ST33H768 platform maskset K8K0A version C, with firmware revision 5, optional cryptographic library NESLIB 4.1 and 4.1.1, and optional technology MIFARE4Mobile® 2.1.0

Security Target for composition

Common Criteria for IT security evaluation

SMD_ST33H_ST_16_002 Rev 01.00

September 2016
1 Introduction

1.1 Security Target reference

Document identification: ST33H768 platform maskset K8K0A version C, with firmware revision 5, optional cryptographic library Neslib 4.1 and 4.1.1, and optional technology MIFARE4Mobile® 2.1.0 - SECURITY TARGET FOR COMPOSITION.

Version number: Rev 01.00, issued September 2016.

Registration: registered at ST Microelectronics under number SMD_ST33H_ST_16_002_V01.00.

1.2 Purpose

This document presents the Security Target for composition (ST) of the ST33H768 platform maskset K8K0A version C Security Integrated Circuit (IC), designed on the ST33 platform of STMicroelectronics, with Dedicated Software (DSW) rev 5, optional cryptographic library Neslib 4.1 and 4.1.1, and optional technology MIFARE4Mobile® rev 2.1.0.

The precise reference of the Target of Evaluation (TOE) and the security IC features are given in Section 3: TOE description.

A glossary of terms and abbreviations used in this document is given in Appendix A: Glossary.
Contents

1. **Introduction** ... 3
 1.1 Security Target reference ... 3
 1.2 Purpose ... 3

2. **Context** .. 12

3. **TOE description** ... 13
 3.1 TOE identification .. 13
 3.2 TOE overview ... 14
 3.3 TOE life cycle ... 17
 3.4 TOE environment ... 19
 3.4.1 TOE Development Environment 19
 3.4.2 TOE production environment 20
 3.4.3 TOE operational environment 20

4. **Conformance claims** .. 21
 4.1 Common Criteria conformance claims 21
 4.2 PP Claims .. 21
 4.2.1 PP Reference ... 21
 4.2.2 PP Refinements ... 21
 4.2.3 PP Additions ... 21
 4.2.4 PP Claims rationale 21

5. **Security problem definition** 23
 5.1 Description of assets .. 23
 5.2 Threats ... 25
 5.3 Organisational security policies 26
 5.4 Assumptions ... 28
 5.4.1 Assumptions from the PP 28
 5.4.2 Additional assumptions 28

6. **Security objectives** .. 30
 6.1 Security objectives for the TOE 31
6.1.1 Objectives from the PP: ... 31
6.1.2 Additional objectives: ... 32
6.2 Security objectives for the environment 34
6.3 Security objectives rationale 35
 6.3.1 Assumption "Usage of secure values" 37
 6.3.2 Assumption "Terminal support to ensure integrity and confidentiality" 37
 6.3.3 Assumption "Identification by M4M Framework" 37
 6.3.4 TOE threat "Memory Access Violation" 37
 6.3.5 TOE threat "Unauthorised data modification" 38
6.3.6 TOE threat "Impersonating authorised users during authentication" 38
 6.3.7 TOE threat "Cloning" 38
 6.3.8 TOE threat "M4M-DESFire resource unavailability" 39
 6.3.9 TOE threat "M4M-DESFire code confidentiality" 39
 6.3.10 TOE threat "M4M-DESFire data confidentiality" 39
 6.3.11 TOE threat "M4M-DESFire code integrity" 39
 6.3.12 TOE threat "M4M-DESFire data integrity" 39
 6.3.13 Organisational security policy "Additional Specific Security Functionality" 40
 6.3.14 Organisational security policy "Controlled loading of the Security IC Embedded Software" 40
 6.3.15 Organisational security policy "Confidentiality during communication" 40
 6.3.16 Organisational security policy "Transaction mechanism" 41
 6.3.17 Organisational security policy "Un-traceability of end-users" 41
 6.3.18 Organisational security policy "Usage of hardware platform" 41
 6.3.19 Organisational security policy "Treatment of user data" 41

7 Security requirements .. 42
 7.1 Security functional requirements for the TOE 42
 7.1.1 Security Functional Requirements from the Protection Profile 45
Limited fault tolerance (FRU_FLT.2) 45
Failure with preservation of secure state (FPT_FLS.1) 45
Limited capabilities (FMT_LIM.1) [Test] 45
Limited availability (FMT_LIM.2) [Test] 45
Audit storage (FAU_SAS.1) .. 46
Resistance to physical attack (FPT_PHP.3) 46
Basic internal transfer protection (FDP_ITT.1) 46
Basic internal TSF data transfer protection (FPT_ITT.1) 46
Below is the image of one page of a document, as well as some raw textual content that was previously extracted for it. Just return the plain text representation of this document as if you were reading it naturally.

Subset information flow control (FDP_IFC.1) ... 46
Random number generation (FCS_RNG.1) .. 47
7.1.2 Additional Security Functional Requirements for the cryptographic services ... 47
Cryptographic operation (FCS_COP.1) ... 47
Cryptographic key generation (FCS_CKM.1) .. 49
7.1.3 Additional Security Functional Requirements for the memories protection ... 50
Static attribute initialisation (FMT_MSA.3) [Memories] ... 50
Management of security attributes (FMT_MSA.1) [Memories] ... 50
Complete access control (FDP_ACC.2) [Memories] ... 50
Security attribute based access control (FDP_ACF.1) [Memories] ... 50
Specification of management functions (FMT_SMF.1) [Memories] ... 51
7.1.4 Additional Security Functional Requirements related to the Admin configuration ... 51
Limited capabilities (FMT_LIM.1) [Admin] ... 51
Limited availability (FMT_LIM.2) [Admin] ... 51
Import of user data without security attributes (FDP_ITC.1) [Loader] ... 51
Static attribute initialisation (FMT_MSA.3) [Loader] ... 52
Management of security attributes (FMT_MSA.1) [Loader] ... 52
Subset access control (FDP_ACC.1) [Loader] ... 52
Security attribute based access control (FDP_ACF.1) [Loader] ... 52
Specification of management functions (FMT_SMF.1) [Loader] ... 52
7.1.5 Additional Security Functional Requirements related to M4M-DESFire ... 53
Security roles (FMT_SMR.1) [M4M-DESFire] ... 53
Subset access control (FDP_ACC.1) [M4M-DESFire] ... 53
Security attribute based access control (FDP_ACF.1) [M4M-DESFire] ... 53
Static attribute initialisation (FMT_MSA.3) [M4M-DESFire] ... 56
Management of security attributes (FMT_MSA.1) [M4M-DESFire] ... 56
Specification of Management Functions (FMT_SMF.1) [M4M-DESFire] ... 57
Import of user data with security attributes (FDP_ITC.2) [M4M-DESFire] ... 57
Inter-TSF basic TSF data consistency (FPT_TDC.1) [M4M-DESFire] ... 57
Cryptographic key destruction (FCS_CKM.4) [M4M-DESFire] ... 57
User identification before any action (FIA_UID.2) [M4M-DESFire] ... 57
User authentication before any action (FIA_UAU.2) [M4M-DESFire] ... 58
Multiple authentication mechanisms (FIA_UAU.5) [M4M-DESFire] ... 58
Management of TSF data (FMT_MTD.1) [M4M-DESFire] ... 58
Trusted path (FTP_TRP.1) [M4M-DESFire] ... 59
Basic rollback (FDP_ROL.1) [M4M-DESFire] ... 59
Replay detection (FPT_RPL.1) [M4M-DESFire] ... 59
Unlinkability (FPR_UNL.1) [M4M-DESFire] ... 59
Minimum and maximum quotas (FRU_RSA.2) [M4M-DESFire] 59
Subset residual information protection (FDP_RIP.1) [M4M-DESFire] 59
Subset access control (FDP_ACC.1) [APPLI_FWL] .. 60
Security attribute based access control (FDP_ACF.1) [APPLI_FWL] 60
Static attribute initialisation (FMT_MSA.3) [APPLI_FWL] 60

7.2 TOE security assurance requirements ... 60
7.3 Refinement of the security assurance requirements 61
7.3.1 Refinement regarding functional specification (ADV_FSP) 62
7.3.2 Refinement regarding test coverage (ATE_COV) 63
7.4 Security Requirements rationale .. 63
7.4.1 Rationale for the Security Functional Requirements 63
7.4.2 Additional security objectives are suitably addressed 67
7.4.3 Additional security requirements are consistent 71
7.4.4 Dependencies of Security Functional Requirements 72
7.4.5 Rationale for the Assurance Requirements 76

8 TOE summary specification .. 78
8.1 Limited fault tolerance (FRU_FLT.2) ... 78
8.2 Failure with preservation of secure state (FPT_FLS.1) 78
8.3 Limited capabilities (FMT_LIM.1) [Test] 78
8.4 Limited capabilities (FMT_LIM.1) [Admin] 78
8.5 Limited availability (FMT_LIM.2) [Test] & [Admin] 79
8.6 Audit storage (FAU_SAS.1) ... 79
8.7 Resistance to physical attack (FPT_PHP.3) 79
8.8 Basic internal transfer protection (FDP_ITT.1), Basic internal TSF data
der transfer protection (FPT_ITT.1) & Subset information flow control
(FDP_IFC.1) ... 79
8.9 Random number generation (FCS_RNG.1) 79
8.10 Cryptographic operation: DES / 3DES operation (FCS_COP.1 [EDES]) if
EDES+ only .. 80
8.11 Cryptographic operation: AES operation (FCS_COP.1 [AES]) if AES only 80
8.12 Cryptographic operation: RSA operation (FCS_COP.1 [RSA]) if Neslib only 80
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.13</td>
<td>Cryptographic operation: Elliptic Curves Cryptography operation (FCS_COP.1 [ECC]) if Neslib only</td>
</tr>
<tr>
<td>8.14</td>
<td>Cryptographic operation: SHA operation (FCS_COP.1 [SHA]) if Neslib only</td>
</tr>
<tr>
<td>8.15</td>
<td>Cryptographic operation: DRBG operation (FCS_COP.1 [DRBG]) if Neslib only</td>
</tr>
<tr>
<td>8.16</td>
<td>Cryptographic key generation: Prime generation (FCS_CKM.1 [Prime_generation]) if Neslib only</td>
</tr>
<tr>
<td>8.17</td>
<td>Cryptographic key generation: RSA key generation (FCS_CKM.1 [RSA_key_generation]) if Neslib only</td>
</tr>
<tr>
<td>8.18</td>
<td>Static attribute initialisation (FMT_MSA.3) [Memories]</td>
</tr>
<tr>
<td>8.19</td>
<td>Management of security attributes (FMT_MSA.1) [Memories] & Specification of management functions (FMT_SMF.1) [Memories]</td>
</tr>
<tr>
<td>8.20</td>
<td>Complete access control (FDP_ACC.2) [Memories] & Security attribute based access control (FDP_ACF.1) [Memories]</td>
</tr>
<tr>
<td>8.21</td>
<td>Import of user data without security attributes (FDP_ITC.1) [Loader]</td>
</tr>
<tr>
<td>8.22</td>
<td>Static attribute initialisation (FMT_MSA.3) [Loader]</td>
</tr>
<tr>
<td>8.23</td>
<td>Management of security attributes (FMT_MSA.1) [Loader] & Specification of management functions (FMT_SMF.1) [Loader]</td>
</tr>
<tr>
<td>8.24</td>
<td>Subset access control (FDP_ACC.1) [Loader] & Security attribute based access control (FDP_ACF.1) [Loader]</td>
</tr>
<tr>
<td>8.25</td>
<td>Security roles (FMT_SMR.1) [M4M-DESFire]</td>
</tr>
<tr>
<td>8.26</td>
<td>Subset access control (FDP_ACC.1) [M4M-DESFire]</td>
</tr>
<tr>
<td>8.27</td>
<td>Security attribute based access control (FDP_ACF.1) [M4M-DESFire]</td>
</tr>
<tr>
<td>8.28</td>
<td>Static attribute initialisation (FMT_MSA.3) [M4M-DESFire]</td>
</tr>
<tr>
<td>8.29</td>
<td>Management of security attributes (FMT_MSA.1) [M4M-DESFire]</td>
</tr>
<tr>
<td>8.30</td>
<td>Specification of Management Functions (FMT_SMF.1) [M4M-DESFire]</td>
</tr>
<tr>
<td>8.31</td>
<td>Import of user data with security attributes (FDP_ITC.2) [M4M-DESFire]</td>
</tr>
<tr>
<td>8.32</td>
<td>Inter-TSF basic TSF data consistency (FPT_TDC.1) [M4M-DESFire]</td>
</tr>
<tr>
<td>8.33</td>
<td>Cryptographic key destruction (FCS_CKM.4) [M4M-DESFire]</td>
</tr>
<tr>
<td>8.34</td>
<td>User identification before any action (FIA_UID.2) [M4M-DESFire]</td>
</tr>
<tr>
<td>8.35</td>
<td>User authentication before any action (FIA_UAU.2) [M4M-DESFire]</td>
</tr>
<tr>
<td>8.36</td>
<td>Multiple authentication mechanisms (FIA_UAU.5) [M4M-DESFire]</td>
</tr>
<tr>
<td>8.37</td>
<td>Management of TSF data (FMT_MTD.1) [M4M-DESFire]</td>
</tr>
<tr>
<td>8.38</td>
<td>Trusted path (FTP_TRP.1) [M4M-DESFire]</td>
</tr>
<tr>
<td>8.39</td>
<td>Basic rollback (FDP_ROL.1) [M4M-DESFire]</td>
</tr>
</tbody>
</table>
8.40 Replay detection (FPT_RPL.1) [M4M-DESFire] 85
8.41 Unlinkability (FPR_UNL.1) [M4M-DESFire] 85
8.42 Minimum and maximum quotas (FRU_RSA.2) [M4M-DESFire] 85
8.43 Subset residual information protection (FDP_RIP.1) [M4M-DESFire] ... 85
8.44 Subset access control (FDP_ACC.1) [APPLI_FW] & Security attribute based access control (FDP_ACF.1) [APPLI_FW] 86
8.45 Static attribute initialisation (FMT_MSA.3) [APPLI_FW] 86

9 References ... 87

Appendix A Glossary ... 90
A.1 Terms ... 90
A.2 Abbreviations ... 92

10 Revision history ... 94
List of tables

Table 1. TOE identification .. 13
Table 2. Derivative devices configuration possibilities 13
Table 3. Composite product life cycle phases 18
Table 4. Summary of security environment 24
Table 5. Summary of security objectives 31
Table 6. Security Objectives versus Assumptions, Threats or Policies ... 36
Table 7. Summary of functional security requirements for the TOE ... 42
Table 8. FCS_COP.1 iterations (cryptographic operations) 48
Table 9. FCS_CKM.1 iterations (cryptographic key generation) 49
Table 10. TOE security assurance requirements 61
Table 11. Impact of EAL5 selection on BSI-PP-0035 refinements 62
Table 12. Security Requirements versus Security Objectives 63
Table 13. Dependencies of security functional requirements 73
Table 14. List of abbreviations ... 92
Table 15. Document revision history .. 94
List of figures

Figure 1. ST33H768 Platform block diagram ... 17
Figure 2. Security IC life cycle .. 19
2 Context

The Target of Evaluation (TOE) referred to in Section 3: TOE description, is evaluated under the French IT Security Evaluation and Certification Scheme and is developed by the Secure Microcontrollers Division of STMicroelectronics (ST).

The assurance level of the performed Common Criteria (CC) IT Security Evaluation is EAL 5 augmented by ALC_DVS.2 and AVA_VAN.5.

The intent of this Security Target is to specify the Security Functional Requirements (SFRs) and Security Assurance Requirements (SARs) applicable to the TOE security IC, and to summarise its chosen TSF services and assurance measures.

This ST claims to be an instantiation of the "Security IC Platform Protection Profile" (PP) registered and certified under the reference BSI-PP-0035 in the German IT Security Evaluation and Certification Scheme, with the following augmentations:

- Addition #1: “Support of Cipher Schemes” from AUG
- Addition #4: “Area based Memory Access Control” from AUG
- Additions specific to this Security Target.

The original text of this PP is typeset as indicated here, its augmentations from AUG as indicated here, when they are reproduced in this document.

Extensions introduced in this ST to the SFRs of the Protection Profile (PP) are exclusively drawn from the Common Criteria part 2 standard SFRs.

This ST makes various refinements to the above mentioned PP and AUG. They are all properly identified in the text typeset as indicated here. The original text of the PP is repeated as scarcely as possible in this document for reading convenience. All PP identifiers have been however prefixed by their respective origin label: BSI for BSI-PP-0035, AUG1 for Addition #1 of AUG and AUG4 for Addition #4 of AUG.
3 TOE description

3.1 TOE identification

The Target of Evaluation (TOE) is the ST33H768 platform maskset K8K0A version C, with dedicated software rev 5, the optional cryptographic library Neslib 4.1 and 4.1.1, and/or the optional library MIFARE® DESFire® EV1 rev 2.1.0, with guidance documentation.

Table 1. TOE identification

<table>
<thead>
<tr>
<th>IC Maskset name & major version</th>
<th>IC version</th>
<th>Master identification number (1)</th>
<th>Firmware revision</th>
<th>OST revision</th>
<th>Optional Neslib crypto library version(2)</th>
<th>Optional MIFARE4Mobile DESFire EV1 library Id(3)</th>
<th>Optional MIFARE4Mobile version(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K8K0A</td>
<td>C</td>
<td>0098h</td>
<td>5</td>
<td>2.2</td>
<td>Neslib 4.1 and 4.1.1</td>
<td>0x000000004 or 0x00000504 (combined)</td>
<td>2.1.0</td>
</tr>
</tbody>
</table>

1. Part of the product information. Depending on family extension, see Datasheet and related Technical Notes referenced in Section 9.
2. See the Neslib User Manual referenced in Section 9.

14 The IC maskset name is the product hardware identification. The maskset major version is updated when the full maskset is changed (i.e. all layers of the maskset are changed at the same time). The IC version is updated for any change in hardware (i.e. part of the layers of the maskset) or in the OST. The Product name, IC version (i.e. ST33G1M2 platform version C), Firmware version and libraries versions fully identify the TOE.

15 Different derivative devices may be configured depending on the customer needs:

- either by ST during the manufacturing or packaging process,
- or by the customer during the packaging, or composite product integration, or personalisation process.

16 They all share the same hardware design and the same maskset. The Master identification number is unique for all product configurations depending on family extension.

17 The configuration of the derivative devices can impact the available IOs, the available NVM memory size, the availability of the crypto processors and the availability of the LPU, as detailed here below:

Table 2. Derivative devices configuration possibilities

<table>
<thead>
<tr>
<th>Features</th>
<th>Possible values</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWP</td>
<td>Active, Inactive</td>
</tr>
<tr>
<td>SPI</td>
<td>Active, Inactive</td>
</tr>
<tr>
<td>IART</td>
<td>Active, Inactive</td>
</tr>
<tr>
<td>NVM size</td>
<td>Selectable by 128 Kbytes granularity from 768 Kbytes to 384 Kbytes</td>
</tr>
<tr>
<td>Nescriptype</td>
<td>Active, Inactive</td>
</tr>
</tbody>
</table>
Table 2. Derivative devices configuration possibilities

<table>
<thead>
<tr>
<th>Features</th>
<th>Possible values</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDES+ accelerator</td>
<td>Active, Inactive</td>
</tr>
<tr>
<td>AES accelerator</td>
<td>Active, Inactive</td>
</tr>
<tr>
<td>Library Protection Unit (LPU)</td>
<td>Active, Inactive</td>
</tr>
<tr>
<td>Crypto1</td>
<td>Active, Inactive</td>
</tr>
</tbody>
</table>

18 All combinations of different features values are possible and covered by this certification. All possible configurations can vary under a unique IC, and without impact on security.

19 All along the product life, the marking on the die, a set of accessible registers and a set of specific instructions allow the customer to check the product information, providing the identification elements, as listed in Table 1: TOE identification, and the configuration elements as detailed in the Data Sheet and in the System ROM User Manual, referenced in Section 9.

20 The rest of this document applies to all possible configurations of the TOE, with or without Neslib, or MIFARE4Mobile libraries, except when a restriction is mentioned. For easier reading, the restrictions are typeset as indicated here.

3.2 TOE overview

21 The TOE is a serial access Smartcard IC designed for secure mobile applications, based on the most recent generation of ARM® processors for embedded secure systems. Its SecurCore® SC300™ 32-bit RISC core is built on the Cortex™ M3 core with additional security features to help to protect against advanced forms of attacks.

22 The TOE offers a high-speed User Flash memory, an internally generated clock, an MPU, an internal true random number generator (TRNG) and hardware accelerators for advanced cryptographic functions.

23 The TOE features hardware accelerators for advanced cryptographic functions, with built-in countermeasures against side channel attacks. If AES is active, the AES (Advanced Encryption Standard) accelerator provides a high-performance implementation of AES-128, AES-192 and AES-256 algorithms. If EDES+ is active, the 3-key triple DES accelerator (EDES+) supports efficiently the Data Encryption Standard (DES [2]), enabling Cipher Block Chaining (CBC) mode, fast DES and triple DES computation. If Nescrypt is active, the NESCRYPT crypto-processor allows fast and secure implementation of the most popular public key cryptosystems with a high level of performance ([4], [9], [15],[16], [17], [18]).

As randomness is a key stone in many applications, the ST33H768 Platform features a highly reliable True Random Number Generator (TRNG), compliant with PTG.2 Class of AIS20/AIS31 [1] and directly accessible through dedicated registers.

This device includes the ARM® SecurCore® SC300™ memory protection unit (MPU), which enables the user to define its own region organization with specific protection and access permissions. The MPU can be used to enforce various protection models, ranging from a basic code dump prevention model up to a full application confinement model.

24 The TOE offers 3 communication channels to the external world: a serial communication interface fully compatible with the ISO/IEC 7816-3 standard, a single-wire protocol (SWP) interface for communication with a near-field communication (NFC) router in SIM/NFC...
applications, and an alternative and exclusive SPI Slave interface for communication in non-
SIM applications.

25 In a few words, the ST33H768 Platform, offers a unique combination of high performances
and very powerful features for high level security:
• Die integrity,
• Monitoring of environmental parameters,
• Protection mechanisms against faults,
• AIS20/AIS31 class PTG.2 compliant True Random Number Generator,
• Memory protections,
• ISO 3309 CRC calculation block,
• optional EDES+ accelerator,
• optional AES accelerator,
• optional Library Protection Unit,
• optional Next Step Cryptography accelerator (NESCRIPT),
• optional cryptographic library,
• optional secure MIFARE4Mobile library.

26 The OST ROM contains a Dedicated Software which provides full test capabilities
(operating system for test, called "OST"), not accessible by the Security IC Embedded
Software (ES), after TOE delivery.

27 The System ROM and ST NVM of the TOE contain a Dedicated Software which provides a
very reduced set of commands for final test (operating system for final test, called "FTOS"),
not intended for the Security IC Embedded Software (ES) usage, and not available in User
configuration.

28 The System ROM and ST NVM of the TOE contain a Dedicated Support Software called
Secure Flash Loader, enabling to securely and efficiently download the Security IC
Embedded Software into the NVM. It also allows the evaluator to load software into the TOE
for test purpose. The Secure Flash Loader is not available in User configuration.

29 The System ROM and ST NVM of the TOE contain a Dedicated Support Software, which
provides low-level functions (called Flash Drivers), enabling the Security IC Embedded
Software (ES) to modify and manage the NVM contents. The Flash Drivers are available all
through the product life-cycle.

30 The TOE optionally comprises a specific application in User NVM: this applicative
Embedded Software is a cryptographic library called Neslib. Neslib is a cutting edge
cryptographic library in terms of security and performance.

Neslib is embedded by the ES developer in his applicative code.
Note that Neslib can only be used if Nescrypt is active.
Neslib provides the most useful operations in public key algorithms and protocols, thanks to:

- an asymmetric key cryptographic support module, supporting secure modular arithmetic with large integers, with specialized functions for Rivest, Shamir & Adleman Standard cryptographic algorithm (RSA [17]),
- an asymmetric key cryptographic support module that provides very efficient basic functions to build up protocols using Elliptic Curves Cryptography on prime fields GF(p) [15][16],
- an asymmetric key cryptographic support module that provides secure hash algorithm functions (SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512 [4][21]),
- prime number generation [5][3],
- support for a Deterministic Random Bit Generator.

The TOE optionally comprises a specific application in User NVM: this applicative Embedded Software is MIFARE4Mobile®, a MIFARE technology library [23]. This library is configurable according to the customer's choice. It can include MIFARE® Classic, or MIFARE® DESFire® EV1, or both.

The part of MIFARE4Mobile® featuring MIFARE® DESFire® EV1 is in the scope of this evaluation while the part of MIFARE4Mobile® featuring MIFARE® Classic is not in the scope of this evaluation.

M4M-DESFire features a mutual three pass authentication, a data encryption on RF channel, and a flexible self-securing file system.

Note that M4M-DESFire can only be used if the LPU, the EDES+ and the AES are active. In this Security Target, the terms:
- "M4M" means MIFARE4Mobile®
- "M4M-DESFire" denotes the part of MIFARE4Mobile® featuring MIFARE® DESFire® EV1
- "M4M-Classic" denotes the part of MIFARE4Mobile® featuring MIFARE® Classic.

The Security IC Embedded Software (ES) is in User NVM.

The ES is not part of the TOE and is out of scope of the evaluation, except Neslib and M4M-DESFire, when they are embedded.

The user guidance documentation, part of the TOE, consists of:
- the product Data Sheet and die description,
- optionally the ST33G1M2 platform Technical Notes,
- the product family Security Guidance,
- the AIS31 user manuals,
- the Cortex M3 SC300 Technical Reference Manuals,
- the System ROM user manual,
- the Flash loader installation guide,
- optionally the Neslib user manual,
- optionally the MIFARE4Mobile® user manual.

The complete list of guidance documents is detailed in Section 9.

a. MIFARE4Mobile is a registered trademark of NXP B.V. and is used under license.

b. MIFARE DESFire are registered trademarks of NXP B.V. and are used under license.
35 Figure 1 provides an overview of the ST33H768 Platform.

Figure 1. ST33H768 Platform block diagram

3.3 TOE life cycle

This Security Target is fully conform to the claimed PP. In the following, just a summary and some useful explanations are given. For complete details on the TOE life cycle, please refer to the Security IC Platform Protection Profile (BSI-PP-0035), section 1.2.3.

37 The composite product life cycle is decomposed into 7 phases. Each of these phases has the very same boundaries as those defined in the claimed protection profile.

38 The life cycle phases are summarized in Table 3.

39 The limit of the evaluation corresponds to phases 2, 3 and optionally 4, including the delivery and verification procedures of phase 1, and the TOE delivery either to the IC packaging manufacturer or to the composite product integrator; procedures corresponding to phases 1, 5, 6 and 7 are outside the scope of this evaluation.

40 In the following, the term "Composite product manufacturing" is uniquely used to indicate phases 1, optionally 4, 5 and 6 all together. This ST also uses the term "Composite product manufacturer" which includes all roles responsible of the TOE during phases 1, optionally 4, 5 and 6.

41 The TOE is delivered after Phase 3 in form of wafers or after Phase 4 in packaged form, depending on the customer’s order.
In the following, the term "TOE delivery" is uniquely used to indicate:
- after Phase 3 (or before Phase 4) if the TOE is delivered in form of wafers or sawn wafers (dice) or
- after Phase 4 (or before Phase 5) if the TOE is delivered in form of packaged products.

The TOE is only delivered in ADMIN or USER configuration, depending on the customer’s request.

Table 3. Composite product life cycle phases

<table>
<thead>
<tr>
<th>Phase</th>
<th>Name</th>
<th>Description</th>
<th>Responsible party</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IC embedded software development</td>
<td>security IC embedded software development specification of IC pre-personalization requirements</td>
<td>IC embedded software developer</td>
</tr>
<tr>
<td>2</td>
<td>IC development</td>
<td>IC design IC dedicated software development</td>
<td>IC developer: ST</td>
</tr>
<tr>
<td>3</td>
<td>IC manufacturing</td>
<td>integration and photomask fabrication IC production IC testing pre-personalisation</td>
<td>IC manufacturer: ST or TSMC</td>
</tr>
<tr>
<td>4</td>
<td>IC packaging</td>
<td>security IC packaging (and testing) pre-personalisation if necessary</td>
<td>IC packaging manufacturer: ST or AMKOR or NEDCARD or SMARTFLEX or STATSCHIPPAC</td>
</tr>
<tr>
<td>5</td>
<td>Composite product integration</td>
<td>composite product finishing process composite product testing</td>
<td>Composite product manufacturer</td>
</tr>
<tr>
<td>6</td>
<td>Personalisation</td>
<td>composite product personalisation composite product testing</td>
<td>Personaliser</td>
</tr>
<tr>
<td>7</td>
<td>Operational usage</td>
<td>composite product usage by its issuers and consumers</td>
<td>End-consumer</td>
</tr>
</tbody>
</table>

The following figure shows the possible organization of the life cycle, adapted to the TOE which comprises programmable NVM. Thus, the Security IC Embedded Software may be loaded onto the TOE in phase 3, 4, 5 or 6, depending on customer’s choice.
3.4 TOE environment

Considering the TOE, three types of environments are defined:

- Development environment corresponding to phase 2,
- Production environment corresponding to phase 3 and optionally 4,
- Operational environment, including phase 1 and from phase 4 or 5 to phase 7.

3.4.1 TOE Development Environment

To ensure security, the environment in which the development takes place is secured with controllable accesses having traceability. Furthermore, all authorised personnel involved fully understand the importance and the strict implementation of defined security procedures.

The development begins with the TOE’s specification. All parties in contact with sensitive information are required to abide by Non-Disclosure Agreements.

Design and development of the IC then follows, together with the dedicated and engineering software and tools development. The engineers use secure computer systems (preventing unauthorised access) to make their developments, simulations, verifications and generation of the TOE's databases. Sensitive documents, files and tools, databases on tapes, and printed circuit layout information are stored in appropriate locked cupboards/safe. Of paramount importance also is the disposal of unwanted data (complete electronic erasures) and documents (e.g. shredding).

The development centres involved in the development of the TOE can be the following: **ST ROUSSET (FRANCE), ST SOPHIA (FRANCE), ST GRENOBLE (FRANCE), ST RENNES (FRANCE), ST ANG MO KIO 1 (SINGAPORE), ST ZAVENTEM (BELGIUM).**
Reticules and photomasks are generated from the verified IC databases; the former are used in the silicon Wafer-fab processing. As reticules and photomasks are generated off-site, they are transported and worked on in a secure environment with accountability and traceability of all (good and bad) products. During the transfer of sensitive data electronically, procedures are established to ensure that the data arrive only at the destination and are not accessible at intermediate stages (e.g. stored on a buffer server where system administrators make backup copies).

The authorized sub-contractors involved in the TOE mask manufacturing can be DNP (JAPAN), DPE (ITALY), or TSMC (TAIWAN).

3.4.2 TOE production environment

As high volumes of product commonly go through such environments, adequate control procedures are necessary to account for all product at all stages of production.

Production starts within the Wafer-fab; here the silicon wafers undergo the diffusion processing. Computer tracking at wafer level throughout the process is commonplace. The wafers are then taken into the test area. Testing of each TOE occurs to assure conformance with the device specification. The wafers are then delivered for assembly onto the composite products.

The authorized front-end plant involved in the manufacturing of the TOE can be ST ROUSSET (FRANCE) or ST CROLLES (FRANCE) or TSMC (TAIWAN).

The authorized EWS (Electrical Wafer Sort) plant involved in the testing of the TOE can be ST ROUSSET (FRANCE) or ST TOA PAYOH (SINGAPORE).

Wafers are then scribed and broken such as to separate the functional from the non-functional ICs. The latter is discarded in a controlled accountable manner. The good ICs are then packaged in phase 4, in a back-end plant. When testing, programming or deliveries are done offsite, ICs are transported and worked on in a secure environment with accountability and traceability of all (good and bad) products.

When the product is delivered after phase 4, the authorized back-end plants involved in the packaging of the TOE can be ST ANG MO KIO 6 (SINGAPORE), ST BOUSKOURA (MOROCCO), ST CALAMBA (THE PHILIPPINES), ST MUAR (MALAYSIA), ST SHENZHEN (CHINA), AMKOR (THE PHILIPPINES or TAIWAN), NEDCARD (THE NETHERLANDS), SMARTFLEX (SINGAPORE), STATS CHIPPAC (SINGAPORE or TAIWAN or SHANGHAI).

All ST back-end plants, ST LOYANG (SINGAPORE) and ST ROUSSET (FRANCE) can also be involved for the logistics.

3.4.3 TOE operational environment

A TOE operational environment is the environment of phases 1, optionally 4, then 5 to 7.

At phases 1, 4, 5 and 6, the TOE operational environment is a controlled environment.

End-user environments (phase 7): composite products are used in a wide range of applications to assure authorised conditional access. Examples of such are pay-TV, banking cards, brand protection, portable communication SIM cards, health cards, transportation cards, access management, identity and passport cards. The end-user environment therefore covers a wide range of very different functions, thus making it difficult to avoid and monitor any abuse of the TOE.
4 Conformance claims

4.1 Common Criteria conformance claims

The ST33H768 Platform Security Target claims to be conformant to the Common Criteria version 3.1 revision 4.

Furthermore it claims to be CC Part 2 (CCMB-2012-09-002) extended and CC Part 3 (CCMB-2012-09-003) conformant. The extended Security Functional Requirements are those defined in the Security IC Platform Protection Profile (BSI-PP-0035).

The assurance level for the ST33H768 Platform Security Target is EAL 5 augmented by ALC_DVS.2 and AVA_VAN.5.

4.2 PP Claims

4.2.1 PP Reference

The ST33H768 Platform Security Target claims strict conformance to the Security IC Platform Protection Profile (BSI-PP-0035), for the part of the TOE covered by this PP (Security IC), as required by this Protection Profile.

4.2.2 PP Refinements

The main refinements operated on the BSI-PP-0035 are:

- Addition #1: “Support of Cipher Schemes” from AUG,
- Addition #4: “Area based Memory Access Control” from AUG,
- Specific additions for the Secure Flash Loader
- Specific additions for M4M-DESFire,
- Refinement of assurance requirements.

All refinements versus the PP are indicated with type setting text as indicated here, original text from the BSI-PP-0035 being typeset as indicated here. Text originating in AUG is typeset as indicated here.

4.2.3 PP Additions

The security environment additions relative to the PP are summarized in Table 4.

The additional security objectives relative to the PP are summarized in Table 5.

A simplified presentation of the TOE Security Policy (TSP) is added.

The additional SFRs for the TOE relative to the PP are summarized in Table 7.

The additional SARs relative to the PP are summarized in Table 10.

4.2.4 PP Claims rationale

The differences between this Security Target security objectives and requirements and those of BSI-PP-0035, to which conformance is claimed, have been identified and justified in Section 6 and in Section 7. They have been recalled in the previous section.
In the following, the statements of the security problem definition, the security objectives, and the security requirements are consistent with those of the BSI-PP-0035.

The security problem definition presented in Section 5, clearly shows the additions to the security problem statement of the PP.

The security objectives rationale presented in Section 6.3 clearly identifies modifications and additions made to the rationale presented in the BSI-PP-0035.

The security requirements rationale presented in Section 7.4 has been updated with respect to the protection profile.

All PP requirements have been shown to be satisfied in the extended set of requirements whose completeness, consistency and soundness have been argued in the rationale sections of the present document.
5 Security problem definition

This section describes the security aspects of the environment in which the TOE is intended to be used and addresses the description of the assets to be protected, the threats, the organisational security policies and the assumptions.

Note that the origin of each security aspect is clearly identified in the prefix of its label. Most of these security aspects can therefore be easily found in the Security IC Platform Protection Profile (BSI-PP-0035), section 3. Only those originating in AUG, and the one introduced in this Security Target, are detailed in the following sections.

A summary of all these security aspects and their respective conditions is provided in Table 4.

5.1 Description of assets

Since this Security Target claims strict conformance to the Security IC Platform Protection Profile (BSI-PP-0035), the assets defined in section 3.1 of the Protection Profile are applied and the assets regarding threats are clarified in this Security Target.

The assets regarding the threats are:

- logical design data, physical design data, IC Dedicated Software, and configuration data,
- Initialisation Data and Pre-personalisation Data, specific development aids, test and characterisation related data, material for software development support, and photomasks and product in any form,
- the TOE correct operation,
- the Security IC Embedded Software, stored and in operation,
- the security services provided by the TOE for the Security IC Embedded Software,
- the cryptographic co-processors for Triple-DES and AES (when they are active), the random number generator,
- when M4M-DESFire is embedded, the special functions for the communication with an external interface device,
- the User Data comprising, especially when M4M-DESFire is embedded,
 - authentication data like keys,
 - issuer data like card holder name or processing options,
 - representation of monetary values, e.g. a stored value for transport applications,
- the TSF Data.

This Security Target includes optionally Security IC Embedded Software and therefore does contain more assets compared to BSI-PP-0035. These assets are described above.

Application note:
The TOE providing a functionality for Security IC Embedded Software secure loading into NVM, the ES is considered as User Data being stored in the TOE’s memories at this step, and the Protection Profile security concerns are extended accordingly.
<table>
<thead>
<tr>
<th>Label</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSI.T.Leak-Inherent</td>
<td>Inherent Information Leakage</td>
</tr>
<tr>
<td>BSI.T.Phys-Probing</td>
<td>Physical Probing</td>
</tr>
<tr>
<td>BSI.T.Malfunction</td>
<td>Malfunction due to Environmental Stress</td>
</tr>
<tr>
<td>BSI.T.Phys-Manipulation</td>
<td>Physical Manipulation</td>
</tr>
<tr>
<td>BSI.T.Leak-Forced</td>
<td>Forced Information Leakage</td>
</tr>
<tr>
<td>BSI.T.Abuse-Func</td>
<td>Abuse of Functionality</td>
</tr>
<tr>
<td>BSI.T.RND</td>
<td>Deficiency of Random Numbers</td>
</tr>
<tr>
<td>AUG4.T.Mem-Access</td>
<td>Memory Access Violation</td>
</tr>
<tr>
<td>T.Data Modification</td>
<td>Unauthorised data modification</td>
</tr>
<tr>
<td>T.Impersonate</td>
<td>Impersonating authorised users during authentication</td>
</tr>
<tr>
<td>T.Cloning</td>
<td>Cloning</td>
</tr>
<tr>
<td>T.Confd-Applic-Code</td>
<td>M4M-DESFire code confidentiality</td>
</tr>
<tr>
<td>T.Confd-Applic-Data</td>
<td>M4M-DESFire data confidentiality</td>
</tr>
<tr>
<td>T.Integ-Applic-Code</td>
<td>M4M-DESFire code integrity</td>
</tr>
<tr>
<td>T.Integ-Applic-Data</td>
<td>M4M-DESFire data integrity</td>
</tr>
<tr>
<td>T.Resource</td>
<td>M4M-DESFire resource unavailability</td>
</tr>
<tr>
<td>BSI.P.Process-TOE</td>
<td>Protection during TOE Development and Production</td>
</tr>
<tr>
<td>AUG1.P.Add-Functions</td>
<td>Additional Specific Security Functionality (Cipher Scheme Support)</td>
</tr>
<tr>
<td>P.Controlled-ES-Loading</td>
<td>Controlled loading of the Security IC Embedded Software</td>
</tr>
<tr>
<td>P.Confidentiality</td>
<td>Confidentiality during communication</td>
</tr>
<tr>
<td>P.Transaction</td>
<td>Transaction mechanism</td>
</tr>
<tr>
<td>P.No-Trace</td>
<td>Un-traceability of end-users</td>
</tr>
<tr>
<td>P.Plat-App</td>
<td>Usage of hardware platform</td>
</tr>
<tr>
<td>P.Resp-Appl</td>
<td>Treatment of user data</td>
</tr>
<tr>
<td>BSI.A.Process-Sec-IC</td>
<td>Protection during Packaging, Finishing and Personalisation</td>
</tr>
<tr>
<td>BSI.A.Plat-AppI</td>
<td>Usage of Hardware Platform</td>
</tr>
<tr>
<td>BSI.A.Resp-Appl</td>
<td>Treatment of User Data</td>
</tr>
<tr>
<td>A.Secure-Values</td>
<td>Usage of secure values</td>
</tr>
<tr>
<td>A.Terminal-Support</td>
<td>Terminal support to ensure integrity and confidentiality</td>
</tr>
<tr>
<td>A.M4MFramework-Identification</td>
<td>Identification by M4M Framework</td>
</tr>
</tbody>
</table>
5.2 Threats

The threats are described in the *BSI-PP-0035*, section 3.2. Only those originating in *AUG* and those related to M4M-DESFire are detailed in the following section.

- **BSI.T.Leak-Inherent**: Inherent Information Leakage
- **BSI.T.Phys-Probing**: Physical Probing
- **BSI.T.Malfunction**: Malfunction due to Environmental Stress
- **BSI.T.Phys-Manipulation**: Physical Manipulation
- **BSI.T.Leak-Forced**: Forced Information Leakage
- **BSI.T.Abuse-Func**: Abuse of Functionality
- **BSI.T.RND**: Deficiency of Random Numbers
- **AUG4.T.Mem-Access**: Memory Access Violation:

 Parts of the *Security IC* Embedded Software may cause security violations by accidentally or deliberately accessing restricted data (which may include code). Any restrictions are defined by the security policy of the specific application context and must be implemented by the *Security IC* Embedded Software.

 Clarification: This threat does not address the proper definition and management of the security rules implemented by the Security IC Embedded Software, this being a software design and correctness issue. This threat addresses the reliability of the abstract machine targeted by the software implementation. To avert the threat, the set of access rules provided by this TOE should be undefeated if operated according to the provided guidance. The threat is not realized if the Security IC Embedded Software is designed or implemented to grant access to restricted information. It is realized if an implemented access denial is granted under unexpected conditions or if the execution machinery does not effectively control a controlled access.

 Here the attacker is expected to (i) take advantage of flaws in the design and/or the implementation of the TOE memory access rules (refer to BSI.T.Abuse-Func but for functions available after TOE delivery), (ii) introduce flaws by forcing operational conditions (refer to BSI.T.Malfunction) and/or by physical manipulation (refer to BSI.T.Phys-Manipulation). This attacker is expected to have a high level potential of attack.

- **T.Data-Modification**: Unauthorised data modification:

 User data stored by the TOE may be modified by unauthorised subjects. This threat applies to the processing of modification commands received by the TOE, it is not concerned with verification of authenticity.

- **T.Impersonate**: Impersonating authorised users during authentication:

 An unauthorised subject may try to impersonate an authorised subject during the authentication sequence, e.g. by a man-in-the middle or replay attack.
5.3 Organisational security policies

The TOE provides specific security functionality that can be used by the Security IC Embedded Software. In the following specific security functionality is listed which is not derived from threats identified for the TOE's environment because it can only be decided in the context of the Security IC application, against which threats the Security IC Embedded Software will use the specific security functionality.

ST applies the Protection policy during TOE Development and Production (BSI.P.Process-TOE) as specified below.

ST applies the Additional Specific Security Functionality policy (AUG1.P.Add-Functions) as specified below.

New Organisational Security Policies (OSPs) are defined here below:
P.Controlled-ES-Loading is related to the capability provided by the TOE to load Security IC Embedded Software into the NVM after TOE delivery, in a controlled manner, during composite product manufacturing. The use of this capability is optional, and depends on the customer's production organization.

P.Confidentiality, P.Transaction and P.No-Trace are related to M4M-DESFire, and valid in case M4M-DESFire is embedded in the TOE.

P.Plat-Appl and P.Resp-Appl are related to the ES that is part of the evaluation (Neslib and/or M4M-DESFire), and valid in case Neslib or M4M-DESFire are embedded in the TOE.

BSI.P.Process-TOE Protection during TOE Development and Production:
An accurate identification is established for the TOE. This requires that each instantiation of the TOE carries this unique identification.

AUG1.P.Add-Functions Additional Specific Security Functionality:
The TOE shall provide the following specific security functionality to the Security IC Embedded Software:
– Data Encryption Standard (DES): if EDES+ is active,
– Triple Data Encryption Standard (3DES): if EDES+ is active,
– Advanced Encryption Standard (AES): if AES is active,
– Elliptic Curves Cryptography on GF(p): when Neslib is embedded only,
– Secure Hashing (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512): when Neslib is embedded only,
– Rivest-Shamir-Adleman (RSA): when Neslib is embedded only,
– Prime Number Generation: when Neslib is embedded only,
– Deterministic Random Bit Generator: when Neslib is embedded only.

Note that DES is no longer recommended as an encryption function in the context of smart card applications. Hence, Security IC Embedded Software may need to use triple DES to achieve a suitable strength.

Note that SHA-1 is no longer recommended as a cryptographic function in the context of smart card applications. Hence, Security IC Embedded Software may need to use another SHA to achieve a suitable strength.

P.Controlled-ES-Loading Controlled loading of the Security IC Embedded Software:
The TOE shall provide the capability to import the Security IC Embedded Software into the NVM, in a controlled manner, either before TOE delivery, under ST authority, either after TOE delivery, under the composite product manufacturer authority.
This capability is not available in User configuration.

P.Confidentiality Confidentiality during communication:
The TOE shall provide the possibility to protect selected data elements from eavesdropping during contact-less communication. The TOE shall also provide the possibility to detect replay or man-in-the-middle attacks within a session.

P.Transaction Transaction mechanism:
The TOE shall provide the possibility to combine a number of data modification operations in one transaction, so that either all operations or no operation at all is performed.
5.4 Assumptions

5.4.1 Assumptions from the PP

The assumptions are described in the BSI-PP-0035, section 3.4.

- BSI.A.Process-Sec-IC: Protection during Packaging, Finishing and Personalisation
- BSI.A.Plat-Appl: Usage of Hardware Platform
- BSI.A.Resp-Appl: Treatment of User Data

5.4.2 Additional assumptions

The following assumptions are defined for M4M-DESFire only. Thus, they do not contradict with the security problem definition of the BSI-PP-0035, as they are only related to assets which are out of the scope of this PP.

In consequence, the addition of these assumptions does not contradict with the strict conformance claim on the BSI-PP-0035.

These assumptions are valid in case M4M-ESFire is embedded in the TOE.

- A.Secure-Values: Usage of secure values:
 Only confidential and secure keys shall be used to set up the authentication and access rights in M4M-DESFire. These values are generated outside the TOE and they are downloaded to the TOE.

- A.Terminal-Support: Terminal support to ensure integrity and confidentiality:
 The terminal verifies information sent by the TOE in order to ensure integrity and confidentiality of the communication.
Security problem definition

<table>
<thead>
<tr>
<th>A.M4MFramework-Identification</th>
<th>Identification by M4M Framework:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A subject getting access to M4M-DESFire through the M4M host interface is previously identified and authorized as specified in the M4M specification (M4M specification).</td>
</tr>
</tbody>
</table>
6 Security objectives

The security objectives of the TOE cover principally the following aspects:

- integrity and confidentiality of assets,
- protection of the TOE and associated documentation during development and production phases,
- provide random numbers,
- provide cryptographic support and access control functionality.

A summary of all security objectives is provided in Table 5.

Note that the origin of each objective is clearly identified in the prefix of its label. Most of these security aspects can therefore be easily found in the protection profile. Only those originating in AUG, and the one introduced in this Security Target, are detailed in the following sections.
Table 5. Summary of security objectives

<table>
<thead>
<tr>
<th>Label</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSI.O.Leak-Inherent</td>
<td>Protection against Inherent Information Leakage</td>
</tr>
<tr>
<td>BSI.O.Phys-Probing</td>
<td>Protection against Physical Probing</td>
</tr>
<tr>
<td>BSI.O.Malfunction</td>
<td>Protection against Malfunctions</td>
</tr>
<tr>
<td>BSI.O.Phys-Manipulation</td>
<td>Protection against Physical Manipulation</td>
</tr>
<tr>
<td>BSI.O.Leak-Forced</td>
<td>Protection against Forced Information Leakage</td>
</tr>
<tr>
<td>BSI.O.Abuse-Func</td>
<td>Protection against Abuse of Functionality</td>
</tr>
<tr>
<td>BSI.O.Identification</td>
<td>TOE Identification</td>
</tr>
<tr>
<td>BSI.O.RND</td>
<td>Random Numbers</td>
</tr>
<tr>
<td>AUG1.O.Add-Functions</td>
<td>Additional Specific Security Functionality</td>
</tr>
<tr>
<td>AUG4.O.Mem-Access</td>
<td>Dynamic Area based Memory Access Control</td>
</tr>
<tr>
<td>O.Controlled-ES-Loading</td>
<td>Controlled loading of the Security IC Embedded Software</td>
</tr>
<tr>
<td>O.Access-Control</td>
<td>Access Control for M4M-DESFire</td>
</tr>
<tr>
<td>O.Authentication</td>
<td>Authentication for M4M-DESFire</td>
</tr>
<tr>
<td>O.Confidentiality</td>
<td>M4M-DESFire Confidential Communication</td>
</tr>
<tr>
<td>O.Type-Consistency</td>
<td>M4M-DESFire Data type consistency</td>
</tr>
<tr>
<td>O.Transaction</td>
<td>M4M-DESFire Transaction mechanism</td>
</tr>
<tr>
<td>O.No-Trace</td>
<td>Preventing Traceability for M4M-DESFire</td>
</tr>
<tr>
<td>O.Plat-App</td>
<td>Usage of hardware platform</td>
</tr>
<tr>
<td>O.Resp-App</td>
<td>Treatment of user data</td>
</tr>
<tr>
<td>O.Resource</td>
<td>Resource availability for M4M-DESFire</td>
</tr>
<tr>
<td>O.Firewall</td>
<td>M4M-DESFire firewall</td>
</tr>
<tr>
<td>O.Shr-Res</td>
<td>M4M-DESFire data cleaning for resource sharing</td>
</tr>
<tr>
<td>O.Verification</td>
<td>M4M-DESFire code integrity check</td>
</tr>
<tr>
<td>BSI.OE.Plat-App</td>
<td>Usage of Hardware Platform</td>
</tr>
<tr>
<td>BSI.OE.Resp-App</td>
<td>Treatment of User Data</td>
</tr>
<tr>
<td>BSI.OE.Process-Sec-IC</td>
<td>Protection during composite product manufacturing</td>
</tr>
<tr>
<td>OE.Secure-Values</td>
<td>Generation of secure values</td>
</tr>
<tr>
<td>OE.Terminal-Support</td>
<td>Terminal support to ensure integrity and confidentiality</td>
</tr>
<tr>
<td>OE.M4MFramework-Identification</td>
<td>Identification by M4M Framework</td>
</tr>
</tbody>
</table>

6.1 Security objectives for the TOE

6.1.1 Objectives from the PP:

BSI.O.Leak-Inherent Protection against Inherent Information Leakage
6.1.2 Additional objectives:

The following objectives are only valid in case M4M-DESFire is embedded:

- BSI.O.Phys-Probing: Protection against Physical Probing
- BSI.O.Malfunction: Protection against Malfunctions
- BSI.O.Phys-Manipulation: Protection against Physical Manipulation
- BSI.O.Leak-Forced: Protection against Forced Information Leakage
- BSI.O.Abuse-Func: Protection against Abuse of Functionality
- BSI.O.Identification: TOE Identification
- BSI.O.RND: Random Numbers

Additional Specific Security Functionality:

- **AUG1.O.Add-Functions**: The TOE must provide the following specific security functionality to the Security IC Embedded Software:
 - Data Encryption Standard (DES): if EDES+ is active,
 - Triple Data Encryption Standard (3DES): if EDES+ is active,
 - Advanced Encryption Standard (AES): if AES is active,
 - **Elliptic Curves Cryptography on GF(p)**: when Neslib is embedded only,
 - Secure Hashing (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512): when Neslib is embedded only,
 - Rivest-Shamir-Adleman (RSA): when Neslib is embedded only,
 - **Prime Number Generation**: when Neslib is embedded only,
 - **Deterministic Random Bit Generator**: when Neslib is embedded only.

AUG4.O.Mem-Access: Dynamic Area based Memory Access Control:

The TOE must provide the Security IC Embedded Software with the capability to define dynamic memory segmentation and protection. The TOE must then enforce the defined access restrictions so that access of software to memory areas is controlled as required, for example, in a multi-application environment.

O.Controlled-ES-Loading: Controlled loading of the Security IC Embedded Software:

The TOE must provide the capability to load the Security IC Embedded Software into the NVM, either before TOE delivery, under ST authority, either after TOE delivery, under the composite product manufacturer authority. The TOE must restrict the access to these features. The TOE must provide control means to check the integrity of the loaded user data.

This capability is not available in User configuration.

The following objectives are only valid in case M4M-DESFire is embedded:
O. Access-Control
Access Control for M4M-DESFire:
The TOE must provide an access control mechanism for data stored by it. The access control mechanism shall apply to read, modify, create and delete operations for data elements and to reading and modifying security attributes as well as authentication data. It shall be possible to limit the right to perform a specific operation to a specific user. The security attributes (keys) used for authentication shall never be output.

O. Authentication
Authentication for M4M-DESFire:
The TOE must provide an authentication mechanism in order to be able to authenticate authorised users. The authentication mechanism shall be resistant against replay and man-in-the-middle attacks.

O. Confidentiality
M4M-DESFire Confidential Communication:
The TOE must be able to protect the communication by encryption. This shall be implemented by security attributes that enforce encrypted communication for the respective data element. The TOE shall also provide the possibility to detect replay or man-in-the-middle attacks within a session. This shall be implemented by checking verification data sent by the terminal and providing verification data to the terminal.

O. Type-Consistency
M4M-DESFire Data type consistency:
The TOE must provide a consistent handling of the different supported data types. This comprises over- and underflow checking for values, for data file sizes and record handling.

O. Transaction
M4M-DESFire Transaction mechanism:
The TOE must be able to provide a transaction mechanism that allows to update multiple data elements either all in common or none of them.

O. No-Trace
Preventing Traceability for M4M-DESFire:
The TOE must be able to prevent that the TOE end-user can be traced. This shall be done by providing an option that disables the transfer of any information that is suitable for tracing an end-user by an unauthorised subject.

O. Plat-Appl
Usage of hardware platform:
To ensure that the TOE is used in a secure manner the Security IC Embedded Software, part of the TOE, shall be designed so that the requirements from the following documents are met: (i) hardware data sheet for the TOE, (ii) data sheet of the IC dedicated software of the TOE, (iii) TOE application notes, other guidance documents, and (iii) findings of the TOE evaluation reports relevant for the Security IC Embedded Software.

O. Resp-Appl
Treatment of user data:
Security relevant User Data (especially cryptographic keys) are treated by the Security IC Embedded Software as required by the security needs of the specific application context. For example the Security IC Embedded Software will not disclose security relevant user data to unauthorised users or processes when communicating with a terminal.
6.2 Security objectives for the environment

103 Security Objectives for the Security IC Embedded Software development environment (phase 1):

BSI.OE.Plat-Appl Usage of Hardware Platform

BSI.OE.Resp-Appl Treatment of User Data

104 Security Objectives for the operational Environment (phase 4 up to 6):

BSI.OE.Process-Sec-IC Protection during composite product manufacturing

105 This section details the security objectives for the operational environment, related to M4M-DESFire, and to be enforced after TOE delivery up to phase 6.

106 The following security objectives for the operational environment are only valid if M4M-DESFire is embedded in the TOE:

OE.Secure-Values Generation of secure values:
The environment shall generate confidential and secure keys for authentication purpose. These values are generated outside the TOE and they are downloaded to the TOE during the personalisation or usage in phase 5 to 7.
6.3 Security objectives rationale

The main line of this rationale is that the inclusion of all the security objectives of the BSI-PP-0035 protection profile, together with those in AUG, and those introduced in this ST, guarantees that all the security environment aspects identified in Section 5 are addressed by the security objectives stated in this chapter.

Thus, it is necessary to show that:

- security environment aspects from AUG, and from this ST, are addressed by security objectives stated in this chapter,
- security objectives from AUG, and from this ST, are suitable (i.e. they address security environment aspects),
- security objectives from AUG, and from this ST, are consistent with the other security objectives stated in this chapter (i.e. no contradictions).

The selected augmentations from AUG introduce the following security environment aspects:

- TOE threat "Memory Access Violation, (AUG4.T.Mem-Access)",
- organisational security policy "Additional Specific Security Functionality, (AUG1.P.Add-Functions)".

The augmentations made in this ST introduce the following security environment aspects:

- organisational security policies "Controlled loading of the Security IC Embedded Software, (P.Controlled-ES-Loading)", "Confidentiality during communication, (P.Confidentiality)", "Transaction mechanism, (P.Transaction)", "Un-traceability of end-users, (P.No-Trace)", "Usage of hardware platform, (P.Plat-Appl)", and "Treatment of user data, (P.Resp-Appl)".
- assumptions "Usage of secure values, (A.Secure-Values)", and "Terminal support to ensure integrity and confidentiality, (A.Terminal-Support)", and "Identification by M4M Framework, (A.M4MFramework-Identification)".

The justification of the additional policies, additional threats, and additional assumptions provided in the next subsections shows that they do not contradict to the rationale already given in the protection profile BSI-PP-0035 for the assumptions, policy and threats defined there.

OE.Termin-Support
Terminal support to ensure integrity and confidentiality:
The terminal shall verify information sent by the TOE in order to ensure integrity and confidentiality of the communication. This involves checking of MAC values, verification of redundancy information according to the cryptographic protocol and secure closing of the communication session.

OE.M4MFramework-Identification
Identification by M4M Framework:
The MIFAREforMobile Framework shall identify and authorize a user getting access to M4M-DESFire through the M4M host interface, as specified in the M4M specification (M4M specification).
In particular, the added assumptions and objectives on the environment do not contradict with the policies, threats and assumptions of the BSI-PP-0035 Protection Profile, to which strict conformance is claimed, because they are all exclusively related to M4M-DESFire, which is out of the scope of this protection profile.

Table 6. Security Objectives versus Assumptions, Threats or Policies

<table>
<thead>
<tr>
<th>Assumption, Threat or Organisational Security Policy</th>
<th>Security Objective</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSI.A.Plat-Appl</td>
<td>BSI.OE.Plat-Appl</td>
<td>Phase 1</td>
</tr>
<tr>
<td>BSI.A.Resp-Appl</td>
<td>BSI.OE.Resp-Appl</td>
<td>Phase 1</td>
</tr>
<tr>
<td>A.M4MFramework-Identification</td>
<td>OE.M4MFramework-Identification</td>
<td>Phase 1</td>
</tr>
<tr>
<td>BSI.P.Process-TOE</td>
<td>BSI.O.Identification</td>
<td>Phase 2-3</td>
</tr>
<tr>
<td>BSI.A.Process-Sec-IC</td>
<td>BSI.OE.Process-Sec-IC</td>
<td>Phase 4-6</td>
</tr>
<tr>
<td>P.Controlled-ES-Loading</td>
<td>O.Controlled-ES-Loading</td>
<td>Phase 4-6</td>
</tr>
<tr>
<td>A.Secure-Values</td>
<td>OE.Secure-Values</td>
<td>Phases 5-7</td>
</tr>
<tr>
<td>A.Terminal-Support</td>
<td>OE.Terminal-Support</td>
<td>Phase 7</td>
</tr>
<tr>
<td>AUG1.P.Add-Functions</td>
<td>AUG1.O.Add-Functions</td>
<td></td>
</tr>
<tr>
<td>P.Confidentiality</td>
<td>O.Confidentiality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OE.Terminal-Support</td>
<td></td>
</tr>
<tr>
<td>P.Transaction</td>
<td>O.Transaction</td>
<td></td>
</tr>
<tr>
<td>P.No-Trace</td>
<td>O.No-Trace</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.Access-Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.Authentication</td>
<td></td>
</tr>
<tr>
<td>P.Plat-Appl</td>
<td>O.Plat-Appl</td>
<td></td>
</tr>
<tr>
<td>P.Resp-Appl</td>
<td>O.Resp-Appl</td>
<td></td>
</tr>
<tr>
<td>BSI.T.Leak-Inherent</td>
<td>BSI.O.Leak-Inherent</td>
<td></td>
</tr>
<tr>
<td>BSI.T.Phys-Probing</td>
<td>BSI.O.Phys-Probing</td>
<td></td>
</tr>
<tr>
<td>BSI.T.Malfunction</td>
<td>BSI.O.Malfunction</td>
<td></td>
</tr>
<tr>
<td>BSI.T.Phys-Manipulation</td>
<td>BSI.O.Phys-Manipulation</td>
<td></td>
</tr>
<tr>
<td>BSI.T.Leak-Forced</td>
<td>BSI.O.Leak-Forced</td>
<td></td>
</tr>
<tr>
<td>BSI.T.Abuse-Func</td>
<td>BSI.O.Abuse-Func</td>
<td></td>
</tr>
<tr>
<td>BSI.T.RND</td>
<td>BSI.O.RND</td>
<td></td>
</tr>
<tr>
<td>T.Data-Modification</td>
<td>O.Access-Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.Type-Consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OE.Terminal-Support</td>
<td></td>
</tr>
<tr>
<td>T.Impersonate</td>
<td>O.Authentication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OE.M4MFramework-Identification</td>
<td></td>
</tr>
<tr>
<td>T.Cloning</td>
<td>O.Access-Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O.Authentication</td>
<td></td>
</tr>
</tbody>
</table>
6.3.1 Assumption "Usage of secure values"

The justification related to the assumption “Usage of secure values, (A.Secure-Values)” is as follows:

Since OE.Secure-Values requires from the Administrator, Application Manager or the Application User to use secure values for the configuration of the authentication and access control as assumed in A.Secure-Values, the assumption is covered by the objective.

A.Secure-Values and OE.Secure-Values do not contradict with the security problem definition of the BSI-PP-0035, because they are only related to M4M-DESFire, which is out of the scope of this protection profile.

6.3.2 Assumption "Terminal support to ensure integrity and confidentiality"

The justification related to the assumption “Terminal support to ensure integrity and confidentiality, (A.Terminal-Support)” is as follows:

The objective OE.Terminal-Support is an immediate transformation of the assumption A.Terminal-Support, therefore it covers the assumption.

A.Terminal-Support and OE.Terminal-Support do not contradict with the security problem definition of the BSI-PP-0035, because they are only related to M4M-DESFire, which is out of the scope of this protection profile.

6.3.3 Assumption “Identification by M4M Framework”

The justification related to the assumption “Identification by M4M Framework, (A.M4MFramework-Identification)” is as follows:

The objective OE.M4MFramework-Identification is an immediate transformation of the assumption A.M4MFramework-Identification, therefore it covers the assumption.

A.M4MFramework-Identification and OE.M4MFramework-Identification do not contradict with the security problem definition of the BSI-PP-0035, because they are only related to M4M-DESFire, which is out of the scope of this protection profile.

6.3.4 TOE threat "Memory Access Violation"

The justification related to the threat “Memory Access Violation, (AUG4.T.Mem-Access)” is as follows:
According to AUG4.O.Mem-Access the TOE must enforce the dynamic memory segmentation and protection so that access of software to memory areas is controlled. Any restrictions are to be defined by the Security IC Embedded Software. Thereby security violations caused by accidental or deliberate access to restricted data (which may include code) can be prevented (refer to AUG4.T.Mem-Access). The threat AUG4.T.Mem-Access is therefore removed if the objective is met.

The added objective for the TOE AUG4.O.Mem-Access does not introduce any contradiction in the security objectives for the TOE.

6.3.5 TOE threat "Unauthorised data modification"

The justification related to the threat "Unauthorised data modification, (T.Data-Modification)" is as follows:

According to threat T.Data-Modification, the TOE may be modified by unauthorised subjects. The objective O.Access-Control requires an access control mechanism that limits the ability to modify data elements stored by the TOE. O.Type-Consistency ensures that data types are adhered, so that data can not be modified by abusing type-specific operations. The terminal must support this by checking the TOE responses, which is required by OE.Terminal-Support. Therefore T.Data-Modification is covered by these three objectives.

The added objectives for the TOE O.Access-Control and O.Type-Consistency do not introduce any contradiction in the security objectives for the TOE.

6.3.6 TOE threat "Impersonating authorised users during authentication"

The justification related to the threat "Impersonating authorised users during authentication, (T.Impersonate)" is as follows:

The threat is related to the fact that an unauthorised subject may try to impersonate an authorised subject during authentication, e.g. by a man-in-the middle or replay attack. The goal of O.Authentication is that an authentication mechanism is implemented in the TOE that prevents these attacks. Additionally, OE.M4MFramework-Identification requires that a subject getting access to M4M-DESFire through the M4M host interface is previously identified. Therefore the threat is covered by O.Authentication together with OE.M4MFramework-Identification.

The added objective for the TOE O.Authentication does not introduce any contradiction in the security objectives for the TOE.

6.3.7 TOE threat "Cloning"

The justification related to the threat “Cloning, (T.Cloning)” is as follows:

The concern of T.Cloning is that all data stored on the TOE (including keys) may be read out in order to create a duplicate. The objective O.Authentication together with O.Access-Control requires that unauthorised users can not read any information that is restricted to the authorised subjects. The cryptographic keys used for the authentication are stored inside the TOE protected. O.Access-Control states that no keys used for authentication shall ever be output. Therefore the two objectives cover T.Cloning.
6.3.8 TOE threat "M4M-DESFire resource unavailability"

The justification related to the threat “M4M-DESFire resource unavailability, (T.Resource)” is as follows:

The concern of T.Resource is to prevent denial of service or malfunction of M4M-DESFire, that may result from an unavailability of resources. The goal of O.Resource is to control the availability of resources for M4M-DESFire. Therefore the threat is covered by O.Resource.

The added objective for the TOE O.Resource does not introduce any contradiction in the security objectives for the TOE.

6.3.9 TOE threat "M4M-DESFire code confidentiality"

The justification related to the threat "M4M-DESFire code confidentiality, (T.Confid-Applic-Code)" is as follows:

Since O.Firewall requires that the TOE ensures isolation of code between M4M-DESFire and the other applications, the code of M4M-DESFire is protected against unauthorised disclosure, therefore T.Confid-Applic-Code is covered by O.Firewall.

The added objective for the TOE O.Firewall does not introduce any contradiction in the security objectives for the TOE.

6.3.10 TOE threat "M4M-DESFire data confidentiality"

The justification related to the threat "M4M-DESFire data confidentiality, (T.Confid-Applic-Data)" is as follows:

Since O.Firewall requires that the TOE ensures isolation of data between M4M-DESFire and the other applications, the data of M4M-DESFire is protected against unauthorised disclosure, therefore T.Confid-Applic-Data is covered by O.Firewall.

The added objective for the TOE O.Firewall does not introduce any contradiction in the security objectives for the TOE.

6.3.11 TOE threat "M4M-DESFire code integrity"

The justification related to the threat "M4M-DESFire code integrity, (T.Integ-Applic-Code)" is as follows:

The threat is related to the alteration of M4M-DESFire code by an attacker. O.Verification requires that the TOE verifies the code integrity before its execution. Complementary, O.Firewall requires that the TOE ensures isolation of code between M4M-DESFire and the other applications, thus protecting the code of M4M-DESFire against unauthorised modification. Therefore the threat is covered by O.Verification together with O.Firewall.

The added objective for the TOE O.Verification does not introduce any contradiction in the security objectives for the TOE.

6.3.12 TOE threat "M4M-DESFire data integrity"

The justification related to the threat "M4M-DESFire data integrity, (T.Integ-Applic-Data)" is as follows:

The threat is related to the alteration of M4M-DESFire data by an attacker. Since O.Firewall and O.Shr-Res require that the TOE ensures complete isolation of data between M4M-DESFire and the other applications, the data of M4M-DESFire is protected against unauthorised modification, therefore T.Integ-Applic-Data is covered by O.Firewall together with O.Shr-Res.
The added objective for the TOE $O_{\text{Shr-Res}}$ does not introduce any contradiction in the security objectives for the TOE.

6.3.13 Organisational security policy "Additional Specific Security Functionality"

The justification related to the organisational security policy "Additional Specific Security Functionality, ($AUG1.P.Add-Functions$)" is as follows:

Since $AUG1.O.Add-Functions$ requires the TOE to implement exactly the same specific security functionality as required by $AUG1.P.Add-Functions$, and in the very same conditions, the organisational security policy is covered by the objective.

Nevertheless the security objectives $BSI.O.Leak-Inherent$, $BSI.O.Phys-Probing$, $BSI.O.Malfunction$, $BSI.O.Phys-Manipulation$ and $BSI.O.Leak-Forced$ define how to implement the specific security functionality required by $AUG1.P.Add-Functions$. (Note that these objectives support that the specific security functionality is provided in a secure way as expected from $AUG1.P.Add-Functions$.) Especially $BSI.O.Leak-Inherent$ and $BSI.O.Leak-Forced$ refer to the protection of confidential data (User Data or TSF data) in general. User Data are also processed by the specific security functionality required by $AUG1.P.Add-Functions$.

The added objective for the TOE $AUG1.O.Add-Functions$ does not introduce any contradiction in the security objectives for the TOE.

6.3.14 Organisational security policy "Controlled loading of the Security IC Embedded Software"

The justification related to the organisational security policy "Controlled loading of the Security IC Embedded Software, ($P.Controlled-ES-Loading$)" is as follows:

Since $O.Controlled-ES-Loading$ requires the TOE to implement exactly the same specific security functionality as required by $P.Controlled-ES-Loading$, and in the very same conditions, the organisational security policy is covered by the objective.

The added objective for the TOE $O.Controlled-ES-Loading$ does not introduce any contradiction in the security objectives.

6.3.15 Organisational security policy "Confidentiality during communication"

The justification related to the organisational security policy "Confidentiality during communication, ($P.Confidentiality$)" is as follows:

The policy $P.Confidentiality$ requires the TOE to provide the possibility to protect selected data elements from eavesdropping during contact-less communication. In addition, the data transfer is protected in a way that injected and bogus commands, within the communication session before the protected data transfer, can be detected. The terminal must support this by checking the TOE responses, which is required by $OE.Terminal-Support$. Since $O.Confidentiality$ requires that the security attribute for a data element contains an option that the communication related to this data element must be encrypted and protected, and because $OE.Terminal-Support$ ensures the support by the terminal, the two objectives cover the policy.

The added objective for the TOE $O.Confidentiality$ does not introduce any contradiction in the security objectives.
6.3.16 Organisational security policy "Transaction mechanism"

The justification related to the organisational security policy "Transaction mechanism, (P.Transaction)" is as follows:

According to this policy, the TOE shall be able to provide the possibility to combine a number of data modification operations in one transaction, so that either all operations or no operation at all is performed. This is exactly the goal of the objective O.Transaction, therefore the policy P.Transaction is covered by O.Transaction.

The added objective for the TOE O.Transaction does not introduce any contradiction in the security objectives.

6.3.17 Organisational security policy "Un-traceability of end-users"

The justification related to the organisational security policy "Un-traceability of end-users, (P.No-Trace)" is as follows:

The policy requires that the TOE has the ability to prevent tracing of end-users. Tracing can be performed with the UID or with any freely accessible data element stored by the TOE. The objective O.No-Trace requires that the TOE shall provide an option to prevent the transfer of any information that is suitable for tracing an end-user by an unauthorised subject, which includes the UID. The objectives O.Authentication and O.Access-Control provide means to authorise subjects and to implement access control to data elements in a way that unauthorised subjects can not read any element usable for tracing. Therefore the policy is covered by these three objectives.

The added objective for the TOE O.No-Trace does not introduce any contradiction in the security objectives.

6.3.18 Organisational security policy "Usage of hardware platform"

The justification related to the organisational security policy "Usage of hardware platform, (P.Plat-Appl)" is as follows:

The policy states that the Security IC Embedded Software included in the TOE, uses the TOE hardware according to the respective PP assumption BSI.A.Plat-Appl. O.Plat-Appl has the same objective as BSI.OE.Plat-Appl defined in the PP. Thus, the objective O.Plat-Appl covers the policy P.Plat-Appl.

The added objective for the TOE O.Plat-Appl does not introduce any contradiction in the security objectives.

6.3.19 Organisational security policy "Treatment of user data"

The justification related to the organisational security policy "Treatment of user data, (P.Resp-Appl)" is as follows:

In analogy to P.Plat-Appl, the policy P.Resp-Appl is covered in the same way by the objective O.Resp-Appl.

The added objective for the TOE O.Resp-Appl does not introduce any contradiction in the security objectives.
7 Security requirements

This chapter on security requirements contains a section on security functional requirements (SFRs) for the TOE (Section 7.1), a section on security assurance requirements (SARs) for the TOE (Section 7.2), a section on the refinements of these SARs (Section 7.3) as required by the "BSI-PP-0035" Protection Profile. This chapter includes a section with the security requirements rationale (Section 7.4).

7.1 Security functional requirements for the TOE

Security Functional Requirements (SFRs) from the "BSI-PP-0035" Protection Profile (PP) are drawn from CCMB-2012-09-002, except the following SFRs, that are extensions to CCMB-2012-09-002:

- FCS_RNG Generation of random numbers,
- FMT_LIM Limited capabilities and availability,
- FAU_SAS Audit data storage.

The reader can find their certified definitions in the text of the "BSI-PP-0035" Protection Profile.

All extensions to the SFRs of the "BSI-PP-0035" Protection Profiles (PPs) are exclusively drawn from CCMB-2012-09-002.

All iterations, assignments, selections, or refinements on SFRs have been performed according to section C.4 of CCMB-2012-09-001. They are easily identified in the following text as they appear as indicated here. Note that in order to improve readability, iterations are sometimes expressed within tables.

The selected security functional requirements for the TOE, their respective origin and type are summarized in Table 7.

Table 7. Summary of functional security requirements for the TOE

<table>
<thead>
<tr>
<th>Label</th>
<th>Title</th>
<th>Addressing</th>
<th>Origin</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRU_FLT.2</td>
<td>Limited fault tolerance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPT_FLS.1</td>
<td>Failure with preservation of secure state</td>
<td>Malfunction</td>
<td>BSI-PP-0035</td>
<td></td>
</tr>
<tr>
<td>FMT_LIM.1 [Test]</td>
<td>Limited capabilities</td>
<td>Abuse of TEST functionality</td>
<td>BSI-PP-0035</td>
<td></td>
</tr>
<tr>
<td>FMT_LIM.2 [Test]</td>
<td>Limited availability</td>
<td></td>
<td></td>
<td>Extended</td>
</tr>
<tr>
<td>FMT_LIM.1 [Admin]</td>
<td>Limited capabilities</td>
<td>Abuse of ADMIN functionality</td>
<td>Security Target Operated</td>
<td></td>
</tr>
<tr>
<td>FMT_LIM.2 [Admin]</td>
<td>Limited availability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAU_SAS.1</td>
<td>Audit storage</td>
<td>Lack of TOE identification</td>
<td>BSI-PP-0035 Operated</td>
<td></td>
</tr>
</tbody>
</table>
Table 7. Summary of functional security requirements for the TOE (continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Title</th>
<th>Addressing</th>
<th>Origin</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPT_PHP.3</td>
<td>Resistance to physical attack</td>
<td>Physical manipulation & probing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_ITT.1</td>
<td>Basic internal transfer protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPT_ITT.1</td>
<td>Basic internal TSF data transfer protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_IFC.1</td>
<td>Subset information flow control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_RNG.1</td>
<td>Random number generation</td>
<td>Weak cryptographic quality of random numbers</td>
<td>BSI-PP-0035 Operated</td>
<td>Extended</td>
</tr>
<tr>
<td>FCS_COP.1</td>
<td>Cryptographic operation</td>
<td>Cipher scheme support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_CKM.1</td>
<td>Cryptographic key generation</td>
<td>Cipher scheme support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_ACC.2</td>
<td>Complete access control</td>
<td>Memory access violation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_ACF.1</td>
<td>Security attribute based access control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.3</td>
<td>Static attribute initialisation</td>
<td>Specification of management functions</td>
<td>AUG #4 Operated</td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.1</td>
<td>Management of security attribute</td>
<td>Correct operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMT_SMF.1</td>
<td>Specification of management functions</td>
<td>Correct operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_ITC.1</td>
<td>Import of user data without security attributes</td>
<td>User data loading access violation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_ACC.1</td>
<td>Subset access control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_ACF.1</td>
<td>Security attribute based access control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.3</td>
<td>Static attribute initialisation</td>
<td>Correct operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.1</td>
<td>Management of security attribute</td>
<td>Correct operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMT_SMF.1</td>
<td>Specification of management functions</td>
<td>Abuse of ADMIN functionality</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7. Summary of functional security requirements for the TOE (continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Title</th>
<th>Addressing</th>
<th>Origin</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMT_SMR.1 [M4M-DESFire]</td>
<td>Security roles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_ACC.1 [M4M-DESFire]</td>
<td>Subset access control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_ACF.1 [M4M-DESFire]</td>
<td>Security attribute based access control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.3 [M4M-DESFire]</td>
<td>Static attribute initialisation</td>
<td></td>
<td></td>
<td>M4M-DESFire access control (if M4M-DESFire is embedded only)</td>
</tr>
<tr>
<td>FMT_MSA.1 [M4M-DESFire]</td>
<td>Management of security attribute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMT_SMF.1 [M4M-DESFire]</td>
<td>Specification of management functions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_ITC.2 [M4M-DESFire]</td>
<td>Import of user data with security attributes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPT_TDC.1 [M4M-DESFire]</td>
<td>Inter-TSF basic TSF data consistency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIA_UID.2 [M4M-DESFire]</td>
<td>User identification before any action</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIA_UAU.2 [M4M-DESFire]</td>
<td>User authentication before any action</td>
<td></td>
<td></td>
<td>Security Target Operated</td>
</tr>
<tr>
<td>FIA_UAU.5 [M4M-DESFire]</td>
<td>Multiple authentication mechanisms</td>
<td></td>
<td></td>
<td>M4M-DESFire confidentiality and authentication (if M4M-DESFire is embedded only)</td>
</tr>
<tr>
<td>FMT_MTD.1 [M4M-DESFire]</td>
<td>Management of TSF data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPT_TRP.1 [M4M-DESFire]</td>
<td>Trusted path</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_CKM.4 [M4M-DESFire]</td>
<td>Cryptographic key destruction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_ROL.1 [M4M-DESFire]</td>
<td>Basic rollback</td>
<td></td>
<td></td>
<td>M4M-DESFire robustness (if M4M-DESFire is embedded only)</td>
</tr>
<tr>
<td>FPT_RPL.1 [M4M-DESFire]</td>
<td>Replay detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPR_UNL.1 [M4M-DESFire]</td>
<td>Unlinkability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRU_RSA.2 [M4M-DESFire]</td>
<td>Minimum and maximum quotas</td>
<td></td>
<td></td>
<td>M4M-DESFire correct operation (if M4M-DESFire is embedded only)</td>
</tr>
<tr>
<td>FDP_RIP.1 [M4M-DESFire]</td>
<td>Subset residual information protection</td>
<td></td>
<td></td>
<td>M4M-DESFire intrinsic confidentiality and integrity (if M4M-DESFire is embedded only)</td>
</tr>
</tbody>
</table>
7.1.1 Security Functional Requirements from the Protection Profile

Limited fault tolerance (FRU_FLT.2)

174 The TSF shall ensure the operation of all the TOE’s capabilities when the following failures occur: **exposure to operating conditions which are not detected according to the requirement Failure with preservation of secure state (FPT_FLS.1)**.

Failure with preservation of secure state (FPT_FLS.1)

175 The TSF shall preserve a secure state when the following types of failures occur: **exposure to operating conditions which may not be tolerated according to the requirement Limited fault tolerance (FRU_FLT.2) and where therefore a malfunction could occur**.

176 Refinement:
The term “failure” above also covers “circumstances”. The TOE prevents failures for the “circumstances” defined above.

Regarding application note 15 of BSI-PP-0035, the TOE provides information on the operating conditions monitored during Security IC Embedded Software execution and after a warm reset. No audit requirement is however selected in this Security Target.

Limited capabilities (FMT_LIM.1) [Test]

177 The TSF shall be designed and implemented in a manner that limits their capabilities so that in conjunction with “Limited availability (FMT_LIM.2)” the following policy is enforced:
Limited capability and availability Policy [Test].

Limited availability (FMT_LIM.2) [Test]

178 The TSF shall be designed and implemented in a manner that limits their availability so that in conjunction with “Limited capabilities (FMT_LIM.1)” the following policy is enforced:
Limited capability and availability Policy [Test].

179 **SFP_1: Limited capability and availability Policy [Test]**

Deploying Test Features after TOE Delivery does not allow User Data to be disclosed or manipulated, TSF data to be disclosed or manipulated, software to be reconstructed and no substantial information about construction of TSF to be gathered which may enable other attacks.
Audit storage (FAU_SAS.1)
180 The TSF shall provide the test process before TOE Delivery with the capability to store the Initialisation Data and/or Pre-personalisation Data and/or supplements of the Security IC Embedded Software in the NVM.

Resistance to physical attack (FPT_PHP.3)
181 The TSF shall resist physical manipulation and physical probing, to the TSF by responding automatically such that the SFRs are always enforced.
182 Refinement:
The TSF will implement appropriate mechanisms to continuously counter physical manipulation and physical probing. Due to the nature of these attacks (especially manipulation) the TSF can by no means detect attacks on all of its elements. Therefore, permanent protection against these attacks is required ensuring that security functional requirements are enforced. Hence, “automatic response” means here (i) assuming that there might be an attack at any time and (ii) countermeasures are provided at any time.

Basic internal transfer protection (FDP_ITT.1)
183 The TSF shall enforce the Data Processing Policy to prevent the disclosure of user data when it is transmitted between physically-separated parts of the TOE.

Basic internal TSF data transfer protection (FPT_ITT.1)
184 The TSF shall protect TSF data from disclosure when it is transmitted between separate parts of the TOE.
185 Refinement:
The different memories, the CPU and other functional units of the TOE (e.g. a cryptographic co-processor) are seen as separated parts of the TOE.
This requirement is equivalent to FDP_ITT.1 above but refers to TSF data instead of User Data. Therefore, it should be understood as to refer to the same Data Processing Policy defined under FDP_IFC.1 below.

Subset information flow control (FDP_IFC.1)
186 The TSF shall enforce the Data Processing Policy on all confidential data when they are processed or transferred by the TSF or by the Security IC Embedded Software.
187 SFP_2: Data Processing Policy
User Data and TSF data shall not be accessible from the TOE except when the Security IC Embedded Software decides to communicate the User Data via an external interface. The protection shall be applied to confidential data only but without the distinction of attributes controlled by the Security IC Embedded Software.
Random number generation (FCS_RNG.1)

188 The TSF shall provide a physical random number generator that implements:

- A total failure test detects a total failure of entropy source immediately when the RNG has started. When a total failure is detected, no random numbers will be output.

- If a total failure of the entropy source occurs while the RNG is being operated, the RNG prevents the output of any internal random number that depends on some raw random numbers that have been generated after the total failure of the entropy source.

- The online test shall detect non-tolerable statistical defects of the raw random number sequence (i) immediately when the RNG has started, and (ii) while the RNG is being operated. The TSF must not output any random numbers before the power-up online test has finished successfully or when a defect has been detected.

- The online test procedure shall be effective to detect non-tolerable weaknesses of the random numbers soon.

- The online test procedure checks the quality of the raw random number sequence. It is triggered externally. The online test is suitable for detecting non-tolerable statistical defects of the statistical properties of the raw random numbers within an acceptable period of time.

189 The TSF shall provide octets of bits that meet

- Test procedure A does not distinguish the internal random numbers from output sequences of an ideal RNG.

- The average Shannon entropy per internal random bit exceeds 0.997.

7.1.2 Additional Security Functional Requirements for the cryptographic services.

190 The following SFRs are extensions to "BSI-PP-0035" Protection Profile (PP), related to the cryptographic services.

Cryptographic operation (FCS_COP.1)

191 The TSF shall perform the operations in Table 8 in accordance with a specified cryptographic algorithm in Table 8 and cryptographic key sizes of Table 8 that meet the standards in Table 8. The list of operations depends on the presence of Neslib or crypto accelerators, as indicated in Table 8 (Restrict).
Table 8. FCS_COP.1 iterations (cryptographic operations)

<table>
<thead>
<tr>
<th>Restrict</th>
<th>Iteration label</th>
<th>[assignment: list of cryptographic operations]</th>
<th>[assignment: cryptographic algorithm]</th>
<th>[assignment: cryptographic key sizes]</th>
<th>[assignment: list of standards]</th>
</tr>
</thead>
<tbody>
<tr>
<td>If EDES+</td>
<td>EDES</td>
<td>* encryption * decryption</td>
<td>Data Encryption Standard (DES)</td>
<td>56 bits</td>
<td>FIPS PUB 46-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- in Cipher Block Chaining (CBC) mode</td>
<td></td>
<td></td>
<td>ISO/IEC 9797-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- in Electronic Code Book (ECB) mode</td>
<td></td>
<td></td>
<td>ISO/IEC 10116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* MAC computation in CBC-MAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If AES</td>
<td>AES</td>
<td>* ECB encryption * ECB decryption</td>
<td>Advanced Encryption Standard</td>
<td>128, 192 and 256 bits</td>
<td>ISO/IEC 10116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* CBC encryption * CBC decryption</td>
<td></td>
<td></td>
<td>NIST SP 800-38B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* CBC encryption * CBC decryption</td>
<td></td>
<td></td>
<td>FIPS PUB 197</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* CMAC MAC computation * key expansion *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>randomize</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If Neslib</td>
<td>RSA</td>
<td>* RSA public key operation</td>
<td>Rivest, Shamir & Adleman’s</td>
<td>up to 4096 bits</td>
<td>PKCS #1 V2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* RSA private key operation without the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chinese Remainder Theorem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* RSA private key operation with the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chinese Remainder Theorem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* point validity check</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* convert Jacobian to affine coordinates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* general point addition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* point expansion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* point compression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If Neslib</td>
<td>ECC</td>
<td>* private scalar multiplication</td>
<td>Elliptic Curves Cryptography on GF(p)</td>
<td>up to 640 bits</td>
<td>IEEE 1363-2000, chapter 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* prepare Jacobian</td>
<td></td>
<td></td>
<td>IEEE 1363a-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* public scalar multiplication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* point validity check</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* convert Jacobian to affine coordinates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* general point addition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* point expansion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* point compression</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note that DES is no longer recommended as an encryption function in the context of smartcard applications. Hence, Security IC Embedded Software may need to use triple DES to achieve a suitable strength.

Note that SHA-1 is no longer recommended as a cryptographic function in the context of smartcard applications. Hence, Security IC Embedded Software may need to use another SHA to achieve a suitable strength.

Cryptographic key generation (FCS_CKM.1)

If Neslib is embedded only, the TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm, in Table 9, and specified cryptographic key sizes of Table 9 that meet the following standards in Table 9.

Table 8. FCS_COP.1 iterations (cryptographic operations) (continued)

<table>
<thead>
<tr>
<th>Restrict</th>
<th>Iteration label</th>
<th>[assignment: list of cryptographic operations]</th>
<th>[assignment: cryptographic algorithm]</th>
<th>[assignment: cryptographic key sizes]</th>
<th>[assignment: list of standards]</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Neslib</td>
<td>SHA</td>
<td>* SHA-1</td>
<td>Secure Hash Algorithm</td>
<td>Secure Hash Algorithm because algorithm has no key</td>
<td>FIPS PUB 180-4 FIPS PUB 198-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* SHA-224</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* SHA-256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* SHA-384</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* SHA-512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Protected SHA-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Protected SHA-256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* HMAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If Neslib</td>
<td>DRBG</td>
<td>* SHA-1</td>
<td>Hash-DRBG</td>
<td>None</td>
<td>NIST SP 800-90A FIPS PUB 180-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* SHA-224</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* SHA-256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* SHA-384</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* SHA-512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AES</td>
<td>CTR-DRBG</td>
<td>128, 192 and 256 bits</td>
<td>NIST SP 800-90A FIPS PUB 197</td>
<td></td>
</tr>
</tbody>
</table>

192 Note that DES is no longer recommended as an encryption function in the context of smart card applications. Hence, Security IC Embedded Software may need to use triple DES to achieve a suitable strength.

193 Note that SHA-1 is no longer recommended as a cryptographic function in the context of smartcard applications. Hence, Security IC Embedded Software may need to use another SHA to achieve a suitable strength.

Table 9. FCS_CKM.1 iterations (cryptographic key generation)

<table>
<thead>
<tr>
<th>Iteration label</th>
<th>[assignment: cryptographic key generation algorithm]</th>
<th>[assignment: cryptographic key sizes]</th>
<th>[assignment: list of standards]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prime generation</td>
<td>prime generation and RSA prime generation algorithm, optionally protected against side channel attacks, and/or optionally with conditions</td>
<td>up to 2048 bits</td>
<td>FIPS PUB 140-2 FIPS 186-3</td>
</tr>
<tr>
<td>RSA key generation</td>
<td>RSA key pair generation algorithm, optionally protected against side channel attacks, and/or optionally with conditions</td>
<td>up to 4096 bits</td>
<td>FIPS PUB 140-2</td>
</tr>
</tbody>
</table>
7.1.3 Additional Security Functional Requirements for the memories protection.

The following SFRs are extensions to "BSI-PP-0035" Protection Profile (PP), related to the memories protection.

Static attribute initialisation (FMT_MSA.3) [Memories]

196 The TSF shall enforce the Dynamic Memory Access Control Policy to provide minimally protective\(^{(c)}\) default values for security attributes that are used to enforce the SFP.

197 The TSF shall allow *none* to specify alternative initial values to override the default values when an object or information is created.

Application note:
The security attributes are the set of access rights currently defined. They are dynamically attached to the subjects and objects locations, i.e. each logical address.

Management of security attributes (FMT_MSA.1) [Memories]

198 The TSF shall enforce the Dynamic Memory Access Control Policy to restrict the ability to *modify* the security attributes current set of access rights to software running in privileged mode.

Complete access control (FDP_ACC.2) [Memories]

199 The TSF shall enforce the Dynamic Memory Access Control Policy on all subjects (software), all objects (data including code stored in memories) and all operations among subjects and objects covered by the SFP.

200 The TSF shall ensure that all operations between any subject controlled by the TSF and any object controlled by the TSF are covered by an access control SFP.

Security attribute based access control (FDP_ACF.1) [Memories]

201 The TSF shall enforce the Dynamic Memory Access Control Policy to objects based on the following: software mode, the object location, the operation to be performed, and the current set of access rights.

202 The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed: the operation is allowed if and only if the software mode, the object location and the operation matches an entry in the current set of access rights.

203 The TSF shall explicitly authorise access of subjects to objects based on the following additional rules: *none*.

204 The TSF shall explicitly deny access of subjects to objects based on the following additional rules: *in Admin or User configuration, any access (read, write, execute) to the OST ROM is denied, and in User configuration, any write access to the ST NVM is denied.*

Note: It should be noted that this level of policy detail is not needed at the application level. The composite Security Target writer should describe the ES access control and information flow control policies instead. Within the ES High Level Design description, the chosen setting of c. See the Datasheet referenced in Section 9 for actual values.
IC security attributes would be shown to implement the described policies relying on the IC SFP presented here.

The following SFP **Dynamic Memory Access Control Policy** is defined for the requirement "Security attribute based access control (FDP_ACF.1)":

SFP_3: Dynamic Memory Access Control Policy

The TSF must control read, write, execute accesses of software to data, based on the software mode and on the current set of access rights.

Specification of management functions (FMT_SMF.1) [Memories]

The TSF will be able to perform the following management functions: **modification of the current set of access rights security attributes by software running in privileged mode, supporting the Dynamic Memory Access Control Policy.**

7.1.4 Additional Security Functional Requirements related to the Admin configuration

The following SFRs are extensions to "BSI-PP-0035" Protection Profile (PP), related to the possible availability of final test and loading capabilities in phases 4 to 6 of the TOE life-cycle.

Limited capabilities (FMT_LIM.1) [Admin]

The TSF shall be designed and implemented in a manner that limits their capabilities so that in conjunction with “Limited availability (FMT_LIM.2)” the following policy is enforced: **Limited capability and availability Policy [Admin].**

Limited availability (FMT_LIM.2) [Admin]

The TSF shall be designed and implemented in a manner that limits their availability so that in conjunction with “Limited capabilities (FMT_LIM.1)” the following policy is enforced: **Limited capability and availability Policy [Admin].**

SFP_4: Limited capability and availability Policy [Admin]

Deploying Loading or Final Test Artifacts after TOE Delivery to final user (phase 7 / USER configuration) does not allow User Data to be disclosed or manipulated, TSF data to be disclosed or manipulated, stored software to be reconstructed or altered, and no substantial information about construction of TSF to be gathered which may enable other attacks.

Import of user data without security attributes (FDP_ITC.1) [Loader]

The TSF shall enforce the **Loading Access Control Policy** when importing user data, controlled under the SFP, from outside of the TOE.

The TSF shall ignore any security attributes associated with the User data when imported from outside of the TOE.
The TSF shall enforce the following rules when importing user data controlled under the SFP from outside of the TOE:

- **the integrity of the loaded user data is checked at the end of each loading session,**
- **the loaded user data is received encrypted, internally decrypted, then stored into the NVM.**

Static attribute initialisation (FMT_MSA.3) [Loader]

The TSF shall enforce the **Loading Access Control Policy** to provide **restrictive** default values for security attributes that are used to enforce the SFP.

The TSF shall allow **none** to specify alternative initial values to override the default values when an object or information is created.

Management of security attributes (FMT_MSA.1) [Loader]

The TSF shall enforce the **Loading Access Control Policy** to restrict the ability to **modify** the security attributes **password** to the Standard Loader.

Subset access control (FDP_ACC.1) [Loader]

The TSF shall enforce the **Loading Access Control Policy** on the execution of the **Standard Loader instructions and/or the Advanced Loader instructions**.

Security attribute based access control (FDP_ACF.1) [Loader]

The TSF shall enforce the **Loading Access Control Policy** to objects based on the following: **an external process may execute the Standard Loader instructions and/or the Advanced Loader instructions, depending on the presentation of valid passwords.**

The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed: **the Standard Loader instructions and/or Advanced Loader instructions can be executed only if valid passwords have been presented.**

The TSF shall explicitly authorise access of subjects to objects based on the following additional rules: **none.**

The TSF shall explicitly deny access of subjects to objects based on the following additional rules: **none.**

The following SFP **Loading Access Control Policy** is defined for the requirement "Security attribute based access control (FDP_ACF.1)":

SFP_5: Loading Access Control Policy

According to a password control, the TSF grants execution of the instructions of the Standard Loader, Advanced Loader or none.

Specification of management functions (FMT_SMF.1) [Loader]

The TSF will be able to perform the following management functions: **modification of the Standard Loader behaviour, by the Advanced Loader, under the Loading Access Control Policy.**
7.1.5 Additional Security Functional Requirements related to M4M-DESFire

The following SFRs are extensions to "BSI-PP-0035" Protection Profile (PP), related to the capabilities and protections of M4M-DESFire.

They are only valid in case M4M-DESFire is embedded.

Note: MIFARE M4M-DESFire EV1 library directly relies upon the following IC SFRs:
- FRU_FLT.2 in providing services as part of the security countermeasures implemented in the library,
- FPT_FLS.1 in order to generate a software reset,
- FCS_RNG.1 for the provision of random numbers,
- FCS_COP.1 [EDES] for DES cryptographic operations,
- FCS_COP.1 [AES] for AES cryptographic operations.

It also relies upon the other SFRs (except those of Neslib), which provide general low level security mechanisms.

Security roles (FMT_SMR.1) [M4M-DESFire]

The TSF shall maintain the roles VC Administrator, VC Manager, Service Manager, Application Manager, Application User and Everybody.

The TSF shall be able to associate users with roles.

Note: Based on the definition, Nobody is not considered as a role.

Subset access control (FDP_ACC.1) [M4M-DESFire]

The TSF shall enforce the M4M-DESFire Access Control Policy on all subjects, objects, operations and attributes defined by the M4M-DESFire Access Control Policy.

Security attribute based access control (FDP_ACF.1) [M4M-DESFire]

The TSF shall enforce the M4M-DESFire Access Control Policy to objects based on the following: all subjects, objects, and attributes.

The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed:
- The VC Manager can create virtual cards.
- The Service Manager can delete a virtual card.
- The VC Administrator of a virtual card can create and delete applications within this virtual card.
- The Service Manager can create and delete applications.
- The Application Manager of an application can delete this application, create data file and values within this application, delete data files and values within this application.
- An Application User can read or write a data file; read, increase or decrease a value based on the access control settings in the respective file attribute.
The TSF shall explicitly authorise access of subjects to objects based on the following additional rules:

- *Everybody can create applications if this is allowed by a specific card attribute.*
- *Everybody can create and delete data files or values of a specific application if this is allowed by a specific application attribute.*
- *Everybody can read or write a data file; read, increase or decrease a value if this is allowed by a specific file attribute.*

The TSF shall explicitly deny access of subjects to objects based on the following additional rules:

- *Nobody can read or write a data file; read, increase or decrease a value if this is explicitly set for the respective operation on the respective data file or value.*

The following SFP *M4M-DESFire Access Control Policy* is defined for the requirement "Security attribute based access control (FDP_ACF.1) [M4M-DESFire]":

The Security Function Policy (SFP) M4M-DESFire Access Control Policy uses the following definitions:

- The subjects are:
 - The VC Manager i.e. the subject that owns or has access to a wholesale VC creation key.
 - The Service Manager i.e. the subject that uses the M4M host interface without owning or having access to the VC creation key or a wholesale VC creation key.
 - The VC Administrator i.e. the subject that owns or has access to the card master key.
 - The Application Manager i.e. the subject that owns or has access to an application master key. Note that the TOE supports multiple applications and therefore multiple Application Managers, however for one application there is only one Application Manager.
 - The Application User i.e. the subject that owns or has access to a key that allows to perform operations with application objects. Note that the TOE supports multiple Application Users within each application and the assigned rights to the Application Users can be different, which allows to have more or less powerful Application Users.
 - Any other subject belongs to the role Everybody. This includes the card holder (i.e. end-user) and any other subject e.g. an attacker. These subjects do not possess any key and can not perform operations that are restricted to the VC Administrator, VC Manager, Service Manager, Application Manager and Application User.
 - The term Nobody will be used to explicitly indicate that no rights are granted to any subject.

- The objects are:
 - The MIFARE implementation itself.
 - The MIFARE implementation can store a number of virtual cards.
 - A virtual card can store a number of Applications.
 - An application can store a number of Data Files of different types.
 - One specific type of data file are Values.

Note that data files and values can be grouped in standard files and backup files, with values belonging to the group of backup files. When the term “file” is used without further information then both data files and values are meant.
The operations that can be performed with the objects are:

- read a value or data from a data file,
- write data to a data file,
- increase a value (with a limit or unlimited),
- decrease a value,
- create a virtual card, an application, a value or a data file,
- delete a virtual card, an application, a value or a data file and
- modify attribute of the MIFARE implementation, a virtual card, an application, a value or a data file. Note that ‘freeze’ will be used as specific form of modification that prevents any further modify.

The security attributes are:

- Attributes of the MIFARE implementation, virtual cards, applications, values and data files.
 There is a set of attributes for the MIFARE implementation, a set of attributes for every virtual card, a set of attributes for every application and a set of attributes for every single file within an application.
 The term “MIFARE implementation attributes” will be used for the set of attributes related to the MIFARE implementation, the term “card attributes” will be used for the set of attributes related to a virtual card, the term “application attributes” will be used for the set of application attributes and the term “file attributes” will be used for the attributes of values and data files.

Note that subjects are authorised by cryptographic keys or the usage of the M4M host interface. These keys are considered as authentication data and not as security attributes. The MIFARE implementation has a VC creation key. Every virtual card has a card master key. Every application has an application master key and a variable number of keys used for operations on data files or values (all these keys are called application keys). The application keys within an application are numbered.

Implications of the M4M-DESFire Access Control Policy:

The M4M-DESFire Access Control Policy has some implications, that can be drawn from the policy and that are essential parts of the TOE security functions.

- The TOE end-user does normally not belong to the group of authorised users (VC Administrator, VC Manager, Service Manager, Application Manager, Application User), but regarded as ‘Everybody’ by the TOE. This means that the TOE cannot determine if it is used by its intended end-user (in other words: it cannot determine if the current card holder is the owner of the card).
- The VC Manager can create and associate virtual cards, and write the initial value of the card master key.
- The VC Administrator and the Service Manager can delete virtual cards.
- The VC Administrator can have the exclusive right to create and delete applications on the virtual card, however he can also grant this privilege to Everybody. Additionally, changing the virtual card attributes is reserved for the VC Administrator. Application keys, at delivery time should be personalized to a preliminary, temporary key only known to the VC Administrator and the Application Manager.
- At application personalization time, the Application Manager uses the preliminary application key in order to personalize the application keys, whereas all keys, except the application master key, can be personalized to a preliminary, temporary key only
known to the Application Manager and the Application User. Furthermore, the Application Manager has the right to create files within his application scope.

Static attribute initialisation (FMT_MSA.3) [M4M-DESFire]

252 The TSF shall enforce the **M4M-DESFire Access Control Policy** to provide *permissive* default values for security attributes that are used to enforce the SFP.

253 The TSF shall allow *no subject* to specify alternative initial values to override the default values when an object or information is created.

254 Application note:
The only initial attributes are the MIFARE implementation attributes. All other attributes have to be defined at the same time the respective object is created.

Management of security attributes (FMT_MSA.1) [M4M-DESFire]

255 The TSF shall enforce the **M4M-DESFire Access Control Policy** to restrict the ability to modify or freeze the security attributes *MIFARE implementation attributes, virtual card attributes, application attributes and file attributes* to the VC Administrator, Application Manager and Application User, respectively.

256 Refinement:
The detailed management abilities are:

- The VC Administrator can modify the MIFARE implementation attributes. The MIFARE implementation attributes contain a flag that when set will prevent any further change of the MIFARE implementation attributes, thereby allowing to freeze the MIFARE implementation attributes.
- The VC Administrator can modify the card attributes. The card attributes contain a flag that when set will prevent any further change of the card attributes, thereby allowing to freeze the card attributes.
- The Application Manager can modify the application attributes. The application attributes contain a flag that when set will prevent any further change of the application attributes, thereby allowing to freeze the application attributes.
- The Application Manager can decide to restrict the ability to modify the file attributes to the Application Manager, an Application User, Everybody or to Nobody. The restriction to Nobody is equivalent to freezing the file attributes.
- As an implication of the last rule, any subject that receives the modify abilities from the Application Manager gets these abilities transferred.
- The implication given in the previous rule includes the possibility for an Application User to modify the file attributes if the Application Manager decides to transfer this ability. If there is no such explicit transfer an Application User does not have the ability to modify the file attributes.
Specification of Management Functions (FMT_SMF.1) [M4M-DESFire]

The TSF shall be capable of performing the following security management functions:

- Authenticating a user,
- Invalidating the current authentication state based on the functions: Selecting an application or the virtual card, Changing a key, Occurrence of any error during the execution of a command, Reset,
- Changing a security attribute,
- Creating or deleting a virtual card, an application, a value or a data file.

Import of user data with security attributes (FDP_ITC.2) [M4M-DESFire]

The TSF shall enforce the M4M-DESFire Access Control Policy when importing user data, controlled under the SFP, from outside of the TOE.

The TSF shall use the security attributes associated with the imported user data.

The TSF shall ensure that the protocol used provides for the unambiguous association between the security attributes and the user data received.

The TSF shall ensure that interpretation of the security attributes of the imported user data is as intended by the source of the user data.

The TSF shall enforce the following rules when importing user data controlled under the SFP from outside the TOE: no additional rules.

Inter-TSF basic TSF data consistency (FPT_TDC.1) [M4M-DESFire]

The TSF shall provide the capability to consistently interpret data files and values when shared between the TSF and another trusted IT product.

The TSF shall use the rule: data files or values can only be modified by their dedicated type-specific operations honouring the type-specific boundaries when interpreting the TSF data from another trusted IT product.

Application note:
The TOE does not interpret the contents of the data, e.g. it can not determine if data stored in a specific data file is an identification number that adheres to a specific format. Instead the TOE distinguishes different types of files and ensures that type-specific boundaries can not be violated, e.g. values do not overflow, single records are limited by their size and cyclic records are handled correctly.

Cryptographic key destruction (FCS_CKM.4) [M4M-DESFire]

The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method overwriting of memory that meets the following: none.

User identification before any action (FIA_UID.2) [M4M-DESFire]

The TSF shall require each user to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

Application note:
The service Manager is identified by the usage of the M4M interface. Identification of the other users is performed upon an authentication request based on the currently selected context and the key number. For example, if an authentication request for key number 0 is
issued after selecting a specific application, the user is identified as the Application Manager of the respective application. Before any authentication request is issued, the user is identified as ‘Everybody’.

User authentication before any action (FIA_UAU.2) [M4M-DESFire]

267 The TSF shall require each user to be successfully authenticated before allowing any other TSF-mediated actions on behalf of that user.

Application note:
The service Manager is the only user authenticated outside the TOE.

Multiple authentication mechanisms (FIA_UAU.5) [M4M-DESFire]

268 The TSF shall provide ‘none’ and cryptographic authentication to support user authentication.

269 The TSF shall authenticate any user’s claimed identity according to the following rules:

- The ‘none’ authentication is performed with anyone who communicates with the TOE without issuing an explicit authentication request. The ‘none’ authentication implicitly and solely authorises the ‘Everybody’ subject.
- The cryptographic authentication is used to authorise the VC Administrator, VC Manager, Application Manager and Application User.

Management of TSF data (FMT_MTD.1) [M4M-DESFire]

270 The TSF shall restrict the ability to change_default, modify or freeze the card master key, application master keys and application keys to the VC Administrator, Application Manager and Application User.

271 Refinement:
The detailed management abilities are:

- The VC Administrator can modify the card master key. The virtual card attributes contain a flag that when set will prevent any further change of the card master key, thereby allowing to freeze the card master key.
- The VC Administrator can change the default key that is used for the application master key and for the application keys when an application is created.
- The Application Manager of an application can modify the application master key of this application. The application attributes contain a flag that when set will prevent any further change of the application master key, thereby allowing to freeze the application master key.
- The Application Manager can decide to restrict the ability to modify the application keys to the Application Manager, the Application Users or to Nobody. The restriction to Nobody is equivalent to freezing the application keys. The Application Users can either change their own keys or one Application User can be defined that can change all keys of the Application Users within an application.
- As an implication of the last rule, any subject that receives the modify abilities from the Application Manager gets these abilities transferred.
Trusted path (FTP_TRP.1) [M4M-DESFire]

272 The TSF shall provide a communication path between itself and remote users that is logically distinct from other communication paths and provides assured identification of its end points and protection of the communicated data from modification or disclosure.

273 The TSF shall permit remote users to initiate communication via the trusted path.

274 The TSF shall require the use of the trusted path for authentication requests with DES and AES, confidentiality and/or data integrity verification for data transfers protected with AES and based on a setting in the file attributes.

Basic rollback (FDP_ROL.1) [M4M-DESFire]

275 The TSF shall enforce the MIFARE Access Control Policy to permit the rollback of the operations that modify the value or data file objects on the backup files.

276 The TSF shall permit operations to be rolled back within the scope of the current transaction, which is defined by the following limitative events: chip reset, (re-) authentication (either successful or not), select command, explicit commit, explicit abort, command failure.

Replay detection (FPT_RPL.1) [M4M-DESFire]

277 The TSF shall detect replay for the following entities: authentication requests with DES and AES, confidentiality and/or data integrity verification for data transfers protected with AES and based on a setting in the file attributes.

278 The TSF shall perform rejection of the request when replay is detected.

Unlinkability (FPR_UNL.1) [M4M-DESFire]

279 The TSF shall ensure that unauthorised subjects other than the card holder are unable to determine whether any operation of the TOE were caused by the same user.

Minimum and maximum quotas (FRU_RSA.2) [M4M-DESFire]

280 The TSF shall enforce maximum quotas of the following resources NVM and RAM that subjects can use simultaneously.

281 The TSF shall ensure the provision of minimum quantity of the NVM and the RAM that is available for subjects to use simultaneously.

Application note:
The subjects addressed here are M4M-DESFire, and all other applications running on the TOE.
The goal is to ensure that M4M-DESFire always have enough NVM and RAM for its own usage.

Subset residual information protection (FDP_RIP.1) [M4M-DESFire]

282 The TSF shall ensure that any previous information content of a resource is made unavailable upon the deallocation of the resource from the following objects: M4M-DESFire.
Subset access control (FDP_ACC.1) [APPLI_FWL]

283 The TSF shall enforce the Protected Application Firewall Access Control Policy on the Protected Application code and data.

Security attribute based access control (FDP_ACF.1) [APPLI_FWL]

284 The TSF shall enforce the Protected Application Firewall Access Control Policy to objects based on the following: Protected Application code and data.

285 The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed: Another application cannot read, write, compare any piece of data or code belonging to the Protected Application.

286 The TSF shall explicitly authorise access of subjects to objects based on the following additional rules: None.

287 The TSF shall explicitly deny access of subjects to objects based on the following additional rules:

- Another application cannot read, write, compare any piece of data or code belonging to the Protected Application.

288 The following SFP Protected Application Firewall Access Control Policy is defined for the requirement "Security attribute based access control (FDP_ACF.1) [APPLI_FWL]":

SFP_7: Protected Application Firewall Access Control Policy

290 Another application cannot read, write, compare any piece of data or code belonging to the Protected Application.

Application Note:
Only one application can be protected by the LPU. When M4M is embedded, M4M is the (only) Protected Application.

Static attribute initialisation (FMT_MSA.3) [APPLI_FWL]

291 The TSF shall enforce the Protected Application Firewall Access Control Policy to provide restrictive default values for security attributes that are used to enforce the SFP.

292 The TSF shall allow no subject to specify alternative initial values to override the default values when an object or information is created.

7.2 TOE security assurance requirements

Security Assurance Requirements for the TOE for the evaluation of the TOE are those taken from the Evaluation Assurance Level 5 (EAL5) and augmented by taking the following components:

- ALC_DVS.2 and AVA_VAN.5.

294 Regarding application note 21 of BSI-PP-0035, the continuously increasing maturity level of evaluations of Security ICs justifies the selection of a higher-level assurance package.

295 The set of security assurance requirements (SARs) is presented in Table 10, indicating the origin of the requirement.
7.3 Refinement of the security assurance requirements

As BSI-PP-0035 defines refinements for selected SARs, these refinements are also claimed in this Security Target.

The main customizing is that the IC Dedicated Software is an operational part of the TOE after delivery, although it is not available to the user.

Regarding application note 22 of BSI-PP-0035, the refinements for all the assurance families have been reviewed for the hierarchically higher-level assurance components selected in this Security Target.

Table 10. TOE security assurance requirements

<table>
<thead>
<tr>
<th>Label</th>
<th>Title</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADV_ARC.1</td>
<td>Security architecture description</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>ADV_FSP.5</td>
<td>Complete semi-formal functional specification with additional error information</td>
<td>EAL5</td>
</tr>
<tr>
<td>ADV_IMP.1</td>
<td>Implementation representation of the TSF</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>ADV_INT.2</td>
<td>Well-structured internals</td>
<td>EAL5</td>
</tr>
<tr>
<td>ADV_TDS.4</td>
<td>Semiformal modular design</td>
<td>EAL5</td>
</tr>
<tr>
<td>AGD_OPE.1</td>
<td>Operational user guidance</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>AGD_PRE.1</td>
<td>Preparative procedures</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>ALC_CMC.4</td>
<td>Production support, acceptance procedures and automation</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>ALC_CMS.5</td>
<td>Development tools CM coverage</td>
<td>EAL5</td>
</tr>
<tr>
<td>ALC_DEL.1</td>
<td>Delivery procedures</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>ALC_DVS.2</td>
<td>Sufficiency of security measures</td>
<td>BSI-PP-0035</td>
</tr>
<tr>
<td>ALC_LCD.1</td>
<td>Developer defined life-cycle model</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>ALC_TAT.2</td>
<td>Compliance with implementation standards</td>
<td>EAL5</td>
</tr>
<tr>
<td>ASE_CCL.1</td>
<td>Conformance claims</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>ASE_ECD.1</td>
<td>Extended components definition</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>ASE_INT.1</td>
<td>ST introduction</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>ASE_OBJ.2</td>
<td>Security objectives</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>ASE_REQ.2</td>
<td>Derived security requirements</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>ASE_SPD.1</td>
<td>Security problem definition</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>ASE_TSS.1</td>
<td>TOE summary specification</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>ATE_COV.2</td>
<td>Analysis of coverage</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>ATE_DPT.3</td>
<td>Testing: modular design</td>
<td>EAL5</td>
</tr>
<tr>
<td>ATE_FUN.1</td>
<td>Functional testing</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>ATE_IND.2</td>
<td>Independent testing - sample</td>
<td>EAL5/BSI-PP-0035</td>
</tr>
<tr>
<td>AVA_VAN.5</td>
<td>Advanced methodical vulnerability analysis</td>
<td>BSI-PP-0035</td>
</tr>
</tbody>
</table>
The text of the impacted refinements of *BSI-PP-0035* is reproduced in the next sections.

For reader’s ease, an impact summary is provided in Table 11.

Table 11. Impact of EAL5 selection on *BSI-PP-0035* refinements

<table>
<thead>
<tr>
<th>Assurance Family</th>
<th>BSI-PP-0035 Level</th>
<th>ST Level</th>
<th>Impact on refinement</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADO_DEL</td>
<td>1</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>ALC_DVS</td>
<td>2</td>
<td>2</td>
<td>None</td>
</tr>
<tr>
<td>ALC_CMS</td>
<td>4</td>
<td>5</td>
<td>None, refinement is still valid</td>
</tr>
<tr>
<td>ALC_CMC</td>
<td>4</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>ADV_ARC</td>
<td>1</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>ADV_FSP</td>
<td>4</td>
<td>5</td>
<td>Presentation style changes, IC Dedicated Software is included</td>
</tr>
<tr>
<td>ADV_IMP</td>
<td>1</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>ATE_COV</td>
<td>2</td>
<td>2</td>
<td>IC Dedicated Software is included</td>
</tr>
<tr>
<td>AGD_OPE</td>
<td>1</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>AGD_PRE</td>
<td>1</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>AVA_VAN</td>
<td>5</td>
<td>5</td>
<td>None</td>
</tr>
</tbody>
</table>

7.3.1 Refinement regarding functional specification (ADV_FSP)

Although the IC Dedicated Test Software is a part of the TOE, the test functions of the IC-Dedicated Test Software are not described in the Functional Specification because the IC-Dedicated Test Software is considered as a test tool delivered with the TOE but not providing security functions for the operational phase of the TOE. The IC Dedicated Software provides security functionalities as soon as the TOE becomes operational (boot software). These are properly identified in the delivered documentation.

The Functional Specification refers to datasheet to trace security features that do not provide any external interface but that contribute to fulfill the SFRs e.g. like physical protection. Thereby they are part of the complete instantiation of the SFRs.

The Functional Specification refers to design specifications to detail the mechanisms against physical attacks described in a more general way only, but detailed enough to be able to support Test Coverage Analysis also for those mechanisms where inspection of the layout is of relevance or tests beside the TSFI may be needed.

The Functional Specification refers to data sheet to specify operating conditions of the TOE. These conditions include but are not limited to the frequency of the clock, the power supply, and the temperature.

All functions and mechanisms which control access to the functions provided by the IC Dedicated Test Software (refer to the security functional requirement (FMT_LIM.2)) are part of the Functional Specification. Details will be given in the document for ADV_ARC, refer to Section 6.2.1.5. In addition, all these functions and mechanisms are subsequently be refined according to all relevant requirements of the Common Criteria assurance class ADV because these functions and mechanisms are active after TOE Delivery and need to be part of the assurance aspects Tests (class ATE) and Vulnerability Assessment (class AVA). Therefore, all necessary information is provided to allow tests and vulnerability assessment.
Since the selected higher-level assurance component requires a security functional specification presented in a "semi-formal style" (ADV_FSP.5.2C) the changes affect the style of description, the BSI-PP-0035 refinements can be applied with changes covering the IC Dedicated Test Software and are valid for ADV_FSP.5.

7.3.2 Refinement regarding test coverage (ATE_COV)

The TOE is tested under different operating conditions within the specified ranges. These conditions include but are not limited to the frequency of the clock, the power supply, and the temperature. This means that "Fault tolerance (FRU_FLT.2)" is proven for the complete TSF. The tests must also cover functions which may be affected by "ageing" (such as EEPROM writing).

The existence and effectiveness of measures against physical attacks (as specified by the functional requirement FPT_PHP.3) cannot be tested in a straightforward way. Instead STMicroelectronics provides evidence that the TOE actually has the particular physical characteristics (especially layout design principles). This is done by checking the layout (implementation or actual) in an appropriate way. The required evidence pertains to the existence of mechanisms against physical attacks (unless being obvious).

The IC Dedicated Test Software is seen as a "test tool" being delivered as part of the TOE. However, the Test Features do not provide security functionality. Therefore, Test Features need not to be covered by the Test Coverage Analysis but all functions and mechanisms which limit the capability of the functions (cf. FMT_LIM.1) and control access to the functions (cf. FMT_LIM.2) provided by the IC Dedicated Test Software must be part of the Test Coverage Analysis. The IC Dedicated Software provides security functionalities as soon as the TOE becomes operational (boot software). These are part of the Test Coverage Analysis.

7.4 Security Requirements rationale

7.4.1 Rationale for the Security Functional Requirements

Just as for the security objectives rationale of Section 6.3, the main line of this rationale is that the inclusion of all the security requirements of the BSI-PP-0035 protection profile, together with those in AUG, and with those introduced in this Security Target, guarantees that all the security objectives identified in Section 6 are suitably addressed by the security requirements stated in this chapter, and that the latter together form an internally consistent whole.

Table 12. Security Requirements versus Security Objectives

<table>
<thead>
<tr>
<th>Security Objective</th>
<th>TOE Security Functional and Assurance Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSI.O.Leak-Inherent</td>
<td>FDP_ITT.1 Basic internal transfer protection, FPT_ITT.1 Basic internal TSF data transfer protection, FDP_IFC.1 Subset information flow control</td>
</tr>
<tr>
<td>BSI.O.Phys-Probing</td>
<td>FPT_PHP.3 Resistance to physical attack</td>
</tr>
<tr>
<td>BSI.O.Malfunction</td>
<td>FRU_FLT.2 Limited fault tolerance, FPT_FLS.1 Failure with preservation of secure state</td>
</tr>
<tr>
<td>BSI.O.Phys-Manipulation</td>
<td>FPT_PHP.3 Resistance to physical attack</td>
</tr>
<tr>
<td>Security Objective</td>
<td>TOE Security Functional and Assurance Requirements</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>BSI.O.Leak-Forced</td>
<td>All requirements listed for BSI.O.Leak-Inherent
FRU_FLT.2, FPT_FLS.1, FPT_PHP.3
plus those listed for BSI.O.Malfunction and BSI.O.Phys-Manipulation</td>
</tr>
<tr>
<td>BSI.O.Identification</td>
<td>FAU_SAS.1 Audit storage</td>
</tr>
<tr>
<td>BSI.O.RND</td>
<td>FCS_RNG.1 Random number generation
plus those for BSI.O.Leak-Inherent, BSI.O.Phys-Probing, BSI.O.Malfunction, BSI.O.Phys-Manipulation, BSI.O.Leak-Forced
FRU_FLT.2, FPT_FLS.1, FPT_PHP.3</td>
</tr>
<tr>
<td>BSI.OE.Plat-Appl</td>
<td>Not applicable</td>
</tr>
<tr>
<td>BSI.OE.Resp-Appl</td>
<td>Not applicable</td>
</tr>
<tr>
<td>BSI.OE.Process-Sec-IC</td>
<td>Not applicable</td>
</tr>
<tr>
<td>AUG1.O.Add-Functions</td>
<td>FCS_COP.1 Cryptographic operation
FCS_CKM.1 Cryptographic key generation</td>
</tr>
</tbody>
</table>
Table 12. Security Requirements versus Security Objectives (continued)

<table>
<thead>
<tr>
<th>Security Objective</th>
<th>TOE Security Functional and Assurance Requirements</th>
</tr>
</thead>
</table>
| **O. Access-Control** | FMT_SMR.1 [M4M-DESFire] Security roles
| | FDP_ACC.1 [M4M-DESFire] Subset access control
| | FDP_ACF.1 [M4M-DESFire] Security attribute based access control
| | FMT_MSA.3 [M4M-DESFire] Static attribute initialisation
| | FMT_MSA.1 [M4M-DESFire] Management of security attribute
| | FMT_SMF.1 [M4M-DESFire] Specification of management functions
| | FDP_ITC.2 [M4M-DESFire] Import of user data with security attributes
| | FCS_CKM.4 [M4M-DESFire] Cryptographic key destruction
| | FMT_MTD.1 [M4M-DESFire] Management of TSF data |
| **O. Authentication** | FCS_COP.1[DES] Cryptographic operation
| | FCS_COP.1[AES] Cryptographic operation
| | FIA_UID.2 [M4M-DESFire] User identification before any action
| | FIA_UAU.2 [M4M-DESFire] User authentication before any action
| | FIA_UAU.5 [M4M-DESFire] Multiple authentication mechanisms
| | FPT_TRP.1 [M4M-DESFire] Trusted path
| | FPT_RPL.1 [M4M-DESFire] Replay detection |
| **O. Confidentiality** | FCS_COP.1[AES] Cryptographic operation
| | FPT_TRP.1 [M4M-DESFire] Trusted path
| | FPT_RPL.1 [M4M-DESFire] Replay detection |
| **O. Type-Consistency** | FPT_TDC.1 [M4M-DESFire] Inter-TSF basic TSF data consistency |
| **O. Transaction** | FDP_ROL.1 [M4M-DESFire] Basic rollback |
| **O. No-Trace** | FPR_UNL.1 [M4M-DESFire] Unlinkability |
| **O. Plat-Appl** | All SFRs from the PP |
| **O. Resp-Appl** | All SFRs defined additionally in the ST |
| **O. Resource** | FRU_RSA.2 [M4M-DESFire] Minimum and maximum quotas |
| **O. Verification** | FDP_ACC.1 [APPLI_FWL] Subset access control
| | FDP_ACF.1 [APPLI_FWL] Security attribute based access control
| | FMT_MSA.3 [APPLI_FWL] Static attribute initialisation
| | FPT_FLS.1 Failure with preservation of secure state |
| **O. Firewall** | FDP_ACC.1 [APPLI_FWL] Subset access control
| | FDP_ACF.1 [APPLI_FWL] Security attribute based access control
| | FMT_MSA.3 [APPLI_FWL] Static attribute initialisation |
| **O. Shr-Res** | FDP_RIP.1 [M4M-DESFire] Subset residual information protection |
As origins of security objectives have been carefully kept in their labelling, and origins of security requirements have been carefully identified in Table 7 and Table 10, it can be verified that the justifications provided by the BSI-PP-0035 protection profile and AUG can just be carried forward to their union.

From Table 5, it is straightforward to identify two additional security objectives for the TOE (AUG1.O.Add-Functions and AUG4.O.Mem-Access) tracing back to AUG, and thirteen additional objectives (O.Controlled-ES-Loading, O.Access-Control, O.Authentication, O.Confidentiality, O.Type-Consistency, O.Transaction, O.No-Trace, O.Plat-Appl, O.Resp-Appl, O.Resource, O.Verification, O.Firewall and O.Shr-Res) introduced in this Security Target. This rationale must show that security requirements suitably address these thirteen.

Furthermore, a more careful observation of the requirements listed in Table 7 and Table 10 shows that:

- there are security requirements introduced from AUG (FCS_CKM.1, FDP_ACC.2 [Memories], FDP_ACF.1 [Memories], FMT_MSA.3 [Memories] and FMT_MSA.1 [Memories]),
- there are additional security requirements introduced by this Security Target (FCS_CKM.1, FMT_LIM.1 [Admin], FMT_LIM.2 [Admin], FDP_ITC.1 [Loader], FDP_ACC.1 [Loader], FDP_ACF.1 [Loader], FMT_MSA.3 [Loader], FMT_MSA.1 [Loader], FMT_SMF.1 [Loader], FMT_SMF.1 [Memories], FMT_SMR.1 [M4M-DESFire], FDP_ACC.1 [M4M-DESFire], FDP_ACF.1 [M4M-DESFire], FMT_MSA.3 [M4M-DESFire], FMT_MSA.1 [M4M-DESFire], FMT_SMF.1 [M4M-DESFire]),
- FDP_ITC.2 [M4M-DESFire], FPT_TDC.1 [M4M-DESFire], FIA_UID.2 [M4M-DESFire], FIA_UID.5 [M4M-DESFire], FMT_MTD.1 [M4M-DESFire], FPT_TRP.1 [M4M-DESFire], FCS_CKM.4 [M4M-DESFire], FDP_ROL.1 [M4M-DESFire], FPT_RPL.1 [M4M-DESFire], FPR_UNL.1 [M4M-DESFire], FRU_RSA.2 [M4M-DESFire], FDP_RIP.1 [M4M-DESFire], FDP_ACC.1 [APPLI_FWL] FDP_ACF.1 [APPLI_FWL] and FMT_MSA.3 [APPLI_FWL], and various assurance requirements of EAL5).

Though it remains to show that:
- security objectives from this Security Target and from AUG are addressed by security requirements stated in this chapter,
- additional security requirements from this Security Target and from AUG are mutually supportive with the security requirements from the BSI-PP-0035 protection profile, and they do not introduce internal contradictions,
- all dependencies are still satisfied.

The justification that the additional security objectives are suitably addressed, that the additional security requirements are mutually supportive and that, together with those already in BSI-PP-0035, they form an internally consistent whole, is provided in the next subsections.
Additional security objectives are suitably addressed

The justification related to the security objective “Dynamic Area based Memory Access Control (AUG4.O.Mem-Access)” is as follows:

The security functional requirements "Complete access control (FDP_ACC.2) [Memories]" and "Security attribute based access control (FDP_ACF.1) [Memories]", with the related Security Function Policy (SFP) "Dynamic Memory Access Control Policy" exactly require to implement a Dynamic area based memory access control as demanded by AUG4.O.Mem-Access. Therefore, FDP_ACC.2 [Memories] and FDP_ACF.1 [Memories] with their SFP are suitable to meet the security objective.

Security objective “Additional Specific Security Functionality (AUG1.O.Add-Functions)”

The justification related to the security objective “Additional Specific Security Functionality (AUG1.O.Add-Functions)” is as follows:

The security functional requirements “Cryptographic operation (FCS_COP.1)" and "Cryptographic key generation (FCS_CKM.1)" exactly require those functions to be implemented that are demanded by AUG1.O.Add-Functions. Therefore, FCS_COP.1 is suitable to meet the security objective, together with FCS_CKM.1.

Security objective “Controlled loading of the Security IC Embedded Software (O.Controlled-ES-Loading)”

The justification related to the security objective “Controlled loading of the Security IC Embedded Software (O.Controlled-ES-Loading)” is as follows:

The security functional requirements "Import of user data without security attributes (FDP_ITC.1) [Loader]", "Subset access control (FDP_ACC.1) [Loader]" and "Security attribute based access control (FDP_ACF.1) [Loader]", with the related Security Function Policy (SFP) “Loading Access Control Policy” exactly require to implement a controlled loading of the Security IC Embedded Software as demanded by O.Controlled-ES-Loading. Therefore, FDP_ITC.1 [Loader], FDP_ACC.1 [Loader] and FDP_ACF.1 [Loader] with their SFP are suitable to meet the security objective.

The security functional requirement "Static attribute initialisation (FMT_MSA.3) [Loader]" requires that the TOE provides default values for security attributes. The ability to update the security attributes is restricted to privileged subject(s) as further detailed in the security functional requirement "Management of security attributes (FMT_MSA.1) [Memories]". These management functions ensure that the required access control can be realised using the functions provided by the TOE.

The security functional requirement "Static attribute initialisation (FMT_MSA.3) [Loader]" requires that the TOE provides default values for security attributes. The ability to update the security attributes is restricted to privileged subject(s) as further detailed in the security functional requirement "Management of security attributes (FMT_MSA.1) [Loader]". The security functional requirement "Specification of management functions (FMT_SMF.1) [Loader]" provides additional controlled facility for adapting the loader behaviour to the user’s needs. These management functions ensure that the required access control, associated to the loading feature, can be realised using the functions provided by the TOE.
Security requirements

ST33H768 Platform Security Target for composition

Security objective “Access control for M4M-DESFire (O.Access-Control)”

The justification related to the security objective “Access control for M4M-DESFire (O.Access-Control)” is as follows:

324 The security functional requirement "Security roles (FMT_SMR.1) [M4M-DESFire]" defines the roles of the MIFARE Access Control Policy.

325 The security functional requirements "Subset access control (FDP_ACC.1) [M4M-DESFire]" and "Security attribute based access control (FDP_ACF.1) [M4M-DESFire]" define the rules and "Static attribute initialisation (FMT_MSA.3) [M4M-DESFire]" and "Management of security attributes (FMT_MSA.1) [M4M-DESFire]" the attributes that the access control is based on.

The security functional requirement "Management of TSF data (FMT_MTD.1) [M4M-DESFire]" provides the rules for the management of the authentication data. The management functions are defined by "Specification of Management Functions (FMT_SMF.1) [M4M-DESFire]. Since the TOE stores data on behalf of the authorised subjects, import of user data with security attributes is defined by "Import of user data with security attributes (FDP_ITC.2) [M4M-DESFire]. Since cryptographic keys are used for authentication (refer to O.Authentication), these keys have to be removed if they are no longer needed for the access control (i.e. an application is deleted). This is required by "Cryptographic key destruction (FCS_CKM.4) [M4M-DESFire]. These nine SFRs together provide an access control mechanism as required by the objective O.Access-Control.

Security objective “Authentication for M4M-DESFire (O.Authentication)”

The justification related to the security objective “Authentication for M4M-DESFire (O.Authentication)” is as follows:

326 The two security functional requirements "Cryptographic operation (FCS_COP.1) [DES]" and "Cryptographic operation (FCS_COP.1) [AES]" require that the TOE provides the basic cryptographic algorithms that can be used to perform the authentication.

327 The security functional requirements "User identification before any action (FIA_UID.2) [M4M-DESFire], "User authentication before any action (FIA_UAU.2) [M4M-DESFire]" and "Multiple authentication mechanisms (FIA_UAU.5) [M4M-DESFire]" together define that users must be identified and authenticated before any action. The ‘none’ authentication of "Multiple authentication mechanisms (FIA_UAU.5) [M4M-DESFire]" also ensures that a specific subject is identified and authenticated before an explicit authentication request is sent to the TOE.

"Trusted path (FTP_TRP.1) [M4M-DESFire]" requires a trusted communication path between the TOE and remote users; FTP_TRP.1.3 especially requires “authentication requests". Together with "Replay detection (FPT_RPL.1) [M4M-DESFire]" which requires a replay detection for these authentication requests, the seven security functional requirements fulfil the objective O.Authentication.

Security objective “M4M-DESFire Confidential Communication (O.Confidentiality)”

The justification related to the security objective “M4M-DESFire Confidential communication (O.Confidentiality)” is as follows:

328 The security functional requirement "Cryptographic operation (FCS_COP.1) [AES]" requires that the TOE provides the basic cryptographic algorithm AES that can be used to protect the...
communication by encryption. "Trusted path (FTP_TRP.1) [M4M-DESFire]" requires a trusted communication path between the TOE and remote users; FTP_TRP.1.3 especially requires “confidentiality and/or data integrity verification for data transfers protected with AES and based on a setting in the file attributes”. Together with "Replay detection (FPT_RPL.1) [M4M-DESFire]" which requires a replay detection for these data transfers, the three security functional requirements fulfil the objective O.Confidentiality.

Security objective “M4M-DESFire Data type consistency (O.Type-Consistency)”

The justification related to the security objective “M4M-DESFire Data type consistency (O.Type-Consistency)” is as follows:

The security functional requirement "Inter-TSF basic TSF data consistency (FPT_TDC.1) [M4M-DESFire]" requires the TOE to consistently interpret data files and values. The TOE will honour the respective file formats and boundaries (i.e. upper and lower limits, size limitations). This meets the objective O.Type-Consistency.

Security objective “M4M-DESFire Transaction mechanism (O.Transaction)”

The justification related to the security objective “M4M-DESFire Transaction mechanism (O.Transaction)” is as follows:

The security functional requirement "Basic rollback (FDP_ROL.1) [M4M-DESFire]" requires the possibility to rollback a set of modifying operations on backup files in total. The set of operations is defined by the scope of the transaction, which is itself limited by some boundary events. This fulfils the objective O.Transaction.

Security objective “Preventing traceability for M4M-DESFire (O.No-Trace)”

The justification related to the security objective “Preventing traceability for M4M-DESFire (O.No-Trace)” is as follows:

The security functional requirement "Unlinkability (FPR_UNL.1) [M4M-DESFire]" requires that unauthorised subjects other than the card holder are unable to determine whether any operation of the TOE were caused by the same user. This meets the objective O.No-Trace.

Security objective “Usage of hardware platform (O.Plat-Appl)”

The justification related to the security objective “Usage of hardware platform (O.Plat-Appl)” is as follows:

The objective was translated from an environment objective in the PP into a TOE objective in this ST. Its goal is to ensure that the hardware platform is used in a secure manner, which is based on the insight that hardware and software have to supplement each other in order to build a secure whole. The ST claims conformance to the PP and the PP SFRs do cover the PP TOE objectives. The PP uses the environment objective OE.Plat-Appl to ensure appropriate software support for its SFRs, but since the TOE does now consist of hardware and software, the PP SFRs do also apply to the Security IC Embedded Software included in the TOE, and thereby all PP SFRs fulfil the objective O.Plat-Appl. In other words: the software support required by the hardware-focused PP is now included in this combined hardware-software TOE and both hardware and software fulfil the PP SFRs.
Security objective “Treatment of user data (O.Resp-App)"

The justification related to the security objective "Treatment of user data (O.Resp-App)" is as follows:

The objective was translated from an environment objective in the PP into a TOE objective in this ST. The objective is that "Security relevant User Data (especially cryptographic keys) are treated by the Security IC Embedded Software as required by the security needs of the specific application context." The application context is defined by the security environment described in this ST. The additional SFRs defined in this ST do address the additional TOE objectives of the ST based on the ST security environment, therefore O.Resp-App is fulfilled by the additional ST SFRs.

Security objective “NVM resource availability for M4M-DESFire (O.Resource)"

The justification related to the security objective “Resource availability for M4M-DESFire (O.Resource)” is as follows:

The security functional requirement "Minimum and maximum quotas (FRU_RSA.2) [M4M-DESFire]" requires that sufficient parts of the NVM and RAM are reserved for M4M-DESFire use. This fulfils the objective O.Resource.

Security objective “M4M-DESFire code integrity check (O.Verification)"

The justification related to the security objective “M4M-DESFire code integrity check (O.Verification)” is as follows:

The security functional requirements "Subset access control (FDP_ACC.1) [APPLI_FWL]" and "Security attribute based access control (FDP_ACF.1) [APPLI_FWL]", supported by "Static attribute initialisation (FMT_MSA.3) [APPLI_FWL]", require that M4M-DESFire code integrity is protected. In addition, the security functional requirement "Failure with preservation of secure state (FPT_FLS.1)" requires that in case of error on ROM, M4M-DESFire execution is stopped. This meets the objective O.Verification.

Security objective “M4M-DESFire firewall (O.Firewall)"

The justification related to the security objective “M4M-DESFire firewall (O.Firewall)” is as follows:

The security functional requirements "Subset access control (FDP_ACC.1) [APPLI_FWL]" and "Security attribute based access control (FDP_ACF.1) [APPLI_FWL]", supported by "Static attribute initialisation (FMT_MSA.3) [APPLI_FWL]", require that no application can read, write, compare any piece of data or code belonging to M4M-DESFire. This meets the objective O.Firewall.

Security objective “M4M-DESFire data cleaning for resource sharing (O.Shr-Res)"

The justification related to the security objective “M4M-DESFire data cleaning for resource sharing (O.Shr-Res)” is as follows:

The security functional requirement "Subset residual information protection (FDP_RIP.1) [M4M-DESFire]" requires that the information content of a resource is made unavailable upon its deallocation from M4M-DESFire. This meets the objective O.Shr-Res.
7.4.3 Additional security requirements are consistent

“Cryptographic operation (\textit{FCS_COP.1}) & key generation (\textit{FCS_CKM.1})”

348 These security requirements have already been argued in
Section: Security objective
“Additional Specific Security Functionality (AUG1.O.Add-Functions)” above.

“Static attribute initialisation (\textit{FMT_MSA.3 [Memories]}),
Management of security attributes (\textit{FMT_MSA.1 [Memories]}),
Complete access control (\textit{FDP_ACC.2 [Memories]}),
Security attribute based access control (\textit{FDP_ACF.1 [Memories]})”

349 These security requirements have already been argued in
Section: Security objective

“Import of user data without security attribute (\textit{FDP_ITC.1 [Loader]}),
Static attribute initialisation (\textit{FMT_MSA.3 [Loader]}),
Management of security attributes (\textit{FMT_MSA.1 [Loader]}),
Subset access control (\textit{FDP_ACC.1 [Loader]}),
Security attribute based access control (\textit{FDP_ACF.1 [Loader]}),
Specification of management function (\textit{FMT_SMF.1 [Loader]})”

350 These security requirements have already been argued in
Section: Security objective
“Controlled loading of the Security IC Embedded Software (O.Controlled-ES-Loading)” above.

“Security roles (\textit{FMT_SMR.1 [M4M-DESFire]}),
Subset access control (\textit{FDP_ACC.1 [M4M-DESFire]}),
Security attribute based access control (\textit{FDP_ACF.1 [M4M-DESFire]}),
Static attribute initialisation (\textit{FMT_MSA.3 [M4M-DESFire]}),
Management of security attributes (\textit{FMT_MSA.1 [M4M-DESFire]}),
Specification of TSF data (\textit{FMT_MTD.1 [M4M-DESFire]}),
Specification of management function (\textit{FMT_SMF.1 [M4M-DESFire]}),
Import of user data with security attributes (\textit{FDP_ITC.2 [M4M-DESFire]}),
Cryptographic key destruction (\textit{FCS_CKM.4 [M4M-DESFire]})”

351 These security requirements have already been argued in
Section: Security objective
“Access control for M4M-DESFire (O.Access-Control)” above.

User identification before any action (\textit{FIA_UID.2 [M4M-DESFire]}),
User authentication before any action (\textit{FIA_UAU.2 [M4M-DESFire]}),
Multiple authentication mechanisms (\textit{FIA_UAU.5 [M4M-DESFire]})”

352 These security requirements have already been argued in
Section: Security objective
“Authentication for M4M-DESFire (O.Authentication)” above.

“Trusted path (\textit{FPT_TRP.1 [M4M-DESFire]}),
Replay detection (\textit{FPT_RPL.1 [M4M-DESFire]})”

353 These security requirements have already been argued in
Section: Security objective
“M4M-DESFire Confidential Communication (O.Confidentiality)” above.
"Inter-TSF basic TSF data consistency (FPT_TDC.1 [M4M-DESFire])"
354 This security requirement has already been argued in Section : Security objective “M4M-DESFire Data type consistency (O.Type-Consistency)” above.

"Basic rollback (FDP_ROL.1 [M4M-DESFire])"
355 This security requirement has already been argued in Section : Security objective “M4M-DESFire Transaction mechanism (O.Transaction)” above.

"Unlinkability (FPR_UNL.1 [M4M-DESFire])"
356 This security requirement has already been argued in Section : Security objective “Preventing traceability for M4M-DESFire (O.No-Trace)” above.

"Minimum and maximum quotas (FRU_RSA.2 [M4M-DESFire])"
357 This security requirement has already been argued in Section : Security objective “NVM resource availability for M4M-DESFire (O.Resource)” above.

"Subset access control (FDP_ACC.1 [APPLI_FW],
Security attribute based access control (FDP_ACF.1 [APPLI_FW]),
Static attribute initialisation (FMT_MSA.3 [APPLI_FW]),"
358 These security requirements have already been argued in Section : Security objective “M4M-DESFire firewall (O.Firewall)” above.

"Subset residual information protection (FDP_RIP.1 [M4M-DESFire])"
359 This security requirement has already been argued in Section : Security objective “M4M-DESFire data cleaning for resource sharing (O.Shr-Res)” above.

7.4.4 Dependencies of Security Functional Requirements
360 All dependencies of Security Functional Requirements have been fulfilled in this Security Target except :
• those justified in the BSI-PP-0035 protection profile security requirements rationale,
• those justifed in AUG security requirements rationale (except on FMT_MSA.2, see discussion below),
• the dependency of FCS_COP.1 and FCS_CKM.1 on FCS_CKM.4 (see discussion below),
• the dependency of FMT_MSA.1 [Loader] and FMT_MSA.3 [Loader] on FMT_SMR.1 (see discussion below),
• the dependency of FMT_MSA.3 [APPLI_FW] on FMT_MSA.1 and FMT_SMR.1 (see discussion below).
361 Details are provided in Table 13 below.
Table 13. Dependencies of security functional requirements

<table>
<thead>
<tr>
<th>Label</th>
<th>Dependencies</th>
<th>Fulfilled by security requirements in this Security Target</th>
<th>Dependency already in BSI-PP-0035 or in AUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRU_FLT.2</td>
<td>FPT_FLS.1</td>
<td>Yes</td>
<td>Yes, BSI-PP-0035</td>
</tr>
<tr>
<td>FPT_FLS.1</td>
<td>None</td>
<td>No dependency</td>
<td>Yes, BSI-PP-0035</td>
</tr>
<tr>
<td>FMT_LIM.1 [Test]</td>
<td>FMT_LIM.2 [Test]</td>
<td>Yes</td>
<td>Yes, BSI-PP-0035</td>
</tr>
<tr>
<td>FMT_LIM.2 [Test]</td>
<td>FMT_LIM.1 [Test]</td>
<td>Yes</td>
<td>Yes, BSI-PP-0035</td>
</tr>
<tr>
<td>FMT_LIM.1 [Admin]</td>
<td>FMT_LIM.2 [Admin]</td>
<td>Yes</td>
<td>Yes, BSI-PP-0035</td>
</tr>
<tr>
<td>FMT_LIM.2 [Admin]</td>
<td>FMT_LIM.1 [Admin]</td>
<td>Yes</td>
<td>Yes, BSI-PP-0035</td>
</tr>
<tr>
<td>FAU_SAS.1</td>
<td>None</td>
<td>No dependency</td>
<td>Yes, BSI-PP-0035</td>
</tr>
<tr>
<td>FPT_PHP.3</td>
<td>None</td>
<td>No dependency</td>
<td>Yes, BSI-PP-0035</td>
</tr>
<tr>
<td>FDP_ITT.1</td>
<td>FDP_ACC.1 or FDP_IFC.1</td>
<td>Yes</td>
<td>Yes, BSI-PP-0035</td>
</tr>
<tr>
<td>FPT_ITT.1</td>
<td>None</td>
<td>No dependency</td>
<td>Yes, BSI-PP-0035</td>
</tr>
<tr>
<td>FDP_IFC.1</td>
<td>FDP_IFF.1</td>
<td>No, see BSI-PP-0035</td>
<td>Yes, BSI-PP-0035</td>
</tr>
<tr>
<td>FCS_RNG.1</td>
<td>None</td>
<td>No dependency</td>
<td>Yes, BSI-PP-0035</td>
</tr>
<tr>
<td>FCS_COP.1</td>
<td>[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1]</td>
<td>Yes, by FDP_ITC.1 and FCS_CKM.1, see discussion below</td>
<td>Yes, AUG #1</td>
</tr>
<tr>
<td>FCS_CKM.1</td>
<td>[FDP_CKM.2 or FCS_COP.1]</td>
<td>Yes, by FCS_COP.1</td>
<td></td>
</tr>
<tr>
<td>FCS_CKM.4</td>
<td>No, see discussion below</td>
<td>Yes, AUG #1</td>
<td></td>
</tr>
<tr>
<td>FDP_ACC.2 [Memories]</td>
<td>FDP_ACF.1 [Memories]</td>
<td>Yes</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FDP_ACF.1 [Memories]</td>
<td>FDP_ACC.1 [Memories]</td>
<td>Yes, by FDP_ACC.2 [Memories]</td>
<td>Yes, AUG #4</td>
</tr>
<tr>
<td>FMT_MSA.3 [Memories]</td>
<td>FMT_MSA.1 [Memories]</td>
<td>Yes</td>
<td>Yes, AUG #4</td>
</tr>
<tr>
<td>FMT_SMR.1 [Memories]</td>
<td>FMT_SMR.1 [Memories]</td>
<td>No, see AUG #4</td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.1 [Memories]</td>
<td>[FDP_ACC.1 or FDP_IFC.1]</td>
<td>Yes, by FDP_ACC.2 [Memories] and FDP_IFC.1</td>
<td>Yes, AUG #4</td>
</tr>
<tr>
<td></td>
<td>FMT_SMF.1 [Memories]</td>
<td>Yes</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1 [Memories]</td>
<td>No, see AUG #4</td>
<td>Yes, AUG #4</td>
</tr>
</tbody>
</table>
Table 13. Dependencies of security functional requirements (continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Dependencies</th>
<th>Fulfilled by security requirements in this Security Target</th>
<th>Dependency already in BSI-PP-0035 or in AUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMT_SMF.1 [Memories]</td>
<td>None</td>
<td>No dependency</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FMT_ITC.1 [Loader]</td>
<td>[FDP_ACC.1 [Loader] or FDP_IFC.1]</td>
<td>Yes</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.3 [Loader]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>FDP_ACC.1 [Loader]</td>
<td>FDP_ACF.1 [Loader]</td>
<td>Yes</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FDP_ACF.1 [Loader]</td>
<td>FDP_ACC.1 [Loader]</td>
<td>Yes</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.3 [Loader]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.3 [Loader]</td>
<td>FMT_MSA.1 [Loader]</td>
<td>Yes</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1 [Loader]</td>
<td>No, see discussion below</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[FDP_ACC.1 [Loader] or FDP_IFC.1]</td>
<td>Yes</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td></td>
<td>FDP_SMF.1 [Loader]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FDP_SMR.1 [Loader]</td>
<td>No, see discussion below</td>
<td></td>
</tr>
<tr>
<td>FDP_SMF.1 [Loader]</td>
<td>None</td>
<td>No dependency</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FDP_ACC.1 [M4M-DESFire]</td>
<td>FDP_ACF.1 [M4M-DESFire]</td>
<td>Yes</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FDP_ACF.1 [M4M-DESFire]</td>
<td>FDP_ACC.1 [M4M-DESFire]</td>
<td>Yes</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.3 [M4M-DESFire]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.3 [M4M-DESFire]</td>
<td>FMT_MSA.1 [M4M-DESFire]</td>
<td>Yes</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1 [M4M-DESFire]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[FDP_ACC.1 [M4M-DESFire] or FDP_IFC.1]</td>
<td>Yes, by FDP_ACC.1 [M4M-DESFire]</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td></td>
<td>FMT_SMF.1 [M4M-DESFire]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1 [M4M-DESFire]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>FMT_SMF.1 [M4M-DESFire]</td>
<td>None</td>
<td>No dependency</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>Label</td>
<td>Dependencies</td>
<td>Fulfilled by security requirements in this Security Target</td>
<td>Dependency already in BSI-PP-0035 or in AUG</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>FDP_ITC.2 [M4M-DESFire]</td>
<td>FDP_ACC.1 [M4M-DESFire] or FDP_IFC.1</td>
<td>Yes, by FDP_ACC.1 [M4M-DESFire]</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td></td>
<td>FTP_ITC.1 or FTP_TRP.1 [M4M-DESFire]</td>
<td>Yes, by FTP_TRP.1 [M4M-DESFire]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FPT_TDC.1 [M4M-DESFire]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>FPT_TDC.1 [M4M-DESFire]</td>
<td>None</td>
<td>No dependency</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FIA_UID.2 [M4M-DESFire]</td>
<td>None</td>
<td>No dependency</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FIA_UAU.2 [M4M-DESFire]</td>
<td>FIA_UID.1</td>
<td>Yes, by FIA_UID.2 [M4M-DESFire]</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FIA_UAU.5 [M4M-DESFire]</td>
<td>None</td>
<td>No dependency</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FMT_MTD.1 [M4M-DESFire]</td>
<td>FMT_SMR.1 [M4M-DESFire]</td>
<td>Yes</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td></td>
<td>FMT_SMF.1 [M4M-DESFire]</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>FPT_TRP.1 [M4M-DESFire]</td>
<td>None</td>
<td>No dependency</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FCS_CKM.4 [M4M-DESFire]</td>
<td>[FDP_ITC.1 or FDP_ITC.2 [M4M-DESFire] or FCS_CKM.1]</td>
<td>Yes, by FDP_ITC.2 [M4M-DESFire]</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FDP_ROL.1 [M4M-DESFire]</td>
<td>FDP_ACC.1 [M4M-DESFire] or FDP_IFC.1</td>
<td>Yes, by FDP_ACC.1 [M4M-DESFire]</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FPT_RPL.1 [M4M-DESFire]</td>
<td>None</td>
<td>No dependency</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FPR_UNL.1 [M4M-DESFire]</td>
<td>None</td>
<td>No dependency</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FRU_RSA.2 [M4M-DESFire]</td>
<td>None</td>
<td>No dependency</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FDP_ACC.1 [APPLI_FWL]</td>
<td>FDP_ACF.1 [APPLI_FWL]</td>
<td>Yes</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td>FDP_ACF.1 [APPLI_FWL]</td>
<td>FDP_ACC.1 [APPLI_FWL]</td>
<td>Yes</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.3 [APPLI_FWL]</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Table 13. Dependencies of security functional requirements (continued)

<table>
<thead>
<tr>
<th>Label</th>
<th>Dependencies</th>
<th>Fulfilled by security requirements in this Security Target</th>
<th>Dependency already in BSI-PP-0035 or in AUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMT_MSA.3 [APPLI_FWL]</td>
<td>FMT_MSA.1</td>
<td>No, see discussion below</td>
<td>No, CCMB-2012-09-002</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1</td>
<td>No, see discussion below</td>
<td></td>
</tr>
<tr>
<td>FDP_RIP.1 [M4M-DESFire]</td>
<td>None</td>
<td>No dependency</td>
<td>No, CCMB-2012-09-002</td>
</tr>
</tbody>
</table>

362 Part 2 of the Common Criteria defines the dependency of "Cryptographic operation (FCS_COP.1)" on "Import of user data without security attributes (FDP_ITC.1)" or "Import of user data with security attributes (FDP_ITC.2)" or "Cryptographic key generation (FCS_CKM.1)". In this particular TOE, both "Cryptographic key generation (FCS_CKM.1)" and "Import of user data without security attributes (FDP_ITC.1) [Loader]" may be used for the purpose of creating cryptographic keys, but also, the ES has all possibilities to implement its own creation function, in conformance with its security policy.

363 Part 2 of the Common Criteria defines the dependency of "Cryptographic operation (FCS_COP.1)" and "Cryptographic key generation (FCS_CKM.1)" on "Cryptographic key destruction (FCS_CKM.4)". In this particular TOE, there is no specific function for the destruction of the keys. The ES has all possibilities to implement its own destruction function, in conformance with its security policy. Therefore, FCS_CKM.4 is not defined in this ST.

364 Part 2 of the Common Criteria defines the dependency of "Management of security attributes (FMT_MSA.1) [Loader]" and "Static attribute initialisation (FMT_MSA.3) [Loader]" on "Security roles (FMT_SMR.1) [Loader]". This dependency is considered to be satisfied, because the access control defined for the loader is not role-based but enforced for each subject. Therefore, there is no need to identify roles in form of a Security Functional Requirement "FMT_SMR.1".

365 Part 2 of the Common Criteria defines the dependency of "Static attribute initialisation (FMT_MSA.3) [M4M-DESFire]" on "Management of security attributes (FMT_MSA.1)" and "Security roles (FMT_SMR.1)". For this particular instantiation of the access control attributes aimed at protecting M4M-DESFire code and data from unauthorised accesses, the security attributes are only static, initialized at product start. Therefore, there is no need to identify management capabilities and associated roles in form of Security Functional Requirements "FMT_MSA.1" and "FMT_SMR.1".

7.4.5 Rationale for the Assurance Requirements

Security assurance requirements added to reach EAL5 (Table 10)

366 Regarding application note 21 of BSI-PP-0035, this Security Target chooses EAL5 because developers and users require a high level of independently assured security in a planned development and require a rigorous development approach without incurring unreasonable costs attributable to specialist security engineering techniques.

367 EAL5 represents a meaningful increase in assurance from EAL4 by requiring semiformal design descriptions, a more structured (and hence analyzable) architecture, and improved mechanisms and/or procedures that provide confidence that the TOE will not be tampered during development.
The assurance components in an evaluation assurance level (EAL) are chosen in a way that they build a mutually supportive and complete set of components. The requirements chosen for augmentation do not add any dependencies, which are not already fulfilled for the corresponding requirements contained in EAL5. Therefore, these components add additional assurance to EAL5, but the mutual support of the requirements and the internal consistency is still guaranteed.

Note that detailed and updated refinements for assurance requirements are given in Section 7.3.

Dependencies of assurance requirements

Dependencies of security assurance requirements are fulfilled by the EAL5 package selection.

Augmentation to this package are identified in paragraph 293 and do not introduce dependencies not already satisfied by the EAL5 package.
8 TOE summary specification

This section demonstrates how the TOE meets each Security Functional Requirement, which will be further detailed in the ADV_FSP documents.

The complete TOE summary specification has been presented and evaluated in the ST33H768 platform maskset K8K0A version C with firmware revision 5, optional cryptographic library Neslib 4.1 and 4.1.1, and optional technology MIFARE4Mobile® 2.1.0 - SECURITY TARGET.

For confidentiality reasons, the TOE summary specification is not fully reproduced here.

8.1 Limited fault tolerance (FRU_FLT.2)

The TSF provides limited fault tolerance, by managing a certain number of faults or errors that may happen, related to memory contents, CPU, random number generation and cryptographic operations, thus preventing risk of malfunction.

8.2 Failure with preservation of secure state (FPT_FLS.1)

The TSF provides preservation of secure state by detecting and managing the following events, resulting in an immediate reset:

- Die integrity violation detection,
- Errors on memories,
- Glitches,
- High voltage supply,
- CPU errors,
- MPU errors,
- External clock incorrect frequency,
- etc..

The ES can generate a software reset.

8.3 Limited capabilities (FMT_LIM.1) [Test]

The TSF ensures that only very limited test capabilities are available in USER configuration, in accordance with SFP_1: Limited capability and availability Policy [Test].

8.4 Limited capabilities (FMT_LIM.1) [Admin]

The TSF ensures that the Secure Flash Loader and the final test capabilities are unavailable in USER configuration, in accordance with SFP_4: Limited capability and availability Policy [Admin].
8.5 Limited availability (FMT_LIM.2) [Test] & [Admin]

The TOE is either in TEST, ADMIN or USER configuration.

The only authorised TOE configuration modifications are:

• TEST to ADMIN configuration,
• TEST to USER configuration,
• ADMIN to USER configuration.

The TSF ensures the switching and the control of TOE configuration.

The TSF reduces the available features depending on the TOE configuration.

8.6 Audit storage (FAU_SAS.1)

In Admin configuration, the TOE provides commands to store data and/or pre-personalisation data and/or supplements of the ES in the NVM. These commands are only available to authorized processes, and only until phase 6.

8.7 Resistance to physical attack (FPT_PHP.3)

The TSF ensures resistance to physical tampering, thanks to the following features:

• The TOE implements counter-measures that reduce the exploitability of physical probing.
• The TOE is physically protected by an active shield that commands an automatic reaction on die integrity violation detection.

8.8 Basic internal transfer protection (FDP_ITT.1), Basic internal TSF data transfer protection (FPT_ITT.1) & Subset information flow control (FDP_IFC.1)

The TSF prevents the disclosure of internal and user data thanks to:

• Memories scrambling and encryption,
• Bus encryption,
• Mechanisms for operation execution concealment,
• etc..

8.9 Random number generation (FCS_RNG.1)

The TSF provides 8-bit true random numbers that can be qualified with the test metrics required by the BSI-AIS20/AIS31 standard for a PTG.2 class device.
8.10 Cryptographic operation: DES / 3DES operation (FCS_COP.1 [EDES]) if EDES+ only

The TOE provides an EDES accelerator that has the capability to perform DES and Triple DES encryption and decryption conformant to FIPS PUB 46-3. Note that DES is no longer recommended as an encryption function in the context of smart card applications. Hence, Security IC Embedded Software may need to use triple DES to achieve a suitable strength.

The EDES accelerator offers a Cipher Block Chaining (CBC) mode conformant to ISO/IEC 10116, and a Cipher Block Chaining Message Authentication Code (CBC-MAC) mode conformant to ISO/IEC 9797-1.

The M4M-DESFire library uses Triple DES as cryptographic operation. Cryptographic operations are used for setting up the mutual authentication, for encryption and message authentication.

8.11 Cryptographic operation: AES operation (FCS_COP.1 [AES]) if AES only

If AES is active, the AES accelerator provides the following standard AES cryptographic operations for key sizes of 128, 192 and 256 bits, conformant to FIPS PUB 197 with intrinsic counter-measures against attacks:

- randomize,
- key expansion,
- cipher,
- inverse cipher.

The M4M-DESFire library uses AES as cryptographic operation. Cryptographic operations are used for setting up the mutual authentication, for encryption and message authentication.

8.12 Cryptographic operation: RSA operation (FCS_COP.1 [RSA]) if Neslib only

The cryptographic library Neslib provides the RSA public key cryptographic operation for modulus sizes up to 4096 bits, conformant to PKCS #1 V2.1.

The cryptographic library Neslib provides the RSA private key cryptographic operation with or without CRT for modulus sizes up to 4096 bits, conformant to PKCS #1 V2.1.
8.13 **Cryptographic operation: Elliptic Curves Cryptography operation (FCS_COP.1 [ECC]) if Neslib only**

The cryptographic library Neslib provides to the ES developer the following efficient basic functions for Elliptic Curves Cryptography over prime fields, all conformant to IEEE 1363-2000 and IEEE 1363a-2004:

- private scalar multiplication,
- preparation of Elliptic Curve computations in affine coordinates,
- public scalar multiplication,
- point validity check,
- Jacobian conversion to affine coordinates,
- general point addition,
- point expansion and compression.

8.14 **Cryptographic operation: SHA operation (FCS_COP.1 [SHA]) if Neslib only**

The cryptographic library Neslib provides the SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 secure hash functions conformant to FIPS PUB 180-4.

The cryptographic library Neslib provides the SHA-1 and SHA-256 secure hash function conformant to FIPS PUB 180-4 and offering resistance against side channel and fault attacks.

Additionally, the cryptographic library Neslib offers support for the HMAC mode of use, as specified in FIPS PUB 198-1, to be used in conjunction with the protected versions of SHA-1 and SHA-256.

8.15 **Cryptographic operation: DRBG operation (FCS_COP.1 [DRBG]) if Neslib only**

The cryptographic library Neslib gives support for a DRBG generator, based on cryptographic algorithms specified in NIST SP 800-90A.

The cryptographic library Neslib implements three of the DRBG specified in NIST SP 800-90A:

- Hash-DRBG,
- CTR-DRBG.

8.16 **Cryptographic key generation: Prime generation (FCS_CKM.1 [Prime_generation]) if Neslib only**

The cryptographic library Neslib provides prime numbers generation for key sizes up to 2048 bits conformant to FIPS PUB 140-2 and FIPS 186-3, optionally with conditions and/or optionally offering resistance against side channel and fault attacks.
8.17 **Cryptographic key generation: RSA key generation (FCS_CKM.1 [RSA_key_generation]) if Neslib only**

402 The cryptographic library Neslib provides standard RSA public and private key computation for key sizes up to 4096 bits conformant to FIPS PUB 140-2, optionally with conditions and/or optionally offering resistance against side channel and fault attacks.

8.18 **Static attribute initialisation (FMT_MSA.3) [Memories]**

403 The TOE enforces a default memory protection policy when none other is programmed by the ES.

8.19 **Management of security attributes (FMT_MSA.1) [Memories] & Specification of management functions (FMT_SMF.1) [Memories]**

404 The TOE provides a dynamic Memory Protection Unit (MPU), that can be configured by the ES.

8.20 **Complete access control (FDP_ACC.2) [Memories] & Security attribute based access control (FDP_ACF.1) [Memories]**

405 The TOE enforces the dynamic memory protection policy for data access and code access thanks to a dynamic Memory Protection Unit (MPU), programmed by the ES. Overriding the MPU set of access rights, the TOE enforces additional protections on specific parts of the memories.

8.21 **Import of user data without security attributes (FDP_ITC.1) [Loader]**

406 In Admin configuration, the System Firmware provides the capability of securely loading user data into the NVM (Secure Flash Loader). The ciphered data is automatically decrypted, before installation in the NVM. The integrity of the loaded data is systematically checked, and the integrity of the NVM can also be checked by the ES.

8.22 **Static attribute initialisation (FMT_MSA.3) [Loader]**

407 In Admin configuration, the System Firmware provides restrictive default values for the Flash Loader security attributes.
8.23 Management of security attributes (FMT_MSA.1) [Loader] & Specification of management functions (FMT_SMF.1) [Loader]

408 In Admin configuration, the System Firmware provides the capability to change part of the Flash Loader security attributes, only once in the product lifecycle.

8.24 Subset access control (FDP_ACC.1) [Loader] & Security attribute based access control (FDP_ACF.1) [Loader]

409 In Admin configuration, the System Firmware grants access to the Flash Loader functions, only after presentation of the required valid passwords.

8.25 Security roles (FMT_SMR.1) [M4M-DESFire]

410 M4M-DESFire supports the assignment of roles to users through the assignment of different keys for the different roles and through the structure and configuration of the access rights. This allows to distinguish between the roles of VC Administrator, VC Manager, Application Manager, Application User, and Everybody.

8.26 Subset access control (FDP_ACC.1) [M4M-DESFire]

411 For each M4M-DESFire command subject to access control, the M4M-DESFire library verifies if the M4M-DESFire access conditions are satisfied and returns an error when this is not the case.

8.27 Security attribute based access control (FDP_ACF.1) [M4M-DESFire]

412 The M4M-DESFire library verifies the M4M-DESFire security attributes during the execution of M4M-DESFire commands to enforce the Access Control Policy defined by the M4M-DESFire interface specification.

8.28 Static attribute initialisation (FMT_MSA.3) [M4M-DESFire]

413 The M4M-DESFire library initialises all the static attributes to the values defined by M4M-DESFire interface specifications before they can be used by the Embedded Software.

8.29 Management of security attributes (FMT_MSA.1) [M4M-DESFire]

414 The M4M-DESFire library verifies the M4M-DESFire security attributes during the execution of M4M-DESFire commands to enforce the Access Control Policy on the security attributes.
8.30 Specification of Management Functions (FMT_SMF.1) [M4M-DESFire]

The M4M-DESFire library implements the management functions defined by the M4M-DESFire interface specifications for authentication, changing security attributes and creating or deleting an application, a value or a data file.

8.31 Import of user data with security attributes (FDP_ITC.2) [M4M-DESFire]

The M4M-DESFire library implements the M4M-DESFire interface specifications and enforces the Access Control Policy to associate the user data to the security attributes.

8.32 Inter-TSF basic TSF data consistency (FPT_TDC.1) [M4M-DESFire]

The M4M-DESFire library implements the M4M-DESFire interface specifications, supporting consistent interpretation and modification control of inter-TSF exchanges.

8.33 Cryptographic key destruction (FCS_CKM.4) [M4M-DESFire]

The M4M-DESFire library erases key values from memory after their context becomes obsolete.

8.34 User identification before any action (FIA_UID.2) [M4M-DESFire]

The M4M-DESFire library identifies the user through the key selected for authentication or the usage of the M4M host interface as specified by the M4M-DESFire Interface Specification.

8.35 User authentication before any action (FIA_UAU.2) [M4M-DESFire]

During the authentication, the M4M-DESFire library verifies that the user knows the selected key.

After this authentication, both parties share a session key.

8.36 Multiple authentication mechanisms (FIA_UAU.5) [M4M-DESFire]

The M4M-DESFire library implements the M4M-DESFire Interface Specification, that has a mechanism to authenticate the VC Administrator, VC Manager, Application Manager and Application User, while Everybody is assumed when there is no valid authentication state.
Two types of authentication are supported: the native M4M-DESFire 3-pass authentication and the ISO authentication.

8.37 Management of TSF data (FMT_MTD.1) [M4M-DESFire]

The M4M-DESFire library implements the M4M-DESFire Interface Specification, restricting key modifications in ways configurable through the security attributes to authenticated users, or disabling key modification capabilities.

8.38 Trusted path (FTP_TRP.1) [M4M-DESFire]

The M4M-DESFire library implements the M4M-DESFire Interface Specification allowing to establish and enforce a trusted path between itself and remote users.

8.39 Basic rollback (FDP_ROL.1) [M4M-DESFire]

The M4M-DESFire library implements the M4M-DESFire transaction mechanism ensuring that either all or none of the (modifying) file commands within a transaction are performed. If not, they are rolled back. The transaction mechanism applies to all files except the standard data files.

8.40 Replay detection (FPT_RPL.1) [M4M-DESFire]

The M4M-DESFire library implements the M4M-DESFire authentication command, and authenticated commands, that allow replay detection.

8.41 Unlinkability (FPR_UNL.1) [M4M-DESFire]

M4M-DESFire provides an Administrator option to use random UID during the ISO 14443 anti-collision sequence, preventing the traceability through UID. At higher level, the M4M-DESFire access control - when configured for this purpose - provides traceability protection.

8.42 Minimum and maximum quotas (FRU_RSA.2) [M4M-DESFire]

The M4M-DESFire library ensures the memory required for its operation is available.

8.43 Subset residual information protection (FDP_RIP.1) [M4M-DESFire]

At the end of commands execution or upon interrupt, the M4M-DESFire library cleans the confidential data from crypto-processors and CPU registers it uses.
8.44 **Subset access control (FDP_ACC.1) [APPLI_FWL] & Security attribute based access control (FDP_ACF.1) [APPLI_FWL]**

The Library Protection Unit is used to isolate the Protected Application or M4M-DESFire firmware (code and data) from the rest of the code embedded in the device.

8.45 **Static attribute initialisation (FMT_MSA.3) [APPLI_FWL]**

At product start, all the static attributes are initialised, which are needed to protect the segments where the Protected Application or M4M-DESFire code and data are stored.
9 References

Protection Profile references

<table>
<thead>
<tr>
<th>Component description</th>
<th>Reference</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security IC Platform Protection Profile</td>
<td>BSI-PP-0035</td>
<td>1.0</td>
</tr>
</tbody>
</table>

ST33H768 Platform Security Target reference

<table>
<thead>
<tr>
<th>Component description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST33H768 platform maskset K8K0A version C with firmware revision 5, optional cryptographic library Neslib 4.1 and 4.1.1, and optional technology MIFARE4Mobile® 2.1.0 - SECURITY TARGET</td>
<td>SMD_ST33G_ST_14_003</td>
</tr>
</tbody>
</table>

Guidance documentation references

<table>
<thead>
<tr>
<th>Component description</th>
<th>Reference</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST33H768 Secure MCU with 32-bit ARM SecurCore SC300 - Datasheet</td>
<td>DS_ST33H768</td>
<td>4</td>
</tr>
<tr>
<td>ST33H768 platform: BP and BM specific product profiles - Technical note</td>
<td>TN_ST33H768_01</td>
<td>1</td>
</tr>
<tr>
<td>ST33H768: LS, LC and BS specific product profiles - Technical Note</td>
<td>TN_ST33H768_02</td>
<td>1</td>
</tr>
<tr>
<td>ST33H768: CMOS M10+ 80-nm technology die and wafer delivery description</td>
<td>DD_ST33H768</td>
<td>2</td>
</tr>
<tr>
<td>ARM® Cortex SC300 r0p0 Technical Reference Manual</td>
<td>ARM DDI 0337</td>
<td>F</td>
</tr>
<tr>
<td>ARM® Cortex M3 r2p0 Technical Reference Manual</td>
<td>ARM DDI 0337F3c</td>
<td>F3c</td>
</tr>
<tr>
<td>ARM® SC300 r0p0 SecurCore Technical Reference Manual Supplement 1A</td>
<td>ARM DDI 0337 Supp 1A</td>
<td>A</td>
</tr>
<tr>
<td>ARM® SecurCore SC300 technical limitations</td>
<td>ES_SC300</td>
<td>1</td>
</tr>
<tr>
<td>ST33H768 Firmware user manual</td>
<td>UM_ST33H768_FW</td>
<td>5</td>
</tr>
<tr>
<td>ST33H768 and derivatives Flash loader installation guide</td>
<td>UM_33H_FL</td>
<td>4</td>
</tr>
<tr>
<td>ST33G and ST33H Firmware support for LPU regions - Application Note</td>
<td>AN_33G_33H_LPU</td>
<td>1</td>
</tr>
<tr>
<td>ST33G and ST33H Secure MCU platforms - Security Guidance</td>
<td>AN_SECU_ST33</td>
<td>5</td>
</tr>
<tr>
<td>ST33G and ST33H Power supply glitch detector characteristics - application note</td>
<td>AN_33_GLITCH</td>
<td>2</td>
</tr>
<tr>
<td>ST33G and ST33H - AIS31 Compliant Random Number user manual</td>
<td>UM_33G_33H_AIS31</td>
<td>3</td>
</tr>
</tbody>
</table>
References

Component description

<table>
<thead>
<tr>
<th>Component description</th>
<th>Reference</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST33G and ST33H - AIS31 Reference implementation - Startup, online and total failure tests - User manual</td>
<td>AN_33G_33H_AIS31</td>
<td>1</td>
</tr>
<tr>
<td>ST33 ARM Execute-only memory support for SecurCore® SC300 devices - Application note</td>
<td>AN_33_EXE</td>
<td>2</td>
</tr>
<tr>
<td>ST33 uniform timing application note</td>
<td>AN_33_UT</td>
<td>2</td>
</tr>
<tr>
<td>NesLib 4.1 & 4.1.1 for ST33 Secure MCUs cryptographic library user manual</td>
<td>UM_33_NESLIB_4</td>
<td>4</td>
</tr>
<tr>
<td>NesLib 4.1 for ST33 - Limitations versus Neslib 4.1.1</td>
<td>TN_ST33G_Neslib4.1</td>
<td>1</td>
</tr>
<tr>
<td>ST33 Secure MCU family - NesLib 4.1 & 4.1.1 security recommendations - Application Note</td>
<td>AN_SECU_33_NESLIB_4</td>
<td>7</td>
</tr>
<tr>
<td>MIFARE4Mobile® library 2.1 - User manual</td>
<td>UM_33_MIFARE4Mobile-2.1</td>
<td>5</td>
</tr>
<tr>
<td>MIFARE4Mobile® library 2.1.0 for ST33G1M2 - Application note</td>
<td>AN_ST33G1M2_M4M_Lib</td>
<td>1</td>
</tr>
</tbody>
</table>

Standards references

<table>
<thead>
<tr>
<th>Ref</th>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5]</td>
<td>FIPS 186-3</td>
<td>FIPS 186-3, Digital Signature Standard (DSS), National Institute of Standards and Technology (NIST), 2009</td>
</tr>
<tr>
<td>Ref</td>
<td>Identifier</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>[17]</td>
<td>PKCS #1 V2.1</td>
<td>PKCS #1 V2.1 RSA Cryptography Standard, RSA Laboratories, June 2002</td>
</tr>
<tr>
<td>[19]</td>
<td>NIST SP 800-38B</td>
<td>NIST special publication 800-38B, Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication, National Institute of Standards and Technology (NIST), May 2005</td>
</tr>
<tr>
<td>[20]</td>
<td>NIST SP 800-90A</td>
<td>The NIST SP 800-90A Deterministic Random Bit Generator Validation System (DRBGVS), National Institute of Standards and Technology (NIST), February 14 2013</td>
</tr>
</tbody>
</table>
Appendix A Glossary

A.1 Terms

Authorised user
 A user who may, in accordance with the TSP, perform an operation.

Composite product
 Security IC product which includes the Security Integrated Circuit (i.e. the TOE) and the
 Embedded Software and is evaluated as composite target of evaluation.

End-consumer
 User of the Composite Product in Phase 7.

Integrated Circuit (IC)
 Electronic component(s) designed to perform processing and/or memory functions.

IC Dedicated Software or Firmware
 IC proprietary software embedded in a Security IC (also known as IC firmware) and
 developed by ST. Such software is required for testing purpose (IC Dedicated Test
 Software) but may provide additional services to facilitate usage of the hardware and/or
 to provide additional services (IC Dedicated Support Software).

IC Dedicated Test Software
 That part of the IC Dedicated Software which is used to test the TOE before TOE
 Delivery but which does not provide any functionality thereafter.

IC developer
 Institution (or its agent) responsible for the IC development.

IC manufacturer
 Institution (or its agent) responsible for the IC manufacturing, testing, and pre-
 personalization.

IC packaging manufacturer
 Institution (or its agent) responsible for the IC packaging and testing.

Initialisation data
 Initialisation Data defined by the TOE Manufacturer to identify the TOE and to keep
 track of the Security IC’s production and further life-cycle phases are considered as
 belonging to the TSF data. These data are for instance used for traceability and for
 TOE identification (identification data).

Object
 An entity within the TSC that contains or receives information and upon which subjects
 perform operations.

Packaged IC
 Security IC embedded in a physical package such as micromodules, DIPs, SOICs or
 TQFPs.

Pre-personalization data
 Any data supplied by the Card Manufacturer that is injected into the non-volatile
 memory by the Integrated Circuits manufacturer (Phase 3). These data are for instance
 used for traceability and/or to secure shipment between phases.

Secret
Information that must be known only to authorised users and/or the TSF in order to enforce a specific SFP.

Security IC
Composition of the TOE, the Security IC Embedded Software, User Data, and the package.

Security IC Embedded Software (ES)
Software embedded in the Security IC and not developed by the IC designer. The Security IC Embedded Software is designed in Phase 1 and embedded into the Security IC in Phase 3.

Security IC embedded software (ES) developer
Institution (or its agent) responsible for the security IC embedded software development and the specification of IC pre-personalization requirements, if any.

Security attribute
Information associated with subjects, users and/or objects that is used for the enforcement of the TSP.

Sensitive information
Any information identified as a security relevant element of the TOE such as:
- the application data of the TOE (such as IC pre-personalization requirements, IC and system specific data),
- the security IC embedded software,
- the IC dedicated software,
- the IC specification, design, development tools and technology.

Smartcard
A card according to ISO 7816 requirements which has a non volatile memory and a processing unit embedded within it.

Subject
An entity within the TSC that causes operations to be performed.

Test features
All features and functions (implemented by the IC Dedicated Software and/or hardware) which are designed to be used before TOE Delivery only and delivered as part of the TOE.

TOE Delivery
The period when the TOE is delivered which is after Phase 3 or Phase 4 in this Security target.

TSF data
Data created by and for the TOE, that might affect the operation of the TOE.

User
Any entity (human user or external IT entity) outside the TOE that interacts with the TOE.

User data
All data managed by the Smartcard Embedded Software in the application context. User data comprise all data in the final Smartcard IC except the TSF data.
A.2 Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>Advanced Encryption Standard.</td>
</tr>
<tr>
<td>AIS</td>
<td>Application notes and Interpretation of the Scheme (BSI).</td>
</tr>
<tr>
<td>ALU</td>
<td>Arithmetical and Logical Unit.</td>
</tr>
<tr>
<td>BSI</td>
<td>Bundesamt für Sicherheit in der Informationstechnik.</td>
</tr>
<tr>
<td>CBC</td>
<td>Cipher Block Chaining.</td>
</tr>
<tr>
<td>CBC-MAC</td>
<td>Cipher Block Chaining Message Authentication Code.</td>
</tr>
<tr>
<td>CC</td>
<td>Common Criteria Version 3.1.</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit.</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check.</td>
</tr>
<tr>
<td>DCSSI</td>
<td>Direction Centrale de la Sécurité des Systèmes d’Information</td>
</tr>
<tr>
<td>DES</td>
<td>Data Encryption Standard.</td>
</tr>
<tr>
<td>DIP</td>
<td>Dual-In-Line Package.</td>
</tr>
<tr>
<td>DRBG</td>
<td>Deterministic Random Bit Generator.</td>
</tr>
<tr>
<td>EAL</td>
<td>Evaluation Assurance Level.</td>
</tr>
<tr>
<td>ECB</td>
<td>Electronic Code Book.</td>
</tr>
<tr>
<td>ECC</td>
<td>Elliptic Curve Cryptography.</td>
</tr>
<tr>
<td>EDES</td>
<td>Enhanced DES.</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically Erasable Programmable Read Only Memory.</td>
</tr>
<tr>
<td>ES</td>
<td>Security IC Embedded SoftWare.</td>
</tr>
<tr>
<td>FTOS</td>
<td>Final Test Operating System.</td>
</tr>
<tr>
<td>GPIO</td>
<td>General Purpose I/O.</td>
</tr>
<tr>
<td>I/O</td>
<td>Input / Output.</td>
</tr>
<tr>
<td>IART</td>
<td>ISO-7816 Asynchronous Receiver Transmitter.</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit.</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organisation.</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology.</td>
</tr>
<tr>
<td>LPU</td>
<td>Library Protection Unit.</td>
</tr>
<tr>
<td>M4M</td>
<td>MIFARE4Mobile®</td>
</tr>
<tr>
<td>MAC</td>
<td>Message Authentication Code.</td>
</tr>
<tr>
<td>MPU</td>
<td>Memory Protection Unit.</td>
</tr>
<tr>
<td>NESCRYPT</td>
<td>Next Step Cryptography Accelerator.</td>
</tr>
<tr>
<td>Term</td>
<td>Meaning</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>NFC</td>
<td>Near Field Communication.</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology.</td>
</tr>
<tr>
<td>NVM</td>
<td>Non Volatile Memory.</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System.</td>
</tr>
<tr>
<td>OSP</td>
<td>Organisational Security Policy.</td>
</tr>
<tr>
<td>OST</td>
<td>Operating System for Test.</td>
</tr>
<tr>
<td>PP</td>
<td>Protection Profile.</td>
</tr>
<tr>
<td>PUB</td>
<td>Publication Series.</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory.</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency.</td>
</tr>
<tr>
<td>RF UART</td>
<td>Radio Frequency Universal Asynchronous Receiver Transmitter.</td>
</tr>
<tr>
<td>ROM</td>
<td>Read Only Memory.</td>
</tr>
<tr>
<td>RSA</td>
<td>Rivest, Shamir & Adleman.</td>
</tr>
<tr>
<td>SAR</td>
<td>Security Assurance Requirement.</td>
</tr>
<tr>
<td>SFP</td>
<td>Security Function Policy.</td>
</tr>
<tr>
<td>SFR</td>
<td>Security Functional Requirement.</td>
</tr>
<tr>
<td>SHA</td>
<td>Secure Hash Algorithm.</td>
</tr>
<tr>
<td>SIM</td>
<td>Subscriber Identity Module.</td>
</tr>
<tr>
<td>SOIC</td>
<td>Small Outline IC.</td>
</tr>
<tr>
<td>SPI</td>
<td>Serial Peripheral Interface.</td>
</tr>
<tr>
<td>ST</td>
<td>Context dependent : STMicroelectronics or Security Target.</td>
</tr>
<tr>
<td>SWP</td>
<td>Single Wire Protocol.</td>
</tr>
<tr>
<td>TOE</td>
<td>Target of Evaluation.</td>
</tr>
<tr>
<td>TQFP</td>
<td>Thin Quad Flat Package.</td>
</tr>
<tr>
<td>TRNG</td>
<td>True Random Number Generator.</td>
</tr>
<tr>
<td>TSC</td>
<td>TSF Scope of Control.</td>
</tr>
<tr>
<td>TSF</td>
<td>TOE Security Functionality.</td>
</tr>
<tr>
<td>TSFI</td>
<td>TSF Interface.</td>
</tr>
<tr>
<td>TSP</td>
<td>TOE Security Policy.</td>
</tr>
<tr>
<td>TSS</td>
<td>TOE Summary Specification.</td>
</tr>
<tr>
<td>UID</td>
<td>User Identification.</td>
</tr>
</tbody>
</table>
10 Revision history

Table 15. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-Sep-2016</td>
<td>01.00</td>
<td>Initial release</td>
</tr>
</tbody>
</table>