

Contents

1. Introd	luction	. 1
1.1. S	T reference	. 1
1.2. T	OE reference	. 1
1.3. D	efinitions	. 1
1.4. T	OE Overview	. 3
1.4.1	TOE scope	. 3
1.4.2	2. Operation and major security features	. 5
1.5. Li	ifecycle	. 6
1.5.1	JPKI preparation stage	. 7
1.5.2	2. JPKI operational use stage	. 8
2. Confo	rmance claims	. 9
2.1. C	C conformance claim	. 9
2.2. P	ackage claim	. 9
2.3. P	P claim	. 9
2.4. P	P claim rationale	. 9
3. Secur	ity problem definition	10
3.1. A	ssets	10
3.2. S	ubjects	10
3.3. T	hreats	10
3.4. O	Organisational security policies	11
3.5. A	ssumptions	12
4. Secur	ity objectives	13
4.1. S	ecurity objectives for the TOE	13
4.2. S	ecurity objectives for the operational environment	14
4.3. S	ecurity objectives rationale	17
5. Exten	ded components definition	21
6. Secur	ity requirements	22
6.1. S	ecurity functional requirements	22
6.1.1	User data protection (FDP)	22
6.1.2	2. Security assurance requirements taken from the PP Part 2	22
6.1.3	3. Security functional requirements taken from the PP Part 4	27
6.1.4	Security functional requirements defined in the ST	28
6.2. S	ecurity assurance requirements	30
6.3. S	ecurity functional requirements rationale	31

6.3.1.	Security requirement coverage	31
6.4. Se	curity assurance requirements rationale	36
7. TOE su	ımmary specification	38
8 Referen	nces	42

1. Introduction

The Japanese Public Key Infrastructure (JPKI), a substitute name for the Public Certification Service for Individuals operated by the Japan Agency for Local Authority Information Systems (J-LIS). JPKI provides public ID authentication for user identification and provides document signing and user authentication. JPKI issue two kinds of electronic certificate, one is electronic certificate for signing and another is electronic certificate for user certification.

1.1. ST reference

Table 1-1 ST reference

ST reference	
Title	Security Target for JPKI applet on JCOP 5.2
Version	1.2
Authors	FeliCa Networks, Inc.
Reference	SJP-CC-FN-230330-003

1.2. TOE reference

Table 1-2 TOE reference

TOE reference		
TOE name	JPKI applet on JCOP 5.2	
TOE version	V1.0	
TOE developer	FeliCa Networks, Inc.	
Product Type	Java Card Applet	
Platform Name	NXP JCOP 5.2 R3.01.1-1	
Platform certification number	CC-21-0023577	
IC Name	NXP SN100 Series-Secure Element with Crypto Library SN100_SE B2.1	
	C25/C48/C58	
IC certification number	CC-21-174263/2	

1.3. **Definitions**

Table 1-3 Definitions

Definition		
Administrator	user who performs TOE initialisation, TOE personalisation, or other TOE	
	administrative functions	
Advanced electronic	digital signature which meets specific requirements in laws relating to Japanese	
signature	Public Key Infrastructure.	

Authentication data	information used to verify the claimed identity of a user
Certificate	digital signature used as electronic attestation binding an SVD to a person
	confirming the identity of that person as legitimate signer
Certificate info	information associated with a SCD/SVD pair that may be stored in a SSCD
Certificate generation	collection of application components that receive the SVD from the SSCD to
application	generate a certificate obtaining data to be included in the certificate and to create a
CGA	digital signature of the certificate
Certification service	entity that issues certificates or provides other services related to electronic
provider	signatures.
CSP	In this ST, CSP is called as SP-TSM.
Data to be signed	all electronic data to be signed including a user message and signature attributes
DTBS	
Data to be signed or its	data received by a SSCD as input in a single signature creation operation
unique representation	
DTBS/R	
Individual Number	a plastic card embedded with IC chip, and the holder's name, address, date of birth,
Card	sex, and Individual Number is printed on the face of the card.
JPKI application	a mobile phone application responsible for CGA and SCA.
Legitimate user	user of a SSCD who gains possession of it from an SSCD - provisioning service
	provider and who can be authenticated by the SSCD as its signatory
Qualified certificate	public key certificate that meets the requirements laid down in laws relating to
	Japanese Public Key Infrastructure and that is provided by a CSP that fulfils the
	requirements laid down in laws relating to Japanese Public Key Infrastructure
Qualified electronic	advanced electronic signature that has been created with an SSCD with a key
signature	certified with a qualified certificate
Reference	data persistently stored by the TOE for authentication of a user as authorised for a
authentication data	particular role
RAD	
Secure Channel	a protocol from GlobalPlatform for mutual authentication and encrypted transport.
Protocol '03'	The protocol allows for C-MAC, C-ENC, R-MAC and R-ENC modes of encryption
	and authentication of data
Secure Signature	hardware or software that is used in creating an electronic signature
Creation Device	
SSCD	
Secure Element Issuer	entity that loads JPKI applet on the secure element in the mobile phone
Trusted Service	
Manager	
SEI-TSM	

Signatory	legitimate user of an SSCD associated with it in the certificate of the signature
	verification and who is authorised by the SSCD to operate the signature creation
	function
Signature attribute	additional information that is signed together with a user message
Signature creation	application complementing an SSCD with a user interface with the purpose to create
application	an electronic signature
SCA	
Signature creation data	private cryptographic key stored in the SSCD under exclusive control by the
SCD	signatory to create an electronic signature.
	JPKI applet has two SCDs, which are "the private key for signing" and "the private
	key for user certification".
Signature creation	complete system that creates an electronic signature consists of the SCA and the
system	SSCD
Signature verification	public cryptographic key that can be used to verify an electronic signature.
data	JPKI applet has two SVDs, which are "the public key for signing" and "the public
SVD	key for user certification".
SSCD-provisioning	service to prepare and provide an SSCD to a subscriber and to support the
service	signatory with certification of generated keys and administrative functions of the
	SSCD
User	entity (human user or external IT entity) outside the TOE that interacts with the TOE
User Message	data determined by the signatory as the correct input for signing
Verification	data provided as input to a SSCD for authentication by cognition or by data derived
authentication data	from a user's biometric characteristics
VAD	

1.4. TOE Overview

The TOE, JPKI applet on JCOP 5.2, is a Java Card system that provides a secure signature creation device (SSCD) with key generation for creating an electronic signature and authenticating users. The TOE is embedded as a secure element (eSE) on the mobile phone.

1.4.1. TOE scope

The following figure illustrates the physical scope of the TOE (indicated in yellow).;

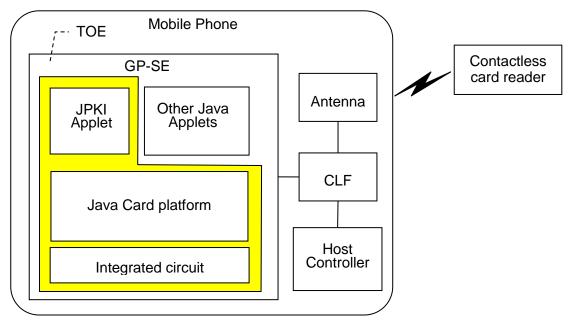


Figure 1-1 TOE physical scope

The components of the TOE are explained as follows:

- JPKI applet constitutes the part of the TOE that is responsible for generating a key pair for digital
 signature and for user certification. It manages the access control to use the signature creation function
 and executes the cryptographic operation for generating an electronic signature. JPKI applet is
 installed as a post-issuance in the operational environment.
- JCOP 5.2 is a Java Card Platform that manages and executes applets. It provides APIs for developing applets in accordance with the Java Card specification [JP-SPEC]. Java Card Platform has GlobalPlatform packages providing a common interface to communicate with a smart card and manage applications in a secure way according to the GP specifications [GP]. Java Card Platform has been certified by Common Criteria in conformance with Java Card System Protection Profile Open Configuration [JC-PP]
- SN100 series is an integrated circuit that is the hardware platform of the TOE. The hardware platform
 provides the basic cryptographic functionalities and includes security detectors, sensors, and circuitry
 to protect the TOE. The integrated circuit has been certified by Common Criteria against [BSI-PP0084].
- The associated guidance documentations are as follows:
 - > Commercial Applet for Mobile JPKI Projects External Interface Specification [JPKI-IF]
 - JPKI applet Installation procedure [JPKI-IP]
 - JPKI applet Delivery and acceptance procedure [JPKI-PRE]
 - JPKI applet User guidance [JPKI-UGM]

Table 1-4 The components of the TOE

	Name	Version	Form of delivery	Delivery method
Hardware	NXP SN100 Series-	B2.1 C58	eSE HW	By courier
	Secure Element with			
	Crypto Library SN100_SE			
Software	NXP JCOP 5.2	R3.01.1-1	embedded in the	By courier
			above	
	JPKI applet	1.0	binary	Procedures in accordance
				with [JPKI-PRE].
Guidance	JPKI applet, Delivery and	1.0	PDF	Procedures in accordance
	acceptance procedure			with [JPKI-PRE].
	JPKI applet, Installation	1.0	PDF	Procedures in accordance
	procedure			with [JPKI-PRE].
	JPKI applet User	1.0	PDF	Procedures in accordance
	guidance			with [JPKI-PRE].

1.4.2. Operation and major security features

This section presents a functional overview of the TOE in its distinct operational environments.

- The preparation environment where JPKI application interacts with the SEI-TSM to load JPKI applet, and where the TOE interacts with a certification service provider (SP-TSM) to obtain a certificate for the signature verification data (SVD) corresponding with the signature creation data (SCD) generated by the TOE.
- The signing environment where it interacts with a signer through JPKI application to sign data after
 authenticating the signer as its signatory. The signature creation application (SCA) provides the data
 to be signed, or a unique representation thereof (DTBS/R) as input to the TOE signature creation
 function and obtains the resulting digital signature.

The TOE performs the following functions:

- to generate SCD for digital signature and the correspondent SVD;
- to generate SCD for user certification and the correspondent SVD;
- to export the SVDs for certification;
- to receive and store certificate info;
- to switch the TOE from a non-operational state to an operational state; and
- to create digital signatures through the following steps:
 - A) select a SCD for digital signature in the SSCD,
 - B) authenticate the signatory and determine its intent to sign,

- C) receive DTBS,
- D) apply an appropriate cryptographic signature creation function using the selected SCD to the DTBS.
- to authenticate user for user certification through the following steps:
 - A) select a SCD for user certification in the SSCD,
 - B) authenticate the signatory and determine its intent to sign,
 - C) receive DTBS,
 - D) apply an appropriate cryptographic signature creation function using the selected SCD to the DTBS.

1.5. Lifecycle

The TOE life cycle distinguishes phases for development and usage. The development phase is subject of CC evaluation according to ALC class. The development phase ends with the delivery of the TOE (the delivery of the eSE to a mobile phone manufacturer and delivery of JPKI applet to SEI-TSM). The eSE is delivered to a mobile phone user. The usage phase has two stages: the JPKI preparation stage and JPKI operational use stage, in usage phase. JPKI applet is loaded and installed by SEI-TSM in the JPKI preparation stage. The TOE lifecycle and the two stages are described in the following figure and sections.

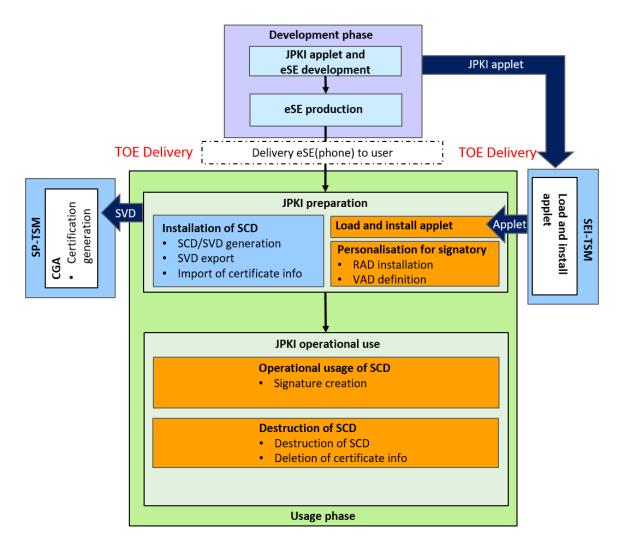


Figure 1-2 TOE lifecycle

1.5.1. JPKI preparation stage

During JPKI preparation stage, SEI-TSM performs the following tasks:

- Load and install JPKI applet to the eSE embedded in the mobile phone held by the user.
- Generate a temporary PIN and store it as RAD in the TOE

After installing JPKI applet, SP-TSM performs the following tasks:

- Obtain information on the intended recipient of the device as required for the preparation process and identification as a legitimate user by authenticating the user's Individual Number Card.
- Perform the mutual authentication with the TOE and establish the secure channel between SP-TSM and the TOE.
- Request the TOE to generate SCD/SVD pairs for digital signature and user certification
- Request the TOE to export SVD from the TOE and import certificate information corresponding to the SVD to the TOE via a secure channel between the TOE and SP-TSM.
- Change RAD to a PIN specified by the legitimate user.

1.5.2. JPKI operational use stage

In this lifecycle stage, the signatory can use the TOE to create electronic signatures.

The JPKI operational use stage begins when the signatory has obtained the TOE and SCD/SVD pair and set RAD. Enabling the TOE for signing requires at least one set of SCD stored in its memory.

The signatory can also interact with the TOE to perform management tasks, such as reset an RAD value or use a counter if the password/PIN in the reference data has been lost or blocked. Such management tasks require a secure environment.

The signatory can render an SCD in the TOE permanently unusable. Rendering the last SCD in the TOE permanently unusable ends the life of the TOE as SSCD.

2. Conformance claims

2.1. CC conformance claim

The evaluation is based on the following:

- "Common Criteria for Information Technology Security Evaluation", Version 3.1 Release 5 (composed of Parts 1-3, [CC Part 1], [CC Part 2], and [CC Part 3])
- "Common Methodology for Information Technology Security Evaluation: Evaluation Methodology",
 Version 3.1 [CC CEM]

This Security Target claims the following conformances:

- [CC Part 2] extended
- [CC Part 3] conformant

2.2. Package claim

This Security Target claims conformance to the assurance package:

Evaluation Assurance Level 4 (EAL4) augmented with ALC_DVS.2 and AVA_VAN.5

2.3. PP claim

This Security Target and the TOE claim strict conformance to the following Protection Profiles (PP):

- Protection profiles for secure signature creation device Part 2: Device with key generation [SSCD2]
- Protection profiles for secure signature creation device Part 4: Extension for device with key generation and trusted channel to certificate generation application [SSCD4]

2.4. PP claim rationale

This ST includes all the security objectives and requirements claimed by section 2.3, and all the operations applied to the SFRs are in accordance with the requirements of these PPs.

3. Security problem definition

3.1. Assets

CC defines assets as entities that the owner of the TOE presumably places value upon. The term "asset" is used to describe the threats in the operational environment of the TOE.

Assets has been taken from [SSCD2] adding some descriptions for JPKI.

Table 3-1 Assets and objects

Assets	Description
SCD	private key used to perform an electronic signature operation. The confidentiality, integrity and signatory's sole control over the use of the SCD shall be maintained. In JPKI, SCD corresponds "the private key for digital signature" and "the private key for user certification".
SVD	public key linked to the SCD and used to perform electronic signature verification. The integrity of the SVD when it is exported shall be maintained. In JPKI, SVD corresponds "the public key for digital signature" and "the public key for user certification".
DTBS and DTBS/R	set of data, or its representation, which the signatory intends to sign. Their integrity and the unforgeability of the link to the signatory provided by the electronic signature shall be maintained.

3.2. Subjects

Table 3-2 Subjects

Subjects	Definition
User	End user of the TOE who can be identified as administrator or signatory. The subject S.User may act as S.Admin in the role R.Admin or as S.Sigy in the role R.Sigy.
Administrator	User who is in charge to perform the TOE initialisation, TOE personalisation or other TOE administrative functions. The subject S.Admin is acting in the role R.Admin for this user after successful authentication as administrator.
Signatory	User who hold the TOE and use it on their own behalf or on behalf of the natural or legal person or entity they represent. The subject S.Sigy is acting in the role R.Sigy for this user after successful authentication as signatory.
Attacker	Human or process acting on their behalf located outside the TOE. The main goal of the attacker is to access the SCD or to falsify the electronic signature. The attacker has got a high attack potential and knows no secret.

3.3. Threats

Threats are as defined in [SSCD2] and [SSCD4].

Table 3-3 Threats

Threats	Description
T.SCD_Divulg	Storing, copying, and releasing of the signature creation data
	An attacker stores or copies the SCD outside the TOE. An attacker can obtain the SCD during generation, storage and use for signature creation in the TOE.
T.SCD_Derive	Derive the signature creation data
	An attacker derives the SCD from publicly known data, such as SVD corresponding to the SCD or signatures created by means of the SCD or any other data exported outside the TOE, which is a threat against the secrecy of the SCD.
T.Hack_Phys	Physical attacks through the TOE interfaces
	An attacker interacts physically with the TOE to exploit vulnerabilities, resulting in arbitrary security compromises. This threat is directed against SCD, SVD and DTBS.
T.SVD_Forgery	Forgery of the signature verification data
	An attacker forges the SVD presented by the CSP to the CGA. This results in loss of SVD integrity in the certificate of the signatory.
T.SigF_Misuse	Misuse of the signature creation function of the TOE
	An attacker misuses the signature creation function of the TOE to create SDO for data the signatory has not decided to sign. The TOE is subject to deliberate attacks by experts possessing a high attack potential with advanced knowledge of security principles and concepts employed by the TOE.
T.DTBS_Forgery	Forgery of the DTBS/R
	An attacker modifies the DTBS/R sent by the SCA. Thus the DTBS/R used by the TOE for signing does not match the DTBS the signatory intended to sign.
T.Sig_Forgery	Forgery of the electronic signature
	An attacker forges a signed data object, maybe using an electronic signature that has been created by the TOE, and the violation of the integrity of the signed data object is not detectable by the signatory or by third parties. The signature created by the TOE is subject to deliberate attacks by experts possessing a high attack potential with advanced knowledge of security principles and concepts employed by the TOE.

3.4. Organisational security policies

Organisational security policies are as defined in [SSCD2] and [SSCD4]. P.RND and P.Hash are additional operational security policies in this ST.

Table 3-4 Organisational security policies (OSP)

OSP	Description
P.CSP_QCert	Qualified certificate
	The CSP uses a trustworthy CGA to generate a qualified certificate or non-qualified certificate (cf. the directive, Article 2, Clause 9, and Annex I) for the SVD generated by the SSCD. The certificates contain at least the name of the signatory and the SVD matching the SCD implemented in the TOE under sole control of the signatory. The CSP ensures that the use of the TOE as SSCD is evident with signatures through the certificate or other publicly available information.

P.QSign	Qualified electronic signatures
	The signatory uses a signature creation system to sign data with an advanced electronic signature (cf. the directive, Article 1, Clause 2), which is a qualified electronic signature if it is based on a valid qualified certificate (according to the directive Annex I). The DTBS are presented to the signatory and sent by the SCA as DTBS/R to the SSCD. The SSCD creates the electronic signature created with a SCD implemented in the SSCD that the signatory maintain under their sole control and is linked to the DTBS/R in such a manner that any subsequent change of the data is detectable.
P.Sigy_SSCD	TOE as secure signature creation device
	The TOE meets the requirements for an SSCD laid down in Annex III of the directive. This implies the SCD is used for digital signature creation under sole control of the signatory and the SCD can practically occur only once.
P.Sig_Non-	Non-repudiation of signatures
Repud	The lifecycle of the SSCD, the SCD and the SVD shall be implemented in a way that the signatory is not able to deny having signed data if the signature is successfully verified with the SVD contained in their unrevoked certificate.
P.RND	Sufficient quality of random numbers
	The TSF generates random numbers to be used for the TSF itself. The quality of random numbers is sufficient to prevent prediction by an attacker.
P.Hash	Capability of hash calculator
	The TSF calculates a secure hash value.

Application note: SSCD PP is for use by the European Commission in accordance with the procedure laid down in Article 9 of the Directive 1999/93/EC of the European parliament and of the council of 13 December 1999 on a Community framework for electronic signatures as generally recognised standard for electronic signature products in the Official Journal of the European Communities. The ST is for use by the Japanese Government in accordance with laws relating to Japanese Public Key Infrastructure.

3.5. Assumptions

Assumptions are as defined in [SSCD2].

Table 3-5 Assumptions

Assumptions	Description
A.CGA	Trustworthy certificate generation application
	The CGA protects the authenticity of the signatory's name or pseudonym and the SVD in the (qualified) certificate by an advanced electronic signature of the CSP.
A.SCA	Trustworthy signature creation application
	The signatory uses only a trustworthy SCA. The SCA generates and sends the DTBS/R of the data the signatory wishes to sign in a form appropriate for signing by the TOE.

4. Security objectives

4.1. Security objectives for the TOE

Security objectives for the TOE are as defined in [SSCD2] and [SSCD4]. OT.RND and OT.Hash are additional ecurity objectives for the TOE in this ST.

Table 4-1 Security objectives for the TOE

Security objectives for the TOE	Description
OT.Lifecycle_Security	Lifecycle security The TOE shall detect flaws during the initialisation, personalisation and operational usage. The TOE shall securely destroy the SCD on demand of the signatory.
	Application note: The TOE may contain more than one set of SCD. There is no need to destroy the SCD in case of repeated SCD generation. The signatory shall be able to destroy the SCD stored in the SSCD, e.g. after the (qualified) certificate for the corresponding SVD has been expired.
OT.SCD/SVD_Auth_Gen	Authorised SCD/SVD generation
	The TOE shall provide security features to ensure that authorised users only may invoke the generation of the SCD and the SVD
OT.SCD_Unique	Uniqueness of the signature creation data
	The TOE shall ensure the cryptographic quality of an SCD/SVD pair it creates as suitable for the advanced or qualified electronic signature. The SCD used for signature creation shall practically occur only once and shall not be reconstructable from the SVD. In that context 'practically occur once' means that the probability of equal SCDs is negligible.
OT.SCD_SVD_Corresp	Correspondence between SVD and SCD
	The TOE shall ensure the correspondence between the SVD and the SCD generated by the TOE. This includes unambiguous reference of a created SVD/SCD pair for export of the SVD and in creating an electronic signature creation with the SCD
OT.SCD_Secrecy	Secrecy of the signature creation data
	The secrecy of the SCD (used for signature creation) shall be reasonably assured against attacks with a high attack potential. Application note: The TOE shall keep the confidentiality of the SCD at all times, in particular during SCD/SVD generation, signature creation operation, storage and secure destruction.
OT.Sig_Secure	Cryptographic security of the electronic signature
	The TOE shall create digital signatures that cannot be forged without knowledge of the SCD through robust encryption techniques. The SCD shall not be reconstructable using the digital signatures or any other data exportable from the TOE. The digital signatures shall be resistant against these attacks, even when executed with a high attack potential.

OT.Sigy_SigF	Signature creation function for the legitimate signatory only					
	The TOE shall provide the digital signature creation function for the legitimate signatory only and protects the SCD against the use of others. The TOE shall resist attacks with high attack potential.					
OT.DTBS_Integrity_TOE	DTBS/R integrity inside the TOE					
	The TOE shall not alter the DTBS/R. As by definition of the DTBS/R this may consist of the DTBS themselves, this objective does not conflict with a signature creation process where the TOE hashes the provided DTBS (in part or entirely) for signature creation.					
OT.EMSEC_Design	Provide physical emanations security					
	the TOE shall be designed and built in such a way as to control the production f intelligible emanations within specified limits.					
OT.Tamper_ID	Tamper detection					
	The TOE shall provide system features that detect physical tampering of its components, and uses those features to limit security breaches.					
OT.Tamper_Resistance	Tamper resistance					
	The TOE shall prevent or resist physical tampering with specified system devices and components.					
OT.TOE_SSCD_Auth	Authentication proof as SSCD					
	The TOE shall hold unique identity and authentication data as SSCD and provide security mechanisms to identify and to authenticate itself as SSCD.					
OT.TOE_TC_SVD_Exp	TOE trusted channel for SVD export					
	The TOE shall provide a trusted channel to the CGA to protect the integrity of the SVD exported to the CGA. The TOE shall enable the CGA to detect alteration of the SVD exported by the TOE.					
OT.RND	Provide sufficient quality of random numbers					
	The TSF shall generate random numbers meeting the quality metric depending on purposes. Furthermore, the TSF shall prevent itself from leaking information so that an attacker cannot guess the random number generated.					
OT.Hash	Provide capability of hash calculation					
	The TSF shall provide capability of hash calculation meeting the standard algorithm.					

4.2. Security objectives for the operational environment

Security objectives for the operational environment are as defined in [SSCD2] and [SSCD4].

Table 4-2 Security objectives for the operational environment

Security objectives for the operational environment	Description
OE.SVD_Auth	Authenticity of the SVD
	The operational environment shall ensure the integrity of the SVD sent to the CGA of the CSP. The CGA verifies the correspondence between the SCD in the SSCD of the signatory and the SVD in the qualified certificate.

OE.CGA_QCert	Generation of qualified certificates
OL.OOA_QOEIT	The CGA shall generate a qualified certificate that includes (amongst others):
	a) the name of the signatory controlling the TOE;
	b) the SVD matching the SCD stored in the TOE and being under sole control of the signatory;
	c) the advanced signature of the CSP.
	The CGA shall confirm with the generated qualified certificate that the SCD corresponding to the SVD is stored in a SSCD.
OE.Dev_Prov_Service	Authentic SSCD provided by SSCD-provisioning service
	The SSCD-provisioning service handles authentic devices that implement the TOE, prepares the TOE for proof as SSCD to external entities, personalises the TOE for the legitimate user as signatory, links the identity of the TOE as SSCD with the identity of the legitimate user, and delivers the TOE to the signatory. Note: This objective replaces OE.SSCD_Prov_Service from the core PP, which is possible as it does not imply any additional requirements for the operational environment when compared to OE.SSCD_Prov_Service (OE.Dev_Prov_Service is a subset of OE.SSCD_Prov_Service).
OE.HID_VAD	Protection of the VAD
	If an external device provides the human interface for user authentication, this device shall ensure confidentiality and integrity of the VAD as needed by the authentication method employed from import through its human interface until import through the TOE interface. In particular, if the TOE requires a trusted channel for import of the VAD, the HID shall support usage of this trusted channel.
OE.DTBS_Intend	SCA sends data intended to be signed
	The signatory shall use a trustworthy SCA that:
	 generates the DTBS/R of the data that has been presented as DTBS and which the signatory intends to sign in a form which is appropriate for signing by the TOE;
	 sends the DTBS/R to the TOE and enables verification of the integrity of the DTBS/R by the TOE;
	 attaches the signature produced by the TOE to the data or provides it separately.
OE.DTBS_Protect	SCA protects the data intended to be signed
	The operational environment shall ensure that the DTBS/R cannot be altered in transit between the SCA and the TOE. In particular, if the TOE requires a trusted channel for import of the DTBS/R, the SCA shall support usage of this trusted channel.
OE.Signatory	Security obligation of the signatory
	The signatory shall check that the SCD stored in the SSCD received from SSCD-provisioning service is in non-operational state. The signatory shall keep their VAD confidential.
OE.CGA_SSCD_Auth	Pre-initialisation of the TOE for SSCD authentication
	The CSP shall check by means of the CGA whether the device presented for application of a (qualified) certificate holds unique identification as SSCD, successfully proved this identity as SSCD to the CGA, and whether this identity is linked to the legitimate holder of the device as applicant for the certificate.

OE.CGA_TC_SVD_Imp	CGA trusted channel for SVD import
	The CGA shall detect alteration of the SVD imported from the TOE with the
	claimed identity of the SSCD.

4.3. Security objectives rationale

The following table provides an overview for security objectives coverage.

Table 4-3 Mapping of security problem definition to security objectives

Tubic + o mapping	_		1		1				ı			_	_							1				
	OT.Lifecycle_Security	OT.SCD/SVD_Auth_Gen	OT.SCD_Unique	OT.SCD_SVD_Corresp	OT.SCD_Secrecy	OT.Sig_Secure	OT.Sigy_SigF	OT.DTBS_Integrity_TOE	OT.EMSEC_Design	OT.Tamper_ID	OT.Tamper_Resistance	OT.TOE_SSCD_Auth	OT.TOE_TC_SVD_Exp	OT.RND	OT.Hash	OE.CGA_QCert	OE.SVD_Auth	OE.Dev_Prov_Service	OE.HID_VAD	OE.DTBS_Intend	OE.DTBS_Protect	OE.Signatory	OE.CGA_SSCD_Auth	OE.CGA_TC_SVD_Imp
T.SCD_Divulg					Х																			
T.SCD_Derive		Х				Х																		
T.Hack_Phys					Х				Х	X	X													
T.SVD_Forgery				X									X				X							Х
T.SigF_Misuse	Х						Х	Х											Х	Х	Χ	Χ		
T.DTBS_Forgery								Х												Х	Х			
T.Sig_Forgery			Х			Х										Х								
P.CSP_QCert	х			Х								Х				Х							Х	
P.QSign						Х	Х									Х				Х				
P.Sigy_SSCD	х	Х	Х		Х	Х	Х	Х	Х		Х	Х	Х					Х					Х	Х
P.Sig_Non-Repud	х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х	Х	Х		Х	Х	Х	Х	Х
P.RND														Х										
P.Hash															X									
A.CGA																Х	Х							
A.SCA																				Х				

T.SCD_Divulg (Storing, copying, and releasing of the signature creation data) addresses the threat against the legal validity of electronic signature due to storage and copying of SCD outside the TOE. This threat is countered by **OT.SCD_Secrecy**, which assures the secrecy of the SCD used for signature creation.

T.SCD_Derive (*Derive the signature creation data*) deals with attacks on the SCD via public known data produced by the TOE, which are the SVD and the signatures created with the SCD.

OT.SCD/SVD_Auth_Gen counters this threat by implementing cryptographically secure generation of the SCD/SVD pair. **OT.Sig_Secure** ensures cryptographically secure electronic signatures.

T.Hack_Phys (*Exploitation of physical vulnerabilities*) deals with physical attacks exploiting physical vulnerabilities of the TOE. **OT.SCD_Secrecy** preserves the secrecy of the SCD. **OT.EMSEC_Design** counters physical attacks through the TOE interfaces and observation of TOE emanations. **OT.Tamper_ID** and **OT.Tamper_Resistance** counter the threat T.Hack_Phys by detecting and by resisting tampering attacks.

T.SVD_Forgery (Forgery of the signature verification data) deals with the forgery of the SVD exported by the TOE to the CGA for the generation of the certificate. **T.SVD_Forgery** is addressed by **OT.SCD_SVD_Corresp**, which ensures correspondence between SVD and SCD and unambiguous reference of the SVD/SCD pair for the SVD export and signature creation with the SCD, and **OE.SVD_Auth** that ensures the integrity of the SVD exported by the TOE to the CGA and verification of the correspondence between the SCD in the SSCD of the signatory and the SVD in the input it provides to the certificate generation function of the CSP. Additionally, **T.SVD_Forgery** is addressed by **OT.TOE_TC_SVD_Exp**, which ensures that the TOE sends the SVD in a verifiable form through a trusted channel to the CGA, as well as by **OE.CGA_TC_SVD_Imp**, which provides verification of SVD authenticity by the CGA.

T.SigF_Misuse (Misuse of the signature creation function of the TOE) addresses the threat of misuse of the TOE signature creation function to create SDO by others than the signatory to create an electronic signature on data for which the signatory has not expressed the intent to sign, as required by paragraph 1(c) of Annex III. OT.Lifecycle_Security (Lifecycle security) requires the TOE to detect flaws during the initialisation, personalisation and operational usage including secure destruction of the SCD, which may be initiated by the signatory. OT.Sigy_SigF (Signature creation function for the legitimate signatory only) ensures that the TOE provides the signature creation function for the legitimate signatory only. OE.DTBS_Intend (Data intended to be signed) ensures that the SCA sends the DTBS/R only for data the signatory intends to sign and OE.DTBS_Protect counters manipulation of the DTBS during transmission over the channel between the SCA and the TOE. OT.DTBS_Integrity_TOE (DTBS/R integrity inside the TOE) prevents the DTBS/R from alteration inside the TOE. If the SCA provides a human interface for user authentication, OE.HID_VAD (Protection of the VAD) provides confidentiality and integrity of the VAD as needed by the authentication method employed. OE.Signatory ensures that the signatory checks that an SCD stored in the SSCD when received from an SSCD-provisioning service provider is in non-operational state, i.e. the SCD cannot be used before the signatory becomes control over the SSCD. OE.Signatory ensures also that the signatory keeps their VAD confidential.

T.DTBS_Forgery (Forgery of the DTBS/R) addresses the threat arising from modifications of the data sent as input to the TOE's signature creation function that does not represent the DTBS as presented to the signatory and for which the signature has expressed its intent to sign. The TOE IT environment addresses **T.DTBS_Forgery** by the means of **OE.DTBS_Intend**, which ensures that the trustworthy SCA generates the DTBS/R of the data that has been presented as DTBS and which the signatory intends to sign in a form appropriate for signing by the TOE, and by means of **OE.DTBS_Protect**, which ensures that the DTBS/R cannot be altered in transit between the SCA and the TOE. The TOE counters this threat by the means of **OT.DTBS_Integrity_TOE** by ensuring the integrity of the DTBS/R inside the TOE.

T.Sig_Forgery (Forgery of the electronic signature) deals with non-detectable forgery of the electronic signature. **OT.Sig_Secure**, **OT.SCD_Unique** and **OE.CGA_QCert** address this threat in general. **OT.Sig_Secure** (Cryptographic security of the electronic signature) ensures by means of robust cryptographic techniques that the signed data and the electronic signature are securely linked together. **OT.SCD_Unique** ensures that the same SCD cannot be generated more than once and the corresponding SVD cannot be included in another certificate by chance. **OE.CGA_QCert** prevents forgery of the certificate for the corresponding SVD, which would result in false verification decision concerning a forged signature.

P.CSP_QCert (CSP generates qualified certificates) provides that the TOE and the SCA may be employed to sign data with (qualified) electronic signatures, as defined by the Directive, article 5, paragraph 1. Directive, recital (15) refers to SSCDs to ensure the functionality of advanced signatures. The OE.CGA_QCert addresses the requirement of qualified (or advanced) electronic signatures as being based on qualified (or non-qualified) certificates. According to OT.TOE_SSCD_Auth the copies of the TOE will hold unique identity and authentication data as SSCD and provide security mechanisms enabling the CGA to identify and to authenticate the TOE as SSCD to prove this identity as SSCD to the CGA. The OE.CGA_SSCD_Auth ensures that the SP checks the proof of the device presented of the applicant that it is a SSCD. The OT.SCD_SVD_Corresp ensures that the SVD exported by the TOE to the CGA corresponds to the SCD stored in the TOE and used by the signatory. The OT.Lifecycle_Security ensures that the TOE detects flaws during the initialisation, personalisation and operational usage.

P.QSign (*Qualified electronic signatures*) provides that the TOE and the SCA may be employed to sign data with an advanced electronic signature, which is a qualified electronic signature if based on a valid qualified certificate. **OT.Sigy_SigF** ensures signatory's sole control of the SCD by requiring the TOE to provide the signature creation function for the legitimate signatory only and to protect the SCD against the use of others. **OT.Sig_Secure** ensures that the TOE creates electronic signatures, which cannot be forged without knowledge of the SCD through robust encryption techniques. **OE.CGA_QCert** addresses the requirement of qualified or non-qualified electronic certificates building a base for the electronic signature. **OE.DTBS_Intend** ensures that the SCA provides only those DTBS to the TOE, which the signatory intends to sign.

P.Sigy_SSCD (*TOE* as secure signature creation device) requires the TOE to meet Annex III of the Directive. The paragraph 1(a) of Annex III is ensured by OT.SCD_Unique requiring that the SCD used for signature creation can practically occurs only once. The OT.SCD_Secrecy OT.Sig_Secure and OT.EMSEC_Design and OT.Tamper_Resistance address the secrecy of the SCD (cf. paragraph 1(a) of Annex III). OT.SCD_Secrecy and OT.Sig_Secure meet the requirement in paragraph 1(b) of Annex III by the requirements to ensure that the SCD cannot be derived from SVD, the electronic signatures or any other data exported outside the TOE. OT.Sigy_SigF meets the requirement in paragraph 1(c) of Annex III by the requirements to ensure that the TOE provides the signature creation function for the legitimate signatory only and protects the SCD against the use of others. OT.DTBS_Integrity_TOE meets the requirements in paragraph 2 of Annex III as the TOE shall not alter the DTBS/R. The usage of SCD under sole control of the signatory is ensured by OT.Lifecycle_Security, OT.SCD/SVD_Auth_Gen and OT.Sigy_SigF.

OE.Dev_Prov_Service ensures that the legitimate user obtains a TOE sample as an authentic, initialised and personalised TOE from an SSCD-provisioning service through the TOE delivery procedure. If the TOE implements SCD generated under control of the SSCD-provisioning service, the legitimate user receives the TOE as SSCD. If the TOE is delivered to the legitimate user without SCD in the operational phase he or she applies for the (qualified) certificate as the Device holder and legitimate user of the TOE. The CSP will use the TOE security feature (addressed by the security objectives **OT.TOE_SSCD_Auth** and **OT.TOE_TC_SVD_Exp**) to check whether the device presented is a SSCD linked to the applicant as required by **OE.CGA_SSCD_Auth** and the received SVD is sent by this SSCD as required by **OE.CGA_TC_SVD_Imp**. Thus the obligation of the SSCD-provision service for the first SCD/SVD pair is complemented in an appropriate way by the CSP for the SCD/SVD pair generated outside the secure preparation environment.

P.Sig_Non-Repud (*Non-repudiation of signatures*) deals with the repudiation of signed data by the signatory, although the electronic signature is successfully verified with the SVD contained in their certificate valid at the time of signature creation. This policy is implemented by the combination of the security objectives for the TOE and its operational environment, which ensures the aspects of signatory's sole control over and responsibility for the electronic signatures created with the TOE.

OE.SSCD_Prov_Service ensures that the signatory obtains an authentic copy of the TOE, initialised and personalised as SSCD from the SSCD-provisioning service.

OE.CGA_QCert ensures that the certificate allows to identify the signatory and thus to link the SVD to the signatory. **OE.SVD_Auth** and **OE.CGA_QCert** require the environment to ensure authenticity of the SVD as being exported by the TOE and used under sole control of the signatory. **OT.SCD_SVD_Corresp** ensures that the SVD exported by the TOE corresponds to the SCD that is implemented in the TOE. **OT.SCD_Unique** provides that the signatory's SCD can practically occur just once.

OE.Signatory ensures that the signatory checks that the SCD, stored in the SSCD received from an SSCD-provisioning service is in non-operational state (i.e. the SCD cannot be used before the signatory becomes into sole control over the SSCD). The TOE security feature addressed by the security objectives **OT.TOE_SSCD_Auth** and **OT.TOE_TC_SVD_Exp** supported by **OE.Dev_Prov_Service** enables the verification whether the device presented by the applicant is a SSCD as required by **OE.CGA_SSCD_Auth** and the received SVD is sent by the device holding the corresponding SCD as required by **OE.CGA_TC_SVD_Imp. OT.Sigy_SigF** provides that only the signatory may use the TOE for signature creation. As prerequisite OE.Signatory ensures that the signatory keeps their VAD confidential. **OE.DTBS_Intend, OE.DTBS_Protect** and **OT.DTBS_Integrity_TOE** ensure that the TOE generates electronic signatures only for a DTBS/R that the signatory has decided to sign as DTBS. The robust cryptographic techniques required by **OT.Sig_Secure** ensure that only this SCD may generate a valid electronic signature that can be successfully verified with the corresponding SVD used for signature verification. The security objective for the TOE **OT.Lifecycle_Security** (Lifecycle security), **OT.SCD_Secrecy** (Secrecy of the signature creation data), **OT.EMSEC_Design** (Provide physical emanations security), **OT.Tamper_ID** (Tamper detection) and **OT.Tamper_Resistance** (Tamper resistance) protect the SCD against any compromise.

P.RND (*Sufficient quality of random numbers*) requires the TOE to provide good quality of random numbers. If **OT.RND** is enforced, random numbers with a quality sufficient for the TSF will be generated, and it will prevent an attacker from retrieving information helpful to guess random numbers.

P.Hash (*Capability of hash calculator*) requires the TOE to provide capability of hash calculation. If **OT.Hash** is enforced, hash is calculated in accordance with the standard algorithm.

Application note: SSCD PP is for use by the European Commission in accordance with the procedure laid down in Article 9 of the Directive 1999/93/EC of the European parliament and of the council of 13 December 1999 on a Community framework for electronic signatures as generally recognised standard for electronic signature products in the Official Journal of the European Communities. The ST is for use by the Japanese Government in accordance with laws relating to Japanese Public Key Infrastructure.

5.	Extended components definition
	The additional family FPT_EMS (TOE Emanation) of the Class FPT (Protection of the TSF) is defined in [SSCD2]. This ST uses the component FPT_EMS.1 as defined in [SSCD2]. The additional family FIA_API (Authentication Proof of Identity) of the Class FIA (Identification and authentication) is defined in [SSCD4]. This ST uses the component FIA_API.1 as defined in [SSCD4]. The additional family FCS_RNG (Generation of random numbers) of Class FCS (Cryptographic support) is defined in [PP-PN]. This ST uses the component FCS_RNG as defined in [PP-PN].
	21

6. Security requirements

This chapter gives the security functional requirements and the security assurance requirements for the TOE.

6.1. Security functional requirements

The Security Objectives result in a set of Security Functional Requirements (SFRs).

Section 6.1.2 and 6.1.3 describes the SFRs which are defined in the PPs [SSCD2] and [SSCD4], respectively. Section 6.1.4 describes the additional SFRs in this ST.

About the notation used for Security Functional Requirements (SFRs):

Refinements are denoted as **bold**.

Selections are denoted as underlined text.

Assignments are denoted as underlined text and bold.

6.1.1. User data protection (FDP)

Table 6-1: Subjects and security attributes for access control

Subject or object the security attribute is associated with	Security attribute type	Value of the security attribute
S.User	Role	R.Admin – S.User acts as S.Admin
		R.Sigy – S.User acts as S.Sigy
S.User	SCD/SVD Management	authorised, not authorised
SCD	SCD Operational	no, yes
SCD	SCD identifier	arbitrary value
SVD	(This ST does not define security attributes for SVD)	(This ST does not define security attributes for SVD)

6.1.2. Security assurance requirements taken from the PP Part 2

FCS_CKM.1/SCD	Cryptographic key generation
FCS_CKM.1.1/SCD	The TSF shall generate an SCD/SVD pair in accordance with a specified cryptographic key generation algorithm RSA and specified cryptographic key sizes 2048 bit that meet the following: [BSI-TR02102] .
FCS_CKM.4/SCD	Cryptographic key destruction
FCS_CKM.4.1/SCD	The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method <u>either overwriting with new SCD or deleting SCD when JPKI applet deletion</u> that meets the following: <u>none</u> .
FCS_COP.1/SCD	Cryptographic operation
FCS_COP.1.1/SCD	The TSF shall perform <u>digital signature creation</u> in accordance with a specified cryptographic algorithm <u>RSA</u> and cryptographic key sizes <u>2048 bit</u> that meet the following: <u>RSASSA-PKCS1-v1 5</u> .

FDP_ACC.1/SCD/SVD_Generation Subset access control

FDP_ACC.1.1/ The TSF shall enforce the **SCD/SVD Generation SFP** on:

SCD/SVD_Generation (1) subjects: S.User,

(2) objects: SCD, SVD,

(3) operations: generation of SCD/SVD pair.

FDP_ACF.1/SCD/SVD_Generation Security attribute based access control

FDP_ACF.1.1/ The TSF shall enforce the <u>SCD/SVD Generation SFP</u> to objects based on the

SCD/SVD_Generation following: the user S.User is associated with the security attribute "SCD / SVD

Management".

FDP_ACF.1.2/ The TSF shall enforce the following rules to determine if an operation among

SCD/SVD_Generation controlled subjects and controlled objects is allowed:

S.User with the security attribute "SCD / SVD Management" set to

"authorised" is allowed to generate SCD/SVD pair.

FDP_ACF.1.3/ The TSF shall explicitly authorise access of subjects to objects based on the

SCD/SVD_Generation following additional rules: none

FDP_ACF.1.4/ The TSF shall explicitly deny access of subjects to objects based on the following

SCD/SVD_Generation additional rules:

S.User with the security attribute "SCD / SVD management" set to "not

authorised" is not allowed to generate SCD/SVD pair.

FDP_ACC.1/SVD_Transfer Subset access control

FDP_ACC.1.1/ The TSF shall enforce the **SVD Transfer SFP** on:

SVD_Transfer (1) subjects: S.User,

(2) objects: SVD,

(3) operations: export.

FDP_ACF.1/SVD_Transfer Security attribute based access control

FDP_ACF.1.1/ The TSF shall enforce the **SVD Transfer SFP** to objects based on the following:

SVD_Transfer (1) the S.User is associated with the security attribute Role,

(2) the SVD.

FDP_ACF.1.2/ The TSF shall enforce the following rules to determine if an operation among

SVD_Transfer controlled subjects and controlled objects is allowed: R.Admin is allowed to

export SVD.

FDP_ACF.1.3/ The TSF shall explicitly authorise access of subjects to objects based on the

SVD_Transfer following additional rules: **none**.

FDP_ACF.1.4/ The TSF shall explicitly deny access of subjects to objects based on the following

SVD Transfer additional rules: **none**

FDP_ACC.1/Signature_Creation Subset access control

FDP_ACC.1.1/Signature_Creation The TSF shall enforce the **Signature Creation SFP** on:

(1) subjects: S.User, (2) objects: DTBS/R, SCD,

(3) operations: signature creation.

FDP_ACF.1/Signature_Creation Security attribute based access control

FDP_ACF.1.1/Signature_Creation The TSF shall enforce the <u>Signature Creation SFP</u> to objects based on

the following:

(1) the user S.User is associated with the security attribute "Role",

<u>and</u>

(2) the SCD with the security attribute "SCD Operational".

FDP_ACF.1.2/Signature_Creation The TSF shall enforce the following rules to determine if an operation

among controlled subjects and controlled objects is allowed:

R.Sigy is allowed to create electronic signatures for DTBS/R with SCD which security attribute "SCD operational" is set to "yes".

FDP_ACF.1.3/Signature_Creation The TSF shall explicitly authorise access of subjects to objects based on

the following additional rules: **none**.

FDP_ACF.1.4/Signature_Creation The TSF shall explicitly deny access of subjects to objects based on the

following additional rules:

S.User is not allowed to create electronic signatures for DTBS/R with SCD which security attribute "SCD operational" is set to "no".

FDP_RIP.1 Subset residual information protection

FDP_RIP.1.1 The TSF shall ensure that any previous information content of a resource is

made unavailable upon the de-allocation of the resource from the following

objects: SCD.

FDP_SDI.2/Persistent Stored data integrity monitoring and action

FDP SDI.2.1/Persistent The TSF shall monitor user data stored in containers controlled by the TSF for

integrity error on all objects, based on the following attributes: integrity

checked stored data.

FDP_SDI.2.2/Persistent Upon detection of a data integrity error, the TSF shall:

(1) prohibit the use of the altered data,

(2) inform the S.Sigy about integrity error.

FDP_SDI.2/DTBS Stored data integrity monitoring and action

FDP SDI.2.1/DTBS The TSF shall monitor user data stored in containers controlled by the TSF for

integrity error on all objects, based on the following attributes: integrity checked

stored **DTBS**.

FDP_SDI.2.2/DTBS

Upon detection of a data integrity error, the TSF shall:

(1) prohibit the use of the altered data,

(2) inform the S.Sigy about integrity error.

FIA_UID.1 Timing of identification

FIA UID.1.1

The TSF shall allow:

(1) self-test according to FPT_TST.1,

(2) establishing a trusted channel between the CGA and the TOE by means

of TSF required by FTP ITC.1/SVD,

(3) select File, read some file without authentication and generate random

<u>number</u>

on behalf of the user to be performed before the user is identified.

FIA_UID.1.2

The TSF shall require each user to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

FIA_UAU.1 Timing of authentication

FIA_UAU.1.1

The TSF shall allow:

(1) self-test according to FPT_TST.1,

(2) identification of the user by means of TSF required by FIA_UID.1,

(3) establishing a trusted channel between the CGA and the TOE by

means of TSF required by FTP_ITC.1/SVD,

(4) select File, read file without authentication, and generate random

number

on behalf of the user to be performed before the user is authenticated.

The TSF shall require each user to be successfully authenticated before allowing any other TSF-mediated actions on behalf of that user.

FIA_AFL.1 Authentication failure handling

FIA_AFL.1.1

FIA_UAU.1.2

The TSF shall detect when <u>5 in user authentication for digital signature or 3 in user authentication for user certification</u> unsuccessful authentication attempts occur related to <u>consecutive failed authentication attempts</u>.

FIA_AFL.1.2

When the defined number of unsuccessful authentication attempts has been

met, the TSF shall block RAD.

FMT_SMR.1 Security roles

FMT_SMR.1.1

The TSF shall maintain the roles R.Admin and R.Sigy.

FMT_SMR.1.2

The TSF shall be able to associate users with roles.

FMT_SMF.1 Security management functions

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions:

(1) Creation and modification of RAD,

(2) Enabling the signature creation function,

(3) Modification of the security attribute SCD/SVD management, SCD

operational,

(4) Change the default value of the security attribute SCD Identifier,

(5) none.

FMT MOF.1 Management of security functions behaviour

FMT_MOF.1.1 The TSF shall restrict the ability to **enable** the functions **signature creation**

function to R.Sigy.

FMT_MSA.1/Admin Management of security attributes

FMT_MSA.1.1/Admin The TSF shall enforce the <u>SCD/SVD Generation SFP</u> to restrict the ability

to $\underline{\mathsf{modify}}$ the security attributes $\underline{\mathsf{SCD}/\mathsf{SVD}}$ $\underline{\mathsf{management}}$ to $\underline{\mathsf{R.Admin}}$.

FMT_MSA.1/Signatory Management of security attributes

FMT_MSA.1.1/Signatory The TSF shall enforce the <u>Signature Creation SFP</u> to restrict the ability to

modify the security attributes **SCD operational** to **R.Sigy**.

FMT_MSA.2 Secure security attributes

FMT_MSA.2.1 The TSF shall ensure that only secure values are accepted for <u>SCD / SVD</u>

Management and SCD operational.

FMT_MSA.3 Static attribute initialisation

FMT_MSA.3.1 The TSF shall enforce the <u>SCD/SVD Generation SFP, SVD Transfer SFP and</u>

Signature Creation SFP to provide restrictive default values for security

attributes that are used to enforce the SFP.

FMT_MSA.3.2 The TSF shall allow the **R.Admin** to specify alternative initial values to override

the default values when an object or information is created.

FMT_MSA.4 Security attribute value inheritance

FMT_MSA.4.1 The TSF shall use the following rules to set the value of security attributes:

(1) If S.Admin successfully generates an SCD/SVD pair without S.Sigy being authenticated the security attribute "SCD operational of the SCD"

shall be set to "no" as a single operation.

(2) If S.Sigy successfully generates an SCD/SVD pair the security attribute "SCD operational of the SCD" shall be set to "yes" as a single operation.

The TSF shall restrict the ability to <u>create</u> the <u>RAD</u> to <u>R.Admin</u> .
Management of TSF data
The TSF shall restrict the ability to \underline{modify} the \underline{RAD} to $\underline{R.Sigy}$.
TOE Emanation
The TOE shall not emit <u>side channel emission</u> in excess of <u>limits specified</u> <u>by the state-of-the-art attacks on smart card IC</u> enabling access to <u>RAD</u> and <u>SCD</u> .
The TSF shall ensure <u>any users</u> are unable to use the following interface <u>physical chip contact or contactless I/O</u> to gain access to <u>RAD</u> and <u>SCD</u> .
Failure with preservation of secure state
The TSF shall preserve a secure state when the following types of failures occur: (1) self-test according to FPT_TST fails, (2) IC environmental sensors detection (Temperature out of range, Supply Voltage of chip) (3) IC internal error detection sensors failure (Parity, RNG, operation)
Passive detection of physical attack
The TSF shall provide unambiguous detection of physical tampering that might compromise the TSF.
The TSF shall provide the capability to determine whether physical tampering with the TSF's devices or TSF's elements has occurred.
Resistance to physical attack
The TSF shall resist physical manipulation and physical probing to the hardware of the TOE and software composing the TSF by responding automatically such that the SFRs are always enforced.
TSF testing
The TSF shall run a suite of self tests during initial start-up or before running a secure operation to demonstrate the correct operation of the TSF.
The TSF shall provide authorised users with the capability to verify the integrity
of <u>TSF data</u> .
-

FMT_MTD.1/Admin

Management of TSF data

6.1.3. Security functional requirements taken from the PP Part 4

FIA_API.1 Authentication Proof of Identity

FIA_API.1.1 The TSF shall provide an <u>asymmetric device authentication mechanism</u> to

prove the identity of the SSCD.

FDP_DAU.2/SVD Data Authentication with Identity of Guarantor

FDP DAU.2.1/SVD The TSF shall provide a capability to generate evidence that can be used as a

guarantee of the validity of **SVD**.

FDP_DAU.2.2/SVD The TSF shall provide **CGA** with the ability to verify evidence of the validity of

the indicated information and the identity of the user that generated the

evidence.

FTP ITC.1/SVD Inter-TSF trusted channel

FTP_ITC.1.1/SVD The TSF shall provide a communication channel between itself and another

trusted IT product $\underline{\textbf{CGA}}$ that is logically distinct from other communication channels and provides ensured identification of its end points and protection of

the channel data from modification or disclosure.

FTP_ITC.1.2/SVD The TSF shall permit another trusted IT product to initiate communication via the

trusted channel.

FTP_ITC.1.3/SVD The TSF or the CGA shall initiate communication via the trusted channel for

(1) data Authentication with Identity of Guarantor according to FIA_API.1

and FDP_DAU.2/SVD,

(2) import of certificate info from the GCA.

Application note: Trusted channel mandates both a successful device authentication and an active secure messaging session. The TOE provides an asymmetric device authentication mechanism and secure messaging session in accordance with GlobalPlatform Technology Secure Channel Protocol '03' [GP-D]. The established secure messaging session along with device authentication helps identify the SSCD itself as required by FIA API.1.

6.1.4. Security functional requirements defined in the ST

FCS_CKM.4/Ext_Auth Cryptographic key destruction

FCS_CKM.4.1/Ext_Auth The TSF shall destroy cryptographic keys in accordance with a specified

cryptographic key destruction method <u>either overwriting with new key for</u> <u>external authentication or deleting key for external authentication when</u>

JPKI applet deletion that meets the following: none.

FCS_COP.1/Ext_Auth Cryptographic operation

FCS_COP.1.1/Ext_Auth The TSF shall perform digital signature verification in accordance with a

specified cryptographic algorithm **RSA** and cryptographic key sizes **2048 bit** that

meet the following: **RSASSA-PKCS1-v1_5**.

FCS_COP.1/Hash Cryptographic operation

FCS_COP.1.1/Hash The TSF shall perform hash calculation in accordance with a specified

cryptographic algorithm **SHA-256** and cryptographic key sizes **none** that meet the

following: FIPS180-4.

FCS_RNG.1 Random number generator

FCS_RNG.1.1 The TSF shall provide a <u>hybrid</u> random number generator that implements:

none.

FCS_RNG.1.2 The TSF shall provide random numbers that meet the NIST test suite [SP800-

<u>22]</u>.

FDP_ACC.1/Ext_Auth Subset access control

FDP_ACC.1.1/Ext_Auth The TSF shall enforce the **public key import SFP** on

(1) subjects: S.User, (2) objects: public key, (3) operations: write

FDP_ACF.1/Ext_Auth Security attribute based access control

FDP_ACF.1.1/Ext_Auth The TSF shall enforce the **public key import SFP** to objects based on the

following:

(1) the user S.User is associated with the security attribute "Role" and (2)

the SCD with the security attribute "SCD Operational"

FDP_ACF.1.2/Ext_Auth The TSF shall enforce the following rules to determine if an operation among

controlled subjects and controlled objects is allowed:

(1) the user S.User is associated with the security attribute "Role" and (2)

the SCD with the security attribute "SCD Operational"

following additional rules: none

FDP_ACF.1.4/Ext_Auth The TSF shall explicitly deny access of subjects to objects based on the following

additional rules:

S.User is not allowed to write a public key for External authentication which

security attribute "SCD operational" is set to "no".

FDP_ITC.1/Ext_Auth Import of user data without security attributes

FDP_ITC.1.1/Ext_Auth The TSF shall enforce the **public key import SFP** when importing user data,

controlled under the SFP, from outside of the TOE.

FDP_ITC.1.2/Ext_Auth The TSF shall ignore any security attributes associated with the user data when

imported from outside the TOE.

FDP_ITC.1.3/Ext_Auth The TSF shall enforce the following rules when importing user data controlled

under the SFP from outside the TOE: none.

FIA_UAU.4 Single-use authentication mechanism

FIA_UAU.4.1 The TSF shall prevent reuse of authentication data related to **External**

authentication using public key.

FIA_UAU.5 Multiple authentication mechanisms

FIA_UAU.5.1 The TSF shall provide

(1) Password authentication,

(2) External authentication using public key

to support user authentication.

FIA_UAU.5.2 The TSF shall authenticate any user's claimed identity according to the

following rules:

(1) Default authentication mechanism is "Password authentication",

(2) If the user activates alternative methods via SCA, "External

authentication using public key" is used.

FMT_MSA.1/Ext_Auth Management of security attributes

FMT_MSA.1.1/Ext_Auth The TSF shall enforce the **public key import SFP** to restrict the ability to

modify the security attributes **SCD operational** to **R.Sigy**.

FMT_MSA.3/Ext_Auth Static attribute initialisation

FMT_MSA.3.1/Ext_Auth The TSF shall enforce the **public key import SFP** to provide <u>restrictive</u> default

values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/Ext_Auth The TSF shall allow the R.Admin to specify alternative initial values to override

the default values when an object or information is created.

6.2. Security assurance requirements

The Security Assurance Requirements for the TOE are those taken from the Evaluation Assurance Level 4 (EAL4) and augmented by the component ALC_DVS.2 and AVA_VAN.5. The assurance requirements are shown in the following table.

Table 6-2 Assurance requirements: EAL4 augmented with ALC_DVS.2 and AVA_VAN.5

Assurance Class	Assurance components
ADV: Development	ADV_ARC.1 Architectural Design with domain separation and non-bypassability
	ADV_FSP.4 Complete functional specification
	ADV_IMP.1 Implementation representation of the TSF
	ADV_TDS.3 Basic modular design
AGD: Guidance documents	AGD_OPE.1 Operational user guidance
	AGD_PRE.1 Preparative procedures

ALC: Life-cycle support	ALC_CMC.4 Production support, acceptance procedures and automation					
	ALC_CMS.4 Problem tracking CM coverage					
	ALC_DEL.1 Delivery procedures					
	ALC_DVS.2 Sufficiency of security measures					
	ALC_LCD.1 Developer defined life-cycle model					
	ALC_TAT.1 Well-defined development tools					
ASE: Security Target evaluation	ASE_CCL.1 Conformance claims					
	ASE_ECD.1 Extended components definition					
	ASE_INT.1 ST introduction					
	ASE_OBJ.2 Security objectives					
	ASE_REQ.2 Derived security requirements					
	ASE_SPD.1 Security problem definition					
	ASE_TSS.1 TOE summary specification					
ATE: Tests	ATE_COV.2 Analysis of coverage					
	ATE_DPT.1 Testing: basic design					
	ATE_FUN.1 Functional testing					
	ATE_IND.2 Independent testing – sample					
AVA: Vulnerability assessment	AVA_VAN.5 Advanced methodical vulnerability analysis					

6.3. Security functional requirements rationale

6.3.1. Security requirement coverage

Table 6-3 Functional requirement to TOE security objective mapping

	OT.Lifecycle_Security	OT.SCD/SVD_Auth_Gen	OT.SCD_Unique	OT.SCD_SVD_Corresp	OT.SCD_Secrecy	OT.Sig_Secure	OT.Sigy_SigF	OT.DTBS_Integrity_TOE	OT.EMSEC_Design	OT.Tamper_ID	OT.Tamper_Resistance	OT.TOE_SSCD_Auth	OT.TOE_TC_SVD_Exp	OT.RND	OT.Hash
FCS_CKM.1/SCD	Χ		Χ	Х	Χ										
FCS_CKM.4/SCD	Х				Х										
FCS_COP.1/SCD	Χ					Χ									
FDP_ACC.1/SCD/SVD_	Х	Х													

Generation													
FDP_ACF.1/SCD/SVD_ Generation	Х	Х											
FDP_ACC.1/SVD_Tran sfer	Х											Х	
FDP_ACF.1/SVD_Trans fer	Х											Х	
FDP_ACC.1/Signature_ Creation	Х					Х							
FDP_ACF.1/Signature_ Creation	Х					Х							
FDP_RIP.1				Х		Х							
FDP_SDI.2/Persistent			Х	Х	Х								
FDP_SDI.2/DTBS						Х	Х						
FIA_AFL.1						Х							
FIA_UAU.1		Х				Х					Х		
FIA_UID.1		Х				Х							
FMT_MOF.1	Х					Х							
FMT_MSA.1/Admin	Х	Х											
FMT_MSA.1/Signatory	Χ					Х							
FMT_MSA.2	Χ	Х				Х							
FMT_MSA.3	Χ	Х				Х							
FMT_MSA.4	Χ	Х	Х			Х							
FMT_MTD.1/Admin	Х					Х							
FMT_MTD.1/Signaory	Х					Х							
FMT_SMR.1	Х					Х							
FMT_SMF.1	Х					Х							
FPT_EMS.1				Х				Х					
FPT_FLS.1				Х									
FPT_PHP.1									Х				
FPT_PHP.3				Х						Х			
FPT_TST.1	Χ			Х	Х								
FIA_API.1											Х		
FDP_DAU.2/SVD												Х	
FTP_ITC.1/SVD												Х	
FCS_CKM.4.1/Ext_Auth						Х							
FCS_COP.1.1/Ext_Auth						Х							

FCS_COP.1/Hash									Х
FCS_RNG.1								Χ	
FDP_ACC.1.1/Ext_Auth				Χ					
FDP_ACF.1.1/Ext_Auth				Χ					
FDP_ITC.1/Ext_Auth				Χ					
FIA_UAU.4				Χ					
FIA_UAU.5				Χ					
FMT_MSA.1/Ext_Auth				Χ					
FMT_MSA.3/Ext_Auth				Χ					

OT.Lifecycle_Security (Lifecycle security) is provided by the SFR for SCD/SVD generation FCS_CKM.1, SCD usage FCS_COP.1 and SCD destruction FCS_CKM.4 which ensure cryptographically secure lifecycle of the SCD. The SCD/SVD generation is controlled by TSF according to FDP_ACC.1/SCD/SVD_Generation and FDP_ACF.1/SCD/SVD_Generation. The SVD transfer for certificate generation is controlled by TSF according to FDP_ACC.1/SVD_Transfer and FDP_ACF.1/SVD_Transfer. The SCD usage is ensured by access control FDP_ACC.1/Signature_Creation, FDP_AFC.1/Signature_Creation which is based on the security attribute secure TSF management according to FMT_MOF.1, FMT_MSA.1/Admin, FMT_MSA.1/ Signatory, FMT_MSA.2, FMT_MSA.3, FMT_MSA.4, FMT_MTD.1/Admin, FMT_MTD.1/Signatory, FMT_SMF.1 and FMT_SMR.1. The test functions FPT_TST.1 provides failure detection throughout the lifecycle.

OT.SCD/SVD_Auth_Gen (Authorised SCD/SVD generation) addresses that generation of a SCD/SVD pair requires proper user authentication. The TSF specified by FIA_UID.1 and FIA_UAU.1 provide user identification and user authentication prior to enabling access to authorised functions. The SFR FDP_ACC.1/SCD/SVD_Generation and FDP_ACF.1/SCD/SVD_Generation provide access control for the SCD/SVD generation. The security attributes of the authenticated user are provided by FMT_MSA.1/Admin, FMT_MSA.2, and FMT_MSA.3 for static attribute initialisation. The SFR FMT_MSA.4 defines rules for inheritance of the security attribute "SCD operational" of the SCD.

OT.SCD_Unique (Uniqueness of the signature creation data) implements the requirement of practically unique SCD as laid down in Annex III, paragraph 1(a), which is provided by the cryptographic algorithms specified by FCS_CKM.1.

OT.SCD_SVD_Corresp (Correspondence between SVD and SCD) addresses that the SVD corresponds to the SCD implemented by the TOE. This is provided by the algorithms specified by FCS_CKM.1 to generate corresponding SVD/SCD pairs. The security functions specified by FDP_SDI.2/Persistent ensure that the keys are not modified, so to retain the correspondence. Moreover, the SCD Identifier allows the environment to identify the SCD and to link it with the appropriate SVD. The management functions identified by FMT_SMF.1 and by FMT_MSA.4 allow R.Admin to modify the default value of the security attribute SCD Identifier.

OT.SCD_Secrecy (Secrecy of signature creation data) is provided by the security functions specified by the following SFR. FCS_CKM.1 ensures the use of secure cryptographic algorithms for SCD/SVD generation. Cryptographic quality of SCD/SVD pair shall prevent disclosure of SCD by cryptographic attacks using the publicly known SVD. The security functions specified by FDP_RIP.1 and FCS_CKM.4 ensure that residual information on SCD is destroyed after the SCD has been use for signature creation and that destruction of SCD leaves no residual information. The security functions specified by FDP_SDI.2/Persistent ensure that no critical data is modified which could alter the efficiency of the security functions or leak information of the SCD. FPT_TST.1 tests the working conditions of the TOE and FPT_FLS.1 guarantees a secure state when integrity is violated and thus assures that the specified security functions are operational. An example where compromising error conditions are countered by FPT_FLS.1 is fault injection for differential fault analysis (DFA). SFR FPT_EMS.1 and FPT_PHP.3 require additional security features of the TOE to ensure the confidentiality of the SCD.

OT.Sig_Secure (Cryptographic security of the electronic signature) is provided by the cryptographic algorithms specified by FCS_COP.1, which ensures the cryptographic robustness of the signature algorithms. FDP_SDI.2/Persistent corresponds to the integrity of the SCD implemented by the TOE and FPT_TST.1 ensures self-tests ensuring correct signature creation.

OT.Sigy_SigF (Signature creation function for the legitimate signatory only) is provided by an SFR for identification authentication and access control. FIA_UAU.1 and FIA_UID.1 ensure that no signature creation function can be invoked before the signatory is identified and authenticated. The security functions specified by FMT_MTD.1/Admin and FMT_MTD.1/Signatory manage the authentication function. SFR FIA_AFL.1 provides protection against a number of attacks, such as cryptographic extraction of residual information, or brute force attacks against authentication. The security function specified by FDP SDI.2/DTBS ensures the integrity of stored DTBS and FDP_RIP.1 prevents misuse of any resources containing the SCD after de-allocation (e.g. after the signature creation process). The security functions specified by FDP ACC.1/Signature Creation and FDP ACF.1/Signature Creation provide access control based on the security attributes managed according to the SFR FMT_MTD.1/Signatory, FMT_MSA.2, FMT_MSA.3 and FMT_MSA.4. The SFR FMT_SMF.1 and FMT_SMR.1 list these management functions and the roles. These ensure that the signature process is restricted to the signatory. FMT_MOF.1 restricts the ability to enable the signature creation function to the signatory. FMT_MSA.1/Signatory restricts the ability to modify the security attributes SCD operational to the signatory. To authenticate user for user certification, user can activate alternative authentication methods in accordance with FIA_UAU.5. FIA_UAU.4 makes sure that unique authentication sessions shall be used every time. The authentication method is provided by the cryptographic algorithms specified by FCS_COP.1/Ext_Auth, which ensures the verification of the user. The cryptographic key is imported in accordance with FDP_ITC.1/Ext_Auth and FDP_RIP.1 and FCS_CKM.4/Ext_Auth ensure that residual information on the key is destroyed after the key has been use for verification of user and that destruction of the key leaves no residual information. FDP ACC.1/Ext Auth and FDP ACF.1/Ext Auth provide access control based on the security attributes managed according to the FMT_MSA.1/Ext_Auth and FMT_MSA.3/Ext_Auth. These ensure that the key import process is restricted to the signatory.

OT.DTBS_Integrity_TOE (DTBS/R integrity inside the TOE) ensures that the DTBS/R is not altered by the TOE. The integrity functions specified by FDP_SDI.2/DTBS require that the DTBS/R has not been altered by the TOE.

OT.EMSEC_Design (Provide physical emanations security) covers that no intelligible information is emanated. This is provided by FPT_EMS.1.1.

OT.Tamper_ID (Tamper detection) is provided by FPT_PHP.1 by the means of passive detection of physical attacks.

OT.Tamper_Resistance (Tamper resistance) is provided by FPT_PHP.3 to resist physical attacks.

OT.TOE_SSCD_Auth (Authentication proof as SSCD) requires the TOE to provide security mechanisms to identify and to authenticate themselves as SSCD, which is directly provided by FIA_API.1 (Authentication Proof of Identity). The SFR FIA_UAU.1 allows (additionally to the core PP) establishment of the trusted channel before (human) user is authenticated.

OT.TOE_TC_SVD_Exp (TOE trusted channel for SVD export) requires the TOE to provide a trusted channel to the CGA to protect the integrity of the SVD exported to the CGA, which is directly provided by - The SVD transfer for certificate generation is controlled by TSF according to FDP_ACC.1/SVD_Transfer and FDP_ACF.1/SVD_Transfer. - FDP_DAU.2/SVD (Data Authentication with Identity of Guarantor), which requires the TOE to provide CGA with the ability to verify evidence of the validity of the SVD and the identity of the user that generated the evidence. - FTP_ITC.1/SVD (Inter-TSF trusted channel), which requires the TOE to provide a trusted channel to the CGA.

OT.RND (Provide sufficient quality of random numbers) requires countermeasures that a random number to be generated has sufficient quality and makes it difficult to be guessed by an attacker. FCS_RNG.1 requires generation of random numbers satisfying a quality metric needed.

OT.Hash (*Provide capability of hash calculation*) requires capability of the hash calculation. FCS_COP.1/Hash requires calculation of hash that meet the secure hash standard.

Table 6-4 Satisfaction of dependencies of security functional requirements

SFRs	Dependencies	Satisfied by
FCS_CKM.1/SCD	[FCS_CKM.2 or FCS_COP.1], FCS_CKM.4	FCS_COP.1/SCD, FCS_CKM.4/SCD
FCS_CKM.4/SCD	[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1]	FCS_CKM.1/SCD
FCS_COP.1/SCD	[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1], FCS_CKM.4	FCS_CKM.1/SCD, FCS_CKM.4/SCD
FDP_ACC.1/SCD/SVD_Gener ation	FDP_ACF.1	FDP_ACF.1/SCD/SVD_Generation
FDP_ACF.1/SCD/SVD_Gener ation	FDP_ACC.1, FMT_MSA.3	FDP_ACC.1/SCD/SVD_Generation , FMT_MSA.3
FDP_ACC.1/SVD_Transfer	FDP_ACF.1	FDP_ACF.1/SVD_Transfer
FDP_ACF.1/SVD_Transfer	FDP_ACC.1, FMT_MSA.3	FDP_ACC.1/SVD_Transfer, FMT_MSA.3
FDP_ACC.1/Signature_Creation	FDP_ACF.1	FDP_ACF.1/Signature_Creation
FDP_ACF.1/Signature_Creation	FDP_ACC.1, FMT_MSA.3	FDP_ACC.1/Signature_Creation, FMT_MSA.3
FDP_RIP.1	No dependencies	n/a
FDP_SDI.2/Persistent	No dependencies	n/a
FDP_SDI.2/DTBS	No dependencies	n/a
FIA_AFL.1	FIA_UAU.1	FIA_UAU.1
FIA_UAU.1	FIA_UID.1	FIA_UID.1
FIA_UID.1	No dependencies	n/a
FMT_MOF.1	FMT_SMR.1, FMT_SMF.1	FMT_SMR.1, FMT_SMF.1
FMT_MSA.1/Admin	[FDP_ACC.1 or FDP_IFC.1], FMT_SMR.1, FMT_SMF.1	FDP_ACC.1/SCD/SVD_Generation , FMT_SMR.1, FMT_SMF.1
FMT_MSA.1/Signatory	[FDP_ACC.1 or FDP_IFC.1], FMT_SMR.1, FMT_SMF.1	FDP_ACC.1/Signature_Creation, FMT_SMR.1, FMT_SMF.1
FMT_MSA.2	[FDP_ACC.1 or FDP_IFC.1], FMT_MSA.1, FMT_SMR.1	FDP_ACC.1/SCD/SVD_Generation , FDP_ACC.1/Signature_Creation, FMT_MSA.1/Admin, FMT_MSA.1/Signatory, FMT_SMR.1
FMT_MSA.3	FMT_MSA.1, FMT_SMR.1	FMT_MSA.1/Admin, FMT_MSA.1/Signatory, FMT_SMR.1
FMT_MSA.4	[FDP_ACC.1 or FDP_IFC.1]	FDP_ACC.1/SCD/SVD_Generation , FDP_ACC.1/ Signature_Creation

FMT_MTD.1/Admin	FMT_SMR.1, FMT_SMF.1	FMT_SMR.1, FMT_SMF.1
FMT_MTD.1/Signatory	FMT_SMR.1, FMT_SMF.1	FMT_SMR.1, FMT_SMF.1
FMT_SMR.1	FIA_UID.1	FIA_UID.1
FMT_SMF.1	No dependencies	n/a
FPT_EMS.1	No dependencies	n/a
FPT_FLS.1	No dependencies	n/a
FPT_PHP.1	No dependencies	n/a
FPT_PHP.3	No dependencies	n/a
FPT_TST.1	No dependencies	n/a
FIA_API.1	No dependencies	n/a
FDP_DAU.2/SVD	FIA_UID.1	FIA_UID.1
FTP_ITC.1/SVD	No dependencies	n/a
FCS_CKM.4.1/Ext_Auth	[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1]	FDP_ITC.1/Ext_Auth
FCS_COP.1.1/Ext_Auth	[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1], FCS_CKM.4	FDP_ITC.1/Ext_Auth, FCS_CKM.4.1/Ext_Auth
FCS_COP.1.1/Hash	[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1], FCS_CKM.4	Non-satisfied dependency because no key generation and destruction for hash necessary
FCS_RNG.1	No dependencies	n/a
FDP_ACC.1.1/Ext_Auth	FDP_ACF.1	FDP_ACF.1.1/Ext_Auth
FDP_ACF.1.1/Ext_Auth	FDP_ACC.1, FMT_MSA.3	FDP_ACF.1.1/Ext_Auth, FMT_MSA.3/Ext_Auth
FDP_ITC.1/Ext_Auth	[FDP_ACC.1 or FDP_IFC.1], FMT_MSA.3	FDP_ACF.1.1/Ext_Auth, FMT_MSA.3/Ext_Auth
FIA_UAU.4	No dependencies	n/a
FIA_UAU.5	No dependencies	n/a
FMT_MSA.1/Ext_Auth	[FDP_ACC.1 or FDP_IFC.1], FMT_SMR.1, FMT_SMF.1	FDP_ACC.1.1/Ext_Auth, FMT_SMR.1, FMT_SMF.1
FMT_MSA.3/Ext_Auth	FMT_MSA.1, FMT_SMR.1	FMT_MSA.1/Ext_Auth, FMT_SMR.1

6.4. Security assurance requirements rationale

To meet the assurance expectations of customers, the assurance level EAL4 and the augmentation with the requirements ALC_DVS.2 and AVA_VAN.5 are chosen. The assurance level of EAL4 is selected because it provides a sufficient level of assurance for this type of TOE, which is expected to protect high value assets. Explanation of the security assurance component ALC_DVS.2 and AVA_VAN.5 follows:

• ALC_DVS.2 Sufficiency of security measures: This Security Target selects ALC_DVS.2 instead of

	ALC_DVS.1 because it verifies the security measures that provide the necessary level of protection to maintain the confidentiality and integrity of the TOE and its user data.
•	AVA_VAN.5 Highly resistant: The TOE might be in danger of high-level attacks such as those it might encounter in a university laboratory. Therefore, AVA_VAN.5 is augmented to confirm that TOE has a high level of resistance against such attacks.

7. TOE summary specification

This section describes how the TOE is intended to comply with the Security Functional Requirements.

Table 7-1 Summary specification of the security functional requirements in the TOE

SFR	Summary specification
Security assurance requirements taken from	om the PP Part 2
FCS_CKM.1/SCD	The TOE provides the RSA key generation algorithm and specified cryptographic key size of 2048 bit according to <u>BSI-TR02102</u> .
FCS_CKM.4/SCD	Deletion of the cryptographic key for signature creation requires either overwriting it with a new key or deleting the key when JPKI applet deletion.
FCS_COP.1/SCD	The TOE provides the cryptographic operation for digital signature creation in accordance with a specified cryptographic algorithm RSA and cryptographic key sizes 2048 bit that meet the following: RSASSA-PKCS1-v1_5.
FDP_ACC.1/SCD/SVD_Generation	The TOE provides the access control to generate SCD/SVD
FDP_ACF.1/SCD/SVD_Generation	against S.User associated with the security attribute "SCD / SVD Management". S.User with the security attribute "SCD / SVD Management" set to "authorised" is allowed to generate SCD/SVD pairs.
FDP_ACC.1/SVD_Transfer	The TOE provides the access control to transfer SVD against
FDP_ACF.1/SVD_Transfer	S.User associated with the security attribute Role. R.Admin is allowed to export SVD.
FDP_ACC.1/Signature_Creation	The TOE provides the access control to create an electronic
FDP_ACF.1/Signature_Creation	signature against S.User associated with the security attribute "Role" and the SCD with the security attribute "SCD Operational". R.Sigy is allowed to create electronic signatures for DTBS/R with SCD in which the security attribute "SCD operational" is set to "yes."
FDP_RIP.1	Any previous information content of a resource is made unavailable upon the de-allocation of the resource from the cryptographic buffer.
FDP_SDI.2/Persistent	The TOE monitors user data stored in containers controlled by the TOE for integrity errors on all objects, based on the following attributes: integrity checked stored data. Upon detection of a data integrity error, the TOE prohibits the sending of the altered data and informs the S.Sigy about the integrity error.
FDP_SDI.2/DTBS	The TOE monitors user data stored in containers controlled by the TOE for integrity error on all objects, based on following attributes: integrity checked stored DTBS. Upon detection of a data integrity error, the TOE prohibits the send of the altered data and informs the S.Sigy about integrity error.

SFR	Summary specification
FIA_AFL.1	If the counter reaches its maximum value, the RAD is blocked and cannot be used anymore.
FIA_UAU.1	No signature creation function can be invoked before the signatory is identified and authenticated. TOE allows self-test according to FPT_TST, selecting File,
FIA_UID.1	reading some files without authentication, and generating random numbers before the user is authenticated.
FMT_MOF.1	Only authenticated signatory can create digital signature.
FMT_MSA.1/Admin	The SCD usage is ensured by access control which is based on the security attribute secure TSF management according to
FMT_MSA.1/Signatory	these SFRs. The security attributes of the authenticated user are provided
FMT_MSA.2	by FMT_MSA.2, and FMT_MSA.3 for static attribute initialisation.
FMT_MSA.3	The security attribute SCD/SVD management can be modified by R.Admin only by FMT_MSA.1/Admin.
FMT_MSA.4	The security attribute SCD operational can be modified by R.Sigy only by FMT_MSA.1/Signatory.
FMT_MTD.1/Admin	The security attribute SCD operational can be modified by R.Sigy only by FMT_MSA.4.
FMT_MTD.1/Signatory	The security functions specified by FMT_MTD.1/Admin and FMT_MTD.1/Signatory manage the authentication function. Administrator can create the RAD, and signatory can modify the RAD.
FMT_SMR.1	FMT_SMR.1 and FMT_SMF.1 list management functions and the role. The administrator and signatory roles are distinguished by
	security conditions.
FMT_SMF.1	The TOE provides the following management functions: The creation and modification of the RAD, enables the signature creation function, modification of the security attribute SCD/SVD management, SCD operational, and modification of the default value of the security attribute SCD Identifier.
FPT_EMS.1	Leakage of confidential data through side channels is prevented by the security features of the platform.
FPT_FLS.1	In case self-test fails or a physical attack is detected, the TOE resets the session and returns an error.
FPT_PHP.1	Detection of physical attack and resistance to physical attack

SFR	Summary specification
FPT_PHP.3	are achieved by platform functionalities.
FPT_TST.1	Self-testing is provided by the Java Card platform during initial start-up or before running a secure operation.
Security assurance requirements taken from	om the PP Part 4
FIA_API.1	The TOE provides an asymmetric device authentication mechanism in accordance with [GP_D] to prove the identity of the SSCD.
FDP_DAU.2/SVD	The TOE provides a capability to generate evidence that can be used as a guarantee of the validity of SCD. SCD is sent to CGA via a trusted channel in accordance with FTP_ITC.1/SVD.
FTP_ITC.1/SVD	FTP_ITC.1/SVD requires the TSF to enforce a trusted channel established by the CGP to export the SVD to the CGP in accordance with [GP_D]. Moreover, the TSF requires the use of the same trusted channel for the import of certificate info from the CGP.
Security assurance requirements defined i	n the ST
FCS_CKM.4.1/Ext_Auth	Deletion of the cryptographic key for signature creation requires either overwriting it with a new key for External authentication or deleting the key when JPKI Applet deletion.
FCS_COP.1.1/Ext_Auth	The TOE provides the cryptographic operation for digital signature verification for External authentication in accordance with a specified cryptographic algorithm RSA and cryptographic key sizes 2048 bit that meet the following: RSASSA-PKCS1-v1_5.
FCS_COP.1/Hash	The TOE provides the cryptographic operation for hash calculation in accordance with a specified cryptographic algorithm SHA-256 that meets the following: FIPS 180-4. The Hash is used in signature creation and signature verification for the external authentication.
FCS_RNG.1	The TSF shall provide a hybrid random number generator, and the quality metrics of the random numbers shall meet NIST [SP800-22].
	The random number is used in External authentication.
FDP_ACC.1.1/Ext_Auth	The TOE provides the access control to write a public key for External authentication against S.User associated with the
FDP_ACF.1.1/Ext_Auth	security attribute "Role" and the SCD with the security attribute "SCD Operational". R.Sigy is allowed to write a public key for External authentication with the security attribute "SCD operational" set to "yes."
FDP_ITC.1/Ext_Auth	A public key for External authentication is imported in accordance with the public key import SFP.

SFR	Summary specification				
FIA_UAU.4	The random numbers are generated anew each time External authentication using a public key for External authentication is started and are discarded each time the TOE exits the authenticated state.				
FIA_UAU.5	The TOE provides multiple authentication mechanisms. The default authentication mechanism is "Password authentication". If the user activates alternative methods via SCA, "External authentication with public key" is used.				
FMT_MSA.1/Ext_Auth	The security attribute SCD operational can be modified by R.Sigy only.				
FMT_MSA.3/Ext_Auth	The TOE enforces the public key for External authentication import SFP to provide restrictive default values for security attributes that are used to enforce the SFP and allow the R.Admin to specify alternative initial values to override the default values when an object or information is created.				

8. References

[BSI-PP-0084]	Security IC Platform Protection Profile with augmentation Packages- BSI-CC-PP-0084-2014
[BSI-TR02102]	BSI. Bundesamt für Sicherheit in der Informationstechnik, Technische Richtlinie – Kryptographische Verfahren: Empfehlungen und Schlüssellängen, 09. Januar 2013.
[CC CEM]	Common Methodology for Information Technology Security Evaluation, Evaluation methodology, Version 3.1, Revision 5, CCMB-2017-04-004, April 2017.
[CC Part 1]	Common Criteria for Information Technology Security Evaluation, Part 1: Introduction and general model, Version 3.1, Revision 5, CCMB-2017-04-001, April 2017
[CC Part 2]	Common Criteria for Information Technology Security Evaluation, Part 2: Security functional components, Version 3.1, Revision 5, CCMB-2017-04-002, April 2017
[CC Part 3]	Common Criteria for Information Technology Security Evaluation, Part 3: Security assurance components, Version 3.1, Revision 5, CCMB-2017-04-003, April 2017.
[GP]	GlobalPlatform Card Specification v2.2.1 GlobalPlatform:2011
[GP_D]	GlobalPlatform Card Specification v2.2 - Amendment D Version 1.1.1 GlobalPlatform Card Technology Secure Channel Protocol '03' :2014
[JC-PP]	Java card protection profile - open configuration, certified under the reference BSI-CC-PP-0099-2017, Version 3.0.5, December 2017
[JC-SPEC]	Java Card Platform Virtual Machine Specification, Classic Edition Version 3.1:2021
[JPKI-IF]	Commercial Applet for Mobile JPKI Projects Version 1.0
[JPKI-IP]	JPKI applet Installation procedure Version 1.0
[JPKI-PRE]	JPKI applet Delivery and acceptance procedure Version 1.0
[JPKI-UGM]	JPKI applet User guidance Version 1.0
[PP-PN]	Personal Number card protection profile version, certified under the reference JISEC ITC-4485, version 1.00, April 2014
[SP800-22]	A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, Revised: April 2010
[SSCD2]	BSI-CC-PP-0059-2009-MA-02 Common Criteria Protection Profile: EN 419211-2:2013 - Protection profiles for secure signature creation device - Part 2: Device with key generation, CEN/ISSS - Information Society Standardization System, 18 May 2013
[SSCD4]	BSI-CC-PP-0071-2012-MA-01 Common Criteria Protection Profile: EN 419211-4:2013 - Protection profiles for secure signature creation device - Part 4: Extension for device with key generation and trusted channel to certificate generation application, CEN/ISSS - Information Society Standardization System, 12 October 2013