.2_UI: The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [User Interface (UI) Data Transmission between RED_VCS_Interface and BLACK_VCS_Interface (both directions): • The Transport_Data_Frame is syntactically correct • The Checksum of the Transport_Data_Frame is correct • The Application_Protocol is syntactically correct • The Application_Message_Type is permissible].

Tab. 18: Mapping of OT.Mediate_Data to SFRs

OT.Fail_Secure

OT.Fail_Secure, which requires that the TOE shall prevent the Microphone_Inputs from being erroneously connected to the BLACK VCS in the event of a single failure, is directly fulfilled by FPT_FLS.1 as this requires the preservation of a secure state in case of a single failure of SFR implementing the TX_SFP.

6.3.1.3 Fulfilment of TOE SFR dependencies

Component	Dependencies	Dependency fulfilled?
FAU_ARP.1	FAU_SAA.1	Yes
FAU_SAA.1	FAU_GEN.1	No
FDP_ETC.1	FDP_IFC.1	Yes
FDP_IFC.1_TX	FDP_IFF.1_TX	Yes
FDP_IFC.1_RX	FDP_IFF.1_RX	Yes
FDP_IFC.1_UI	FDP_IFF.1_UI	Yes
FDP_IFF.1_TX	FDP_IFC.1_TX	Yes
101 _ 1.1_1X	FMT_MSA.3_TX	Yes
FDP_IFF.1_RX	FDP_IFC.1_RX	Yes
	FMT_MSA.3_RX	Yes
FDP_IFF.1_UI	FDP_IFC.1_UI	Yes
1 01 _11 1 .1_01	FMT_MSA.3	No
FDP_IFF.5_TX	FDP_IFC.1_TX	Yes
FDP_IFF.5_RX	FDP_IFC.1_RX	Yes
FDP_IFF.5_UI	FDP_IFC.1_UI	Yes
FDP_ITC.1_TX	FDP_IFC.1_TX	Yes
	FMT_MSA.3_TX	Yes
FDP_ITC.1_RX	FDP_IFC.1_RX	Yes
1 51 _110.1_100	FMT_MSA.3_RX	Yes

Component	Dependencies	Dependency fulfilled?
	FDP_IFC.1_TX	Yes
FMT_MSA.1_TX	FMT_SMR.1	No
	FMT_SMF.1	Yes
	FDP_IFC.1_RX	Yes
FMT_MSA.1_RX	FMT_SMR.1	No
	FMT_SMF.1	Yes
FMT_MSA.3_TX	FMT_MSA.1_TX	Yes
TWIT_WOA.5_TX	FMT_SMR.1	No
FMT_MSA.3_RX	FMT_MSA.1_RX	Yes
	FMT_SMR.1	No
FMT_SMF.1	-	-
FPT_FLS.1	-	-

Tab. 19: Security Requirements Dependencies

FAU_GEN.1 (Audit Data Generation) is not included, as the TOE does not perform the potential violation analysis based on audited events. Instead, the TOE detects a potential misuse of User_Interface_Data to bypass the separation of CLASSIFIED and UNCLASSIFIED voice information by detecting a violation of certain Data_SFP rules. If the TOE detects such a violation, the TOE will react accordingly.

FMT_MSA.3 is not included because the information flow control function does not authorise or deny an information flow based upon security attributes, but rather based on a set of rules.

FMT SMR (Security Management Roles) is not included because:

- Only authorized persons have physical access to the TOE (see OE.Physical_Access, OE.Physical_Protection, OE.Clearance)
- All users with physical access to the TOE (S.User) have the permission to manage the security attributes (operate the TX and RX selector) (see FMT_MSA.1).

No security management requirements for the User Interface Data Flow Control (Data_SFP) are included, as Data_SFP does not contain any security attributes that require initialisation or management.

6.3.1.4 Mutual support and internal consistency of security requirements

From the details given in this rationale it becomes evident that the functional requirements form an integrated whole and, taken together, are suited to meet all security objectives.

The core TOE functionality is represented by the requirements for information flow control (FDP_ETC.1, FDP_IFC.1, FDP_IFF.1, FDP_IFF.5 and FDP_ITC).

Furthermore, a set of requirements is used to describe the way the flow control functions should be managed (FMT_MSA.1, FMT_MSA.3 and FMT_SMF.1).

A further set of requirements (FAU_SAA.1 and FAU_ARP.1) defines the rules to detect a potential security violation (user interface connection is being misused to bypass the Voice Information Flow Control) and the automatic response.

In the end this ST contains a set of SFRs which deals with malfunction of the TOE (FPT_FLS).

Therefore, it becomes clear that the SFRs in this ST mutually support each other and form a consistent whole.

6.3.2 SAR rationale

EAL4 is the lowest assurance package, which includes source-code analysis. The source code analysis is necessary to assess the implementation quality and ensure that the TOE contains no malicious code. ZDv 54/100 stipulates that the security gateways protecting classified data have to be evaluated according to EAL4 ([2], Anlage 21 IT-Sicherheitsanforderungen, Lfd. Nr. 5.1.4). EAL4 is specified by NATO as the minimum EAL level for high robustness environments. Higher EAL levels (5, 6 or 7) would require a lot more effort for vendors and evaluators, because semi-formal or formal modelling has to be used ([1], part 2, chapter 8.7-8.9).

EAL4 is augmented by ASE_TSS.2 so that the TOE developer is required to describe at an early stage how the TOE protects itself against logical tampering and bypass.

EAL4 is augmented by ADV_INT.3 in order to make sure that the entire TSF is well structured, not overly complex and has been implemented using sound engineering principles.

EAL4 is augmented by AVA_VAN.5 because we assume attackers who possess high attack potential (high expertise, resources and motivation). AVA_VAN.5 ensures that penetration testing is carried out by the evaluator to determine that the TOE is resistant to attacks performed by those attackers.

6.3.3 Conclusion

Based on the SFR and SAR rationale it is obvious, that all security objectives are achieved.

7 TOE Security Summary Specification

7.1 TOE Security Functions

This section summarizes the security functions (TSF) provided by the TOE to meet the security functional requirements specified for the TOE. A detailed specification of the SFRs is provided by the development documentation of the TOE.

7.1.1 Voice Information Flow Control (TSF.VFC)

7.1.1.1 PTT Handling

TSF.VFC.1

Each audio device has its dedicated PTT input. The TOE disconnects inactive Microphone Inputs (no PTT).

TSF.VFC.2

The state of PTT is indicated via the Management Interface (TSF.MNI).

7.1.1.2 TX Selector

TSF.VFC.3

One common TX selector switches the Microphone_Inputs either to the RED_VCS_Interface or to the BLACK_VCS_Interface. The TX selector provides two positions:

- SECURE: Microphone_Inputs are disconnected from the BLACK_VCS_Interface.
 Microphone_Inputs are connected to the RED_VCS_Interface, if the associated PTT is activated.
- INSECURE: Microphone_Inputs are disconnected from the RED_VCS_Interface.
 Microphone_Inputs are connected to the BLACK_VCS_Interface, if the associated PTT is activated.

TSF.VFC.4

The Initial/Default-State of the TX selector is INSECURE.

TSF.VFC.5

The status of the TX selector is set and indicated via the Management Interface (TSF.MNI).

7.1.1.3 RX Selector

TSF.VFC.6

All Voice_RX_Information received from the RED and BLACK VCS is routed to the Earpiece_Outputs according to one common RX selector. The RX selector provides three positions:

- SECURE: The Voice_RX_Information from the RED_VCS_Interface (CLASSIFIED) is connected to the Earpiece_Outputs. Voice_RX_Information from the BLACK_VCS_Interface is disconnected.
- INSECURE: The Voice_RX_Information from the BLACK_VCS_Interface (UNCLASSIFIED) is connected to the Earpiece_Outputs. Voice_RX_Information from the RED_VCS_Interface is disconnected.
- BOTH: The Voice_RX_Information from the RED_VCS_Interface (CLASSIFIED) as well as from the BLACK_VCS_Interface (UNCLASSIFIED) is connected to the Earpiece Outputs.

The RX selector inhibits Voice_RX_Information flow between RED_VCS_Interface and BLACK_VCS_Interface.

TSF.VFC.7

The Initial/Default-State of the RX selector is INSECURE.

TSF.VFC.8

The status of the RX selector is set and indicated via the Management Interface (TSF.MNI)

TSF.VFC.9

The Loudspeaker_Output is always connected to the BLACK_VCS_Interface only.

TSF.VFC.10

The speaker of the handset (Ear_Output_Handset) is deactivated as long as it is ON-Hook.

TSF.VFC.11

If the handset (Mic_Input_Handset) or Handheld (Mic_Input_Handheld) is used (PTT active), the RX selector automatically switches to INSECURE, if the TX selector is in the INSECURE state.

7.1.2 Management Interface (TSF.MNI)

7.1.2.1 Trusted Status Interface

TSF.MNI.1

The Trusted Status Interface indicates the state of the TOE in a way that provides assured information on the state of the Voice Information Flow Control to the S.User.

TSF.MNI.2

The state of the TOE is indicated via the following LEDs at the front plate of the MOD iSAS-P housing:

- 2 LEDs (SEC-TX-LED and INSEC-TX-LED) indicating the TX selector state
- 2 LEDs (SEC-RX-LED and INSEC-RX-LED) indicating the RX selector state
- PTT_LED indicating the PTT state

TSF.MNI.3

For test and maintenance purposes, the Trusted Status Interface additionally provides a pushbutton to trigger a switch of the RX and TX selector state. The push button is located at the MOD iSAS-P housing and is secured against unintended operation.

7.1.2.2 Remote Control Device

TSF.MNI.4

The TOE includes remote control MOD iSAS-RC 02 with a key and lamp functionality. The remote control provides buttons to set the states of TX selector, RX selector and PTT as well as LEDs to indicate the states to the S.User.

7.1.2.3 Remote Control Interface to RED VCS

TSF.MNI.5

The TOE provides a remote-control interface for operation (set/indicate the state of TX selector, RX selector and PTT) via touch entry device (TED) of the RED VCS.

The states can be set and indicated via the RED_VCS_Interface, while via the BLACK_VCS_Interface the states can only be indicated.

The control/status information is transmitted via the same physical interface as voice information.

7.1.3 User Interface Data Flow Control (TSF.DFC)

TSF.DFC.1

The TOE implements a firewall mediating the flow of all User_Interface_Data between the RED_VCS_Interface and the BLACK_VCS_Interface in order to prevent the user interface connection from being misused to bypass the Voice Information Flow Control.

TSF.DFC.2

In the direction from the BLACK_VCS_Interface to the RED_VCS_Interface (Inbound) the firewall performs the following checks:

- The Transport_Data_Frame is syntactically correct.
- The checksum of the Transport_Data_Frame is correct.
- The Application_Protocol is syntactically correct.
- The Application_Message_Type is permissible.

TSF.DFC.3

In the direction from the RED_VCS_Interface to the BLACK_VCS_Interface (Outbound) the firewall performs the following checks:

- The Transport_Data_Frame is syntactically correct.
- The checksum of the Transport_Data_Frame is correct.
- The Application_Protocol is syntactically correct.
- The Application_Message_Type is permissible.
- The Payload_Data_Rate does not exceed a predefined limit of 800bit/s.

TSF.DFC.4

The maximum permissible Payload_Data_Rate is fixed (not manageable). The limit of 800bit/s prevents any comprehensive continuous voice transmission via the firewall.

TSF.DFC.5

If a message does not pass the checks as defined by TSF.DFC.2, TSF.DFC.3 and TSF.DFC.4, the firewall discards the message.

Additionally, the TOE will:

- visually indicate a failure to warn the S.User,
- immediately stop transmission of User Interface Data and
- stop all communication via RED_VCS_Interface and BLACK_VCS_Interface after 30 seconds (giving the S.User the possibility to react accordingly)

7.1.4 Protection of TSF (TSF.PRT)

7.1.4.1 Fail Secure

TSF.PRT.1

In case of a power failure, all audio devices are disconnected, and no voice information is routed.

TSF.PRT.2

The security function TSF.VFC.3 and TSF.VFC.6 is implemented redundantly ensuring that a single failure will not result in an insecure state.

On the one hand, these security functions are implemented by firmware. On the other hand, discreet hardware logic elements (Redundant Secure and Insecure Redundant Gate) connect or disconnect the signal lines for voice information to RED_VCS_Interface / BLACK_VCS_Interface according to the status indicated by the 2-color LEDs of the Trusted Status Interface.

The functionality of the Redundant Gate prevents that a single failure (either of the firmware or of the discrete hardware logic) will result in an insecure state. E.g., if the firmware indicates that the TX selector is set to SECURE, but in reality (due to a failure) the firmware routes Voice_TX_Information to the BLACK_VCS_Interface, the Insecure Redundant Gate will disconnect the signal lines to the BLACK_VCS_Interface.

TSF.PRT.3

The indication at the Trusted Status Interface and the Remote-Control Device is implemented via 2-color LEDs. Thus, the S.User recognises a LED failure by the LED being dark and no misleading operational status is indicated to the S.User.

7.1.5 Mapping of SFR to TSF

The specified TSFs work together to satisfy the TOE SFRs. The following table provides a mapping of SFRs to the TSFs to show that each SFR is captured within a security function.

SFR	Name	TSF	Name
FAU_ARP.1	Security alarms	TSF.DFC	User Interface Data Flow Control
FAU_SAA.1	Potential violation analysis	TSF.DFC	User Interface Data Flow Control
FDP_ETC.1	Export of user data without security attributes	TSF.VFC	Voice Information Flow Control
FDP_IFC.1_TX	Subset information flow control - Voice TX	TSF.VFC	Voice Information Flow Control
FDP_IFC.1_RX	Subset information flow control - Voice RX		
FDP_IFC.1_UI	Subset information flow control - UI Data	TSF.DFC	User Interface Data Flow Control
FDP_IFF.1_TX	Simple security attributes - Voice TX	TSF.VFC	Voice Information Flow Control
FDP_IFF.1_RX	Simple security attributes - Voice RX		
FDP_IFF.1_UI	Simple security attributes - UI Data	TSF.DFC	User Interface Data Flow Control
FDP_IFF.5_TX	No illicit information flows - Voice TX	TSF.VFC	Voice Information Flow Control
FDP_IFF.5_RX	No illicit information flows - Voice RX		
FDP_IFF.5_UI	No illicit information flows - UI Data	TSF.DFC	User Interface Data Flow Control
FDP_ITC.1_TX	Import of user data without security attributes	TSF.VFC	Voice Information Flow Control
FDP_ITC.1_RX			
FMT_MSA.1_TX	Management of security attributes - Voice TX	TSF.VFC	Voice Information Flow Control
FMT_MSA.1_RX	Management of security attributes - Voice RX		
FMT_MSA.3_TX	Static attribute initialisation - Voice TX	TSF.VFC	Voice Information Flow Control
FMT_MSA.3_RX	Static attribute initialisation - Voice RX		
FMT_SMF.1	Specification of management functions	TSF.MNI	Management Interface
FPT_FLS.1	Failure with preservation of secure state	TSF.PRT	Protection of TSF

Tab. 20: Mapping of SFR to the TSF

FAU_ARP.1

This SFR is met by TSF.DFC.5, as this TSF implements the rules to detect a potential security violation and the automatic response.

FAU_SAA.1

This SFR is met by TSF.DFC.5, as this TSF implements the rules to detect a potential security violation and the automatic response.

FDP_ETC.1

This SFR is met by TSF.VFC.3 on the one hand and TSF.VFC.6, TSF.VFC.9, TSF.VFC.10 and TSF.VFC.11 on the other hand.

TSF.VFC.3 implements the information flow control rules when exporting user data under control of the TX_SFP (Voice_TX_Information) via the RED_VCS_Interface or BLACK_VCS_Interface.

TSF.VFC.6, TSF.VFC.9, TSF.VFC.10 and TSF.VFC.11 implement the information flow control rules when exporting user data under control of the RX_SFP (Voice_RX_Information) via the Earpiece_Outputs or Loudspeaker_Output.

The TSFs exports only Voice_RX_Information and Voice_TX_Information, no security attributes are exported.

FDP_IFC.1_TX

This SFR is met by TSF.VFC.3, as this TSF implements the information flow control rules for TX_SFP.

FDP_IFC.1_RX

This SFR is met by TSF.VFC.6, TSF.VFC.9, TSF.VFC.10 and TSF.VFC.11, as these TSFs implement the information flow control rules for RX_SFP.

FDP_IFC.1_UI

This SFR is met by TSF.DFC.1, TSF.DFC.2 and TSF.DFC.3, as these TSFs implement the information flow control rules for UI_SFP.

FDP_IFF.1_TX

This SFR is met by TSF.VFC.3, as this TSF implement the information flow control rules for TX_SFP.

The following table juxtaposes the key elements of FDP_IFF.1_TX with the corresponding key TSFs (note that "(...)" denotes an omission of a phrase from the original text).

FDP_IFF.1_TX	TSFs
 FDP_IFF.1.2_TX: The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [TSF.VFC.3: One common TX selector switches the Microphone_Inputs either to the RED_VCS_Interface or to the BLACK_VCS_Interface. The TX selector provides two positions: • SECURE: Microphone_Inputs are disconnected from the BLACK_VCS_Interface. Microphone_Inputs are connected to the RED_VCS_Interface, if the associated PTT is activated. • INSECURE: Microphone_Inputs are disconnected from the RED_VCS_Interface. Microphone_Inputs are connected to the BLACK_VCS_Interface, if the associated PTT is activated.

Tab. 21: Mapping of FDP_IFF.1_TX to TSFs

FDP IFF.1 RX

This SFR is met by TSF.VFC.6, TSF.VFC.9, TSF.VFC.10 and TSF.VFC.11, as these TSFs implement the information flow control rules for RX SFP.

The following table juxtaposes the key elements of FDP_IFF.1_RX with the corresponding key TSFs (note that "(...)" denotes an omission of a phrase from the original text).

TSFs FDP IFF.1 RX FDP IFF.1.2 RX: TSF.VFC.6: The TSF shall permit an information flow All Voice RX Information received from the between a controlled subject and controlled RED and BLACK VCS is routed to the information via a controlled operation if the Earpiece_Outputs according to one common following rules hold: [RX selector. The RX selector provides three Voice Reception: positions: CLASSIFIED Voice RX Information shall SECURE: The Voice RX Information from be received by the Earpiece Outputs, if its the RED VCS Interface (CLASSIFIED) is security attribute (determined by the RX connected to the Earpiece Outputs. Voice_RX_Information from the selector) is SECURE UNCLASSIFIED Voice RX Information BLACK_VCS_Interface is disconnected. shall be received by the Earpiece_Outputs, INSECURE: The Voice_RX_Information if its security attribute (determined by the RX from the BLACK_VCS_Interface selector) is INSECURE (UNCLASSIFIED) is connected to the CLASSIFIED Voice_RX_Information as well Earpiece Outputs. Voice RX Information as the UNCLASSIFIED from the RED VCS Interface is Voice RX Information shall be received by disconnected. the Earpiece Outputs, if its security attribute BOTH: The Voice_RX_Information from (determined by the RX selector) is BOTH. the RED_VCS_Interface (CLASSIFIED) as (\ldots)]. well as from the BLACK_VCS_Interface (UNCLASSIFIED) is connected to the Earpiece_Outputs. The RX selector inhibits Voice_RX_Information flow between RED VCS Interface and BLACK_VCS_Interface. FDP IFF.1.2 RX: TSF.VFC.9: The TSF shall permit an information flow The Loudspeaker_Output is always connected between a controlled subject and controlled to the BLACK_VCS_Interface only. information via a controlled operation if the following rules hold: [Voice Reception: (...) UNCLASSIFIED Voice_RX_Information shall be received by the Loudspeaker_Output]. FDP IFF.1.5 RX: TSF.VFC.11: The TSF shall explicitly deny an information flow If the handset (Mic_Input_Handset) or based on the following rules: [Handheld (Mic Input Handheld) is used (PTT Voice Reception: active), the RX selector automatically switches CLASSIFIED Voice RX Information shall not be to INSECURE. if the TX selector is in the received. if UNCLASSIFIED INSECURE state. Voice TX Information is transmitted via the Mic Input Handset or Mic Input Handheld (PTT active) (...)].

FDP_IFF.1_RX	TSFs
FDP_IFF.1.5_RX:	TSF.VFC.10:
The TSF shall explicitly deny an information flow	The speaker of the handset
based on the following rules: [(Ear_Output_Handset) is deactivated as long
Voice Reception: ()	as it is ON-Hook.
The CLASSIFIED Voice_RX_Information shall	
not be received by the Ear_Output_Handset, if	
the handset is inactive (ON-Hook)].	

Tab. 22: Mapping of FDP_IFF.1_RX to TSFs

FDP_IFF.1_UI

This SFR is met by TSF.DFC.2, TSF.DFC.3 and TSF.DFC.4, as these TSFs implement the information flow control rules for UI_SFP.

The following table juxtaposes the key elements of FDP_IFF.1_RX with the corresponding key TSFs (note that "(...)" denotes an omission of a phrase from the original text).

FDP_IFF.1_UI	TSFs
FDP_IFF.1.2_UI: The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [User Interface (UI) Data Transmission between RED_VCS_Interface and BLACK_VCS_Interface (both directions): • The Transport_Data_Frame is syntactically correct • The Checksum of the Transport_Data_Frame is correct • The Application_Protocol is syntactically correct The Application_Message_Type is permissible].	TSF.DFC.2: In the direction from the BLACK_VCS_Interface VCS (Inbound) the firewall performs the following checks: • The Transport_Data_Frame is syntactically correct. • The checksum of the Transport_Data_Frame is correct. • The Application_Protocol is syntactically correct. • The Application_Message_Type is permissible. TSF.DFC.3 In the direction from the RED_VCS_Interface VCS to the BLACK_VCS_Interface (Outbound) the firewall performs the following checks: • The Transport_Data_Frame is syntactically correct. • The checksum of the Transport_Data_Frame is correct. • The Application_Protocol is syntactically correct. • The Application_Message_Type is permissible. • ()

FDP_IFF.1_UI	TSFs
FDP_IFF1.5_UI: The TSF shall explicitly deny an information flow based on the following rules: [User Interface (UI) Data Transmission: The Payload_Data_Rate from RED_VCS_Interface to BLACK_VCS_Interface (Outbound) exceeds the data rate required for comprehensive	TSF.DFC.3 In the direction from the RED_VCS_Interface VCS to the BLACK_VCS_Interface (Outbound) the firewall performs the following checks: • () • The Payload_Data_Rate does not exceed a predefined limit of 800bit/s.
continuous voice transmission].	TSF.DFC.4 The maximum permissible Payload_Data_Rate is fixed (not manageable). The limit of 800bit/s prevents any comprehensive continuous voice transmission via the firewall.

Tab. 23: Mapping of FDP_IFF.1_UI to TSFs

FDP_IFF.5_TX

This SFR is met by TSF.VFC.3, as the TX selector:

- Disconnects Microphone_Inputs from the BLACK_VCS_Interface, if the TX selector is SECURE and
- Disconnects Microphone_Inputs from the RED_VCS_Interface, if the TX selector is INSECURE.

FDP IFF.5 RX

This SFR is met by TSF.VFC.6, as the RX selector:

- Inhibits Voice_RX_Information flow between RED_VCS_Interface and BLACK_VCS_Interface,
- Disconnects Voice_RX_Information from the BLACK_VCS_Interface, if the RX selector is SECURE and
- Disconnects Voice_RX_Information from the RED_VCS_Interface, if the RX selector is INSECURE.

FDP IFF.5 UI

This SFR is met by TSF.DFC.5, as the TSF discards illegal messages.

FDP_ITC.1_TX

This SFR is met by TSF.VFC.1, TSF.VFC.2 and TSF.VFC.3.

TSF.VFC.1 only imports Voice_TX_Information, if PTT is active. Otherwise, the Microphone Inputs are disconnected.

TSF.VFC.2 indicates the PTT state via the Management Interface.

TSF.VFC.3 connects the Microphone_Inputs to the RED_VCS_Interface, if the TX selector is SECURE. Therefore, the TSF handles Voice_TX_Information imported from the Microphone_Inputs as CLASSFIED, if the TX selector is SECURE.

TSF.VFC.3 connects the Microphone_Inputs to the BLACK_VCS_Interface, if the TX selector is INSECURE. Therefore, the TSF handles Voice_TX_Information imported from the Microphone_Inputs as UNCLASSFIED, if the TX selector is INSECURE.

FDP_ITC.1_RX

This SFR is met by TSF.VFC.6.

The TSF handles Voice_RX_Information received via the RED_VCS_Interface as CLASSFIED and implements the flow control rules according to the Voice_RX_Information security attributes determined by the VCS interface as depicted in FDP_ITC.1_RX.

The TSF handles Voice_RX_Information received via the BLACK_VCS_Interface as UNCLASSFIED and implements the flow control rules according to the Voice_RX_Information security attributes determined by the VCS interface as depicted in FDP_ITC.1_RX.

FMT_MSA1_TX

This SFR is met by TSF.VFC.5, as the TSF allows to set and indicate the status of RX selector – and thereby the security attributes CLASSIFIED / UNCLASSIFIED of Voice_TX_Information - via the Management Interface (TSF.NMI). The Management Interface is only accessible to S.User.

FMT MSA1 RX

This SFR is met by TSF.VFC.8, as the TSF allows to set and indicate the status of RX selector – and thereby the security attributes SECURE / INSECURE / BOTH of the Earpiece_Outputs - via the Management Interface (TSF.NMI). The Management Interface is only accessible to S.User.

FMT_MSA3_TX

This SFR is met by TSF.VFC.4, as this TSF implements the Initial/Default-State of the TX selector and thereby the default values for the security attributes of the Voice_TX_Information.

FMT_MSA3_RX

This SFR is met by TSF.VFC.7, as this TSF implements the Initial/Default-State of the RX selector and thereby the default values for the security attributes of the Earpiece_Outputs.

FMT_SMF.1

This SFR is met by TSF.MNI.1, TSF.MNI.2, TSF.MNI.3, TSF.MNI.4 and TSF.MNI.5. The TSFs implements different ways to operate the TOE (set/indicate the state of TX selector, RX selector and PTT) according to the scenarios described in chapter 1.4.1:

- TSF.MNI.1 and TSF.MNI.2 implement assured indication of the state of TX selector, RX selector and PTT directly at the front plate of the MOD iSAS-P housing.
- TSF.MNI.3 implements a push-button directly at the front plate of the MOD iSAS-P housing, which allows setting the state of the TX selector and RX selector.
- TSF.MNI.4 implements remote control device (key and lamp), which allows to set and indicate the state of the TX selector, RX selector and PTT.
- TSF.MNI.5 implements an interface which allows to operate the TOE (set and indicate
 the state of the TX selector, RX selector and PTT) via the touch entry device (TED) of
 the RED VCS.

FPT_FLS.1

This SFR is met by TSF.PRT.1, TSF.PRT.2 and TSF.PRT.3.

The TSFs preserves a secure state when one of the following failures occurs:

- Power failure
- Single failure of TSF.VFC.3 or TSF.VFC.6
- Failure of a LED indicating the TX selector, RX selector or PTT state.

7.2 Assurance Measure

The TOE satisfies the CC EAL 4+ assurance requirements,

Per the conformance statement provided in Section 2 of this ST, the evidence requirements will be met with respect to presentation and content as specified in Part 3 of the Common Criteria (CC) for each of the assurance requirements claimed.

8 References

Frequentis documents:

[PRE] EWSE23EN50003 Preparative Procedures

Non-Frequentis documents:

- [1] Common Criteria for Information Technology Security Evaluation Part 1, 2, 3, Version 3.1, Release 5, April 2017.
- [2] ZDv 54/100, IT-Sicherheit in der Bundeswehr, Mai 2007, Änderung 2 Oktober 2008.

9 Glossary

Acoustic Coupling The vulnerability whereby RED acoustic signals

are inadvertently transmitted to a microphone in BLACK equipment. The RED acoustic signals may be acoustic output from RED processors (intentional or incidental) or CLASSIFIED conversations taking place in the area.

Active Voice Transmission The user activates voice transmission by

pressing Push to Talk.

Application_Message_Type The application message type defines the

semantic of an Application_Protocol element. E.g.: The application message type "OBJ STATE CHANGED": means that a state of an object at the common user interface has changed (e.g., a button was pressed).

Application_Protocol The application-level protocol used to

communicate User_Interface_Data via the

TOE.

BLACK VCS Voice communication system, which handles

only UNCLASSIFIED or encrypted signals.

BLACK VCS Interface Interface of the TOE to the BLACK VCS.

BOTH can have the following meanings:

1. Position of RX selector

2. Security attribute of a subject that is allowed

to receive CLASSIFIED as well as UNCLASSIFIED Voice_RX_Information.

Checksum of the

Transport_Data_Frame

The transport data frame includes a checksum

in order to detect transmission errors.

CLASSIFIED information CLASSIFIED information is information

regarded as sensitive by the security authorities for the owners of the TOE (e.g., Information up to the German Classification Level VS-GEHEIM or equivalent NATO/national classification

levels).

Coach For training purposes, a Coach can connect an

audio device (CO_Headset) in parallel to the Operator. In this case the VCS (not the TOE) provides the Coach with the possibility to

override the Operator.

COMSEC Approved Circuit A circuit which has been afforded special

physical and visual protective measures and which has been authorized, under the terms of this document, for the regular transmission of CLASSIFIED information without cryptographic

protection.

Control/status information Any information communicated between VCS

and TOE for the purpose to control the TOE (e.g., set the TX selector or RX selector) or query the status (e.g., query the status of the

TX selector or RX selector).

Data_SFP Information flow control SFP for communication

of user interface data (User_Interface_Data).

Earpiece output of the TOE to the

binaural/monaural headset for use by the

Ear_Output_CO_Headset operator.

Ear_Output_Handset Speaker output of the TOE to the handset.

Earpiece output of the TOE to the

binaural/monaural headset for use by the

Ear_Output_OP_Headset operator.

Earpiece outputs of the TOE to the headsets

and speaker of the handset:

Ear_Output_OP_Headset and

Ear_Output_CO_Headset and

Earpiece_Outputs Ear_Output_Handset

INSEC-RX-LED LED indicating the RX selector state. The LED

is active, if the RX selector is in the position

INSECURE or BOTH.

INSEC-TX-LED LED indicating the TX selector state. The LED

is active, if the TX selector is in the position

INSECURE.

INSECURE INESCURE can have the following meanings:

1. Position of TX selector

2. Position of RX selector

3. Security Attribute of a subject that is allowed

to receive UNCLASSIFIED Voice_RX_Information.

Insecure Channel Communication channel of the BLACK VCS

leaving the operations site.

Loudspeaker_Output Audio output of the loudspeaker.

Management Interface TSF which implements interfaces to set and

indicate the state of the TOE.

Mic_Input_CO_Headset Microphone input of the TOE to the

binaural/monaural headset for use by the

coach.

Mic_Input_Handheld Microphone input of the TOE to the handheld

microphone.

Mic_Input_Handset Microphone input of the TOE to the handset.

Mic_Input_OP_Headset Microphone input of the TOE to the

binaural/monaural headset for use by the

operator.

Microphone_Inputs Microphone inputs of the TOE to all audio

devices:

Mic_Input_OP_Headset and Mic_Input_CO_Headset and Mic_Input_Handset and Mic_Input_Handheld.

MOD iSAS-P Hardware and firmware comprising the actual

secure audio switch (TOE exclusive remote-

control devices).

MOD iSAS-RC 02 Hardware comprising the remote-control device

for iSAS.

OFF-Hook The handset is OFF-Hook, if the user lifts it off

the cradle.

ON-Hook The handset is ON-Hook, if the user puts it on

the cradle.

Operations site A physical protected area where the TOE and

the RED and BLACK VCS are located,

minimum approved for the highest security level

of information handled in the TOE.

Operator During normal operation the TOE is used by a

single user – the Operator. The Operator communicates with the TOE and VCS via a set of audio devices (OP_Headset, Handset,

Handheld, Loudspeaker).

Payload Payload is all content of User_Interface_Data

that is not check for semantic correctness by the TOE (e.g., the numeric value identifying the

object at the common user interface).

Payload_Data_Rate Average data rate of Payload.

Protection of TSF TSF that provides protection to the TSFs.

Push To Talk (PTT) Switch that is activated by the user when he

needs to transmit.

RED VCS Voice communication system which handles

only CLASSIFIED signals.

RED_VCS_Interface Interface of the TOE to the RED VCS.

RX selector TOE internal function which routes

Voice_RX_Information received from the RED and/or BLACK VCS to the Earpiece_Outputs.

RX_SFP Information flow control SFP for reception of

voice information (Voice RX Information).

S.User All users of the TOE (Operator and Coach) that

communicate with the TOE via any of its audio devices and/or operate the TX and RX selector.

S.User has physical access to the TOE.

SEC-RX-LED LED indicating the RX selector state. The LED

is active, if the RX selector is in the position

SECURE or BOTH.

SEC-TX-LED LED indicating the TX selector state. The LED

is active, if the TX selector is in the position

SECURE.

SECURE can have the following meanings:

1. Position of TX selector

2. Position of RX selector

3. Security attribute of a subject that is allowed

to receive CLASSIFIED Voice_RX_Information.

Secure Channel: Communication channel of the RED VCS

leaving the operations site that is either encrypted with approved crypto devices or implemented as COMSEC approved circuit.

TEMPEST A short name referring to investigation and

studies of compromising emanations.

Transport_Data_Frame The data frames of the transport level protocol

used to communicate User_Interface_Data via

the TOE.

TX selector TOE internal function which routes the

Voice_TX_Information from the Microphone_Inputs either to the

RED_VCS_Interface or BLACK_VCS_Interface.

TX_SFP Information flow control SFP for transmission of

voice information (Voice_TX_Information).

UNCLASSIFIED information UNCLASSIFIED information is information

regarded as not sensitive to disclosure by the security authorities for the owners of the TOE.

(e.g. Information up to the German

Classification Level VS-NfD or equivalent NATO/national classification levels).

User Interface Data Flow

Control

TSF which implements the information flow

control for User Interface Data.

VCS via a common user interface.

User_Interface_Data is information that is communicated via the TOE for this purpose.

Voice Information Flow

Control

TSF which implements the information flow

control for Voice_TX_Information and

Voice_RX_Information.

reception by the user.

Voice_TX_Information Voice information from the user indented for

transmission by the VCS.

10 Abbreviations

AD Analogue to Digital

CO_Headset Binaural/Monaural Headset for use by the Coach

COMSEC Communication Security

COTS Commercial Off the Shelf

DA Digital to Analogue

Handheld Handheld Microphone

INSEC-TU Insecure Transfer Unit

iSAS Secure Audio Switch

LED Light Emitting Diode

MOD Module

NfD Nur für den Dienstgebrauch

OP_Headset Binaural/Monaural Headset for use by the Operator

PLD Programmable Logic Device

PTT Push To Talk

PU Processing Unit

RX Receive

SEC-TU Secure Transfer Unit

S/I-PU Secure/Insecure Processing Unit

TED Touch Entry Device

TSF TOE Security Function

TU Transfer Unit

TX Transmit

Ul User Interface

VCS Voice Communication System

VS Verschlusssache