

Certification Report

BSI-DSZ-CC-0837-2013

for

NXP Smart Card Controller P60D080PVC and its major configurations P60D052PVC, P60D040PVC, P60C080PVC, P60C052PVC and P60C040PVC

from

NXP Semiconductors Germany GmbH

BSI - Bundesamt für Sicherheit in der Informationstechnik, Postfach 20 03 63, D-53133 Bonn Phone +49 (0)228 99 9582-0, Fax +49 (0)228 9582-5477, Infoline +49 (0)228 99 9582-111

Bundesamt für Sicherheit in der Informationstechnik

Deutsches

erteilt vom

IT-Sicherheitszertifikat

Bundesamt für Sicherheit in der Informationstechnik

BSI-DSZ-CC-0837-2013

NXP Smart Card Controller P60D080PVC and its major configurations P60D052PVC, P60D040PVC, P60C080PVC, P60C052PVC and P60C040PVC

from	NXP Semiconductors Germany GmbH	
PP Conformance:	Security IC Platform Protection Profile, Version 1.0, 15 June 2007, BSI-CC-PP-0035-2007	Common Criteria Recognition Arrangement
Functionality:	PP conformant plus product specific extensions Common Criteria Part 2 extended	for components up to EAL 4
Assurance:	Common Criteria Part 3 conformant EAL 6 augmented by ASE_TSS.2 and ALC_FLR.1	Common Criteria

The IT product identified in this certificate has been evaluated at an approved evaluation facility using the Common Methodology for IT Security Evaluation (CEM), Version 3.1 extended by advice of the Certification Body for components beyond EAL 5 and guidance specific for the technology of the product for conformance to the Common Criteria for IT Security Evaluation (CC), Version 3.1.

This certificate applies only to the specific version and release of the product in its evaluated configuration and in conjunction with the complete Certification Report.

The evaluation has been conducted in accordance with the provisions of the certification scheme of the German Federal Office for Information Security (BSI) and the conclusions of the evaluation facility in the evaluation technical report are consistent with the evidence adduced.

This certificate is not an endorsement of the IT product by the Federal Office for Information Security or any other organisation that recognises or gives effect to this certificate, and no warranty of the IT product by the Federal Office for Information Security or any other organisation that recognises or gives effect to this certificate, is either expressed or implied.

Bonn, 24 June 2013 For the Federal Office for Information Security

Joachim Weber Head of Division L.S.

This page is intentionally left blank.

Preliminary Remarks

Under the BSIG¹ Act, the Federal Office for Information Security (BSI) has the task of issuing certificates for information technology products.

Certification of a product is carried out on the instigation of the vendor or a distributor, hereinafter called the sponsor.

A part of the procedure is the technical examination (evaluation) of the product according to the security criteria published by the BSI or generally recognised security criteria.

The evaluation is normally carried out by an evaluation facility recognised by the BSI or by BSI itself.

The result of the certification procedure is the present Certification Report. This report contains among others the certificate (summarised assessment) and the detailed Certification Results.

The Certification Results contain the technical description of the security functionality of the certified product, the details of the evaluation (strength and weaknesses) and instructions for the user.

¹ Act on the Federal Office for Information Security (BSI-Gesetz - BSIG) of 14 August 2009, Bundesgesetzblatt I p. 2821

Contents

А	Certification	7
	 Specifications of the Certification Procedure	7 8 9
В	Certification Results	.11
	 Executive Summary	13 15 15 16 16 17 18 19 20
С	Excerpts from the Criteria	25
	CC Part 1: CC Part 3:	
D	Annexes	35

A Certification

1 Specifications of the Certification Procedure

The certification body conducts the procedure according to the criteria laid down in the following:

- BSIG²
- BSI Certification Ordinance³
- BSI Schedule of Costs⁴
- Special decrees issued by the Bundesministerium des Innern (Federal Ministry of the Interior)
- DIN EN 45011 standard
- BSI certification: Procedural Description (BSI 7125) [3]
- Common Criteria for IT Security Evaluation (CC), Version 3.1⁵[1]
- Common Methodology for IT Security Evaluation, Version 3.1 [2]
- BSI certification: Application Notes and Interpretation of the Scheme (AIS) [4]

2 **Recognition Agreements**

In order to avoid multiple certification of the same product in different countries a mutual recognition of IT security certificates - as far as such certificates are based on ITSEC or CC - under certain conditions was agreed.

2.1 European Recognition of ITSEC/CC – Certificates (SOGIS-MRA)

The SOGIS-Mutual Recognition Agreement (SOGIS-MRA) Version 3 became effective in April 2010. It defines the recognition of certificates for IT-Products at a basic recognition level and in addition at higher recognition levels for IT-Products related to certain technical domains only.

The basic recognition level includes Common Criteria (CC) Evaluation Assurance Levels EAL1 to EAL4 and ITSEC Evaluation Assurance Levels E1 to E3 (basic). For higher recognition levels the technical domain Smart card and similar Devices has been defined. It includes assurance levels beyond EAL4 resp. E3 (basic). In addition, certificates issued for Protection Profiles based on Common Criteria are part of the recognition agreement.

² Act on the Federal Office for Information Security (BSI-Gesetz - BSIG) of 14 August 2009, Bundesgesetzblatt I p. 2821

³ Ordinance on the Procedure for Issuance of a Certificate by the Federal Office for Information Security (BSI-Zertifizierungsverordnung, BSIZertV) of 07 July 1992, Bundesgesetzblatt I p. 1230

⁴ Schedule of Cost for Official Procedures of the Bundesamt für Sicherheit in der Informationstechnik (BSI-Kostenverordnung, BSI-KostV) of 03 March 2005, Bundesgesetzblatt I p. 519

⁵ Proclamation of the Bundesministerium des Innern of 12 February 2007 in the Bundesanzeiger dated 23 February 2007, p. 3730

As of September 2011 the new agreement has been signed by the national bodies of Austria, Finland, France, Germany, Italy, The Netherlands, Norway, Spain, Sweden and the United Kingdom. Details on recognition and the history of the agreement can be found at <u>https://www.bsi.bund.de/zertifizierung</u>.

The SOGIS-MRA logo printed on the certificate indicates that it is recognised under the terms of this agreement by the nations listed above.

2.2 International Recognition of CC – Certificates (CCRA)

An arrangement (Common Criteria Recognition Arrangement) on the mutual recognition of certificates based on the CC Evaluation Assurance Levels up to and including EAL 4 has been signed in May 2000 (CCRA). It includes also the recognition of Protection Profiles based on the CC.

As of September 2011 the arrangement has been signed by the national bodies of: Australia, Austria, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, India, Israel, Italy, Japan, Republic of Korea, Malaysia, The Netherlands, New Zealand, Norway, Pakistan, Republic of Singapore, Spain, Sweden, Turkey, United Kingdom, United States of America. The current list of signatory nations and approved certification schemes can be seen on the website: <u>http://www.commoncriteriaportal.org</u>.

The Common Criteria Recognition Arrangement logo printed on the certificate indicates that this certification is recognised under the terms of this agreement by the nations listed above.

This evaluation contains the components ADV_FSP.5, ADV_IMP.2, ADV_INT.3, ADV_SPM.1, ADV_TDS.5, ALC_CMC.5, ALC_CMS.5, ALC_DVS.2, ALC_TAT.3, ASE_TSS.2, ATE_COV.3, ATE_DPT.3, ATE_FUN.2 and AVA_VAN.5 that are not mutually recognised in accordance with the provisions of the CCRA. For mutual recognition the EAL4 components of these assurance families are relevant.

3 Performance of Evaluation and Certification

The certification body monitors each individual evaluation to ensure a uniform procedure, a uniform interpretation of the criteria and uniform ratings.

The product NXP Smart Card Controller P60D080PVC and its major configurations P60D052PVC, P60D040PVC, P60C080PVC, P60C052PVC and P60C040PVC has undergone the certification procedure at BSI.

The evaluation of the product NXP Smart Card Controller P60D080PVC and its major configurations P60D052PVC, P60D040PVC, P60C080PVC, P60C052PVC and P60C040PVC was conducted by TÜV Informationstechnik GmbH. The evaluation was completed on 29 April 2013. TÜV Informationstechnik GmbH is an evaluation facility (ITSEF)⁶ recognised by the certification body of BSI.

For this certification procedure the sponsor and applicant is: NXP Semiconductors Germany GmbH.

The product was developed by: NXP Semiconductors Germany GmbH.

The certification is concluded with the comparability check and the production of this Certification Report. This work was completed by the BSI.

⁶ Information Technology Security Evaluation Facility

4 Validity of the Certification Result

This Certification Report only applies to the version of the product as indicated. The confirmed assurance package is only valid on the condition that

- all stipulations regarding generation, configuration and operation, as given in the following report, are observed,
- the product is operated in the environment described, as specified in the following report and in the Security Target.

For the meaning of the assurance levels please refer to the excerpts from the criteria at the end of the Certification Report.

The Certificate issued confirms the assurance of the product claimed in the Security Target at the date of certification. As attack methods evolve over time, the resistance of the certified version of the product against new attack methods needs to be re-assessed. Therefore, the sponsor should apply for the certified product being monitored within the assurance continuity program of the BSI Certification Scheme (e.g. by a re-certification). Specifically, if results of the certification are used in subsequent evaluation and certification procedures, in a system integration process or if a user's risk management needs regularly updated results, it is recommended to perform a re-assessment on a regular e.g. annual basis.

In case of changes to the certified version of the product, the validity can be extended to the new versions and releases, provided the sponsor applies for assurance continuity (i.e. re-certification or maintenance) of the modified product, in accordance with the procedural requirements, and the evaluation does not reveal any security deficiencies.

5 Publication

The product NXP Smart Card Controller P60D080PVC and its major configurations P60D052PVC, P60D040PVC, P60C080PVC, P60C052PVC and P60C040PVC has been included in the BSI list of certified products, which is published regularly (see also Internet: <u>https://www.bsi.bund.de</u> and [5]). Further information can be obtained from BSI-Infoline +49 228 9582-111.

Further copies of this Certification Report can be requested from the developer⁷ of the product. The Certification Report may also be obtained in electronic form at the internet address stated above.

⁷ NXP Semiconductors Germany GmbH Stresemannallee 101 22529 Hamburg

This page is intentionally left blank.

B Certification Results

The following results represent a summary of

- the Security Target of the sponsor for the Target of Evaluation,
- the relevant evaluation results from the evaluation facility, and
- complementary notes and stipulations of the certification body.

1 Executive Summary

The Target of Evaluation (TOE) is the NXP Smart Card Controller P60D080PVC and its major configurations P60D052PVC, P60D040PVC, P60C080PVC, P60C052PVC and P60C040PVC.

It is a Security IC hardware platform with IC Dedicated Software which can be used for a variety of high security applications like banking and finance market, in electronic commerce or in governmental applications like electronic passport, identity card as well as for access control systems and loyalty applications.

The Security Target [6] is the basis for this certification. It is based on the certified Protection Profile Security IC Platform Protection Profile, Version 1.0, 15 June 2007, BSICC- PP-0035-2007 [7].

The TOE Security Assurance Requirements (SAR) are based entirely on the assurance components defined in Part 3 of the Common Criteria (see part C or [1], Part 3 for details). The TOE meets the assurance requirements of the Evaluation Assurance Level EAL 6 augmented by ASE-TSS.2 and ALC_FLR.1.

The TOE Security Functional Requirements (SFR) relevant for the TOE are outlined in the Security Target [6] and [8], chapter 6.1. They are selected from Common Criteria Part 2 and some of them are newly defined. Thus the TOE is CC Part 2 extended.

The TOE Security Functional Requirements are implemented by the following TOE Security Functions:

TOE Security Functions	Addressed issue
SS.RNG	Random Number Generator
SS.HW_DES	Triple-DES coprocessor
SS.HW_AES	AES coprocessor
SS.CRC	Cyclic Redundancy Check
SS.RECONFIG	Post Delivery Configuration
SF.OPT	Control of Operating Conditions
SF.PHY	Protection against Physical Manipulation
SF.LOG	Logical Protection
SF.COMP	Protection of Mode Control
SF.MEM_ACC	Memory Access Control
SF.SFR_ACC	Special Function Register Access Control
SF.FFW	Firmware Firewall
SF.Firmware	Firmware Support

Table 1: TOE Security Functionalities

For more details please refer to the Security Target [6] and [8], chapter 7.

The assets to be protected by the TOE are defined in the Security Target [6] and [8], chapter 3.1. Based on these assets the TOE Security Problem is defined in terms of Assumptions, Threats and Organisational Security Policies. This is outlined in the Security Target [6] and [8], chapter 3.2 to 3.4.

This certification covers the following configurations of the TOE: NXP Smart Card Controller P60D080PVC and its major configurations P60D052PVC, P60D040PVC, P60C080PVC, P60C052PVC and P60C040PVC. For details see chapter 8.

The vulnerability assessment results as stated within this certificate do not include a rating for those cryptographic algorithms and their implementation suitable for encryption and decryption (see BSIG Section 9, Para. 4, Clause 2).

The certification results only apply to the version of the product indicated in the certificate and on the condition that all the stipulations are kept as detailed in this Certification Report. This certificate is not an endorsement of the IT product by the Federal Office for Information Security (BSI) or any other organisation that recognises or gives effect to this certificate, and no warranty of the IT product by BSI or any other organisation that recognises or gives effect to this certificate, is either expressed or implied.

2 Identification of the TOE

The Target of Evaluation (TOE) is called:

NXP Smart Card Controller P60D080PVC and its major configurations P60D052PVC, P60D040PVC, P60C080PVC, P60C052PVC and P60C040PVC

The following table outlines the TOE deliverables:

No	Туре	Identifier	Release	Form of Delivery
1	HW	9049A modul inlay o		wafer, module, inlay or package
2	SW	Test ROM Software (Security IC Dedicated Test Software), Test-ROM on the chip acc. to 9049A_LA001_TESTROM_v1_btos_0Av05_fos_6v10.hex	Version 0A.05, 2012-05-07	stored in ROM on the chip
3	SW	Boot ROM Software (part of the Security IC Dedicated Support Software), Boot-ROM on the chip acc. toVersion 0A.05, 2012-05-07stored in ROM on the chip9049A_LA001_TESTROM_v1_btos_0Av05_fos_6v10.hex2012-05-07the chip		ROM on
4	SW	Dedicated Support Software), Firmware Operating System on 6.11 ⁸ , ROM or		stored in ROM on the chip
5	DOC	Product Data Sheet, SmartMX2 family P60x040/052/080 VC, NXP Semiconductors, Business Unit Identification [12]Rev. 3.0, 2012-10-31electronic form		
6	DOC	Instruction set for the SmartMX2 family, Secure smart card controller, NXP Semiconductors, Business Unit Identification [13] Rev. 3.1, 2012-02-02 form		electronic form
7	DOC	NXP Secure Smart Card Controller P60x040/052/080VC, Information on Guidance and Operation, Guidance and Operation Manual [14] Rev. 1.0, 2012-11-22 form		electronic form
8	DOC			electronic form

⁸ FOS version 6.11 includes extensions on top of 9049A_LA001_TESTROM_v1_btos_0Av05_fos_6v10.hex stored in Firmware Mode EEPROM

No	Туре	Identifier	Release	Form of Delivery
9	DOC	Product Data Sheet Addendum, SmartMX2 family, Post Delivery Configuration, NXP Semiconductors [16]	Rev. 3.1, 2012-12-12	electronic form
10	DOC	Product Data Sheet Addendum, SmartMX2 family, Chip Health Rev. 3.0, Mode, NXP Semiconductors [17] 2012-05-11 form		electronic form
11	DOC	Product Data Sheet Addendum, SmartMX2 family, Firmware Rev. 3.3, ele		electronic form

Table 2: Deliverables of the TOE

The requirements for the delivery of the TOE are described in chapter 2 of the "Guidance and Operation Manual" [14] and in chapter 4 of the "Wafer and delivery specification" [15]. For each delivery form of the hardware platform NXP offers two ways of delivery of the TOE:

1. The customer collects the hardware platform himself at the NXP site.

2. The hardware platform is sent to the customer by NXP with special protective measures.

The TOE documentation (last seven items of Table 2) is delivered in electronic form by the document control centre of NXP.

commercial type name is the identification used to order the TOE The P60x080/052/040PVC in the respective major configuration and with the evaluated package type. In consequence this means that a full commercial product name that fits in the variable forms described in the Security Target [6] and [8], Table 8 determines that the hardware platform is an evaluated product. In addition the hardware version can be identified by the crypted nameplate "9049A" (cf. Configuration List [11], chapter 3.1) on the surface of the hardware platform as described in chapters 4.2 and 3.9.3 of the Wafer and delivery specification [15]. The nameplate is the same for all configurations. In addition each major configuration has a different device coding described in the Product Data Sheet [12], chapter 31.2. The device coding is reproduced in the following Table 3. Identification is also possible using the Chip Health Mode. The identification string provided by the command 00h of the Chip Health Mode comprises also the device coding and the firmware version.

	P60D080PVC	P60D052PVC	P60D040PVC	P60C080PVC	P60C052PVC	P60C040PVC
DC0	22h	22h	22h	12h	12h	12h
DC1	0Eh	09h	0Dh	13h	15h	12h
DC2	00h	00h	00h	00h	00h	00h
DC3	17h	17h	17h	17h	17h	17h
DC4	00h / 01h depending on the configuration	00h / 01h depending on the configuration	00h / 01h depending on the configuration	00h	00h	00h

Table 3: Device coding of the TOE major configurations

3 Security Policy

The Security Policy is expressed by the set of Security Functional Requirements and implemented by the TOE. As the TOE is a hardware security platform, the security policy of the TOE provides countermeasures against: leakage of information, physical probing, malfunctions, physical manipulations, access to code, access to data memory and abuse of functionality. Hence the TOE shall:

- maintain the integrity and the confidentiality of data stored in the memory of the TOE and
- maintain the integrity, the correct operation and the confidentiality of Security Functions

4 Assumptions and Clarification of Scope

The Assumptions defined in the Security Target and some aspects of Threats and Organisational Security Policies are not covered by the TOE itself. These aspects lead to specific security objectives to be fulfilled by the TOE-Environment. The following topics are of relevance:

- Clarification of "Usage of Hardware Platform (OE.Plat-Appl)"
- Clarification of "Treatment of User Data (OE.Resp-Appl)"
- Protection during composite product manufacturing (OE.Process-Sec-IC)
- Check of initialisation data (OE.Check-Init)

Details can be found in the Security Target [6] and [8], chapter 4.2 and 4.3.

5 Architectural Information

A top level block diagram can be found within the TOE description of the Security Target [6] and [8]. The TOE consists of the following 10 subsystems (7 hardware / 3 software):

Туре	Subsystem	Description
HW	IC.LOGIC_BLK	Comprises the logic block.
HW	IC.RAM	Contains 8320 Bytes RAM. 512 Bytes of RAM are allocated for the Firmware Operating System. The remaining part is allocated for the application and logical divided into 5120 Bytes standard RAM and 2688 Bytes FXRAM. The FXRAM can be accessed by the Fame2 co-processor.
HW	IC.EEPROM	Contains 80 kBytes EEPROM
HW	IC.ROM	Contains Test-ROM and 384 kBytes or 300 kBytes (P60x040PVC) Application-ROM
HW	IC.ANALOG	Consists of two major parts: • a power conversion unit called DCDC including a contactless part with voltage supply for contactless operation, clock recovery and demodulation of the

Туре	Subsystem	Description
		contactless signal
		• various sensors, a part of the random number generator, the internal oscillator and further circuitry to monitor the operating conditions and provide reference signals.
HW	IC.PADS	Contains the contact based interface of the TOE.
HW	IC.COVER	Comprises passive metal structures.
SW	SW.Framework	Part of the IC Dedicated Support Software and provides functionality to the Security IC Embedded Software
SW	SW.ISO	Implements the IC Dedicated Support Software interface to use the ISO 14443-3 and 14443-4 communication layers.
SW	SW.CommonHal	Part of the IC Dedicated Support Software and implements the interface for the use of hardware blocks.

Table 4: TOE subsystems

6 Documentation

The evaluated documentation as outlined in table 2 is being provided with the product to the customer. This documentation contains the required information for secure usage of the TOE in accordance with the Security Target.

Additional obligations and notes for secure usage of the TOE as outlined in chapter 10 of this report have to be followed.

7 IT Product Testing

7.1 Developer's Test according to ATE_FUN

The developer's testing effort can be summarised in the following aspects.

<u>TOE test configuration and developer's testing approach:</u>

- The tests are performed with the TOE in different test environments and configurations depending on the test categories.
- All TSF and related security mechanisms, subsystems and modules are tested in order to assure complete coverage of all SFR.
- Test categories:
 - Production testing on wafers using test functions implemented in the IC Dedicated Software. These test functions are accessed via test commands, which are issued by the production tests. Test functions respond signatures to the production tests. Production tests also apply signals to and/or measures signals at any contact of the device. Final test or module test therefore is limited to a verification of electrical connections like checking the pins of the package for shorts and opens.

- Simulation tests (design verification):

Simulation tests are performed to verify functionality, which is not visible at the accessible interfaces of the TOE. These simulation tests are a subset of those, which were performed during development of the device to ensure a proper design of its modules.

During run-time of a simulation an automated regression test continuously compares pre-defined internal signals (probe list) like data and address buses, control signals, register contents and microcode information against a "golden reference". Test results are automatically listed in log files and a summary, i.e. discrepancies occurred (yes/no), is output to the user interface.

Manual simulation tests are performed in case an automated result comparison based on executable code is not possible.

- Characterization tests:

Characterization tests verify the electrical properties of the device, which are specified with regard to limiting values, thresholds and timings of several electrical parameters like voltages, currents, frequencies, capacitors, resistances and latches. For this purpose a number of devices for test are taken from production.

– Verification tests:

Verification tests are performed on single samples of the device to verify specific security functionality, which is not testable for each device during production test or within the scope of characterization testing. Such tests include standard tests of the Random Number Generator, AES coprocessor and Triple-DES coprocessor.

- Test of configurations:

Configuration data are stored to EEPROM based on the customer's choices in the Order Entry Form [19], [20], [21], [22], [23] or [24] at later stages of the production test. For this purpose production test implements special test steps relying on an according test strategy to verify the required configuration. Special parts of verification tests explicitly test the configuration options of the device.

Amount of developer testing performed:

- The tests are performed on security mechanisms and on subsystem and module level.
- As demonstrated by ATE_COV.2 the developer has tested all security mechanisms and TSFIs as given in the functional specification.
- As demonstrated by ATE_DPT.3 the developer has tested all the TSF subsystems and modules against the TOE design as defined in TOE design documentation and against the security architecture description described in security architecture documentation.

TOE security functionality tested:

- SF.OPC: Control of Operating Conditions
- SF.PHY: Protection against Physical Manipulation

8 Evaluated Configuration

This certification covers the following configurations of the TOE: NXP Smart Card Controller P60D080PVC and its major configurations P60D052PVC, P60D040PVC,

P60C080PVC, P60C052PVC and P60C040PVC as listed in the ST [6] and [8], table 2 and all minor configurations options as listed inST [6] or [8], table 4.

9 **Results of the Evaluation**

9.1 CC specific results

The Evaluation Technical Report (ETR) [9] was provided by the ITSEF according to the Common Criteria [1], the Methodology [2], the requirements of the Scheme [3] and all interpretations and guidelines of the Scheme (AIS) [4] as relevant for the TOE.

The Evaluation Methodology CEM [2] was used for those components up to EAL5 extended by advice of the Certification Body for components beyond EAL 5 and guidance specific for the technology of the product [4] (AIS 34).

The following guidance specific for the technology was used:

- The Application of CC to Integrated Circuits
- Application of Attack Potential to Smartcards
- Guidance, Smartcard Evaluation

(see [4], AIS 25, AIS 26, AIS 37).

For RNG assessment the scheme interpretations AIS 31 was used (see [4]).

To support composite evaluations according to AIS 36 the document ETR for composite evaluation [10] was provided and approved. This document provides details of this platform evaluation that have to be considered in the course of a composite evaluation on top.

The assurance refinements outlined in the Security Target were followed in the course of the evaluation of the TOE.

As a result of the evaluation the verdict PASS is confirmed for the following assurance components:

- All components of the EAL 6 package including the class ASE as defined in the CC (see also part C of this report)
- The components ASE_TSS.2 and ALC_FLR.1 augmented for this TOE evaluation.
- All components claimed in the Security Target [6] and [8], chapter 6.2 and defined in the CC (see also part C of this report)

The evaluation has confirmed:

 PP Conformance: 	Security IC Platform Protection Profile, Version 1.0,
	15 June 2007, BSI-CC-PP-0035-2007 [7]

- for the Functionality: PP conformant plus product specific extensions Common Criteria Part 2 extended
- for the Assurance: Common Criteria Part 3 conformant EAL 6 augmented by ASE_TSS.2 and ALC_FLR.1

For specific evaluation results regarding the development and production environment see annex B in part D of this report.

The results of the evaluation are only applicable to the TOE as defined in chapter 2 and the configuration as outlined in chapter 8 above.

9.2 **Results of cryptographic assessment**

The vulnerability assessment results as stated within this certificate do not include a rating for those cryptographic algorithms and their implementation suitable for encryption and decryption (see BSIG Section 9, Para. 4, Clause 2). This holds for:

- the TOE Security functionalities SS.HW_DES (Triple-DES coprocessor) and SS.HW_AES (AES coprocessor) and
- for other usage of encryption and decryption within the TOE.

The strength of the cryptographic algorithms was not rated in the course of this certification procedure (see BSIG Section 4, Para. 3, Clause 2). But Cryptographic Functionalities with a security level of 80 bits or lower can no longer be regarded as secure against attacks with high attack potential without considering the application context. Therefore for this functionalites it shall be checked whether the related crypto operations are appropriate for the intended system. Some further hints and guidelines can be derived from the 'Technische Richtlinie BSI TR-02102' (https://www.bsi.bund.de).

The Cryptographic Functionality 2-key Triple DES (2TDES) provided by the TOE achieves a security level of maximum 80 Bits (in general context).

10 Obligations and Notes for the Usage of the TOE

The documents as outlined in table 2 contain necessary information about the usage of the TOE and all security hints therein have to be considered. In addition all aspects of Assumptions, Threats and OSPs as outlined in the Security Target not covered by the TOE itself need to be fulfilled by the operational environment of the TOE.

The customer or user of the product shall consider the results of the certification within his system risk management process. In order for the evolution of attack methods and techniques to be covered, he should define the period of time until a re-assessment for the TOE is required and thus requested from the sponsor of the certificate.

Some security measures are partly implemented in the hardware and require additional configuration or control or measures to be implemented by the IC Dedicated Support Software or Embedded Software.

For this reason the TOE includes guidance documentation (see table 2) which contains guidelines for the developer of the IC Dedicated Support Software and Embedded Software on how to securely use the microcontroller chip and which measures have to be implemented in the software in order to fulfil the security requirements of the Security Target of the TOE.

In the course of the evaluation of the composite product or system it must be examined if the required measures have been correctly and effectively implemented by the software. Additionally, the evaluation of the composite product or system must also consider the evaluation results as outlined in the document ETR for composite evaluation [10].

11 Security Target

For the purpose of publishing, the Security Target [8] of the Target of Evaluation (TOE) is provided within a separate document as Annex A of this report. It is a sanitised version of

the complete Security Target [6] used for the evaluation performed. Sanitisation was performed according to the rules as outlined in the relevant CCRA policy (see AIS 35 [4]).

12 Definitions

12.1 Acronyms

AES	Advanced Encryption Standard
AIS	Application Notes and Interpretations of the Scheme
BSI	Bundesamt für Sicherheit in der Informationstechnik / Federal Office for Information Security, Bonn, Germany
BSIG	BSI-Gesetz / Act on the Federal Office for Information Security
CCRA	Common Criteria Recognition Arrangement
CC	Common Criteria for IT Security Evaluation
CEM	Common Methodology for Information Technology Security Evaluation
CPU	Central Processing Unit
CRC	Cyclic Redundancy Check
DES	Data Encryption Standard
EAL	Evaluation Assurance Level
EEPROM	Electrically Erasable Programmable Read Only Memory
ETR	Evaluation Technical Report
IC	Integrated Circuit
IT	Information Technology
OS	Operating System
PP	Protection Profile
ROM	Read Only Memory
SAR	Security Assurance Requirement
SFP	Security Function Policy
SFR	Security Functional Requirement
ST	Security Target
TOE	Target of Evaluation
TSF	TOE Security Functionality

12.2 Glossary

Augmentation - The addition of one or more requirement(s) to a package.

Extension - The addition to an ST or PP of functional requirements not contained in part 2 and/or assurance requirements not contained in part 3 of the CC.

Formal - Expressed in a restricted syntax language with defined semantics based on well-established mathematical concepts.

Informal - Expressed in natural language.

Object - An passive entity in the TOE, that contains or receives information, and upon which subjects perform operations.

Protection Profile - An implementation-independent statement of security needs for a TOE type.

Security Target - An implementation-dependent statement of security needs for a specific identified TOE.

Semiformal - Expressed in a restricted syntax language with defined semantics.

Subject - An active entity in the TOE that performs operations on objects.

Target of Evaluation - A set of software, firmware and/or hardware possibly accompanied by guidance.

TOE Security Functionality - combined functionality of all hardware, software, and firmware of a TOE that must be relied upon for the correct enforcement of the SFRs

13 Bibliography

- [1] Common Criteria for Information Technology Security Evaluation, Version 3.1, Part 1: Introduction and general model, Revision 3, July 2009
 Part 2: Security functional components, Revision 3, July 2009
 Part 3: Security assurance components, Revision 3, July 2009
- [2] Common Methodology for Information Technology Security Evaluation (CEM), Evaluation Methodology, Version 3.1, Rev. 3, July 2009
- [3] BSI certification: Procedural Description (BSI 7125)
- [4] Application Notes and Interpretations of the Scheme (AIS) as relevant for the TOE⁹.
- [5] German IT Security Certificates (BSI 7148), periodically updated list published also in the BSI Website
- [6] Security Target BSI-DSZ-CC-0837-2013, Version 1.0, 2012-12-13, NXP Secure Smart Card Controller P60x080/052/040PVC, NXP Semiconductors (confidential document)
- [7] Security IC Platform Protection Profile, Version 1.0, 15 June 2007, BSI-CC-PP-0035-2007
- [8] Security Target Lite BSI-DSZ-CC-0837-2013, [6] Version 1.0, 2012-12-13, NXP Secure Smart Card Controller P60x080/052/040PVC, NXP Semiconductors (sanitised public document)
- [9] Evaluation Technical Report, BSI-DSZ-CC-0837, Version 4, 2013-03-27, TÜV Informationstechnik GmbH (confidential document)
- [10] ETR for composite evaluation according to AIS 36 for the Product NXP Secure Smart Card Controller P60x080/052/040PVC, Version 5, 2013-04-23, [9] TÜV Informationstechnik GmbH (confidential document)
- [11] NXP Secure Smart Card Controller P60x080/052/040PVC, Configuration List, NXP Semiconductors, Business Unit Identification, Rev 01.00, 2012-12-11 (confidential document)

⁹specifically

- AIS 20, Version 2, Funktionalitätsklassen und Evaluationsmethodologie für deterministische Zufallszahlengeneratoren
- AIS 25, Version 7, Anwendung der CC auf Integrierte Schaltungen including JIL Document and CC Supporting Document
- AIS 26, Version 8, Evaluations methodologie für in Hardware integrierte Schaltungen including JIL Document and CC Supporting Document
- AIS 31, Version 2, Funktionalitätsklassen und Evaluationsmethodologie für physikalische Zufallszahlengeneratoren
- AIS 32, Version 7, CC-Interpretationen im deutschen Zertifizierungsschema
- AIS 34, Version 3, Evaluation Methodology for CC Assurance Classes for EAL5+ (CCv2.3 & CCv3.1) and EAL6 (CCv3.1)
- AIS 35, Version 2.0, Öffentliche Fassung des Security Targets (ST-Lite) including JIL Document and CC Supporting Document and CCRA policies
- AIS 36, Version 3, Kompositionsevaluierung including JIL Document and CC Supporting Document
- AIS 38, Version 2.9, Reuse of evaluation results

- [12] Product Data Sheet, SmartMX2 family P60x040/052/080 VC, NXP Semiconductors, Business Unit Identification, Rev. 3.0, 2012-10-31 (confidential document)
- [13] Instruction set for the SmartMX2 family, Secure smart card controller, NXP Semiconductors, Business Unit Identification, Rev. 3.1, 2012-02-02 (confidential document)
- [14] Guidance and Operation Manual, NXP Secure Smart Card Controller P60x040/052/080VC, NXP Semiconductors, Rev. 1.0, 2012-11-22 (confidential document)
- [15] Wafer and delivery specification, SmartMX2 family P60x040/052/080 VC, NXP Semiconductors, Rev. 3.0, 2012-10-18 (confidential document)
- [16] Product Data Sheet Addendum, SmartMX2 family, Post Delivery Configuration, NXP Semiconductors, Rev. 3.1, 2012-12-12 (confidential document)
- [17] Product Data Sheet Addendum, SmartMX2 family, Chip Health Mode, NXP Semiconductors, Rev. 3.0, 2012-05-11 (confidential document)
- [18] Product Data Sheet Addendum, SmartMX2 family, Firmware Interface Specification, Firmware, NXP Semiconductors, Rev. 3.3, 2012-12-11 (confidential document)
- [19] Order Entry Form, P60D080, NXP Semiconductors, Version 0.2, 2012-05-07
- [20] Order Entry Form, P60D052, NXP Semiconductors, Version 0.2, 2012-05-07
- [21] Order Entry Form, P60D040, NXP Semiconductors, Version 0.2, 2012-05-07
- [22] Order Entry Form, P60C080, NXP Semiconductors, Version 0.3, 2012-05-07
- [23] Order Entry Form, P60C052, NXP Semiconductors, Version 0.3, 2012-05-07
- [24] Order Entry Form, P60C040, NXP Semiconductors, Version 0.3, 2012-05-07

This page is intentionally left blank.

C Excerpts from the Criteria

CC Part 1:

Conformance Claim (chapter 10.4)

"The conformance claim indicates the source of the collection of requirements that is met by a PP or ST that passes its evaluation. This conformance claim contains a CC conformance claim that:

- describes the version of the CC to which the PP or ST claims conformance.
- describes the conformance to CC Part 2 (security functional requirements) as either:
 - **CC Part 2 conformant** A PP or ST is CC Part 2 conformant if all SFRs in that PP or ST are based only upon functional components in CC Part 2, or
 - CC Part 2 extended A PP or ST is CC Part 2 extended if at least one SFR in that PP or ST is not based upon functional components in CC Part 2.
- describes the conformance to CC Part 3 (security assurance requirements) as either:
 - CC Part 3 conformant A PP or ST is CC Part 3 conformant if all SARs in that PP or ST are based only upon assurance components in CC Part 3, or
 - CC Part 3 extended A PP or ST is CC Part 3 extended if at least one SAR in that PP or ST is not based upon assurance components in CC Part 3.

Additionally, the conformance claim may include a statement made with respect to packages, in which case it consists of one of the following:

- Package name Conformant A PP or ST is conformant to a pre-defined package (e.g. EAL) if:
 - the SFRs of that PP or ST are identical to the SFRs in the package, or
 - the SARs of that PP or ST are identical to the SARs in the package.
- Package name Augmented A PP or ST is an augmentation of a predefined package if:
 - the SFRs of that PP or ST contain all SFRs in the package, but have at least one additional SFR or one SFR that is hierarchically higher than an SFR in the package.
 - the SARs of that PP or ST contain all SARs in the package, but have at least one additional SAR or one SAR that is hierarchically higher than an SAR in the package.

Note that when a TOE is successfully evaluated to a given ST, any conformance claims of the ST also hold for the TOE. A TOE can therefore also be e.g. CC Part 2 conformant.

Finally, the conformance claim may also include two statements with respect to Protection Profiles:

- PP Conformant A PP or TOE meets specific PP(s), which are listed as part of the conformance result.
- Conformance Statement (Only for PPs) This statement describes the manner in which PPs or STs must conform to this PP: strict or demonstrable. For more information on this Conformance Statement, see Annex D."

CC Part 3:

Class APE: Protection Profile evaluation (chapter 10)

"Evaluating a PP is required to demonstrate that the PP is sound and internally consistent, and, if the PP is based on one or more other PPs or on packages, that the PP is a correct instantiation of these PPs and packages. These properties are necessary for the PP to be suitable for use as the basis for writing an ST or another PP.

Assurance Class	Assurance Components
	APE_INT.1 PP introduction
	APE_CCL.1 Conformance claims
Class APE: Protection	APE_SPD.1 Security problem definition
Profile evaluation	APE_OBJ.1 Security objectives for the operational environment APE_OBJ.2 Security objectives
	APE_ECD.1 Extended components definition
	APE_REQ.1 Stated security requirements APE_REQ.2 Derived security requirements

APE: Protection Profile evaluation class decomposition"

Class ASE: Security Target evaluation (chapter 11)

"Evaluating an ST is required to demonstrate that the ST is sound and internally consistent, and, if the ST is based on one or more PPs or packages, that the ST is a correct instantiation of these PPs and packages. These properties are necessary for the ST to be suitable for use as the basis for a TOE evaluation."

Assurance Class	Assurance Components
	ASE_INT.1 ST introduction
	ASE_CCL.1 Conformance claims
Class ASE: Security	ASE_SPD.1 Security problem definition
Target evaluation	ASE_OBJ.1 Security objectives for the operational environment ASE_OBJ.2 Security objectives
	ASE_ECD.1 Extended components definition
	ASE_REQ.1 Stated security requirements ASE_REQ.2 Derived security requirements
	ASE_TSS.1 TOE summary specification ASE_TSS.2 TOE summary specification with architectural design summary

ASE: Security Target evaluation class decomposition

Security assurance components (chapter 7)

"The following Sections describe the constructs used in representing the assurance classes, families, and components."

"Each assurance class contains at least one assurance family."

"Each assurance family contains one or more assurance components."

The following table shows the assurance class decomposition.

Assurance Class	Assurance Components
ADV: Development	ADV_ARC.1 Security architecture description
	ADV_FSP.1 Basic functional specification ADV_FSP.2 Security-enforcing functional specification ADV_FSP.3 Functional specification with complete summary ADV_FSP.4 Complete functional specification ADV_FSP.5 Complete semi-formal functional specification with additional error information ADV_FSP.6 Complete semi-formal functional specification with additional formal specification
	ADV_IMP.1 Implementation representation of the TSF ADV_IMP.2 Implementation of the TSF
	ADV_INT.1 Well-structured subset of TSF internals ADV_INT.2 Well-structured internals ADV_INT.3 Minimally complex internals
	ADV_SPM.1 Formal TOE security policy model
	ADV_TDS.1 Basic design ADV_TDS.2 Architectural design ADV_TDS.3 Basic modular design ADV_TDS.4 Semiformal modular design ADV_TDS.5 Complete semiformal modular design ADV_TDS.6 Complete semiformal modular design with formal high-level design presentation

Assurance Class	Assurance Components				
AGD:	AGD_OPE.1 Operational user guidance				
Guidance documents	AGD_PRE.1 Preparative procedures				
	ALC_CMC.1 Labelling of the TOE ALC_CMC.2 Use of a CM system ALC_CMC.3 Authorisation controls ALC_CMC.4 Production support, acceptance procedures and automation ALC_CMC.5 Advanced support				
ALC: Life cycle support	ALC_CMS.1 TOE CM coverage ALC_CMS.2 Parts of the TOE CM coverage ALC_CMS.3 Implementation representation CM coverage ALC_CMS.4 Problem tracking CM coverage ALC_CMS.5 Development tools CM coverage				
	ALC_DEL.1 Delivery procedures				
	ALC_DVS.1 Identification of security measures ALC_DVS.2 Sufficiency of security measures				
	ALC_FLR.1 Basic flaw remediation ALC_FLR.2 Flaw reporting procedures ALC_FLR.3 Systematic flaw remediation				
	ALC_LCD.1 Developer defined life-cycle model ALC_LCD.2 Measurable life-cycle model				
	ALC_TAT.1 Well-defined development tools ALC_TAT.2 Compliance with implementation standards ALC_TAT.3 Compliance with implementation standards - all parts				
	ATE_COV.1 Evidence of coverage ATE_COV.2 Analysis of coverage ATE_COV.3 Rigorous analysis of coverage				
ATE: Tests	ATE_DPT.1 Testing: basic design ATE_DPT.2 Testing: security enforcing modules ATE_DPT.3 Testing: modular design ATE_DPT.4 Testing: implementation representation				
	ATE_FUN.1 Functional testing ATE_FUN.2 Ordered functional testing				
	ATE_IND.1 Independent testing – conformance ATE_IND.2 Independent testing – sample ATE_IND.3 Independent testing – complete				
AVA: Vulnerability assessment	AVA_VAN.1 Vulnerability survey AVA_VAN.2 Vulnerability analysis AVA_VAN.3 Focused vulnerability analysis AVA_VAN.4 Methodical vulnerability analysis AVA_VAN.5 Advanced methodical vulnerability analysis				

Assurance class decomposition

Evaluation assurance levels (chapter 8)

"The Evaluation Assurance Levels (EALs) provide an increasing scale that balances the level of assurance obtained with the cost and feasibility of acquiring that degree of assurance. The CC approach identifies the separate concepts of assurance in a TOE at the end of the evaluation, and of maintenance of that assurance during the operational use of the TOE.

It is important to note that not all families and components from CC Part 3 are included in the EALs. This is not to say that these do not provide meaningful and desirable assurances. Instead, it is expected that these families and components will be considered for augmentation of an EAL in those PPs and STs for which they provide utility."

Evaluation assurance level (EAL) overview (chapter 8.1)

"Table 1 represents a summary of the EALs. The columns represent a hierarchically ordered set of EALs, while the rows represent assurance families. Each number in the resulting matrix identifies a specific assurance component where applicable.

As outlined in the next Section, seven hierarchically ordered evaluation assurance levels are defined in the CC for the rating of a TOE's assurance. They are hierarchically ordered inasmuch as each EAL represents more assurance than all lower EALs. The increase in assurance from EAL to EAL is accomplished by substitution of a hierarchically higher assurance component from the same assurance family (i.e. increasing rigour, scope, and/or depth) and from the addition of assurance components from other assurance families (i.e. adding new requirements).

These EALs consist of an appropriate combination of assurance components as described in Chapter 7 of this CC Part 3. More precisely, each EAL includes no more than one component of each assurance family and all assurance dependencies of every component are addressed.

While the EALs are defined in the CC, it is possible to represent other combinations of assurance. Specifically, the notion of "augmentation" allows the addition of assurance components (from assurance families not already included in the EAL) or the substitution of assurance components (with another hierarchically higher assurance component in the same assurance family) to an EAL. Of the assurance constructs defined in the CC, only EALs may be augmented. The notion of an "EAL minus a constituent assurance component" is not recognised by the standard as a valid claim. Augmentation carries with it the obligation on the part of the claimant to justify the utility and added value of the added assurance component to the EAL. An EAL may also be augmented with extended assurance requirements.

Assurance Class	Assurance Family	Assurance Components by Evaluation Assurance Level						
		EAL1	EAL2	EAL3	EAL4	EAL5	EAL6	EAL7
Development	ADV_ARC		1	1	1	1	1	1
	ADV_FSP	1	2	3	4	5	5	6
	ADV_IMP				1	1	2	2
	ADV_INT					2	3	3
	ADV_SPM						1	1
	ADV_TDS		1	2	3	4	5	6
Guidance	AGD_OPE	1	1	1	1	1	1	1
Documents	AGD_PRE	1	1	1	1	1	1	1
Life cycle	ALC_CMC	1	2	3	4	4	5	5
Support	ALC_CMS	1	2	3	4	5	5	5
	ALC_DEL		1	1	1	1	1	1
	ALC_DVS			1	1	1	2	2
	ALC_FLR							
	ALC_LCD			1	1	1	1	2
	ALC_TAT				1	2	3	3
Security Target	ASE_CCL	1	1	1	1	1	1	1
Evaluation	ASE_ECD	1	1	1	1	1	1	1
	ASE_INT	1	1	1	1	1	1	1
	ASE_OBJ	1	2	2	2	2	2	2
	ASR_REQ	1	2	2	2	2	2	2
	ASE_SPD		1	1	1	1	1	1
	ASE_TSS	1	1	1	1	1	1	1
Tests	ATE_COV		1	2	2	2	3	3
	ATE_DPT			1	1	3	3	4
	ATE_FUN		1	1	1	1	2	2
	ATE_IND	1	2	2	2	2	2	3
Vulnerability assessment	AVA_VAN	1	2	2	3	4	5	5

Table 1: Evaluation assurance level summary"

Evaluation assurance level 1 (EAL1) - functionally tested (chapter 8.3)

"Objectives

EAL1 is applicable where some confidence in correct operation is required, but the threats to security are not viewed as serious. It will be of value where independent assurance is required to support the contention that due care has been exercised with respect to the protection of personal or similar information.

EAL1 requires only a limited security target. It is sufficient to simply state the SFRs that the TOE must meet, rather than deriving them from threats, OSPs and assumptions through security objectives.

EAL1 provides an evaluation of the TOE as made available to the customer, including independent testing against a specification, and an examination of the guidance documentation provided. It is intended that an EAL1 evaluation could be successfully conducted without assistance from the developer of the TOE, and for minimal outlay.

An evaluation at this level should provide evidence that the TOE functions in a manner consistent with its documentation."

Evaluation assurance level 2 (EAL2) - structurally tested (chapter 8.4)

"Objectives

EAL2 requires the co-operation of the developer in terms of the delivery of design information and test results, but should not demand more effort on the part of the developer than is consistent with good commercial practise. As such it should not require a substantially increased investment of cost or time.

EAL2 is therefore applicable in those circumstances where developers or users require a low to moderate level of independently assured security in the absence of ready availability of the complete development record. Such a situation may arise when securing legacy systems, or where access to the developer may be limited."

Evaluation assurance level 3 (EAL3) - methodically tested and checked (chapter 8.5)

"Objectives

EAL3 permits a conscientious developer to gain maximum assurance from positive security engineering at the design stage without substantial alteration of existing sound development practises.

EAL3 is applicable in those circumstances where developers or users require a moderate level of independently assured security, and require a thorough investigation of the TOE and its development without substantial re-engineering."

Evaluation assurance level 4 (EAL4) - methodically designed, tested, and reviewed (chapter 8.6)

"Objectives

EAL4 permits a developer to gain maximum assurance from positive security engineering based on good commercial development practises which, though rigorous, do not require substantial specialist knowledge, skills, and other resources. EAL4 is the highest level at which it is likely to be economically feasible to retrofit to an existing product line.

EAL4 is therefore applicable in those circumstances where developers or users require a moderate to high level of independently assured security in conventional commodity TOEs and are prepared to incur additional security-specific engineering costs."

Evaluation assurance level 5 (EAL5) - semiformally designed and tested (chapter 8.7)

"Objectives

EAL5 permits a developer to gain maximum assurance from security engineering based upon rigorous commercial development practises supported by moderate application of specialist security engineering techniques. Such a TOE will probably be designed and developed with the intent of achieving EAL5 assurance. It is likely that the additional costs attributable to the EAL5 requirements, relative to rigorous development without the application of specialised techniques, will not be large.

EAL5 is therefore applicable in those circumstances where developers or users require a high level of independently assured security in a planned development and require a rigorous development approach without incurring unreasonable costs attributable to specialist security engineering techniques."

Evaluation assurance level 6 (EAL6) - semiformally verified design and tested (chapter 8.8)

"Objectives

EAL6 permits developers to gain high assurance from application of security engineering techniques to a rigorous development environment in order to produce a premium TOE for protecting high value assets against significant risks.

EAL6 is therefore applicable to the development of security TOEs for application in high risk situations where the value of the protected assets justifies the additional costs."

Evaluation assurance level 7 (EAL7) - formally verified design and tested (chapter 8.9)

"Objectives

EAL7 is applicable to the development of security TOEs for application in extremely high risk situations and/or where the high value of the assets justifies the higher costs. Practical application of EAL7 is currently limited to TOEs with tightly focused security functionality that is amenable to extensive formal analysis."

Class AVA: Vulnerability assessment (chapter 16)

"The AVA: Vulnerability assessment class addresses the possibility of exploitable vulnerabilities introduced in the development or the operation of the TOE."

Vulnerability analysis (AVA_VAN) (chapter 16.1)

"Objectives

Vulnerability analysis is an assessment to determine whether potential vulnerabilities identified, during the evaluation of the development and anticipated operation of the TOE or by other methods (e.g. by flaw hypotheses or quantitative or statistical analysis of the security behaviour of the underlying security mechanisms), could allow attackers to violate the SFRs.

Vulnerability analysis deals with the threats that an attacker will be able to discover flaws that will allow unauthorised access to data and functionality, allow the ability to interfere with or alter the TSF, or interfere with the authorised capabilities of other users."

This page is intentionally left blank

D Annexes

List of annexes of this certification report

- Annex A: Security Target provided within a separate document.
- Annex B: Evaluation results regarding development and production environment

This page is intentionally left blank.

Annex B of Certification Report BSI-DSZ-CC-0837-2013

Evaluation results regarding development and production environment

The IT product NXP Smart Card Controller P60D080PVC and its major configurations P60D052PVC, P60D040PVC, P60C080PVC, P60C052PVC and P60C040PVC (Target of Evaluation, TOE) has been evaluated at an approved evaluation facility using the Common Methodology for IT Security Evaluation (CEM), Version 3.1 extended by advice of the Certification Body for components beyond EAL 5 and guidance specific for the technology of the product for conformance to the Common Criteria for IT Security Evaluation (CC), Version 3.1.

As a result of the TOE certification, dated 24 June 2013, the following results regarding the development and production environment apply. The Common Criteria assurance requirements ALC – Life cycle support (i.e. ALC_CMC.5, ALC_CMS.5, ALC_DEL.1, ALC_DVS.2, ALC_FLR.1, ALC_LCD.1, ALC_TAT.3)

are fulfilled for the development and production sites of the TOE listed below:

Development site	Task within the evaluation
NXP Semiconductors Hamburg Business Unit Identification (BU ID) Stresemannallee 101 22569 Hamburg Germany	Development, Delivery and customer support
TSMC, Fab 2 and 5 No. 121 Park Ave. III Hsinchu Science Park Hsinchu, Taiwan 300, R.O.C.	Mask data processing and wafer production
TSMC, Fab 7 No. 6, Creation Rd. II Hsinchu Science Park Hsinchu, Taiwan 300, R.O.C.	Mask data processing and wafer production
TSMC, Fab 6 and Fab 14 No. 1, Nan-Ke North Rd. Tainan Science Park Tainan, Taiwan 741, R.O.C.	Mask and wafer production
Chipbond Technology Corporation No. 3, Li-Hsin Rd. V Science Based Industrial Park Hsin-Chu City Taiwan, R.O.C.	Bumping

Development site	Task within the evaluation
NXP Semiconductors GmbH Hamburg Test Center Europe - Hamburg (TCE-H) Stresemannallee 101 22569 Hamburg Germany	Test Center
Assembly Plant Bangkok 303 Moo 3 Chaengwattana Rd. Laksi, Bangkok 10210 Thailand	Test Center and Module assembly
Assembly Plant Kaohsiung NXP Semiconductors Taiwan Ltd #10, Jing 5th Road, N.E.P.Z, Kaohsiung 81170 Taiwan, R.O.C	Module assembly, test center
SMARTRAC Technology Ltd. Bangkok Street: 142 Moo, Hi-Tech Industrial Estate Tambon Ban Laean, Amphor Bang-Pa-In 13160 Ayutthaya Thailand	Inlay assembly
SMARTRAC TECHNOLOGY GERMANY GmbH Gewerbeparkstr. 10 51580 Reichshof-Wehnrath Germany	Inlay assembly
HID Global Teoranta Paic Tionscail na Tulaigh Balle na hAbhann Co. Galway Ireland	Inlay assembly
NXP Semiconductors Austria GmbH Styria Business Unit Identification (BU ID) Mikron-Weg 1 8108 Gratkorn Austria	Document control
NedCard B.V. Bijsterhuizen 25-29 6604 LM Wijchen The Netherlands	Module assembly

For the sites listed above, the requirements have been specifically applied in accordance with the Security Target [6]. The evaluators verified, that the threats, security objectives and requirements for the TOE life cycle phases up to delivery (as stated in the Security Target [6] and [8]) are fulfilled by the procedures of these sites.