Mobility Controller (7240, 7220, 7210, 6000, 3600, 3400, 3200, 650, 620) with ArubaOS 6.3

Security Target

May 2014

Document prepared by

BUSINESS SOLUTIONS TECHNOLOGY OUTSOURCING

Version	Date	Author	Description	
1.0	27 August 2012	L Turner	Release for evaluation.	
1.1	3 October 2012	L Turner	Incorporate SHA-2 for IPSec and code signing. Update ArubaOS version to 6.3.	
1.2	6 December 2012	L Turner	Address EOR001.	
1.3	21 January 2013	L Turner	Address EOR001 v2 and update FCS_RBG_EXT.1.1(2) with CTR_DRBG.	
1.4	27 January 2013	W Higaki	TSS updates to address assurance activities	
1.5	5 July 2013	J Green	Added additional guidance information to address EOR002	
1.6	16 October 2013	L Turner	Lab requested editorials, update software version and CSP table.	
1.7	1 November 2013	J Green	Updates after EOR 2.0.	
1.8	10 December 2013	J Green	Updated to remove TFPP items	
1.9	27 January 2014	J Green	Updated CSP table; Added section for crypto officer roles and services to address EOR002 item 4.	
1.10	28 April 2014	J Green	Minor updates for version number and disabling of FTP service	
1.11	5 May 2014	J Green	Minor editing and format clean up	
1.12	30 May 2014	S Weingart	Minor edits in response to ASD comments	

Document History

Table of Contents

1	Intro	oduction	5
	1.1 1.2 1.3 1.4	Overview Conformance Claims Terminology References	5 5 6
2	TOE	Description	8
	2.1 2.2 2.3 2.4 2.5 2.6	Type TOE Architecture Usage Security Functions Physical Scope	8 9 10 11
3	Secu	urity Problem Definition	14
	3.1 3.2 3.3	Threats Organizational Security Policies Assumptions	14 14 14
4	Secu	urity Objectives 1	16
	4.1 4.2	Objectives for the Operational Environment	16 16
5	Secu	urity Requirements1	18
	5.1 5.2 5.3 5.4	Conventions Extended Components Definition Functional Requirements	18 18 19 31
6	TOE	Summary Specification	32
	6.1 6.2	Security Functions	32 38
7	Rati	onale	48
	7.1 7.2 7.3 7.4	Conformance Claim Rationale	48 48 48 48
A	nnex A:	NDPP Assurance Activities	51

List of Tables

Table 1: Evaluation identifiers	. 5
Table 2: Terminology	. 6
Table 3: TOE chassis and appliance models	11
Table 4: Threats drawn from NDPP	14
Table 6: OSPs drawn from NDPP	14
Table 7: Assumptions drawn from NDPP	15
Table 9: Operational environment objectives drawn from NDPP	16
Table 11: Objectives drawn from NDP	16
Table 13: Extended Components	18

Table 14: Summary of SFRs	19
Table 15: Auditable events	21
Table 16: Assurance Requirements	31
Table 17: CSPs	39
Table 14 - Crypto-Officer Services	44
Table 15: Map of SFRs to TSS Security Functions	48

List of Figures

Figure 1: TOE usage scenario	10
Figure 2: Aruba 7000 Series Mobility Controller	12
Figure 3: Aruba 6000 Chassis with four M3 Mobility Controller blades	12
Figure 4: Aruba 3000 Series Mobility Controllers	12
Figure 5: Aruba 600 Series Mobility Controller	12

1 Introduction

1.1 Overview

- 1 The Aruba Networks Mobility Controller is a network device that serves as a gateway between wired and wireless networks and provides command-and-control over Access Points (APs) within an Aruba dependant wireless network. ArubaOS 6.3 is the underlying operating system of the Mobility Controller, which is available in modular chassis or network appliance models:
 - a) Aruba 7000 and 6000 Series. The Aruba 7240, 7220, 7210 and 6000 with M3 blades are designed for corporate headquarters and large campus deployments.
 - b) **Aruba 3000 Series.** The Aruba 3200, 3400 and 3600 are designed for small, medium and large enterprises.
 - c) **Aruba 600 Series.** The Aruba 620 and 650 are designed for branch offices and similar deployments.
- 2 This Security Target (ST) defines the Mobility Controller (7240, 7220, 7210, 6000, 3600, 3400, 3200, 650, 620) with ArubaOS 6.3 Target of Evaluation (TOE) for the purposes of Common Criteria (CC) evaluation.
- Whilst the Aruba Networks Mobility Controller offers a wide range of wireless, wired and remote networking features, the TOE is constrained to the following security features:
 - a) Secure communication with remote administrators, authentication servers and audit servers
 - b) Secure management including authentication, verifiable updates and auditing
 - c) Self-verification of integrity and operation
- For a precise statement of the scope of incorporated security features, refer to section 2.4. NOTE: The Wireless and Access Point capabilities of these devices were not tested under this evaluation as those aspects are not within the scope of the NDPP.
- 5 Identification

Table 1: Evaluation identifiers

Target of Evaluation	Aruba Networks Mobility Controller (7240, 7220, 7210, 6000, 3600, 3400, 3200, 650, 620) with ArubaOS 6.3 Software Version: 6.3.1.5-FIPS	
Security Target	Aruba Networks Mobility Controller (7240, 7220, 7210, 6000, 3600, 3400, 3200, 650, 620) with ArubaOS 6.3 Security Target, v1.12	

1.2 Conformance Claims

- 6 This ST supports the following conformance claims:
 - a) CC version 3.1 release 3
 - b) CC Part 2 extended
 - c) CC Part 3 conformant

d) U.S. Government Approved Protection Profile - Security Requirements for Network Devices , v1.1 (herein referred to as NDPP)

1.3 Terminology

Table 2:	Terminology
----------	-------------

Term	Definition	
ACL	Access Control List	
AP	Access Point	
ARM	Adaptive Radio Management	
СС	Common Criteria	
CLI	Command Line Interface	
CSP	Critical Security Parameter	
EAL	Evaluation Assurance Level	
КАТ	Known Answer Test	
NDPP	U.S. Government Approved Protection Profile – Security Requirements for Network Devices , v1.1	
NIST	National Institute of Standards and Technology	
NTP	Network Time Protocol	
OSP	Organizational Security Policy	
PP	Protection Profile	
RAP	Remote Access Point	
RF	Radio Frequency	
ST	Security Target	
ТОЕ	Target of Evaluation	
TSF	TOE Security Functionality	
WebUI	Web User Interface	

1.4 References

[USER] ArubaOS 6.3.x User Guide, Ref 0511497-00

[CLI]	ArubaOS 6.3.x Command Line Interface, Ref 0511500-00
[SYSLOG]	ArubaOS 6.3.x Syslog Messages Guide, Ref 0511324-01
[MIB]	ArubaOS 6.3 MIB Reference Guide, Ref 0511323-01
[FIPS]	Aruba 600/3000/6000/7200 FIPS 140-2 Security Policy

2 **TOE Description**

2.1 Type

7 The TOE is a network device.

In the CC evaluated configuration, the TOE must be configured to operate in the FIPS 140-2 Approved mode of operation. In FIPS-Approved mode, weak protocols and algorithms are disabled. Please reference the appropriate FIPS 140-2 Security Policy documents for each controller and access point for more details at http://csrc.nist.gov/groups/STM/cmvp/index.html.

2.2 **TOE Architecture**

- At a high level, Aruba Mobility Controllers are hardware appliances consisting of a multicore network processor, Ethernet interfaces, and required supporting circuitry and power supplies enclosed in a metal chassis. The software running on the Mobility Controller is called ArubaOS, which consists of two main components, both implemented on multiple cores within a single network processor:
 - a) Control Plane (CP)—implements functions which can be handled at lower speeds such as Mobility Controller system management (CLI and Web GUI), user authentication (e.g. 802.1X, RADIUS, LDAP), Internet Key Exchange (IKE), auditing/logging (syslog), Wireless IDS (WIDS), and termination of protocols operating at the system level (e.g. SSH, TLS, NTP, etc.). The Control Plane runs the Linux operating system along with various user-space applications (described below).
 - b) Data Plane (DP)—implements functions that must be handled at high speeds such as high-speed switching functions (forwarding, VLAN tagging/enforcement, bridging), termination of 802.11 associations/sessions, tunnel termination (GRE, IPsec), deep packet inspection functions, and cryptographic acceleration. The Data Plane runs a lightweight, proprietary real-time OS which is known as "SOS" (an acronym whose definition is no longer known).
- 10 The Control Plane and Data Plane are inseparable. Administrators install the software by loading a single file, identified as "ArubaOS". Internally, the Mobility Controller unpacks the ArubaOS software image into its various components. A given ArubaOS software image has a single version number, and includes all software components necessary to operate both mobility controllers and APs.
- 11 The CP runs the Linux OS, along with various custom user-space applications which provide the following CP functions:
 - a) Monitors and manages critical system resources, including processes, memory, and flash
 - b) Manages system configuration and licensing
 - c) Manages an internal database used to store licenses, user authentication information, etc.
 - d) Provides network anomaly detection, hardware monitoring, mobility management, wireless management, and radio frequency management services
 - e) Provides a Command Line Interface (CLI)

- f) Provides a web-based (HTTPS/TLS) management UI for the mobility controller
- g) Provides various WLAN station and AP management functions
- h) Provides authentication services for the system management interfaces (CLI, web GUI) as well as for WLAN users
- i) Provides IPsec key management services for APs and connections with other Aruba mobility controllers (**Note:** IPsec for APs, VPN users and other mobility controllers is not within the scope of evaluation)
- j) Provides network time protocol service for APs, point to point tunnelling protocol services for users, layer 2 tunnelling protocol services for users, SSH services for incoming management connections, SNMP client/agent services, and protocol independent multicast (routing) services for the controller
- k) Provides syslog services by sending logs to the operating environment.
- 12 The Linux OS running on the CP is a version 2.6.32 kernel. Linux is a soft real-time, multi-threaded operating system that supports memory protection between processes. Only Aruba provided interfaces are used, and the CLI is a restricted command set. Administrators do not have access to the Linux command shell or operating system.
- 13 The DP is further subdivided into two subcomponents: Fast Path (FP) and Slow1 Path (SP). The FP implements high-speed packet forwarding based on various proprietary tables and sends the packets to SP. The SP manages (create, delete, and age entries) all DP tables such as user, station, tunnel, route, ARP cache, session, bridge, VLAN2, and port. The SP also performs deep packet inspection and cryptographic processing.
- 14 The data plane is implemented on a multi-core network processor. There is a lightweight, Aruba-proprietary OS running on the network processor called SOS. SOS contains an Ethernet driver, a serial driver, a logging facility, semaphore support, and a crypto driver. This OS is not a general purpose operating system. In the Aruba 6000 with M3 controller card, an FPGA is also used to control and monitor the switch fabric, Ethernet interface hardware, and provide security functionality such as filtering.
- 15 The DP and CP run on different hardware platforms but the security functionality remains the same, regardless of the model. The differences in the platforms are in the processors, memory capacity, physical interfaces, FPGA implementation, etc., and are based on performance and scalability requirements.

2.3 Usage

16 The TOE is generally deployed as a gateway between wired and wireless networks that performs command-and-control within an Aruba dependent wireless network architecture consisting of one or more Aruba mobility controllers and multiple Aruba wireless APs. In this architecture, Aruba split the traditional functions of an all-in-one

¹ The entire DP (including both FP and SP elements) is a high-speed packet processor, so the SP designation should be understood to be relative in terms of speed.

² A VLAN has the same attributes as a physical LAN, but it allows for end devices to be grouped together even if they are not located on the same network switch. Network reconfiguration can be done through the Aruba software instead of physically relocating devices.

wireless access point between the controller and the AP. A simple TOE deployment is depicted in Figure 1.

Figure 1: TOE usage scenario

- 17 There are many combinations of deployment scenarios, ranging from branch office environments in which the mobility controller and access point are combined (Aruba 600 Series) to campus deployments with multiple redundant mobility controllers.
- 18 The non-security functionality provided by a mobility controller goes beyond managing dependants APs, and includes:
 - a) Performing Layer 2 switching and Layer 3 routing
 - b) Terminating Internet-based remote access points
 - c) Providing advanced Radio Frequency (RF) services with Adaptive Radio Management (ARM) and spectrum analysis
 - d) Providing location services and RF coverage "heat maps" of the deployment
 - e) Providing self-contained management by way of a master/local hierarchy with one controller
 - f) Pushing configuration to other mobility controllers to reduce administrative overhead
 - g) Delivering AP software updates automatically when the mobility controller is upgraded

2.4 Security Functions

- 19 The TOE provides the following security functions:
 - a) **Protected communications.** The TOE protects the following communication flows:
 - i) **WebUI.** Communication with the administrative web user interface (WebUI) is protected using TLS/HTTPS.
 - ii) **CLI.** Remote administration via the Command Line Interface (CLI) is protected using SSHv2.
 - iii) **Syslog.** Syslog messages are protected using IPSec.
 - iv) Radius. Radius authentication messages are protected using IPSec.

- b) **Verifiable updates.** Updates are digitally signed and verified upon installation utilizing digital signatures.
- c) **System monitoring.** The TOE maintains an audit log of administrative and security relevant events. Logs can optionally be delivered to a Syslog server.
- d) **Secure administration.** The TOE provides administration interfaces for configuration and monitoring. The TOE authenticates administrators and implements session timeouts.
- e) **Residual information clearing.** The TOE ensures that network packets sent from the TOE do not include data "left over" from the processing of previous network information.
- f) **Self-test.** The TOE performs both power-up and conditional self-tests to verify correct and secure operation.
- g) Firewall. The TOE performs stateful packet filtering. Wireless clients connecting through APs are placed into user-roles. Stateful packet filter policies are applied to these user-roles to allow fine grained control over wireless traffic. Note: Firewall functionality is not within the scope of this evaluation.

2.5 Physical Scope

- 20 The TOE comprises the ArubaOS 6.3 software and the chassis and appliance models listed in Table 3.
- ArubaOS 6.3 consists of a base software package with add-on software modules that can be activated by installing the appropriate licenses. The following licenses are required for the evaluated configuration (and are within the physical scope):
 - a) Advanced Cryptography **Note:** Only required if using Elliptic Curve cryptography or AES-GCM
 - b) Policy Enforcement Firewall Next Generation (not within the scope of this evaluation)

Model	Max # APs	Max # users	Firewall throughput
7240	2048	65,536	40 Gbps
7220	1024	32,768	40 Gbps
7210	512	16,384	28.3 Gbps
6000 with four M3 blades	2,048	32,768	80 Gbps
3600	128	8,192	4 Gbps
3400	64	4,096	4 Gbps
3200	32	2,048	3 Gbps
650	16	512	2 Gbps

Table 3: TOE chassis and appliance models

Model	Max # APs	Max # users	Firewall throughput
620	8	256	800 Mbps

The differences in the models include the number of ports, interfaces, throughput and processing speed, memory and storage. Figure 2, Figure 3, Figure 4 and Figure 5 show the physical appearance of the TOE models.

Figure 2: Aruba 7000 Series Mobility Controller

Figure 3: Aruba 6000 Chassis with four M3 Mobility Controller blades

Figure 4: Aruba 3000 Series Mobility Controllers

Figure 5: Aruba 600 Series Mobility Controller

2.5.1 Guidance Documents

- 23 The TOE includes the following guidance documents:
 - a) ArubaOS 6.3 Quick Start Guide, Ref 0511320-01
 - b) ArubaOS 6.3.x User Guide, Ref 0511497-00
 - c) ArubaOS 6.3.x Syslog Messages, Ref 0511324-01
 - d) ArubaOS 6.3.x Command Line Interface, Ref 0511500-00
 - e) ArubaOS 6.3.1.5 Release Notes, Ref 0511467-05
 - f) Aruba 600/3000/6000/7200 FIPS 140-2 Security Policy

2.5.2 Non-TOE Components

- 24 The TOE operates with the following components in the environment:
 - a) **Access Points.** APs connect to the TOE in Aruba dependent wireless network architectures. Wireless clients connect to the APs.
 - b) Audit Server. The TOE can utilize a Syslog server to store audit records.
 - c) **Authentication Server.** The TOE can utilize a Radius server to authenticate users.
 - d) **Time Server.** The TOE can utilize a Network Time Protocol (NTP) server to synchronize its system clock with a central time source.
 - e) **Web Browser.** The remote administrator can use a web browser to access the Web GUI interface.
 - f) **SSH Client.** The remote administrator can use an SSH client to access the CLI.

2.6 Logical Scope

The logical scope of the TOE comprises the security functions defined in section 2.4.

3 Security Problem Definition

3.1 Threats

Table 1 and Table 2 identify the threats addressed by the TOE.

Identifier	Description
T.ADMIN_ERROR	An administrator may unintentionally install or configure the TOE incorrectly, resulting in ineffective security mechanisms.
T.TSF_FAILURE	Security mechanisms of the TOE may fail, leading to a compromise of the TSF.
T.UNDETECTED_ACTIONS	Malicious remote users or external IT entities may take actions that adversely affect the security of the TOE. These actions may remain undetected and thus their effects cannot be effectively mitigated.
T.UNAUTHORIZED_ACCESS	A user may gain unauthorized access to the TOE data and TOE executable code. A malicious user, process, or external IT entity may masquerade as an authorized entity in order to gain unauthorized access to data or TOE resources. A malicious user, process, or external IT entity may misrepresent itself as the TOE to obtain identification and authentication data.
T.UNAUTHORIZED_UPDATE	A malicious party attempts to supply the end user with an update to the product that may compromise the security features of the TOE.
T.USER_DATA_REUSE	User data may be inadvertently sent to a destination not intended by the original sender.

3.2 Organizational Security Policies

27 Table 5 identifies the Organizational Security Policies (OSPs) that are addressed by the TOE.

Table	5:	OSPs	drawn	from	NDPP
-------	----	------	-------	------	------

Identifier	Description
P.ACCESS_BANNER	The TOE shall display an initial banner describing restrictions of use, legal agreements, or any other appropriate information to which users consent by accessing the TOE.

3.3 Assumptions

Table 6 identifies the assumptions related to the TOE's environment.

Identifier	Description
A.NO_GENERAL_PURPOSE	It is assumed that there are no general-purpose computing capabilities (e.g., compilers or user applications) available on the TOE, other than those services necessary for the operation, administration and support of the TOE.
A.PHYSICAL	Physical security, commensurate with the value of the TOE and the data it contains, is assumed to be provided by the environment.
A.TRUSTED_ADMIN	TOE Administrators are trusted to follow and apply all administrator guidance in a trusted manner.

Table 6: Assumptions drawn from NDPP

4 Security Objectives

4.1 **Objectives for the Operational Environment**

29 Table 7 identifies the objectives for the operational environment.

Table 7: Operational environment objectives drawn from NDPP

Identifier	Description
OE.NO_GENERAL_PURPOSE	There are no general-purpose computing capabilities (e.g., compilers or user applications) available on the TOE, other than those services necessary for the operation, administration and support of the TOE.
OE.PHYSICAL	Physical security, commensurate with the value of the TOE and the data it contains, is provided by the environment.
OE.TRUSTED_ADMIN	TOE Administrators are trusted to follow and apply all administrator guidance in a trusted manner.

4.2 Objectives for the TOE

30 Table 8 identifies the security objectives for the TOE.

Table 8: Objectives drawn from NDPP

Identifier	Description
O.PROTECTED _COMMUNICATIONS	The TOE will provide protected communication channels for administrators, other parts of a distributed TOE, and authorized IT entities.
O.VERIFIABLE_UPDATES	The TOE will provide the capability to help ensure that any updates to the TOE can be verified by the administrator to be unaltered and (optionally) from a trusted source.
O.SYSTEM_MONITORING	The TOE will provide the capability to generate audit data and send those data to an external IT entity.
O.DISPLAY_BANNER	The TOE will display an advisory warning regarding use of the TOE.
O.TOE_ADMINISTRATION	The TOE will provide mechanisms to ensure that only administrators are able to log in and configure the TOE, and provide protections for logged-in administrators.
O.RESIDUAL_INFORMATION _CLEARING	The TOE will ensure that any data contained in a protected resource is not available when the resource is reallocated.

Identifier	Description
O.SESSION_LOCK	The TOE shall provide mechanisms that mitigate the risk of unattended sessions being hijacked.
O.TSF_SELF_TEST	The TOE will provide the capability to test some subset of its security functionality to ensure it is operating properly.

5 Security Requirements

5.1 Conventions

This document uses the following font conventions to identify the operations defined by the CC:

- a) **Assignment.** Indicated with italicized text.
- b) **Refinement.** Indicated with bold text and strikethroughs.
- c) Selection. Indicated with underlined text.
- d) Assignment within a Selection: Indicated with italicized and underlined text.
- e) **Iteration.** Indicated by appending the iteration number in parenthesis, e.g., (1), (2), (3).
- 32 Operations specified by the NDPP (that are not specified by CC Part 2) are also identified using the above convention.
- 33 Explicitly stated SFRs are identified by having a label 'EXT' after the requirement name for TOE SFRs.
- 34 Application notes from the NDPP have not been reproduced except where their inclusion aids the ST reader in understanding the SFRs.

5.2 Extended Components Definition

Table 9 identifies the extended components which are incorporated into this ST. All components are reproduced directly from the NDPP and therefore no further definition is provided in this document.

Component	Title	Source
FAU_STG_EXT.1	External Audit Trail Storage	NDPP
FCS_CKM_EXT.4	Cryptographic Key Zeroization	NDPP
FCS_RBG_EXT.1	Cryptographic Operation (Random Bit Generation)	NDPP
FIA_PMG_EXT.1	Password Management	NDPP
FIA_UIA_EXT.1	User Identification and Authentication	NDPP
FIA_UAU_EXT.2	Password-based Authentication Mechanism	NDPP
FPT_SKP_EXT.1	Protection of TSF Data (for reading of all symmetric keys)	NDPP
FPT_APW_EXT.1	Protection of Administrator Passwords	NDPP
FPT_TUD_EXT.1	Trusted Update	NDPP
FPT_TST_EXT.1	TSF Testing	NDPP

Table 9: Extended Components

Component	Title	Source
FTA_SSL_EXT.1	TSF-initiated Session Locking	NDPP
FCS_IPSEC_EXT.1	Explicit: IPSEC	NDPP
FCS_TLS_EXT.1	Explicit: TLS	NDPP
FCS_SSH_EXT.1	Explicit: SSH	NDPP

5.3 Functional Requirements

Table 10: Summary of SFRs

Requirement	Title
FAU_GEN.1	Audit Data Generation
FAU_GEN.2	User Identity Association
FAU_STG_EXT.1	External Audit Trail Storage
FCS_CKM.1(1)	Cryptographic Key Generation (for asymmetric keys – HTTPS/TLS)
FCS_CKM.1(2)	Cryptographic Key Generation (for asymmetric keys – IPSec)
FCS_CKM.1(3)	Cryptographic Key Generation (for asymmetric keys – SSH)
FCS_CKM_EXT.4	Cryptographic Key Zeroization
FCS_COP.1(1)	Cryptographic Operation (for data encryption/decryption)
FCS_COP.1(2)	Cryptographic Operation (for cryptographic signature – RSA)
FCS_COP.1(3)	Cryptographic Operation (for cryptographic hashing)
FCS_COP.1(4)	Cryptographic Operation (for cryptographic signature - ECDSA)
FCS_RBG_EXT.1(1)	Extended: Cryptographic Operation (Random Bit Generation – SSH/TLS)
FCS_RBG_EXT.1(2)	Extended: Cryptographic Operation (Random Bit Generation - IPSec)
FCS_HTTPS_EXT.1	Explicit: HTTPS
FCS_TLS_EXT.1	Explicit: TLS
FCS_IPSEC_EXT.1	Explicit: IPSEC
FCS_SSH_EXT.1	Explicit: SSH
FDP_RIP.2	Full Residual Information Protection

Requirement	Title	
FIA_PMG_EXT.1	Password Management	
FIA_UIA_EXT.1	User Identification and Authentication	
FIA_UAU_EXT.2	Extended: Password-based Authentication Mechanism	
FIA_UAU.7	Protected Authentication Feedback	
FMT_MTD.1	Management of TSF Data (for general TSF data)	
FMT_SMF.1	Specification of Management Functions	
FMT_SMR.2	Restrictions on Security Roles	
FPT_SKP_EXT.1	Extended: Protection of TSF Data (for reading of all symmetric keys)	
FPT_APW_EXT.1	Extended: Protection of Administrator Passwords	
FPT_STM.1	Reliable Time Stamps	
FPT_TUD_EXT.1	Extended: Trusted Update	
FPT_TST_EXT.1	TSF Testing	
FTA_SSL_EXT.1	TSF-initiated Session Locking	
FTA_SSL.3	TSF-initiated Termination	
FTA_SSL.4	User-initiated Termination	
FTA_TAB.1	Default TOE Access Banners	
FTP_ITC.1	Inter-TSF trusted channel	
FTP_TRP.1	Trusted Path	

5.3.1 Security Audit (FAU)

FAU_GEN.1 Audit Data Generation

FAU_GEN.1.1 The TSF shall be able to generate an audit record of the following auditable events:

- a) Start-up of the audit functions;
- b) All auditable events for the not specified level of audit; and
- c) All administrative actions;
- d) Specifically defined auditable events listed in Table 11.

FAU_GEN.1.2 The TSF shall record within each audit record at least the following information:

- a) Date and time of the event, type of event, subject identity, and the outcome (success or failure) of the event; and
- b) For each audit event type, based on the auditable event definitions of the functional components included in the PP/ST, *information specified in column three of Table 11*.

Requirement	Auditable Events	Additional Audit Record Contents	Guidance Notes
FIA_UIA_EXT.1	All use of the identification and authentication mechanism.	Provided user identity, origin of the attempt	See [SYSLOG] – Security - Warnings
FIA_UAU_EXT.2	All use of the authentication mechanism.	Origin of the attempt (e.g., IP address).	Same audit messages apply as for FIA_UIA_EXT.1.
FPT_STM.1	Changes to the time. The old and new values for the time.	Origin of the attempt (e.g., IP address).	See [SYSLOG] – Security – Warnings for the clock change message. The audit trail will indicate the IP address from which the change was made.
FPT_TUD_EXT.1	Initiation of update.	No additional information.	The audit trail will indicate when a new software image has been copied to the TOE through use of the "copy" command. A complete reboot is required to make an update actually take effect.
FTA_SSL_EXT.1	Any attempts at unlocking of an interactive session.	No additional information.	N/A for this TOE. Interactive sessions are only terminated, not locked.
FTA_SSL.3	The termination of a remote session by the session locking mechanism.	No additional information.	See [SYSLOG] – Security - Warnings
FTA_SSL.4	The termination of an interactive session.	No additional information.	See [SYSLOG] – Security - Warnings
FTP_ITC.1	Initiation of the trusted channel. Termination of the trusted channel. Failure of the trusted channel functions.	Identification of the initiator and target of failed trusted channels establishment attempt.	The Inter-TSF trusted channel is IPsec. Audit messages will be the same as for FCS_IPSEC_EXT.1.
FTP_TRP.1	Initiation of the trusted channel. Termination of the trusted channel. Failures of the trusted path functions.	Identification of the claimed user identity.	Depending on whether the remote administrator is using HTTPS or SSH, the audit messages will be the same as FCS_SSH_EXT.1 or FCS_HTTPS_EXT.1. Audit message 125022 includes the identification of the claimed user identity.
FCS_IPSEC_EXT.1	Failure to establish an IPsec SA.	Reason for failure.	See [SYSLOG] message ID 103001 through 103092
	Establishment/Termination of an IPsec SA.	Non-TOE endpoint of connection (IP address) for both successes and failures.	See [SYSLOG] message ID 103009, 103077

Table 11: Auditable events

Requirement	Auditable Events	Additional Audit Record Contents	Guidance Notes
FCS_TLS_EXT.1	Failure to establish a TLS Session.	Reason for failure.	TLS is only used in the context of HTTPS. Audit messages for TLS will be the same as FCS_HTTPS_EXT.1.
	Establishment/Termination of a TLS session.	Non-TOE endpoint of connection (IP address) for both successes and failures.	TLS is only used in the context of HTTPS. Audit messages for TLS will be the same as FCS_HTTPS_EXT.1.
FCS_SSH_EXT.1	Failure to establish an SSH session	Reason for failure.	See [SYSLOG] message ID 125022
	Establishment/Termination of an SSH session	Non-TOE endpoint of connection (IP address) for both successes and failures.	See [SYSLOG] – Security - Warnings
FCS_HTTPS_EXT.1	Failure to establish a HTTPS Session.	Reason for failure.	See [SYSLOG] message ID 125022
Establishment/Termination of N a HTTPS session. ac fa		Non-TOE endpoint of connection (IP address) for both successes and failures.	See [SYSLOG] – Security - Warnings

FAU_GEN.2 User Identity Association

FAU_GEN.2.1 For audit events resulting from actions of identified users, the TSF shall be able to associate each auditable event with the identity of the user that caused the event.

FAU_STG_EXT.1 External Audit Trail Storage

FAU_STG_EXT.1.1 The TSF shall be able to <u>transmit the generated audit data to an external</u> <u>IT entity</u> using a trusted channel implementing the <u>IPsec</u> protocol.

5.3.2 Cryptographic Support (FCS)

- FCS_CKM.1(1) Cryptographic Key Generation (for asymmetric keys HTTPS/TLS)
- FCS_CKM.1.1(1) **Refinement**: The TSF shall generate **asymmetric** cryptographic keys **used for key establishment** in accordance with:
 - <u>NIST Special Publication 800-56B, "Recommendation for Pair-Wise</u> Key Establishment Schemes Using Integer Factorization Cryptography" for RSA-based key establishment schemes

and specified cryptographic key sizes *equivalent to, or greater than, a symmetric key strength of 112 bits.*

Application Note: This requirement is related to the use of RSA in HTTPS/TLS.

FCS_CKM.1(2) Cryptographic Key Generation (for asymmetric keys – IF				
FCS_CKM.1.1(2)	The TSF shall generate asymmetric cryptographic keys used for key establishment in accordance with:			
	<u>NIST Special Publication 800-56A, "Recommendation for Pair-Wise</u> <u>Key Establishment Schemes Using Discrete Logarithm</u> <u>Cryptography" for finite field-based key establishment schemes;</u>			
	<u>NIST Special Publication 800-56A, "Recommendation for Pair-Wise</u> <u>Key Establishment Schemes Using Discrete Logarithm</u> <u>Cryptography" for elliptic curve-based key establishment schemes</u> <u>and implementing "NIST curves" P-256, P-384 and no other curves</u> (as defined in FIPS PUB 186-3, "Digital Signature Standard") and			
	<u>NIST Special Publication 800-56B, "Recommendation for Pair-Wise</u> <u>Key Establishment Schemes Using Integer Factorization</u> <u>Cryptography" for RSA-based key establishment schemes</u>			
	and specified cryptographic key sizes <i>equivalent to, or greater than, a</i> symmetric key strength of 112 bits.			
Application Note:	This requirement is related to the use of Diffie-Hellman, RSA and/or ECDSA in IPSec (depending on configuration for the multiple uses of IPSec).			
FCS_CKM.1(3)	Cryptographic Key Generation (for asymmetric keys – SSH)			
FCS_CKM.1.1(3)	The TSF shall generate asymmetric cryptographic keys used for key establishment in accordance with:			
	 <u>NIST Special Publication 800-56A, "Recommendation for Pair-Wise</u> <u>Key Establishment Schemes Using Discrete Logarithm</u> <u>Cryptography" for finite field-based key establishment schemes;</u> 			
	and specified cryptographic key sizes <i>equivalent to, or greater than, a</i> symmetric key strength of 112 bits.			
Application Note:	This requirement is related to the use of Diffie-Hellman in SSH.			
FCS_CKM_EXT.4	Cryptographic Key Zeroization			
FCS_CKM_EXT.4.1	The TSF shall zeroize all plaintext secret and private cryptographic keys and CSPs when no longer required.			
Application Note:	"Cryptographic Critical Security Parameters" are defined in FIPS 140-2 as "security-related information (e.g., secret and private cryptographic keys, and authentication data such as passwords and PINs) whose disclosure or modification can compromise the security of a cryptographic module."			
	The zeroization indicated above applies to each intermediate storage area for plaintext key/cryptographic critical security parameter (i.e., any storage, such as memory buffers, that is included in the path of such data) upon the transfer of the key/cryptographic critical security parameter to another location.			

FCS_COP.1(1) Cryptographic Operation (for data encryption/decryption)

- FCS_COP.1.1(1) **Refinement**: The TSF shall perform *encryption and decryption* in accordance with a specified cryptographic algorithm *AES operating in AES-CBC, AES-CCM, AES-GCM* and cryptographic key sizes *128-bits, 256-bits, and <u>192 bits</u>* that meet the following:
 - FIPS PUB 197, "Advanced Encryption Standard (AES)"
 - NIST SP 800-38A, NIST SP 800-38C, NIST SP 800-38D

FCS_COP.1(2) Cryptographic Operation (for cryptographic signature – RSA)

FCS_COP.1.1(2) **Refinement:** The TSF shall perform **cryptographic signature services** in accordance with a:

RSA Digital Signature Algorithm (rDSA) with a key size (modulus) of 2048 bits or greater

that meets the following:

- FIPS PUB 186-2 or FIPS PUB 186-3, "Digital Signature Standard"
- FCS_COP.1(3) Cryptographic Operation (for cryptographic hashing)
- FCS_COP.1.1(3) **Refinement:** The TSF shall perform *cryptographic hashing services* in accordance with a specified cryptographic algorithm <u>SHA-1, SHA-256,</u> <u>SHA-384]</u> and message digest sizes <u>160, 256, 384</u> bits that meet the following: *FIPS Pub 180-3, "Secure Hash Standard."*
- FCS_COP.1(4) Cryptographic Operation (for keyed-hash message authentication)
- FCS_COP.1.1(4) Refinement: The TSF shall perform *keyed-hash message authentication* in accordance with a specified cryptographic algorithm HMAC-<u>SHA-1,</u> <u>SHA-256, SHA-384</u>, *key size 160-bit, 256-bit, 384-bit* and message digest sizes <u>160, 256, 384</u> bits that meet the following: *FIPS Pub 198-1, "The Keyed Hash Message Authentication Code, and FIPS Pub 180-3, "Secure Hash Standard."*
- FCS_COP.1(5) Cryptographic Operation (for cryptographic signature ECDSA)
- FCS_COP.1.1(5) **Refinement:** The TSF shall perform **cryptographic signature services** in accordance with a:

Elliptic Curve Digital Signature Algorithm (ECDSA) with a key size of 256 bits or greater

that meets the following:

• FIPS PUB 186-3, "Digital Signature Standard"

• The TSF shall implement "NIST curves" P-256, P-384 and <u>no</u> <u>other curves</u> (as defined in FIPS PUB 186-3, "Digital Signature Standard").

Application Note: This component is iterated as instructed by the application notes of the NDPP.

FCS_RBG_EXT.1(1) Extended: Cryptographic Operation (Random Bit Generation – SSH/TLS)

- FCS_RBG_EXT.1.1(1) The TSF shall perform all random bit generation (RBG) services in accordance with <u>FIPS Pub 140-2 Annex C: X9.31 Appendix 2.4</u> using <u>AES</u> seeded by an entropy source that accumulated entropy from a <u>TSF-hardware-based noise source.</u>
- FCS_RBG_EXT.1.2 (1) The **deterministic** RBG shall be seeded with a minimum of <u>256 bits</u> of entropy at least equal to the greatest bit length of the keys and authorization factors that it will generate.

FCS_RBG_EXT.1(2) Extended: Cryptographic Operation (Random Bit Generation - IPSec)

- FCS_RBG_EXT.1.1(2) The TSF shall perform all random bit generation (RBG) services in accordance with <u>NIST Special Publication 800-90</u> using <u>CTR_DRBG</u> (<u>AES</u>) seeded by an entropy source that accumulated entropy from a <u>TSF-hardware-based noise source</u>.
- FCS_RBG_EXT.1.2(2) The deterministic RBG shall be seeded with a minimum of <u>256 bits</u> of entropy at least equal to the greatest bit length of the keys and authorization factors that it will generate.

FCS_HTTPS_EXT.1 Explicit: HTTPS

- FCS_HTTPS_EXT.1.1 The TSF shall implement the HTTPS protocol that complies with RFC 2818.
- FCS_HTTPS_EXT.1.2 The TSF shall implement HTTPS using TLS as specified in FCS_TLS_EXT.1.

FCS_TLS_EXT.1 Explicit: TLS

FCS_TLS_EXT.1.1 The TSF shall implement one or more of the following protocols <u>TLS 1.2</u> (<u>RFC 5246</u>) supporting the following ciphersuites.

Mandatory Ciphersuites:

TLS_RSA_WITH_AES_128_CBC_SHA TLS_RSA_WITH_AES_256_CBC_SHA TLS_DHE_RSA_WITH_AES_128_CBC_SHA TLS_DHE_RSA_WITH_AES_256_CBC_SHA

Optional Ciphersuites:

TLS_RSA_WITH_AES_128_CBC_SHA256 TLS_RSA_WITH_AES_256_CBC_SHA256 TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

FCS_IPSEC_EXT.1 Explicit: IPSEC

FCS_IPSEC_EXT.1.1 The TSF shall implement the IPsec protocol ESP as defined by RFC 4303 using the cryptographic algorithms AES-CBC-128, AES-CBC-256 (both specified by RFC 3602), <u>AES-GCM-128, AES-GCM-256 as specified in RFC 4106</u>, and using <u>IKEv1 as defined in RFCs 2407, 2408</u>, <u>2409, RFC 4109</u>, and <u>RFC 4868 for hash functions</u>; IKEv2 as defined in RFCs 5996 (with mandatory support for NAT traversal as specified in section 2.23), 4307, and <u>RFC 4868 for hash functions</u>.

- FCS_IPSEC_EXT.1.2 The TSF shall ensure that IKEv1 Phase 1 exchanges use only main mode.
- FCS_IPSEC_EXT.1.3 The TSF shall ensure that IKEv1 SA lifetimes are able to be limited to 24 hours for Phase 1 SAs and 8 hours for Phase 2 SAs.
- FCS_IPSEC_EXT.1.4 The TSF shall ensure that IKEv1 SA lifetimes are able to be limited to 200 MB of traffic for Phase 2 SAs.
- FCS_IPSEC_EXT.1.5 The TSF shall ensure that all IKE protocols implement DH Groups 14 (2048-bit MODP), and <u>19 (256-bit Random ECP), 20 (384-bit Random ECP)</u>, *no other DH groups*.
- FCS_IPSEC_EXT.1.6 The TSF shall ensure that all IKE protocols implement Peer Authentication using the <u>*rDSA* or ECDSA</u> algorithm.
- FCS_IPSEC_EXT.1.7 The TSF shall support the use of pre-shared keys (as referenced in the RFCs) for use in authenticating its IPsec connections.
- FCS_IPSEC_EXT.1.8 The TSF shall support the following:

1. Pre-shared keys shall be able to be composed of any combination of upper and lower case letters, numbers, and special characters: <u>all</u> <u>printable ASCII characters</u>;

2. Pre-shared keys of 22 characters and between 6 and 64 characters.

FCS_SSH_EXT.1 Explicit: SSH

FCS_SSH_EXT.1.1 The TSF shall implement the SSH protocol that complies with RFCs 4251, 4252, 4253, and 4254.

FCS_SSH_EXT.1.2	The TSF shall ensure that the SSH protocol implementation supports the following authentication methods as described in RFC 4252: public keybased, password-based.	
FCS_SSH_EXT.1.3	The TSF shall ensure that, as described in RFC 4253, packets greater	

than 32,768 bytes in an SSH transport connection are dropped.

- FCS_SSH_EXT.1.4 The TSF shall ensure that the SSH transport implementation uses the following encryption algorithms: AES-CBC-128, AES-CBC-256, <u>no other</u> algorithms.
- FCS_SSH_EXT.1.5 The TSF shall ensure that the SSH transport implementation uses SSH_RSA and <u>no other public key algorithms</u> as its public key algorithm(s).
- FCS_SSH_EXT.1.6 The TSF shall ensure that data integrity algorithms used in SSH transport connection is <u>hmac-sha1, hmac-sha1-96</u>.
- FCS_SSH_EXT.1.7 The TSF shall ensure that diffie-hellman-group14-sha1 is the only allowed key exchange method used for the SSH protocol.

5.3.3 User Data Protection (FDP)

FDP_RIP.2 Full Residual Information Protection

FDP_RIP.2.1 The TSF shall ensure that any previous information content of a resource is made unavailable upon the <u>deallocation of the resource from</u> all objects.

5.3.4 Identification and Authentication (FIA)

FIA_PMG_EXT.1 Password Management

FIA_PMG_EXT.1.1 The TSF shall provide the following password management capabilities for administrative passwords:

2. Minimum password length shall settable by the Security Administrator, and support passwords of 15 characters or greater;

5.3.5 User Identification and Authentication (FIA_UIA)

FIA_UIA_EXT.1 User Identification and Authentication

- FIA_UIA_EXT.1.1 The TSF shall allow the following actions prior to requiring the non-TOE entity to initiate the identification and authentication process:
 - Display the warning banner in accordance with FTA_TAB.1;
 - no other actions

FIA_UIA_EXT.1.2	The TSF shall require each administrative user to be successfully
	identified and authenticated before allowing any other TSF-mediated
	actions on behalf of that administrative user.

FIA_UAU_EXT.2 Extended: Password-based Authentication Mechanism

FIA_UAU_EXT.2.1 The TSF shall provide a local password-based authentication mechanism, <u>Radius username/password authentication and Public Key</u> <u>authentication</u>] to perform administrative user authentication.

FIA_UAU.7 Protected Authentication Feedback

- FIA_UAU.7.1 The TSF shall provide only *obscured feedback* to the administrative user while the authentication is in progress at the local console.
- Application Note: "Obscured feedback" implies the TSF does not produce a visible display of any authentication data entered by a user (such as the echoing of a password), although an obscured indication of progress may be provided (such as an asterisk for each character). It also implies that the TSF does not return any information during the authentication process to the user that may provide any indication of the authentication data.

5.3.6 Security Management (FMT)

- FMT_MTD.1 Management of TSF Data (for general TSF data)
- FMT_MTD.1.1 The TSF shall restrict the ability to manage the TSF data to the Security Administrators.

FMT_SMF.1 Specification of Management Functions

- FMT_SMF.1.1 The TSF shall be capable of performing the following management functions:
 - Ability to administer the TOE locally and remotely;
 - Ability to update the TOE, and to verify the updates using <u>digital</u> <u>signature</u> capability prior to installing those updates;
 - Ability to configure the cryptographic functionality;
- FMT_SMR.2 Restrictions on Security Roles
- FMT_SMR.2.1 The TSF shall maintain the roles:
 - Authorized Administrator
- FMT_SMR.2.2 The TSF shall be able to associate users with roles.
- FMT_SMR.2.3 The TSF shall ensure that the conditions
 - Authorized Administrator role shall be able to administer the TOE locally;

Authorized Administrator role shall be able to administer the TOE remotely;

are satisfied.

5.3.7 Protection of the TSF (FPT)

FPT_SKP_EXT.1 Extended: Protection of TSF Data (for reading of all symmetric keys)

FPT_SKP_EXT.1.1 The TSF shall prevent reading of all pre-shared keys, symmetric keys, and private keys.

Application Note: The intent of the requirement is that an administrator is unable to read or view the identified keys (stored or ephemeral) through "normal" interfaces. While it is understood that the administrator could directly read memory to view these keys, do so is not a trivial task and may require substantial work on the part of an administrator. Since the administrator is considered a trusted agent, it is assumed they would not endeavor in such an activity.

FPT_APW_EXT.1 Extended: Protection of Administrator Passwords

- FPT_APW_EXT.1.1 The TSF shall store passwords in non-plaintext form.
- FPT_APW_EXT.1.2 The TSF shall prevent the reading of plaintext passwords.
- Application Note: The intent of the requirement is that raw password authentication data are not stored in the clear, and that no user or administrator is able to read the plaintext password through "normal" interfaces. An all-powerful administrator of course could directly read memory to capture a password but is trusted not to do so.
- FPT_STM.1 Reliable Time Stamps
- FPT_STM.1.1 The TSF shall be able to provide reliable time stamps for its own use.

FPT_TUD_EXT.1 Extended: Trusted Update

- FPT_TUD_EXT.1.1 The TSF shall provide security administrators the ability to query the current version of the TOE firmware/software.
- FPT_TUD_EXT.1.2 The TSF shall provide security administrators the ability to initiate updates to TOE firmware/software.
- FPT_TUD_EXT.1.3 The TSF shall provide a means to verify firmware/software updates to the TOE using a <u>digital signature mechanism</u> prior to installing those updates.

FPT_TST_EXT.1 TSF Testing

FPT_TST_EXT.1.1 The TSF shall run a suite of self-tests during initial start-up (on power on) to demonstrate the correct operation of the TSF.

5.3.8 TOE Access (FTA)

FTA_SSL_EXT.1 TSF-initiated Session Locking

- FTA_SSL_EXT.1.1 The TSF shall, for local interactive sessions:
 - terminate the session

after a Security Administrator-specified time period of inactivity.

- FTA_SSL.3 TSF-initiated Termination
- FTA_SSL.3.1 **Refinement:** The TSF shall terminate **a remote** interactive session after a Security Administrator-configurable time interval of session inactivity.
- FTA_SSL.4 User-initiated Termination
- FTA_SSL.4.1 The TSF shall allow Administrator-initiated termination of the Administrator's own interactive session.
- FTA_TAB.1 Default TOE Access Banners
- FTA_TAB.1.1 **Refinement**: Before establishing **an administrative user** session the TSF shall display **a Security Administrator-specified** advisory **notice and consent** warning message regarding use of the TOE.

5.3.9 Trusted Path/Channels (FTP)

FTP_ITC.1 Inter-TSF trusted channel

FTP_ITC.1.1Refinement: The TSF shall use IPsec to provide a trusted
communication channel between itself and authorized IT entities
supporting the following capabilities: audit server, authentication
server that is logically distinct from other communication channels and
provides assured identification of its end points and protection of the
channel data from disclosure and detection of modification of the channel
data.

- FTP_ITC.1.2 The TSF shall permit the TSF, *or the authorized IT entities* to initiate communication via the trusted channel.
- FTP_ITC.1.3 The TSF shall initiate communication via the trusted channel for Syslog messages and RADIUS authentication.

FTP_TRP.1 Trusted Path

FTP_TRP.1.1 Refinement: The TSF shall use <u>SSH, TLS/HTTPS</u> to provide a trusted communication path between itself and remote administrators that is

logically distinct from other communication paths and provides assured identification of its end points and protection of the communicated data from *disclosure and detection of modification of the communicated data*.

- FTP_TRP.1.2 **Refinement:** The TSF shall permit **remote administrators** to initiate communication via the trusted path.
- FTP_TRP.1.3 The TSF shall require the use of the trusted path for *initial administrator authentication and all remote administration actions*.

5.4 Assurance Requirements

The TOE security assurance requirements, summarized in Table 12, are drawn from the NDPP commensurate with EAL1. In accordance with the NDPP, these are supplemented with additional assurance activities as identified at Annex A: NDPP Assurance Activities.

Assurance Class	Components Description		
Development	ADV_FSP.1	Basic Functional Specification	
Guidance Documents	AGD_OPE.1	Operational User Guidance	
	AGD_PRE.1	Preparative User Guidance	
Tests	ATE_IND.1	Independent Testing - conformance	
Vulnerability Assessment	AVA_VAN.1	Vulnerability Analysis	
Life Cycle Support	ALC_CMC.1	Labelling of the TOE	
	ALC_CMS.1	TOE CM Coverage	

Table 12:	Assurance	Requirements
-----------	-----------	--------------

6 **TOE Summary Specification**

6.1 Security Functions

6.1.1 Protected Communications

Related SFRs:	FCS_CKM.1(1), FCS_CKM.1(2), FCS_CKM.1(3), FCS_CKM_EXT.4, FCS_COP.1(1), FCS_COP.1(2), FCS_COP.1(3), FCS_COP.1(4).
	FCS_RBG_EXT.1(1), FCS_RBG_EXT.1(2), FPT_SKP_EXT.1, FTP_ITC.1, FTP_TRP.1, FCS_IPSEC_EXT.1, FCS_SSH_EXT.1, FCS_TLS_EXT.1, FCS_HTTPS_EXT.1

37 The TOE protects the following communication flows:

- a) **WebUI.** Remote administration via the WebUI is protected using TLS/HTTPS.
 - TLS/HTTPS is enabled by default.
- b) **CLI.** Remote administration via the Command Line Interface (CLI) is protected using SSHv2.
 - SSHv2 is enabled by default
- c) **Syslog.** Syslog messages are protected using IPSec.
 - To set up **site**-to-site IPsec refer to [USER] page 288 "Working with Site-to-Site VPNs". Configure the IP address of the syslog server as the destination network.
- d) **RADIUS.** RADIUS authentication messages are protected using IPSec.
 - Same configuration as syslog set up site-to-site IPsec, and configure the IP address of the RADIUS server as the destination network.
- 38 Note: The TOE must be operated in a FIPS 140-2 approved mode of operation to ensure that only approved cryptographic operations and algorithms are supported. To enable FIPS mode, use the command "fips enable" from CLI config mode, as documented in the FIPS 140-2 Security Policy. Operation in non-FIPS mode is not part of this evaluation.
- 39 **Note:** RBG services are not configurable.
- 40 **Note:** By default, the TOE enables the FTP service for the purpose of providing software images to wireless access points. This service should be disabled when operating in an approved mode of operation. To disable the FTP service, use the CLI command "firewall disable-ftp-server".

6.1.1.1 TLS\HTTPS

Related SFRs: FCS_CKM.1(1), FCS_CKM_EXT.4, FCS_COP.1(1), FCS_COP.1(2) FCS_COP.1(3), FCS_COP.1(4), FCS_RBG_EXT.1(1), FPT_SKP_E FTP_TRP.1, FCS_TLS_EXT.1, FCS_HTTPS_EXT.1	
	TOE implemente a web converthat provides the Wahl II. The web converte

The TOE implements a web server that provides the WebUI, The web server is configured by default to use HTTPS. The TOE's implementation of HTTPS uses TLS 1.2 (RFC 5246) without extensions, supporting the ciphersuites identified in FCS_TLS_EXT.1. The available ciphersuites are not configurable. If the web server has been configured to use an RSA certificate, the TOE will use RSA-based TLS ciphersuites. If the web server has been configured to use an ECDSA certificate, the TOE will use ECDSA-based TLS ciphersuites.

- 42 The TOE may be configured to support username/password authentication, client certificate authentication or both.
- 43 Refer to [USER] Chapter 35 Management Access. "Configuring Certificate Authentication for WebUI Access" for more information.

6.1.1.2 IPSec

Related SFRs:	FCS_CKM.1(2), FCS_CKM_EXT.4, FCS_COP.1(1), FCS_COP.1(2),
	FCS_COP.1(3), FCS_COP.1(4), FCS_COP.1(5), FCS_RBG_EXT.1(2),
	FPT_SKP_EXT.1, FTP_ITC.1, FCS_IPSEC_EXT.1

- 44 IPsec is documented in [USER] Chapter 18 "Virtual Private Networks"
- 45 IPSec can be configured to secure communication with a Syslog server or Radius server.
- 46 The TOE's IPSec implementation has the following characteristics:
 - a) The algorithms specified at FCS_IPSEC_EXT.1.1 are supported. In addition, AES-CBC-192 and 3DES are also supported by the TOE. These algorithms have not been evaluated during the Common Criteria evaluation and must not be used.
 - b) IKEv1 and IKEv2 are supported.
 - c) Only tunnel mode is supported. IPsec transport mode is not supported.
 - d) The "confidentiality only" ESP mode is disabled in the TOE. This behaviour has been hard-coded by excluding the related configuration option from the administrative interfaces (WebUI and CLI).
 - e) Aggressive mode is not used for IKEv1 Phase 1 exchanges only main mode is available.
 - Aggressive mode must be disabled in order to ensure it is not used. This is documented in [CLI] and is performed using the command "crypto-local isakmp disable-aggressive-mode".
 - f) Lifetimes for IKEv1 SAs (both Phase 1 and Phase 2) are established during configuration of the IKE policies by specifying the number of seconds or the number of kb for the SA lifetime.
 - Setting the lifetime in number of seconds is documented in [USER} Chapter 18. Volume (traffic) based lifetimes are configured using "crypto dynamic-map set security-association lifetime kilobytes" as documented in [CLI].
 - g) The TOE supports the DH groups listed at FCS_IPSEC_EXT.1.5. One DH group is configured per IKE policy. IKE policies are incorporated into IPSec maps. IPsec maps are given a priority for peer negotiation. Negotiation requests for security associations will try to match the highest-priority map first. If that map does not match, the negotiation request will continue down the list to the next-highest priority map until a match is made.
 - h) All IKE protocols implement DH Groups 14 (2048-bit MODP), 19 (256-bit Random ECP), and 20 (384-bit Random ECP. DH group 2 (1024-bit MODP) is also supported by the TOE – it was not evaluated during the Common Criteria evaluation and must not be used.
 - i) IKE peer authentication is performed with either an IKE pre-shared key or digital certificates. IKE policies may be configured to use RSA (rDSA) or ECDSA authentication when using digital certificates. FCS_COP.1(2)

requires RSA key sizes of 2048 bits or greater. The TOE supports an RSA key size of 1024 bits in addition to 2048 bits. The administrator must not load an RSA X.509 certificate with a key size smaller than 2048 bits when operating in the Common Criteria evaluated configuration.

- Pre-shared keys are manually entered during IKE policy configuration. The j) pre-shared key is used in combination with an agreed DH secret key and an exchanged nonce to generate session keys (SKEYs) which are used to authenticate the two peers to each other as well as to encrypt subsequent IKE exchanges.
- k) Pre-shared keys conform to the character and length requirements at FCS IPSEC EXT.1.8.
- Only HMAC-SHA-1/256/384 are supported, with key and digest sizes of 160, I) 256, and 384 bits respectively. The TOE prevents configuration of MD5 while operating in FIPS mode.
- Random number generator services for IPsec are provided automatically by m) the TOE and do not require administrator configuration.

6.1.1.3 SSH

Related SF	Rs: FCS_CKM.1(3), FCS_CKM_EXT.4, FCS_COP.1(1), FCS_COP.1(3), FCS_COP.1(4), FCS_RBG_EXT.1(1), FPT_SKP_EXT.1, FTP_TRP.1, FCS_SSH_EXT.1
47	The CLI can be accessed from an SSHv2 enabled client. The TOE's SSH

- implementation has the following characteristics:
 - a) SSHv2 is supported
 - Public key and password authentication is supported b)
 - [USER] Chapter 35, "Enabling Public Key Authentication for SSH Access" provides more information.
 - c) The following algorithms are implemented: SSH_RSA for public keys, AES-CBC-128 and AES-CBC-256 for encryption, HMAC-SHA1 and HMAC-SHA1-96 for integrity. Note: The encryption and integrity algorithms used are not configurable by the administrator.
 - d) Packets greater than 32,768 bytes in an SSH transport connection are dropped.
 - All key exchanges for SSH are performed using DH group 14. This behavior is e) hard-coded into the TOE.
 - f) No optional protocol characteristics are implemented.

6.1.2 Verifiable Updates

Related SFRs: FPT TUD EXT.1, FCS COP.1(2), FCS COP.1(3)

- Administrators can update the TOE executable code using image files manually 48 downloaded from the Aruba support portal. The administrator may perform an update from either the WebUI or CLI.
 - Upgrade instructions are documented in the release notes for each software release, which will be posted in the same directory as the image file on the support portal.

- 49 A SHA-256 hash of each update image is digitally signed using Aruba's code signing certificate (RSA 2048 bit). When an update is initiated, the TOE verifies the digital signature with a stored certificate (stored in Boot ROM).
- 50 Upon successful verification, the TOE boots using the new image. Should verification fail, the TOE will enter into an error state. The TOE's error state will allow direct console access only, where an administrator can change to a new file partition or TFTP a new image and re-boot.

6.1.3 System Monitoring

Related SFRs: FAU_GEN.1, FAU_GEN.2, FAU_STG_EXT.1, FPT_STM.1

- 51 The TOE maintains an audit log of administrative and security relevant events. Logs can optionally be delivered to a Syslog server. The administrator can configure the TOE to protect Syslog messages using IPSec as described in section 6.1.1.2. Further detail regarding Syslog and audit messages is provided in the guidance document: ArubaOS 6.3 Syslog Messages, Ref 0510838-01.
 - [USER] Chapter 35, Management Access->Configuring Logging provides more details on configuring to use Syslog. Select all Categories and all Subcategories. Set the logging level to "Warning" for all Categories and Subcategories to generate all of the security event logs as defined in FAU_GEN.1 Table 15.
 - If Syslog has been enabled, all audit logs are simultaneously written to both the local audit log and the syslog server.
- 52 **Note:** The command "show audit-trail" as documented in [CLI] is used to show a log of all administrative actions. By default, only commands which change system behaviour are logged. By setting the configuration parameter "audit-trail all", all commands will be logged including commands which do not alter system behaviour.
- 53 The TOE uses an internal system clock to provide reliable timestamps for audit logs. The system clock can be set manually or by configuring the TOE to use a Network Time Protocol (NTP) server to synchronize its system clock with a central time source. If connectivity to the NTP server is lost, the TOE continues to maintain time using the internal system clock and re-synchronizes with the NTP server once connectivity is re-established.
 - [USER] Chapter 35, Management Access->Setting the System Clock provides instructions on setting the system clock.
- 54 In the event that a TOE network interface is overwhelmed by traffic the TOE will drop packets. An administrator can examine interface counters (using the 'show interface' command) to determine if the TOE has dropped packets due to being overwhelmed by traffic.
- 55 The TOE's local audit log consists of three files (for each audit category) that are 31,768 bytes each. The log files are filled consecutively. Once the last file is full, the TOE will begin overwriting the first log file. The log files may only be access by an Authorized Administrator – described in the following section.

6.1.4 Secure Administration

Related SFRs: FIA_UIA_EXT.1, FIA_UIA_EXT.2, FIA_PMG_EXT.1, FIA_UAU.7, FMT_MTD.1, FMT_SMF.1, FMT_SMR.2, FPT_APW_EXT.1, FTA_SSL_EXT.1, FTA_SSL.3, FTA_SSL.4, FTA_TAB.1, FPT_STM.1

56 Initial configuration of the TOE is performed using a question-and-answer dialog presented through the console port after the TOE is powered on for the first time, or

when the configuration of the TOE has been erased using the "write erase" command. While in this default state, no TOE services are available and the TOE does not forward traffic through network interfaces. During the initial configuration dialog, an administrative username and password is established. Once initial configuration has been completed, the TOE reboots into a secure state.

57 The TOE provides two interfaces for administration: WebUI and CLI. The WebUI is accessed via TLS/HTTPS. The CLI is accessed via SSH or direct console. For both TLS/HTTPS and SSH the TOE can be configured to use username/password only, public key authentication only or both username/password and public key authentication. Direct console to the CLI only supports username/password.

- [USER] Chapter 35 "Management Access" has documentation for setting these options.
- 58 The TOE can be configured to use a Radius server for username/password authentication. The same user repository (either local or Radius) is used from both WebUI and CLI access. Passwords stored locally are encrypted using the TOE's KEK and cannot be viewed via any normal interface. Password complexity rules are enforced by the TOE (see FIA_PMG_EXT.1), and passwords are obscured during entry.
 - [USER] Chapter 35 "Enabling RADIUS Server Authentication" and "Implementing a Specific Password Management Policy" provide more instruction on how to configure passwords.
 - [USER] Ch. 35 Implementing a Specific Management Password Policy describes setting minimum password length.
- 59 A successful logon takes place when a recognized username/password combination is provided and/or a recognized X.509 client certificate is presented by the administrator's web browser or SSH client.
- No administrative functions are accessible prior to administrator log-in. Before establishing an administrative user session the TOE displays an administrator specified advisory notice and consent warning message regarding use of the TOE.
 - Banner configuration is documented in the [CLI] under "banner motd"
- 61 The TOE associates users with their assigned role upon successful authentication. The "Authorized Administrator" role defined by the NDPP equates to the "root" role implemented by the TOE.
- For both the WebUI and CLI, administrative sessions will terminate according to an administrator defined period of inactivity. The system clock as described in paragraph 52 is used to time the period of inactivity. Administrators can terminate their own session by logging out.
 - [USER] Chapter 35, "Setting an Administrator Session Timeout" provides instructions on setting session timeouts.

The system clock time is also used for timestamps in audit log records. [USER} Chapter 35 - Setting the System Clock describes how the system clock can be changed.

6.1.5 Residual Information Clearing

Related SFRs: FDP_RIP.2

63 The TOE ensures that network packets sent from the TOE do not include data "left over" from the processing of previous network information.

64 The memory buffers used in packet processing are sanitized subsequent to each packet being processed. Buffers are made logically unavailable by overwriting the buffer headers with zeroes.

6.1.6 Self Test

Related SFRs: FPT_TST_EXT.1

- 65 The TOE performs both power-up and conditional self-tests to verify correct and secure operation. In the event that any self-test fails, the TOE will enter an error state, log the error, and reboot automatically. Failure of self-tests requires return to manufacturer. Relevant log messages are identified in the following supplements:
 - Aruba 3000, 6000/M3 and Dell W-3000, W-6000M3 Controllers with ArubaOS FIPS Firmware Non-Proprietary Security Policy FIPS 140-2 Level 2 Release Supplement. Ref 0510541-16.
 - Aruba 620, 650 and Dell W- 620, W-650 Controllers with ArubaOS FIPS Firmware Non-Proprietary Security Policy FIPS 140-2 Level 2 Release Supplement. Ref 0510888-02.
- 66 The following test are performed:
 - a) ArubaOS OpenSSL Module:
 - i) AES Known Answer Tests (KAT)
 - ii) Triple-DES KAT
 - iii) RNG KAT
 - iv) RSA KAT
 - v) ECDSA (sign/verify)
 - vi) SHA (SHA1, SHA256 and SHA384) KAT
 - vii) HMAC (HMAC-SHA1, HMAC-SHA256 and HMAC-SHA384) KAT
 - b) ArubaOS Cryptographic Module
 - i) AES KAT
 - ii) Triple-DES KAT
 - iii) SHA (SHA1, SHA256, SHA384 and SHA512) KAT
 - iv) HMAC (HMAC-SHA1, HMAC-SHA256, HMAC-SHA384 and HMAC-SHA512) KAT
 - v) RSA (sign/verify)
 - vi) ECDSA (sign/verify)
 - vii) FIPS 186-2 RNG KAT
 - c) ArubaOS Uboot BootLoader Module
 - i) Firmware Integrity Test: RSA 2048-bit Signature Validation
 - d) Aruba Hardware Known Answer Tests:
 - i) AES KAT
 - ii) AES-CCM KAT
 - iii) AES-GCM KAT
 - iv) Triple DES KAT

- v) HMAC (HMAC-SHA1, HMAC-SHA256, HMAC-SHA384 and HMAC-SHA512) KAT
- The following Conditional Self-tests are performed by the TOE:
 - a) **Continuous Random Number Generator Test.** This test is run upon generation of random data by the switch's random number generators to detect failure to a constant value. The module stores the first random number for subsequent comparison, and the module compares the value of the new random number with the random number generated in the previous round and enters an error state if the comparison is successful.
 - b) Bypass test. Ensures that the system has not been placed into a mode of operation where cryptographic operations have been bypassed, without the explicit configuration of the cryptographic officer. To conduct the test, a SHA1 hash of the configuration file is calculated and compared to the last known good hash of the configuration file. If the hashes match, the test is passed. Otherwise, the test fails (indicating possible tampering with the configuration file) and the system is halted.
 - c) **RSA Pairwise Consistency test.** When the TOE generates a public and private key pair, it carries out pair-wise consistency tests for both encryption and digital signing. The test involves encrypting a randomly-generated message with the public key. If the output is equal to the input message, the test fails. The encrypted message is then decrypted using the private key and if the output is not equal to the original message, the test fails. The same random message is then signed using the private key and then verified with the public key. If the verification fails, the test fails.
 - d) **ECDSA Pairwise Consistency test.** See above RSA pairwise consistency test description.
 - e) **Firmware Load Test.** This test is identical to the Uboot BootLoader Module Firmware Integrity Test, except that it is performed at the time a new software image is loaded onto the system. Instead of being performed by the BootLoader, the test is performed by the ArubaOS operating system. If the test fails, the newly loaded software image will not be copied into the image partition, and instead will be deleted. Refer to section 6.1.2.
- 68 Known-answer tests (KAT) involve operating the cryptographic algorithm on data for which the correct output is already known and comparing the calculated output with the previously generated output (the known answer). If the calculated output does not equal the known answer, the known-answer test shall fail.
- 69 The above tests are sufficient to demonstrate that the TSF is operating correctly by verifying the integrity of the TSF and the correct operation of cryptographic components.

6.2 Cryptography

- 70 This section incorporates additional detail regarding cryptography required by the NDPP.
- The TOE uses cryptographic functions provided by FIPS 140-2 validated modules:
 - CMVP Certificate #1727
 - CMVP Certificate #1865
 - FIPS Algorithm certificates issued: AES #2689, #2680, #2677. Triple-DES #1607, #1605. RSA #1380, #1379, #1376. ECSDA

67

#469, #466. SHS #2250, #2249, #2246. RNG #1250. DRBG #433. HMAC #1666, #1663. KBKDF #16. Component Validation #251, #232, #152, #150. The CAVP list for each algorithm can be found at http://csrc.nist.gov/groups/STM/cavp/validation.html.

6.2.1 Standards Conformance – Key Generation / Establishment

6.2.1.1 RSA

- 72 The TOE utilizes RSA for key establishment within HTTPS/TLS and IPSec. The TOE's implementation of RSA conforms to NIST Special Publication 800-56B, "Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization Cryptography".
- 73 Sections 5 through 9 of NIST Special Publication 800-56B are applicable to the TOE. The TOE conforms to all shall, shall-not, should and should-not statements. There are no TOE-specific implementation extensions.

6.2.1.2 Diffie-Hellman

- 74 The TOE utilizes Diffie-Hellman within IPSec and SSH. The TOE's implementation of Diffie-Hellman conforms to NIST Special Publication 800-56A, "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography".
- 75 Diffie-Hellman relevant subsections of sections 5 through 8 of NIST Special Publication 800-56A are applicable to the TOE. The TOE conforms to all shall, shallnot, should and should-not statements. There are no TOE-specific implementation extensions.

6.2.1.3 ECDSA

- 76 The TOE utilizes ECDSA within IPSec. The TOE's implementation of ECDSA conforms to NIST Special Publication 800-56A, "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography".
- 77 Elliptic Curve Cryptography (ECC) relevant subsections of sections 5 through 8 of NIST Special Publication 800-56A are applicable to the TOE. The TOE conforms to all shall, shall-not, should and should-not statements. There are no TOE-specific implementation extensions.

6.2.2 Critical Security Parameters

- 78 Table 13 below identifies all secret and private keys and Critical Security Parameters (CSPs), the related zeroization procedures and whether any interface is available to view the plaintext key.
- Note that the plaintext keys identified in Table 13 are not able to be viewed via a 'normal user interface', that is, no user interface is provided by design and therefore the keys are protected. Per the NDPP FPT_SKP_EXT.1 application note, it is understood that the administrator could directly read memory to view these keys, [however to] do so is not a trivial task and may require substantial work on the part of an administrator. Since the administrator is considered a trusted agent, it is assumed they would not endeavor in such an activity. Shared secrets entered by a user are only viewable during entry.

80

Security Target

# N	lame	CSPs type	Generation	Storage and Zeroization	Use
1	Key Encryption Key (KEK)	Triple-DES 168-bit key	Hardcoded during manufacturing	Stored in Flash. Zeroized by using command 'wipe out flash'	Encrypts IKEv1/IKEv2 Pre-shared key, RADIUS server shared secret, RSA private key, ECDSA private key, 802.11i pre-shared key and Passwords.
2	DRBG entropy input	SP800-90a DRBG (512 bits)	Derived using NON- FIPS approved HW RNG	Stored in plaintext in volatile memory. Zeroized on reboot.	DRBG initialization
3	DRBG seed	SP800-90a DRBG (384 bits)	Generated per SP800- 90A using a derivation function	Stored in plaintext in volatile memory. Zeroized on reboot.	DRBG initialization
4	DRBG Key	SP800-90a (256 bits)	Generated per SP800- 90A	Stored in plaintext in volatile memory. Zeroized on reboot.	DRBG
5	DRBG V	SP800-90a (128 bits)	Generated per SP800- 90A	Stored in plaintext in volatile memory. Zeroized on reboot.	DRBG
6	RNG seed	FIPS 186-2 RNG Seed (512 bits)	Derived using NON- FIPS approved HW RNG	Stored in plaintext in volatile memory. Zeroized on reboot.	Seed 186-2 General purpose (x-change Notice); SHA-1 RNG
7	RNG seed key	FIPS 186-2 RNG Seed key (512 bits)	Derived using NON- FIPS approved HW RNG	Stored in plaintext in volatile memory. Zeroized on reboot.	Seed 186-2 General purpose (x-change Notice); SHA-1 RNG

8	Diffie-Hellman private key	Diffie-Hellman private key (224 bits)	Generated internally during Diffie-Hellman Exchange	Stored in the volatile memory. Zeroized after the session is closed.	Used in establishing the session key for an IPSec session
9	Diffie-Hellman public key	Diffie-Hellman public key (2048 bits) Note: Key size of DH Group 1 (768 bits) and DH Group 2 (1024 bits) are not allowed in FIPS mode.	Generated internally during Diffie-Hellman Exchange	Stored in the volatile memory. Zeroized after the session is closed.	Used in establishing the session key for an IPSec session
10	Diffie-Hellman shared secret	Diffie-Hellman shared secret (2048 bits)	Established during Diffie-Hellman Exchange	Stored in plain text in volatile memory, Zeroized when session is closed.	Key agreement in SSHv2
11	EC Diffie-Hellman private key	Elliptic Curve Diffie- Hellman (P-256 and P- 384).	Generated internally during EC Diffie- Hellman Exchange	Stored in the volatile memory. Zeroized after the session is closed.	Used in establishing the session key for an IPSec session
12	EC Diffie-Hellman public key	Elliptic Curve Diffie- Hellman (P-256 and P- 384).	Generated internally during EC Diffie- Hellman Exchange	Stored in the volatile memory. Zeroized after the session is closed.	Used in establishing the session key for an IPSec session
13	EC Diffie-Hellman shared secret	Elliptic Curve Diffie- Hellman (P-256 and P- 384)	Established during EC Diffie-Hellman Exchange	Stored in plaintext in volatile memory. Zeroized when session is closed.	Key agreement in IKEv1/IKEv2
14	RADIUS server shared secret	8-128 character shared secret	CO configured	Stored encrypted in Flash with the KEK. Zeroized by changing (updating) the pre- shared key through the User interface.	Module and RADIUS server authentication
15	Enable secret	8-64 character password	CO configured	Store in ciphertext in flash. Zeroized by changing (updating) through the user interface.	Administrator authentication

16	User Passwords	8-64 character password	CO configured	Stored encrypted in Flash with KEK. Zeroized by either deleting the password configuration file or by overwriting the password with a new one.	Authentication for accessing the management interfaces, RADIUS authentication
17	IKEv1/IKEv2 Pre- shared key	64 character pre- shared key	CO configured	Stored encrypted in Flash with the KEK. Zeroized by changing (updating) the pre- shared key through the User interface.	User and module authentication during IKEv1, IKEv2
18	skeyid	HMAC-SHA-1/256/384 (160/256/384 bits)	Established during IKEv1 negotiation	Stored in plaintext in volatile memory. Zeroized when session is closed.	Key agreement in IKEv1
19	skeyid_d	HMAC-SHA-1/256/384 (160/256/384 bits)	Established during IKEv1 negotiation	Stored in plaintext in volatile memory. Zeroized when session is closed.	Key agreement in IKEv1
20	IKEv1/IKEv2 session authentication key	HMAC-SHA-1/256/384 (160 / 256 / 384 bits)	Established as a result of IKEv1/IKEv2 service implementation.	Stored in plaintext in volatile memory. Zeroized when session is closed.	IKEv1/IKEv2 payload integrity verification
21	IKEv1/IKEv2 session encryption key	Triple-DES (168 bits/AES (128/196/256 bits)	Established as a result of IKEv1/IKEv2 service implementation.	Stored in plaintext in volatile memory. Zeroized when session is closed.	IKEv1/IKEv2 payload encryption
22	IPSec session encryption keys	Triple-DES (168 bits / AES (128/196/256 bits)	Established during the IPSec service implementation	Stored in plaintext in volatile memory. Zeroized when the session is closed.	Secure IPSec traffic
23	IPSec session authentication keys	HMAC-SHA-1 (160 bits)	Established during the IPSec service implementation	Stored in plaintext in volatile memory. Zeroized when the session is closed.	User authentication

Security Target

24	SSHv2 session keys	AES (128/196/256 bits)	Established during the SSHv2 key exchange	Stored in plaintext in volatile memory. Zeroized when the session is closed.	Secure SSHv2 traffic
25	SSHv2 session authentication key	HMAC-SHA-1 (160-bit)	Established during the SSHv2 key exchange	Stored in plaintext in volatile memory. Zeroized when the session is closed.	Secure SSHv2 traffic
26	TLS pre-master secret	48 byte secret	Externally generated	Stored in plaintext in volatile memory. Zeroized when the session is closed.	TLS key agreement
27	TLS session encryption key	AES 128/192/256 bits	Generated in the module during the TLS service implementation	Stored in plaintext in volatile memory. Zeroized when the session is closed.	TLS session encryption
28	TLS session authentication key	HMAC-SHA-1/256/384 (160/256/384 bits)	Generated in the module during the TLS service implementation	Stored in plaintext in volatile memory. Zeroized when the session is closed.	TLS session authentication
29	RSA Private Key	RSA 2048 bit private key	Generated in the module	Stored in flash memory encrypted with KEK. Zeroized by the CO command write erase all.	Used by TLS and EAP-TLS/PEAP protocols during the handshake, used for signing OCSP responses, and used by IKEv1/IKEv2 for device authentication and for signing certificates
30	RSA public key	RSA 2048 bit public key	Generated in the module	Stored in flash memory encrypted with KEK. Zeroized by the CO command write erase all.	Used by TLS and EAP-TLS/PEAP protocols during the handshake, used for signing OCSP responses, and used by IKEv1/IKEv2 for device authentication and for signing certificates
31	ECDSA Private Key	ECDSA suite B P-256 and P-384 curves	Generated in the module	Stored in flash memory encrypted with KEK. Zeroized by the CO command write erase all.	Used by TLS and EAP-TLS/PEAP protocols during the handshake.

32	ECDSA Public Key	ECDSA suite B P-256 and P-384 curves	Generated in the module	Stored in flash memory encrypted with KEK. Zeroized by the CO command write erase all.	Used by TLS and EAP-TLS/PEAP protocols during the handshake.
----	------------------	---	-------------------------	--	---

6.2.3 Roles and Services

6.2.3.1 Crypto Officer Role

The Crypto Officer role has the ability to configure, manage, and monitor all processes and functions within the TOE. Two management interfaces can be used for this purpose:

• SSHv2 CLI

The Crypto Officer can use the CLI to perform non-security-sensitive and security-sensitive monitoring and configuration. The CLI can be accessed remotely by using the SSHv2 secured management session over the Ethernet ports or locally over the serial port. In FIPS mode, the serial port is disabled.

Web Interface

The Crypto Officer can use the Web Interface as an alternative to the CLI. The Web Interface provides a highly intuitive, graphical interface for a comprehensive set of controller management tools. The Web Interface can be accessed from a TLS-enabled Web browser using HTTPS (HTTP with Secure Socket Layer) on logical port 4343.

See the table below for descriptions of the services available to the Crypto Officer role. Numbers in the "CSP Access" column refers to the Critical Security Parameters table above.

Table 14 - Crypto-Officer Services

Service	Description	Input	Output	CSP Access
SSH v2.0	Provide authenticated and encrypted remote management sessions while using the CLI	SSHv2 key agreement parameters, SSH inputs, and data	SSHv2 outputs and data	6, 16 (read) 8, 9, 24, 25 (read/write)

Table 14 - Crypto-Officer Services

IKEv1/IKEv2- IPSec	Provide authenticated and encrypted remote management sessions to access the CLI functionality	IKEv1/IKEv2 inputs and data; IPSec inputs, commands, and data	IKEv1/IKEv2 outputs, status, and data; IPSec outputs, status, and data	29, 30, 31, 32 (read) 8, 9, 10, 11, 12, 13 (read/write) 17 (read) 18, 19, 20, 21, 22, 23 (read/write)
Configuring Module Platform	Define the platform subsystem firmware of the module by entering Bootrom Monitor Mode, File System, fault report, message logging, and other platform related commands	Commands and configuration data	Status of commands and configuration data	None
Configuring Hardware Controllers	Define synchronization features for module	Commands and configuration data	Status of commands and configuration data	None
Configuring Internet Protocol	Set IP functionality	Commands and configuration data	Status of commands and configuration data	None
Configuring Quality of Service (QoS)	Configure QOS values for module	Commands and configuration data	Status of commands and configuration data	None
Configuring DHCP	Configure DHCP on module	Commands and configuration data	Status of commands and configuration data	None
Configuring Security	Define security features for module, including Access List, Authentication, Authorization and Accounting (AAA).	Commands and configuration data	Status of commands and configuration data	14, 15, 16 (read/write)
Manage Certificates	Install, rename, and delete X.509 certificates	Commands and configuration data; Certificates and keys	Status of certificates, commands, and configuration	29, 30, 31, 32 (read/write)

Table 14 - Crypto-Officer Services

HTTPS over TLS	Secure browser connection over Transport Layer Security acting as a Crypto Officer service (web management interface)	TLS inputs, commands, and data	TLS outputs, status, and data	29, 30, 31, 32 (read) 26, 27, 28 (read/write)
Status Function	Cryptographic officer may use CLI "show" commands or view WebUI via TLS to view the controller configuration, routing tables, and active sessions; view health, temperature, memory status, voltage, and packet statistics; review accounting logs, and view physical interface status	Commands and configuration data	Status of commands and configurations	None
IPSec tunnel establishment for RADIUS protection	Provided authenticated/encrypted channel to RADIUS server	IKEv1/IKEv2 inputs and data; IPSec inputs, commands, and data	IKEv1/IKEv2 outputs, status, and data; IPSec outputs, status, and data	29, 30, 31, 32 (read) 8, 9, 10, 11, 12, 13 (read/write) 17 (read) 18, 19, 20, 21, 22, 23 (read/write)
Self-Test	Perform FIPS start-up tests on demand	None	Error messages logged if a failure occurs	None
Configuring Bypass Operation	Configure bypass operation on the module	Commands and configuration data	Status of commands and configuration data	None
Updating Firmware	Updating firmware on the module	Commands and configuration data	Status of commands and configuration data	None
Configuring Online Certificate Status Protocol (OCSP) Responder	Configuring OCSP responder functionality	OCSP inputs, commands, and data	OCSP outputs, status, and data	29, 30, 31, 32 (read)
Configuring Control Plane Security (CPSec)	Configuring Control Plane Security mode to protect communication with APs using IPSec and issue self signed certificates to APs	Commands and configuration data, IKEv1/IKEv2 inputs and data; IPSec inputs, commands, and data	Status of commands, IKEv1/ IKEv2 outputs, status, and data; IPSec outputs, status, and data and configuration	29, 30, 31, 32 (read) 8, 9, 10, 11, 12, 13 (read/write) 17 (read) 18, 19, 20, 21, 22, 23 (read/write)

Table 14 - Crypto-Officer Services

			data, self signed certificates	
Zeroization	Zeroizes all flash memory	Command	Progress information	All CSPs will be destroyed.

81

7 Rationale

7.1 Conformance Claim Rationale

- 82 The following rationale is presented with regard to the PP conformance claims:
 - a) **TOE type.** As identified in section 2.1, the TOE is a network device, consistent with the TOE type identified by the NDPP.
 - b) **Security problem definition.** As shown in section 3, the threats, OSPs and assumptions are identical to those of the NDPP.
 - c) **Security objectives.** As shown in section 4, the security objectives are identical to those of the NDPP.
 - d) Security requirements. As shown in section 5, the security requirements are reproduced from the NDPP. No additional requirements have been specified. In accordance with NDPP section 3.1, footnote 1, FPT_ITT.1 has been excluded as the TOE is not distributed.

7.2 Security Objectives Rationale

All security objectives are drawn directly from the NDPP.

7.3 Security Requirements Rationale

- All security requirements are drawn directly from the NDPP.
- In accordance with NDPP section 3.1, footnote 1, FPT_ITT.1 has been excluded as the TOE is not distributed.

7.4 TOE Summary Specification Rationale

Table 15 provides a coverage mapping showing that all SFRs are mapped to the security functions described in the TSS.

SFR	Protected Communications	Verifiable Updates	System Monitoring	Secure Administration	Residual Information Clearing	Self Test
FAU_GEN.1			Х			
FAU_GEN.2			Х			
FAU_STG_EXT.1			Х			
FCS_CKM.1(1)	х					

Table 15: Map of SFRs to TSS Security Functions

SFR	Protected Communications	Verifiable Updates	System Monitoring	Secure Administration	Residual Information Clearing	Self Test
FCS_CKM.1(2)	Х	Х				
FCS_CKM.1(3)	Х	Х				
FCS_CKM_EXT.4	Х					
FCS_COP.1(1)	Х					
FCS_COP.1(2)	Х					
FCS_COP.1(3)	Х					
FCS_COP.1(4)	Х					
FCS_RBG_EXT.1(1)	Х					
FCS_RBG_EXT.1(2)	Х					
FCS_HTTPS_EXT.1	Х					
FCS_TLS_EXT.1	Х					
FCS_IPSEC_EXT.1	Х					
FCS_SSH_EXT.1	Х					
FDP_RIP.2					Х	
FIA_PMG_EXT.1				Х		
FIA_UIA_EXT.1				Х		
FIA_UAU_EXT.2				Х		
FIA_UAU.7				Х		
FMT_MTD.1				Х		
FMT_SMF.1				Х		
FMT_SMR.2				Х		
FPT_SKP_EXT.1	Х					

SFR	Protected Communications	Verifiable Updates	System Monitoring	Secure Administration	Residual Information Clearing	Self Test
FPT_APW_EXT.1				Х		
FPT_STM.1			Х	Х		
FPT_TUD_EXT.1		Х				
FPT_TST_EXT.1						Х
FTA_SSL_EXT.1				Х		
FTA_SSL.3				Х		
FTA_SSL.4				Х		
FTA_TAB.1				Х		
FTP_ITC.1	Х					
FTP_TRP.1	Х					

Annex A: NDPP Assurance Activities

87

The NDPP contains assurance activities that are to be performed in meeting the requirements of the NDPP. As these are spread throughout the NDPP document, the table below provides a consolidated reference.

#	NDPP Source	Requirement	Assurance Family
1.	FAU_GEN. 1	The evaluator shall check the administrative guide and ensure that it lists all of the auditable events and provides a format for audit records. Each audit record format type must be covered, along with a brief description of each field. The evaluator shall check to make sure that every audit event type mandated by the PP is described and that the description of the fields contains the information required in FAU_GEN1.2, and the additional information specified in Table 1 of the NDPP.	AGD_OPE
2.	FAU_GEN. 1	The evaluator shall also make a determination of the administrative actions that are relevant in the context of this PP. The evaluator shall examine the administrative guide and make a determination of which administrative commands, including subcommands, scripts, and configuration files, are related to the configuration (including enabling or disabling) of the mechanisms implemented in the TOE that are necessary to enforce the requirements specified in the PP. The evaluator shall document the methodology or approach taken while determining which actions in the administrative guide are security relevant with respect to this PP. The evaluator may perform this activity as part of the activities associated with ensuring the AGD_OPE guidance satisfies the requirements.	AGD_OPE
3.	FAU_GEN. 1	The evaluator shall test the TOE's ability to correctly generate audit records by having the TOE generate audit records for the events listed in table 1 and administrative actions. This should include all instances of an eventfor instance, if there are several different I&A mechanisms for a system, the FIA_UIA_EXT.1 events must be generated for each mechanism. The evaluator shall test that audit records are generated for the establishment and termination of a channel for each of the cryptographic protocols contained in the ST. If HTTPS is implemented, the test demonstrating the establishment and termination of a TLS session can be combined with the test for an HTTPS session. For administrative actions, the evaluator shall test that each action determined by the evaluator above to be security relevant in the context of this PP is auditable. When verifying the test results, the evaluator shall ensure the audit records generated during testing match the format specified in the administrative guide, and that the fields in each audit record have the proper entries. Note that the testing here can be accomplished in conjunction with the testing of the security mechanisms directly. For example, testing performed to ensure that the administrative guidance provided is correct verifies that AGD_OPE.1 is satisfied and should address the invocation of the administrative actions that are needed to verify the audit records are generated as expected.	ATE_IND
4.	FAU_STG_	For both types of TOEs (those that act as an audit server and those that send	ASE_TSS
	EXT.1	data to an external audit server), there is some amount of local storage. The evaluator shall examine the TSS to ensure it describes the amount of audit data that are stored locally; what happens when the local audit data store is full; and	AGD_OPE

#	NDPP Source	Requirement	Assurance Family
		how these records are protected against unauthorized access. The evaluator shall also examine the operational guidance to determine that it describes the relationship between the local audit data and the audit data that are sent to the audit log server (for TOEs that are not acting as an audit log server). For example, when an audit event is generated, is it simultaneously sent to the external server and the local store, or is the local store used as a buffer and "cleared" periodically by sending the data to the audit server.	
5.	FAU_STG_ EXT.1.1	TOE acts as audit server The evaluator shall examine the TSS to ensure it describes the connection supported from non-TOE entities to send the audit data to the TOE, and how the trusted channel is provided. Testing of the trusted channel mechanism will be performed as specified in the associated assurance activities for the particular trusted channel mechanism. The evaluator shall also examine the operational guidance to ensure it describes how to establish the trusted channel with the TOE, as well as describe any requirements for other IT entities to connect and send audit data to the TOE (particular audit server protocol, version of the protocol required, etc.), as well as configuration of the TOE needed to communicate with other IT entities. The evaluator shall perform the following test for this requirement: Test 1: The evaluator shall establish a session between an external IT entity and the TOE according to the configuration guidance provided. The evaluator shall then examine the traffic that passes between the IT entity and the TOE during several activities of the evaluator's choice designed to generate audit data to be	ASE_TSS ATE_IND AGD_OPE
		transferred to the TOE. The evaluator shall observe that these data are not able to be viewed in the clear during this transfer, and that they are successfully received by the TOE. The evaluator shall perform this test for each protocol selected in the second selection.	
6.	FAU_STG_ EXT.1	TOE is not an audit server The evaluator shall examine the TSS to ensure it describes the means by which the audit data are transferred to the external audit server, and how the trusted channel is provided. Testing of the trusted channel mechanism will be performed as specified in the associated assurance activities for the particular trusted channel mechanism. The evaluator shall also examine the operational guidance to ensure it describes how to establish the trusted channel to the audit server, as well as describe any requirements on the audit server (particular audit server protocol, version of the protocol required, etc.), as well as configuration of the TOE needed to communicate with the audit server. The evaluator shall perform the following test for this requirement: Test 1: The evaluator shall establish a session between the TOE and the audit server according to the configuration guidance provided. The evaluator shall then examine the traffic that passes between the audit server and the TOE during several activities of the evaluator's choice designed to generate audit data to be transferred to the audit server. The evaluator shall observe that these data are not able to be viewed in the clear during this transfer, and that they are successfully received by the audit server. The evaluator shall record the particular software (name, version) used on the audit server during testing.	ASE_TSS ATE_IND AGD_OPE
7.	FCS_CKM.	The evaluator shall use the key pair generation portions of "The FIPS 186-3	ATE_IND

#	NDPP Source	Requirement	Assurance Family
	1	Digital Signature Algorithm Validation System (DSA2VS)", "The FIPS 186-3 Elliptic Curve Digital Signature Algorithm Validation System (ECDSA2VS)", and "The RSA Validation System (RSA2VS)" as a guide in testing the requirement above, depending on the selection performed by the ST author. This will require that the evaluator have a trusted reference implementation of the algorithms that can produce test vectors that are verifiable during the test.	ASE_TSS
		In order to show that the TSF complies with 800-56A and/or 800-56B, depending on the selections made, the evaluator shall ensure that the TSS contains the following information:	
		 The TSS shall list all sections of the appropriate 800-56 standard(s) to which the TOE complies. 	
		• For each applicable section listed in the TSS, for all statements that are not "shall" (that is, "shall not", "should", and "should not"), if the TOE implements such options it shall be described in the TSS. If the included functionality is indicated as "shall not" or "should not" in the standard, the TSS shall provide a rationale for why this will not adversely affect the security policy implemented by the TOE;	
		 For each applicable section of 800-56A and 800-56B (as selected), any omission of functionality related to "shall" or "should" statements shall be described; 	
		Any TOE-specific extensions, processing that is not included in the documents, or alternative implementations allowed by the documents that may impact the security requirements the TOE is to enforce shall be described	
8.	FCS_CKM _EXT.4	The evaluator shall check to ensure the TSS describes each of the secret keys (keys used for symmetric encryption), private keys, and CSPs used to generate key; when they are zeroized (for example, immediately after use, on system shutdown, etc.); and the type of zeroization procedure that is performed (overwrite with zeroes, overwrite three times with random pattern, etc.). If different types of memory are used to store the materials to be protected, the evaluator shall check to ensure that the TSS describes the zeroization procedure in terms of the memory in which the data are stored (for example, "secret keys stored on flash are zeroized by overwriting once with zeroes, while secret keys stored on the internal hard drive are zeroized by overwriting three times with a random pattern that is changed before each write").	ASE_TSS
9.	FCS_COP. 1(1)	The evaluator shall use tests appropriate to the modes selected in the above requirement from "The Advanced Encryption Standard Algorithm Validation Suite (AESAVS)", "The XTS-AES Validation System (XTSVS)", The CMAC Validation System (CMACVS)", "The Counter with Cipher Block Chaining Message Authentication Code (CCM) Validation System (CCMVS)", and "The Galois/Counter Mode (GCM) and GMAC Validation System (GCMVS)" (these documents are available from http://csrc.nist.gov/groups/STM/cavp/index.html) as a guide in testing the requirement above. This will require that the evaluator have a reference implementation of the algorithms known to be good that can produce test vectors that are verifiable during the test.	ATE_IND
10.	FCS_COP. 1(2)	The evaluator shall use the signature generation and signature verification portions of "The Digital Signature Algorithm Validation System" (DSAVS or DSA2VS), "The Elliptic Curve Digital Signature Algorithm Validation System"	ATE_IND

#	NDPP Source	Requirement	Assurance Family
		(ECDSAVS or ECDSA2VS), and "The RSA Validation System" (RSAVS) as a guide in testing the requirement above. The Validation System used shall comply with the conformance standard identified in the ST (i.e., FIPS PUB 186-2 or FIPS PUB 186-3). This will require that the evaluator have a reference implementation of the algorithms known to be good that can produce test vectors that are verifiable during the test.	
11.	FCS_COP. 1(3)	The evaluator shall use "The Keyed-Hash Message Authentication Code (HMAC) Validation System (HMACVS)" as a guide in testing the requirement above. This will require that the evaluator have a reference implementation of the algorithms known to be good that can produce test vectors that are verifiable during the test.	ATE_IND
12.	FCS_RBG _EXT.1	Documentation shall be produced—and the evaluator shall perform the activities—in accordance with NDPP Annex D, Entropy Documentation and Assessment. The evaluator shall also perform the following tests, depending on the standard to which the RBG conforms.	Entropy Document ATE_IND
		Implementations Conforming to FIPS 140-2, Annex C	
		The reference for the tests contained in this section is The Random Number Generator Validation System (RNGVS) [RNGVS]. The evaluator shall conduct the following two tests. Note that the "expected values" are produced by a reference implementation of the algorithm that is known to be correct. Proof of correctness is left to each Scheme.	
		The evaluator shall perform a Variable Seed Test. The evaluator shall provide a set of 128 (Seed, DT) pairs to the TSF RBG function, each 128 bits. The evaluator shall also provide a key (of the length appropriate to the AES algorithm) that is constant for all 128 (Seed, DT) pairs. The DT value is incremented by 1 for each set. The seed values shall have no repeats within the set. The evaluator ensures that the values returned by the TSF match the expected values.	
		The evaluator shall perform a Monte Carlo Test. For this test, they supply an initial Seed and DT value to the TSF RBG function; each of these is 128 bits. The evaluator shall also provide a key (of the length appropriate to the AES algorithm) that is constant throughout the test. The evaluator then invokes the TSF RBG 10,000 times, with the DT value being incremented by 1 on each iteration, and the new seed for the subsequent iteration produced as specified in NIST-Recommended Random Number Generator Based on ANSI X9.31 Appendix A.2.4 Using the 3-Key Triple DES and AES Algorithms, Section 3. The evaluator ensures that the 10,000 th value produced matches the expected value.	
13.	FCS_RBG	Implementations Conforming to NIST Special Publication 800-90	Entropy
	_EXT.1	The evaluator shall perform 15 trials for the RBG implementation. If the RBG is configurable, the evaluator shall perform 15 trials for each configuration. The evaluator shall also confirm that the operational guidance contains appropriate instructions for configuring the RBG functionality.	Document ATE_IND
		If the RBG has prediction resistance enabled, each trial consists of (1) instantiate drbg, (2) generate the first block of random bits (3) generate a second block of random bits (4) uninstantiate. The evaluator verifies that the second block of random bits is the expected value. The evaluator shall generate eight input	

#	NDPP Source	Requirement	Assurance Family
		values for each trial. The first is a count $(0 - 14)$. The next three are entropy input, nonce, and personalization string for the instantiate operation. The next two are additional input and entropy input for the first call to generate. The final two are additional input and entropy input for the second call to generate. These values are randomly generated. "generate one block of random bits" means to generate random bits with number of returned bits equal to the Output Block Length (as defined in NIST SP 800-90).	
		If the RBG does not have prediction resistance, each trial consists of (1) instantiate drbg, (2) generate the first block of random bits (3) reseed, (4) generate a second block of random bits (5) uninstantiate. The evaluator verifies that the second block of random bits is the expected value. The evaluator shall generate eight input values for each trial. The first is a count $(0 - 14)$. The next three are entropy input, nonce, and personalization string for the instantiate operation. The fifth value is additional input to the first call to generate. The sixth and seventh are additional input and entropy input to the call to reseed. The final value is additional input to the second generate call.	
		The following paragraphs contain more information on some of the input values to be generated/selected by the evaluator.	
		Entropy input: the length of the entropy input value must equal the seed length.	
		Nonce: If a nonce is supported (CTR_DRBG with no df does not use a nonce), the nonce bit length is one-half the seed length.	
		Personalization string: The length of the personalization string must be <= seed length. If the implementation only supports one personalization string length, then the same length can be used for both values. If more than one string length is support, the evaluator shall use personalization strings of two different lengths. If the implementation does not use a personalization string, no value needs to be supplied.	
		Additional input: the additional input bit lengths have the same defaults and restrictions as the personalization string lengths.	
14.	FCS_HTTP S_EXT.1	The evaluator shall check the TSS to ensure that it is clear on how HTTPS uses TLS to establish an administrative session, focusing on any client authentication required by the TLS protocol vs. Security administrator authentication which may be done at a different level of the processing stack. Testing for this activity is done as part of the TLS testing; this may result in additional testing if the TLS tests are done at the TLS protocol level.	ASE_TSS
15.	FCS_TLS_ EXT.1	The evaluator shall check the description of the implementation of this protocol in the TSS to ensure that optional characteristics (e.g., extensions supported, client authentication supported) are specified, and the ciphersuites supported are specified as well. The evaluator shall check the TSS to ensure that the ciphersuites specified are identical to those listed for this component. The evaluator shall also check the operational guidance to ensure that it contains instructions on configuring the TOE so that TLS conforms to the description in the TSS (for instance, the set of ciphersuites advertised by the TOE may have to be restricted to meet the requirements). The evaluator shall also perform the following test:	ASE_TSS ATE_IND
		iest 1: The evaluator shall establish a TLS connection using each of the ciphersuites specified by the requirement. This connection may be established	

#	NDPP Source	Requirement	Assurance Family
		as part of the establishment of a higher-level protocol, e.g., as part of a HTTPS session. It is sufficient to observe (on the wire) the successful negotiation of a ciphersuite to satisfy the intent of the test; it is not necessary to examine the characteristics of the encrypted traffic in an attempt to discern the ciphersuite being used (for example, that the cryptographic algorithm is 128-bit AES and not 256-bit AES).	
16.	FCS_IPSE C_EXT.1.2	The evaluator shall examine the TSS to verify that it describes how "confidentiality only" ESP mode is disabled. The evaluator shall also examine the operational guidance to determine that it describes any configuration necessary to ensure that "confidentiality only" mode is disabled, and that an advisory is present indicating that tunnel mode is the preferred ESP mode since it protects the entire packet. The evaluator shall examine the TSS to ensure that, in the description of the IPsec protocol supported by the TOE, it states that aggressive mode is not used for IKEv1 Phase 1 exchanges, and that only main mode is used. If this requires configuration of the TOE prior to its operation, the evaluator shall check the operational guidance to ensure that instructions for this configuration are contained within that guidance. The evaluator shall also perform the following tests: Test 1: The evaluator shall configure the TOE as indicated in the operational guidance and attempt to establish a connection using an IKEv1 Phase 1	ASE_TSS ATE_IND
		 guidance, and attempt to establish a connection using an IKEVT Phase 1 connection in aggressive mode. This attempt should fail. The evaluator should then show that main mode exchanges are supported. Test 2: The evaluator shall configure the TOE as indicated in the operational guidance, and attempt to establish a connection using ESP in "confidentiality only" mode. This attempt should fail. The evaluator shall then establish a connection using ESP in confidentiality and integrity mode. 	
17.	FCS_IPSE C_EXT.1.3	The evaluator checks to ensure that the TSS describes how lifetimes for IKEv1 SAs (both Phase 1 and Phase 2) are established. If they are configurable, then the evaluator verifies that the appropriate instructions for configuring these values are included in the operational guidance. The evaluator also performs the following test:	ASE_TSS ATE_IND
		Test 1: The evaluator shall construct a test where a Phase 1 SA is established and attempted to be maintained for more than 24 hours before it is renegotiated. The evaluator shall observe that this SA is closed or renegotiated in 24 hours or less. If such an action requires that the TOE be configured in a specific way, the evaluator shall implement tests demonstrating that the configuration capability of the TOE works as documented in the operational guidance.	
		except that the lifetime will be 8 hours instead of 24.	
18.	FCS_IPSE C_EXT.1.4	The evaluator checks to ensure that the TSS describes how lifetimes for IKEv1 Phase 2 SAs—with respect to the amount of traffic that is allowed to flow using a given SAare established. If the value is configurable, then the evaluator verifies that the appropriate instructions for configuring these values are included in the operational guidance. The evaluator also performs the following test: Test 1: The evaluator shall construct a test where a Phase 2 SA is established	ASE_TSS ATE_IND

#	NDPP Source	Requirement	Assurance Family
		and attempted to be maintained while more data than is specified in the above assignment flows over the connection. The evaluator shall observe that this SA is closed or renegotiated before the amount of data specified is exceeded. If such an action requires that the TOE be configured in a specific way, the evaluator shall implement tests demonstrating that the configuration capability of the TOE works as documented in the operational guidance.	
19.	FCS_IPSE C_EXT.1.5	The evaluator shall check to ensure that the DH groups specified in the requirement are listed as being supported in the TSS. If there is more than one DH group supported, the evaluator checks to ensure the TSS describes how a particular DH group is specified/negotiated with a peer. The evaluator shall also perform the following test: Test 1: For each supported DH group, the evaluator shall test to ensure that all IKE protocols can be successfully completed using that particular DH group.	ASE_TSS ATE_IND
20.	FCS_IPSE C_EXT.1.6	The evaluator shall check that the TSS contains a description of the IKE peer authentication process used by the TOE, and that this description covers the use of the signature algorithm or algorithms specified in the requirement. The evaluator shall also perform the following test: Test 1: For each supported signature algorithm, the evaluator shall test that peer authentication using that algorithm can be successfully achieved.	ASE_TSS ATE_IND
21.	FCS_IPSE C_EXT.1.7	The evaluator shall check to ensure that the TSS describes how pre-shared keys are established and used in authentication of IPsec connections. The evaluator shall check that the operational guidance describes how pre-shared keys are to be generated and established for a TOE. The description in the TSS and the operational guidance shall also indicate how pre-shared key establishment is accomplished for both TOEs that can generate a pre-shared key as well as TOEs that simply use a pre-shared key. The evaluator shall also perform the following test:	ASE_TSS ATE_IND
		Test 1: The evaluator shall generate a pre-shared key and use it, as indicated in the operational guidance, to establish an IPsec connection between two peers. If the TOE supports generation of the pre-shared key, the evaluator shall ensure that establishment of the key is carried out for an instance of the TOE generating the key as well as an instance of the TOE merely taking in and using the key.	
22.	FCS_IPSE C_EXT.1.8	The evaluator shall check the operational guidance to ensure that it describes the generation of preshared keys, including guidance on generating strong keys and the allowed character set. The evaluator shall check that this guidance does not limit the pre-shared key in a way that would not satisfy the requirement. It should be noted that while the administrator (in contravention to the operational guidance) can choose a key that does not conform to the requirement, there is no requirement that the TOE check the key to ensure that it meets the rules specified in this component.	AGD_OPE ATE_IND
		However, should the administrator choose to create a password that conforms to the rules above (and the operational guidance); the TOE should not prohibit such a choice. The evaluator shall also perform the following test; this may be combined with Test 1 for FCS_IPSEC_EXT.1.7:	
		Test 1: The evaluator shall generate a pre-shared key that is 22 characters long that meets the composition requirements above. The evaluator shall then use	

#	NDPP Source	Requirement	Assurance Family
		this key to successfully establish an IPsec connection. While the evaluator is not required to test that all of the special characters or lengths listed in the requirement are supported, it is required that they justify the subset of those characters chosen for testing, if a subset is indeed used.	
23.	FCS_SSH_ EXT.1.2	The evaluator shall check to ensure that the TSS contains a description of the public key algorithms that are acceptable for use for authentication, that this list conforms to FCS_SSH_EXT.1.5, and ensure that password-based authentication methods are also allowed. The evaluator shall also perform the following tests:	ASE_TSS ATE_IND
		Test 1: The evaluator shall, for each public key algorithm supported, show that the TOE supports the use of that public key algorithm to authenticate a user connection. Any configuration activities required to support this test shall be performed according to instructions in the operational guidance.	
		Test 2: Using the operational guidance, the evaluator shall configure the TOE to accept password-based authentication, and demonstrate that a user can be successfully authenticated to the TOE over SSH using a password as an authenticator.	
24.	FCS_SSH_ EXT.1.3	The evaluator shall check that the TSS describes how "large packets" in terms of RFC 4253 are detected and handled. The evaluator shall also perform the following test:	ASE_TSS ATE_IND
		Test 1: The evaluator shall demonstrate that if the TOE receives a packet larger than that specified in this component, that packet is dropped.	
25.	FCS_SSH_ EXT.1.4	The evaluator shall check the description of the implementation of this protocol in the TSS to ensure that optional characteristics are specified, and the encryption algorithms supported are specified as well. The evaluator shall check the TSS to ensure that the encryption algorithms specified are identical to those listed for this component.	ASE_TSS AGD_OPE ATE_IND
		The evaluator shall also check the operational guidance to ensure that it contains instructions on configuring the TOE so that SSH conforms to the description in the TSS (for instance, the set of algorithms advertised by the TOE may have to be restricted to meet the requirements). The evaluator shall also perform the following test:	
		Test 1: The evaluator shall establish a SSH connection using each of the encryption algorithms specified by the requirement. It is sufficient to observe (on the wire) the successful negotiation of a protocol to satisfy the intent of the test.	
26.	FCS_SSH_ EXT.1.5	The assurance activity associated with FCS_SSH_EXT.1.4 verifies this requirement.	N/A
27.	FCS_SSH_ EXT.1.6	The evaluator shall check the TSS to ensure that it lists the supported data integrity algorithms, and that that list corresponds to the list in this component. The evaluator shall also check the operational guidance to ensure that it contains instructions to the administrator on how to ensure that only the allowed data integrity algorithms are used in SSH connections with the TOE (specifically, that the "none" MAC algorithm is not allowed).	ASE_TSS

#	NDPP Source	Requirement	Assurance Family
28.	FCS_SSH_ EXT.1.7	The evaluator shall ensure that operational guidance contains configuration information that will allow the security administrator to configure the TOE so that all key exchanges for SSH are performed using DH group 14. If this capability is "hard-coded" into the TOE, the evaluator shall check the TSS to ensure that this is stated in the discussion of the SSH protocol. The evaluator shall also perform the following test: Test 1: The evaluator shall attempt to perform a diffie-hellman-group1-sha1 key exchange, and observe that the attempt fails. The evaluator shall then attempt to perform a diffie-hellman-group14-sha1 key exchange, and observe that the attempt succeeds.	AGD_OPE ASE_TSS ATE_IND
29.	FDP_RIP.2	"Resources" in the context of this requirement are network packets being sent through (as opposed to "to", as is the case when a security administrator connects to the TOE) the TOE. The concern is that once a network packet is sent, the buffer or memory area used by the packet still contains data from that packet, and that if that buffer is re-used, those data might remain and make their way into a new packet. The evaluator shall check to ensure that the TSS describes packet processing to the extent that they can determine that no data will be reused when processing network packets. The evaluator shall ensure that this description at a minimum describes how the previous data are zeroized/overwritten, and at what point in the buffer processing this occurs.	ASE_TSS
30.	FIA_PMG_ EXT.1	The evaluator shall examine the operational guidance to determine that it provides guidance to security administrators on the composition of strong passwords, and that it provides instructions on setting the minimum password length. The evaluator shall also perform the following tests. Note that one or more of these tests can be performed with a single test case. Test 1: The evaluator shall compose passwords that either meet the requirements, or fail to meet the requirements, in some way. For each password, the evaluator shall verify that the TOE supports the password. While the evaluator is not required (nor is it feasible) to test all possible compositions of passwords, the evaluator shall ensure that all characters, rule characteristics, and a minimum length listed in the requirement are supported, and justify the subset of those characters chosen for testing.	AGD_OPE ATE_IND
31.	FIA_UIA_E XT.1	The evaluator shall examine the TSS to determine that it describes the logon process for each logon method (local, remote (HTTPS, SSH, etc.)) supported for the product. This description shall contain information pertaining to the credentials allowed/used, any protocol transactions that take place, and what constitutes a "successful logon". The evaluator shall examine the operational guidance to determine that any necessary preparatory steps (e.g., establishing credential material such as preshared keys, tunnels, certificates, etc.) to logging in are described. For each supported the login method, the evaluator shall ensure the operational guidance provides clear instructions for successfully logging on. If configuration is necessary to ensure the services provided before login are limited, the evaluator shall determine that the operational guidance provides sufficient instruction on limiting the allowed services.	ASE_TSS ATE_IND

#	NDPP Source	Requirement	Assurance Family
		Test 1: The evaluator shall use the operational guidance to configure the appropriate credential supported for the login method. For that credential/login method, the evaluator shall show that providing correct I&A information results in the ability to access the system, while providing incorrect information results in denial of access.	
		Test 2: The evaluator shall configure the services allowed (if any) according to the operational guidance, and then determine the services available to an external remote entity. The evaluator shall determine that the list of services available is limited to those specified in the requirement.	
		Test 3: For local access, the evaluator shall determine what services are available to a local administrator prior to logging in, and make sure this list is consistent with the requirement.	
32.	FIA_UAU_ EXT.2	Assurance activities for this requirement are covered under those for FIA_UIA_EXT.1. If other authentication mechanisms are specified, the evaluator shall include those methods in the activities for FIA_UIA_EXT.1.	ASE_TSS ATE_IND
33.	FIA_UAU.7	The evaluator shall perform the following test for each method of local login allowed:	ATE_IND
		Test 1: The evaluator shall locally authenticate to the TOE. While making this attempt, the evaluator shall verify that at most obscured feedback is provided while entering the authentication information.	
34.	FMT_MTD. 1	The evaluator shall review the operational guidance to determine that each of the TSF-data-manipulating functions implemented in response to the requirements of this PP is identified, and that configuration information is provided to ensure that only administrators have access to the functions. The evaluator shall examine the TSS to determine that, for each administrative function identified in the operational guidance; those that are accessible through an interface prior to administrator log-in are identified. For each of these functions, the evaluator shall also confirm that the TSS details how the ability to manipulate the TSF data through these interfaces is disallowed for non-administrative users.	AGD_OPE ASE_TSS
35.	FMT_SMF. 1	The security management functions for FMT_SMF.1 are distributed throughout the PP and are included as part of the requirements in FMT_MTD, FPT_TST_EXT, and any cryptographic management functions specified in the reference standards. Compliance to these requirements satisfies compliance with FMT_SMF.1.	N/A
36.	FMT_SMR. 2	The evaluator shall review the operational guidance to ensure that it contains instructions for administering the TOE both locally and remotely, including any configuration that needs to be performed on the client for remote administration. In the course of performing the testing activities for the evaluation, the evaluator shall use all supported interfaces, although it is not necessary to repeat each test involving an administrative action with each interface. The evaluator shall ensure, however, that each supported method of administering the TOE that conforms to the requirements of this PP be tested; for instance, if the TOE can be administered through a local hardware interface; SSH; and TLS/HTTPS; then all three methods of administration must be exercised during the evaluation	AGD_OPE ATE_IND

#	NDPP Source	Requirement	Assurance Family
		team's test activities.	
37.	FPT_SKP_ EXT.1	The evaluator shall examine the TSS to determine that it details how any pre- shared keys, symmetric keys, and private keys are stored and that they are unable to be viewed through an interface designed specifically for that purpose, as outlined in the application note. If these values are not stored in plaintext, the TSS shall describe how they are protected/obscured.	ASE_TSS
38.	FPT_APW _EXT.1	The evaluator shall examine the TSS to determine that it details all authentication data that are subject to this requirement, and the method used to obscure the plaintext password data when stored. The TSS shall also detail passwords are stored in such a way that they are unable to be viewed through an interface designed specifically for that purpose, as outlined in the application note.	ASE_TSS
39.	FPT_STM. 1	The evaluator shall examine the TSS to ensure that it lists each security function that makes use of time. The TSS provides a description of how the time is maintained and considered reliable in the context of each of the time related functions.	ASE_TSS AGD_OPE ATE_IND
		The evaluator examines the operational guidance to ensure it instructs the administrator how to set the time. If the TOE supports the use of an NTP server, the operational guidance instructs how a communication path is established between the TOE and the NTP server, and any configuration of the NTP client on the TOE to support this communication.	
		Test 1: The evaluator uses the operational guide to set the time. The evaluator shall then use an available interface to observe that the time was set correctly.	
		Test2: [conditional] If the TOE supports the use of an NTP server; the evaluator shall use the operational guidance to configure the NTP client on the TOE, and set up a communication path with the NTP server. The evaluator will observe that the NTP server has set the time to what is expected. If the TOE supports multiple cryptographic protocols for establishing a connection with the NTP server, the evaluator shall perform this test using each supported protocol.	
40.	FPT_TUD_ EXT.1	Updates to the TOE either have a hash associated with them, or are signed by an authorized source. If digital signatures are used, the definition of an authorized source is contained in the TSS, along with a description of how the certificates used by the update verification mechanism are contained on the device. The evaluator ensures this information is contained in the TSS. The evaluator also ensures that the TSS (or the operational guidance) describes how the candidate updates are obtained; the processing associated with verifying the digital signature or calculating the hash of the updates; and the actions that take place for successful (hash or signature was verified) and unsuccessful (hash or signature could not be verified) cases. The evaluator shall perform the following tests: Test 1: The evaluator performs the version verification activity to determine the current version of the product. The evaluator obtains a legitimate update using procedures described in the operational guidance and verifies that it is successfully installed on the TOE. Then, the evaluator performs a subset of other assurance activity tests to demonstrate that the update functions as expected. After the update, the evaluator performs the version verification	ASE_TSS AGD_OPE ATE_IND

#	NDPP Source	Requirement	Assurance Family
		activity again to verify the version correctly corresponds to that of the update.	
		Test 2: The evaluator performs the version verification activity to determine the current version of the product. The evaluator obtains or produces an illegitimate update, and attempts to install it on the TOE. The evaluator verifies that the TOE rejects the update.	
41.	FPT_TST_ EXT.1	The evaluator shall examine the TSS to ensure that it details the self tests that are run by the TSF on start-up; this description should include an outline of what the tests are actually doing (e.g., rather than saying "memory is tested", a description similar to "memory is tested by writing a value to each memory location and reading it back to ensure it is identical to what was written" shall be used). The evaluator shall ensure that the TSS makes an argument that the tests are sufficient to demonstrate that the TSF is operating correctly. The evaluator shall also ensure that the operational guidance describes the possible errors that may result from such tests, and actions the administrator should take in response; these possible errors shall correspond to those described in the TSS.	ASE_TSS AGD_OPE
42.	FTA_SSL_ EXT.1	The evaluator shall perform the following test: Test 1: The evaluator follows the operational guidance to configure several different values for the inactivity time period referenced in the component. For each period configured, the evaluator establishes a local interactive session with the TOE. The evaluator then observes that the session is either locked or terminated after the configured time period. If locking was selected from the component, the evaluator then ensures that re-authentication is needed when trying to unlock the session.	ATE_IND
43.	FTA_SSL.3	The evaluator shall perform the following test: Test 1: The evaluator follows the operational guidance to configure several different values for the inactivity time period referenced in the component. For each period configured, the evaluator establishes a remote interactive session with the TOE. The evaluator then observes that the session is terminated after the configured time period.	ATE_IND
44.	FTA_SSL.4	The evaluator shall perform the following test: Test 1: The evaluator initiates an interactive local session with the TOE. The evaluator then follows the operational guidance to exit or log off the session and observes that the session has been terminated. Test 2: The evaluator initiates an interactive remote session with the TOE. The evaluator then follows the operational guidance to exit or log off the session and observes that the session has been terminated.	ATE_IND
45.	FTA_TAB. 1	The evaluator shall check the TSS to ensure that it details each method of access (local and remote) available to the administrator (e.g., serial port, SSH, HTTPS). The evaluator shall also perform the following test: Test 1: The evaluator follows the operational guidance to configure a notice and consent warning message. The evaluator shall then, for each method of access specified in the TSS, establish a session with the TOE. The evaluator shall verify that the notice and consent warning message is displayed in each	ATE_TSS ATE_IND

#	NDPP Source	Requirement	Assurance Family
		instance.	
46.	FTP_ITC.1	The evaluator shall examine the TSS to determine that, for all communications with authorized IT entities identified in the requirement, each communications mechanism is identified in terms of the allowed protocols for that IT entity. The evaluator shall also confirm that all protocols listed in the TSS are specified and included in the requirements in the ST. The evaluator shall confirm that the operational guidance contains instructions for establishing the allowed protocols with each authorized IT entity, and that it contains recovery instructions should a connection be unintentionally broken. The evaluator shall also perform the following tests: Test 1: The evaluators shall ensure that communications using each protocol with each authorized IT entity is tested during the course of the evaluation, setting up the connections as described in the operational guidance and ensuring that communication is successful. Test 2: For each protocol that the TOE can initiate as defined in the requirement, the evaluator shall follow the operational guidance to ensure that in fact the communication channel can be initiated from the TOE. Test 3: The evaluator shall ensure, for each communication channel with an authorized IT entity, the channel data is not sent in plaintext.	ASE_TSS AGD_OPE ATE_IND
		authorized IT entity, modification of the channel data is detected by the TOE. Test 5: The evaluators shall, for each protocol associated with each authorized IT entity tested during test 1, the connection is physically interrupted. The evaluator shall ensure that when physical connectivity is restored, communications are appropriately protected. Further assurance activities are associated with the specific protocols.	
47.	FTP_TRP.	The evaluator shall examine the TSS to determine that the methods of remote TOE administration are indicated, along with how those communications are protected. The evaluator shall also confirm that all protocols listed in the TSS in support of TOE administration are consistent with those specified in the TSS in requirement, and are included in the requirements in the ST. The evaluator shall confirm that the operational guidance contains instructions for establishing the remote administrative sessions for each supported method. The evaluator shall also perform the following tests: Test 1: The evaluators shall ensure that communications using each specified (in the operational guidance) remote administration method is tested during the course of the evaluation, setting up the connections as described in the operational guidance to ensure that there is no available interface that can be used by a remote user to establish a remote administrative sessions without invoking the trusted path. Test 3: The evaluator shall ensure, for each method of remote administration, the channel data is not sent in plaintext.	ASE_TSS

#	NDPP Source	Requirement	Assurance Family
		modification of the channel data is detected by the TOE.	
		Further assurance activities are associated with the specific protocols.	
48.	FPT_ITT.1	The evaluator shall examine the TSS to determine that the methods and protocols used to protect distributed TOE components are described. The evaluator shall also confirm that all protocols listed in the TSS in support of TOE administration are consistent with those specified in the requirement, and are included in the requirements in the ST. The evaluator shall confirm that the operational guidance contains instructions for establishing the communication paths for each supported method. The evaluator shall also perform the following tests:	ASE_TSS ATE_IND
		Test 1: The evaluators shall ensure that communications using each specified (in the operational guidance) communications method is tested during the course of the evaluation, setting up the connections as described in the operational guidance and ensuring that communication is successful.	
		Test 2: The evaluator shall ensure, for each method of communication, the channel data is not sent in plaintext.	
		Test 3: The evaluator shall ensure, for each method of communication, modification of the channel data is detected by the TOE.	
		Further assurance activities are associated with the specific protocols.	
49.	ADV_FSP. 1	Developer Note: As indicated in the introduction to this section, the functional specification is comprised of the information contained in the AGD_OPE and AGD_PRE documentation, coupled with the information provided in the TSS of the ST. The assurance activities in the functional requirements point to evidence that should exist in the documentation and TSS section; since these are directly associated with the SFRs, the tracing in element ADV_FSP.1.2D is	ADV_FSP
		Implicitly already done and no additional documentation is necessary.	
50.	ADV_FSP. 1	There are no specific assurance activities associated with these SARs. The functional specification documentation is provided to support the evaluation activities described in NDPP Section 4.2, and other activities described for AGD, ATE, and AVA SARs. The requirements on the content of the functional specification information is implicitly assessed by virtue of the other assurance activities being performed; if the evaluator is unable to perform an activity because the there is insufficient interface information, then an adequate functional specification has not been provided.	ADV_FSP
51.	AGD_OPE. 1	The operational guidance shall at a minimum list the processes running (or that could run) on the TOE in its evaluated configuration during its operation that are capable of processing data received on the network interfaces (there are likely more than one of these, and this is not limited to the process that "listens" on the network interface). It is acceptable to list all processes running (or that could run) on the TOE in its evaluated configuration instead of attempting to determine just those that process the network data. For each process listed, the administrative guidance will contain a short (e.g., one- or two-line) description of the process' function, and the privilege with which the service runs. "Privilege" includes the hardware privilege level (e.g., ring 0, ring 1), any software privileges specifically associated with the process, and the privileges associated with the	AGD_OPE

#	NDPP Source	Requirement	Assurance Family
		user role the process runs as or under.	
52.	AGD_OPE. 1	The operational guidance shall contain instructions for configuring the cryptographic engine associated with the evaluated configuration of the TOE. It shall provide a warning to the administrator that use of other cryptographic engines was not evaluated nor tested during the CC evaluation of the TOE.	AGD_OPE
53.	AGD_OPE. 1	The documentation must describe the process for verifying updates to the TOE, either by checking the hash or by verifying a digital signature. The evaluator shall verify that this process includes the following steps:	AGD_OPE
		1. For hashes, a description of where the hash for a given update can be obtained. For digital signatures, instructions for obtaining the certificate that will be used by the FCS_COP.1(2) mechanism to ensure that a signed update has been received from the certificate owner. This may be supplied with the product initially, or may be obtained by some other means.	
		2. Instructions for obtaining the update itself. This should include instructions for making the update accessible to the TOE (e.g., placement in a specific directory).	
		3. Instructions for initiating the update process, as well as discerning whether the process was successful or unsuccessful. This includes generation of the hash/digital signature.	
54.	AGD_OPE. 1	The TOE will likely contain security functionality that does not fall in the scope of evaluation under the NDPP. The operational guidance shall make it clear to an administrator which security functionality is covered by the evaluation activities.	AGD_OPE
55.	AGD_PRE. 1	The evaluator shall check to ensure that the guidance provided for the TOE adequately addresses all platforms claimed for the TOE in the ST.	AGD_PRE
56.	ATE_IND.1	The evaluator shall prepare a test plan and report documenting the testing aspects of the system. The test plan covers all of the testing actions contained in the CEM and the body of the NDPP's Assurance Activities. While it is not necessary to have one test case per test listed in an Assurance Activity, the evaluator must document in the test plan that each applicable testing requirement in the ST is covered.	ATE_IND
57.	ATE_IND.1	The test plan identifies the platforms to be tested, and for those platforms not included in the test plan but included in the ST, the test plan provides a justification for not testing the platforms. This justification must address the differences between the tested platforms and the untested platforms, and make an argument that the differences do not affect the testing to be performed. It is not sufficient to merely assert that the differences have no affect; rationale must be provided. If all platforms claimed in the ST are tested, then no rationale is necessary.	ATE_IND
58.	ATE_IND.1	The test plan describes the composition of each platform to be tested, and any setup that is necessary beyond what is contained in the AGD documentation. It should be noted that the evaluator is expected to follow the AGD documentation for installation and setup of each platform either as part of a test or as a standard pre-test condition. This may include special test drivers or tools. For each driver or tool, an argument (not just an assertion) should be provided that the driver or	ATE_IND

#	NDPP Source	Requirement	Assurance Family
		tool will not adversely affect the performance of the functionality by the TOE and its platform. This also includes the configuration of the cryptographic engine to be used. The cryptographic algorithms implemented by this engine are those specified by this PP and used by the cryptographic protocols being evaluated (IPsec, TLS/HTTPS, SSH).	
59.	ATE_IND.1	The test plan identifies high-level test objectives as well as the test procedures to be followed to achieve those objectives. These procedures include expected results. The test report (which could just be an annotated version of the test plan) details the activities that took place when the test procedures were executed, and includes the actual results of the tests. This shall be a cumulative account, so if there was a test run that resulted in a failure; a fix installed; and then a successful rerun of the test, the report would show a "fail" and "pass" result (and the supporting details), and not just the "pass" result.	ATE_IND
60.	AVA_VAN. 1	As with ATE_IND, the evaluator shall generate a report to document their findings with respect to this requirement. This report could physically be part of the overall test report mentioned in ATE_IND, or a separate document. The evaluator performs a search of public information to determine the vulnerabilities that have been found in network infrastructure devices and the implemented communication protocols in general, as well as those that pertain to the particular TOE. The evaluator documents the sources consulted and the vulnerabilities found in the report. For each vulnerability found, the evaluator either provides a rationale with respect to its nonapplicability, or the evaluator formulates a test (using the guidelines provided in ATE_IND) to confirm the vulnerability, if suitable. Suitability is determined by assessing the attack vector needed to take advantage of the vulnerability. For example, if the vulnerability can be detected by pressing a key combination on boot-up, a test would be suitable at the assurance level of the NDPP. If exploiting the vulnerability requires expert skills and an electron microscope, for instance, then a test would not be suitable and an appropriate justification would be formulated.	AVA_VAN
61.	ALC_CMC. 1	The evaluator shall check the ST to ensure that it contains an identifier (such as a product name/version number) that specifically identifies the version that meets the requirements of the ST. Further, the evaluator shall check the AGD guidance and TOE samples received for testing to ensure that the version number is consistent with that in the ST. If the vendor maintains a web site advertising the TOE, the evaluator shall examine the information on the web site to ensure that the information in the ST is sufficient to distinguish the product.	ALC_CMC
62.	ALC_CMS. 2	The "evaluation evidence required by the SARs" in the NDPP is limited to the information in the ST coupled with the guidance provided to administrators and users under the AGD requirements. By ensuring that the TOE is specifically identified and that this identification is consistent in the ST and in the AGD guidance (as done in the assurance activity for ALC_CMC.1), the evaluator implicitly confirms the information required by this component.	ALC_CMS
63.	Annex C1.2	The evaluator shall check to ensure that the TSS contains a list (possibly empty except for authentication failures for user-level connections) of the protocol failures that are auditable. The evaluator shall test all identified audit events during protocol testing/audit testing.	ASE_TSS ATE_IND

----- End of Document -----