OOx .-
00"

Huawei EulerOS Version 2.0

Common Criteria Evaluation

Security Target

(Against NIAP PP)

Last update
Classification

0.9
Released
2017-12-20
Public

1,111

Copyright © Huawei Technologies Co., Ltd. 2015. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means
without prior written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions
QD)

nuawer and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their
respective holders.

Notice

The purchased products, services and features are stipulated by the contract made between
Huawei and the customer. All or part of the products, services and features described in this
document may not be within the purchase scope or the usage scope. Unless otherwise
specified in the contract, all statements, information, and recommendations in this
document are provided "AS IS" without warranties, guarantees or representations of any
kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been
made in the preparation of this document to ensure accuracy of the contents, but all
statements, information, and recommendations in this document do not constitute a
warranty of any kind, express or implied.

2/111

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base
Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: http://e.huawei.com

3/111

About This Document

Purpose

This document provides description about ST (Security Target).

Change History

Changes between document issues are cumulative. The latest document
issue contains all the changes made in earlier issues.

Revisi
on Section . L
Date versi Number Change Description Author

on
2017-05- 0.1 ALL Initial Draft EulerOS team
17
2017-07- | 0.2 ALL Apply Typographical | EulerOS team
29 conventions for all SFR
2017-09- | 0.3 All RSA 4096 removed; | EulerOS team
13 SSH packets number

specification before rekeying is
removed;
Max ssh packet size changed
to 256KB;

Adjusted based on all TDs
related to ‘PP_OS_v4.1’;

4,111

2017-09- (0.4 ALL Change according to EE'’s
18 feedback in 2017/9/14 22:27:

Openssl updated to 1.0.2k to

support hostname verification;

Unigueness of counter for

aesl28-ctr and aes256-ctr is

briefed in section 6.1.2;

Sensitive persistent data is

collected in section 6.1.3;

Section 6.6.6 is revised, giving

algorithm for certificate

validation.
2017-09- | 0.5 ALL Explanation of ‘/etc/passwd | EulerOS team
28 NOT being credential file’ in

TSS;

“OCSP stapling” removed,
2017-10- | 0.6 ALL Complied TDs are added in | EulerOS team
10 section “Conformance Claims”;

Update section ‘key

destruction’ (FCS_CKM.4)

based on TD0239;

Some config items are

removed from the table in

section “FMT_SMF_EXT.1

Extended: Specification of

Management Functions”;

Authentication method (only

for SSH) added;

Remove rekey condition “1

Gigabyte” in

FCS_SSHS EXT.1.7;

Max packet size in SSH is

changed from 35000 t0 256K

(for SSH2);
2017-11- | 0.7 FCS_CKM.4 Add selection of “removal of | EulerOS team
03 power to the memory”.

Section 6.1.1 also revised

accordingly.
2017-11- | 0.8 6.4.4 Platform | Remove ‘IMA-appraisal’ from | EulerOS team
30 Integrity and boot integrity.

Code Integrity

5/111

FCS CK.4

Leaving ‘poweroff’ as the only
method for cryptographic key
destruction;

FPT_TST_EXT.1

Addition of ‘codesigning
check’;

2017-12-
20

0.9

TSS-protection
from
implementatio
n weakness

compiler options summarized,

Section 6.4.5

A new subsection ‘3. For
security update’ added.

EulerOS team

6/111

Contents

About This Document
Contents
List of Tables
1. Security Target Introduction
1.1 Security Target Reference
1.2 TOE Reference
1.3 TOE Overview
1.3.1 TOE Type
1.3.2 Major Security Features
1.3.3 Non-TOE Hardware/Software/Firmware supported
1.3.4 Intended Method of Use
1.4 TOE Description
1.4.1 Evaluated Configuration
1.4.2 TOE boundaries
2. CC Conformance Claims
3. Security Problem Definition
3.1 Threats
3.2 Assumptions

3.3 Organizational Security Policies

11

12

12

12

12

13

13

15

15

16

16

16

19

20

20

20

21
7/111

4. Security Objectives
4.1 Security Objectives for the TOE
4.2 Security Objectives for the Operational Environment
5. Security Requirements
5.1 TOE Security Functional Requirements
5.1.1 Cryptographic Support (FCS)
5.1.2 User Data Protection (FDP)
5.1.3 Security Management (FMT)
5.1.4 Protection of the TSF (FPT)
5.1.5 Audit Data Generation (FAU)
5.1.6 Identification and Authentication (FIA)
5.1.7 Trusted Path/Channels (FTP)
5.2 TOE Security Assurance Requirements
5.3 Security Requirements Rationale
5.3.1 Security Functional Requirements Rationale
5.3.2 Security Assurance Requirements Rationale
5.3.3 Rationale for Conformance to Protection Profile
6 TOE Summary Specification (TSS)
6.1 Cryptographic Support
6.1.1 Cryptographic Algorithms and Operations

6.1.2 Cryptographic network services

22

22

23

24

25

26

33

33

36

38

39

40

41

43

43

49

49

50

50

50

56

8/111

6.1.3 Data Protection 61

6.1.4 SFR Summary 62
6.2 User data protection 63
6.2.1 Discretionary Access Control 63
6.2.2 VPN client 66
6.2.3 SFR Summary 67
6.3 Security Management 67
6.3.1 SFR Summary 69
6.4 Protection of the TSF 70
6.4.1 Separation and Domain Isolation 70
6.4.2 Protection of OS Binaries, Audit and Configuration Data 71
6.4.3 Protection from Implementation Weaknesses 71
6.4.4 Platform Integrity and Code Integrity 72
6.4.5 OS and Application Updates 74
6.4.6 SFR summary 79
6.5 Audit 79
6.5.1 Audit event selection 80
6.5.2 Audit trail 80
6.5.3 Audit log access protection 81l
6.5.4 SFR summary 81
6.6 Identification and Authentication 81

9,111

6.6.1 PAM-based identification and authentication mechanisms 82

6.6.2 User Identity Changing 83

6.6.3 Authentication Data Management 84

6.6.4 SSH key-based authentication 85

6.6.5 Session locking 85

6.6.6 X.509 Certificate Validation and Generation 85

6.6.7 SFR Summary 87

6.7 Trusted Path/Channels 87
6.7.1 Local trusted path 87

6.7.2 Network-based trusted channel 88

6.7.3 SFR Summary 89

7 Appendix A. SBOP files and rationale. 90
A. Acronyms 107

10,111

List of Tables

Table 1

Table 2

Table 3

Table 4

Table 5

Security Functional Requirements

TOE Security Assurance Requirements

Cryptographic Algorithm Standards supported by EulerOS
Origin/storage/zeroization of keys

TLS RFCs implemented in EulerOS

26

42

53

55

58

11,111

1. Security Target Introduction

This section presents the following information required for a Common
Criteria (CC) evaluation:

e |dentifies the Security Target (ST) and the Target of Evaluation (TOE)
e Specifies the security target conventions
e Describes the organization of the security target

1.1 Security Target Reference

Name: EulerOS 2.0 Security Target
Version: 0.9

Publication 2017-12-20

Date:

Author: Huawei Technologies Co., Ltd.

1.2 TOE Reference

Name: EulerOS

Version: 2.0

Build 3.10.0-327.59.59.46.h34.x86_64
Release Date Dec 18 2017

1.3 TOE Overview

The TOE, EulerOS V2.0, is a general purpose, multi-user, multi-tasking Linux
based operating system. It provides a platform for a variety of applications,
including services for cloud environments.

TOE evaluation covers a potentially distributed network of systems running
the evaluated version and its configurations as well as other peer systems
operating within the same management domain.

12,111

The TOE Security Functions (TSFs) consist of functions of EulerOS that run in
kernel mode plus some trusted processes running in user mode. These are
the functions that enforce the security policy as defined in this Security
Target.

The TOE includes standard networking applications, such as sshd(8), which
allow to access the TOE via cryptographically protected communication
channel.

1.3.1 TOE Type

The TOE type is a Linux-based general-purpose operating system, supporting
preemptive multitasking, multiprocessor, and multi-user.

1.3.2 Major Security Features
The primary security features of the TOE include:

e Cryptographic communication: The TOE provides cryptographic
secured communication to either allow remote entities to log into the
TOE or local used to establish secure communications. The SSHv2
protocol is provided to set up interactive session with the TOE. The
TOE provides both the server side and the client side applications.
Using the OpenSSH suite, password-based and public-key-based
authentication are allowed. The TOE provides the capability of
configure a VPN channel for a cryptographically secured
communication with other remote entities. The TOE implements TLS
protocol to enable a trusted network path that is used for client and
server authentication, as well as HTTPS.

e Encrypted user data storage: EulerOS provides data protection
APIs in openssl package (eg, EVP_Encryptinit_ex, EVP_EncryptUpdate,
EVP_EncryptFinal_ex), which applications can use to protect any
persisted data that the developer deems to be sensitive.

e Auditing: The Lightweight Audit Framework (LAF) is designed to be an
audit system making EulerOS compliant with the requirements from
Common Criteria. LAF is able to intercept all system calls as well as
retrieving audit log entries from privileged user space applications.
The subsystem allows to configure the events to be actually audited

13/111

from the set of all events that are possible to be audited, and to
review and search audit logs retrieved.
Identification and Authentication: Each user accessing the TOE is
identified by a name, and is authenticated based on a password. PAM
(pluggable authentication module) mechanism can be used to define
or configure authentication policy, session management, password
update and so on.
Data Protection: Discretionary Access Control (DAC)allows owners of
named objects to control the access permissions to these objects. The
owners can permit or deny access by other users based on the
configured permission settings. The DAC mechanism is also used to
ensure that untrusted users cannot tamper with the TOE mechanisms.
Runtime Protection mechanisms: The TOE provides mechanisms to
prevent, or significantly increase the complexity of, exploitation of
common buffer overflow and similar attacks. These mechanisms are
used for the TSF and are also available to untrusted code. The TOE
implements multiple countermeasures against exploitation of
programming errors. Classical programming errors, such as buffer
overflows, are exploitable using a set of exploitation techniques. The
TOE blocks or significantly increases the challenge to use these
techniques with the following different approaches:
> Prevention of code execution on stack. This prevents buffer
overflow attacks which writes executable code (e.g. the
shellcode) into a stack variable and causes the CPU to execute
it.
> Address space layout randomization (ASLR), a security
technique also involved in protection from buffer overflow
attacks. In order to prevent an attacker from reliably jumping
to, for example, a particular exploited function in memory,
ASLR randomly arranges the address space positions of key
data areas of a process, including the base of the executable
and the positions of the stack, heap and libraries.
> Boot integrity and system integrity. All components in the boot
chain are measured at boot time, and some key system files
are also measured at system uptime. All the measurements
can be verified later by the administrator to see if some files
are compromised. All updated packages are authenticated and

14,111

verified based on their signature to ensure the integrity of the
whole system.

e Security Management: The security management facilities provided
by the TOE are usable by authorized users and/or authorized
administrators to modify the configuration of TSF. The TOE allows
remote management via OpenSSH. Administrative users can log in
remotely and perform the same management tasks as a locally
operating administrator.

e Trusted Path for Communications: EulerOS uses HTTPS, TLS and
SSH to provide a trusted path for communications.

1.3.3 Non-TOE Hardware/Software/Firmware supported

Non-TOE Hardware Identification: The following physical and virtual hardware
platforms, corresponding firmware, and components are supported by the
TOE :

e FusionCube 6000 and 6000C (with TPM chip embedded)

e FusionServer RH2288H V3 Rack Server (with TPM chip embedded)
e FusionServer RH8100 V3 Rack Server (with TPM chip embedded)

e FusionServer X6800 Data Center Server (with TPM chip embedded)
e FusionServer XH628 V3 Server Node (with TPM chip embedded)

e Linux QEMU-KVM-1.5.3 virtual platform (with virtualized TPM chip)

Note: the TPM chip used in evaluation is Infineon SLB9665.

1.3.4 Intended Method of Use
1.3.4.1 General-purpose computing environment

The TOE is a Linux-based multi-user multi-tasking operating system. It may
provide services to several users, local or remote, at the same time. After
successful login, the users gets access to a general computing environment,
allowing launching user applications, issuing user commands at shell level,
creating and accessing files. The TOE provides adequate mechanisms to
separate the users and protect their data. Privileged commands are
restricted to only administrative users.

15/111

The TOE operates in a networked environment with other instantiates of the
TOE as well as other well-behaved peer systems.

It is assumed that responsibility for the safeguarding of the user data
protected by the TOE can be delegated to human users of the TOE if such
users are allowed to log on and spawn processes on their behalf. All user
data is under the control of the TOE. The user data is stored in named
objects, and the TOE can associate a description of the access rights to that
object with each named object.

The TOE enforces controls such that access to data objects can only take
place in accordance with the access restrictions placed on that object by its
owner, and by administrative users. Ownership of named objects may be
transferred under the control of the access control policies implemented by
the TOE.

The TOE enforces discretionary access control policy, in which, access rights
(e.g. read, write, execute) can be assigned to data objects with respect to
subjects identified with their UID, GID and supplemental GIDs. Once a
subject is granted access to an object, the content of that object may be
used freely by the subject to influence other objects accessible to the same
subject.

1.4 TOE Description

1.4.1 Evaluated Configuration

The TOE was evaluated on the following physical platforms:
e FusionServer RH2288H V3 Rack Server (with TPM chip embedded).

Note: the TPM chip used is Infineon SLB9665.

The user needs to follow the instructions defined in the guidance for
reaching evaluated configuration.

1.4.2 TOE boundaries

1.4.2.1 Physical boundary

16/111

The TOE and its documentation (pdf format) are supplied in two forms: DVD
disks, and ISO images distributed via the Huawei Network.

The TOE was evaluated on the following physical platforms:
e FusionServer RH2288H V3 Rack Server (with TPM chip embedded).

The following documentations are provided for the TOE:
e Huawei EulerOS V2.0 Installation Guide, Version 0.2
e Huawei EulerOS V2.0 User Guide, Version 0.2

1.4.2.2 Logical boundary

Conceptually the TOE can be thought of as a collection of the following
security services which the security target describes with increasing detail in
the remainder of this document:

e Cryptographic Support

e User Data Protection

e Security Management

e Protection of the TOE Security Functions

e Security Audit

e |dentification and Authentication

e Trusted Path and Channels

The following security functions are included in the TOE:

e Cryptographic support: The TOE provides full-functional cryptography
used in protecting local system/user data and network traffic.

e User data protection: traditional discretionary access control (DAC) is
used to allow owners of local named objects to control the access
permissions to these objects.

e Security Management: The security management facilities provided by
the TOE are only usable by authorized users and/or authorized
administrators to modify the configuration of TSF.

e Protection of the TOE Security Functions: All the resources used by
TSFs in the TOE are protected by access control. All native binaries are
built in a way to avoid buffer overflow, and process address space
layout is randomized to hinder attacks. Secure boot and integrity
verification are used to keep the whole system from contamination.

17,111

e Auditing: the audit subsystem can be configured to intercept all
system calls and the stored audit log is protected by access control
mechanism.

e |dentification and Authentication: User must log in to the TOE before
accessing resources on it. PAM is used to define the user password
strength and user login behavior.

e Trusted path/channel: The TOE provides facilities to build trusted
channels for users to access the TOE remotely and securely.

18/111

2. CC Conformance Claims

This TOE and ST are consistent with the following specifications:

e Common Criteria for Information Technology Security Evaluation Part
2: Security functional requirements, Version 3.1, Revision 5, April
2017, extended (Part 2 extended)

e Common Criteria for Information Technology Security Evaluation Part
3: Security assurance requirements Version 3.1, Revision 5 April 2017,
(Part 3 extended)

e General Purpose Operating Systems Protection Profile, Version 4.1,
March 9, 2016 (GP OS PP)

e Extended Package for Secure Shell (SSH), Version 1.0, February 2,
2016

The security functional requirements and assurance activities have been
modified with the following NIAP Technical Decisions (TDs):

e (0246 - Assurance Activity for FIA_UAU.5.2

e 0244 - FCS_TLSC_EXT - TLS Client Curves Allowed
e (0243 - SSH Key-Based Authentication

e (0239 - Cryptographic Key Destruction in OS PP

e (0208 - Remote Users in OSPP

e 0163 - Update to FCS TLSC EXT.1.1 Test 5.4 and FCS_TLSS EXT.1.1
Test

e (0107 - FCS_CKM - ANSI X9.31-1998, Section 4.1 for Cryptographic Key
Generation.

e (0104 - FMT_SMF and FMT_MOF in OS PP

19,111

3. Security Problem Definition

The security problem definition consists of the threats to security,
organizational security policies, and usage assumptions as they relate to the
TOE. The assumptions, threats, and policies are copied from the General
Purpose Operating Systems Protection Profile, Version 4.1, March 9, 2016
(“GP OS PP").

3.1 Threats

T.NETWORK ATTACK
An attacker is positioned on a communications channel or elsewhere
on the network infrastructure. Attackers may engage in
communications with applications and services running on or part of
the OS with the intent of compromise. Engagement may consist of
altering existing legitimate communications.

T.NETWORK EAVESDROP
An attacker is positioned on a communications channel or elsewhere
on the network infrastructure. Attackers may monitor and gain access
to data exchanged between applications and services that are running
on or part of the OS.

T.LOCAL_ATTACK
An attacker may compromise applications running on the OS. The
compromised application may provide maliciously formatted input to
the OS through a variety of channels including unprivileged system
calls and messaging via the file system.

T.LIMITED_PHYSICAL_ACCESS
An attacker may attempt to access data on the OS while having a
limited amount of time with the physical device.

3.2 Assumptions

A.PLATFORM

20/111

The OS relies upon a trustworthy computing platform for its execution.
This underlying platform is out of scope of this PP.

A.PROPER _USER
The user of the OS is not willfully negligent or hostile, and uses the
software in compliance with the applied enterprise security policy. At
the same time, malicious software could act as the user, so
requirements which confine malicious subjects are still in scope.

A.PROPER_ADMIN

The administrator of the OS is not careless, willfully negligent or hostile,
and administers the OS within compliance of the applied enterprise
security policy.

3.3 Organizational Security Policies

There are no Organizational Security Policies for the protection profile.

21,111

4. Security Objectives

This section defines the security objectives of EulerOS and its supporting
environment. Security objectives, categorized as either TOE security
objectives or objectives by the supporting environment, reflect the stated
intent to counter identified threats, comply with any organizational security
policies identified, or address identified assumptions. All of the identified
threats, organizational policies, and assumptions are addressed under one of
the categories below.

4.1 Security Objectives for the TOE

Below are the security objectives for EulerOS, which are needed to comply
with the GP OS PP.

O.ACCOUNTABILITY
Conformant OSs ensure that information exists that allows
administrators to discover unintentional issues with the configuration
and operation of the operating system and discover its cause.
Gathering event information and immediately transmitting it to
another system can also enable incident response in the event of
system compromise.

O.INTEGRITY
Conformant OSs ensure the integrity of their update packages. OSs are
seldom if ever shipped without errors, and the ability to deploy patches
and updates with integrity is critical to enterprise network security.
Conformant OSs provide execution environment-based mitigations that
increase the cost to attackers by adding complexity to the task of
compromising systems.

O.MANAGEMENT

To facilitate management by users and the enterprise, conformant

OSes provide consistent and supported interfaces for their security-

relevant configuration and maintenance. This includes the deployment

of applications and application updates through the use of platform-

supported deployment mechanisms and formats, as well as providing

mechanisms for configuration and application execution control.
22/111

O.PROTECTED STORAGE
To address the issue of loss of confidentiality of credentials in the
event of loss of physical control of the storage medium, conformant
OSs provide data-at-rest protection for credentials. Conformant OSes
also provide access controls which allow users to keep their files
private from other users of the same system.

O.PROTECTED_COMMS
To address both passive (eavesdropping) and active (packet
modification) network attack threats, conformant OSs provide
mechanisms to create trusted channels for CSP and sensitive data.
Both CSP and sensitive data should not be exposed outside of the
platform.

4.2 Security Objectives for the Operational
Environment

The TOE is assumed to be complete and self-contained and, as such, is not
dependent upon any other products to perform properly. However, certain
objectives with respect to the general operating environment must be met.
Below are the security objectives for the operational environment as
specified in the protection profile.

OE.PLATFORM
The OS relies on being installed on trusted hardware.

OE.PROPER_USER
The user of the OS is not willfully negligent or hostile, and uses the
software within compliance of the applied enterprise security policy.
Standard user accounts are provisioned in accordance with the least
privilege model. Users requiring higher levels of access should have a
separate account dedicated for that use.

OE.PROPER_ADMIN

The administrator of the OS is not careless, willfully negligent or hostile,
and administers the OS within compliance of the applied enterprise
security policy.

23/111

5. Security Requirements

The section defines the Security Functional Requirements (SFRs) and
Security Assurance Requirements (SARs) for the TOE. The requirements in
this section have been drawn from the General Purpose Operating Systems
Protection Profile, Version 4.1, March 9, 2016 (GP OS PP), the Common
Criteria, or are defined in the following section.

Conventions:

Where requirements are drawn from the protection profile, the requirements
are copied verbatim, except for some changes to required identifiers to
match the iteration convention of this document, from that protection profile
and only operations performed in this security target are identified.

The extended requirements, extended component definitions and extended
requirement conventions in this security target are drawn from the
protection profile; the security target reuses the conventions from the
protection profile which include the use of the word “Extended” and the

“ EXT” identifier to denote extended functional requirements. The security
target assumes that the protection profile correctly defines the extended
components and so they are not reproduced in the security target.

The following conventions are used to identify operations:

Refinement: Refinements are identified using bold text (e.g., added
text) for additions and strike-through text (e.q., deleted-text) for
deletions.

Selection (denoted by italicized text, bold and in square brackets): is
used to select one or more options provided by the [CC] in stating a
requirement.

Assignment operation (denoted by italicized text in square brackets):
is used to assign a specific value to an unspecified parameter, such as
the length of a password. Showing the value in square brackets
indicates assignment.

Iteration operation: are identified with either a number or element
inside parentheses (e.g. "(1)")

24,111

5.1 TOE Security Functional Requirements

Below are the Security Functional Requirements for the TOE.

Requirement Requirement Component

Class ;
Security Audit : Audit Data Generation (FAU_GEN.1)

: Cryptographic : Cryptographlc Key Generatlon for (FCS_CKM. 1())

. Support (FCS)

Cryptographic Operation for Data En_cryption/Decryption
: (FCS COP.1(1))

. Cryptographic Operation for Data Encryption/Decryption
: (FCS_COP.1(SSH))

: Cryptographic Operation for Hashing (FCS COP.1(2))

: Cryptographic Operation for Keyed Hash Algorithms
: (FCS_COP.1(4))

: User Data . Access Controls for Protectmg User Data

 Protection L(EDP ACE EXT L) st

AFDP)Information Flow Control (FDP IFC EXT.1) .
Identification : Authorization Failure Handling (FIA AFL.1) .
& . Multiple Authentication Mechanisms (FIA UAU.5)
Authenticatio : X.509 Certification Validation (FIA X509 EXT.1)

N (FIA)X509 Certificate Authentication (FIA X509 EXT.2)

: Security : Management of Security Functions Behavior ;

- Management (FMT MOF EXT.1) s

. (FMT) . Specification of Management Functions (FMT_SMF_EXT.1

: Extended)

...

: Protection of | Access Controls (FPT ACF EXT.1)

‘the TSF (FPT) | Address Space Layout Randomization (FPT ASLR EXT.1)

25/111

: Trusted : Trusted Path (FTP_TRP.1)

. Path/Channels : Trusted Channel Communication (FTP_ITC_EXT.1)
(FTP) f

Table 1 Security Functional Requirements
5.1.1 Cryptographic Support (FCS)
FCS_CKM.1(1) Cryptographic Key Generation

FCS_CKM.1.1(1)
The OS shall generate asymmetric cryptographic keys in accordance with a
specified cryptographic key generation algorithm [selection:

RSA schemes using cryptographic key sizes of 2048-bit or
greater that meet the following: [selection: FIPS PUB 186-4,
“Digital Signature Standard (DSS)”, Appendix B.3] ,

ECC schemes using “NIST curves” P-256, P-384 and [selection:
P-521] that meet the following: FIPS PUB 186-4, “Digital
Signature Standard (DSS)”, Appendix B.4

FCS_CKM.2(1) Cryptographic Key Establishment

FCS_CKM.2.1(1)
The OS shall implement functionality to perform cryptographic key
establishment in accordance with a specified cryptographic key
establishment method:
RSA-based key establishment schemes that meets the following: NIST
Special Publication 800-56B, “Recommendation for Pair-Wise Key
Establishment Schemes Using Integer Factorization Cryptography”
and [selection:
Elliptic curve-based key establishment schemes that meets the
following: NIST Special Publication 800-56A, “Recommendation
for Pair-Wise Key Establishment Schemes Using Discrete
Logarithm Cryptography”
]

FCS_CKM.4 Cryptographic Key Destruction

26/111

FCS CKM.4.1
The TSF shall destroy cryptographic keys in accordance with the specified
cryptographic key destruction methods [selection:

- For volatile memory, the destruction shall be executed by a
[selection: removal of power to the memory]

]
FCS_COP.1(1) Cryptographic Operation - Encryption/Decryption

FCS_COP.1.1(1)
The OS shall perform encryption/decryption services for data in accordance
with a specified cryptographic algorithm [selection:

AES-XTS (as defined in NIST SP 800-38E),
AES-CBC (as defined in NIST SP 800-38A)]
and [selection:
AES Key Wrap (KW) (as defined in NIST SP 800-38F),
AES-GCM (as defined in NIST SP 800-38D)
] and cryptographic key sizes [selection: 128-bit, 256-bit].

FCS_COP.1(SSH) Cryptographic Operation - Encryption/Decryption

Application Note: FCS COP.1(55H) corresponds to FCS_COP.1(1) in the
Extended Package for Secure Shell (SSH) protection profile.

FCS_COP.1.1(SSH)

The SSH software shall perform encryption/decryption services for data in
accordance with a specified cryptographic algorithm AES-CTR (as defined in
NIST SP 800-38A) mode and cryptographic key sizes [selection: 128-bit,
256-bit].

FCS_COP.1(2) Cryptographic Operation - Hashing

FCS_COP.1.1(2)
The OS shall perform cryptographic hashing services in accordance with a
specified cryptographic algorithm SHA-1 and [selection:

SHA-256,
SHA-384,
SHA-512

27 /111

] and message digest sizes 160 bits and [selection:
256 bits,
384 bits,
512 bits

] that meet the following: FIPS Pub 180-4.

FCS_COP.1(3) Cryptographic Operation - Signing

FCS_COP.1.1(3)
The OS shall perform cryptographic signature services (generation and
verification) in accordance with a specified cryptographic algorithm
[selection:
RSA schemes using cryptographic key sizes of 2048-bit or
greater that meet the following: FIPS PUB 186-4, “Digital
Signature Standard (DSS)”, Section 4,
ECDSA schemes using “NIST curves” P-256, P-384 and
[selection: P-521] that meet the following: FIPS PUB 186-4,
“Digital Signature Standard (DSS)"”, Section 5

FCS_COP.1(4) Cryptographic Operation - Keyed-Hash Message
Authentication

FCS_COP.1.1(4)
The OS shall perform keyed-hash message authentication services in
accordance with a specified cryptographic algorithm [selection:

SHA-1,
SHA-256,
SHA-384,
SHA-512

] with key sizes [assignment: 512 and 1024 bits] and message digest sizes
[selection: 160 bits, 256 bits, 384 bits, 512 bits] that meet the
following: FIPS Pub 198-1 The Keyed-Hash Message Authentication Code and
FIPS Pub 180-4 Secure Hash Standard.

FCS_RBG_EXT.1 Random Bit Generation

28/111

FCS RBG_EXT.1.1
The OS shall perform all deterministic random bit generation (DRBG) services
in accordance with NIST Special Publication 800-90A using [selection:

Hash DRBG (any),

HMAC DRBG (any),

CTR_DRBG (AES)

]
Application Note:

1) The underlying cryptographic primitives for Hash DRBG and HMAC DRBG
is SHA-256.
2) The underlying cryptographic primitives for CTR_DRBG is AES-256.

FCS RBG_EXT.1.2
The deterministic RBG used by the OS shall be seeded by an entropy source
that accumulates entropy from a [selection:

software-based noise source,

platform-based noise source
] with @ minimum of [selection:

128 bits

] of entropy at least equal to the greatest security strength (according to
NIST SP 800-57) of the keys and hashes that it will generate.

FCS_STO_EXT.1 Storage of Sensitive Data

FCS STO EXT.1.1

The OS shall implement functionality to encrypt sensitive data stored in non-
volatile storage and provide interfaces to applications to invoke this
functionality.

FCS_TLSC EXT.1 TLS Client Protocol

FCS TLSC EXT.1.1

The OS shall implement TLS 1.2 (RFC 5246) supporting the following cipher
suites:

Mandatory cipher suites: TLS_RSA_WITH_AES_128 CBC_SHA as defined in
RFC 5246

Optional cipher suites: [selection:

29/111

]

TLS ECDHE RSA_WITH AES_ 128 CBC SHA as defined in RFC
4492,

TLS ECDHE ECDSA WITH AES 128 CBC SHA as defined in RFC
4492,

TLS ECDHE RSA_WITH _AES 256 _CBC SHA as defined in RFC
4492,

TLS ECDHE ECDSA WITH AES 256 CBC SHA as defined in RFC
4492,

TLS ECDHE RSA_WITH _AES 128 CBC SHA256 as defined in RFC
5289,

TLS ECDHE_ECDSA_WITH_AES 128 CBC_SHA256 as defined in
RFC 5289,

TLS ECDHE RSA_WITH AES_128 GCM_SHA256 as defined in RFC
5289,

TLS ECDHE _ECDSA_WITH_AES 128 GCM SHA256 as defined in
RFC 5289,

TLS ECDHE RSA_WITH _AES 256 _CBC SHA384 as defined in RFC
5289,

TLS ECDHE_ECDSA_WITH_AES 256 _CBC_SHA384 as defined in
RFC 5289,

TLS ECDHE RSA_WITH AES 256 GCM_SHA384 as defined in RFC
5289,

TLS ECDHE_ECDSA_WITH_AES 256 GCM SHA384 as defined in
RFC 5289,

TLS RSA_WITH AES 128 CBC SHA256 as defined in RFC 5246,
TLS RSA_WITH AES 256 _CBC SHA as defined in RFC 5246,
TLS RSA_WITH AES 256 _CBC SHA256 as defined in RFC 5246

FCS _TLSC EXT.1.2
The OS shall verify that the presented identifier matches the reference
identifier according to RFC 6125.

FCS TLSC EXT.1.3
The OS shall only establish a trusted channel if the peer certificate is valid.

FCS_TLSC EXT.2 TLS Client Protocol

30/111

FCS _TLSC EXT.2.1

The TSF shall present the Supported Elliptic Curves Extension in the Client
Hello with the following NIST curves: [selection: secp256rl1, secp384rl,
secp521rl] and-no-othercurves.

FCS_SSH _EXT.1 SSH Protocol

FCS SSH EXT.1.1

The SSH software shall implement the SSH protocol that complies with RFCs
4251, 4252, 4253, 4254 and [selection: 5647, 5656, 6668] as a
[selection: client, server].

FCS_SSHC _EXT.1 SSH Protocol - Client

FCS _SSHC EXT.1.1

The SSH client shall ensure that the SSH protocol implementation supports
the following authentication methods as described in RFC 4252: public key-
based, and [selection: password-based].

FCS _SSHC EXT.1.2
The SSH client shall ensure that, as described in RFC 4253, packets greater

than [assignment: 256K] bytes in an SSH transport connection are dropped.

FCS_SSHC EXT.1.3

The SSH software shall ensure that the SSH transport implementation uses
the following encryption algorithms and rejects all other encryption
algorithms: aes128-ctr, aes256-ctr, [selection: aes128-cbc, aes256-cbc,
AEAD AES 128 GCM, AEAD AES 256 GCM|].

FCS SSHC EXT.1.4

The SSH client shall ensure that the SSH transport implementation uses
[selection: ssh-rsa, ecdsa-sha2-nistp256] and [selection: ecdsa-sha2-
nistp384] as its public key algorithm(s) and rejects all other public key
algorithms.

FCS_SSHC EXT.1.5
The SSH client shall ensure that the SSH transport implementation uses
[selection: hmac-shal, hmac-sha2-256, hmac-sha2-512] and

31,111

[selection: AEAD_AES 128 GCM, AEAD AES 256 GCM] as its data
integrity MAC algorithm(s) and rejects all other MAC algorithm(s).

FCS_SSHC EXT.1.6

The SSH client shall ensure that [selection: ecdh-sha2-nistp256] and
[selection: ecdh-sha2-nistp384,ecdh-sha2-nistp521] are the only
allowed key exchange methods used for the SSH protocol.

FCS _SSHC EXT.1.7

The SSH server shall ensure that the SSH connection be rekeyed after
[selection: no more than 1 Gigabyte of data has been transmitted,
no more than 1 hour] using that key.

FCS SSHC EXT.1.8

The SSH client shall ensure that the SSH client authenticates the identity of
the SSH server using a local database associating each host name with its
corresponding public key or [selection: no other methods] as described in
RFC 4251 section 4.1.

FCS_SSHS EXT.1 SSH Protocol - Server

FCS_SSHS EXT.1.1

The SSH server shall ensure that the SSH protocol implementation supports
the following authentication methods as described in RFC 4252: public key-
based, and [selection: password-based].

FCS_SSHS EXT.1.2
The SSH server shall ensure that, as described in RFC 4253, packets greater
than [assignment: 256K] bytes in an SSH transport connection are dropped.

FCS_SSHS EXT.1.3

The SSH server shall ensure that the SSH transport implementation uses the
following encryption algorithms and rejects all other encryption algorithms:
aesl28-ctr, aes256-ctr, [selection: aes128-cbc, aes256-cbc,
AEAD AES 128 GCM, AEAD AES 256 GCM].

FCS_SSHS EXT.1.4
The SSH server shall ensure that the SSH transport implementation uses
[selection: ssh-rsa, ecdsa-sha2-nistp256] and [selection: ecdsa-sha2-

32/,/111

nistp384] as its public key algorithm(s) and rejects all other public key
algorithms.

FCS_SSHS EXT.1.5

The SSH server shall ensure that the SSH transport implementation uses
[selection: hmac-shal, hmac-sha2-256, hmac-sha2-512] and
[selection: AEAD_AES 128 GCM, AEAD _AES 256_GCM] as its MAC
algorithm(s) and rejects all other MAC algorithm(s).

FCS_SSHS_EXT.1.6

The SSH server shall ensure that [selection: ecdh-sha2-nistp256] and
[selection: ecdh-sha2-nistp384, ecdh-sha2-nistp521] are the only
allowed key exchange methods used for the SSH protocol.

FCS_SSHS EXT.1.7
The SSH server shall ensure that the SSH connection be rekeyed after
[selection: no more than 1 hour] using that key.

5.1.2 User Data Protection (FDP)
FDP_ACF_EXT.1 Access Controls for Protecting User Data

FDP_ACF EXT.1.1
The OS shall implement access controls which can prohibit unprivileged
users from accessing files and directories owned by other users.

FDP_IFC_EXT.1 Information flow control

FDP_IFC EXT.1.1
The OS shall [selection:

provide an interface which allows a VPN client to protect all IP
traffic using IPsec

] with the exception of IP traffic required to establish the VPN connection.
5.1.3 Security Management (FMT)

FMT_MOF_EXT.1 Extended: Management of security functions
behavior

33/111

FMT_MOF_EXT.1.1

The TSF shall restrict the ability to perform the function indicated in column
3 of the “Management Functions” table in FMT_SMF_EXT.1.1 to the

administrator.

FMT_SMF_EXT.1 Extended: Specification of Management Functions

FMT_SMF _EXT.1.1 The TSF shall be capable of performing the following

management functions:

Management Function FMT_SMF_EXT | FMT_MOF_EXT
.1 .1

Enable/disable screen lock M O
Configure screen lock inactivity M O
timeout
Configure local audit storage M X
capacity
Configure minimum password 0] X
Length
Configure minimum number of 0] X
special characters in password
Configure minimum number of 0] X
numeric characters in password
Configure minimum number of 0] X
uppercase characters in password

34,111

Configure minimum number of
lowercase characters in password

Configure remote connection
inactivity timeout

. icatod
logon.

Configure lockout policy for
unsuccessful authentication
attempts through [selection:
timeouts between attempts,
limiting number of attempts
during a time period]

Configure host-based firewall

Configure name/address of
audit/logging server to which to
send audit/logging records

Configure audit rules

Configure name/address of
network time server

Enable/dicabl : :
update

35,111

Enable/disable Bluetooth-interface- | O o

Configure USB interfaces 0] X
Enable/disable_[assi i

of-other-external-interfaces]- © ©
[assignment:none] 0] 0]

Application Note: The intent of this requirement is to ensure that the ST is
populated with the management functions that are provided by the TOE. This
enables developers of compliance checklists, including those provided as
operational user guidance, to leverage this table by providing enterprise-
specific values for each evaluated item.

Functions with strikethrough means that the TOE does NOT support the
operation.

5.1.4 Protection of the TSF (FPT)
FPT_ACF_EXT.1 Access controls

FPT ACF_EXT.1.1
The OS shall implement access controls which prohibit unprivileged users
from modifying:

Kernel and its drivers/modules

Security audit logs

Shared libraries

System executables

System configuration files

[assignment: none]

FPT _ACF_EXT.1.2
The OS shall implement access controls which prohibit unprivileged users
from reading:

Security audit logs

System-wide credential repositories

[assignment: none]

36/111

FPT_ASLR EXT.1 Address Space Layout Randomization

FPT _ASLR EXT.1.1
The OS shall always randomize process address space memory locations
except for [assignment: none].

FPT_SBOP_EXT.1 Stack Buffer Overflow Protection

FPT SBOP EXT.1.1
The OS shall be compiled with stack-based buffer overflow protections
enabled.

FPT_TST_EXT.1 Boot Integrity

FPT _TST EXT.1.1
The OS shall verify the integrity of the bootchain up through the OS kernel
and [selection:

[assignment: operating system executable code and application
executable code]

] prior to its execution through the use of [selection:
a digital signature using a hardware-protected asymmetric key

]

FPT_TUD_EXT.1 Trusted Update

FPT TUD EXT.1.1
The OS shall provide the ability to check for updates to the OS software itself.

FPT TUD EXT.1.2
The OS shall cryptographically verify updates to itself using a digital
signature prior to installation using schemes specified in ECS_COP.1(3).

FPT_TUD _EXT.2 Trusted Update for Application Software

FPT TUD EXT.2.1
The OS shall provide the ability to check for updates to application software.

FPT TUD _EXT.2.2
The OS shall cryptographically verify the integrity of updates to applications

using a digital signature specified by FCS_COP.1(3) prior to installation.
37,111

5.1.5 Audit Data Generation (FAU)
FAU GEN.1 Audit Data Generation

FAU GEN.1.1

The OS shall be able to generate an audit record of the following auditable
events:

a. Start-up and shut-down of the audit functions;
b. All auditable events for the not specified level of audit; and
C.
o Authentication events (Success/Failure);
o Use of privileged/special rights events (Successful and
unsuccessful security, audit, and configuration changes);
o Privilege or role escalation events (Success/Failure);
o [selection:

File and object events (Successful and unsuccessful
attempts to create, access, delete, modify, modify
permissions),

User and Group management events (Successful and
unsuccessful add, delete, modify, disable),

Audit and log data access events (Success/Failure),

Kernel module loading and unloading events
(Success/Failure),

Administrator or root-level access events
(Success/Failure),

[assignment: none].

]

FAU GEN.1.2
The OS shall record within each audit record at least the following
information:

a. Date and time of the event, type of event, subject identity (if
applicable), and outcome (success or failure) of the event; and

b. For each audit event type, based on the auditable event definitions of
the functional components included in the PP/ST, [assignment: none].

38,111

5.1.6 ldentification and Authentication (FIA)
FIA_AFL.1 Authentication failure handling

FIA_AFL.1.1

The OS shall detect when [selection:
[assignment: an administrator configurable positive integer within
[assignment: greater than or equal to 3]]

] unsuccessful authentication attempts for [selection:
authentication based on user name and password

] occur related to [assignment: the last successful authentication by that
user within 300 seconds].

FIA AFL.1.2
When the defined number of unsuccessful authentication attempts for an
account has been met, the OS shall: [selection: Account Lockout]

FIA_UAU.5 Multiple Authentication Mechanisms

FIA_ UAU.5.1
The OS shall provide the following authentication mechanisms [selection:

authentication based on user name and password,

for use in SSH only SSH public key-based authentication as
specified by the Extended Package for Secure Shell

] to support user authentication.

FIA_ UAU.5.2

The OS shall authenticate any user's claimed identity according to the
[assignment: authentication based on username and password is
performed for TOE-originated requests and with credentials stored by the OS,
Remote authentication for SSH based on username and password or public
key-based].

FIA_X509 EXT.1 X.509 Certificate Validation

FIA_ X509 EXT.1.1
The OS shall implement functionality to validate certificates in accordance
with the following rules:
RFC 5280 certificate validation and certificate path validation.
39,111

The certificate path must terminate with a trusted CA certificate.

The OS shall validate a certificate path by ensuring the presence of the
basicConstraints extension and that the CA flag is set to TRUE for all
CA certificates.

The OS shall validate the revocation status of the certificate using
[selection: a Certificate Revocation List (CRL) as specified in
RFC 5759].

The OS shall validate the extendedKeyUsage field according to the
following rules:

o Certificates used for trusted updates and executable code
integrity verification shall have the Code Signing purpose (id-kp 3
with OID 1.3.6.1.5.5.7.3.3) in the extendedKeyUsage field.

o Server certificates presented for TLS shall have the Server
Authentication purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in the
extendedKeyUsage field.

o Client certificates presented for TLS shall have the Client
Authentication purpose (id-kp 2 with OID 1.3.6.1.5.5.7.3.2) in the
extendedKeyUsage field.

o S/MIME certificates presented for email encryption and signature
shall have the Email Protection purpose (id-kp 4 with OID
1.3.6.1.5.5.7.3.4) in the extendedKeyUsage field.

o OCSP certificates presented for OCSP responses shall have the
OCSP Signing purpose (id-kp 9 with OID 1.3.6.1.5.5.7.3.9) in the
extendedKeyUsage field.

o (Conditional) Server certificates presented for EST shall have the
CMC Registration Authority (RA) purpose (id-kp-cmcRA with OID
1.3.6.1.5.5.7.3.28) in the extendedKeyUsage field.

FIA X509 EXT.1.2
The OS shall only treat a certificate as a CA certificate if the basicConstraints
extension is present and the CA flag is set to TRUE.

FIA_X509 EXT.2 X.509 Certificate Authentication

FIA X509 EXT.2.1
The OS shall use X.509v3 certificates as defined by RFC 5280 to support
authentication for TLS and [selection: HTTPS] connections.

5.1.7 Trusted Path/Channels (FTP)
40,111

FTP_ITC_EXT.1 Trusted channel communication

FTP_ITC EXT.1.1
The OS shall use [selection:

TLS as conforming to FCS_TLSC EXT.1,
SSH as conforming to the Extended Package for Secure Shell

] to provide a trusted communication channel between itself and authorized
IT entities supporting the following capabilities: [selection: management
server] that is logically distinct from other communication channels and
provides assured identification of its end points and protection of the channel
data from disclosure and detection of modification of the channel data.

FTP_TRP.1 Trusted Path

FTP_TRP.1.1

The OS shall provide a communication path between itself and [selection:
remote, local] users that is logically distinct from other communication
paths and provides assured identification of its endpoints and protection of
the communicated data from modification and disclosure.

FTP_TRP.1.2
The OS shall permit [selection: the TSF, local users, remote users] to
initiate communication via the trusted path.

FTP_TRP.1.3
The OS shall require use of the trusted path for all remote administrative
actions.

5.2 TOE Security Assurance Requirements

This table below gives the set of SARs from CC part 3 that are required in
evaluations against the General Purpose Operating Systems Protection
Profile.

Security Target (ASE) ST Introduction (ASE_INT.1)

Conformance Claims (ASE_CCL.1)
Security Objectives (ASE_0OBJ.1)
Extended Components Definition

41,111

(ASE_ECD.1)

Stated Security Requirements
(ASE_REQ.1)

Security Problem Definition (ASE_SPD.1)
TOE Summary Specification (ASE_TSS.1)

Design (ADV) Basic Functional Specification
(ADV_FSP.1)

Guidance (AGD) Operational User Guidance (AGD_OPE.1)
Preparative Procedures (AGD_PRE.1)

Lifecycle (ALC) Labeling of the TOE (ALC_CMC.1)

TOE CM Coverage (ALC CMS.1)
Timely Security Updates

(ALC_TSU EXT.1)

Testing (ATE) Independent Testing - Conformance
(ATE_IND.1)

Vulnerability Assessment Vulnerability Survey (AVA VAN.1)
(AVA)

Table 2 TOE Security Assurance Requirements
ALC TSU EXT.1 Timely Security Updates
Developer action elements:

ALC TSU EXT.1.1D
The developer shall provide a description in the TSS of how timely security
updates are made to the OS.

ALC TSU EXT.1.2D
The developer shall provide a description in the TSS of how users are notified
when updates change security properties or the configuration of the product.

Content and presentation elements:

ALC TSU EXT.1.1C
The description shall include the process for creating and deploying security
updates for the OS software.

ALC_TSU_EXT.1.2C

42,111

The description shall include the mechanisms publicly available for reporting
security issues pertaining to the OS.

Note: The reporting mechanism could include web sites, email addresses, as
well as a means to protect the sensitive nature of the report (e.g., public
keys that could be used to encrypt the details of a proof-of-concept exploit).

Evaluator action elements:

ALC TSU EXT.1.1E
The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

5.3 Security Requirements Rationale

This section provides a rationale that describes how the Security Target
reproduced the security functional requirements and security assurance
requirements from the protection profile.

EulerOS is a general purpose operating system, and this Security Target is in
compliance with the General Purpose Operating Systems Protection Profile,
Version 4.1, March 9, 2016 (GP OS PP).

Moreover, as demonstrated in this security target, EulerOS runs on a wide
variety of hardware platforms and so it is a general purpose operating
system.

5.3.1 Security Functional Requirements Rationale

For SFRs, at first, all the unconditional requirements in the main body of the
GP OS PP are coped into this ST; then, as elliptic curves are supported for
authentication and key agreement in TLS protocol, the following selection-
based requirement is included, which is defined in the annex B in the GP OS
PP.

FCS_TLSC EXT.2 TLS Client Protocol

And because no DTLS is implemented in the TOE, DTLS is not selected in the
component FCS TLSC _EXT.2, so the selection-based requirement

43,111

FCS_DTLS_EXT.1 is not necessary to be satisfied, which is not included in this
ST.

Because “SSH as conforming to the Extended Package for Secure Shell” is
selected for component FTP_ITC EXT.1 Trusted channel communication, the
requirements from the Extended Package for Secure Shell (SSH) Protection
Profile, Version 1.0, February 19,2016(EP SSH PP) are also drawn into this ST,
which include the following components based on the selection fact:

FCS_COP.1(SSH) Cryptographic Operation - Encryption/Decryption
FCS_SSH EXT.1 SSH Protocol

FCS_SSHC EXT.1 SSH Protocol - Client

FCS_SSHS EXT.1 SSH Protocol - Server

Finally, no other optional or objective requirements defined in the Annex of
the GP OS PP is selected in this ST.

Since all the SFRs are drawn from either the GP OS PP or the EP SSH PP, all
dependencies between SFRs are already addressed by the PPs or justified.

Below is the table showing the mapping from protection profile SFRs to
security target SFRs.

PP Operation &
PP Requirement ST Requirement Rationale
Multiple
selections
which are
allowed by
FAU GEN.1 FAU GEN.1 the PP.
Multiple

GP selections
OS PP which are
allowed by
FCS_CKM.1(1) FCS_CKM.1(1) the PP.

A selection
which is
allowed by
FCS_CKM.2(1) FCS_CKM.2(1) the PP.

44,111

FCS_CKM.4

FCS_CKM.4

Two
selections
which are
allowed by
the PP.

FCS_COP.1(1)

FCS_COP.1(1)

Multiple
selections
which are
allowed by
the PP.

FCS_COP.1(2)

FCS_COP.1(2)

Multiple
selections
which are
allowed by
the PP.

FCS_COP.1(3)

FCS_COP.1(3)

Multiple
selections
which are
allowed by
the PP.

FCS_COP.1(4)

FCS_COP.1(4)

Multiple
selections
which are
allowed by
the PP.

FCS_RBG_EXT.1

FCS_RBG_EXT.1

Multiple
selections
which are
allowed by
the PP.

FCS_STO_EXT.1

FCS_STO_EXT.1

Copied from
the PP
without
changes

FCS_TLSC_EXT.1

FCS_TLSC_EXT.1

Multiple
selections
which are
allowed by

45,111

the PP.

FCS_TLSC_EXT.2

FCS_TLSC_EXT.2

Copied from
the PP
without
changes.

FDP_ACF_EXT.1

FDP_ACF_EXT.1

Copied from
the PP
without
changes.

FDP_IFC_EXT.1

FDP_IFC_EXT.1

A selection
which is
allowed by
the PP.

FMT_MOF_EXT.1

FMT_MOF_EXT.1

Copied from
the Technical
Decision
#0104
without
changes.

FMT_SMF_EXT.1

FMT_SMF_EXT.1

Refinements,
selections
and
assignments
which are
allowed by
the Technical
Decision
#104.

FPT_ACF EXT.1

FPT_ACF EXT.1

Copied from
the PP
without
changes.

FPT_ASLR EXT.1

FPT_ASLR EXT.1

Copied from
the PP
without
changes.

FPT_SBOP_EXT.1

FPT_SBOP_EXT.1

Copied from
the PP

46 /111

without
changes.

FPT TST EXT.1

FPT TST EXT.1

Multiple
selections
which are
allowed by
the PP.

FPT TUD_EXT.1

FPT TUD_EXT.1

Copied from
the PP
without
changes.

FPT_TUD_EXT.2

FPT TUD_EXT.2

Copied from
the PP
without
changes.

FIA_AFL.1

FIA_AFL.1

Two
selections
and an
assignment
which is
allowed by
the PP.

FIA_UAU.5

FIA_UAU.5

Multiple
selections
which are
allowed by
the PP.

FIA_X509 EXT.1

FIA_X509 EXT.1

A selection
which is
allowed by
the PP.

FIA_X509 EXT.2

FIA_X509 EXT.2

A selection
which is
allowed by
the PP.

FTP_ITC_EXT.1

FTP_ITC_EXT.1

Multiple
selections
and an

47111

assignment
which are
allowed by
the PP.

FTP_TRP.1

FTP_TRP.1

Multiple
selections
which are
allowed by
the PP.

EP
SSH
PP

FCS_COP.1(1)

FCS_COP.1(SSH)

Multiple
selections
and an
assignment
which are
allowed by
the PP.

FCS_SSH_EXT.1

FCS_SSH_EXT.1

Multiple
selections
and an
assignment
which are
allowed by
the PP.

FCS_SSHC_EXT.1

FCS_SSHC_EXT.1

Multiple
selections
and an
assignment
which are
allowed by
the PP.

FCS_SSHS_EXT.1

FCS_SSHS_EXT.1

Multiple
selections
and an
assignment
which are
allowed by
the PP.

48 /111

5.3.2 Security Assurance Requirements Rationale

The statement of security assurance requirements (SARs) found in section
5.2 TOE Security Assurance Requirements, is in strict conformance with the
General Purpose Operating Systems Protection Profile.

5.3.3 Rationale for Conformance to Protection Profile

This Security Target is in compliance with the General Purpose Operating
Systems Protection Profile, Version 4.1, March 9, 2016 (GP OS PP).

For all of the content incorporated from the protection profile, the
corresponding rationale in that protection profile remains applicable to
demonstrate the correspondence between the TOE security functional
requirements and TOE security objectives. Moreover, as demonstrated in this
security target EulerOS can run on a wide variety of hardware platforms
being only one the evaluated, so it is a general purpose operating system.

49,111

6 TOE Summary Specification (TSS)

This section describes security functions of EulerOS. Security Functions (SFs)
in EulerOS satisfy the security functional requirements of the protection
profile. The TOE also includes additional relevant security functions which
are also described in the following sections, as well as a mapping to the
security functional requirements satisfied by the TOE.

This section presents the TOE Security Functions (TSFs) and a mapping of
security functions to Security Functional Requirements (SFRs). The TOE
performs the following security functions:

1) Cryptographic Support

2) User Data Protection

3) Security Management

4) Protection of the TSF

5) Audit

6) Identification and Authentication
7) Trusted Path/Channels

6.1 Cryptographic Support

The TOE offers different cryptographic services in kernel, and provides a
socket interface to user space applications. In addition, it also provides
cryptographic algorithms for general use in user space.

The following subsections cover the different types of cryptographic services
analyzed as part of the evaluation. Additional cryptographic mechanisms are
active in the TOE, which are however not subject to the assessments of this
evaluation.

6.1.1 Cryptographic Algorithms and Operations

1) Random number generation

50/111

Deterministic random bit generation (DRBG) is implemented in accordance
with NIST Special Publication 800-90A. All three viable DRBGs (HMAC, Hash
and CTR) defined in the standard are implemented in EulerOS.

There are several hardware and software entropy pools in EulerOS,
considering data from external events, such as timing interrupt requests,
disk and network I/O, as well as human input from keyboard and mouse. The
main source of entropy in the system is the CPU cycle counter which
continuously tracks hardware interrupts. Other hardware-dependent entropy
source is the TPM. Each entropy source is independent of the other sources
and does not depend on time. Next table summarized the hardware entropy
bits coming form the evaluated platform:

Evaluated platform CPU interrupts TPM
(/dev/hwrng) (/dev/tpmO)
FusionServer RH2288H V3 Rack Server 2044 bits 512 bits

All these entropy sources feed the input pool. The input pool maintains a
maximum internal state of 4096 bits. The current state can be checked at
every moment at:

e /proc/sys/kernel/random/entropy_available

The entropy data is obtained from the entropy sources in a raw format and is
conditioned before using it as input for the DRBG. The entropy data is
hashed (sha-1) as part of the mixing functions in the cryptographically
secure pseudorandom number generator (CSPRNG). In particular the entropy
data (after conditioning, 160bits) together with other data (such as the
nonce) seed the DRBG algorithm. Considering that the NIST requires at least
112 bits for the generation of a random number (using and approved
algorithm (DRBG)), the DRBG seed of the EulerOS is considered valid. Min-
entropy value for the evaluated hardware platform is checked in the testing
report (aka Assurance Activity Report).

The DRGB algorithms have been certified (see certificate number in the table
3), i.e., these algorithms meet the SP 800-90A, including the health-tests
defined this standard (section 11.3).

51,111

The TSF defends against tampering of the random number generation (RNG)
/ pseudorandom number generation (PRNG) sources by encapsulating its use
in Kernel Security Device Driver.

2) Other crypto operations

The encryption and decryption operations are performed by independent
kernel modules. Besides, the TSF provides other cryptographic operations
such as hashing and digital signatures. Hashing is used by other algorithms
implemented in EulerOS (the hashed message authentication code, RSA,
DSA, and ECDSA signature services and elliptic curve Diffie-Hellman key
agreement, and random bit generation). When EulerOS needs to establish an
RSA-based shared secret key it can act both as a sender or recipient, any
decryption errors which occur during key establishment are presented to the
user at a highly abstracted level, such as a failure to connect.

The table below gives the cryptographic algorithm standards EulerOS

supports:
Cryptographic Standard NIST Certs.
Operation
Encryption/Decryption | FIPS 197 AES #5066
(For CBC, KW, XTS, and GCM
modes)
Digital signature FIPS 186-4 RSA #2746
Digital signature FIPS 186-4 ECDSA #1312
Hashing FIPS 180-4 SHA-1/SHA- #4126
256/SHA-384/SHA-512
Keyed-Hash Message FIPS 198-2 HMAC #3381
Authentication Code
Random number NIST SP 800-90 #1884
generation CTR_DRBG/Hash_DRBG/HMAC
_DRBG
ECC Key agreement NIST SP 800-56A #1620
Scheme
Key Transport Scheme | NIST SP 800-56B Tested by the
CC evaluation
lab

52,111

Table 3 Cryptographic Algorithm Standards supported by EulerOS

3) Key management

EulerOS kernel provides a Key Retention Service specifically to host and
manage secret and private keys to mitigate tampering or access to sensitive

key materials for user-mode processes. Each key has a type, a serial number,

access control permission, an expiry time and other attributes. Users can
add, request, invalidate and revoke a key using the interfaces provide by the
service. The service includes a background garbage collector; all dead,
revoked and expired keys will be garbage collected after a certain amount of
time has passed. When a key of type trusted or encrypted (which are
regarded as critical) is garbage collected, the RAM area its payload occupies
is overwritten with all zeroes.

Services in user space can maintain some keys on their own, without help of
the kernel facilities. DRBG is initialized when the services start to create

asymmetric and symmetric keys. The table below gives a summary of the
key management of some main services in the TOE:

Servi Keys Key Key Key Key
ce generation Storage | Entry/out Zeroization
put
EVM Trusted | Using SP 800- | Service's | API Zeroized when
key 90A DRBG memory | input/outpu | freeing the
t cipher handler
parameters | or after
and return | removing the
values are | power supply.
constrained
within the
service
On disk | N/A N/A
(sealed
by TPM)
Evm Using SP 800- | Service | API Zeroized when
key 90A DRBG 's input/outpu | freeing the
memory |t cipher handler
parameters | after removing
and return | the power

53/111

values are | supply
constrained
within the
service

On disk | N/A N/A

(after

being

encrypte

d by

trusted

key

using

AES256-

CBCQC)

TLS Session | Key derivation | Service's | API Zeroized when
keys memory | input/outpu | session ends
(Symm t (by calling
etric parameters | DestroyContext
keys) and return (ctx, freeit) or

values are | HMAC Destroy(
and constrained |)) or after
within the removing the
HMAC service power supply
keys
Private/ | Use SP 800- Service's | API Zeroized when
public 90A DRBG and | memory | input/outpu | freeing the
Asymm | RSA/DSA/ECDS t cipher handler
etric A key parameters | or after
keys generation and return | removing the
mechanism in values are | power supply
the service constrained
within the
service
On disk | N/A N/A
(key3.db
cert8.db
)
SSH Session | key derivation | Service's | API Zeroized when

54,111

keys memory | input/outpu | session ends or
t after removing
and parameters | the power
and return | supply
HMAC values are
keys constrained
within the
service
Private/ | Use SP 800- Service's | API Zeroized when
public 90A DRBG and | memory | input/outpu | freeing the
Asymm | RSA/ECDSA t cipher handler
etric key generation parameters | or after
keys mechanism in and return | removing the
the service values are | power supply
constrained
within the
service
DM- Master | SP 800-90A Kernel API Zeroized when
crypt | key DRBG memory | input/outpu | the file system
t is un-mounted
parameters | or after
and return | removing the
values are | power supply
constrained
within the | [Note: the type
kernel of the key is
‘trusted’]

Table 4 Origin/storage/zeroization of keys

All the keys maintained by the kernel and applications exist in system RAM
and will be removed when the memory lost its power. All keys that exist on
non-volatile memory (e.g. disks) are stored after encryption, which depends

on the application implementation.

4) Hash functions

55/111

The TOE implements 4 hashing functions with different sizes (SHA1, SHA256,
SHA384 and SHA512). These functions are implicitly used in other
cryptographic operations (see KHMAC and signature creation and
versification). All 4 hashes can be used for all the associated operations
included in FCS_COP.

6.1.2 Cryptographic network services

The TOE provides cryptographic secured network communication channels,
based on the following main libraries:

e OpenSSH: The OpenSSH application suite provides access to the
command line interface of the TOE. OpenSSH can provide interactive
as well as non-interactive sessions, and the console provided via
OpenSSH provides the same environment as a local console. OpenSSH
implements the SSHv2 protocol. The cryptographic primitives are
provided by OpenSSL;

e Libreswan / Kernel: The Libreswan application suite implements the
IKEv1 and IKEv2 protocols to securely establish the symmetric keys
used for an IPSEC tunnel. These keys are handed to the kernel which
implements the IPSEC protocol.

e OpenSSL: Provides the cryptographic base for the TLS and SSH
protocols.

TLS

The TOE implements TLS protocol to enable a trusted network channel that
is used for client and server authentication, as well as HTTPS. The following
table summarizes the TLS RFCs implemented in EulerOS:

RFC# Name & Link Comment

6101 | The Secure Sockets Layer Requirements for SSL3;
(SSL) Protocol Version 3 Made obsolete by TLS protocols.
(SSL3)

https://tools.ietf.org/html/rfc61
01

2246 ﬁe TLS Protocol Version 1.0 Requirements for TLS 1.0

https://tools.ietf.org/html/rfc22

56/111

46

3268 | AES Cipher suites for TLS Extension to TLS1.0, adding
Advanced Encryption Standard
https://tools.ietf.org/html/rfc32 | (AES) cipher suites.
68
3546 | Transport Layer Security (TLS) | Extension to TLS1.0, adding a
Extensions mechanism for negotiating
protocol extensions during
https://tools.ietf.org/html/rfc35 | session initialization. Made
46 obsolete by RFC 4366.
4366 | Transport Layer Security (TLS) | Extension to TLS1.0 and TLS 1.1,
Extensions specifying a set of specific
extensions and a generic
https://tools.ietf.org/html/rfc43 | extension mechanism.
66
4346 | The Transport Layer Security Requirements for TLS 1.1;
(TLS) Protocol Version 1.1
https://tools.ietf.org/html/rfc43
46
4492 | Elliptic Curve Cryptography Extensions to TLS 1.1, specifying
(ECC) Cipher Suites for the ECC cipher suite.
Transport Layer Security (TLS)
https://tools.ietf.org/html/rfc44
92
4681 | TLS User Mapping Extension Extends TLS to include a User
Principal Name during the TLS
https://tools.ietf.org/html/rfc46 | handshake.
81
5246 | The Transport Layer Security Requirements for TLS 1.2;
(TLS) Protocol Version 1.2
https://tools.ietf.org/html/rfc52
46
5289 | TLS Elliptic Curve Cipher Extensions to TLS 1.2, adding

Suites with SHA-256/384 and
AES Galois Counter Mode

SHA-256/384 for hashing and
GCM mode for authenticated
encryption with additional data

57,111

(GCM) (AEAD) cipher.

https://tools.ietf.org/html/rfc52
89

Table 5 TLS RFCs implemented in EulerOS

EulerOS implements HTTPS as described in RFC 2818
(https://tools.ietf.org/html/rfc2818) so that applications running on the TOE

can securely connect to external servers using HTTPS protocol.

The complete set of TLS cipher suites implemented in EulerOS, which are
also used in the evaluated configuration, are as follows:

TLS_RSA WITH_AES 128 CBC_SHA as defined in RFC 5246

TLS ECDHE RSA_WITH_AES 128 CBC SHA as defined in RFC 4492,
TLS ECDHE _ECDSA _WITH_AES 128 CBC SHA as defined in RFC 4492,
TLS ECDHE _RSA_WITH_AES 256 CBC SHA as defined in RFC 4492,
TLS ECDHE _ECDSA _WITH_AES 256 _CBC SHA as defined in RFC 4492,
TLS_ECDHE RSA_WITH_AES 128 CBC_SHA256 as defined in RFC 5289,

TLS ECDHE ECDSA WITH_AES 128 CBC SHA256 as defined in RFC
5289,

TLS ECDHE_RSA_WITH_AES_128 GCM_SHA256 as defined in RFC 5289,

TLS ECDHE ECDSA WITH_AES 128 GCM _SHA256 as defined in RFC
5289,

TLS ECDHE_RSA_WITH_AES_256_CBC_SHA384 as defined in RFC 5289,

TLS ECDHE ECDSA WITH_AES 256 CBC SHA384 as defined in RFC
5289,

TLS ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,

TLS ECDHE ECDSA WITH_AES 256 GCM _SHA384 as defined in RFC
5289,

TLS RSA WITH_AES 128 CBC SHAZ256 as defined in RFC 5246,
TLS RSA_WITH_AES 256 _CBC SHA as defined in RFC 5246,
TLS RSA WITH_AES 256 CBC SHA256 as defined in RFC 5246.

According to these implemented TLS cipher suites, the following asymmetric
cryptographic key generation schemes are used in TLS protocol:

58/111

RSA schemes:
The TOE supports the generation of RSA keys for the TLS protocol using
the certutil(1) application; the RSA keys sizes supported include:
a) 2048 bits (default),
b) 3072 bits.
ECC schemes:
The TOE supports the generation of ECDSA keys for the TLS protocol. The
EC key sizes supported are those specified in the curves below:
a) NIST p-256 (256 bits),
b) NIST p-384 (384 bits),
c¢) NIST p-521 (512 bits).

All the asymmetric cryptographic key generation schemes together with the
key sizes supported also apply to the IKE protocol to generate key pairs.

For key exchange methods, the TOE supports ECDHE_RSA, ECDHE_ECDSA,
and RSA. If RSA-based key exchange scheme is used in TLS, while the TOE
performing the key material decryption, for any errors detected resulting
from error input or error decryption, the API would always report a fixed
error number SECFailure (=-1), and give an ambiguous error information,
revealing no particular error that occurred.

Hostname verification before establishing TLS connection is supported in the
TOE. The TLS client will check if the DNS name (part of Subject Alternative
Name) or the Common Name in the server’s certificate matches the
specified hosthame. IP addresses as a reference identifiers are only
supported for LDAP connections. By default, wildcards are supported in the
comparing and they match only in the left-most label. If neither can match,
the server is regarded as a fraud and the client will then give up the
connection; otherwise, the connection can be created as usual. EulerOS
does not provide a general-purpose certificate pinning capability.

SSHv2 Protocol

The TOE also implements SSHv2 protocol to enable users from a remote host
to establish a secure connection and perform a logon to the TOE. The
following table summarizes the SSH RFCs implemented in EulerOS. The
requirements of the relevant standards explain the different implementation
choices such as optional features.

59,111

RFC# Name & Link Comment

4253 The Secure Shell (SSH) Requirements for SSHv?2.
Transport Layer Protocol
https://tools.ietf.org/html/rf
c4253

4252 | The Secure Shell (SSH) Requirements for SSH
Authentication Protocol authentication protocol.
https://www.ietf.org/rfc/rfc4
252.txt

4251 | The Secure Shell (SSH) Requirements for SSH Protocol
Protocol Architecture Architecture.
https://www.ietf.org/rfc/rfc4
251 .txt

4254 | The Secure Shell (SSH) Requirements for SSH Connection
Connection Protocol Protocol.

https://www.ietf.org/rfc/rfc4

252.txt

According to RFC 4253, the maximum packet size for SSH protocol should be
32768 (32K) bytes or more. The TOE implements SSH protocol using the
OpenSSH facility, which sets the maximum packet size to 262144 (256K)
bytes for SSHv2. For each received packet, the packet length will be checked
after decryption. If the length of a received packet exceeds 256K bytes, the
recipient would terminate.

The TOE supports the following security functions of the SSHv2.0 protocol:

e AS a SSH client or server, the TOE supports two different user
authentication methods, i.e., public key-based and password-based.
e The TOE implements the SSHv2 protocol with the following algorithms:

(o}

Encryption algorithms: only aes128-ctr, aes256-ctr, aes128-cbc,
aes256-cbc, AEAD_AES 128 GCM, AEAD_AES_256_GCM are used.
For aes128-ctr and aes256-ctr, a counter with length

AES BLOCK SIZE (=16) bytes is setup. For each cipher operation,

60,111

the counter is incremented by one, overflow ignored. This can
make the counter unique.

o MAC algorithms: only hmac-shal, hmac-sha2-256, hmac-sha2-512
are used.

o Public key algorithms for authentication of host and user: ssh-rsa,
ecdsa-sha2- nistp256, ecdsa-sha2-nistp384. The key sizes for these
algorithms used are as follows:

a) Key sizes for RSA: 2048 bits, 3072 bits;
b) Key sizes for ECDSA and the corresponding curves: NIST p-256
(256 bits), NIST p-384 (384 bits);

o Key exchange methods: ecdh-sha2-nistp256, ecdh-sha2-nistp384,

ecdh-sha2-nistp521.

6.1.3 Data Protection

EulerOS provides data protection APIs in openssl package, which
applications can use to protect any persisted data that the developer deems
to be sensitive. Below are some of the openss/ APIs available:

e EVP _Encryptinit, EVP_EncryptUpdate, EVP_EncryptFinal;

e EVP Decryptlnit, EVP_DecryptUpdate, EVP_DecryptFinal;

e EVP _Encryptinit_ex, EVP_EncryptUpdate_ex, EVP_EncryptFinal_ex;

e EVP Decryptlinit_ex, EVP_DecryptUpdate _ex, EVP_DecryptFinal_ex;
The AES CBC encryption algorithm is used by default in the APIs above.

Additional information about EVP API, can be found here.

For protection of data on disks, EulerOS offers an additional layer between
the file systems and the physical block device, which is used to encrypt and
decrypt any data transmitted between the file system and the block device.
This is done by functionality dm_crypt (LUKS extension) using device mapper.

Before mounting an encrypted block device, the owner has to provide a
passphrase. This passphrase is used to decrypt the symmetric master
volume key which is injected into the kernel. Using that master volume key,
the kernel can decrypt (to unlock) the block device and provides access to
data stored on that block device. At this point, the encrypted block device
can be mounted as usual, and written data to the device is encrypted and
read data from the device is decrypted transparently by the kernel using the
master volume key. When the encrypted block device is un-mounted and

61,111

locked (i.e. the kernel is informed to discard the master volume key), no user,
including administrative users like the root user, is able to access any data

on it any more. When an administrator would access the raw hardware
hosting the block device, only encrypted data can be read.

For the cryptographic operations for data on encrypted devices, the creator
of the encrypted block device can select the cipher. The master volume key
is obtained from a random number generator and stored on the block device
encrypted with the user's passphrase. A tool, cryptsetup(8), can be used to
erase the storage location of an encrypted master volume key, which implies
that the user owning the passphrase of the affected encrypted session key is
not able to unlock the block device any more.

Besides LUKS-encrypted block device, some other persistent data are
regarded sensitive and then encrypted. All of them are listed in the table
below:

Data Usage Protection Storage
LUKS master protect an Encrypted by Stored in a key
volume key encrypted block default with aes- | slot of the LUKS
device xts with key size | device
256.
User certificate | User Encrypted with File id rsa or
for SSH authentication AES-128-CBC id_dsa in user’s
home directory
EVM key (or Protect extended Encrypted by In file /root/evm-
EVM user key) attribute of a file in | the EVM trusted | key
data integrity key using
verification AES256-CBC

6.1.4 SFR Summary

e FCS CKM.1(1), FCS _CKM.2(1), FCS_COP.1(1), FCS_COP.1(SSH),
FCS_COP.1(2), FCS_COP.1(3), FCS _COP.1(4), FCS_RBG_EXT.1: the
Cryptographic Algorithm and its Standards used in EulerOS.

e FCS_CKM.4: EulerOS overwrites critical cryptographic keys at garbage
collection time.

62,/111

e FCS STO_EXT.1: EulerOS provides crypto APIs (eg, openssl library) for
developers and the cryptsetup(8) tool for system administrators to
encrypt and decrypt sensitive data.

e FCS TLSC EXT.1, FCS TLSC EXT.2: EulerOS implements TLS to provide
server and mutual authentication, confidentiality and integrity to upper-
layer protocols such as Extensible Authentication Protocol and HTTPS.

e FCS SSH EXT.1, FCS SSHC EXT.1, FCS_SSHS EXT.1: EulerOS implements
SSHv2 to provide security network communication channel.

6.2 User data protection

6.2.1 Discretionary Access Control

The general security policy determines that subjects (i.e., processes) are
allowed only the accesses specified by the policies applicable to the object
the subject requests access to. Further, the ability to propagate access
permissions is limited to those subjects who have that permission, as
determined by the policies applicable to the object the subject requests
access to.

A subject may possess one or more of the following capabilities which
provide the following exemptions from the DAC mechanism:

e CAP_DAC OVERRIDE: A process with this capability is exempt from all
restrictions of the discretionary access control and can perform any
action desired. For the execution of a file, the permission bit vector of
that file must contain at least one execute bit.

e CAP _DAC READ SEARCH: A process with this capability overrides all DAC
restrictions regarding read and search on files and directories.

e CAP_CHOWN: A process with this capability is allowed to make arbitrary
changes to a file's UID or GID.

e CAP_CHOWN: Setting permissions and ownership on objects even if the
process' UID does not match the UID of the object.

e CAP_FSETID: Don't clear SUID and SGID permission bits when a file is
modified.

DAC provides the mechanism that allows users to specify and control access
to objects that they own. DAC attributes are assigned to objects at creation

63/111

time and remain in effect until the object is destroyed or the object
attributes are changed. DAC attributes exist for all types of named object
known to the TOE. DAC is implemented with permission bits.

The DAC mechanism applies only to named objects which can be used to
store or transmit user data. Other named objects are also covered by the
DAC mechanism but may be supplemented by further restrictions. These
additional restrictions are out of scope for this evaluation. Examples of
objects which are accessible to users that cannot be used to store or
transmit user data include:

e Virtual file systems, which give user space processes an interface to
kernel data structures (such as most of procfs, sysfs, binfmt_misc);

e Process signals;

During creation of objects, the TSF ensures that all residual content is
removed from that object before making it accessible to the subject
requesting the creation.

When data is imported into the TOE (such as when mounting disks created
by other trusted systems), the TOE enforces the permission bits applied to
the file system objects.

6.2.1.1 Permission bits

The TOE supports standard UNIX permission bits to enforce one form of
access control for file system objects in all supported file systems. For each
process, it is bound with one user (denoted as process uid) and several
groups (denoted as several gids), indicating the owner of the process and the
groups the process belongs to. For each file object, there are three
categories of users and three types of access. The three user categories are
the owning user (u), the owning group (g), and other users (0); the three
access types are read (r), write (w) and execute (x).

Each file object has in its metadata a uid for the owning user, a gid for the
owning group, and a 9-bit permission vector. The permission vector contains
three 3-bit subvectors, defining the allowed access types to the object for
the owning user, owning group and other users separately. Each bit in a
subvector corresponds to one of the access types; if a bit in the subvector is

64,111

1, it means the object is allowed to be accessed with the corresponding
access type.

The three user categories are given different priorities, which are the owning
user, the owning group, and others in descending order. For access decision,
only the subvector for the user category with the highest priority is checked
against the requested access type. The access decision is made in kernel
space when a process issues an access request to a file object. The decision
is made as follows:

1) Decide the user category of the process to the file object:
i. If the process uid equals to the owning user of the file object, the user
category is owning user; otherwise
i. For each of the groups the process belongs to, if the gid equals to the
owning group of the file object, the user category is owning group;
otherwise
iii. The user category is other users;
2) Get the subvector in file metadata for the user category;
3) If the bit for the requested access in this subvector is 1, then grant this
access; otherwise deny it;

Besides, there are several special cases for the write access:

e Write access to file systems mounted as read only (e. g. CD-ROM) is
always rejected (the exceptions are character and block device files,
which can still be written to, however the write operations do not modify
the information on the storage media);

e Write access to file system objects marked as immutable is always
rejected.

Besides the 9-bit permission vector, a SAVETXT bit (or sticky bit) is used only
for world-writable temp directories, preventing the removal of files by users
(and the system administrator) other than the owner in the directories.

Each process has an inheritable “umask” attribute which is used to

determine the default access permissions for new objects it creates. It is a
bit mask of the 9-bit permission vector, and specifies the access bits to be
removed from the permission vector for new objects. For example, setting
the umask to “002” ensures that new objects will be writable by the owner

65/111

and group, but not by others. The umask is defined by the administrator in
the /etc/login.defs file, or default to 022 if it is not specified explicitly.

6.2.1.2 Access check for file system objects

Access to file system objects is generally governed by the 9-bit permission
vector. Access to a file system object is checked when the object is initially
opened, and is no longer checked for each subsequent access. Changes to
access controls (e.g., revocation) begin to be effective only with the next
attempt to open the object.

6.2.1.3 Access check for IPC objects
The