FM1280 V05
Dual Interface Smart Card Chip with IC Dedicated Software
Security Target

Lite

Dec. 2017
Version 1.8
Change History

<table>
<thead>
<tr>
<th>No</th>
<th>Version</th>
<th>Date</th>
<th>Chapter</th>
<th>Change</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.7</td>
<td>2017/12/4</td>
<td></td>
<td>Created this document based on FM1280 V05 Dual Interface Smart Card Chip with IC Dedicated Software Security Target V1.7</td>
<td>Zhang Weibin Shan Weijun</td>
</tr>
<tr>
<td>2</td>
<td>1.8</td>
<td>2017/12/6</td>
<td></td>
<td>Created this document based on FM1280 V05 Dual Interface Smart Card Chip with IC Dedicated Software Security Target V1.8</td>
<td>Zhang Weibin Shan Weijun</td>
</tr>
</tbody>
</table>
Contents

1. ST Introduction .. 5
 1.1. ST identifiers .. 5
 1.2. TOE overview .. 5
 1.3. TOE description ... 6
 1.3.1. Physical scope .. 6
 1.3.2. Logical scope ... 7
 1.4. Life cycle and delivery .. 9

2. Conformance claim .. 11
 2.1. CC Conformance ... 11
 2.2. PP Claim .. 11
 2.3. Package claim ... 11
 2.4. Conformance claim rationale ... 11

3. Security problem definition ... 12
 3.1. Description of Assets .. 12
 3.2. Threats .. 12
 3.3. Organisational security policies .. 12
 3.4. Assumptions .. 13

4. Security objectives ... 14
 4.1. Security objectives for the TOE ... 14
 4.2. Security objectives for the security IC embedded software 14
 4.3. Security objectives for the operational environment ... 15
 4.4. Security objectives rationale .. 15

5. Extended Components Definitions ... 16

6. Security requirements .. 17
 6.1. Definitions .. 17
 6.2. Security Functional Requirements (SFR) ... 17
 6.2.1. SFRs derived from the Security IC Platform Protection Profile 17
 6.2.2. SFRs regarding cryptographic functionality ... 19
 6.2.3. SFRs regarding access control .. 20
 6.3. Security Assurance Requirements (SAR) ... 21
 6.4. Security requirements rationale .. 22
 6.4.1. Security Functional Requirements (SFR) .. 22
 6.4.2. Dependencies of the SFRs .. 24
 6.4.3. Security Assurance Requirements (SAR) .. 24

7. TOE summary specification ... 26
 7.1. Protection against malfunction .. 26
7.2. Protection against leakage ... 26
7.3. Protection against physical attacks .. 26
7.4. Identification and prevent abuse of functionality 26
7.5. Random number generator .. 27
7.6. Cryptographic encryption/decryption .. 27
7.7. Memory access control .. 27
8. Annexes ... 27
 8.1. Glossaries .. 27
 8.2. List of Abbreviations .. 28
9. References ... 28
1 ST Introduction

This Security Target (ST) is built upon the Security IC Platform Protection Profile with Augmentation Packages [1]. Registered and Certified by Bundesamt für Sicherheit in der Informationstechnik (BSI) under the reference BSI-CC-PP-0084-2014.

This chapter presents the ST reference, the reference for the Target Of Evaluation (TOE), a TOE overview description and a description of the logical and physical scope of the TOE.

1.1. ST identifiers

<table>
<thead>
<tr>
<th>ST reference:</th>
<th>FM1280 V05 Dual Interface Smart Card Chip with IC Dedicated Software Security Target v1.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOE reference:</td>
<td>FM1280 V05 Dual Interface Smart Card Chip with IC Dedicated Software</td>
</tr>
</tbody>
</table>

1.2. TOE overview

The TOE is FM1280 V05 Dual Interface Smart Card Chip with IC Dedicated Software, in short of FM1280, developed by Shanghai Fudan Microelectronics. It can be widely and easily applied in various security fields such as banking and finance market, social security card, transport card, small-amount payment and security identification, etc.

The FM1280 consists of the IC Hardware, the IC Dedicated Software and the supporting documents.

The hardware is based on a CPU, memories of ROM, EEPROM and RAMs, and cryptographic coprocessors for execution and acceleration of symmetric and asymmetric cryptographic algorithms, security components and several communication interfaces.

The CPU is an ARM SC000 Microprocessor that supports a 32-bit instruction set and security features. The on-chip memories are ROM, EEPROM, System RAM, Coprocessor RAM, PAE RAM and CLA RAM. The EEPROM is a non-volatile memory that can be used to store not only data but also code. The data integrity stored in the ROM, EEPROM, System RAM, Coprocessor RAM is guaranteed.

The FM1280 supports the following communication interfaces:

- ISO/IEC 14443 TYPE A contactless interface
- ISO/IEC 7816 contact interface.
- GPIO
- SPI and High Speed SPI
- I2C
- UART

The FM1280 has been designed to provide a platform for Security IC Embedded Software which ensures that the critical user data of the Composite TOE are stored and processed in a secure way. To this end the FM1280 has the following security features:

- Hardware coprocessor for TDES
- True Random Number Generator with protections
- Hardware for RSA support
- Protection against power analysis
- Protection against physical attacks
- Protection against perturbation attacks
- Memory access control
- Memory encryption
- Data and critical register protection
- Active shielding
- Security sensors
- Software library with cryptographic services

Some of these features can be controlled by the Security IC embedded software. The software library in the IC Dedicated Software has been designed to provide easy access to the hardware functions and to complement these.

The Driver is a part of the IC Dedicated Software. It provides API functions of EEPROM operations, IO operations and CRC calculation.

There is no non-TOE hardware, firmware and software required by TOE.

1.3. TOE description

1.3.1. Physical scope

The block diagram of the TOE hardware is depicted below.

Figure 1Block Diagram of FM1280 V05 Dual Interface Smart Card Chip
The FM1280 includes the IC Hardware, the IC Dedicated Software and supporting documents for developers. The IC Dedicated Software comprises of Boot, FMSH_CryptoLib and Driver. The Dedicated Test Software is only used to support testing of the TOE before TOE Delivery. It is downloaded into the EEPROM and removed after testing. It is not part of the TOE. The IC Embedded Software which is provided by developers is not part of the TOE.

1.3.1.1. TOE components

The TOE consists of the following components that are delivered to the composite product manufacturer:

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Version</th>
<th>Delivery form</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC Hardware</td>
<td>FM1280</td>
<td>V05</td>
<td>Wafer, module</td>
</tr>
<tr>
<td>IC Dedicated Software</td>
<td>Firmware V2.75 including the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boot</td>
<td>V1.001</td>
<td>On-chip ROM</td>
</tr>
<tr>
<td></td>
<td>FMSH_CryptoLib</td>
<td>V3.103</td>
<td>On-chip ROM,Header file: FM_CryptoLib.h, FM_CryptoLib_struct.h</td>
</tr>
<tr>
<td></td>
<td>Driver</td>
<td>V1.000</td>
<td>On-chip ROM,Header file: FM_DriverLib.h, FM_DriverDef.h</td>
</tr>
<tr>
<td>Document</td>
<td>FM1280 Security Preparatory Guidance</td>
<td>V1.1</td>
<td>document</td>
</tr>
<tr>
<td></td>
<td>FM1280 Security Programming Guidance</td>
<td>V2.1</td>
<td>document</td>
</tr>
<tr>
<td></td>
<td>Application Programming Interface for FMSH_CryptoLib</td>
<td>V0.3</td>
<td>document</td>
</tr>
<tr>
<td></td>
<td>Application Programming Interface for Driver</td>
<td>V1.0</td>
<td>document</td>
</tr>
<tr>
<td></td>
<td>FM1280 User Manual</td>
<td>V1.1</td>
<td>document</td>
</tr>
</tbody>
</table>

The Boot will not be available for the user.

1.3.2. Logical scope

1.3.2.1. Hardware description

The hardware of the FM1280 has the following components:

- ARMSC000 32-bit low power microprocessor
- Memories:
 - 512KB EEPROM
 - 2KB EEPROM as OTP
 - 64KB ROM
 - 16KB System RAM
 - 1KB Coprocessor RAM
 - 256B PAE RAM
 - 320B CLA RAM
- Physical Interfaces:
- ISO/IEC 14443 Type A contactless interface
- ISO/IEC 7816 contact interface supports T=0/T=1 protocol
- UART
- SPI and high speed SPI
- I2C
- GPIO

- 32 bit CRC-CCITT
- True Random Number Generator
- DES/TDES Coprocessor
- PAE Coprocessor for RSA support
- Chinese Domestic Algorithm Coprocessor
- HASH
- Memory Management Unit (MMU)
- Timers
- Watch Dog Timer
- Clock and Reset management
- Security Controller and Environmental Detector Circuits, such as light sensors, temperature sensors, clock frequency monitors, voltage and glitch sensors and active shielding

The ARM Secure Core SC000 is a 32-bit CPU designed specifically for the high volume memory smart card and embedded security application with the proven security features.

Memories consist of 512 KB EEPROM, 64 KB ROM, 16 KB system RAM and etc.

The interfaces above may reuse a same pad of the TOE. Developers can decide which interface the pad is connected with. The details are described in FM1280 User Manual.

The CRC supports CRC16 on ISO144433-A, CRC16 on CCITT and CRC32 on ISO3309. The security of the CRC is not claimed in this TOE.

True Random Number Generator provides true random numbers with high quality satisfied with AIS31.

DES/TDES Coprocessor is a hardware module for DES/TDES calculation with security features. The ES needs to use these APIs in secure way according to the application’s security need.

PAE Coprocessor provides hardware acceleration for RSA calculation with security features.

The TOE contains crypto support for Chinese Domestic Algorithms. The security of these algorithms is not claimed in the TOE.

HASH is a function to map data of arbitrary size to data of fixed size. Its security is not claimed in this TOE.

The MMU provides the access service to memories. In the aspect of security, MMU provides memory access control, memory encryption, data integrity check and data bus masking.

The timer is a specialized type of clock for measuring time intervals. The TOE contains two 24-bit timers from SC000 and two 32-bit timers additionally.
The watchdog is used to detect and recover from CPU malfunctions. The CPU regularly resets the watchdog timer to prevent it from 'time out'.

Clock and reset management provides the management of the power and the clock of the TOE.

The sensors in the form of light, temperature voltage and clock frequency are provided to ensure that the TOE only works in a safe environment. The active shied covers the chips surface to resist physical attacks. The data and code stored in the EEPROM, ROM and RAMs are encrypted and come with check bits.

The TOE can work in three operation modes which are Org Mode, Prog Mode and User Mode. The Org Mode and Prog Mode are only for manufacturer to carry out production testing and initializing the TOE’s configuration. The operation mode is changed into User Mode before the TOE delivery to the developers and it cannot return to the other two operation modes. The access of the testing functions is disabled in User Mode.

1.3.2.2. Software description

The TOE provides the following cryptographic services to the Security IC embedded software:

- RNG
- DES/TDES
- RSA
- SHA1/SHA256 by HASH

A remark must be made for DES and SHA1/SHA256 that only the correctness of the functionality of the DES and the SHA1/SHA256 is claimed and not the security. The reason is that the DES and SHA1/SHA256 algorithm is not resistant against attacks with a high attack potential.

The TOE provides high entropy random numbers to the Security IC embedded software from a true random number generator.

The TOE provides the following driver services to the Security IC embedded software:

- EEPROM operation, such as read, write, erase and data check
- IO operation
- CRC

A remark must be made for driver services that these API’s have not been made resistant against attacks. When they are used in secure code sections additional security must be added.

1.4 Life cycle and delivery

The end-consumer environment of the TOE is phase 7 of the Security IC product life-cycle as defined in the PP [1]. In this phase the FM1280 is in usage by the end-consumer. Its method of use now depends on the Security IC Embedded Software. Examples of use cases are ID cards or Bank cards.
The scope of the assurance referring to the TOE’s life cycle is limited to phases 2, 3 and 4. These phases are under the control of the TOE manufacturer. At the end of phase 4 the TOE components described in 1.3.1.1 are delivered to the Composite Manufacturer.

The embedded software is loaded on the EEPROM in Phase 3 and the load feature is disabled before the TOE is delivered to the user.
2. Conformance claim

This chapter presents conformance claim and the conformance claim rationale.

2.1. CC Conformance

This Security Target claims to be conformant to the Common Criteria version 3.1:

- Part 1 revision 4 [2].
- Part 2 revision 4 [3]
- Part 3 revision 4 [4]

For the evaluation will be used the methodology in Common Criteria Evaluation Methodology version 3.1 CEM revision 4 [5]

This security Target claims to be CC Part 2 extended and CC Part 3 conformant.

2.2. PP Claim

This Security Target claims strict conformance to the Security IC Platform Protection Profile, [1].

The TOE also provides additional functionality, which is not covered in [1].

2.3. Package claim

This Security Target claims conformance to the assurance package EAL4 augmented with AVA_VAN.5, ATE_DPT.2 and ALC_DVS.2. This assurance level is in line with the Security IC Platform Protection Profile [1].

2.4. Conformance claim rationale

This TOE is equivalent to the conformance claim stated in a Security IC Platform Protection Profile [1].
3. Security problem definition

This chapter presents the threats, organisational security policies and assumptions for the TOE.

The Assets, Assumptions, Threats and Organisational Security Policies are completely taken from the Security IC Platform Protection Profile [1].

3.1. Description of Assets

Since this Security Target claims conformance to the Security IC Platform Protection Profile [1], the assets defined in section 3.1 of the Protection Profile are applied.

3.2. Threats

This Security Target claims conformance to the Security IC Platform Protection Profile [1]. The Threats that apply to this Security Target are defined in section 3.2 of the Protection Profile. The following table lists the threats of the Protection Profile.

Table 2 Threats defined in the Protection Profile

<table>
<thead>
<tr>
<th>Threat</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.Leak-Inherent</td>
<td>Inherent Information Leakage</td>
</tr>
<tr>
<td>T.Phys-Probing</td>
<td>Physical Probing</td>
</tr>
<tr>
<td>T.Malfunction</td>
<td>Malfunction due to Environmental Stress</td>
</tr>
<tr>
<td>T.Phys-Manipulation</td>
<td>Physical Manipulation</td>
</tr>
<tr>
<td>T.Leak-Forced</td>
<td>Forced Information Leakage</td>
</tr>
<tr>
<td>T.Abuse-Func</td>
<td>Abuse of Functionality</td>
</tr>
<tr>
<td>T.RND</td>
<td>Deficiency of Random Numbers</td>
</tr>
</tbody>
</table>

3.3. Organisational security policies

This Security Target claims conformance to the Security IC Platform Protection Profile [1]. The Organisational Security Policies that apply to this Security Target are defined in section 3.3 of the Protection Profile, they are:

P.Process-TOE Protection during TOE Development and Production

The following Organisational Security Policy is also taken from the PP [1] to facilitate the TOE crypto services:

P.Crypto-Service Cryptographic services of the TOE

The TOE provides additional functionality, which is not covered in [1]. In accordance with Application Note 5 of [1] this functionality is added using the policy P.Add-Sec-Fun

P.Add-Sec-Fun Additional Specific Security Functionality

- Memory access control
3.4. Assumptions

This Security Target claims conformance to the Security IC Platform Protection Profile [1]. The assumptions claimed in this Security Target defined in section 3.4 of the Protection Profile. They are specified below.

Table 3 Assumptions defined in the Protection Profile

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.Process-Sec-IC</td>
<td>Protection during Packaging, Finishing and Personalisation</td>
</tr>
<tr>
<td>A.Resp-Appl</td>
<td>Treatment of User Data</td>
</tr>
</tbody>
</table>
4. Security objectives

This chapter provides the statement of security objectives and the security objective rationale. For this chapter the Security IC Platform Protection Profile [1] can be applied completely. Only a short overview is given in the following.

4.1. Security objectives for the TOE

All objectives described in the section 4.1 of the Security IC Platform Protection Profile [1] are claimed for the TOE, these are:

Table 4 Security objectives for the TOE defined in the Protection Profile

<table>
<thead>
<tr>
<th>Security Objective</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.Phys-Manipulation</td>
<td>Protection against Physical Manipulation</td>
</tr>
<tr>
<td>O.Phys-Probing</td>
<td>Protection against Physical Probing</td>
</tr>
<tr>
<td>O.Malfunction</td>
<td>Protection against Malfunctions</td>
</tr>
<tr>
<td>O.Leak-Inherent</td>
<td>Protection against Inherent Information Leakage</td>
</tr>
<tr>
<td>O.Leak-Forced</td>
<td>Protection against Forced Information Leakage</td>
</tr>
<tr>
<td>O.Abuse-Func</td>
<td>Protection against Abuse of Functionality</td>
</tr>
<tr>
<td>O.Identification</td>
<td>TOE Identification</td>
</tr>
<tr>
<td>O.RND</td>
<td>Random Numbers</td>
</tr>
</tbody>
</table>

The following additional security objectives are taken from the PP [1]for the provision of hardware based Cryptographic services:

<table>
<thead>
<tr>
<th>Security Objective</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.TDES</td>
<td>Cryptographic service Triple-DES</td>
</tr>
</tbody>
</table>

In addition the TOE defines the following objectives:

O.RSA RSA functionality

The TOE shall provide secure cryptographic services implementing the RSA cryptographic algorithm for encryption and decryption.

O.MEM_ACCESS Memory Access Control

The TOE shall control access of CPU instructions to memory partitions based on logical address of the code

4.2. Security objectives for the security IC embedded software

All security objectives for the environment described in section 4.2 of the Security IC Platform Protection Profile [5] are claimed for the TOE, these are:

Table 5 Security Objectives for the security IC embedded software environment defined in the Protection Profile

<table>
<thead>
<tr>
<th>Security Objective</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE.Resp-Appl</td>
<td>Treatment of User Data of the composite TOE</td>
</tr>
</tbody>
</table>
4.3. Security objectives for the operational environment

The security objectives for the Security IC Embedded Software operational environment that are claimed in this Security Target are all security objectives described in section 4.3 of the “Security IC Platform Protection Profile” [1], which are:

Table 6 Security Objectives for the operational environment defined in the Protection Profile

<table>
<thead>
<tr>
<th>Security Objective</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE.Process-Sec-IC</td>
<td>Protection during composite product manufacturing</td>
</tr>
</tbody>
</table>

4.4. Security objectives rationale

Section 4.4 in the Protection Profile provides a rationale how the assumptions, threats and organisational security policies are addressed by the objectives. The table below shows this relationship.

<table>
<thead>
<tr>
<th>Assumption, Threat or Organisation Security Policy</th>
<th>Security Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.Resp-Appl</td>
<td>OE.Resp-Appl</td>
</tr>
<tr>
<td>P.Process-TOE</td>
<td>O.Identification</td>
</tr>
<tr>
<td>A.Process-Sec-IC</td>
<td>OE.Process-Sec-IC</td>
</tr>
<tr>
<td>T.Leak-Inherent</td>
<td>O.Leak-Inherent</td>
</tr>
<tr>
<td>T.Phys-Probing</td>
<td>O.Phys-Probing</td>
</tr>
<tr>
<td>T.Malfunction</td>
<td>O.Malfunction</td>
</tr>
<tr>
<td>T.Phys-Manipulation</td>
<td>O.Phys-Manipulation</td>
</tr>
<tr>
<td>T.Leak-Forced</td>
<td>O.Leak-Forced</td>
</tr>
<tr>
<td>T.Abuse-Func</td>
<td>O.Abuse-Func</td>
</tr>
<tr>
<td>T.RND</td>
<td>O.RND</td>
</tr>
</tbody>
</table>

For the justification of the above mapping please refer to the Protection Profile.

The table below shows how the additional organisational security policies are addressed by objectives for the TOE.

<table>
<thead>
<tr>
<th>Assumption, Threat or Organisation Security Policy</th>
<th>Security Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.Add-Sec-Fun</td>
<td>O.MEM_ACCESS</td>
</tr>
<tr>
<td>P.Crypto-Service</td>
<td>O.TDES</td>
</tr>
<tr>
<td></td>
<td>O.RSA</td>
</tr>
</tbody>
</table>

Note that O.TDES has been taken from the PP [1]. The others have been added.

The objective O.MEM_ACCESS implements specific security functionality as required by P.Add-Sec-Fun.

The objective O.RSA implements specific crypto services as required by P.Crypto-Service.
5. Extended Components Definitions

This Security Target uses the extended security functional requirements defined in chapter 5 of the Security IC Platform Protection Profile [1].

This Security Target does not define extended components in addition to the Protection Profile.
6. Security requirements

This chapter presents the statement of security requirements for the TOE and the security requirements rationale. This chapter applies the Security IC Platform Protection Profile [1].

6.1. Definitions

In the next sections the following notation is used:

- The iteration operation is used when a component is claimed with varying operations, it is denoted by adding “[XXX]” to the component name.
- Refinement, selection or assignment operations are used to add details or assign specific values to components, they are indicated by italic text and explained in footnotes.

6.2. Security Functional Requirements (SFR)

To support a better understanding of the combination Security IC Platform Protection Profile vs. Security Target, the TOE Security Functional Requirements are presented in the following several different sections.

6.2.1. SFRs derived from the Security IC Platform Protection Profile

The table below lists the Security Functional Requirements that are directly taken from the Security IC Platform Protection Profile.

<table>
<thead>
<tr>
<th>Security functional requirement</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRUFLT.2</td>
<td>“Limited fault tolerance”</td>
</tr>
<tr>
<td>FPT_FLS.1</td>
<td>“Failure with preservation of secure state”</td>
</tr>
<tr>
<td>FMT_LIM.1</td>
<td>“Limited capabilities”</td>
</tr>
<tr>
<td>FMT_LIM.2</td>
<td>“Limited availability”</td>
</tr>
<tr>
<td>FAU_SAS.1</td>
<td>“Audit storage”</td>
</tr>
<tr>
<td>FPT_PHP.3</td>
<td>“Resistance to physical attack”</td>
</tr>
<tr>
<td>FDP_ITT.1</td>
<td>“Basic internal transfer protection”</td>
</tr>
<tr>
<td>FDP_IFC.1</td>
<td>“Subset information flow control”</td>
</tr>
<tr>
<td>FPT_ITT.1</td>
<td>“Basic internal TSF data transfer protection”</td>
</tr>
<tr>
<td>FDP_SDC.1</td>
<td>“Stored data confidentiality”</td>
</tr>
<tr>
<td>FDP_SDI.2</td>
<td>“Stored data integrity monitoring and action”</td>
</tr>
<tr>
<td>FCS_RNG.1</td>
<td>“Quality metric for random numbers”</td>
</tr>
</tbody>
</table>

Application note: There are 2 secure states, CPU halt and chip reset. When the external voltage is below the voltage safe range but above the power-down voltage level and when instruction fault is detected, the secure state is CPU halt. For the rest malfunctions, the secure state is chip reset.

Application note: There are 2 automatic responses, CPU halt and chip reset. When the external voltage is below the voltage safe range but above the power-down voltage level and when instruction fault is detected, the automatic response is CPU halt. For the rest malfunctions, the automatic response is chip reset.
Except for FAU_SAS.1, FDP_SDC.1, FDP_SDI.2 and FCS_RNG.1 all assignment and selection operations are defined in the Protection Profile.

☐ In FAU_SAS.1 the left open assignment is the type of persistent memory;
☐ In FDP_SDC.1 the left open assignment is the memory area;
☐ In FDP_SDI.2 the left open assignments are the user data attributes and the action to be taken;
☐ In the FCS_RNG.1 the left open definition is the quality metric for the random numbers.

The following statements define these completed SFRs.

FAU_SAS.1
Audit storage
Hierarchical to: No other components.
FAU_SAS.1.1 The TSF shall provide the test process before TOE Delivery\(^1\) with the capability to store the Initialisation Data and/or Pre-personalisation Data\(^2\) in the OTP\(^3\).
Dependencies: No dependencies.

FDP_SDC.1
Stored data confidentiality
Hierarchical to: No other components.
FDP_SDC.1.1 The TSF shall ensure the confidentiality of the information of the user data while it is stored in the ROM, EEPROM and part of the RAM\(^4\).
Dependencies: No dependencies.

Application note: The confidentiality of user data stored in the EEPROM, System RAM and Coprocessor RAM is provided. The confidentiality of user data stored in PAE RAM and CLA RAM is not claimed.

FDP_SDI.2
Stored data integrity monitoring and action
Hierarchical to: FDP_SDI.1 Stored data integrity monitoring
FDP_SDI.2.1 The TSF shall monitor user data stored in containers controlled by the TSF for parity errors or error correction errors or inconsistency between stored data and complementary bits or copy bits\(^5\) on all objects, based on the following attributes: parity bits, error correction bits, complementary bits, or copy bits\(^6\).
FDP_SDI.2.2 Upon detection of a data integrity error, the TSF shall reset\(^7\).
Dependencies: No dependencies.

FCS_RNG.1
Random number generation
Hierarchical to: No other components.
FCS_RNG.1.1 The TSF shall provide a physical\(^8\) random number generator that implements:
- (PTG.2.1) A total failure test of the entropy source immediately when the RNG has started. When a total failure is detected, no random numbers will be output.

\(^1\)[assignment: list of subjects]
\(^2\)[assignment: list of audit information]
\(^3\)[assignment: type of persistent memory]
\(^4\)[assignment: memory area]
\(^5\)[assignment: integrity errors]
\(^6\)[assignment: user data attributes]
\(^7\)[assignment: action to be taken]
\(^8\)[selection: physical, non-physical, true, deterministic, hybrid physical, hybrid deterministic]
(PTG.2.2) If a total failure of the entropy source occurs while the RNG is being operated, the RNG prevents the output of any internal random number that depends on some raw random numbers that have been generated after the total failure of the entropy source.

(PTG.2.3) The online test shall detect non-tolerable statistical defects of the raw random number sequence (i) immediately when the RNG has started, and (ii) while the RNG is being operated. The TSF must not output any random numbers before the power-up online test has finished successfully or when a defect has been detected.

(PTG.2.4) The online test procedure shall be effective to detect non-tolerable weaknesses of the random numbers soon.

(PTG.2.5) The online test procedure checks the quality of the raw random number sequence. It is triggered externally. The online test is suitable for detecting non-tolerable statistical defects of the statistical properties of the random numbers within an acceptable period of time.

FCS_RNG.1.2 The TSF shall provide 128 bits random number that meet:
- Test procedure A[6] and no other test suites does not distinguish the internal random numbers from output sequences of an ideal RNG.
- The average Shannon entropy per internal random bit exceeds 0.997.

Dependencies: No dependencies.

Application note: Online testing is triggered by an API invocation.

6.2.2. SFRs regarding cryptographic functionality

FCS_COP.1[TDES] Cryptographic operation - Triple-DES
Hierarchical to: No other components.
FCS_COP.1.1[TDES] The TSF shall perform encryption and decryption in accordance with a specified cryptographic algorithm TDES in ECB and CBC mode and cryptographic key sizes of 112 bit and 168 bit that meet the following NIST SP800-67[7], NIST SP800-38A[8].

Dependencies: FDP_ITC.1 Import of user data without security attributes.
FCS_CKM.4 Cryptographic key destruction

Application note: The TOE also supports single DES. However, the security of the single DES algorithm is not resistant against attacks with a high attack potential. Therefore, the application of single DES shall not be used in parts of the Security Embedded Software that require high security.

FCS_COP.1[RSA] Cryptographic operation - RSA

9[selection: prevents the output of any internal random number that depends on some raw random numbers that have been generated after the total failure of the entropy source, generates the internal random numbers with a post-processing algorithm of class DRG.2 as long as its internal state entropy guarantees the claimed output entropy].
10[selection: externally, at regular intervals, continuously, applied upon specified internal events].
11[assignment: list of security capabilities].
12[selection: bits, octets of bits, numbers [assignment: format of the numbers]]
13[assignment: additional standard test suites]
14[assignment: list of cryptographic operations]
15[assignment: cryptographic algorithm]
16[assignment: cryptographic key sizes]
17[assignment: list of standards]
18[selection: FDP_ITC.1 Import of user data without security attributes, or FCS_CKM.1 Cryptographic key generation]
Hierarchical to: No other components.
FCS_COP.1.1[RSA] The TSF shall perform signature generation and decryption\(^{19}\) in accordance with a specified cryptographic algorithm RSA and cryptographic key sizes from 256 to 2048 bit (step 32bits) that meet PKCS#1 V2.2.\(^{[9]}\)

Dependencies: FDP_ITC.1 Import of user data without security attributes\(^{20}\)
FCS_CKM.4 Cryptographic key destruction

6.2.3. SFRs regarding access control

The hardware of the TOE shall provide different permissions to the Security IC embedded software to enable the management of access to code and data. The Security Function Policy (SFP) Memory Access Control Policy uses the following definitions.

The **Subjects** are:
- The *Software* in the memories (including Security IC Embedded software) of the TOE accessing memory as part of their software execution. There are three *Software* Subjects: **Boot Code**, **API service Code and User Code**.
 - The **API service Code** consists of FMSH_CryptoLib and the Driver services for IC Embedded software.

The **Objects** are
- **Memory Data** (including code) stored in memory. It includes **Boot Code**, **API service Code**, **User Code**, **User Data**, **CFG Section Data**, **System RAM Data**, **Coprocessor RAM Data**, **PAE RAM Data**, and **CLA RAM Data**.

The memory **Operations** are:
- **Read/write** data from and to memory,
- **Execute** code from memory

The **Security Attributes** are:
- **Data Area** (location of the data in memory)
- **Code Area** (location of the code in memory)
- **Operation mode, these can be Org Mode, Prog Mode and User Mode**.
- **Access permission rights** (these can be “No access”, combination of “Executable”, “Read” or “Write”)

The TOE shall meet the requirements “Subset access control (FDP_ACC.1)” as specified below.

FDP_ACC.1

Subset access control
Hierarchical to: No other components.
FDP_ACC.1.1 The TSF shall enforce the **Access Control Policy**\(^{21}\) on

1. **the subjects** **Boot Code**, **API service Code and User Code**,
2. **the objects** **Memory Data**,
3. **the operation read, write and execute**\(^{22}\)

Dependencies: FDP_ACF.1 Security attribute based access control.

\(^{19}\)[assignment: list of cryptographic operations]

\(^{20}\)[selection: FDP_ITC.1 Import of user data without security attributes, or FCS_CKM.1 Cryptographic key generation]

\(^{21}\)[assignment: access control SFP]

\(^{22}\)[assignment: list of subjects, objects, and operations among subjects and objects covered by the SFP]
Application Note: The Access Control Policy shall be enforced by implementing a Memory Management Unit. Before a respective memory address is accessed, the Memory Management Unit checks if the memory operation is allowed.

The TOE shall meet the requirement “Security attribute based access control (FDP_ACF.1)” as specified below.

FDP_ACF.1 Security attribute based access control

Hierarchical to: No other components.

FDP_ACF.1.1 The TSF shall enforce the *Access Control Policy* to objects based on the following: all subjects and objects and the attributes *Code Area, Data Area and Access Permission Rights*.

FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed: *The operation is allowed if the Code Area and the Data Area match an entry in the current set of Access Permission Rights*.

FDP_ACF.1.3 The TSF shall explicitly authorise access of subjects to objects based on the following additional rules: none.

FDP_ACF.1.4 The TSF shall explicitly deny access of subjects to objects based on the following additional rules: none.

Dependencies: FDP_ACC.1 Subset access control FMT_MSA.3 Static attribute

6.3. Security Assurance Requirements (SAR)

The Security Assurance Requirements claimed for the TOE are the SARs claimed in section 6.2 of the Security IC Protection Profile [1].

This Security Target will be evaluated according to Security Target evaluation (Class ASE)

The Security Assurance Requirements for the evaluation of the TOE are the components in Assurance Evaluation level EAL4 augmented by the components ALC_DVS.2, ATE_DPT.2 and AVA_VAN.5. The table below shows the details of these assurance requirements.

Table 7 TOE assurance requirements

<table>
<thead>
<tr>
<th>Security assurance requirements</th>
<th>Titles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class ADV: Development</td>
<td></td>
</tr>
</tbody>
</table>

23 [assignment: access control SFP]
24 [assignment: list of subjects and objects controlled under the indicated SFP, and for each, the SFP-relevant security attributes, or named groups of SFP-relevant security attributes]
25 [assignment: rules governing access among controlled subjects and controlled objects using controlled operations on controlled objects]
26 [assignment: rules, based on security attributes, that explicitly authorise access of subjects to objects]
27 [assignment: rules, based on security attributes, that explicitly deny access of subjects to objects]
6.4. Security requirements rationale

6.4.1. Security Functional Requirements (SFR)

The table below provides an overview of how the security functional requirements are combined to meet the security objectives.

<table>
<thead>
<tr>
<th>Security Objectives for the TOE</th>
<th>Security Functional Requirements</th>
<th>Fulfilment of mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.Leak-Inherent</td>
<td>FDP_ITT.1</td>
<td>See PP</td>
</tr>
<tr>
<td></td>
<td>FDP_IFC.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FPT_ITT.1</td>
<td></td>
</tr>
<tr>
<td>O.Phys-Probing</td>
<td>FDP_SDC.1</td>
<td>See PP</td>
</tr>
<tr>
<td></td>
<td>FPT_PHP.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FDP_SDI.2</td>
<td></td>
</tr>
<tr>
<td>O.Malfunction</td>
<td>FRU_FLT.2</td>
<td>See PP</td>
</tr>
<tr>
<td></td>
<td>FPT_FLS.1</td>
<td></td>
</tr>
<tr>
<td>O.Phys-</td>
<td>FDP_SDC.1</td>
<td>See PP</td>
</tr>
<tr>
<td>Requirement</td>
<td>Functionality</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Manipulation</td>
<td>FPT_PHP.3</td>
<td></td>
</tr>
<tr>
<td>O.Leak-Forced</td>
<td>FDP_ITT.1, FDP_IFC.1, FPT_ITT.1, FRU_FLT.2, FPT_FLS.1, FPT_PHP.3</td>
<td>See PP</td>
</tr>
<tr>
<td>O.Abuse-Func</td>
<td>FMT_LIM.1, FMT_LIM.2, FDP_ITT.1, FDP_IFC.1, FPT_ITT.1, FDP_IFC.1, FRU_FLT.2, FPT_FLS.1, FPT_PHP.3</td>
<td>See PP</td>
</tr>
<tr>
<td>O.Identification</td>
<td>FAU_SAS.1</td>
<td>See PP</td>
</tr>
<tr>
<td>O.RND</td>
<td>FCS_RNG.1, FDP_ITT.1, FPT_ITT.1, FDP_IFC.1, FPT_PHP.3, FRU_FLT.2, FPT_FLS.1</td>
<td>See PP</td>
</tr>
<tr>
<td>O.TDES</td>
<td>FCS_COP.1[TDES]</td>
<td>O.TDES requires the TOE to support Triple-DES encryption and decryption with its specified key lengths. The claim for FCS_COP.1[TDES] is suitable to meet the objective O.TDES.</td>
</tr>
<tr>
<td>O.RSA</td>
<td>FCS_COP.1[RSA]</td>
<td>O.RSA requires the TOE to support RSA encryption and decryption with its specified key lengths. The claim for FCS_COP.1[RSA] is suitable to meet the objective O.RSA.</td>
</tr>
<tr>
<td>O.MEM_ACCESS</td>
<td>FDP_ACC.1, FDP_ACF.1</td>
<td>O.MEM_ACCESS requires the TOE to control access of CPU instructions to memory partitions. The security functional requirement “Security attribute based access control (FDP_ACF.1 with the related Security Function Policy (SFP) “Access Control Policy” FDP_ACC.1) defines the rules to implement a memory region based access control service to the Security IC Embedded Software.</td>
</tr>
<tr>
<td>OE.Process-Sec-IC</td>
<td>-</td>
<td>Fulfilled by FM1280 Security Programming Guidance</td>
</tr>
<tr>
<td>OE.Plat-Appl</td>
<td>-</td>
<td>Fulfilled by FM1280 Security Programming Guidance</td>
</tr>
<tr>
<td>OE.Resp-Appl</td>
<td>-</td>
<td>Fulfilled by FM1280 Security Programming Guidance</td>
</tr>
</tbody>
</table>
6.4.2. Dependencies of the SFRs

The dependencies for the SFRs claimed according to the Protection Profile are all satisfied in the set of SFRs claimed in the Protection Profile.

In the following table the dependencies of the SFRs claimed in addition to Protection Profile is indicated.

<table>
<thead>
<tr>
<th>Security functional requirement</th>
<th>Dependencies</th>
<th>Fulfilled by security requirements in this Security Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS_COP.1[TDES]</td>
<td>FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1, FCS_CKM.4</td>
<td>See explanation below this table</td>
</tr>
<tr>
<td>FCS_COP.1[RSA]</td>
<td>FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1, FCS_CKM.4</td>
<td>See explanation below this table</td>
</tr>
<tr>
<td>FDP_ACC.1</td>
<td>FDP_ACF.1</td>
<td>Fulfilled by FDP_ACF.1 in this ST</td>
</tr>
<tr>
<td>FDP_ACF.1</td>
<td>FDP_ACC.1</td>
<td>Fulfilled by FDP_ACC.1 in this ST</td>
</tr>
<tr>
<td>FMT_MSA.3</td>
<td></td>
<td>See discussion below</td>
</tr>
</tbody>
</table>

The developer of the Security IC Embedded Software must ensure that the implemented additional security functional requirements FCS_COP.1[TDES] and FCS_COP.1[RSA] are used as specified and that the User Data processed by the related security functionality is protected as defined for the application context.

The dependent requirements for FCS_COP.1[TDES] and FCS_COP.1[RSA] address the appropriate management of cryptographic keys used by the specified cryptographic function. All requirements concerning these management functions shall be fulfilled by the environment (Security IC Embedded Software).

The functional requirements [FDP_ITC.1, or FDP_ITC.2 or FCS_CKM.1] and FCS_CKM.4 are not included in this Security Target since the TOE only provides a pure engine for encryption and decryption without additional features for the handling of cryptographic keys. Therefore the Security IC Embedded Software must fulfil these requirements related to the needs of the realised application.

The SFR FMT_MSA.3 will not be necessary if the security attributes used to enforce the memory access control are fixed by the IC manufacturer.

6.4.3. Security Assurance Requirements (SAR)
The SARs as defined in section 6.3 are in line with the SARs in the Security IC Platform Protection Profile. The context of this ST is equivalent to the context described in the Protection Profile and therefore these SARs are also applicable for this ST.
7. **TOE summary specification**

This chapter provides general information to potential users of the TOE on how the TOE implements the Security Functional Requirements in terms of “Security Functionality”.

7.1. **Protection against malfunction**

Malfunctioning relates to the security functional requirements FRUFLT.2 and FPT_FLS.1. The TOE meets these SFRs by a group of security measures that guarantee correct operation of the TOE.

The TOE ensures its correct operation and prevents any malfunction while the security IC embedded software is executed through an appropriate design of the TOE including environment sensors or detectors. The sensors or detectors measure the temperature, supplied voltage and glitch signals in it, clock frequency, and exposure to light. In case that any malfunction occurred, an alarm will be triggered. Any alarm will trigger a system reset except the low voltage alarm that will trigger a CPU Halt.

7.2. **Protection against leakage**

Leakages relate to the security functional requirements FDP_ITT.1, FDP_IFC.1 and FPT_ITT.1. The TOE meets these SFRs by implementing data bus masking that provides logical protection against leakage.

7.3. **Protection against physical attacks**

Physical manipulation and probing relates to the security functional requirements FPT_PHP.3, FDP_SDC.1 and FDP(SDL.2. The TOE meets this SFR by implementing security measures that provides physical protection against physical probing and manipulation.

The security measures protect the TOE against manipulation of

(i) the hardware,

(ii) the security IC embedded software in the ROM and the EEPROM,

(iii) the application data in the EEPROM and RAM including the configuration data.

It also protects User Data or TSF data against disclosure by physical probing when stored or while being processed by the TOE.

The protection of the TOE comprises different features within the design and construction, which make reverse-engineering and tamper attacks more difficult. These features comprise whole chip covered active shield, memory encryption, and data integrity protections like ROM and EEPROM ECC check, RAM parity check, and critical register check.

7.4. **Identification and prevent abuse of functionality**

Abuse of functionality and Identification relates to the security functional requirements FMT_LIM.1, FMT_LIM.2 and FAU_SAS.1. The TOE meets these SFRs by implementation of a configuration and
mode protection mechanism that prevents abuse of test functionality delivered as part of the TOE. The Identification data is stored in the OTP.

The test functionality is not available to the user after delivery of the TOE to the Composite Manufacturer.

7.5. Random number generator

Random numbers relate to the security requirement FCS_RNG.1. The TOE meets this SFR by providing a random number generator.

The random number generator is composed of entropy source, total failure test, start-up test, online test and post-processing circuits. The random number generator fulfils the AIS31 PTG.2.

7.6. Cryptographic encryption/decryption

The TOE provides the single and Triple-DES algorithm according to the NIST SP800-67[1] and NIST SP800-38A[8] Standard to meet the security requirement FCS_COP.1[TDES]. The TOE implements the Triple-DES algorithm as defined by NIST SP800-67 by means of a hardware coprocessor. It supports the DES algorithm with a single 56-bit key supporting both CBC and ECB mode. It supports the Triple-DES algorithm with three 56-bit keys (168 bit) for the 3-key Triple-DES or two 56-bit keys for 2-key Triple DES supporting both CBC and ECB mode. The keys for the DES algorithms shall be provided by the security IC embedded software.

The single DES algorithm should be used in secure way according to the application’s security need.

The TOE provides the RSA algorithm according to the PKCS#1 V2.2[9]Standard to meet the security requirement FCS_COP.1[RSA]. The TOE implements the RSA algorithm RSAEP, RSADP, RSASP1 and RSAVP1 as defined by PKCS#1 V2.2 by means of the combination of a hardware RSA accelerator and the security IC embedded RSA software. It supports RSA encryption and decryption from 256 bits to 2048 bits. The signature generation and decryption can be performed by either a straightforward method or a CRT (Chinese Remainder Theorem) method. The keys for the RSA algorithm shall be provided by the security IC embedded software.

7.7. Memory access control

The TOE provides a Memory Management security function to the Security Embedded IC Software through the Memory Management Unit (MMU) to meet the Security Functional Requirements FDP_ACC.1, FDP_ACF.1, FMT_MSA.3.

8. Annexes

8.1. Glossaries

<table>
<thead>
<tr>
<th>Glossary</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLA</td>
<td>Contactless interface supporting type A</td>
</tr>
<tr>
<td>FMSH_CryptoLib</td>
<td>A part of firmware, providing crypto related APIs for the</td>
</tr>
</tbody>
</table>
users’ invoking

FA	Fault attack, a kind of attack to retrieve secret data or to bypass security checks by fault injection during Secure IC operation
Org Mode	An operation mode of the TOE. This mode is used for EEPROM testing and initializing.
Prog Mode	An operation mode of the TOE. This mode is used for initialize the configuration and download program and data after manufacture.
User Mode	An operation mode of the TOE. The TOE is delivered in this mode.

8.2. List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>APDU</td>
<td>Application Protocol Data Unit</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>CT</td>
<td>Contact</td>
</tr>
<tr>
<td>CL</td>
<td>Contactless</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>DES</td>
<td>Data Encryption Standard</td>
</tr>
<tr>
<td>ECC</td>
<td>Error Correction Code</td>
</tr>
<tr>
<td>GPIO</td>
<td>General Purpose Input/Output</td>
</tr>
<tr>
<td>I²C</td>
<td>Inter-Integrated Circuit</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>MMU</td>
<td>Memory Management Unit</td>
</tr>
<tr>
<td>NVM</td>
<td>Non-Volatile Memory</td>
</tr>
<tr>
<td>PAE</td>
<td>Public-key Algorithm Engine</td>
</tr>
<tr>
<td>PP</td>
<td>Protection Profile</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>ROM</td>
<td>Read Only Memory</td>
</tr>
<tr>
<td>SPI</td>
<td>Serial Peripheral Interface</td>
</tr>
<tr>
<td>ST</td>
<td>Security Target</td>
</tr>
<tr>
<td>TRNG</td>
<td>True Random Number Generator</td>
</tr>
<tr>
<td>UART</td>
<td>Universal Asynchronous Receiver and Transmitter</td>
</tr>
</tbody>
</table>

9. References

<table>
<thead>
<tr>
<th>Ref</th>
<th>Title</th>
<th>Version</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Part 2: Security Functional Requirements CCMB-2012-09-002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>