Firewalls NETASQ

Cible de sécurité fonction de filtrage de la suite logicielle IPS-Firewall Version 8

Évaluation selon un paquet EAL4 augmenté des Critères Communs V3.1
SUIVI DE DOCUMENT

<table>
<thead>
<tr>
<th>Version</th>
<th>Auteur</th>
<th>Date</th>
<th>Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Ludovic FLAMENT</td>
<td>22/08/2008</td>
<td>Version initiale du document</td>
</tr>
<tr>
<td>0.2</td>
<td>Ludovic FLAMENT</td>
<td>26/08/2008</td>
<td>Mise à jour suite relecture de Boris MARECHAL</td>
</tr>
<tr>
<td>1.0</td>
<td>Ludovic FLAMENT</td>
<td>11/09/2008</td>
<td>Commentaires suite à la préparation</td>
</tr>
<tr>
<td>1.1</td>
<td>Ludovic FLAMENT</td>
<td>13/10/2008</td>
<td>Intégration des commentaires du CESTI (SA-FdC01-ASE)</td>
</tr>
<tr>
<td>1.2</td>
<td>Ludovic FLAMENT</td>
<td>30/10/2008</td>
<td>Intégration des commentaires du CESTI (SA-FdC02-ASE)</td>
</tr>
<tr>
<td>1.3</td>
<td>Ludovic FLAMENT</td>
<td>27/03/2009</td>
<td>Intégration des commentaires du CESTI (SA-FdC12-ASE)</td>
</tr>
</tbody>
</table>
TABLE DES MATIÈRES

1 INTRODUCTION... 6
 1.1 Identification de la cible de sécurité.. 6
 1.2 Annonces de conformité... 6
 1.3 Résumé des fonctionnalités du firewall-VPN NETASQ.. 6
 1.4 Documents applicables et de référence. ... 7
 1.4.1 Référentiel des Critères Communs.. 7
 1.4.2 RFC et autres standards supportés... 7
 1.5 Glossaire... 8

2 DESCRIPTION DE LA CIBLE D’ÉVALUATION... 10
 2.1 Caractéristiques de sécurité TI de la TOE... 10
 2.1.1 Généralités... 10
 2.1.2 Le contrôle des flux d’information... 10
 2.1.3 La protection contre la saturation des traces... 10
 2.1.4 Les risques d’utilisation impropre.. 10
 2.1.5 La protection de la TOE elle-même.. 10
 2.2 Limites physiques de la TOE... 12
 2.2.1 Équipements constituant la TOE.. 12
 2.2.2 Caractéristiques minimales des plates-formes d’exploitation... 12
 2.3 Limites logiques de la TOE.. 13
 2.3.1 Composants logiciels... 13
 2.3.2 Architecture et interfaces de la TOE... 13
 2.3.3 Configurations et modes d’utilisation soumis à l’évaluation.. 14
 2.4 Plate-forme de test utilisée lors de l’évaluation.. 15

3 ENVIRONNEMENT DE SÉCURITÉ DE LA CIBLE D’ÉVALUATION... 16
 3.1 Convention de notation.. 16
 3.2 Identification des biens sensibles.. 16
 3.2.1 Biens protégés par la TOE... 16
 3.2.2 Biens appartenant à la TOE... 16
 3.3 Menaces et règles de la politique de sécurité.. 17
 3.3.1 Le contrôle des flux d’information... 17
 3.3.2 Les risques d’utilisation impropre... 17
 3.3.3 La protection de la TOE elle-même.. 17
 3.4 Hypothèses... 18
 3.4.1 Hypothèse sur les mesures de sécurité physiques.. 18
 3.4.2 Hypothèse sur les mesures de sécurité organisationnelles... 18
 3.4.3 Hypothèse relative aux agents humains.. 18
 3.4.4 Hypothèses sur l’environnement de sécurité TI.. 18

4 OBJECTIFS DE SÉCURITÉ.. 19
 4.1 Convention de notation.. 19
 4.2 Généralités... 19
 4.3 Objectifs de contrôle des flux d’information... 20
 4.4 Objectifs de sécurité pour l’environnement.. 21
 4.5 Argumentaire des objectifs de sécurité... 22

5 EXIGENCES DE SÉCURITÉ DES TI.. 23
 5.1 Introduction... 23
 5.1.1 Conventions typographiques.. 23
 5.1.2 Présentation des données de sécurité... 24
 5.2 Exigences de sécurité pour la TOE.. 26
 5.2.1 Exigences de contrôle des flux d’information... 26
 5.3 Exigences d’assurance sécurité pour la TOE.. 29
 5.3.1 Exigences d’assurance sur la cible de sécurité (ASE)... 29

Version 1.3 © NETASQ 27/03/2009 Référence : NA_ASE_ciblesec_filter Page 3 de 47
5.3.2 Autres exigences d’assurance sécurité

5.4 Exigences de sécurité pour l’environnement TI

5.5 Argumentaire des exigences de sécurité

5.5.1 Satisfaction des objectifs de sécurité

5.5.2 Soutien mutuel et non contradiction

5.5.3 Satisfaction des dépendances des SFRs

5.5.4 Satisfaction des dépendances des SARs

6 SPÉCIFICATIONS ABRÉGÉES DE LA TOE

6.1 Fonctions de sécurité des TI

6.1.1 Fonction de filtrage

6.1.2 Fonction de génération de données d’audit

6.2 Mesures d’assurance sécurité

6.2.1 Mesures de l’environnement de développement

6.2.2 Documentation des fonctions de sécurité

6.2.3 Représentation de l’implémentation

6.2.4 Test des fonctions de sécurité

6.2.5 Documentation d’exploitation

6.2.6 Estimation de la vulnérabilité

6.3 Argumentaire des spécifications abrégées de la TOE

6.3.1 Satisfaction des exigences fonctionnelles de sécurité

6.3.2 Satisfaction des exigences d’assurance sécurité

7 ANNEXE – IDENTIFICATION DES OPÉRATIONS EFFECTUÉES SUR LES EXIGENCES DE SÉCURITÉ DES TI

7.1 Introduction

7.2 Exigences de sécurité pour la TOE

7.2.1 Exigences de contrôle des flux d’information

7.2.2 Autres exigences de sécurité de soutien
TABLE DES ILLUSTRATIONS

<table>
<thead>
<tr>
<th>ILLUSTRATION</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAS TYPIQUE D'UTILISATION DES COMPOSANTS DE LA TOE</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>COMPOSANTS ET INTERFACES DE LA TOE</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>PLATE-FORME DE TEST UTILISÉE LORS DE L'ÉVALUATION</td>
<td>15</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

Le but de cette section est de fournir des informations d'identification et de référence précises pour le présent document et pour le produit qui fait l'objet de l'évaluation, ainsi que les annonces appropriées de conformité aux Critères Communs et à d'autres référentiels applicables. Elle apporte également une vue d'ensemble des fonctionnalités du Firewall-VPN NETASQ.

1.1 Identification de la cible de sécurité

Titre : Cible de sécurité fonction de filtrage de la suite logicielle IPS-Firewall Version 8

Référence de la ST : NA_ASE_ciblesec_filter

Version de la ST : 1.3

Cible d’évaluation : Fonction de filtrage de la suite logicielle IPS-Firewall pour boîtiers appliances NETASQ

Version de la TOE : 8.0.1.1 (S, M, L, XL)

Paquet d’assurance sécurité : EAL4 augmenté de ALC_FLR.3.

1.2 Annonces de conformité

La version des Critères Communs applicable est la version 3.1 révision 2 de septembre 2007.

La fonctionnalité de sécurité de la cible d’évaluation est « Conforme à la partie 2 des Critères Communs ».

Les mesures d’assurance sécurité mises en œuvre sur la cible d’évaluation sont « Confor mes à la partie 3 des Critères Communs ».

Aucune annonce de conformité à un quelconque Profil de Protection ou à tout autre paquet d’exigences de sécurité, que celui sélectionné, n’est formulée.

Le paquet d’assurance sécurité sélectionné est une extension du paquet EAL4 (« EAL4 extended »).

1.3 Résumé des fonctionnalités du firewall-VPN NETASQ

Les firewall-VPN de la gamme NETASQ sont des boîtiers appliances fournissant les fonctionnalités de sécurité autorisant l’interconnexion entre un ou plusieurs réseaux de confiance (une ou plusieurs DMZ, etc.) et un réseau non maîtrisé, sans dégrader le niveau de sécurité du ou des réseaux de confiance.

Les fonctionnalités principales de la suite logicielle IPS-Firewall, qui équipe ces boîtiers, consistent en deux grands groupes :

- la fonctionnalité firewall regroupant : filtrage, détection d’attaques, gestion de la bande passante, gestion de la politique de sécurité, audit, imputabilité, authentification forte des utilisateurs,

- la fonctionnalité VPN (Réseau Privé Virtuel : chiffrement et authentification) implémentant le protocole [ESP] en mode tunnel du standard IPSec, et sécurisant la transmission des données confidentielles entre sites distants, partenaires ou commerciaux nomades.
L'ASQ (Active Security Qualification) est une technologie de Prévention d’Intrusion en Temps Réel, intégrée dans tous les IPS-Firewalls de la gamme NETASQ. Basée sur une analyse multi-couches, l’ASQ détecte et empêche les attaques les plus élaborées sans diminuer les performances du boîtier firewall-VPN et réduit considérablement le nombre de faux positifs. Cette technologie est soutenue par des fonctionnalités d’alarme entièrement configurables.

Pour offrir les fonctionnalités d'authentification forte des utilisateurs, la suite logicielle IPS-Firewall intègre une base d’utilisateur et offre des services d’authentification auprès de celle-ci.

La suite logicielle IPS-Firewall comprend un package complet de fonctionnalités d’administration à distance, appelé Administration Suite, constitué des outils Firewall Manager, Firewall Monitor et Firewall Reporter. Tous ces outils comportent une interface graphique intuitive et conviviale sous plate-forme Windows, permettant une facilité d’installation et de configuration des boîtiers appliances firewall-VPN ainsi que des fonctionnalités de monitoring et de reporting simplifiées.

1.4 Documents applicables et de référence

1.4.1 Référentiel des Critères Communs

<table>
<thead>
<tr>
<th>Réf.</th>
<th>Description</th>
</tr>
</thead>
</table>

1.4.2 RFC et autres standards supportés

<table>
<thead>
<tr>
<th>Réf.</th>
<th>Description</th>
</tr>
</thead>
</table>
1.5 Glossaire

TOE
Cible d'évaluation.

ST
Cible de sécurité.

TI
Technologie de l'information.

EAL
Niveau d'assurance de l'évaluation.

SFR
Exigence fonctionnelle de sécurité.

TSF
Fonction de sécurité de la TOE

CEM
Méthodologie d'évaluation commune pour la sécurité des technologies de l'information.

CC
Critères communs pour l'évaluation de la sécurité.

Administrateur
Personnel habilité à effectuer certaines opérations d'administration de la sécurité et responsable de leur exécution correcte.

Entité
Agent informatique ou utilisateur humain susceptible d'établir des flux d'information avec d'autres entités.

Boîtier appliance firewall-VPN
Équipement NETASQ placé à la frontière entre le réseau non maîtrisé et un ou plusieurs réseaux de confiance, dédié à la mise en œuvre de la politique de filtrage.

Console locale
Terminal physiquement connecté sur un boîtier appliance firewall-VPN, servant à procéder à des opérations d'installation ou de maintenance du logiciel de ce boîtier.

Opérations d'administration de la sécurité
Opérations effectuées sur les boîtiers appliances firewall-VPN, confiées à la responsabilité d'un administrateur au titre de la politique de sécurité interne de l'organisation exploitant les réseaux de confiance. Ces opérations peuvent être dictées par la politique de sécurité interne (ex : revues d'audit) ou par la nécessité de maintenir la TOE dans des conditions d'exploitation nominales (ex : modification de la configuration de la fonction de filtrage, purge des journaux d'audit, arrêt/redémarrage du logiciel IPS-Firewall). Elles sont caractérisées par le fait d'avoir pour effet éventuel de modifier le comportement des fonctions de sécurité de la TOE.

Politique de filtrage
Ensemble de règles techniques décritant quelles entités ont le droit d'établir des flux d'information avec quelles autres entités. Elle résulte de la concaténation des règles implicites, de la politique de filtrage globale, et de la politique de filtrage locale.

Politique de filtrage globale
Ensemble de règles techniques décritant quelles entités ont le droit d'établir des flux d'information avec quelles autres entités. Cet ensemble est défini par un administrateur dans le but d'avoir une cohérence sur la politique de filtrage pour un ensemble d'IPS-Firewalls.
Politique de filtrage locale
Ensemble de règles techniques décrivant quelles entités ont le droit d'établir des flux d'information avec quelles autres entités. Cet ensemble est défini par un administrateur dans le but d'ajuster la politique de filtrage globale en fonction des besoins spécifiques pour un IPS-Firewall.

Règle implicite
Ensemble de règles automatiquement générées par l'IPS-Firewall afin d'assurer le bon fonctionnement des services configurés et démarrés par un administrateur.

Pseudo-connexion
1°) Ensemble de datagrammes UDP associés à un même échange applicatif.
2°) Ensemble de messages ICMP associés à un échange de type requête / réponse dans le cadre de l’utilisation de ce protocole (ex : ’echo request’ / ’echo reply’).

Réseau de confiance
Un réseau est dit de confiance si, du fait qu’il est sous le contrôle de l’exploitant de la TOE, la politique de sécurité interne n’implique pas qu’il faille se protéger des flux qui en proviennent, mais au contraire implique qu’il faille les protéger des flux qui y parviennent.

Réseau non maîtrisé
Un réseau est dit non maîtrisé s’il n’est pas sous le contrôle de l’exploitant de la TOE, ce qui implique qu’il faille se protéger des flux établis avec les équipements de ce réseau (par exemple Internet).

Super-administrateur
Administrateur disposant de droits complets sur la configuration des boîtiers appliances firewall-VPN, seul habilité à s’y connecter à l’aide de la console locale, à définir les profils des autres administrateurs, et ne devant accomplir cette tâche qu’en dehors des phases d’exploitation (i.e. installation ou maintenance).

Utilisateur
Personne utilisant des ressources informatiques des réseaux de confiance protégées par la TOE à partir d’autres réseaux de confiance ou du réseau non maîtrisé.

Table des utilisateurs authentifiés
Ensemble des utilisateurs authentifiés à un instant donné sur l’IPS-Firewall.

Tables de données
Ensemble des tables contenant des données (utilisateurs, interfaces, ...) qui sont nécessaires au bon fonctionnement de la TOE. Ces tables sont automatiquement renseignées par l’IPS-Firewall lors de son fonctionnement normal.

Paquet IP entrant
Paquet IP entrant devant être confronté à la politique de filtrage. Par conséquent il s'agit d'un paquet IP qui n'appartient pas à une connexion ou pseudo-connexion précédemment détectée et autorisée.
2 DESCRIPTION DE LA CIBLE D’ÉVALUATION

Le but de cette section est de présenter les notions qui vont être utilisées par la suite dans l'énoncé de la problématique de sécurité à laquelle répond la TOE, des objectifs de sécurité et des exigences de sécurité de la TOE. Elle sert aussi à préciser la portée et les limites de l'évaluation.

2.1 Caractéristiques de sécurité TI de la TOE

2.1.1 Généralités

La sécurisation de l'interconnexion entre des réseaux de confiance appartenant à une organisation et un réseau non maîtrisé nécessite la définition, par le responsable SSI de l'organisation, d'une politique de sécurité interne, récapitulant ou référant les « lois, règlements et pratiques qui régissent la façon de gérer, protéger et diffuser les biens, en particulier les informations sensibles », au sein de l'organisation [ITSEC].

La politique de sécurité interne peut faire peser des exigences d'ordre technique sur le réseau et des contraintes sur les mesures physiques, relatives au personnel ou organisationnelles de son environnement d'exploitation. La suite logicielle NETASQ IPS-Firewall vise à répondre, dans le contexte de l'évaluation, aux exigences d'ordre technique de contrôle des flux d'information par des fonctionnalités de filtrage élaboré.

2.1.2 Le contrôle des flux d’information

Cet ensemble d’exigences est la raison d’être d’un produit de type pare-feu. La politique de sécurité interne doit permettre de déduire :

- quelles entités (utilisateurs ou agents informatiques) ont le droit d’établir des flux d’information avec quelles autres entités, c’est ce qu’on appelle la politique de filtrage.

Suivant les cas, les règles de cette politique de filtrage peuvent s’exprimer selon des critères plus ou moins sophistiqués : adresses IP source et destination, numéro de protocole IP utilisé, port TCP/UDP source/destination, heure de la journée et jour de la semaine, identité de l’utilisateur, authentification préalable, etc.

La suite logicielle NETASQ IPS-Firewall fournit les fonctionnalités de filtrage suivantes :

- Filtrage des flux entre les équipements, sur la base :
 - des caractéristiques au niveau IP et transport : n° de protocole IP, adresses IP source et destination, ports TCP/UDP source et destination,
 - de l’identité déclarée par les utilisateurs, suite à une étape d'identification/authentification.

- Imputabilité des flux aux entités les ayant suscités par la génération des données d'audit.

2.1.3 La protection contre la saturation des traces

Le contrôle du trafic entre plusieurs réseaux de confiance et le réseau non maîtrisé permet de rejeter des tentatives évidentes d’établissement de flux illégitimes en utilisant la politique de filtrage.

Les tentatives d'établissement de flux peuvent être tracées, afin de permettre un audit ultérieur. Il existe une protection contre la saturation d'écriture de ces traces, qui consiste à bloquer ces flux dès qu'il n'est plus possible de les tracer.
Il n'est donc pas possible qu'un trafic devant être tracé puisse passer la fonction de filtrage suite à une tentative de saturation des traces.

2.1.4 Les risques d'utilisation impropre

La déclinaison d'une politique de filtrage au niveau de la configuration d'un firewall-VPN, ainsi que l'exploitation de ce type de produit (audits, réactions vis-à-vis des alarmes, etc.) est en général une tâche complexe, nécessitant des compétences spécifiques et présentant, en conséquence, des risques d'erreurs.

Le risque le plus important est la définition d'une mauvaise politique de filtrage. En effet, le fait que la politique de filtrage soit incorrectement déterminée peut engendrer des possibilités d'attaques. Ce risque est contré par le fait que l'administrateur définissant la politique de filtrage est considéré comme une personne compétente, non hostile et formée à cette tâche.

Le « super-administrateur », qui intervient exclusivement lors des phases d'installation et de maintenance est le seul habilité à se connecter à la console locale.

La qualité de la documentation d'exploitation et la facilité d'utilisation des interfaces ont également un impact sur ce type de risque.

2.1.5 La protection de la TOE elle-même

Si on suppose que les fonctions de sécurité de la TOE sont efficaces pour implémenter la politique de sécurité réseau, et correctement configurées, la seule solution pour réussir une attaque c'est de modifier le comportement de la TOE :

- Soit en désactivant les fonctions de sécurité ou en modifiant leur configuration, par le biais d'une attaque locale ou distante exploitant d'éventuelles vulnérabilités permettant de contourner la fonction de filtrage, sans nécessiter de droits particuliers ;
- Soit en obtenant un accès administrateur légitime (par collusion avec un administrateur, en devinant son mot de passe, etc.).

Pour contrer ce risque, des mesures doivent être prises au niveau de la sécurité physique et logique des boîtiers appliances firewall-VPN (local à accès contrôlé, interdiction d'utiliser une console locale dans des conditions d'exploitation, etc.).
2.2 Limites physiques de la TOE

2.2.1 Équipements constituant la TOE

Une plate-forme sur laquelle la TOE s’exécute est constituée boîtiers appliances firewall-VPN sur lesquels s’exécute le logiciel IPS-Firewall NETASQ. Ces boîtiers mettent en œuvre la fonction de filtrage (la TOE) entre les différents sous-réseaux reliés à leurs interfaces.

Dans l’exemple d’architecture réseau présenté ci-dessus, les boîtiers appliances firewall-VPN sont déployés à la frontière entre chaque réseau de confiance et le réseau non maîtrisé. Ils servent à protéger les stations et les serveurs présents sur les réseaux de confiance, en contrôlant tous les flux d’information qui transitent par cette frontière.

2.2.2 Caractéristiques minimales des plates-formes d’exploitation

Les boîtiers appliances firewall-VPN sont entièrement packagés par NETASQ. Ils sont développés autour du noyau FreeBSD 6.3, avec correctifs à jour, adapté et épuré par NETASQ.

Il est à noter que seule la partie logiciel et non le matériel est soumise à l’évaluation.
2.3 Limites logiques de la TOE

2.3.1 Composants logiciels

Le logiciel à évaluer est constitué du composant Fonction de filtrage « Filter » incluse dans le module ASQ de la suite logicielle IPS-Firewall pour boîtier appliance firewall-VPN, aussi appelé NS-BSD, basée sur le noyau FreeBSD 6.3 avec correctifs à jour, adapté et épuré par NETASQ.

2.3.2 Architecture et interfaces de la TOE

Une TOE en exploitation est un élément logiciel inclus sur des boîtiers appliances firewall-VPN. La figure ci-dessous schématise la TOE dans son environnement.

Légende:
- Suite logicielle incluant la TOE
- Environnement logiciel de la TOE
- TOE
- Interfaces
- Liens logiques

Illustration 2: Composants et interfaces de la TOE.
2.3.3 Configurations et modes d'utilisation soumis à l'évaluation

Le mode d'utilisation soumis à l'évaluation présente les caractéristiques suivantes :

- L'évaluation porte sur la fonction de filtrage de la suite logicielle IPS-Firewall qui équipe toutes les versions des boîtiers firewall-VPN. La suite logicielle se décline en 4 compilations distinctes (build S, M, L, XL) selon la position dans la gamme.

- Les boîtiers appliances firewall-VPN doivent être stockés dans un local à accès sécurisé. Ces mesures, ainsi que les procédures organisationnelles de l'environnement d'exploitation, doivent garantir que les seuls accès physiques aux boîtiers appliances firewall-VPN se font sous la surveillance du super-administrateur ;

- La politique de filtrage qui est utilisée par la fonction de filtrage est correctement configurée et installée. Ces actions sont effectuées par un administrateur formé, compétent et non hostile.

- Les tables de données (table des utilisateurs, des interfaces, des groupes d'IPs sources et des groupes d'IPs destinations) qui sont utilisées par la fonction de filtrage sont correctement initialisées et remplies par l'IPS-Firewall.

- Les modules logiciels qui sont dans l'environnement de la fonction de filtrage et l'environnement lui-même sont correctement configurés et fonctionnels.

- La console locale n'est pas utilisée en exploitation. Seul le super-administrateur peut s'y connecter, et, par hypothèse, ce genre d'intervention ne se fait que lorsqu'une sortie du cadre de l'exploitation – pour procéder à une maintenance ou à une ré-installation est décidée.

- Le mode d'utilisation soumis à l'évaluation exclut le fait que la TOE s'appuie sur les services présents dans la suite logicielle IPS-Firewall version 8 ou pouvant être externe à celle-ci.
2.4 Plate-forme de test utilisée lors de l’évaluation

Le boîtier appliance firewall-VPN est un F200 ou un U250.

Des ordinateurs portables équipés de logiciels « sondes » servent à écouter les flux pour estimer la conformité du comportement du boîtier appliance firewall-VPN au niveau des interfaces réseau. Ils sont susceptibles d’être connectés en différents points du réseau.

Ces ordinateurs portables serviront également à mener des tests de pénétration en contrefaisant des paquets.

Illustration 3: Plate-forme de test utilisée lors de l’évaluation.
3 ENVIRONNEMENT DE SÉCURITÉ DE LA CIBLE D’ÉVALUATION

Le but de cette section est de décrire le problème de sécurité auquel la TOE doit répondre sous la forme d’un jeu de menaces que la TOE doit contrer et des règles de la politique de sécurité que la TOE doit satisfaire. Cette spécification du cahier des charges sécuritaire du produit est faite moyennant des hypothèses portant sur les caractéristiques de sécurité de l'environnement dans lequel il est prévu d'utiliser la TOE ainsi que sur son mode d'utilisation attendu.

3.1 Convention de notation

Pour une meilleure compréhension des paragraphes suivants, nous explicitons ici les conventions de notation utilisées pour nommer les hypothèses, les menaces et les politiques :

- Les Hypothèses concernant l'environnement de sécurité de la TOE ont des noms commençant par les préfixes suivants :
 - HH. préfixe les Hypothèses relatives aux agents Humains,
 - HP. préfixe les Hypothèses relatives aux mesures Physiques,
 - HO. préfixe les Hypothèses relatives aux mesures de sécurité Organisationnelles,
 - HTI. préfixe les Hypothèses relatives à l'environnement de sécurité TI.

- Les Menaces sur l'environnement de sécurité de la TOE ou sur la sécurité de la TOE elle-même ont des noms commençant par le préfixe M.

- Les Politiques de sécurité de l'organisation ont des noms commençant par le préfixe P.

3.2 Identification des biens sensibles

3.2.1 Biens protégés par la TOE

Le firewall-VPN NETASQ contribue à protéger les biens sensibles suivants, sous réserve d'une définition correcte et réalisable de la politique de filtrage à mettre en œuvre au niveau du système d'information dans sa globalité (cf. HO.BONNE_PF) :

- Les services applicatifs proposés par les serveurs des réseaux de confiance (en confidentialité, intégrité et disponibilité) ;
- Les logiciels s'exécutant sur les équipements des réseaux de confiance (serveurs, navigateurs, etc.), et la configuration de ces logiciels (intégrité et confidentialité) ;
- Les informations de topologie du réseau (confidentialité), contre des tentatives de sondage.

3.2.2 Biens appartenant à la TOE

Dans le but de protéger ces biens sensibles externes, l'environnement logiciel qui est en interaction avec la TOE remplit correctement ses objectifs (exemple : confidentialité et intégrité de la configuration).

Par ailleurs, les biens sensibles de la TOE sont composés des données liées aux fonctions de sécurité de la TOE (TSF-Datas).

Les TSF-datas sont composées :

- de la politique de filtrage utilisée par la TOE,
3.3 Menaces et règles de la politique de sécurité

L’énoncé des menaces et des règles de la politique de sécurité reprend le plan suivi pour la description des caractéristiques de sécurité TI de la TOE.

Les différents agents menaçants sont :

- attaquants internes : entités appartenant au réseau de confiance
- attaquants externes : entités n'appartenant pas au réseau de confiance

Les administrateurs ne sont pas considérés comme des attaquants.

3.3.1 Le contrôle des flux d’information

P.FILTRAGE

La TOE doit appliquer la politique de filtrage définie par l'administrateur. Cette politique s'exprime en termes de l'autorisation ou non d'établir des flux en fonction :

- de ses caractéristiques au niveau IP (adresse source et destination, type de protocole IP) et transport (port source et destination TCP ou UDP),
- de l'identité de l'utilisateur qui le suscite et de la réussite d'une étape d'authentification,

P.AUDIT

La TOE doit piloter l’enregistrement des événements de filtrage (incluant flux et rejets) jugés sensibles par l'administrateur.

3.3.2 Les risques d'utilisation impropre

M.MAUVAIS_USAGE

Les fonctions de sécurité de la TOE ne se comportent pas en accord avec la politique de sécurité interne (cf. §2.1.1), du fait qu’un administrateur n’exerce pas correctement les responsabilités liées à son rôle, soit qu’il configure mal la TOE, soit qu’il l’exploite d’une manière non conforme à ses responsabilités ou au mode d’utilisation prévu. Cela permettrait à un attaquant d’exploiter une faille ou mauvaise configuration afin d'accéder aux biens protégés par la TOE, présents sur le réseau de confiance.

3.3.3 La protection de la TOE elle-même

M.ADMIN_ILLICITE

Une entité appartenant ou non au réseau de confiance parvient à effectuer des opérations d’administration illicites mettant en défaut la politique de filtrage et les tables de données associées.

M.PERTE_AUDIT

Une entité appartenant ou non au réseau de confiance empêche l’enregistrement d’événements de sécurité en épousant la capacité d’enregistrement de ces événements par la TOE, dans le but de masquer les actions illicites d’un attaquant externe.
3.4 Hypothèses

3.4.1 Hypothèse sur les mesures de sécurité physiques
HP.PROTECT_BOITIERS
Les boîtiers appliances firewall-VPN sont installés et stockés conformément à l’état de l’art concernant les dispositifs de sécurité sensibles : local à accès protégé, câbles blindés en paire torsadée, étiquetage des câbles, etc.

3.4.2 Hypothèse sur les mesures de sécurité organisationnelles
HO.BONNE_PF
La politique de filtrage à mettre en œuvre est définie, pour tous les équipements des réseaux de confiance à protéger, de manière :

- complète : les cas d’utilisation standards des équipements ont tous été envisagés lors de la définition des règles et leurs limites autorisées ont été définies,
- stricte : seuls les cas d’utilisation nécessaires des équipements sont autorisés,
- correcte : les règles ne présentent pas de contradiction,
- non-ambiguë : l’énoncé des règles fournit tous les éléments pertinents pour un paramétrage direct de la TOE par un administrateur compétent.

3.4.3 Hypothèse relative aux agents humains
HH.PERSONNEL
Les administrateurs sont des personnes non hostiles et compétentes, disposant des moyens nécessaires à l'accomplissement de leurs tâches. Ils sont formés pour exécuter les opérations dont ils ont la responsabilité. Notamment, leur compétence leur permet de constituer une politique de filtrage cohérente et conforme aux règles de l'état de l'art en la matière tel que défini au §3.3.2.

3.4.4 Hypothèses sur l'environnement de sécurité TI
HTI.COUPURE
Les boîtiers appliances firewall-VPN sont installés conformément à la politique d’interconnexion des réseaux en vigueur et sont les seuls points de passage entre les différents réseaux sur lesquels il faut appliquer la politique de filtrage.

HTI.USAGE_STRICT
À part l’application des fonctions de sécurité, les boîtiers appliances firewall-VPN ne fournissent pas de service réseau autre que le routage et la translation d’adresse (ex : pas de DHCP, DNS, PKI, proxies applicatifs, etc.). Les boîtiers appliances firewall-VPN ne sont pas configurés pour retransmettre les flux IPX, Netbios, AppleTalk, PPPoE ou IPv6.

HTI.INTEGRE
L’environnement logiciel qui est en interaction avec la TOE est considéré comme sûr et de confiance et ne peut être utilisé comme moyen de corruption de la TOE ou de sa configuration.

HTI.JOURNAL
La suite logicielle IPS-Firewall version 8 fournit à la TOE un service de journalisation sûr assurant la mise en forme, l'horodatage et l'enregistrement des données d'audit.
4 OBJECTIFS DE SÉCURITÉ

Le but de cette section est de fournir une présentation concise de la réponse prévue au problème de sécurité, sous la forme d’objectifs de sécurité. Les objectifs de sécurité sont normalement classés en objectifs de sécurité pour la TOE et en objectifs de sécurité pour l’environnement. L’argumentaire des objectifs de sécurité doit montrer que les objectifs de sécurité pour la TOE et pour l’environnement sont reliés aux menaces identifiées devant être contrôlées ou aux règles de la politique de sécurité et hypothèses devant être satisfaites par chacun d’entre eux.

4.1 Convention de notation
Pour une meilleure compréhension des paragraphes suivants, nous explicitons ici les conventions de notation utilisées pour les objectifs :

- Les Objectifs de sécurité pour la TOE ont des noms commençant par le préfixe O.
- Les Objectifs de sécurité pour l’Environnement de la TOE ont des noms commençant par le préfixe OE.

4.2 Généralités
La présentation des objectifs de sécurité pour la TOE reprend le plan suivi pour la description des caractéristiques de sécurité TI de la TOE et l’énoncé des menaces et des règles de la politique de sécurité.

L’argumentaire de chaque objectif de sécurité de la TOE est fourni immédiatement après l’énoncé de l’objectif, plutôt que dans une section à part. Un tableau récapitulatif est fourni à la fin de cette section.

L’ensemble des hypothèses énoncées dans la description de l’environnement de sécurité de la TOE doit être considérée comme constituant les objectifs de sécurité pour l’environnement. Lorsque les objectifs de sécurité pour l’environnement que constituent les hypothèses soutiennent spécifiquement des objectifs de sécurité de la TOE, ces hypothèses sont directement indiquées dans l’argumentaire des objectifs de sécurité de la TOE concernés. Lorsque les objectifs de sécurité pour l’environnement contrent directement des menaces, ou lorsque leur soutien est général, cela est présenté à la fin de cette section (§4.4).
4.3 Objectifs de contrôle des flux d'information

O.FILTRAGE

La TOE doit fournir un contrôle des flux d’informations entre les réseaux qui lui sont connectés, en filtrant les flux en fonction de règles paramétrées par les administrateurs sur la base des caractéristiques suivantes :

- L’interface de provenance du flux,
- Machines aux extrémités du flux,
- Type de protocole IP,
- Pour ICMP : type de message,
- Pour TCP et UDP : type de service,
- Type de service DSCP,
- Éventuellement : identité de l’utilisateur associée à l’adresse IP source.

Argumentaire : O.FILTRAGE est principalement dédié à la satisfaction de la politique P.FILTRAGE. Il couvre le filtrage en fonction des caractéristiques IP et transport et de l’identité de l’utilisateur spécifiée par cette politique.

O.AUDIT

La TOE doit :

demander la génération des données d’audit relatives aux événements se rapportant à l’application de la politique de filtrage, en vue du traitement de ces dernières par la fonction de journalisation qui va les mettre en forme, les horodater et les enregistrer.

Argumentaire : O.AUDIT est principalement dédié à la satisfaction de la politique P.AUDIT.

O.PERTE_AUDIT

La TOE doit :

permettre d’interdire un trafic pour lequel une demande de génération de données d’audit est requise alors que cette dernière est impossible à réaliser.

Argumentaire : O.PERTE_AUDIT est principalement dédié à la prévention de la menace M.PERTE_AUDIT.
4.4 **Objectifs de sécurité pour l’environnement**

OE.PROTECT_BOITIERS

Objectif permettant de s’assurer de la réalité de l’hypothèse HP.PROTECT_BOITIERS.

Argumentaire : Cet objectif de sécurité est dédié à la prévention de M.ADMIN_ILLCITE. Il élimine les possibilités d’effectuer des opérations d’administration de la sécurité illícites à partir d’un accès local aux boîtiers appliances firewall-VPN.

OE.BONNE_PF

Objectif permettant de s’assurer de la réalité de l’hypothèse HO.BONNE_PF.

Argumentaire : Cet objectif de sécurité est dédié à la prévention de M.MAUVAIS_USAGE.

OE.PERSONNEL

Objectif permettant de s’assurer de la réalité de l’hypothèse HH.PERSONNEL.

Argumentaire : Cet objectif de sécurité est dédié à la prévention de M.MAUVAIS_USAGE.

OE.COUPURE

Objectif permettant de s’assurer de la réalité de l’hypothèse HTI.COUPURE.

Argumentaire : Cet objectif de sécurité soutient tous les objectifs de sécurité spécifiés afin de satisfaire les règles de la politique de sécurité associées au contrôle des flux d’information puisqu’il permet d’éviter le contournement des fonctions de sécurité dédiées à ces objectifs en interdisant l’établissement de flux d’information soumis à la politique de filtrage mais qui, du fait qu’ils ne passent par aucun des boîtiers appliances firewall-VPN, ne seraient pas soumis à ces fonctions de sécurité.

OE.USAGE_STRICT

Objectif permettant de s’assurer de la réalité de l’hypothèse HTI.USAGE_STRICT.

Argumentaire : Cet objectif de sécurité est dédié à la prévention de M.ADMIN_ILLCITE. Il élimine la possibilité d’effectuer des opérations d’administration de la sécurité illícites, ou de modifier le comportement des boîtiers appliances firewall-VPN de toute autre manière, à travers un accès détourné basé sur d’éventuelles vulnérabilités de logiciels non soumis à l’évaluation s’exécutant sur les boîtiers. L’interdiction des protocoles autres qu’IP (AppleTalk, IPX, etc.) permet d’empêcher le contournement de la politique de filtrage d’une manière similaire à OE.COUPURE.

OE.INTEGRE

Objectif permettant de s’assurer de la réalité de l’hypothèse HTI.INTEGRE.

Argumentaire : Cet objectif de sécurité soutient la mise en œuvre des politiques P.FILTRAGE et P.AUDIT en assurant que les logiciels et autres services fonctionnant sur le produit, autour de la TOE, sont fiables et permettent à la TOE de s’exécuter correctement.

OE.JOURNAL

Objectif permettant de s’assurer de la réalité de l’hypothèse HTI.JOURNAL.

Argumentaire : Cet objectif de sécurité soutient la mise en œuvre de la politique P.AUDIT en assurant la génération et l’enregistrement des données d’audit. Il participe également à contrer la menace MPERTE_AUDIT en remontant à la TOE, sur chaque demande d’enregistrement de données d’audit, une erreur spécifique en cas de saturation des logs.
4.5 **Argumentaire des objectifs de sécurité**

La prévention des menaces et la satisfaction des règles de la politique de sécurité par les objectifs de sécurité est exprimée dans les rubriques « argumentaire » qui accompagnent l’énoncé de chaque objectif de sécurité. Le lien entre les objectifs de sécurité et les menaces ou les règles de la politique de sécurité est résumé ci-dessous.

<table>
<thead>
<tr>
<th></th>
<th>P.FILTRAGE</th>
<th>O.AUDIT</th>
<th>O.PERTE_AUDIT</th>
<th>O.PROTECT_BOTTIERS</th>
<th>O.BONNE_PF</th>
<th>O.PERSONNEL</th>
<th>X</th>
<th>O.COUPURE</th>
<th>S</th>
<th>S</th>
<th>S</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.FILTRAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.AUDIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.PERTE_AUDIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.PROTECT_BOTTIERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.BONNE_PF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.PERSONNEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.COUPURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.USAGE_STRCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.INTEGRÉ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X : l’objectif est dédié à la prévention de la menace / la satisfaction de la règle de la politique de sécurité.
S : l’objectif soutient d’autres objectifs pour prévenir les menaces / satisfaire les règles de la politique de sécurité.
5 EXIGENCES DE SÉCURITÉ DES TI

Le but de cette section est de présenter les exigences de sécurité des TI, qui résultent du raffinement des objectifs de sécurité, ainsi qu'un argumentaire démontrant que ce raffinement a été correctement effectué.

Les exigences de sécurité des TI comprennent les exigences de sécurité pour la TOE et les exigences de sécurité pour l'environnement qui, si elles sont satisfaites, garantiront que la TOE peut satisfaire à ses objectifs de sécurité.

Les CC répartissent les exigences de sécurité en deux catégories : exigences fonctionnelles et exigences d'assurance. Les exigences fonctionnelles portent sur les fonctions de la TOE qui contribuent spécifiquement à la sécurité des TI et qui garantissent le comportement souhaité en terme de sécurité. Les exigences d'assurance portent sur les actions à effectuer par le développeur, les éléments de preuve à produire et les actions à effectuer par l'évaluateur.

5.1 Introduction

5.1.1 Conventions typographiques

Afin de présenter des exigences de sécurité faciles à lire et à utiliser, celles-ci ont été rédigées en français, en s'aidant de la traduction française des Critères Communs, et un effort a été accompli pour transposer les notions Critères Communs (comme « la TSF » ou « les sujets et les objets ») dans des termes correspondant au produit, par le jeu des opérations d'affectation, de sélection et de raffinement des Critères Communs. Les opérations n'ont pas été identifiées dans le texte des exigences de cette section, les libellés qui résultent de leur application sont seulement signalés en gras.

Or, seul l’énoncé en anglais extrait de [CC-02] et [CC-03] a une valeur normative et tient lieu de référence. De plus, les opérations effectuées doivent être précisément identifiées. L'annexe §7, a été spécialement rédigée à cet effet et constitue l’élément de preuve à prendre en compte comme énoncé des exigences de sécurité des TI.

Format des étiquettes des exigences de sécurité :

- Les exigences d’assurance sécurité ont des étiquettes identiques à celles utilisées dans [CC-03];
- Les exigences fonctionnelles de sécurité ont des étiquettes au format suivant :

 FCC_FFF.composant.n

 - FCC est le trigramme de la classe ;
 - FFF est le trigramme de la famille ;
 - composant est l’identifiant du composant : soit un numéro pour les composants extraits de [CC-02], soit un trigramme pour les exigences de sécurité explicitement énoncées ;
 - n est le numéro d’élément.
5.1.2 Présentation des données de sécurité

Attributs des paquets IP sur lesquels portent les règles de filtrage

- L’interface de réception du paquet ;
- L’adresse IP source et destination du paquet et, partant de là, la machine source et la machine destination du paquet ;
- Le numéro de protocole IP ;
- La valeur du champ DSCP ;
- Le port source et destination TCP/UDP ou le type de message ICMP ;
- Si l’utilisateur s’est préalablement identifié et authentifié, l’identité déclarée par l’utilisateur.

Paramètres des règles de filtrage

- L’identifiant de la règle ;
- (critère) L’interface de réception des paquets IP couverts par la règle ;
- (critère) La ou les machines (nom, adresse IP, port) à l’origine des flux d’information couverts par la règle ;
- (critère) Le ou les protocoles IP, le champ DSCP, les services TCP/UDP ou les types de messages ICMP des flux d’information couverts par la règle ;
- (critère) La ou les machines destinataires (nom, adresse IP, port, nom associé au port) des flux d’information couverts par la règle ;
- (critère) L’authentification des utilisateurs et éventuellement l’utilisateur ou le groupe d’utilisateurs autorisés par la règle ;
- La génération d’un enregistrement d’audit et le niveau d’alarme éventuellement attribué ;
- La politique de qualité de service associée aux flux couverts par la règle ;
- Le taux maximum d’ouverture connexions / pseudo-connexions associé à la règle ;
- Le profil d’attaques internet associé aux connexions couvertes par la règle.

Tables de données

Dans la description des tables de données qui suit, nous ne détaillerons que les informations, de ces différentes tables, qui sont essentielles au bon fonctionnement de la TOE.

Table des utilisateurs authentifiés

- Le nom de login de l’utilisateur ;
- L’adresse IP de la machine depuis laquelle il s’est authentifié ;
- Le(s) groupe(s) au(x) quel(s) l’utilisateur appartient ;
- La durée restante avant que l’authentification n’expire.
Table des interfaces
- Identifiant unique de l'interface ;
- Nombre d'adresses IP valides sur l'interface ;
- Liste des adresses IP valides sur l'interface.

Table des groupes d'IPs sources
- Identifiant unique du groupe ;
- Nom du groupe ;
- Nombre d'adresses IP contenues dans le groupe ;
- Liste des adresses IP contenues dans le groupe.

Table des groupes d'IPs destinations
- Identifiant unique du groupe ;
- Nom du groupe ;
- Nombre d'adresses IP contenues dans le groupe ;
- Liste des adresses IP contenues dans le groupe.

Profil des enregistrements d'audit
- indique le groupe d'appartenance de la règle ayant déclenchée la trace
- identifiant de la règle ayant déclenché la trace
- nom interne de l'interface de la machine source
- nom de l'objet représentant l'interface de la machine source
- type de protocole réseau (tcp ou udp)
- nom du plugin associé, à défaut nom du service standard correspondant au port de destination
- adresse IP de la machine source
- numéro de port source du service
- nom de l'objet correspondant à l'adresse IP de la machine source
- adresse IP de la machine destinataire
- port de destination du service
- nom de l'objet correspondant au port de destination
- nom de l'objet correspondant à l'adresse IP de la machine de destination
- comportement associé à la règle de filtrage.
5.2 Exigences de sécurité pour la TOE

Cette section présente le raffinement des exigences fonctionnelles de la TOE. La description formelle de ces exigences figure au chapitre 7. Pour assurer la traçabilité, on indique ici le titre des exigences fonctionnelles concernées entre crochets (ex : [FDP_IFC.2.1]).

5.2.1 Exigences de contrôle des flux d’information

Fonction de filtrage

FDP_IFC.2 – Filtrage complet des flux d’information

[FDP_IFC.2.1] La fonction de filtrage doit appliquer la politique de filtrage aux paquets IP entrants.

[FDP_IFC.2.2] La fonction de filtrage doit garantir que tous les paquets IP entrants sont couverts par la politique de filtrage.

Argumentaire : *FDP_IFC.2 soutient FDP_IFF.1 pour satisfaire O.FILTRAGE, en définissant la politique de filtrage et en exigeant qu’elle s’applique à tous les paquets IP entrants.*

FDP_IFF.1 – Fonction de filtrage

[FDP_IFF.1.1] La fonction de filtrage doit appliquer la politique de filtrage en fonction des types suivants d’attributs de sécurité des paquets IP entrants :

- a. L’interface de réception,
- b. L’adresse IP source et destination du paquet et, partant de là, la machine source et la machine destination du paquet,
- c. Le numéro de protocole IP,
- d. La valeur du champ DSCP,
- e. Si le protocole est TCP ou UDP : le port source et destination,
- f. Si le protocole est ICMP : les champs ‘type’ et ‘code’ du message,
- g. Si l’adresse IP source est associée à un utilisateur dans la table des utilisateurs authentifiés : l’identité de l’utilisateur.
La fonction de filtrage doit autoriser un paquet IP entrant si l'action de la première règle de filtrage applicable est ‘passer’.

La fonction de filtrage doit appliquer les règles complémentaires suivantes :

a. Les règles de filtrage dont l'action est ‘aucune’ ont pour unique objet la génération d'enregistrements d'audit et ne rentrent pas en compte dans le filtrage des paquets.

b. Les règles de filtrage dont l'action est ‘déléguer’ ont pour unique objet le saut de l'évaluation de la fin de la politique de filtrage globale pour reprendre au début de la politique de filtrage locale et ne rentrent pas en compte dans le filtrage des paquets.

La fonction de filtrage doit autoriser explicitement un paquet IP entrant si il existe des règles de filtrage implicites associées à ce paquet IP entrant.

La fonction de filtrage doit interdire explicitement un paquet IP entrant en fonction des règles suivantes :

a. L'action de la première règle de filtrage applicable est ‘bloquer’ ou ‘réinitialiser’ ;

b. Aucune règle de filtrage n’a autorisé le paquet.

Argumentaire : FDPIFF.1 est dédié à la satisfaction de l'objectif O.FILTRAGE.

Fonction de génération de données d'audit.

FAU_GEN.1 – Génération de données d'audit

La fonction de génération de données d'audit doit pouvoir demander l'enregistrement de l'événement auditable suivant :

Application d'une règle de filtrage pour laquelle la génération d'un enregistrement d'audit est spécifiée.

La fonction de génération de données d'audit doit pouvoir demander l'enregistrement des informations suivantes dans chaque enregistrement d'audit :

a. adresse IP et port source,

b. identité de l’utilisateur (si elle est connue),

c. adresse IP et port destination,

d. nom des interfaces source et destination,

e. identifiant de l'IPS-Firewall,

f. type de protocole et ICMP,

g. identifiant de la règle,

h. action appliquée
Argumentaire : FAU_GEN.1 est dédié à la satisfaction des aspects de génération de données d'audit de l'objectif O.AUDIT.

Raffinement : La TOE n’est concernée que par une partie de l’exigence, à savoir l’appel au service de journalisation de la suite logicielle, qui est lui-même hors TOE.

Raffinement FAU_GEN.1.1 : La fonction de journalisation, qui est hors TOE, enregistre son démarrage et son arrêt. En revanche, la fonction de génération de données d'audit n'a pas de notion de démarrage et d'arrêt proprement dit.

Raffinement FAU_GEN.1.2 : La fonction de journalisation, qui est hors TOE, dispose d'un mécanisme d'horodatage, qui est lui-même hors TOE.

FAU_STG.3 – Action en cas de perte possible de données d’audit

[FAU_STG.3.1]

La fonction de filtrage doit entreprendre de bloquer un paquet IP entrant devant être tracé d'après la politique de filtrage, si la quantité de traces dépasse le nombre d'éléments à journaliser suivant :

a. build S : 100
b. build M : 256
c. build L : 512
d. build XL : 1024

Argumentaire : FAU_STG.3 est dédié à la satisfaction de l'objectif O.PERTE_AUDIT.
5.3 Exigences d’assurance sécurité pour la TOE
Cette section présente le raffinement des exigences d’assurance de la TOE. La description formelle de ces exigences figure au chapitre 7.

Ces exigences d’assurance sécurité ont été sélectionnées pour leur appartenance au paquet EAL4.

5.3.1 Exigences d’assurance sur la cible de sécurité (ASE)

ASE_CCL.1 – Annonces de conformité
Cf. [CC-03], § 11.2, p. 66.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ASE_ECD.1 – Définition de composants étendus
Cf. [CC-03], § 11.5, p. 71.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ASE_INT.1 – Introduction de la cible de sécurité
Cf. [CC-03], § 11.1, p. 65.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ASE_OBJ.2 – Objectifs de sécurité
Cf. [CC-03], § 11.4, p. 69.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ASE_REQ.2 – Exigences de sécurité déduites
Cf. [CC-03], § 11.6, p. 72.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ASE_SPD.1 – Définition du problème de sécurité
Cf. [CC-03], § 11.3, p. 68.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ASE_TSS.1 – Spécifications abrégées de la TOE
Cf. [CC-03], § 11.7, p. 74.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.
5.3.2 Autres exigences d’assurance sécurité

ADV_ARC.1 – Description de l’architecture de sécurité
Cf. [CC-03], § 12.1, p. 85.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ADV_FSP.4 – Spécifications fonctionnelles complètes
Cf. [CC-03], § 12.2, p. 92.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ADV_TDS.3 – Conception modulaire élémentaire
Cf. [CC-03], § 12.6, p. 111.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ADV_IMP.1 – Représentation de l’implémentation
Cf. [CC-03], § 12.3, p. 98.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

AGD_OPE.1 – Guides opérationnels
Cf. [CC-03], § 13.1, p. 117-119.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

AGD_PRE.1 – Guides de préparation
Cf. [CC-03], § 13.2, p. 120-121.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ATE_COV.2 – Analyse de la couverture des tests
Cf. [CC-03], § 15.1, p. 154-155.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ATE_DPT.2 – Tests : modules dédiés à la sécurité
Cf. [CC-03], § 15.2, p. 158-159.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ATE_FUN.1 – Tests fonctionnels
Cf. [CC-03], § 15.3, p. 162.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.
ATE_IND.2 – Tests indépendants - échantillonnage
Cf. [CC-03], § 15.4, p. 166-167.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

AVA_VAN.3 – Analyse de vulnérabilités
Cf. [CC-03], § 16.1, p. 171.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ALC_CMC.4 – Gestion de configuration avec procédures d’acceptation des modifications et de la génération de la TOE
Cf. [CC-03], § 14.1, p. 128-129.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ALC_CMS.4 – Gestion en configuration de la remontée d’erreurs
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ALC_DEL.1 - Procédures de livraison
Cf. [CC-03], § 14.3, p. 138.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ALC_FLR.3 – Correction d’anomalies systématique
Cf. [CC-03], § 14.5, p. 145-146.
Argumentaire : La fonction de filtrage (TOE) est un composant indissociable en terme de livraison et de suivi des anomalies de la suite logicielle IPS-Firewall version 8. Le développeur souhaite montrer qu’il maîtrise le processus de gestion des anomalies de sécurité avec les corrections associées, cela explique le choix de l’augmentation ALC_FLR.3.

ALC_DVS.1 – Identification des mesures de sécurité
Cf. [CC-03], § 14.4, p. 140-141.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ALC_LCD.1 – Modèle de cycle de vie défini par le développeur
Cf. [CC-03], § 14.6, p. 148.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.

ALC_TAT.1 – Outils de développement bien définis
Cf. [CC-03], § 14.7, p. 151.
Argumentaire : ce composant est dédié à la satisfaction du package EAL4.
5.4 Exigences de sécurité pour l’environnement TI
Aucune exigence de sécurité n’est spécifiée pour l’environnement TI.

5.5 Argumentaire des exigences de sécurité

5.5.1 Satisfaction des objectifs de sécurité
La satisfaction des objectifs de sécurité est exprimée dans les rubriques « argumentaires » qui accompagnent l’énoncé de chaque exigence de sécurité. Le lien entre les exigences et les objectifs de sécurité est résumé ci-dessous.

<table>
<thead>
<tr>
<th>Composant</th>
<th>Dépendances</th>
<th>Satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_IFC.2</td>
<td>FDP_IFF.1</td>
<td>Oui</td>
</tr>
<tr>
<td>FDP_IFF.1</td>
<td>FDP_IFC.1</td>
<td>Oui via FDP_IFC.2</td>
</tr>
<tr>
<td>FAU_GEN.1</td>
<td>FMT_MSA.3</td>
<td>Les attributs de sécurité des paquets IP sont déduits du contenu des en-têtes IP et transport. Dans ces conditions, la notion de « valeur restrictive des attributs » n’est pas claire et de toute manière ces attributs ne sont pas sous le contrôle de la TSF. La dépendance n’est donc pas applicable.</td>
</tr>
<tr>
<td>FAU_STG.3</td>
<td>FAU_GEN.1</td>
<td>Non applicable. L'exigence de FAU_GEN.1 relative à l'élaboration de l'enregistrement de log avec son horodatage est hors TOE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oui</td>
</tr>
</tbody>
</table>
5.5.4 Satisfaction des dépendances des SARs

Le niveau d'assurance de l'évaluation visé par cette cible de sécurité est EAL4+ (ou EAL4 augmenté) augmenté du composant ALC_FLR.3 qui ne possède pas de dépendance.

Les dépendances requises par les CC pour les composants d'assurance inclus dans le paquet EAL4 sont par ailleurs toutes respectées.
6 SPÉCIFICATIONS ABRÉGÉES DE LA TOE

Le but de cette section est de fournir une définition de haut niveau des fonctions de sécurité des TI qui sont censées satisfaire aux exigences fonctionnelles de sécurité, et des mesures d’assurance sécurité prises pour satisfaire aux exigences d’assurance sécurité.

6.1 Fonctions de sécurité des TI

La présentation des fonctions de sécurité des TI reprend le plan suivi pour la description des exigences fonctionnelles de sécurité de la TOE.

6.1.1 Fonction de filtrage

La technologie ASQ inclus un moteur de filtrage dynamique des paquets (stateful inspection) avec optimisation des règles permettant l’application de la politique de filtrage de manière sûre et rapide. La mise en œuvre de la fonction de filtrage est basée sur la confrontation des attributs de chaque paquet IP entrant reçu aux critères de chaque règle de la politique de filtrage. Le filtrage porte sur tous les paquets IP entrants. Les critères des règles de filtrage sont :

- L’interface de réception des paquets IP couverts par la règle ;
- La ou les machines à l’origine des flux d’information couverts par la règle ;
- Le ou les protocoles IP, le champ DSCP, les services TCP/UDP ou les types de messages ICMP des flux d’information couverts par la règle ;
- La ou les machines destinataires des flux d’information couverts par la règle ;
- L’utilisateur ou le groupe d’utilisateurs autorisés par la règle.

Les attributs des paquets IP qui sont confrontés aux quatre premiers critères cités sont évidemment extraits des en-têtes Ethernet, IP, ICMP, UDP ou TCP des trames. En ce qui concerne l’utilisateur ou le groupe d’utilisateurs autorisés par la règle, à partir du moment où un utilisateur s’est identifié et authentifié avec succès à partir d’une machine donnée, l’IPS-Firewall note ce fait, en sauvegardant les informations pertinentes dans la table des utilisateurs. Il attribue également le nom de login de cet utilisateur à tous les paquets IP présentant l’adresse de cette machine comme adresse IP source. En conséquence, les règles qui spécifient l’authentification des utilisateurs, même sans préciser de contraintes sur les utilisateurs autorisés, ne peuvent s’appliquer qu’à des paquets IP émis d’une machine à partir de laquelle un utilisateur s’est préalablement authentifié.

Chaque règle de filtrage peut spécifier une action de contrôle et une action de génération de données d’audit. Cette dernière est décrite au §6.1.2.

Il y a cinq valeurs possibles pour l’action de contrôle :

- ‘passer’ : le paquet est accepté et n’est pas confronté aux règles suivantes ;
- ‘bloquer’ : le paquet est détruit sans que l’émetteur ne le sache et n’est pas confronté aux règles suivantes de la politique de filtrage . ;
- ‘réinitialiser’ : le paquet est détruit et un signal TCP RST (cas TCP) ou ICMP unreachable (cas UDP) est envoyé à l’émetteur ;
- ‘aucune’ : le paquet est confronté aux règles suivantes (sert à spécifier une action de génération de données d’audit uniquement).
'déléguer' : le paquet est confronté aux règles de filtrage de la politique de filtrage locale (permet de passer l'évaluation de la politique de filtrage globale afin de déléguer un sous-ensemble de celle-ci à un administrateur local via la politique de filtrage locale). Cette action n'est disponible que pour les règles de la politique de filtrage globale.

Si aucune règle de filtrage n'est applicable au paquet, ou si les seules qui le sont ne spécifient 'aucune' action de contrôle, le paquet est détruit sans que l'émetteur ne le sache et n'est pas confronté aux règles suivantes de la politique de filtrage..

Il convient de noter qu'à proprement parler, pour un ensemble de paquets IP liés à un même échange au niveau transport (connexion TCP, pseudo-connexion UDP ou ICMP), l'IPS-Firewall ne confronte que le paquet initial de l'échange aux règles de la politique de filtrage. À la réception de tout paquet IP, préalablement à l'application des règles de la politique de filtrage, le paquet est comparé aux connexions / pseudo-connexions actuellement établies. Si les attributs et les paramètres du paquet correspondent aux critères et à l'état d'une de ces connexions / pseudo-connexions, il est autorisé à passer sans être soumis aux règles de filtrage. Ce mécanisme permet notamment de gérer les échanges bidirectionnels (notamment les connexions TCP) sans avoir à définir une règle de filtrage dans les deux sens de traversée du firewall.

La politique de filtrage est le résultat de concaténation des règles implicites, des règles de filtrage contenues dans la politique de filtrage globale (s'il y en a une) puis des règles de filtrage contenues dans la politique de filtrage locale.

A noter qu'à tout instant du fonctionnement du boîtier appliance firewall-VPN, il y a une politique de filtrage active.

Argumentaire : la fonction de filtrage satisfait les exigences FDP_IFC.2 et FDP_IFF.1

6.1.2 Fonction de génération de données d'audit

L'IPS-Firewall gère simultanément plusieurs fichiers de trace destinés à recueillir les événements détectés par la fonction de journalisation. Plus particulièrement, il existe un fichier dédié pour l'enregistrement des événements liés à l'application de la fonction de filtrage (fichier Filtre).

La fonction de génération de données d'audit (sous-ensemble de la TOE) effectue des demandes d'enregistrements de traces à la fonction de journalisation (qui est hors TOE) par l'intermédiaire d'une file de messages ayant une capacité fixe du nombre d'éléments à journaliser suivant les builds :

- build S : 100
- build M : 256
- build L : 512
- build XL : 1024

En cas de débordement de cette dernière, la fonction de filtrage bloque le trafic afin d'éviter toute perte de traces.

La fonction de génération de données d'audit adresse les informations suivantes à la fonction de journalisation :

- adresse IP et port source,
- identité de l’utilisateur (si elle est connue),
- adresse IP et port destination,
- nom des interfaces source et destination,
• identifiant de l'IPS-Firewall,
• type de protocole et ICMP,
• identifiant de la règle,
• action appliquée.

Argumentaire : la fonction de génération de données d'audit satisfait l'exigence FAU_GEN.1. La limitation de la taille de la file de messages, et les actions associées, satisfont à l'exigence FAU_STG.3.
6.2 Mesures d’assurance sécurité

6.2.1 Mesures de l’environnement de développement

Méthodes et outils de gestion de configuration

Le système de gestion de configuration couvre la gestion et le contrôle du développement, de la production et de la maintenance de la suite logicielle IPS-Firewall. Son application permet d’affecter un identifiant unique à chaque version de la TOE et d’établir une liste des versions des composants qui constituent une version donnée.

Le commanditaire documente les procédures du système de gestion de configuration et fournit une liste de configuration pour chaque version de la TOE présentée.

L’évaluateur évalue la documentation et contrôle, sur les versions de la TOE qui lui sont livrées par le commanditaire, que le système de gestion de configuration est bien appliqué tel que décrit dans la documentation (pas d’audit de l’environnement de développement sous ce critère).

Argumentaire : ces procédures satisfont aux exigences ALC_CMC.4 et ALC_CMS.4

Sécurité de l’environnement de développement

Les mesures de sécurité appliquées pour le développement et la maintenance de la suite logicielle IPS-Firewall garantissent l’intégrité du code exécutable de la TOE et la confidentialité des documents de développement associés.

Le commanditaire documente les mesures de sécurité de l’environnement de développement en identifiant précisément le périmètre de cet environnement, et fournit des traces de l’application de ces mesures.

L’évaluateur évalue la documentation et procède à un audit de l’environnement afin de vérifier et d’apprécier l’application des mesures, et d’interviewer les personnels concernés sur leur connaissance des mesures.

Argumentaire : ces procédures satisfont à l’exigence ALC_DVS.1.

Procédures de livraison

Les procédures et mesures mises en place pour transférer la suite logicielle IPS-Firewall du développeur chez l’utilisateur final garantissent l’authenticité et l’intégrité de la TOE lors du transfert.

Le commanditaire documente les procédures de livraison.

L’évaluateur évalue la documentation et procède à un audit de l’environnement afin de vérifier et d’apprécier l’application des mesures, et d’interviewer les personnels concernés sur leur connaissance des mesures.

Argumentaire : ces procédures satisfont à l’exigence ALC_DEL.1.

Procédures de correction des anomalies

Des procédures de correction des anomalies sont mises en place au niveau du laboratoire et du service support pour assurer une gestion et un contrôle des anomalies de sécurité découvertes en interne ou soumises par les exploitants, ainsi que la distribution des correctifs associés, une fois les anomalies résolues.
Le commanditaire documente les procédures visant à la correction des anomalies, et fournit les documents donnant des lignes directrices aux exploitants pour lui soumettre les anomalies.

L’évaluateur évalue la documentation (pas d’audit de l’environnement de développement sous ce critère).

Argumentaire : ces procédures satisfont à l’exigence ALC_FLR.3.

Cycle de vie produit

Des procédures de cycle de vie produit sont mises en place au niveau du laboratoire, du support technique et du service de marketing produit pour assurer une maintenance et un suivi de l’évolution des produits tout au long de leur vie.

Le commanditaire documente les procédures définissant le cycle de vie de ses produits réalisés, en particulier la maintenance de ceux-ci.

L’évaluateur évalue la documentation (pas d’audit de l’environnement de développement sous ce critère).

Argumentaire : ces procédures satisfont à l’exigence ALC_LCD.1.

Outils de développement bien définis

Des procédures de développement sont mises en place au niveau du laboratoire pour assurer que les développements effectués sur le produit sont conformes aux pratiques définies au sein de ce dernier.

Le commanditaire documente les procédures définissant les outils de développement utilisés, en particulier les versions et options de configuration de ces outils.

L’évaluateur évalue la documentation (pas d’audit de l’environnement de développement sous ce critère).

Argumentaire : ces procédures satisfont à l’exigence ALC_TAT.1.

6.2.2 Documentation des fonctions de sécurité

Le commanditaire fournit les documents permettant d’assurer un niveau de qualité compatible avec les exigences liées au paquet d’assurance sécurité : spécifications fonctionnelles, conception de haut niveau et architecture de sécurité. Ces documents forment les niveaux successifs de représentation de la fonctionnalité de sécurité.

Des correspondances entre ces niveaux sont établies, en commençant par les fonctions de sécurité des TI spécifiées de manière abrégée dans ce document (§6.1).

L’évaluateur évalue la documentation, et vérifie que les exigences fonctionnelles de sécurité du §5.2 se reflètent bien dans les différents niveaux de représentation de la fonctionnalité de sécurité.

Argumentaire : ces mesures satisfont aux exigences ADV_ARC.1, ADV_FSP.4, ADV_TDS.3.

6.2.3 Représentation de l’implémentation

Le commanditaire fournit une version documentée du code source de la TOE et des fonctions nécessaires à la bonne compréhension de cette dernière, en particulier les fonctions définissant les interfaces externes entre la TOE et son environnement.
L'évaluateur évalue le code source et sa documentation (pas d'audit de l'environnement de développement sous ce critère).

Argumentaire : cette procédure satisfait à l'exigence ADV_IMP.1.

6.2.4 Test des fonctions de sécurité

Procédures de test du développeur

Le commanditaire fournit les documents produits à l'occasion des tests qu'il a effectués sur la TOE. Ces documents doivent décrire le plan et les procédures de tests suivies et montrer le degré de couverture des spécifications fonctionnelles par les tests. Ils doivent inclure les résultats effectifs des tests et démontrer que les fonctions de sécurité se comportent bien de la manière spécifiée dans les spécifications fonctionnelles.

Le commanditaire met également à disposition de l'évaluateur une TOE se prêtant au repassage des tests qu'il a effectués sur la TOE.

L'évaluateur évalue la documentation et repasse une partie des tests du développeur.

Argumentaire : ces procédures satisfont aux exigences ATE_COV.2, ATE_DPT.2, ATE_FUN.1 et à une partie d’ATE_IND.2 (repassage des tests).

Test indépendant par l’évaluateur

Le commanditaire met à disposition de l’évaluateur une TOE se prêtant à l’exécution de tests indépendants.

Sur la base des spécifications fonctionnelles et de la documentation de test, l’évaluateur conçoit des tests complémentaires des fonctions de sécurité, afin de valider des comportements de sécurité de la TOE que le commanditaire n’aurait pas testés.

Argumentaire : ces mesures satisfont à une partie de l’exigence ATE_IND.2 (test indépendant).

6.2.5 Documentation d'exploitation

Procédures d’installation et de démarrage

Ces procédures permettent l'installation et le démarrage de la TOE dans des conditions qui garantissent une exécution satisfaisante de ses fonctions de sécurité.

Afin de prévenir les risques d'utilisation impropre, la documentation d'installation et de démarrage doit spécifiquement identifier tous les modes d'exécution possibles de la TOE ainsi que leur impact sur la sécurité. Elle doit être claire, complète, cohérente, et accessible à l'audience visée. Elle doit enfin énumérer toutes les hypothèses relatives à l’environnement d’exploitation prévu et les exigences sur les mesures de sécurité (TI ou non-TI) qui doivent être présentes dans l’environnement.

Le commanditaire documente les procédures d’installation et de démarrage sûrs de la TOE.

L'évaluateur évalue la documentation, au besoin en ré-appliquant les procédures ou une partie d’entre elles.

Argumentaire : ces procédures satisfont à l'exigence AGD_PRE.1.
Documentation d’administration

La documentation d’exploitation à destination des administrateurs et des utilisateurs doit décrire le comportement des fonctions de sécurité et refléter les hypothèses sur l’environnement d’exploitation, dans une optique de configuration, de maintenance et de maintien en condition opérationnelle corrects des fonctions de sécurité. Elle doit également décrire les différents types d’événements relatifs à la sécurité susceptibles de survenir, et fournir des lignes directrices sur la manière de les prendre en compte.

Le commanditaire fournit la documentation d’administration.

L’évaluateur évalue la documentation d’administration.

Argumentaire : ces mesures satisfont à l'exigence AGD_OPE.1.

6.2.6 Estimation de la vulnérabilité

L’évaluateur rédige une analyse indépendante de vulnérabilités (à destination exclusive de l’organisme de certification). Il procède d’autre part à des tests de pénétration dans le but d’estimer les moyens nécessaires à la mise en œuvre des vulnérabilités (compétence technique, temps, expertise, etc.). Cette tâche s’appuie sur les résultats de toutes les tâches précédentes et sur des sources publiques pour identifier les faits techniques (vulnérabilités) susceptibles de causer la réalisation de menaces identifiées dans la présente cible de sécurité ou des infractions aux règles de politiques de sécurité organisationnelles de la présente cible de sécurité.

Argumentaire : ces mesures satisfont à l'exigence AVA_VAN.3.
6.3 Argumentaire des spécifications abrégées de la TOE

La satisfaction des exigences de sécurité est exprimée dans les rubriques « argumentaires » qui accompagnent l’énoncé de chaque mesure de sécurité. Le lien entre les mesures et les exigences de sécurité est résumé ci-dessous.

6.3.1 Satisfaction des exigences fonctionnelles de sécurité

<table>
<thead>
<tr>
<th>Fonction de filtrage</th>
<th>FDP_IFC2</th>
<th>FDP_IFF1</th>
<th>FAU_GEN1</th>
<th>FAU_STG3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonction de filtrage</td>
<td>X</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fonction de générée</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.3.2 Satisfaction des exigences d'assurance sécurité

Cible de sécurité (ce document)	X			
Méthodes et outils de gestion de configuration	X X			
Sécurité de l’environnement de développement	X			
Procédures de livraison	X			
Procédures de correction des anomalies	X			
Cycle de vie produit	X			
Documentation et outils de développement des fonctions de sécurité	X X X			
Procédures de test du développeur	X X X X			
Test indépendant par l’évaluateur	X			
Procédures d’installation et de démarrage	X			
Représentation de l’implémentation	X			
Documentation d’administration	X			
Estimation de la vulnérabilité	X			
7 ANNEXE – IDENTIFICATION DES OPÉRATIONS EFFECTUÉES SUR LES EXIGENCES DE SÉCURITÉ DES TI

Cette section a pour objet l'identification précise des opérations effectuées sur les exigences de sécurité des TI, requise par l'exigence ASE_REQ.2.3.C. Elle doit être considérée comme « l'énoncé des exigences de sécurité des TO fourni en tant que partie de la ST », requis par l'exigence ASE_REQ.2.1D.

7.1 Introduction

En plus des quatre types d'opérations définies dans les Critères Communs (cf. [CC-01], § C.2, p. 77), deux types supplémentaires de modification du texte original des exigences de sécurité des TI ont été introduites :

Le raffinement systématique : il s'agit d'un raffinement effectué de manière homogène sur tous les éléments d'un composant ;

La mise en forme : il s'agit d'une transformation de la structure grammaticale d'un élément, de manière à le rendre plus facile à lire, ou à supprimer du texte inutile, mais qui ne change absolument pas le sens de l'élément. Cela correspond à la notion d'éditorial refinement détaillée dans [CC-01], § C4.4, p. 80.

Les opérations ont été effectuées sur le texte anglais original des exigences de sécurité des TI, mais elles ont pour effet de remplacer ces termes anglais par des termes français, et/ou à ajouter des termes français à un patron original en anglais. Malgré leur difficulté d’emploi, ces exigences en « franglais » constituent en tout état de cause l'élément de preuve requis par l'élément ASE_REQ.2.1D, alors que les exigences énoncées au §5.2 du présent document ne sont qu'une reformulation du contenu de cette section, fournie dans le but de faciliter la compréhension de l'énoncé des exigences de sécurité des TI.

Dans l'identification des opérations, les raffinements qui consistent à substituer un terme à un autre, les affectations et les sélections sont identifiés par le symbole « := ». Les raffinements qui consistent à rajouter du texte sont identifiés par le symbole « + ». Les mises en forme sont identifiées par le symbole « → » pour les substitutions et «  » pour les suppressions.

Les itérations sont identifiables à l’aide des étiquettes, comme cela est expliqué au §5.1.1.

Les exigences de sécurité des TI sont présentées sous la forme suivante :

Pour chaque composant utilisé, les raffinements systématiques opérés sur les éléments de ce composant,

Pour chaque élément du composant :

Le texte anglais original de l'élément, tel qu’extrait de [CC-02] ou [CC-03],

La liste des opérations effectuées sur l’élément.
7.2 **Exigences de sécurité pour la TOE**

Cette section présente les exigences fonctionnelles de la TOE suivant une description formelle. Le lien avec le chapitre 5 est réalisé en conservant le même titre pour les exigences fonctionnelles concernées.

7.2.1 **Exigences de contrôle des flux d’information**

Fonction de filtrage

<table>
<thead>
<tr>
<th>Raffinement systématique</th>
<th>The TSF := la fonction de filtrage</th>
</tr>
</thead>
</table>

FDP_IFC.2.1 The TSF shall enforce the [assignment: information flow control SFP] on [assignment: list of subjects and information] and all operations that cause that information to flow to and from subjects covered by the SFP.

<table>
<thead>
<tr>
<th>Affectation</th>
<th>information flow control SFP := la politique de filtrage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affectation</td>
<td>list of subjects and information := les équipements des réseaux interconnectés par l’IPS-Firewall(subjects), les paquets IP (information)</td>
</tr>
<tr>
<td>Raffinement</td>
<td>all operations that cause that information to flow to and from subjects covered by the SFP := tous les transferts (operations) de paquets IP entre les équipements des réseaux interconnectés par l’IPS-Firewall</td>
</tr>
<tr>
<td>Mise en forme</td>
<td>les équipements des réseaux interconnectés par l’IPS-Firewall, les paquets IP et les transferts de paquets IP entre les équipements des réseaux interconnectés par l’IPS-Firewall → les paquets IP entrants</td>
</tr>
</tbody>
</table>

FDP_IFC.2.2 The TSF shall ensure that all operations that cause any information in the TOE to flow to and from any subject in the TOE are covered by an information flow control SFP.

| Raffinement + mise en forme | all operations that cause any information in the TOE to flow to and from any subject in the TOE := tous les transferts de paquets et les équipements des réseaux interconnectés par l’IPS-Firewall → tous les paquets IP entrants |

FDP_IFF.1 – Fonction de filtrage

<table>
<thead>
<tr>
<th>Raffinement systématique</th>
<th>The TSF := la fonction de filtrage</th>
</tr>
</thead>
</table>

FDP_IFF.1.1 The TSF shall enforce the [assignment: information flow control SFP] based on the following types of subject and information security attributes: [assignment: list of subjects and information controlled under the indicated SFP, and for each, the security attributes].

<table>
<thead>
<tr>
<th>Affectation</th>
<th>information flow control SFP := la politique de filtrage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affectation</td>
<td>subject and information := équipements des réseaux interconnectés par l’IPS-Firewall(subjects), les paquets IP (information) → les paquets IP entrants</td>
</tr>
<tr>
<td>Raffinement + mise en forme</td>
<td>all operations that cause any information in the TOE to flow to and from any subject in the TOE := tous les transferts de paquets et les équipements des réseaux interconnectés par l’IPS-Firewall → tous les paquets IP entrants</td>
</tr>
</tbody>
</table>
| Affectation | list of subjects and information controlled under the indicated SFP, and, for each, the security attributes := a. L’interface de réception, b. L’adresse IP source et destination du paquet et, partant de là, la machine source et la machine destination du paquet,
c. Le numéro de protocole IP,
d. La valeur du champ DSCP,
e. Si le protocole est TCP ou UDP : le port source et destination,
f. Si le protocole est ICMP : les champs ‘type’ et ‘code’ du message,
g. Si l’adresse IP source est associée à un utilisateur dans la table des utilisateurs authentifiés : l’identité de l’utilisateur.

FDP_IFF.1.2 The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [assignment: for each operation, the security attribute-based relationship that must hold between subject and information security attributes].

Affectation
for each operation, the security attribute-based relationship that must hold between subject and information security attributes := le paquet est autorisé si l’action de la première règle de filtrage applicable est ‘passer’.

FDP_IFF.1.3 The TSF shall enforce the [assignment: additional information flow control SFP rules].

Affectation
additional information flow control SFP rules := les règles complémentaires suivantes :
a. Les règles de filtrage dont l’action est ‘aucune’ ont pour unique objet la génération d’enregistrements d’audit et ne rentrent pas en compte dans le filtrage des paquets.
b. Les règles de filtrage dont l’action est ‘déléguer’ ont pour unique objet le saut de l’évaluation de la fin de la politique de filtrage globale pour reprendre au début de la politique de filtrage locale et ne rentrent pas en compte dans le filtrage des paquets.

FDP_IFF.1.4 The TSF shall explicitly authorise an information flow based on the following rules: [assignment: rules, based on security attributes, that explicitly authorise information flows].

Affectation
rules, based on security attributes, that explicitly authorise information flows := si il existe des règles de filtrage implicites associées à ce paquet IP entrant

FDP_IFF.1.5 The TSF shall explicitly deny an information flow based on the following rules: [assignment: rules, based on security attributes, that explicitly deny information flows].

Affectation
rules, based on security attributes, that explicitly deny information flows :=
a. L’action de la première règle de filtrage applicable est ‘bloquer’ ou ‘réinitialiser’ ;
b. Aucune règle de filtrage n’a autorisé le paquet.

Fonction de génération de données d’audit

FAU_GEN.1 – Génération de données d’audit

Raffinement systématique The TSF := la fonction de génération de données d’audit
FAU_GEN.1.1 The TSF shall be able to generate an audit record of the following auditable events:

a) Start-up and shutdown of the audit functions;

b) All auditable events for the [selection: choose one of: minimum, basic, detailed, not specified] level of audit; and

c) [assignment: other specifically defined auditable events].

<table>
<thead>
<tr>
<th>Sélection</th>
<th>minimum, basic, detailed, not specified := not specified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mise en forme</td>
<td>de l’item b)</td>
</tr>
<tr>
<td>Affectation</td>
<td>other specifically defined auditable events := application d’une règle de filtrage pour laquelle la génération d’un enregistrement d’audit est spécifiée.</td>
</tr>
</tbody>
</table>

FAU_GEN.1.2 The TSF shall record within each audit record at least the following information:

a) Date and time of the event, type of event, subject identity (if applicable) and the outcome (success or failure) of the event; and

b) For each audit event type, based on the auditable event definitions of the functional components included in the PP/ST, [assignment: other audit relevant information]

<table>
<thead>
<tr>
<th>Raffinement</th>
<th>subject identity := adresse IP source, et identité de l’utilisateur (si elle est connue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affectation</td>
<td>other audit relevant information := les informations d’audit complémentaires suivantes :</td>
</tr>
<tr>
<td></td>
<td>a. adresse IP et port source,</td>
</tr>
<tr>
<td></td>
<td>b. identité de l’utilisateur (si elle est connue)</td>
</tr>
<tr>
<td></td>
<td>c. adresse IP et port destination,</td>
</tr>
<tr>
<td></td>
<td>d. nom des interfaces sources et destination,</td>
</tr>
<tr>
<td></td>
<td>e. identifiant de l’IPS-Firewall,</td>
</tr>
<tr>
<td></td>
<td>f. type de protocole et ICMP,</td>
</tr>
<tr>
<td></td>
<td>g. identifiant de la règle,</td>
</tr>
<tr>
<td></td>
<td>h. action appliquée.</td>
</tr>
</tbody>
</table>

FAU_STG.3 – Action en cas de perte possible de données d’audit

FAU_STG.3.1 The TSF shall [assignment: actions to be taken in case of possible audit storage failure] if the audit trail exceeds [assignment: pre-defined limit].

<table>
<thead>
<tr>
<th>Raffinement</th>
<th>The TSF := la fonction de filtrage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raffinement</td>
<td>audit trail := la quantité de traces</td>
</tr>
<tr>
<td>Affectation</td>
<td>actions to be taken in case of possible audit storage failure := entreprendre de bloquer un paquet IP entrant devant être tracé d’après la politique de filtrage</td>
</tr>
<tr>
<td>Affectation</td>
<td>pre-defined limit := le nombre d’éléments à journaliser suivant :</td>
</tr>
<tr>
<td></td>
<td>a. build S : 100</td>
</tr>
<tr>
<td></td>
<td>b. build M : 256</td>
</tr>
<tr>
<td></td>
<td>c. build L : 512</td>
</tr>
<tr>
<td></td>
<td>d. build XL : 1024</td>
</tr>
</tbody>
</table>
7.2.2 Autres exigences de sécurité de soutien

Autres mesures d’assurance sécurité

ADV ARC.1 – Description de l’architecture de sécurité
Pas d’opérations effectuées.

ADV_FSP.4 – Spécifications fonctionnelles complètes
Pas d’opérations effectuées.

ADV_TDS.3 – Conception modulaire élémentaire
Pas d’opérations effectuées.

ADV_IMP.1 – Représentation de l’implémentation
Pas d’opérations effectuées.

AGD_OPE.1 – Guides opérationnels
Pas d’opérations effectuées.

AGD_PRE.1 – Guides de préparation
Pas d’opérations effectuées.

ATE_COV.2 – Analyse de la couverture des tests
Pas d’opérations effectuées.

ATE_DPT.2 – Tests: modules dédiés à la sécurité
Pas d’opérations effectuées.

ATE_FUN.1 – Tests fonctionnels
Pas d’opérations effectuées.

ATE_IND.2 – Tests indépendants - échantillonnage
Pas d’opérations effectuées.

ALC_FLR.3 – Correction d’anomalies systématique
Pas d’opérations effectuées.

ALC_LCD.1 – Modèle de cycle de vie défini par le développeur
Pas d’opérations effectuées.
ALC_TAT.1 – Outils de développement bien définis
Pas d'opérations effectuées.

AVA_VAN.3 – Analyse de vulnérabilités
Pas d'opérations effectuées.

ALC_CMC.4 – Gestion de configuration avec procédures d'acceptation des modifications et de la génération de la TOE
Pas d'opérations effectuées.

ALC_CMS.4 – Gestion en configuration de la remontée d'erreurs
Pas d'opérations effectuées.

ALC_DEL.1 - Procédures de livraison
Pas d'opérations effectuées.

ALC_DVS.1 – Identification des mesures de sécurité
Pas d'opérations effectuées.

ASE_CCL.1 – Annonces de conformité
Pas d'opérations effectuées.

ASE_ECD.1 – Définition de composants étendus
Pas d'opérations effectuées.

ASE_INT.1 – Introduction de la cible
Pas d'opérations effectuées.

ASE_OBJ.2 – Objectifs de sécurité
Pas d'opérations effectuées.

ASE_REQ.2 – Exigences de sécurité déduites
Pas d'opérations effectuées.

ASE_SPD.1 – Définition du problème de sécurité
Pas d'opérations effectuées.

ASE_TSS.1 – spécifications abrégées de la TOE
Pas d'opérations effectuées.