# ECOSYS PA6000x, ECOSYS PA5500x, ECOSYS PA5000x, ECOSYS PA4500x Series with SSD Security Target

Version 1.00



February 9, 2023
KYOCERA Document Solutions Inc.

# ECOSYS PA6000x, ECOSYS PA5500x, ECOSYS PA5000x, ECOSYS PA4500x Series with SSD Security Target

# - History of Revisions-

| Date       | Version | Detail             |
|------------|---------|--------------------|
| 2022-01-18 | 0.50    | Draft version      |
| 2022-08-09 | 0.80    | Update overall     |
| 2023-02-09 | 1.00    | Update the version |
|            |         |                    |
|            |         |                    |
|            |         |                    |
|            |         |                    |

# **Table of Contents**

| 1. 5                                                          | i int                                                              | roduction                                               | Ι.                                                 |
|---------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|
| 1.1.                                                          | ST Re                                                              | eference                                                | . 1                                                |
| 1.2.                                                          | TOE                                                                | Reference                                               | . 1                                                |
| 1.3.                                                          | TOE                                                                | Overview                                                | . 2                                                |
| 1                                                             | 3.1.                                                               | TOE Type                                                | . 2                                                |
| 1                                                             | 3.2.                                                               | TOE Usage                                               | . 2                                                |
| 1                                                             | 3.3.                                                               | Required Non-TOE Hardware, Software and Firmware        | . 3                                                |
| 1                                                             | 3.4.                                                               | Major Security Features of TOE                          | . 3                                                |
| 1.4.                                                          | TOE                                                                | Description                                             | . 3                                                |
| 1.                                                            | 4.1.                                                               | TOE user                                                | . 3                                                |
| 1.                                                            | 4.2.                                                               | Physical Configuration of TOE                           | . 4                                                |
| 1.                                                            | 4.3.                                                               | Logical Configuration of TOE                            | .5                                                 |
| 1.                                                            | 4.4.                                                               | Functionality Excluded from the Evaluated Configuration | . 7                                                |
| 1.                                                            | 4.5.                                                               | Guidance                                                | .7                                                 |
| 1.                                                            | 4.6.                                                               | Protected Assets of TOE                                 | . 8                                                |
|                                                               |                                                                    |                                                         |                                                    |
| 2. C                                                          | onfo                                                               | ormance Claim 1                                         | 10                                                 |
| 2. C                                                          |                                                                    | ormance Claim 1                                         |                                                    |
|                                                               | CC C                                                               |                                                         | 10                                                 |
| 2.1.                                                          | CC C                                                               | onformance Claim1                                       | 10<br>10                                           |
| 2.1.<br>2.2.                                                  | CC C<br>PP C<br>Pack                                               | onformance Claim                                        | 10<br>10<br>10                                     |
| <ul><li>2.1.</li><li>2.2.</li><li>2.3.</li><li>2.4.</li></ul> | CC C<br>PP C<br>Pack<br>Conf                                       | onformance Claim                                        | 10<br>10<br>10                                     |
| <ul><li>2.1.</li><li>2.2.</li><li>2.3.</li><li>2.4.</li></ul> | CC C<br>PP C<br>Pack<br>Conf                                       | onformance Claim                                        | 10<br>10<br>10<br>10                               |
| 2.1.<br>2.2.<br>2.3.<br>2.4.<br>3. So                         | CC C PP C Pack Conf  Conf  Thre                                    | onformance Claim                                        | 10<br>10<br>10<br>10<br>10                         |
| 2.1.<br>2.2.<br>2.3.<br>2.4.<br>3. So<br>3.1.<br>3.2.         | CC C PP C Pack Conf  Conf  Cur  Thre Orga                          | onformance Claim                                        | 10<br>10<br>10<br>10<br>11<br>11                   |
| 2.1.<br>2.2.<br>2.3.<br>2.4.<br>3. So<br>3.1.<br>3.2.<br>3.3. | CC C<br>PP C<br>Pack<br>Conf<br><b>ECU</b><br>Thre<br>Orga<br>Assu | onformance Claim                                        | 10<br>10<br>10<br>10<br>11<br>11                   |
| 2.1.<br>2.2.<br>2.3.<br>2.4.<br>3. So<br>3.1.<br>3.2.<br>3.3. | CC C PP C Pack Conf  Conf  Thre Orga Assu  CCUr                    | onformance Claim                                        | 110<br>110<br>110<br>110<br>111<br>111<br>111      |
| 2.1.<br>2.2.<br>2.3.<br>2.4.<br>3. So<br>3.1.<br>3.2.<br>3.3. | CC C PP C Pack Conf  Conf  Thre Orga Assu  CCUr  Secu              | onformance Claim                                        | 10<br>10<br>10<br>10<br>11<br>11<br>11<br>11<br>13 |

| 5. E | xter | nded Components Definition                                          | 19 |
|------|------|---------------------------------------------------------------------|----|
| 6. S | ecu  | rity Requirements                                                   | 20 |
| 6.1. | TOE  | Security Functional Requirements                                    | 20 |
| 6.   | 1.1. | Class FCS: Cryptographic Support                                    | 20 |
| 6.   | 1.2. | Class FDP: User Data Protection                                     | 24 |
| 6.   | 1.3. | Class FIA: Identification and Authentication                        | 27 |
| 6.   | 1.4. | Class FMT: Security Management                                      | 31 |
| 6.   | 1.5. | Class FTA: TOE Access                                               | 37 |
| 6.   | 1.6. | Class FTP: High Trusted Path/Channel                                | 38 |
| 6.2. | TOE  | Security Assurance Requirement                                      | 39 |
| 6.3. | Secu | urity Functional Requirements Rationale                             | 39 |
| 6.   | 3.1. | Security Functional Requirements Rationale                          | 39 |
| 6.   | 3.2. | Dependency Relationship of the TOE Security Functional Requirements |    |
| 6.   | 3.3. | Security Assurance Requirements Rationale                           | 44 |
| 7. T | OE S | Summary Specification                                               | 46 |
| 7.1. | Use  | r Management Function                                               | 47 |
| 7.2. | Data | Access Control Function                                             | 49 |
| 7.3. | SSD  | Encryption Function                                                 | 50 |
| 7.4. | Secu | urity Management Function                                           | 50 |
| 7.5. | Net  | work Protection Function                                            | 51 |
| 7.6. | Dev  | iations From Allowed Cryptographic Standards                        | 54 |
| 8. A | cro  | nyms and Terminology                                                | 55 |
| 8.1. | Defi | nition of terms                                                     | 55 |
| 8.2. | Defi | nition of acronyms                                                  | 56 |

# ECOSYS PA6000x, ECOSYS PA5500x, ECOSYS PA5000x, ECOSYS PA4500x Series with SSD Security Target

# List of Figures

| Figure 1-1 | Common usage in the offices   | 2 |
|------------|-------------------------------|---|
| Figure 1-2 | Physical Configuration of TOE | 4 |
| Figure 1-3 | Logical Configuration of TOF  | 5 |

# ECOSYS PA6000x, ECOSYS PA5500x, ECOSYS PA5000x, ECOSYS PA4500x Series with SSD Security Target

# List of Tables

| Table 1-1  | Delivery method for each TOE components                               | 5  |
|------------|-----------------------------------------------------------------------|----|
| Table 1-2  | Guidance that comprises TOE                                           | 7  |
| Table 1-3  | TSF Data to be targeted by the TOE                                    | 8  |
| Table 3-1  | Threats                                                               | 11 |
| Table 3-2  | Organizational Security Policies                                      | 11 |
| Table 3-3  | Assumptions                                                           | 12 |
| Table 4-1  | Security objectives for the TOE                                       | 13 |
| Table 4-2  | Security objectives for the operational environment                   | 14 |
| Table 4-3  | Completeness of security objectives                                   | 15 |
| Table 4-4  | Sufficiency of security objectives                                    | 15 |
| Table 6-1  | Key Generation                                                        | 21 |
| Table 6-2  | Cryptographic Operations                                              | 23 |
| Table 6-3  | Cryptographic Operations                                              | 24 |
| Table 6-4  | The list of Subject, Object and Operations between Subject and Object | 25 |
| Table 6-5  | Box Document Data Access Control SFP based on Login User Name         | 26 |
| Table 6-6  | Box Document Data Access Control SFP based on User Authorization      | 26 |
| Table 6-7  | Management of security attributes (Box function)                      | 31 |
| Table 6-8  | Operation of TSF data                                                 | 33 |
| Table 6-10 | Management Functions                                                  | 35 |
| Table 6-11 | Security Assurance Requirements                                       | 39 |
| Table 6-12 | Correspondence between Security Functional Requirements               | 40 |
| Table 6-13 | Dependency Relationship of the TOE Security Functional Requirements   | 42 |
| Table 7-1  | TOE security functions and security functional requirements           | 46 |
| Table 7-2  | Access Control Rules for Data Access Control Functions                | 49 |
| Table 7-3  | Operation of TSF Data by Device Administrators                        | 51 |
| Table 7-5  | Trusted channel communications provided by the TOE                    | 52 |
| Table 8-1  | Definitions of terms used in this ST                                  | 55 |
| Table 8-2  | Definitions of acronyms used in this ST                               | 56 |

# 1. ST Introduction

1.1. ST Reference

ST Title ECOSYS PA6000x, ECOSYS PA5500x, ECOSYS PA5000x, ECOSYS PA4500x

Series with SSD

**Security Target** 

ST Version 1.00

Date February 9, 2023

Author KYOCERA Document Solutions Inc.

1.2. TOE Reference

TOE Title: ECOSYS PA6000x, ECOSYS PA5500x, ECOSYS PA5000x, ECOSYS PA4500x,

ECOSYS P40050x, ECOSYS P40045x(KYOCERA), P-6034DN, P-5534DN,

P-5034DN, P-4534DN (TA Triumph-Adler/UTAX), with SSD

Remarks:

This TOE configures the following additional options to ECOSYS PA6000x, ECOSYS PA5500x, ECOSYS PA5000x, ECOSYS PA4500x, ECOSYS P40050x, ECOSYS P40045x, P-6034DN, P-5534DN, P-5034DN,

P-4534DN:

- Option SSD : HD-18

TOE Version: System Firmware: COT SOIS.CO4.002

Developer: KYOCERA Document Solutions Inc.

Applicable Printer: KYOCERA ECOSYS PA6000x, KYOCERA ECOSYS PA5500x, KYOCERA

ECOSYS PA5000x, KYOCERA ECOSYS PA4500x,

KYOCERA ECOSYS P40050x, KYOCERA ECOSYS P40045x,

TA Triumph-Adler P-6034DN, TA Triumph-Adler P-5534DN, TA

Triumph-Adler P-5034DN, TA Triumph-Adler P-4534DN,

UTAX P-6034DN, UTAX P-5534DN, UTAX P-5034DN, UTAX P-4534DN

This TOE is identified by a combination of the respective Printer product names as listed in the TOE title and the System firmware version as listed in the TOE version. There are single function printer product names as listed above, however the Printer components are all the same. The only difference is sales destinations.

#### 1.3. TOE Overview

# 1.3.1. TOE Type

The TOE defined in this ST is a Singe-Function Printer (Printer) manufactured by KYOCERA Document Solutions Inc., namely, "ECOSYS PA6000x, ECOSYS PA5500x, ECOSYS PA5000x, ECOSYS PA4500x, ECOSYS P40050x, ECOSYS P40045x, P-6034DN, P-5534DN, P-5034DN, P-4534DN", each of which includes mainly Print function and Box function. As for SSD, this will be available by installing the optional HD-18 on the device.

# 1.3.2. TOE Usage

This TOE can perform printing (paper output) and storing (accumulation) of various documents handled by users. The TOE is located in a common office environment and is not only used as a standalone but also connected to LAN for the use in the network environment. In the network environment, the TOE is assumed to be used by connecting to a server and a client PC on the internal network protected from unauthorized access on the external network by firewall. And, the TOE is assumed to be used by connecting to a Local Port (USB Port). In this user environment, the above-mentioned operational functions can be performed through operations on the operation panel or from the client PCs on the network and of the local connection.

Figure 1-1 shows a normal user environment.

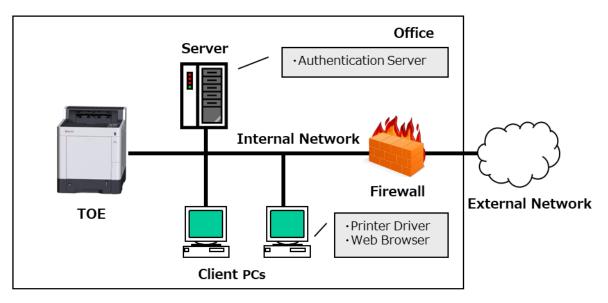



Figure 1-1 Common usage in the offices

#### Internal Network :

The network environment inside the office protected from unauthorized access on the

external network by firewall.

#### Client PC:

It is connected to the Printer via the internal network or a Local Port (USB Port). The common functions of the Printer can be available upon receipt of a user instruction.

Client PC needs the following:

- Printer Driver
- Web Browser

### Server:

It is used for network authentication in the Printer. The following servers are needed.

Authentication Server

# 1.3.3. Required Non-TOE Hardware, Software and Firmware

Required Non-TOE Hardware, Software and Firmware name is as follows.

Client PCs:

Printer Driver : KX Driver

Web Browser : Microsoft Edge

Authentication Server: IPsec(IKEv1) should be available.

# 1.3.4. Major Security Features of TOE

The TOE can perform printing and Box storage of various documents handled by users. To prevent alteration and leaks of these documents, the TOE has functions to identify and to authenticate users, to control access to document data stored in boxes, to encrypt document data stored on SSD, and to protect the network. However, the TOE does not support audit log and self-test function.

# 1.4. TOE Description

# 1.4.1. TOE user

User roles related to the use of the TOE are defined as follows.

There are two kinds of users, Normal User and Administrator.

Normal User

A person who uses functions provided by TOE, like Print function and Box function.

Device Administrator

A person who manage operations of TOE and registered as an Administrator. A device administrator has privilege to manage device configuration, installation and operation for the TOE correct behavior.

# 1.4.2. Physical Configuration of TOE

The conceptual figure of physical configuration of the TOE is shown in Figure 1-2.

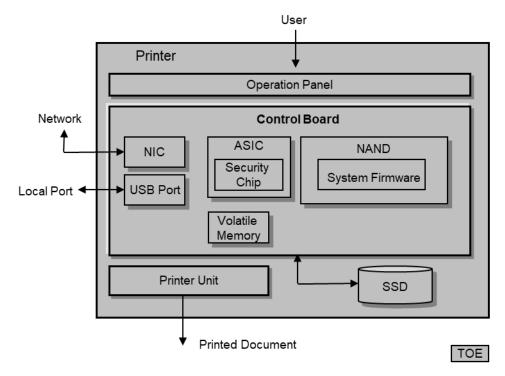



Figure 1-2 Physical Configuration of TOE

The TOE consists of an Operation Panel, a Printer Unit, a Control Board, a SSD hardware, and a firmware.

The Operation Panel is the hardware that displays status and results upon receipt of input by the TOE user. The Printer Unit are the hardware that output as printed material.

A Control Board is the circuit board to control entire TOE. A system firmware is installed on a NAND, which is positioned on the Control Board. The Control Board has a Network Interface (NIC) and a Local Interface (USB Port).

ASIC that is also on the Control Board includes a Security Chip, which shares installation of some of the security functions. The Security Chip realizes security arithmetic processing for SSD encryption function (See below).

As for memory mediums, a NAND that stores system firmware and device settings, a Volatile Memory that is used as working area and a SSD to store document data are positioned on the Control Board. Any of the above memory mediums are not removable. Device setting data related to Box function is stored in the SSD.

The delivery method for each TOE components is as follows. Guidance is also a part of TOE.

Table 1-1 Delivery method for each TOE components

| TOE Configuration | Form                                   | Delivery Method                            | Identification Information                                                                                                           |
|-------------------|----------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Printer Device    | Printer Device                         | Courier                                    | Printer product name<br>and firmware version<br>information described<br>in TOE Reference +<br>Mass storage device:<br>Not installed |
| SSD               | SSD Hardware                           | Courier                                    | HD-18                                                                                                                                |
| Guidance          | Paper document, PDF format file in DVD | Included in the box of the Printer device. | Name and version described in Table 1-2.                                                                                             |

<sup>\*</sup> Firmware is preinstalled in the Printer

# 1.4.3. Logical Configuration of TOE

The conceptual figure of logical configuration of the TOE is shown in Figure 1-3.

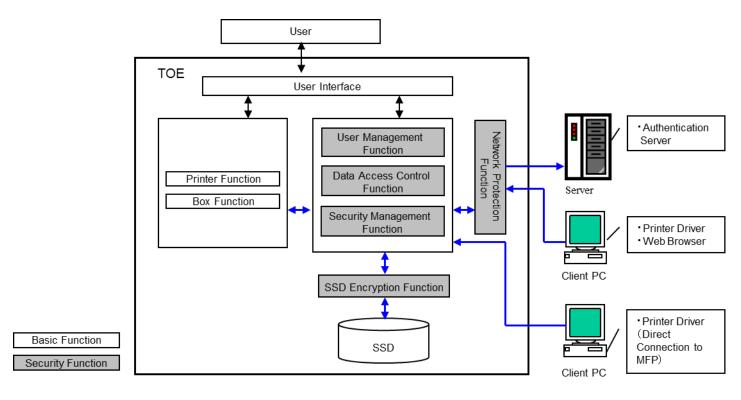



Figure 1-3 Logical Configuration of TOE

# 1.4.3.1. Basic Functions provided by TOE

The TOE provides the following basic functions.

# Print Function

A function that outputs received document data from the Printer Unit of the TOE by printing instructions from Client PCs connected over LAN or a local port to Printer by normal users. The printing instructions are given from the printer driver installed on Client PCs. The function also supports printing from a USB Memory connected to the local port. The printing instructions are given from the Operation Panel. (Execute a Print job)

## Box Function

A function that stores document data in the Box, reads document data from the Box and then print it by normal users. Document data can also be moved or joined inside the box.

Inputted document data is stored in the SSD by inputting/operating by normal users from the Operation Panel or the Client PCs connected over LAN or directly connected with Printer. Stored document data can be outputted from the Print Unit of the TOE. Stored document data can also be deleted. When inputting from Client PCs, printer driver is used, and when operating from Client PCs, web browser is used.

# 1.4.3.2. Security Functions provided by TOE

TOE provides the following security functions.

# User Management Function

A function that identifies and authenticates users so that only authorized users can use the TOE. When using the TOE from the Operation Panel and Client PCs, a user will be required to enter his/her login user name and login user password for identification and authentication. For Normal User, use external authentication using an external user authentication server to perform identity authentication. For Device Administrator, use external or internal authentication to perform identity authentication. Also internal authentication includes a User Account Lockout Function, which prohibits the users access for a certain period of time if the number of identification and authentication attempts consecutively result in failure and a function, which automatically logouts in case no operation has been done for a certain period of time.

## Data Access Control Function

A function that restricts access so that only authorized users can access to Box document

data stored in the TOE.

# SSD Encryption Function

A function that encrypts information assets stored in the SSD in order to prevent leakage of data stored in the SSD inside the TOE.

# Security Management Function

A function that sets security functions of the TOE. This function can be used only by authorized users. This function can be utilized from an Operation Panel and a Client PC. Operations from a Client PC use a web browser.

## Network Protection Function

A function that protects communication paths to prevent leaking and altering of data by eavesdropping of data in transition over the internal network connected to TOE. This function verifies the propriety of the destination to connect to and protects targeted information assets by encryption, when using a Print Function, a BOX Function from a Client PC (web browser), or a Security Management Function from a Client PC (web browser). However, usage of a Print Function directly connected to a Printer is exception.

# 1.4.4. Functionality Excluded from the Evaluated Configuration The following features are excluded from this evaluation:

Maintenance Interface

# 1.4.5. Guidance

The guidance comprising the TOE is shown below.

Table 1-2 Guidance that comprises TOE

| Name                                            | Version       |
|-------------------------------------------------|---------------|
| Notice (KYOCERA)                                | 3VC0T5655001  |
| Notice (TA Triumph-Adler/UTAX)                  | 3VC0T5656001  |
| ECOSYS PA6000x, ECOSYS PA5500x, ECOSYS PA5000x, | 3VC0T5602001  |
| ECOSYS PA4500x First Steps Quick Guide          |               |
| ECOSYS PA6000x, ECOSYS PA5500x, ECOSYS PA5000x, | COTKDEN000    |
| ECOSYS PA4500x Operation Guide                  |               |
| ECOSYS PA6000x, ECOSYS PA5500x, ECOSYS PA5000x, | 3VC0T5622001  |
| ECOSYS PA4500x Safety Guide                     |               |
| Data Encryption/Overwrite Operation Guide       | 3MSC0TKDEN1   |
| Command Center RX User Guide                    | COTCCRXKDEN29 |

# ECOSYS PA6000x, ECOSYS PA5500x, ECOSYS PA5000x, ECOSYS PA4500x Series with SSD Security Target

| ECOSYS PA6000x, ECOSYS PA5500x, ECOSYS PA5000x, | C0TBWKTEN820.2022.07    |
|-------------------------------------------------|-------------------------|
| ECOSYS PA4500x Printer Driver User Guide        |                         |
| KYOCERA Net Direct Print User Guide             | DirectPrintKDEN4.2022.9 |

## 1.4.6. Protected Assets of TOE

Protected Assets of TOE are described below.

# (1) Spool document data

The document data that is temporary stored on the SSD in the TOE when a Normal User uses Printer function on TOE.

# (2) Box document data

The document data that is stored on the SSD in the TOE when a Normal User uses TOE basic functions such as Box function. This document data can be printed, moved, and deleted via the operation panel and a web interface.

# (3) TOE configuration data

The data shown in Table 1-3. They are set or registered by Device Administrator or Normal User to control and use TOE security functions. The information which relates to Box function, such as box owner and box permission, is stored in the SSD.

#### (4) Communication data on the internal network

The data flow on the internal network when a Normal User uses basic functions or when a Device Administrator changes or manages security settings of TOE via Web interface. It includes both of document data and TOE setting data.

Table 1-3 TSF Data to be targeted by the TOE

| TSF Data        | Explanation                                                 |
|-----------------|-------------------------------------------------------------|
| Login User Name | User's identification information that is used for the User |
|                 | Management Function.                                        |
|                 | When using external authentication, this is obtained from   |
|                 | an external user authentication server. When using          |
|                 | internal authentication, two Device Administrators are      |
|                 | registered in advance and can be modified within 64         |
|                 | one-byte characters by Device Administrator.                |

| Login User         | Authentication information of usors that is required for    |  |  |
|--------------------|-------------------------------------------------------------|--|--|
| _                  | Authentication information of users that is required for    |  |  |
| Password           | user management function.                                   |  |  |
|                    | This is stored in the TOE only for internal authentication. |  |  |
|                    | This is modified by Device Administrator and consist of     |  |  |
|                    | within 64 one-byte characters.                              |  |  |
| Group information  | Group information to which the logged in user belongs       |  |  |
| (Group ID, User    | when using external authentication. For each group, user    |  |  |
| Authorization)     | authorization of the Device Administator or Normal User     |  |  |
|                    | and group ID are registerd. TOE binds user authorization    |  |  |
|                    | by associating the group ID of the logged-in user with the  |  |  |
|                    | group ID of the group information.                          |  |  |
| Number of Retries  | Number of retries until user account is locked out. This    |  |  |
| until Locked       | setting is enable only for internal authentication. This    |  |  |
| (User Account      | information is used for the user management function.       |  |  |
| Lockout Policy     | intermediation is used for the user management randism      |  |  |
| Settings )         |                                                             |  |  |
| Lockout Duration   | Time duration of rejection before user account is           |  |  |
| (User Account      | unlocked. This setting is enable only for internal          |  |  |
| Lockout Policy     | authentication. This information is used for the user       |  |  |
| •                  |                                                             |  |  |
| Settings)          | management function.                                        |  |  |
| Lockout List       | User list that shows users with their user names who are    |  |  |
|                    | locked out for user management function. This list is       |  |  |
|                    | enable only for internal authentication.                    |  |  |
|                    | Release of lockout on per user account basis from the list  |  |  |
|                    | can be instructed by a device administrator.                |  |  |
| Auto Logout Time   | Time information about automatic termination of login       |  |  |
| Setting            | session.                                                    |  |  |
| Password Policy    | Information that is used for setting Password Policy such   |  |  |
| Settings           | as password length, complexity and validity period. This    |  |  |
|                    | setting is enable only for internal authentication.         |  |  |
| Box Owner          | Setting for showing the box owner. One of registered        |  |  |
|                    | login user name is assigned to the owner information.       |  |  |
| Box Permission     | Set enabled or disabled for sharing documents inside a      |  |  |
| 25% : 511111551611 | box with all users. When box permission is enabled, all     |  |  |
|                    | the users can access to the box.                            |  |  |
| Network Encryption | Setting information for TLS and IPsec encryption            |  |  |
| Setting            | communication, which is used for Network Protection         |  |  |
| Jetting            | · · · · · · · · · · · · · · · · · · ·                       |  |  |
|                    | function.                                                   |  |  |

# 2. Conformance Claim

# 2.1. CC Conformance Claim

The CC conformance claim of this ST and TOE is as follows.

CC version for which this ST and TOE claim conformance:

Common Criteria for Information Technology Security Evaluation

Part1: Introduction and general model Version 3.1 Revision 5 Part2: Security functional components Version 3.1 Revision 5 Part3: Security assurance components Version 3.1 Revision 5

Conformity of ST to CC Part 2: CC part 2 conformant Conformity of ST to CC Part 3: CC part 3 conformant

#### 2.2. PP Claims

No PP to which this ST and TOE are conformant.

# 2.3. Package Claims

The ST and TOE claim the package: EAL2 augmented by ALC\_FLR.2.

# 2.4. Conformance Rationale

There is no rationale that the ST and TOE conform to PP because no PP is claimed.

# 3. Security Problem Definitions

This section describes Threats, Organizational Security Policies and Assumptions.

# 3.1. Threats

Threats is identified shown in Table 3-1. Attacker shall have a basic ability to attack TOE.

Table 3-1 Threats

| Threat         | Description                                        |
|----------------|----------------------------------------------------|
| T.SETTING_DATA | Malicious person may have unauthorized access      |
|                | to, to change, or to leak TOE setting data via the |
|                | operation panel or client PCs.                     |
| T.IMAGE_DATA   | Malicious person may illegally access not          |
|                | authorized box document data via the operation     |
|                | panel or Client PC and leak or alter them.         |
| T.NETWORK      | Malicious person may illegally eavesdrop or alter  |
|                | document data or TOE setting data on the           |
|                | internal network.                                  |

# 3.2. Organizational Security Policies

Organizational Security Policies that must be conformed by the TOE is shown in Table 3-2.

**Table 3-2 Organizational Security Policies** 

| Name             | Definition                             |
|------------------|----------------------------------------|
| P.SSD_ENCRYPTION | TOE must encrypt document data and TOE |
|                  | setting data stored on SSD.            |

# 3.3. Assumptions

Assumbtions of the TOE is shown in Table 3-3.

Table 3-3 Assumptions

| Assumption       | Definition                                                           |  |  |  |
|------------------|----------------------------------------------------------------------|--|--|--|
| A.ACCESS         | The hardware and software that the TOE is composed of are            |  |  |  |
|                  | located in a protected environment from security invasion such as    |  |  |  |
|                  | illegal analysis and alteration.                                     |  |  |  |
| A.NETWORK        | The TOE is connected to the internal network that is protected       |  |  |  |
|                  | from illegal access from the external network.                       |  |  |  |
| A.USER_EDUCATION | The TOE users are aware of the security policies and procedures of   |  |  |  |
|                  | their organization, and are educated to follow those policies and    |  |  |  |
|                  | procedures.                                                          |  |  |  |
| A.DADMIN_TRUST   | The TOE's administrators are competent to manage devices             |  |  |  |
|                  | properly as a device administrator and have a reliability not to use |  |  |  |
|                  | their privileged access rights for malicious purposes.               |  |  |  |

# 4. Security Objectives

This section describes Security Objectives for TOE, Security Objectives of Operational Environment and Security Objectives Rationale.

# 4.1. Security Objectives for the TOE

Security Objectives for the TOE is shown in Table 4-1.

Table 4-1 Security objectives for the TOE

| Objective            | Definition                                           |
|----------------------|------------------------------------------------------|
| O.SSD_ENCRYPTION     | The TOE shall provide a function to encrypt          |
|                      | document data and TOE setting data stored in SSD.    |
| O.NETWORK_ENCRYPTION | The TOE shall provide encrypted communication        |
|                      | function required on network protection in order to  |
|                      | protect document data and TOE setting data on the    |
|                      | internal network from eavesdropping or alteration.   |
| O.SETTING_DATA       | The TOE shall authorize access to the TOE setting    |
|                      | data only for authenticated right users, and prevent |
|                      | access to the TOE setting data by unauthorized       |
|                      | users, and prevent change or leak of TOE setting     |
|                      | data.                                                |
| O.ACCESS_CONTROL     | The TOE shall provide a function to ensure that the  |
|                      | TOE identifies and authenticates users, and controls |
|                      | access privilege to document data in order only      |
|                      | authorized user can access to the document data.     |

# 4.2. Security Objectives for the operational environment

Security Objectives for the operational environment is shown in Table 4-2.

Table 4-2 Security objectives for the operational environment

| Objective             | Definition                              |
|-----------------------|-----------------------------------------|
| OE.ACCESS             | The TOE shall be placed in a secure or  |
|                       | monitored area and Device               |
|                       | Administrator can monitor it so that it |
|                       | provides protection from attacks such   |
|                       | as unmanaged analyze and alteration     |
|                       | to hardware and software in the TOE.    |
| OE.NETWORK_PROTECTION | The internal network that the TOE is    |
|                       | connected shall prevent attacks from    |
|                       | the external network to the TOE by      |
|                       | introducing appliance such as a         |
|                       | firewall.                               |
| OE.USER_EDUCATION     | The organization shall make the TOE     |
|                       | users aware of the security policies    |
|                       | and procedures of their organization,   |
|                       | and make them educated and              |
|                       | acquired to follow those security       |
|                       | policies and procedures.                |
| OE.DADMIN_TRUST       | The device administrator shall be       |
|                       | elected a trustworthy person and        |
|                       | received enough guidance to comply      |
|                       | security policy and operation rules in  |
|                       | the belonged organization and to be     |
|                       | able appropriate operation following    |
|                       | the description in the product's        |
|                       | guidance.                               |

# 4.3. Security Objectives rationale

The relation among assumption, threat, and organizational security policy is shown in the table below. It describes that one Security Objective corresponds at least one assumtion, threat, and organizational security policy.

Table 4-3 Completeness of security objectives

|                       | Assumption, Threat, and Organizational security policy |           |                  |                |                |              |           |                  |
|-----------------------|--------------------------------------------------------|-----------|------------------|----------------|----------------|--------------|-----------|------------------|
| Security Objectives   | A.ACCESS                                               | A.NETWORK | A.USER_EDUCATION | A.DADMIN_TRUST | T.SETTING_DATA | T.IMAGE_DATA | T.NETWORK | P.SSD_ENCRYPTION |
| O.SSD_ENCRYPTION      |                                                        |           |                  |                |                |              |           | ✓                |
| O.NETWORK_ENCRYPTION  |                                                        |           |                  |                |                |              | ✓         |                  |
| O.SETTING_DATA        |                                                        |           |                  |                | ✓              |              |           |                  |
| O.ACCESS_CONTROL      |                                                        |           |                  |                |                | ✓            |           |                  |
| OE.ACCESS             | ✓                                                      |           |                  |                |                |              |           |                  |
| OE.NETWORK_PROTECTION |                                                        | ✓         |                  |                |                |              |           |                  |
| OE.USER_EDUCATION     |                                                        |           | ✓                |                |                |              |           |                  |
| OE.DADMIN_TRUST       |                                                        |           |                  | ✓              |                |              |           |                  |

Also the Security Objectives Rationale for Assumptions, Threats, and Organizational Security Policy is shown in Table 4-4.

Table 4-4 Sufficiency of security objectives

| Assumptions, Threats, and      | Security Objectives Rationale |
|--------------------------------|-------------------------------|
| Organizational Security Policy |                               |

| A.ACCESS         | Assumptions of A.ACCESS requires that the hardware and software that the TOE is composed of are located in a protected environment from security invasion such as illegal analysis and alteration.  By OE.ACCESS, the TOE is placed in a secure or monitored area that it provides protection from attacks such as unmanaged analyze and alteration to hardware and software in the TOE. Therefore the methods or opportunities of attacks are restricted and A.ACCESS can be achieved.   |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A.NETWROK        | Assumptions of A.NETWORK requires that the TOE is connected to the internal network that is protected from illegal access from the external network.  By OE.NETWORK_PROTECTION, the internal network that the TOE connected to prevents attacks from the external network to the TOE by introducing appliance such as a firewall.  Therefore the methods or opportunities of attacks by many and unspecified agents on the external network are restricted and A.NETWORK can be achieved. |
| A.USER_EDUCATION | Assumptions of A.USER_EDUCATION requires that the TOE users are aware of the security policies and procedures of their organization, and are educated to follow those policies and procedures.  By OE.USER_EDUCATION, the organization makes the TOE users aware of the security policies and procedures of their organization, and make them educated and acquired to follow those security policies and procedures. Therefore  A.USER_EDUCATION can be achieved.                        |

| A.DADMIN_TRUST | Assumptions of A.DADMIN TRUST requires that             |  |  |  |
|----------------|---------------------------------------------------------|--|--|--|
| 1              | the TOE's administrators are competent to               |  |  |  |
|                | manage devices properly as a device                     |  |  |  |
|                | administrator and have a reliability not to use         |  |  |  |
|                | their privileged access rights for malicious            |  |  |  |
|                |                                                         |  |  |  |
|                | purposes.  By OE.DADMIN TRUST, the device administrator |  |  |  |
|                | _ ·                                                     |  |  |  |
|                | is elected a trustworthy person and received            |  |  |  |
|                | enough guidance to comply security policy and           |  |  |  |
|                | operation rules in the belonged organization and        |  |  |  |
|                | to be able appropriate operation following the          |  |  |  |
|                | description in the product's guidance. Therefore        |  |  |  |
|                | A.DADMIN_TRUST can be achieved.                         |  |  |  |
| T.SETTING_DATA | To counter T.SETTING_DATA, it is required to            |  |  |  |
|                | prevent to have unauthorized access to, to              |  |  |  |
|                | change, or to leak TOE setting data via the             |  |  |  |
|                | operation panel or client PCs.                          |  |  |  |
|                | By O.SETTING_DATA, this threat can be                   |  |  |  |
|                | countered. By O.SETTING_DATA, the TOE                   |  |  |  |
|                | authorizes access to the TOE setting data only for      |  |  |  |
|                | authenticated right users, and prevent access to        |  |  |  |
|                | the TOE setting data by unauthorized users, and         |  |  |  |
|                | prevent change or leak of TOE setting data.             |  |  |  |
|                | Therefore unauthorized access, change, or leak of       |  |  |  |
|                | TOE setting data can be prevented.                      |  |  |  |
| T.IMAGE_DATA   | To counter T.IMAGE_DATA, it is required to              |  |  |  |
|                | prevent to have unauthorized access to, to leak,        |  |  |  |
|                | or to alter box document data via the operation         |  |  |  |
|                | panel or client PCs.                                    |  |  |  |
|                | By O.ACCESS_CONTROL, this threat can be                 |  |  |  |
|                | countered.                                              |  |  |  |
|                | By O.ACCESS CONTROL, the TOE identifies and             |  |  |  |
|                | authenticates users accessing via operation panel       |  |  |  |
|                | or client PCs, and controls access privilege to         |  |  |  |
|                | document data in order only authorized user can         |  |  |  |
|                | access to the document data. Therefore TOE can          |  |  |  |
|                | prevent unauthorized access, leak or alteration of      |  |  |  |
|                | document data.                                          |  |  |  |
|                | document data.                                          |  |  |  |

| T.NETWORK        | To counter T.NETWORK, it is required to prevent |  |  |  |
|------------------|-------------------------------------------------|--|--|--|
|                  | eavesdropping or alteration on the document     |  |  |  |
|                  | data and the TOE setting data on the internal   |  |  |  |
|                  | network.                                        |  |  |  |
|                  | By O.NETWORK_ENCRYPTION, this threat can be     |  |  |  |
|                  | countered.                                      |  |  |  |
|                  | By O.NETWORK_ENCRYPTION, the TOE provide        |  |  |  |
|                  | encrypted communication function required on    |  |  |  |
|                  | network protection. Therefore eavesdropping     |  |  |  |
|                  | and alteration of the document data and the TOE |  |  |  |
|                  | setting data on the internal network can be     |  |  |  |
|                  | prevented.                                      |  |  |  |
| P.SSD_ENCRYPTION | P.SSD_ENCRYPTION of the security objective of   |  |  |  |
|                  | the organization is supposed to encrypt the     |  |  |  |
|                  | document data and the TOE setting data stored   |  |  |  |
|                  | on the SSD.                                     |  |  |  |
|                  | By O.SSD_ENCRYPTION, the TOE encrypts           |  |  |  |
|                  | document data and TOE setting data stored in    |  |  |  |
|                  | SSD. Therefore this security objective can be   |  |  |  |
|                  | achieved.                                       |  |  |  |

| 5. | Extended | Components | Definition |
|----|----------|------------|------------|
|----|----------|------------|------------|

No extended components defined.

# 6. Security Requirements

This section describes the TOE Security Functional Requirements.

- 6.1. TOE Security Functional Requirements.
  - 6.1.1. Class FCS: Cryptographic Support

# FCS\_CKM.1(a) Cryptographic key generation (SSD Encryption)

Hierarchical to: No other components.

Dependencies: [FCS\_CKM.2 Cryptographic key distribution, or

FCS\_COP.1 Cryptographic operation]
FCS\_CKM.4 Cryptographic key destruction

FCS\_CKM.1.1(a) The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm [assignment: cryptographic key generation algorithm] and specified cryptographic key sizes [assignment: cryptographic key sizes] that meet the following: [assignment: list of standards].

[assignment: cryptographic key generation algorithm]

KDF(Counter Mode)

[assignment: cryptographic key sizes]

256 bits

[assignment: list of standards]

NIST SP800-108

# FCS\_CKM.1(b) Cryptographic key generation (TLS)

Hierarchical to: No other components.

Dependencies: [FCS\_CKM.2 Cryptographic key distribution, or

FCS\_COP.1 Cryptographic operation]
FCS\_CKM.4 Cryptographic key destruction

FCS\_CKM.1.1(b) The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm [multiple key generation algorithms

described below] and specified cryptographic key sizes [as described below] that meet the following: [multiple standards as described below].

Table 6-1 Key Generation

| Algorithm              | Key sizes          | Standards              |
|------------------------|--------------------|------------------------|
| RSA                    | 2048, 4096 bits    | FIPS 186-4, Appendix B |
| AES                    | 128, 256 bits      | FIPS 197               |
| ChaCha20-Poly1305      | 256 bits           | RFC8439                |
| TLS key generation via | AES 128, 256 bits  | SP 800-135 Rev.1       |
| DHE or ECDHE           |                    |                        |
| TLS key generation via | HMAC 160, 256, 384 | SP 800-135 Rev.1       |
| DHE or ECDHE           | bits               |                        |

# FCS\_CKM.1(c) Cryptographic key generation (IPSec)

Hierarchical to: No other components.

Dependencies: [FCS\_CKM.2 Cryptographic key distribution, or

FCS\_COP.1 Cryptographic operation]
FCS\_CKM.4 Cryptographic key destruction

FCS\_CKM.1.1(c) The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm [assignment: cryptographic key generation algorithm] implement [assignment: Diffie-Hellman Groups] that meet the following: [assignment: list of standards].

[assignment: cryptographic key generation algorithm]

IKEv1KDF

[assignment: Diffie-Hellman Groups]

Diffie-Hellman Group 14, 16, 17, 18, 19, 20, 21, 22, 23, 24

[assignment: list of standards]

SP 800-135 Rev.1, RFC 2409, RFC 5114

# FCS\_COP.1(a) Cryptographic operation (SSD Encryption)

Hierarchical to: No other components.

Dependencies: [FDP\_ITC.1 Import of user data without security attributes, or

FDP ITC.2 Import of user data with security attributes, or

FCS\_CKM.1 Cryptographic key generation] FCS\_CKM.4 Cryptographic key destruction

FCS\_COP.1.1(a) The TSF shall perform [assignment: list of cryptographic operations] in accordance with a specified cryptographic algorithm [assignment: cryptographic algorithm] and cryptographic key sizes [assignment: cryptographic key sizes] that meet the following: [assignment: list of standards].

[assignment: list of cryptographic operations]

- Encryption of document data when writing into the SSD
- Encryption of information about the Box that is written in to the SSD, like box owner and box permission setting
- Decryption of document data when reading out from the SSD
- Encryption of information about the Box that is read out from the SSD, like box owner and box permission setting

[assignment: cryptographic algorithm]

AES(XTS mode)

[assignment: cryptographic key sizes]

256 bits

[assignment: list of standards]

FIPS PUB 197

# FCS\_COP.1(b) Cryptographic operation (TLS)

Hierarchical to: No other components.

Dependencies: [FDP\_ITC.1 Import of user data without security attributes, or

FDP ITC.2 Import of user data with security attributes, or

FCS\_CKM.1 Cryptographic key generation]

# FCS CKM.4 Cryptographic key destruction

**FCS\_COP.1.1(b)** The TSF shall perform [the operations listed in the table below] in accordance with a specified cryptographic algorithm [multiple algorithms described below] and cryptographic key sizes [as described below] that meet the following: [multiple standards as described below].

**Table 6-2 Cryptographic Operations** 

| Operations     | Algorithm             | Key/Hash Size in<br>Bits | Standards    |
|----------------|-----------------------|--------------------------|--------------|
| Encryption,    | AES (CBC mode)        | 128, 256 bits            | FIPS 197     |
| decryption     | AES (GCM mode)        |                          | SP800-38A    |
|                |                       |                          | SP800-38D    |
|                | ChaCha20-Poly1305     | 256 bits                 | RFC8439      |
| Cryptographic  | RSA Digital Signature | 2048 bits                | PKCS #1 v2.2 |
| Signature      | Algorithm             |                          | FIPS 186-4   |
| Services       | (RSASSA-PKCS1-v1_5)   |                          |              |
| Hashing        | SHA-1                 | 160 bits                 | FIPS 180-4   |
|                | SHA-256, SHA-384      | 256, 384 bits            | FIPS 180-4   |
| Keyed Hash     | HMAC-SHA-1            | 160 bits                 | RFC 2104     |
| Message        | HMAC-SHA-256,         | 256, 384 bits            |              |
| Authentication | HMAC-SHA-384          |                          |              |
| Code           |                       |                          |              |

# FCS\_COP.1(c) Cryptographic operation (IPSec)

Hierarchical to: No other components.

Dependencies: [FDP\_ITC.1 Import of user data without security attributes, or

FDP\_ITC.2 Import of user data with security attributes, or

FCS\_CKM.1 Cryptographic key generation] FCS\_CKM.4 Cryptographic key destruction

FCS\_COP.1.1(c) The TSF shall perform [the operations listed in the table below] in accordance with a specified cryptographic algorithm [multiple algorithms described below] and cryptographic key sizes [as described below] that meet the following: [multiple standards as described below].

**Table 6-3 Cryptographic Operations** 

| Operations     | Algorithm         | Key/Hash     | Standards       |
|----------------|-------------------|--------------|-----------------|
|                |                   | Size in Bits |                 |
| ISAKMP         | Pre-shared key    | -            | RFC 2409        |
| authentication |                   |              | SP800-77 Rev.1  |
| Hashing        | SHA-256, SHA-384, | 256, 384,    | FIPS 180-4      |
|                | SHA-512           | 512 bits     |                 |
| Data           | HMAC-SHA256-128   | 256 bits     | RFC 2104        |
| authentication | HMAC-SHA384-192   | 384 bits     | RFC 4868        |
|                | HMAC-SHA512-256   | 512 bits     |                 |
| Encryption,    | 3DES(CBC mode)    | 168 bits     | FIPS 46-3       |
| decryption     |                   |              | SP 800-67 Rev.2 |
|                | AES (CBC mode)    | 128, 192,    | FIPS 197        |
|                |                   | 256 bits     | SP800-38A       |

# 6.1.2. Class FDP: User Data Protection

# FDP\_ACC.1 Subset access control

Hierarchical to: No other components.

Dependencies: FDP\_ACF.1 Security attribute based access control

**FDP\_ACC.1.1** The TSF shall enforce the [assignment: Access Control SFP] on [assignment: List of subjects, objects, and operations among subjects and objects covered in SFP].

[assignment: the list of subjects, objects, and operations among subjects and objects covered in SFP]

 The list of subjects, objects, and operations among subjects and objects shown in Table 6-4.

[assignment: Access Control SFP]

Box Document Data Access Control SFP

Table 6-4 The list of Subject, Object and Operations between Subject and Object

| Subject             | Object       | Operation(s)           |
|---------------------|--------------|------------------------|
| Task to be executed | Box document | Read and delete of box |
| on behalf of user   | data         | document data          |

# FDP\_ACF.1 Security attribute based access control

Hierarchical to: No other components.

Dependencies: FDP\_ACC.1 Subset access control

FMT\_MSA.3 Static attribute initialisation

FDP\_ACF.1.1 The TSF shall enforce the [assignment: Access Control SFP] to objects based on the following: [assignment: the list of users as subjects and objects controlled under the indicated SFP and for each the SFP related security attribute or the named group of SFP related security attribute].

[assignment: the list of users as subjects and objects controlled under the indicated SFP and for each the SFP related security attribute or the named group of SFP related security attribute]

The list of Box Document Data Access Control SFP as listed in Table 6-5.

[assignment: Access Control SFP]

Box Document Data Access Control SFP

FDP\_ ACF.1.2 The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed: [assignment: rules of access control used to the operations for controlled object among controlled subjects and controlled objects].

[assignment: rules of access control used to the operations for controlled object among controlled subjects and controlled objects]

 Access control rules of Box Document Data Access Control SFP that is based on login user name as listed in Table 6-5.

Table 6-5 Box Document Data Access Control SFP based on Login User Name

| Object               | Operation(s) | Subject              | Access control rule        |
|----------------------|--------------|----------------------|----------------------------|
| (Security attribute) |              | (Security attribute) |                            |
| Box document data    | Read, Delete | Task to be executed  | (1) When the "Login User   |
| (Box Owner, Box      |              | on behalf of user    | Name" matches the Box's    |
| Permission)          |              | (Login user name)    | "Box Owner" in which the   |
|                      |              |                      | box document data is       |
|                      |              |                      | stored, the operation is   |
|                      |              |                      | permitted.                 |
|                      |              |                      | (2) When the Box's "Box    |
|                      |              |                      | Permission" is enabled, in |
|                      |              |                      | which the box data is      |
|                      |              |                      | stored, the operation is   |
|                      |              |                      | permitted for a normal     |
|                      |              |                      | user.                      |

**FDP\_ ACF.1.3** The TSF shall explicitly authorise access of subjects to objects based on the following additional rules: [assignment: rules, based on security attributes, that explicitly authorise access of subjects to objects].

[assignment: rules, based on security attributes, that explicitly authorise access of subjects to objects]

 Access control rules of Box Document Data Access Control SFP that is based on user authorization as listed in Table 6-6

Table 6-6 Box Document Data Access Control SFP based on User Authorization

| Object               | Operation(s) | Subject              | Access control rule           |
|----------------------|--------------|----------------------|-------------------------------|
| (Security attribute) |              | (Security attribute) |                               |
| Box document data    | Read, Delete | Task to be executed  | Device administrator          |
| (Box Owner, Box      |              | on behalf of user    | authorization is permitted to |
| Permission)          |              | (User Authorization) | operate box regardless of the |
|                      |              |                      | values of "Box owner" and     |
|                      |              |                      | "Box permission".             |

**FDP\_ ACF.1.4** The TSF shall explicitly deny access of subjects to objects based on the [assignment: rules, based on security attributes, that explicitly deny access of subjects to objects].

[assignment: rules, based on security attributes, that explicitly deny access of subjects to objects]

None

#### 6.1.3. Class FIA: Identification and Authentication

# FIA\_AFL.1 Authentication failure handling

Hierarchical to: No other components.

Dependencies: FIA\_UAU.1 Timing of authentication

FIA\_AFL.1.1 The TSF shall detect when [selection: [assignment: positive integer number], an administrator configurable positive integer within [assignment: range of acceptable values]] unsuccessful authentication attempts occur related to [assignment: list of authentication events].

[selection: [assignment: positive integer number], an administrator configurable positive integer within [assignment: range of acceptable values]]

• an administrator configurable positive integer within [assignment: range of acceptable values]

[assignment: range of acceptable values]

• 1 to 10

[assignment: list of authentication events]

- For internal authentication, consecutive unsuccessful authentication attempts since the last successful authentication occur related to login user name designated by login from an operational panel.
- For internal authentication, consecutive unsuccessful authentication attempts since the last successful authentication occur related to login user name designated by login from a client PC.
- **FIA\_AFL.1.2** When the defined number of unsuccessful authentication attempts has been [selection: *met, surpassed*], the TSF shall [assignment: *list of actions*].

[selection: *met, surpassed*]

met

[assignment: list of actions]

• Login from the account is locked out between 1 and 60 minutes and until the time designated by a device administrator that elapse, or until a device

administrator releases lock status.

# FIA\_ATD.1 User attribute definition

Hierarchical to: No other components. Dependencies: No dependencies.

**FIA\_ATD.1.1** The TSF shall maintain the following list of security attributes belonging to individual users: [assignment: *list of security attributes*].

[assignment: list of security attributes]

Login User Name, User Authorization, Group ID

# FIA\_SOS.1 Verification of secrets

Hierarchical to: No other components. Dependencies: No dependencies.

**FIA\_SOS.1.1** The TSF shall provide a mechanism to verify that secrets meet [assignment: a defined quality metric].

[assignment: a defined quality metric]

For internal authentication,

Password Length: At least 8 characters

Character Type : Alphanumeric or special characters

# FIA\_UAU.1 Timing of authentication

Hierarchical to: No other components.

Dependencies: FIA\_UID.1 Timing of identification

FIA\_UAU.1.1 The TSF shall allow [assignment: list of TSF-mediated actions that do not conflict with

*access-controlled Functions of the TOE*] on behalf of the user to be performed before the user is authenticated.

[assignment: list of TSF-mediated actions that do not conflict with access-controlled Functions of the TOE]

- Obtain a device status
- Display a list of job information
- Display counter information

# **FIA\_UAU.1.2** The TSF shall require each user to be successfully authenticated before allowing any other TSF-mediated actions on behalf of that user.

# FIA\_UAU.7 Protected authentication feedback

Hierarchical to: No other components.

Dependencies: FIA UAU.1 Timing of authentication

**FIA\_UAU.7.1** The TSF shall provide only [assignment: *list of feedback*] to the user while the authentication is in progress.

[assignment: list of feedback]

dummy characters (\*: asterisk)

# FIA\_UID.1 Timing of identification

Hierarchical to: No other components. Dependencies: No dependencies.

FIA\_UID.1.1 The TSF shall allow [assignment: list of TSF-mediated actions that do not conflict with access-controlled Functions of the TOE] on behalf of the user to be performed before

the user is identified.

[assignment: list of TSF-mediated actions that do not conflict with access-controlled Functions of the TOE]

- Obtain a device status
- Display a list of job information
- Display counter information
- **FIA\_UID.1.2** The TSF shall require each user to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

# FIA\_USB.1 User-subject binding

Hierarchical to: No other components.

Dependencies: FIA ATD.1 User attribute definition

**FIA\_USB.1.1** The TSF shall associate the following user security attributes with subjects acting on the behalf of that user: [assignment: *list of user security attributes*].

[assignment: list of user security attributes]

- Login User Name, User Authorization, Group ID
- **FIA\_USB.1.2** The TSF shall enforce the following rules on the initial association of user security attributes with subjects acting on the behalf of users: [assignment: rules for the initial association of attributes].

[assignment: rules for the initial association of attributes]

- None
- FIA\_USB.1.3 The TSF shall enforce the following rules governing changes to the user security attributes associated with subjects acting on the behalf of users: [assignment: rules for the changing of attributes].

[assignment: rules for the changing of attributes]

None

#### 6.1.4. Class FMT: Security Management

#### FMT\_MSA.1 Management of security attributes

Hierarchical to: No other components.

Dependencies: [FDP ACC.1 Subset access control, or

FDP IFC.1 Subset information flow control]

FMT SMR.1 Security roles

FMT\_SMF.1 Specification of Management Functions

**FMT\_MSA.1.1** The TSF shall enforce [assignment: access control SFP(s), information flow control SFP(s)] to restrict the ability to [selection: change\_default, query, modify, delete, [assignment: other operations]] the security attributes [assignment: list of security attributes] to [assignment: the authorised identified roles].

[assignment: access control SFP(s), information flow control SFP(s)]

User Data Access Control SFP

[selection: change\_default, query, modify, delete, [assignment: other operations]]

[assignment: other operations]

[assignment: other operations]

Operation(s) as listed in Table 6-7

[assignment: list of security attributes]

Security Attributes as listed in Table 6-7

[assignment: the authorised identified roles]

Role as listed in Table 6-7

Table 6-7 Management of security attributes (Box function)

| Security Attributes | Operation(s) | Role                 |
|---------------------|--------------|----------------------|
| Box Owner           | modify       | Device Administrator |
| Box Permission      | modify       | Device Administrator |
|                     |              | Normal User that     |
|                     |              | matches a Box Owner. |

#### FMT\_MSA.3 Static attribute initialisation

Hierarchical to: No other components.

Dependencies: FMT MSA.1 Management of security attributes

FMT SMR.1 Security roles

**FMT\_MSA.3.1** The TSF shall enforce [assignment: access control SFP, information flow control SFP] to provide [selection, choose one of: restrictive, permissive, [assignment: other property]] default values for security attributes that are used to enforce the SFP.

[assignment: access control SFP, information flow control SFP]

User Data Access Control SFP

[selection, choose one of: restrictive, permissive, [assignment: other property]]

restrictive

**FMT\_MSA.3.2** The TSF shall allow the [assignment: *the authorized identified roles*] to specify alternative initial values to override the default values when an object or information is created.

[assignment: the authorized identified roles]

nobody

#### FMT\_MTD.1 Management of TSF data

Hierarchical to: No other components.

Dependencies: FMT SMR.1 Security roles.

FMT SMF.1 Specification of Management Functions

**FMT\_MTD.1.1** The TSF shall restrict the ability to [selection: change\_default, query, modify, delete, clear, [assignment: other operations]] the [assignment: list of TSF data] to [assignment: the authorized identified roles].

[selection: change\_default, query, modify, delete, clear, [assignment: other operations]]

Other operations

[assignment: other operations]Operation as listed in Table 6-8

[assignment: list of TSF data]■ TSF data as listed in Table 6-8

[assignment: the authorized identified roles]

• Roles as listed in Table 6-8

Table 6-8 Operation of TSF data

| TSF data                               | Roles                | Operation                      |
|----------------------------------------|----------------------|--------------------------------|
| Login User Name                        | Device Administrator | modify, delete, [assignment:   |
|                                        |                      | other operations]              |
|                                        |                      | [assignment: other operations] |
|                                        |                      | ● Create                       |
| Login User Password                    | Device Administrator | modify, delete, [assignment:   |
|                                        |                      | other operations]              |
|                                        |                      | [assignment: other operations] |
|                                        |                      | ● Create                       |
| Group ID                               | Device Administrator | modify, delete, [assignment:   |
|                                        |                      | other operations]              |
|                                        |                      | [assignment: other operations] |
|                                        |                      | Create                         |
| User Authorization                     | Device Administrator | modify, delete, [assignment:   |
|                                        |                      | other operations]              |
|                                        |                      | [assignment: other operations] |
|                                        |                      | ● Create                       |
| Number of Retries until locked         | Device Administrator | modify                         |
| (User Account Lockout Policy Settings) |                      |                                |
| Lockout Duration                       | Device Administrator | modify                         |
| (User Account Lockout Policy Settings) |                      |                                |
| Lockout List                           | Device Administrator | modify                         |
| Auto Logout Time Setting               | Device Administrator | modify                         |
| Password Policy Settings               | Device Administrator | modify                         |
| Network Encryption Setting             | Device Administrator | modify                         |
|                                        |                      |                                |

#### FMT\_SMF.1 Specification of Management Functions

Hierarchical to: No other components. Dependencies: No dependencies.

**FMT\_SMF.1.1** The TSF shall be capable of performing the following management functions: [assignment: *list of management functions to be provided by the TSF*].

[assignment: list of management functions to be provided by the TSF]

- Functions that manage security attributes (i.e. Box Owner and Box Permission) related to a Box function.
- Functions that manage TSF Data (i.e. Login User Name, Login User Password, Group ID, User Authorization, Number of Retries until Locked, Lockout Duration, Auto Logout Time Setting, Password Policy Settings, and Network encryption Setting(TLS, IPsec setting)).

**Table 6-9 Management Functions** 

| Function<br>Requirement | Management<br>Functions | Management Items defined by CC             |
|-------------------------|-------------------------|--------------------------------------------|
| FCS_CKM.1(a)            | -                       | There are no management activities         |
|                         |                         | foreseen.                                  |
| FCS_CKM.1(b)            | -                       | There are no management activities         |
|                         |                         | foreseen.                                  |
| FCS_CKM.1(c)            | -                       | There are no management activities         |
|                         |                         | foreseen.                                  |
| FCS_COP.1(a)            | -                       | There are no management activities         |
|                         |                         | foreseen.                                  |
| FCS_COP.1(b)            | -                       | There are no management activities         |
|                         |                         | foreseen.                                  |
| FCS_COP.1(c)            | -                       | There are no management activities         |
|                         |                         | foreseen.                                  |
| FDP_ACC.1               | -                       | There are no management activities         |
|                         |                         | foreseen.                                  |
| FDP_ACF.1               | None                    | Managing the attributes used to make       |
|                         | (Attributes used to     | explicit access or denial based decisions. |
|                         | make explicit access    |                                            |
|                         | or denial based         |                                            |
|                         | decisions is fixed as   |                                            |
|                         | Device Administrator,   |                                            |
|                         | and this is not needed  |                                            |
|                         | to be managed.)         |                                            |
| FIA_AFL.1               | Management of           | a) management of the threshold for         |
|                         | unsuccessful            | unsuccessful authentication attempts;      |
|                         | authentication          | management of actions to be taken in the   |
|                         | attempts.               | event of an authentication failure.        |
| FIA_ATD.1               | None                    | if so indicated in the assignment, the     |
|                         | (There are no           | authorised administrator might be able to  |
|                         | additional security     | define additional security attributes for  |
|                         | attributes and there    | users.                                     |
|                         | are no additional       |                                            |
|                         | security attributes to  |                                            |
|                         | be managed.)            |                                            |
| FIA_SOS.1               | Management of Login     | the management of the metric used to       |
|                         | User Password Policy    | verify the secrets.                        |

| FIA UAU.1 | Management of login                    | a) management of the authoritisation      |
|-----------|----------------------------------------|-------------------------------------------|
| FIA_UAU.1 | Management of login                    | a) management of the authentication       |
|           | user password by Device Administrator. | data by an administrator;                 |
|           |                                        | b) management of the authentication       |
|           | Management of                          | data by the associated user;              |
|           | Normal User                            | a) managing the list of actions that can  |
|           | (him/her) login user                   | be taken before the user is               |
|           | password by Normal                     | authenticated.                            |
|           | User.                                  |                                           |
| FIA_UAU.7 | -                                      | There are no management activities        |
|           |                                        | foreseen.                                 |
| FIA_UID.1 | Management of the                      | a) Management of the user identities      |
|           | user identities                        |                                           |
| FIA_USB.1 | None                                   | a) an authorised administrator can        |
|           | (Subject security                      | define default subject security           |
|           | attributes are fixed                   | attributes.                               |
|           | and are not managed.                   | b) an authorised administrator can        |
|           |                                        | change subject security attributes.       |
| FMT_MSA.1 | None                                   | a) managing the group of roles that can   |
|           | (The role group is                     | interact with the security attributes;    |
|           | fixed as Device                        | a) management of rules by which           |
|           | Administrator and is                   | security attributes inherit specified     |
|           | not managed.)                          | values.                                   |
| FMT_MSA.3 | None                                   | a) managing the group of roles that can   |
|           | (The role group is                     | specify initial values;                   |
|           | fixed as Device                        | b) managing the permissive or restrictive |
|           | Administrator and is                   | setting of default values for a given     |
|           | not managed.)                          | access control SFP;                       |
|           | ,                                      | a) management of rules by which           |
|           |                                        | security attributes inherit specified     |
|           |                                        | values.                                   |
| FMT_MTD.1 | None                                   | managing the group of roles that can      |
| _         | (The role group is                     | interact with the TSF data.               |
|           | fixed as Device                        |                                           |
|           | Administrator and is                   |                                           |
|           | not managed.)                          |                                           |
| FMT SMF.1 | -                                      | b) There are no management activities     |
|           |                                        | foreseen.                                 |
| FMT_SMR.1 | Manage the group of                    | c) a) managing the group of users that    |
|           | users that are user                    | are part of a role.                       |
|           | accidentate and acci                   | a. 5 parc 51 a 1515.                      |

|           | authorization.                                                                                           |          |                                                                                                                                                                                                                                                |
|-----------|----------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FTA_SSL.3 | Management of auto-logout time.                                                                          | a)<br>a) | specification of the time of user inactivity after which termination of the interactive session occurs for an individual user; specification of the default time of user inactivity after which termination of the interactive session occurs. |
| FTP_ITC.1 | Management of data protection on the internal network. (Network encryption settings(TLS, IPsec setting)) | a)       | Configuring the actions that require trusted channel, if supported.                                                                                                                                                                            |

#### FMT\_SMR.1 Security roles

Hierarchical to: No other components.

Dependencies: FIA\_UID.1 Timing of identification

**FMT\_SMR.1.1** The TSF shall maintain [assignment: the authorised identified roles].

[assignment: the authorised identified roles]

Device Administrator

Normal User

**FMT\_SMR.1.2** The TSF shall be able to associate users with roles.

#### 6.1.5. Class FTA: TOE Access

#### FTA\_SSL.3 TSF-initiated termination

Hierarchical to: No other components. Dependencies: No dependencies.

**FTA\_SSL.3.1** The TSF shall terminate an interactive session after a [assignment: *time interval of user inactivity*].

[assignment: time interval of user inactivity]

Operation PanelNo operation after time set by a device administrator

elapsed (between 5 seconds and 495 seconds)

Web browser : No operation after 10 minutes elapsed.

\*There are no interactive session exists with the exception of an operation panel and a web browser.

#### 6.1.6. Class FTP: High Trusted Path/Channel

#### FTP\_ITC.1 Inter-TSF trusted channel

Hierarchical to: No other components. Dependencies: No dependencies.

- **FTP\_ITC.1.1** The TSF shall provide a communication channel between itself and another trusted IT product that is logically distinct from other communication channels and provides assured identification of its end points and protection of the communicated data from modification or disclosure.
- **FTP\_ITC.1.2** The TSF shall permit [selection: the TSF, another trusted IT product] to initiate communication via the trusted channel.

[selection: the TSF, another trusted IT product]

- TSF
- another trusted IT product
- **FTP\_ITC.1.3** The TSF shall initiate communication via the trusted channel for [assignment: the list of functions that require trusted channel].

[assignment: the list of functions that require trusted channel]

- Authentication function
- Print function
- Box operation by client PCs (via Web browser)
- Security management function operated by client PCs (via Web browser),

except printer function use in local connection.

#### 6.2. TOE Security Assurance Requirement

Security assurance requirements are described in **Table 6-10 Security Assurance Requirements**. The evaluation assurance level of this TOE is EAL2. The security assurance component, ALC FLR.2 is added to the assurance components as shown in the Table 6-10.

**Table 6-10 Security Assurance Requirements** 

| Assurance Class                 | Assurance Components                                       |
|---------------------------------|------------------------------------------------------------|
| ADV: Development                | ADV_ARC.1 Security architecture description                |
|                                 | ADV_FSP.2 Security-enforcing functional specification      |
|                                 | ADV_TDS.1 Basic design                                     |
| AGD: Guidance documents         | AGD_OPE.1 Operational user guidance                        |
|                                 | AGD_PRE.1 Preparative procedures                           |
| ALC: Life-cycle support         | ALC_CMC.2 Use of a CM system                               |
|                                 | ALC_CMS.2 Parts of the TOE CM coverage                     |
|                                 | ALC_DEL.1 Delivery procedures                              |
|                                 | ALC_FLR.2 Flaw reporting procedures (augmentation of EAL2) |
| ASE: Security Target evaluation | ASE_CCL.1 Conformance claims                               |
|                                 | ASE_ECD.1 Extended components definition                   |
|                                 | ASE_INT.1 ST introduction                                  |
|                                 | ASE_OBJ.2 Security objectives                              |
|                                 | ASE_REQ.2 Derived security requirements                    |
|                                 | ASE_SPD.1 Security problem definition                      |
|                                 | ASE_TSS.1 TOE summary specification                        |
| ATE: Tests                      | ATE_COV.1 Evidence of coverage                             |
|                                 | ATE_FUN.1 Functional testing                               |
|                                 | ATE_IND.2 Independent testing - sample                     |
| AVA: Vulnerability assessment   | AVA_VAN.2 Vulnerability analysis                           |

#### 6.3. Security Functional Requirements Rationale

#### 6.3.1. Security Functional Requirements Rationale

Table 6-11 shows the TOE security functional requirements and the corresponding security objectives.

**Table 6-11 Correspondence between Security Functional Requirements** 

|                                     |   |                      | urity          |                  |
|-------------------------------------|---|----------------------|----------------|------------------|
| Security Functional<br>Requirements |   | O.NETWORK_ENCRYPTION | O.SETTING_DATA | O.ACCESS_CONTROL |
| FCS_CKM.1(a)                        | ✓ |                      |                |                  |
| FCS_CKM.1(b)                        |   | ✓                    |                |                  |
| FCS_CKM.1(c)                        |   | ✓                    |                |                  |
| FCS_COP.1(a)                        | ✓ |                      |                |                  |
| FCS_COP.1(b)                        |   | ✓                    |                |                  |
| FCS_COP.1(c)                        |   | ✓                    |                |                  |
| FDP_ACC.1                           |   |                      |                | ✓                |
| FDP_ACF.1                           |   |                      |                | ✓                |
| FIA_AFL.1                           |   |                      | ✓              | ✓                |
| FIA_ATD.1                           |   |                      |                | ✓                |
| FIA_SOS.1                           |   |                      | ✓              | ✓                |
| FIA_UAU.1                           |   |                      | ✓              | ✓                |
| FIA_UAU.7                           |   |                      | ✓              | > > > > > > >    |
| FIA_UID.1                           |   |                      | ✓              | ✓                |
| FIA_USB.1                           |   |                      |                | ✓                |
| FMT_MSA.1                           |   |                      |                | ✓                |
| FMT_MSA.3                           |   |                      |                | ✓                |
| FMT_MTD.1                           |   |                      | ✓              |                  |
| FMT_SMF.1                           |   |                      | ✓              | ✓                |
| FMT_SMR.1                           |   |                      | ✓              | ✓                |
| FTA_SSL.3                           |   |                      | ✓              | ✓                |
| FTP_ITC.1                           |   | ✓                    |                |                  |

The rationale for "Table 6-11 Correspondence between Security Functional Requirements" demonstrates below.

#### **O.SSD ENCRYPTION**

O.SSD\_ENCRYPTION is the security objective to encrypt document data and TOE setting data stored.

FCS CKM.1(a) generates encryption keys in accordance with a specified encryption algorithm.

FCS\_COP.1(a) encrypts document Data and TOE setting data when storing in the SSD using a specified encryption algorithm and encryption key length, and decrypts document data and TOE setting data when reading out from the SSD.

Therefore, O.SSD\_ENCRYPTION ensures the encryption of User Data and TSF Data when storing in SSD.

#### O.NETWORK ENCRYPTION

O.NETWORK\_ENCRYPTION is the security objective to provide encrypted communication function required on network protection in order to protect document data and TOE setting data on the internal network from eavesdropping or alteration.

FTP\_ITC.1 provides trusted channel by encrypt communication in order to protect document data and TOE setting data on the internal network from eavesdropping and alteration.

FCS\_CKM.1(b), FCS\_CKM.1(c), FCS\_COP.1(b), and FCS\_COP.1(c) support the objective by requiring the TOE to provide key management and cryptographic functions to protect management interactions during network transmission.

Therefore, O.NETWORK\_ENCRYPTION ensures to provide encrypted communication function required on network protection in order to protect document data and TOE setting data on the internal network protected.

#### O.ACCESS CONTROL

O.ACCESS\_CONTROL is the security objective to ensure that the TOE identify and authenticate users, and control access privilege to box document data in order to only authorized user can access to the box document data.

FIA\_UID.1 and FIA\_UAU.1 implement identification and authentication of users who try to access from operation panel and client PCs.

FIA\_UAU.7 protects authentication feedback to users.

FIA\_ATD.1 and FIA\_USB.1 maintain user attributes of login user name, user authorization, and bind the subject security attributes to authorized users.

FIA\_AFL.1 lockouts user login when users consecutively fail their authentication.

FIA SOS.1 verifies if the secret of user authentication meet the defined quality metrics.

FTA SSL.3 manages user session and terminates out of session.

FDP ACC.1 and FDP ACF.1 allow the authorized users only to operate box document data.

FMT\_MSA.1 manages operation on the security attributes.

FMT\_MSA.3 ensures that the owner information of box document data, or owner and share information of the box storing box document data have appropriate default values.

FMT\_SMR.1 maintains that user authorization of Device Administrator and Normal User are assigned to the users.

FMT\_SMF.1 provides security management function to Device Administrator and Normal User who own the box document data.

Therefore, O.ACCESS\_CONTROL ensures that that the TOE identify and authenticate users, and control access privilege to box document data in order to only authorized user can access to the box document data.

#### **O.SETTING DATA**

O.SETTING\_DATA is the security objective to authorize access to the TOE setting data only for authenticated right users, and prevent access to the TOE setting data by unauthorized users, and prevent change or leak of TOE setting data.

FIA\_UID.1 and FIA\_UAU.1 implement identification and authentication of users who try to access from operation panel and client PCs.

FIA UAU.7 protects authentication feedback to users.

FIA AFL.1 lockouts user login when users consecutively fail their authentication.

FIA\_SOS.1 verifies if the secret of user authentication meet the defined quality metrics.

FTA\_SSL.3 manages user session and terminates out of session.

By FMT MTD.1, operation of TOE setting data is restricted to Device Administrator.

FMT\_SMR.1 maintains that user authorization of Device Administrator and Normal User are assigned to the users.

FMT\_SMF.1 provides security management function to Device Administrator and Normal User who own TOE setting data.

Therefore, O.SETTING\_DATA ensures that that the TOE identify and authenticate users, and control access privilege to TOE setting data in order to only authorized user can access to the TOE setting data.

6.3.2. Dependency Relationship of the TOE Security Functional Requirements

Table 6-12 shows the dependency relationship of the TOE security functional requirements.

Table 6-12 Dependency Relationship of the TOE Security Functional Requirements

| Functional   | Dependency   | Dependencies Not Satisfied |
|--------------|--------------|----------------------------|
| Requirements | Relationship | Dependencies Not Satisfied |

| FCS_CKM.1(a) | FCS_COP.1(a)     | FCS_CKM.4           |
|--------------|------------------|---------------------|
|              | FCS_CKM.4        | See Section 6.3.2.1 |
| FCS_CKM.1(b) | FCS_COP.1(b)     | FCS_CKM.4           |
|              | FCS_CKM.4        | See Section 6.3.2.1 |
| FCS_CKM.1(c) | FCS_COP.1(c)     | FCS_CKM.4           |
|              | FCS_CKM.4        | See Section 6.3.2.1 |
| FCS_COP.1(a) | FCS_CKM.1(a)     | FCS_CKM.4           |
|              | FCS_CKM.4        | See Section 6.3.2.1 |
| FCS_COP.1(b) | FCS_CKM.1(b)     | FCS_CKM.4           |
|              | FCS_CKM.4        | See Section 6.3.2.1 |
| FCS_COP.1(c) | FCS_CKM.1(c)     | FCS_CKM.4           |
|              | FCS_CKM.4        | See Section 6.3.2.1 |
| FDP_ACC.1    | FDP_ACF.1        |                     |
|              |                  | _                   |
| FDP_ACF.1    | FDP_ACC.1        |                     |
|              | FMT_MSA.3        |                     |
| FIA_AFL.1    | FIA_UAU.1        |                     |
|              |                  |                     |
| FIA_ATD.1    | No dependencies. | _                   |
|              |                  |                     |
| FIA_SOS.1    | No dependencies. | _                   |
|              |                  |                     |
| FIA_UAU.1    | FIA_UID.1        | _                   |
|              |                  |                     |
| FIA_UAU.7    | FIA_UAU.1        | _                   |
|              |                  |                     |
| FIA_UID.1    | No dependencies. | _                   |
|              |                  |                     |
| FIA_USB.1    | FIA_ATD.1        | _                   |
|              |                  |                     |
| FMT_MSA.1    | FDP_ACC.1        | _                   |
|              | FMT_SMF.1        |                     |
|              | FMT_SMR.1        |                     |
| FMT_MSA.3    | FMT_MSA.1        | _                   |
|              | FMT_SMR.1        | -                   |
| FMT_MTD.1    | FMT_SMF.1        | _                   |
|              | FMT_SMR.1        |                     |
| FMT_SMF.1    | No dependencies. | -                   |
|              |                  |                     |

| FMT_SMR.1 | FIA_UID.1        | _ |
|-----------|------------------|---|
| FTA_SSL.3 | No dependencies. |   |
| FTP_ITC.1 | No dependencies. | _ |

#### 6.3.2.1. Rationale for why dependency on FCS CKM.4 is not needed.

The encryption key to encrypt SSD is generated with a unique value only per device every time main power is turned on, and is stored in the volatile memory. However, the TOE is physically protected by security objectives in operational environment, that is OE.ACCESS, even when the main power is turn off. Therefore the requirement for the encryption key destruction is not needed.

The symmetric session key generated during the handshake by the client, used to encrypt application data exchanged in the TLS session, is not persistently stored by either the client or the server. This session key is held in memory and is only valid for that given session. Once the session is terminated the key cannot be used to decrypt subsequent sessions. The attack potential required attempting to extract the key from the client memory following session termination to decrypt traffic captured between the client and server is significantly beyond the attack potential of EAL2. Therefore the requirement for the encryption key destruction is not needed.

The pre-shared key authentication method is used for the authentication of the IP-Sec peer. The pre-shared key is set by Device Administrator and not generated and destructed by the device. The symmetric encryption communication key obtained by DH IKEv1 Key Derivation Function is not persistently stored by each peers. This key is held in memory and is only valid with the corresponding Security Association. Once the SA is terminated the key cannot be used. Therefore the requirement for the encryption key destruction is not needed.

#### 6.3.3. Security Assurance Requirements Rationale

Since this TOE is aimed at countering the threat of exposure of document data by an attacker with basic attack capability, it is necessary to guarantee counter-ability against basic level attacks.

EAL2 have an analyze if TOE provides sufficient guidance information for safe use of security functions, including analysis of security measures at development stage in TOE (implementation and analysis of tests based on functional specifications, evaluation of management status of deliverables and delivery procedure). Since the assurance requirement is EAL2 compliant, the selection of EAL2 is reasonable.

ALC\_FLR.2 ensures that instructions and procedures for the reporting and remediation of identified security flaws are in place, and their inclusion is expected by the consumers of this TOE.

#### 7. TOE Summary Specification

This section describes the summary specification for the security functions that are provided by the TOE.

Table 7-1 shows the relations between the TOE security functions and security functional requirements

Table 7-1 TOE security functions and security functional requirements

| Security     |                         |                 |      |                         |                        |
|--------------|-------------------------|-----------------|------|-------------------------|------------------------|
| Functions    |                         |                 |      | -                       |                        |
|              | NC                      |                 |      | EN                      | NO                     |
|              | ATI                     |                 |      | JEN.                    | Ė                      |
|              | TSF.USER_AUTHENTICATION |                 | ON   | TSF.SECURITY_MANAGEMENT | TSF.NETWORK_PROTECTION |
|              | ĘN                      | SS              | PT   | MAI                     | PR                     |
|              | ĹΩ                      | 333             | CRY  | <u>-</u>                | X.                     |
|              | ۸_                      | ١               | Ž,   | JRIT                    | NO                     |
|              | SEF                     | ATA             | SD   | ECL                     | ET                     |
| Functional   | SF.U                    | TSF.DATA_ACCESS | SF.S | SF.S                    | SF.N                   |
| Requirements | 11                      | ř               |      | ř                       | ĭ                      |
| FCS_CKM.1(a) |                         |                 | ✓    |                         |                        |
| FCS_CKM.1(b) |                         |                 |      |                         | ✓<br>✓                 |
| FCS_CKM.1(c) |                         |                 |      |                         | ✓                      |
| FCS_COP.1(a) |                         |                 | ✓    |                         |                        |
| FCS_COP.1(b) |                         |                 |      |                         | ✓                      |
| FCS_COP.1(c) |                         |                 |      |                         | ✓                      |
| FDP_ACC.1    |                         | ✓               |      |                         |                        |
| FDP_ACF.1    |                         | ✓               |      |                         |                        |
| FIA_AFL.1    | ✓                       |                 |      |                         |                        |
| FIA_ATD.1    | ✓                       |                 |      |                         |                        |
| FIA_SOS.1    | ✓                       |                 |      |                         |                        |
| FIA_UAU.1    | <b>✓</b>                |                 |      |                         |                        |
| FIA_UAU.7    | ✓<br>✓<br>✓<br>✓        |                 |      |                         |                        |
| FIA_UID.1    | <b>√</b>                |                 |      |                         |                        |
| FIA_USB.1    | ✓                       |                 |      |                         |                        |
| FMT_MSA.1    |                         |                 |      | <b>√</b>                |                        |
| FMT_MSA.3    |                         | ✓               |      |                         |                        |
| FMT_MTD.1    |                         |                 |      | ✓                       |                        |
| FMT_SMF.1    |                         |                 |      | ✓                       |                        |

| FMT_SMR.1 |   |  | ✓ |   |
|-----------|---|--|---|---|
| FTA_SSL.3 | ✓ |  |   |   |
| FTP_ITC.1 |   |  |   | ✓ |

#### 7.1. User Management Function

#### TSF.USER\_AUTHENTICATION

User management function is a function that identifies and authenticates whether persons are authorized users when users intend to operate the TOE from the operation panel or the client PCs.

When the TOE is used from the Operation Panel or the Web browser, the login screen is displayed and a user is required to enter his or her login user name and login password.

When the TOE is accessed from the printer driver, the TOE identifies and authenticates if the person is authorized by referring to the login user name and login user password obtained from a user job.

User management function supports two authentication methods:

- External Authentication (Network Authentication)
  - Authentication method that uses the user information registered in the external user authentication server.
- Internal Authentication (Local Authentication)
  - Authentication method using user information registered in TOE.
  - Only two the Device Administrator users are registered in the TOE in advance, and users cannot be added or deleted.

When identifying and authenticating a Normal User, the External Authentication method is used. When identifying and authenticating a Device Administrator, the External Authentication or the Internal Authentication is used. However, the Internal Authentication can only be logged in from the Operation Panel or the Web browser.

In the external authentication method, the TOE sends the login user name and login user password entered by the user to the external user authentication server. If authentication fails, the authentication server responds with an error, and the TOE displays a login error. If the authentication is successful, after receiving a response from the authentication server that the login was successful, the login user information is obtained by using LDAP. A group ID included in the obtained user information is associated with the group information in the TOE, user authorization is acquired from the coincident group information, and held as a login attribute.

#### (1) FIA\_UID.1 Timing of identification

When a user intends to login to the TOE, the TOE verifies if the entered login user name exists in the user information pre-registered in the TOE.

With reception of the device status, the TOE provides information before the user is identified. With a list of user jobs and counter information, the TOE displays the information before the user is identified.

#### (2) FIA UAU.1 Timing of authentication

When the user is successfully identified by FIA\_UID.1, the TOE verifies if the entered login user password matches with one pre-registered in the TOE.

With reception of the device status, the TOE provides information before the user is authenticated. With a list of user jobs and counter information, the TOE displays the information before the user is authenticated.

#### (3) FIA UAU.7 Protected authentication feedback

The TOE displays login user password entered from the operation panel or a client PC on the login screen, which is masked by dummy characters (\*: asterisk).

#### (4) FIA ATD.1 User attribute definition

The TOE defines and maintains user attributes such as login user name, user authorization and Group ID.(Group ID is for external authentication methods only.)

#### (5) FIA SOS.1 Verification of secrets

For internal authentication, the TOE verifies that a login user password meets specified quality metrics such as;

password length: no fewer than the minimum number of characters (8 characters), character and types: Alphanumeric or special characters.

#### (6) FIA\_USB.1 User-subject biding

The TOE associates user attributes such as login user name, user authorization and Group ID with subjects. (Group ID is for external authentication methods only.)

#### (7) FIA\_AFL.1 Authentication failure handling

For internal authentication, when the number of consecutive unsuccessful login attempts from the operation panel or a client PC since the last successful authentication, reaches the threshold, the TOE does not allow the users to access to the accounts (i.e. state changes to lockout condition).

The number of unsuccessful authentication attempts set by the device administrator can be within 1 to 10 times.

After changing to lockout state, If time between 1 and 60 minutes and until the lockout time designated by a device administrator that elapse, or until a device administrator releases lockout state, the TOE is then back to the normal state.

#### (8) FTA\_SSL.3 TSF-initiated termination

The auto-logout is activated if no operation is performed from the operation panel or a web browser for certain period of time.

#### Operation Panel

After the user logs on to the TOE and if no operation is performed while the auto-logout time set by the device administrator elapses, the auto-logout is activated. The time can be set to 5 to 495 seconds by the device administrator.

#### Web browser

After the user logs on to the TOE and if no operation is performed for 10 minutes, the auto-logout is activated.

#### 7.2. Data Access Control Function

#### TSF.DATA\_ACCESS

The data access control function is a function that allows authorized users only to access to document data stored in the TOE using the TOE basic function such as Box function.

#### (1) FDP\_ACC.1 Subset access control

FDP\_ACF.1 Security attribute based access control

The TOE allows authorized users only to access to document data handled by Box functions in accordance with the access control rules for users as shown in Table 7-2.

Table 7-2 Access Control Rules for Data Access Control Functions

| <b>Targeted Assets</b> | Operations             | Users         | Access Control Rules                |
|------------------------|------------------------|---------------|-------------------------------------|
| Box document Data      | Read, move, delete for | Normal User   | It is allowed for a normal user to  |
| (Box Function)         | document               |               | access to document data stored in   |
|                        |                        |               | their own box set as an owner, or a |
|                        |                        |               | box that permission is enabled.     |
|                        |                        | Device        | It is allowed for a device          |
|                        |                        | Administrator | administrator to access to all      |
|                        |                        |               | document data.                      |

(2) FMT\_MSA.3(a) Static attribute initialization

The TOE sets default values for a box. Box owner is a device administrator who initially creates the box, and the box permission is disabled.

#### 7.3. SSD Encryption Function

#### TSF.SSD\_ENCRYPTION

Once the basic function of the TOE is executed, document data and TSF data is stored on the SSD. The SSD encryption function is a function to encrypt and store data to be written to the SSD, such as document data and information related to the box function like box owner and box permission, and decrypt these data when reading out these data.

- (1) FCS\_CKM.1(a) Cryptographic key generation (SSD Encryption)
  - The TOE generates a 256 bits encryption key to be used in the AES algorithm by using the encryption key generation algorithm in accordance with NIST SP800-108. This encryption key is generated from multiple information including the encryption code which users register and a unique value on a per device basis, every time each TOE is powered on, and this encryption key is stored in a volatile memory. The encryption code is set only at the activation of Data Encryption/Overwrite function and is not changed during the operation.
- (2) FCS\_COP.1(a) Cryptographic operation (SSD Encryption)

When storing data and the information which relates to Box function, such as box owner and box permission on the SSD, the TOE encrypts the data, using the 256 bits encryption key generated at the time of booting (FCS\_CKM.1(a)) and the AES encryption algorithm based on FIPS PUB 197, and write into the SSD. When reading out the stored data and the information which relates to Box function, such as box owner and box permission from the SSD, the TOE decrypts the data, similarly using the 256 bits encryption key generated at the time of booting and the AES encryption algorithm.

#### 7.4. Security Management Function

#### TSF.SECURITY\_MANAGEMENT

Security management function is a function that allows authorized users only to edit user information, set the TOE security functions and manage. The Security management function can be performed from the Operation Panel and Client PCs. Web browser is used for operation from Client PCs.

(1) FMT\_MSA.1 Management of security attributes

The TOE allows device administrators only to use box functions for all boxes as shown

#### below.

- Modify a box owner
- Modify a box permission

Normal users are allowed to perform the following operation on the self owner boxes.

• Read and modify a box permission

#### (2) FMT\_MTD.1 Management of TSF Data

The TOE provides device administrators only with the operation listed in Table 7-3 on TSF data listed in Table 7-3.

Table 7-3 Operation of TSF Data by Device Administrators

| TSF Data                                 | Authorized Operation         |
|------------------------------------------|------------------------------|
| Change Device Administrator information  | Modify                       |
| (Login user name, login user password)   |                              |
| Register Group information               | Modify, Delete, Newly create |
| (Group ID, User Authorization)           |                              |
| User account lockout policy settings     | Modify                       |
| (number of retries until locked, lockout |                              |
| duration)                                |                              |
| Lockout list                             | Modify                       |
| Auto logout time setting                 | Modify                       |
| Password policy settings                 | Modify                       |
| Network Encryption Setting               | Modify                       |

#### (3) FMT\_SMR.1 Security roles

The TOE maintains the user authorities of device administrators and normal users, and associates users to the user authorities.

#### (4) FMT SMF.1 Specification of management function

The TOE provides management function of security attributes for box functions as mentioned in (1), and security management function shown in Table 7-3 and Fel! Hittar inte referenskälla. on TSF data shown in Table 7-3 and Fel! Hittar inte referenskälla.

#### 7.5. Network Protection Function

TSF.NETWORK\_PROTECT

The network protection function is a function that encrypts all data in transit over the internal network and prevents unauthorized alteration and disclosure. It is protected by encrypted data flow on the internal network when a user uses Printer driver function, and Web browser function.

#### (1) FTP ITC.1 Trusted channel between TSF

When the TOE communicates with each type of server or a Client PC that are trusted IT products, communication starts between them via a trusted channel. This communication can start from either of the TOE or the trusted IT product. The following functions are provided.

- Print function
- Operation of a box function from a client PC (web browser)
- Operation of security management function from a client PC (web browser) However, use of print function for a direct connection with the TOE is exception.

The TOE provides trusted channel communications listed below.

Table 7-4 Trusted channel communications provided by the TOE

| Destination    | Protocols        | Encryption algorithm                              |
|----------------|------------------|---------------------------------------------------|
| Client PC      | TLSv1.2, TLSv1.3 | AES(128 bits, 256 bits), ChaCha20-Poly1305        |
| Authentication | IPsec with ESP   | 3DES(168 bits), AES(128 bits, 192 bits, 256 bits) |
| Server         |                  |                                                   |

#### (2) FCS\_CKM.1(b) Cryptographic key generation (TLS)

Secure Communications requires generation of a certificate with an RSA public-private key pair.

The TOE creates session keys following the TLS protocol specification and using the DRBG implemented in OpenSSL.

# (3) FCS\_CKM.1(c) Cryptographic key generation (IPSec) ISAKMP and IKEv1 are used to establish the Security Association (SA) and keys for the IPSec exchanges.

#### (4) FCS COP.1(b) Cryptographic operation (TLS)

TLS 1.2 (RFC5246) and TLS1.3 (RFC8446) are used to establish secure channel between client PCs and TOE. The TOE sends the server certificate chain to the client. The client performs certificate path validation of the server certificate during the TLS handshake. If the certificate cannot be successfully validated (e.g. it has expired or has been revoked) the

TLS session is not established.

The TOE only allows the establishment of a TLS secure channel using TLSv1.2 and TLSv1.3. The TOE denies any attempt by a TLS client to establish communication using the following versions of the SSL or TLS protocols: SSLv1.0, SSLv2.0, SSLv3.0, TLSv1.0 or TLSv1.1. The TOE creates session keys following the TLS protocol specification and using the DRBG implemented in OpenSSL. This session key is held in memory and is only valid for that given session. Once the session is terminated the key cannot be used to decrypt subsequent sessions. The TOE supports the following cipher suites:

|   | ,,                                        |           |
|---|-------------------------------------------|-----------|
| • | TLS_AES_256_GCM_SHA384                    | (RFC8446) |
| • | TLS_AES_128_GCM_SHA256                    | (RFC8446) |
| • | TLS_CHACHA20_POLY1305_SHA256              | (RFC8439) |
| • | TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384     | (RFC5289) |
| • | TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256     | (RFC5289) |
| • | TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384     | (RFC5289) |
| • | TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256     | (RFC5289) |
| • | TLS_DHE_RSA_WITH_AES_256_GCM_SHA384(RFC52 | 88)       |
| • | TLS_DHE_RSA_WITH_AES_128_GCM_SHA256(RFC52 | 38)       |
| • | TLS_RSA_WITH_AES_256_GCM_SHA384           | (RFC5288) |
| • | TLS_RSA_WITH_AES_128_GCM_SHA256           | (RFC5288) |
| • | TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA        | (RFC5246) |
| • | TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA        | (RFC5246) |
| • | TLS_DHE_RSA_WITH_AES_256_CBC_SHA256       | (RFC5246) |
| • | TLS_DHE_RSA_WITH_AES_256_CBC_SHA          | (RFC5246) |
| • | TLS_DHE_RSA_WITH_AES_128_CBC_SHA256       | (RFC5246) |
| • | TLS_DHE_RSA_WITH_AES_128_CBC_SHA          | (RFC5246) |
| • | TLS_RSA_WITH_AES_256_CBC_SHA256           | (RFC5246) |
| • | TLS_RSA_WITH_AES_128_CBC_SHA256           | (RFC5246) |
| • | TLS_RSA_WITH_AES_256_CBC_SHA              | (RFC5246) |
| • | TLS_RSA_WITH_AES_128_CBC_SHA              | (RFC5246) |
|   |                                           |           |

#### (5) FCS COP.1(c) Cryptographic operation (IPSec)

IPSec with ESP is required for network datagram exchanges with Authentication Server. IPSec provide confidentiality, integrity and authentication of the endpoints. Supported encryption options for ESP are 3DES and AES. HMAC-SHA256-128, HMAC-SHA384-192, and HMAC-SHA512-256 are supported for Data authentication.

ISAKMP and IKEv1 are used to establish the Security Association (SA) and keys for the IPSec exchanges. Diffie-Hellman is used for IKEv1 Key Derivation Function as specified in RFC2409, using Oakley Groups 14, 16, 17, 18, 19, 20, 21, 22, 23, or 24. In the ISAKMP exchange, a pre-shared keys is configured by administrators and validated between endpoints.

The key size specified in the SA exchange is 128, 192, or 256 bits and the encryption algorithm is 3DES or AES-CBC and the Hash Authentication Algorithm may be SHA-256, SHA-384, or SHA-512 (as configured by administrators).

Keys generated for the IKEv1 exchanges are performed per RFC2409. If an incoming IP datagram does not use IPSec with ESP, the datagram is discarded. All keys are held in memory and is only valid with the corresponding SA. Once the SA is terminated the key cannot be used.

#### 7.6. Deviations From Allowed Cryptographic Standards

The following deviations from the Allowed Cryptographic Standards in 188 Scheme Crypto Policy are noted:

- 1. Hashing: SHA-1 is supported for backward compatibility with remote systems.
- 2. Authenticated Encryption with Associated Data: ChaCha20-Poly1305 is supported for TLSv1.3 communication.

### 8. Acronyms and Terminology

#### 8.1. Definition of terms

The definitions of the terms used in this ST are indicated in Table 8-1.

Table 8-1 Definitions of terms used in this ST

| Terms               | Definitions                                                       |
|---------------------|-------------------------------------------------------------------|
| HD-18               | This is a SSD strage option that enhances the box function.       |
|                     | The capacity of the box function and the number of box will be    |
|                     | increased.                                                        |
| Job                 | This is the operation processing unit to perform print function   |
|                     | and document box function of TOE.                                 |
| Job Information     | It indicates information that job holds. It mainly indicates jobs |
|                     | in operation. However, it also indicates histories of execution   |
|                     | results.                                                          |
| User authority      | The authority given to user. There is two kinds of authority,     |
|                     | general user and device administrator.                            |
| Edit                | An operation that modifies data registered by users, such as user |
|                     | information and box information.                                  |
| Move                | It is to move document stored in a box to another box.            |
| Join                | It is to join multiple documents stored in a box, and create a    |
|                     | new joined document. Original documents remain.                   |
| Device Settings     | System settings on the device. This includes TOE setting data.    |
| Device Status       | Information that shows TOE status. Remaining toner volume,        |
|                     | papers and mechanical errors are displayed.                       |
| Counter Information | Information about counting jobs performed by TOE. When            |
|                     | print function performs, print counter increases.                 |
| Document Data       | The data composed of image data drawn on documents                |
|                     | handled by TOE users. This includes Spool document data and       |
|                     | Box document data.                                                |
| Client PC           | It indicates the computers that connect to the network, and       |
|                     | utilize the TOE services (functions) of the TOEs that are         |
|                     | connected to the network.                                         |
| FIPS PUB 180-4      | This is an algorithm about a hash function, which is              |
|                     | standardized by the NIST, U.S.(National Institute of Standards    |
|                     | and Technology).                                                  |

| FIPS PUB 197        | This is an algorithm about the common cryptographic key,            |  |
|---------------------|---------------------------------------------------------------------|--|
|                     | which is standardized by the NIST, U.S. (National Institute of      |  |
|                     | Standards and Technology). Also, this is called "AES".              |  |
| Management Area     | An area within the document data where management                   |  |
|                     | information for that data is recorded. A logical deletion of        |  |
|                     | document data means making this area unrecognizable.                |  |
| Operation Panel     | This is installed on the uppermost part of the Printer, and is      |  |
|                     | constituted by a liquid crystal panel.                              |  |
|                     | It is an external interface, and users can utilize the TOE via this |  |
|                     | operation panel.                                                    |  |
| Task to be executed | This is an executed process on behalf of users(Normal User,         |  |
| on behalf of user   | Device Administrator).                                              |  |

#### 8.2. Definition of acronyms

The definitions of the acronyms used in this ST are indicated in Table 8-2.

Table 8-2 Definitions of acronyms used in this ST

| Acronyms | Definitions                                                |
|----------|------------------------------------------------------------|
| A.       | assumption (when used in hierarchical naming)              |
| ADMIN.   | administrator (when used in hierarchical naming)           |
| AES      | Advanced Encryption Standard                               |
| CC       | Common Criteria                                            |
| EAL      | Evaluation Assurance Level                                 |
| IT       | information technology                                     |
| SFP      | Single Functional Printer                                  |
| NCU      | Network Control Unit                                       |
| NAND     | Not AND                                                    |
| 0.       | Security Objective (of the TOE) (when used in hierarchical |
| 0.       | naming)                                                    |
| OE.      | Security Objective (of the operational environment) (when  |
| OL.      | used in hierarchical naming)                               |
| OSP      | organizational security policy                             |
| P.       | organizational security policy (when used in hierarchical  |
| г.       | naming)                                                    |
| SAR      | Security Assurance Requirement                             |
| SFP      | Security Function Policy                                   |
| SFR      | Security Functional Requirement                            |
| ST       | Security target                                            |

| T.  | threat (when used in hierarchical naming) |
|-----|-------------------------------------------|
| TOE | Target of Evaluation                      |
| TSF | TOE security functionality                |
| USB | Universal Serial Bus                      |

(The final page)