TASKalfa 3050ci, TASKalfa 3550ci, TASKalfa 4550ci, TASKalfa 5550ci
Data Security Kit (E) Security Target
Overseas Version
Security Target
Version 0.70

This document is a translation of the evaluated and certified security target written in Japanese.

May 16, 2011
KYOCERA MITA Corporation

© 2011 KYOCERA MITA Corporation
<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Content of revision</th>
<th>Approver</th>
<th>Drafter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct. 19, 2010</td>
<td>0.50</td>
<td>- Newly drafted</td>
<td>Sato</td>
<td>Sone</td>
</tr>
<tr>
<td>Dec. 09, 2010</td>
<td>0.60</td>
<td>- Updated of the information</td>
<td>Sato</td>
<td>Sone</td>
</tr>
<tr>
<td>May 16, 2011</td>
<td>0.70</td>
<td>- Revised specified items</td>
<td>Sato</td>
<td>Sone</td>
</tr>
</tbody>
</table>
- TABLE OF CONTENTS -

1. ST INTRODUCTION ... 1
 1.1. ST REFERENCE .. 1
 1.2. TOE REFERENCE ... 1
 1.3. TOE OVERVIEW ... 1
 1.3.1 TOE Type ... 1
 1.3.2 Usage and Major Security Features of TOE ... 1
 1.3.3 Required Non-TOE Hardware/Software/Firmware ... 2
 1.4. TOE DESCRIPTION .. 3
 1.4.1. People Associated with the TOE ... 3
 1.4.2. Physical Configuration of the TOE ... 4
 1.4.3. Logical Configuration of the TOE .. 5
 1.4.4. Guidance ... 7
 1.4.5. Assets Protected by the TOE ... 8

2. CONFORMANCE CLAIMS ... 9
 2.1. CC CONFORMANCE CLAIMS .. 9
 2.2. PP CLAIMS .. 9
 2.3. PACKAGE CLAIMS .. 9
 2.4. CONFORMANCE RATIONALE ... 9

3. SECURITY PROBLEM DEFINITION 10
 3.1. THREATS .. 10
 3.2. ORGANIZATIONAL SECURITY POLICIES ... 10
 3.3. ASSUMPTIONS ... 10

4. SECURITY OBJECTIVES ... 11
 4.1. SECURITY OBJECTIVES FOR THE TOE ... 11
 4.2. SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT 11
 4.3. SECURITY OBJECTIVES RATIONALE ... 11
5. **EXTENDED COMPONENTS DEFINITION** 14

6. **SECURITY REQUIREMENTS** 15

 6.1. **TOE SECURITY FUNCTIONAL REQUIREMENTS** ... 15
 6.2. **TOE SECURITY ASSURANCE REQUIREMENTS** ... 18
 6.3. **SECURITY REQUIREMENTS RATIONALE** ... 18
 6.3.1. **Security Functional Requirements Rationale** ... 18
 6.3.2. **Dependent Relations between TOE Security Functional Requirements** 19
 6.3.3. **Rationale for Security Assurance Requirements** .. 20

7. **TOE SUMMARY SPECIFICATION** 21

 7.1. **ENCRYPTION FUNCTION** ... 21
 7.2. **OVERWRITE-ERASE FUNCTION** ... 22

8. **ACRONYMS AND TERMINOLOGY** 23

 8.1. **DEFINITIONS OF TERMS** ... 23
 8.2. **DEFINITIONS OF ACRONYMS** ... 24
- List of Figures -

FIGURE 1.1 A COMMON USAGE IN OFFICES ... 2
FIGURE 1.2 PHYSICAL CONFIGURATION OF THE TOE ... 4
FIGURE 1.3 LOGICAL CONFIGURATION OF THE TOE ... 5
- List of Tables -

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1.1</td>
<td>TOE COMPATIBLE PRODUCTS</td>
<td>3</td>
</tr>
<tr>
<td>TABLE 1.2</td>
<td>EVALUATED WEB BROWSER</td>
<td>7</td>
</tr>
<tr>
<td>TABLE 1.3</td>
<td>GUIDANCE THAT COMPOSES TOE</td>
<td>8</td>
</tr>
<tr>
<td>TABLE 4.1</td>
<td>CORRESPONDENCES BETWEEN THREATS AND ASSUMPTIONS, AND SECURITY OBJECTIVES</td>
<td>12</td>
</tr>
<tr>
<td>TABLE 6.1</td>
<td>TOE SECURITY ASSURANCE REQUIREMENTS</td>
<td>18</td>
</tr>
<tr>
<td>TABLE 6.2</td>
<td>CORRESPONDENCES BETWEEN SECURITY OBJECTIVES AND TOE SECURITY FUNCTIONAL</td>
<td>19</td>
</tr>
<tr>
<td>TABLE 6.3</td>
<td>DEPENDENT RELATIONS BETWEEN TOE SECURITY FUNCTIONAL REQUIREMENTS</td>
<td>19</td>
</tr>
<tr>
<td>TABLE 7.1</td>
<td>TOE SECURITY FUNCTIONS AND SECURITY FUNCTIONAL REQUIREMENTS</td>
<td>21</td>
</tr>
<tr>
<td>TABLE 8.1</td>
<td>DEFINITIONS OF TERMS USED IN THIS ST</td>
<td>23</td>
</tr>
<tr>
<td>TABLE 8.2</td>
<td>DEFINITIONS OF ACRONYMS USED IN THIS ST</td>
<td>24</td>
</tr>
</tbody>
</table>
1. ST INTRODUCTION

1.1. ST Reference
ST Title : TASKalfa 3050ci, TASKalfa 3550ci, TASKalfa 4550ci, TASKalfa 5550ci Data Security Kit (E) Overseas Version Security Target
ST Version : Version 0.70
Creation Date : May 16, 2011
Author : KYOCERA MITA Corporation

1.2. TOE Reference
TOE Version : V1.00E
Manufacturer : KYOCERA MITA Corporation

1.3. TOE Overview

1.3.1 TOE Type
This TOE defined by this ST, includes the firmware that controls the Multi Function Printer (hereinafter referred to as “MFP”) having mainly copy function, scan function and print function, and ASIC having the security algorithm function. The TOE is installed to be used for the MFPs manufactured by KYOCERA MITA Corporation, namely, “TASKalfa 3050ci, TASKalfa 3550ci, TASKalfa 4550ci, TASKalfa 5550ci, TASKalfa 3050ciG, TASKalfa 3550ciG, TASKalfa 4550ciG, TASKalfa 5550ciG, CS 3050ci, CS 3550ci, CS 4550ci, CS 5550ci, CDC 1930, CDC 1935, CDC 1945, CDC 1950, DCC 2930, DCC 2935, DCC 2945, DCC 2950”. Major security features of the TOE protect the image data stored in the internal HDD inside the MFP from being removed through an unauthorized interface.

1.3.2 Usage and Major Security Features of TOE
The MFP in which this TOE is installed is able to perform copying (duplication), printing (paper outputting) and network scanning (electronization) of various documents handled by users. The MFP is located in general office and is not only utilized as a standalone but also connected to LAN for the use in the network environment. In the network environment, the MFP is assumed to be used by connecting to client PCs or
server on the internal network protected from unauthorized access on the external network by firewall. And, the MFP is assumed to be used by connecting to Local Port (USB Port). In this user environment, the above-mentioned operational functions can be performed through operations on the operation panel or from client PCs on the network or of the local connection.

Figure 1.1 shows a typical user environment.

![Figure 1.1 A common usage in offices](image)

The TOE security functions can activate upon agreement and registration of the license of the optional "Data Security Kit (E)" for the MFP “TASKalfa 3050ci, TASKalfa 3550ci, TASKalfa 4550ci, TASKalfa 5550ci, TASKalfa 3050ciG, TASKalfa 3550ciG, TASKalfa 4550ciG, TASKalfa 5550ciG, CS 3050ci, CS 3550ci, CS 4550ci, CS 5550ci, CDC 1930, CDC 1935, CDC 1945, CDC 1950, DCC 2930, DCC 2935, DCC 2945, DCC 2950”.

The TOE provides the protected functions against leakage of the user image data temporarily stored in the internal HDD inside the MFP during and after processing of each function. When storing the image data into the internal HDD, the image data is encrypted. When receiving an instruction for deletion of the image data, it disables re-usage of the data so that even if the HDD is removed and directly accessed through an interface of the HDD, leakage of the image data can be protected.

1.3.3 Required Non-TOE Hardware/Software/Firmware
To activate the TOE, a certain models of the MFP manufactured by KYOCERA MITA Corporation are needed. Products in which this TOE can be installed are listed in
Table 1.1.

<table>
<thead>
<tr>
<th>TOE Name/Version</th>
<th>Compatible Product</th>
</tr>
</thead>
</table>

In order to use the normal functions of the MFP, printer driver, TWAIN driver (identified by Guidance) and Web browser are needed for client PCs and SMTP server, SMB server and FTP server are needed for server in the common usage in offices as shown in Figure 1.1.

1.4. TOE Description

1.4.1. People Associated with the TOE
Roles of people related to the use of the MFP in which the TOE is installed, are defined as follows:

- **Machine Administrator:**
 A person registered as an administrator of the MFP in which the TOE is installed. The administrator holds privileges regarding the MFP. He/she installs and uses devices comprising the MFP in which the TOE is installed, as well as the TOE, and operates and manages them.

- **TOE User:**
 A person who can use the MFP in which the TOE is installed. He/she can utilize the copy function, print function, network scan function and document management box function.

- **Service Person:**
 A person certified by KYOCERA MITA Corporation as a service person of the MFP in which the TOE is installed. When the service person installs the TOE, she/he
activates and setups (enables operation of) the TOE. Also, she/he performs maintenance of devices comprising the MFP in which the TOE is installed, as well as the TOE.

1.4.2. Physical Configuration of the TOE
The conceptual figure of physical configuration of the TOE is shown in Figure 1.2.

The MFP in which the TOE is installed consists of an operation panel, a scanner unit, a printer unit, a main board and HDD hardware.
Controller firmware on the main board to control a copy function, a network scan function, a print function, a document management box function, an administrator authentication function, a solution platform, an overwrite-erase function and an encryption function are included in the TOE.
Additionally, special custom IC (ASIC) which share with the control firmware in installing the security functions is included in the TOE. The ASIC includes a security algorithm function module, an image processing module and an interface controller module. From the above-mentioned, the security algorithm function module overwrites over the specified area in the HDD regarding the overwrite-erase function, and encrypts the image data when reading and writing into the HDD regarding the encryption function.
The firmware term as described in this ST includes the meaning of ASIC as well as the controller firmware.

Non-TOE is: the MFP identified by the table 1.1, language file used for performing user interface function and application software installed on the solution platform.

Physical tamper resistance in hardware (including ASIC) comprising the MFP is not evaluated.

1.4.3. Logical Configuration of the TOE
The conceptual figure of logical configuration of the TOE is shown in Figure 1.3.

1.4.3.1. Basic Functions provided by the TOE
The TOE provides the following basic functions.

- User Interface Function
 A function that receives inputs or operations from the operation panel for machine
administrators, TOE users and service persons to utilize the MFP functions. It also makes displays on the operation panel.

- **Administrator Authentication Function**
 A function that identifies and authenticates a machine administrator by a password of the machine administrator inputted from the operation panel. However, this function is not the security function that is provided by the TOE.

- **Copy Function**
 A function that reads image data from the scanner of the MFP, and outputs from the printer unit of the MFP by inputting or operating from the operation panel.

- **Network Scan Function**
 A function that transmits image data to client PCs by inputting or operating from the operation panel.

- **Print Function**
 A function that outputs image data transmitted from the client PCs connected over LAN or local, from the printer unit of the MFP by operating from the client PCs.

- **Document Management Box Function**
 A function that stores image data in the HDD for a long period of time. The image data inputted from the operation panel or the client PCs connected over LAN or local is stored in the HDD for a long period of time by inputting/operating from the operation panel or operating through the client PCs. The image data stored in the HDD for a long period of time can be printed out and forwarded to the client PCs. Anyone can be unrestricted access to the image data. The image data stored over a long period of time can be deleted as well.

- **Solution Platform (HyPAS)**
 The MFP in which the TOE is installed, can be used by installing an application software which makes daily operations more efficient. Solution platform is the function that installs the application software and activates it in the MFP. The application software that is installed is however, outside of the TOE scope.

A web browser can be used for the operation from client PC when the document management box function is used. The web browser supported by TOE and the evaluated web browser are as follows.
Table 1.2 Evaluated Web browser

<table>
<thead>
<tr>
<th>Evaluated Web browser</th>
<th>Web browsers supported by TOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Microsoft Internet Explorer 7 or later</td>
<td>- Microsoft Internet Explorer 8.0</td>
</tr>
<tr>
<td>- Mozilla FireFox 3.5 or later</td>
<td></td>
</tr>
<tr>
<td>- Safari 4.0 or later</td>
<td></td>
</tr>
</tbody>
</table>

1.4.3.2. Security Functions provided by the TOE

The TOE provides the following functions as the security function.

- Encryption Function
 There is an encryption function for a purpose of being against threats of leakage of the image data stored in the HDD.
 When operating the basic functions such as the copy function, the network scan function, the print function and the document management box function, MFP stores image data in the HDD. The encryption function is a function that encrypts and stores the image data when image data is stored in the HDD. The encryption function also reads out the image data by decrypting the encrypted image data when performing the above-mentioned basic functions, and when reading out the image data stored in the HDD.

 A cryptographic key used for encryption is generated to be an identical and unique number on the MFP basis, every time each MFP is powered on, and is stored in a volatile memory. That is, the cryptography key is not stored inside the MFP in a state that power of the MFP is turned off.

- Overwrite-Erase Function
 In addition to the logical and conventional deletion process, there is the overwrite-erase function for a purpose of further enhancing security.
 After process of the basic functions such as the copy function, the network scan function, the print function and the document management box function is completed, or after the cancellation made by cancel operation during these processing are completed, MFP deletes used image data in the HDD. The overwrite-erase function is the function that logically deletes not only the management information of the stored image data in the HDD, but also entirely overwrites and erases the actual image data area so that it disables re-usage of the data when receiving an instruction for deletion of the stored image data in the HDD.

1.4.4. Guidance

Guidance comprising this TOE is shown as below.
Table 1.3 Guidance that composes TOE

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Notice</td>
<td>303MS56320 2011.3</td>
</tr>
<tr>
<td></td>
<td>3050ci/3550ci/4550ci/5550ci Operation Guide</td>
<td>2LCKMEN101 Rev.1 2011.2</td>
</tr>
<tr>
<td></td>
<td>CDC 1930/DCC 2930 CDC 1935/DCC 2935 CDC 1945/DCC 2945 CDC 1950/DCC 2950 Operation Guide</td>
<td>2LCGEEN001 Rev.1 2011.2</td>
</tr>
</tbody>
</table>

1.4.5. Assets Protected by the TOE

A common MFP temporarily stores the data in the storage area before operating the function of copy, print and network scan. After the job is completed, the data will be deleted. The management area is however, only logically deleted. Thus either during the operation of each function, or in the event that real-time processing (output) can not be done due to a printer being out of paper, etc., the image data stays stored in the HDD, and even after the processing is completed, the actual data area will remain as residual information. The residual information, as well as the temporary stored image data, contains the identical data as the data processed by the each function. Therefore, it is potentially possible for the entire data to be stolen if the HDD is pulled out from the MFP.

Thus, the assets that should be protected by the TOE are described as follows:

- **Residue Data**
 Remaining data after image data stored in the HDD temporarily or for a long period of time is logically deleted from the HDD.

- **Temporary Stored Data**
 Image data that is temporarily stored in the HDD when operating the copy, print and network scan functions.

The above-mentioned data is stored in the image data file in the HDD.
2. CONFORMANCE CLAIMS

2.1. CC Conformance Claims
 This ST and TOE conform to the following evaluation standards for information security (CC):

 Part 1: Introduction and general model
 July 2009, Version 3.1 Revision 3 Final version
 Part 2: Security functional components
 July 2009, Version 3.1 Revision 3 Final version
 Part 3: Security assurance components
 July 2009, Version 3.1 Revision 3 Final version
 The security functional requirements of this ST conform to CC Part 2.
 The security assurance requirements of this ST conform to CC Part 3.

2.2. PP Claims
 There is no applicable Protection Profile.

2.3. Package Claims
 This ST conforms to EAL3.

2.4. Conformance Rationale
 There is no applicable PP rationale since this ST does not conform to PP.
3. SECURITY PROBLEM DEFINITION

This chapter describes threats, organizational security policies and assumptions.

3.1. Threats

Threats to the TOE are identified as follows. The level of the attacking capability of the attackers assumed for this TOE is at a low level.

T.RESIDUAL : Unauthorized access to the residue data
Attackers may remove the HDD and be unauthorized to recover, decode, read out and steal the remaining data in the HDD even after deletion of the image data by using the tools that are easily available.

T.TEMP : Unauthorized access to the temporary stored data
Attackers may remove the HDD and be unauthorized to read out and steal the image data temporarily stored in the HDD by using the tools that are easily available.

3.2. Organizational Security Policies

There is no organizational security policy the TOE must comply with.

3.3. Assumptions

The assumptions for the TOE are described as follows:

A.LOCATION : Safe security of the TOE in the operational environment
To protect the hardware inside the MFP from being possibly attacked (i.e. violating the TOE security), it is assumed that the TOE operates in mutually watchable and manageable environment. Regarding the attacking to the hardware, it is assumed that the attacker opens up the MFP to make it connect to devices for analyzing or replacing the MFP board.

A.NETWORK : Safety of the TOE from the external network
It is assumed that the TOE is used by connecting to the internal network that is protected against unauthorized access from the external network.

A.CE : The service person reliability
It is assumed that the service person is a reliable person and does not act unfaithfully.
4. SECURITY OBJECTIVES

This chapter describes the security objectives for the TOE, the security objectives for the operational environment and the security objectives rationale.

4.1. Security Objectives for the TOE

The security objectives for the TOE are described as follows:

O.REMAIN : Overwrite-erase of the residue data
The TOE must ensure that any previous information content of a resource (the actual data area) is made unavailable upon the deallocation of the resource from the image data file stored in the HDD.

O.ENCRYPT : Prevention of the stored data from being decoded
The TOE must ensure that the image data stored in the HDD is encrypted and is not illegally decoded.

4.2. Security Objectives for the Operational Environment

The security objectives to be implemented by the TOE operational environment are described as follows:

OE.LOCATION : Protection of the TOE and assets in the environment
The MFP must operate under control in a mutually watchable environment and the hardware in the MFP must be protected from analyzing and alteration.

OE.NETWORK : Prevention of the TOE from the external network
The TOE-connected internal network must prevent the attacks from the external network by placing the devices such as the firewall etc.

OE.CE. : Confirmation of the service person
When the service person performs maintenance on the TOE, confirmation must be made if the person is an authorized service person.

4.3. Security Objectives Rationale

The corresponding relations between assumptions, threats and organizational security policies, and security objectives are shown in the table below. It indicates that the security objectives correspond to at least one of assumptions, threats and organizational security policies.
Table 4.1 Correspondences between threats and assumptions, and security objectives

<table>
<thead>
<tr>
<th>Treats/Assumptions</th>
<th>T.RESIDUAL</th>
<th>T.TEMP</th>
<th>A.LOCATION</th>
<th>A.NETWORK</th>
<th>A.CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.REMAIN</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.ENCRYPT</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OE.LOCATION</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OE.NETWORK</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OE.CE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

“Table 4.1 correspondences between threats and assumptions, and security objectives” rationale is described below.

T.RESIDUAL
To counter the threat of T.RESIDUAL, it is necessary to disable recovery, decoding and reading out of the information of the stored residue data in the HDD. This threat can be countered by O.REMAIN. It is ensured that any previous information in the area being released from the resource allocation of the stored image data file in the HDD can not be reused so that the residue data can be protected from being recovered, decoded and read out.

T.TEMP
To counter the threat of T.TEMP, it is necessary to disable reference and output of the information of the temporary stored image data. This threat can be countered by O.ENCRYPT. It is ensured that the stored image data in the HDD is encrypted and is not decoded except being decrypted by using the identical encryption key so that the image data can be protected from being referenced and outputted.

A.LOCATION
The assumption of A.LOCATION requires that the TOE operates under control in mutually watchable environment to prevent the hardware inside the MFP from the TOE security breach. The purpose is to restrict the attack methods and the attack chances in order to protect the hardware in the MFP from unauthorized analysis and alteration. By OE.LOCATION, the MFP operates under control in mutually watchable environment and the MFP is defended against the attacks to the hardware inside the MFP such as analyzing and alternation to the hardware so that the attack methods...
and the attack chances are restricted and then A.LOCATION can be achieved.

A.NETWORK
The assumption of A.NETWORK requires that the TOE is connected to the internal network protected from unauthorized access via the external network. The purpose is to prevent the TOE from access by uncertain number of unauthorized persons in order to restrict the attack methods and the attack possibilities by uncertain number of unauthorized agents through the external network. By OE.NETWORK, the TOE-connected internal network has the devices such as firewall to defend the attacks to the TOE against the access from the external network so that the attack methods and the attack possibilities by uncertain number of threat agents from the external network are restricted and then A.NETWORK can be achieved.

A.CE
The assumption of A.NETWORK requires that the service person who performs maintenance on the TOE is reliable person. The purpose is that the service person who performs maintenance on the TOE does not act unfaithfully. By OE.CE, when the service person performs maintenance on the TOE, confirmation will be made if the person is the authorized service person so that the service person who performs maintenance on the TOE will be restricted as the person who does not act unfaithfully. Then A.CE can be achieved.
5. EXTENDED COMPONENTS DEFINITION

Extended components are not defined.
6. SECURITY REQUIREMENTS

This chapter describes the TOE security requirements.

6.1. TOE Security Functional Requirements

FCS_CKM.1 Cryptographic Key Generation

Hierarchical to: No other components

Dependencies: [FCS_CKM.2 Cryptographic key distribution, or
FCS_COP.1 Cryptographic operation]
FCS_CKM.4 Cryptographic key destruction

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm [assignment: cryptographic key
generation algorithm] and specified cryptographic key sizes [assignment: cryptographic key sizes] that meet the following: [assignment: list of
standards].

[assignment: list of standards]
- Kyocera Mita’s Standard

[assignment: cryptographic key generation algorithm]
- Kyocera Mita’s standard cryptographic key generation

[assignment: cryptographic key sizes]
- 128 bits
FCS_COP.1 Cryptographic Operation

Hierarchical to: No other components

Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation]
FCS_CKM.4 Cryptographic key destruction

FCS_COP.1.1 The TSF shall perform [assignment: list of cryptographic operations] in accordance with a specified cryptographic algorithm [assignment: cryptographic algorithm] and cryptographic key sizes [assignment: cryptographic key sizes] that meet the following:
[assignment: list of standards].

[assignment: list of standards]
- FIPS PUB 197

[assignment: cryptographic algorithm]
- AES

[assignment: cryptographic key sizes]
- 128bits

[assignment: list of cryptographic operations]
- encryption of the image data when writing into the HDD.
- decryption of the image data when reading out from the HDD.
FDP_RIP.1 Subset residual information protection

Hierarchical to: No other components

Dependencies: No dependencies

FDP_RIP.1.1 The TSF shall ensure that any previous information content of a resource is made unavailable upon the [selection: allocation of the resource to, deallocation of the resource from] the following objects: [assignment: list of objects].

[assignment: list of objects]
- *image data file stored in the HDD*

[selection: allocation of the resource to, deallocation of the resource from]
- *deallocation of the resource from*
6.2. TOE Security Assurance Requirements
The evaluation assurance level of the TOE is EAL3. The security assurance requirement applied to the TOE is listed in Table 6.1.

Table 6.1 TOE Security Assurance Requirements

<table>
<thead>
<tr>
<th>Class</th>
<th>Component Name (Including Family)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development</td>
<td>ADV_ARC.1 Security architecture description</td>
</tr>
<tr>
<td></td>
<td>ADV_FSP.3 Functional specification with complete summary</td>
</tr>
<tr>
<td></td>
<td>ADV_TDS.2 Architectural design</td>
</tr>
<tr>
<td>Guidance Documents</td>
<td>AGD_OPE.1 Operational user guidance</td>
</tr>
<tr>
<td></td>
<td>AGD_PRE.1 Preparative procedures</td>
</tr>
<tr>
<td>Life-Cycle Support</td>
<td>ALC_CMC.3 Authorization Controls</td>
</tr>
<tr>
<td></td>
<td>ALC_CMS.3 Implementation representation CM coverage</td>
</tr>
<tr>
<td></td>
<td>ALC_DEL.1 Delivery procedures</td>
</tr>
<tr>
<td></td>
<td>ALC_DVS.1 Identification of security measures</td>
</tr>
<tr>
<td></td>
<td>ALC_LCD.1 ALC_LCD.1 Developer defined life-cycle model</td>
</tr>
<tr>
<td>Security Target</td>
<td>ASE_CCL.1 Conformance Claims</td>
</tr>
<tr>
<td>Evaluation</td>
<td>ASE_ECD.1 Extended components definition</td>
</tr>
<tr>
<td></td>
<td>ASE_INT.1 ST Introduction</td>
</tr>
<tr>
<td></td>
<td>ASE_OBJ.2 Security Objectives</td>
</tr>
<tr>
<td></td>
<td>ASE_REQ.2 Derived security requirements</td>
</tr>
<tr>
<td></td>
<td>ASE_SPD.1 Security problem definition</td>
</tr>
<tr>
<td></td>
<td>ASE_TSS.1 TOE summary specification</td>
</tr>
<tr>
<td>Tests</td>
<td>ATE_COV.2 Analysis of coverage</td>
</tr>
<tr>
<td></td>
<td>ATE_DPT.1 Testing: basic design</td>
</tr>
<tr>
<td></td>
<td>ATE_FUN.1 Functional testing</td>
</tr>
<tr>
<td></td>
<td>ATE_IND.2 Independent testing – sample</td>
</tr>
<tr>
<td>Vulnerability</td>
<td>AVA_VAN.2 Vulnerability analysis</td>
</tr>
<tr>
<td>Assessment</td>
<td></td>
</tr>
</tbody>
</table>

6.3. Security Requirements Rationale

6.3.1. Security Functional Requirements Rationale
The correspondences between security objectives and TOE security functional
requirements are shown below.

Table 6.2 Correspondences between security objectives and TOE security functional requirements

<table>
<thead>
<tr>
<th>Type</th>
<th>Security Objectives</th>
<th>O.REMAIN</th>
<th>O.ENCRYPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOE Security Functional Requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_CKM.1</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_COP.1</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FDP_RIP.1</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

“Table 6.2 Correspondences between security objectives and TOE security functional requirements” rationale is described below.

O.REMAIN
It is ensured that any previous information content of a resource is made unavailable upon the deallocation of the resource from the image data file stored in the HDD in accordance with FDP_RIP.1 Subset residual information protection. Therefore O.REMAIN can ensure that the residue data shall not be reused.

O.ENCRYPT
It can be ensured that the image data stored in the HDD is encrypted in accordance with FCS_COP.1 cryptographic operation policy. To accomplish FCS_COP.1, it is ensured that a cryptographic key enabling encryption is generated according to FCS_CKM.1. At this time, the cryptographic key is generated every time power is turned on, using the Kyocera Mitia's standard cryptographic key generation algorithm. Therefore O.ENCRYPT can ensure that the stored data shall not be illegally decoded.

6.3.2. Dependent Relations between TOE Security Functional Requirements
The dependent relations between the TOE security functional requirements are shown below.

Table 6.3 Dependent relations between TOE security functional requirements

<table>
<thead>
<tr>
<th>No</th>
<th>TOE Security</th>
<th>Hierarchical</th>
<th>Dependent</th>
<th>Reference</th>
<th>Note</th>
</tr>
</thead>
</table>
Functional Requirements

<table>
<thead>
<tr>
<th>No.</th>
<th>Functional Requirements</th>
<th>Relations</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FCS. CKM.1</td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCS_COP.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCS_CKM.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCS_CKM.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not needed</td>
<td>Refer to 6.3.2.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FCS_COP.1</td>
<td>None</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCS_CKM.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCS_CKM.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not needed</td>
<td>Refer to 6.3.2.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FDP_RIP.1</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

6.3.2.1. Rationale for why dependency on FCS_CKM.4 is not needed

The cryptographic key is generated when the main power is tuned on, and is stored for encryption operation that is to read and write the image data on the HDD while the power is turned on. Beside this purpose, there is no interface available to allow unauthorized users to get access. Thus the requirement for the cryptographic key destruction is not needed.

6.3.3. Rationale for Security Assurance Requirements

Since this TOE aims to counter the threats from low level attackers to access image data, the TOE is required to ensure the counter-measure against the low level attacks. EAL3 includes analysis of the security measures of the TOE at development phase (performing and analyzing systematic tests, and evaluating the management of the development environment and the developed products) and also includes analysis whether the sufficient guidance information is included so that the security can be used safely. The assurance requirement conforms to EAL3. Thus selection of EAL3 is reasonable.
7. TOE SUMMARY SPECIFICATION

This chapter describes the summary specification for the security functions that are provided by the TOE.

Table 6.1 shows the relations between the TOE security functions and the security functional requirements.

Table 7.1 TOE security functions and security functional requirements

<table>
<thead>
<tr>
<th>Security Functions</th>
<th>TSF.ENCRYPT</th>
<th>TSF.AGAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS_CKM.1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FCS_COP.1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FDP_RIP.1</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

7.1. Encryption Function

TSF.ENCRYPT

When operating the basic functions such as the copy function, the network scan function, the print function and the document management box function, MFP stores image data in the HDD. The encryption function is a function that encrypts and stores the image data when image data is stored in the HDD.

(1) FCS_CKM.1 Cryptographic Key Generation
The TOE generates a 128-bit cryptographic key to be used in the AES algorithm by using the Kyocera Mita’s standard cryptographic key generating algorithm. The key is generated based on an identical and unique number on the MFP basis, every time each MFP power is turned on, and is kept in a volatile memory. However, information for the cryptographic key is set only when starting operation, and shall not be changed during the operation.

(2) FCS_COP.1 Cryptographic Operation
When storing image data in the HDD, the TOE encrypts the image data, using the 128-bit cryptographic key generated at the time of booting (FCS_CKM.1) and the AES encryption algorithm based on FIPS PUBS 197, and write into the HDD. When reading out the stored image data from the HDD, the TOE decrypts the image data, similarly using the 128-bit cryptographic key generated at the time of booting and the AES encryption algorithm.
7.2. Overwrite-erase Function

TSF.AGAIN

After process of the basic functions such as the copy function, the network scan function, the print function and the document management box function is completed, or after the cancellation made by cancel operation during these processing are completed, MFP deletes used image data in the HDD. The overwrite-erase function is the function that logically deletes not only the management information of the stored image data in the HDD, but also entirely overwrites and erases the actual image data area with meaningless character strings so that it disables re-usage of the data when receiving an instruction for deletion of the stored image data in the HDD

(1) FDP_RIP.1 Subset Residual Information Protection

The TOE stores the used image data to be overwritten and erased in the specific area on the HDD, and then conducts to overwrite and erase by the process of auditing of the specific area. When receiving an instruction for operation of another basic function and so when waiting for the overwrite-erase function to be performed, or when the existence of the used image data is found because of turning off the power during overwrite-erase processing, the overwrite-erase shall be conducted by the audit process at the time of coming out of the waiting status or at the time of turning on the power.
8. ACRONYMS AND TERMINOLOGY

8.1. Definitions of terms

The definitions of the terms used in this ST are indicated in Table 8.1.

Table 8.1 Definitions of terms used in this ST

<table>
<thead>
<tr>
<th>Terms</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Data</td>
<td>It indicates the image information that is processed inside the MFP when TOE users use copy function, network scan function, print function and document management box function.</td>
</tr>
<tr>
<td>Temporary Storage</td>
<td>Keeping the received image data temporarily on the HDD without outputting it or forwarding it as is, or keeping the image data temporarily on the HDD during the image processing. This is executed automatically during the process of the MFP without the users being conscious about it. This should be compared to long period storage.</td>
</tr>
<tr>
<td>Long Period Storage</td>
<td>Keeping the image data on the HDD. The users will have to consciously conduct the storage operation for this storage. This should be compared to temporary storage.</td>
</tr>
<tr>
<td>Client PC</td>
<td>It indicates the computers that connect to the network, and utilize the TOE services (functions) of the TOEs that are connected to the network.</td>
</tr>
<tr>
<td>Network Scan</td>
<td>A function to transmit the scanned image data or the stored image data in the document management box, to the client PCs. There is PC transmission that transmits them via the LAN, e-mail transmission that transmits them via e-mails, and a TWAIN function that captures images of the originals by operations from the client PC.</td>
</tr>
<tr>
<td>Management Area</td>
<td>An area within the image data where management information for that data is recorded. A logical deletion of image data means making this area unrecognizable.</td>
</tr>
<tr>
<td>Actual Data Area</td>
<td>An area within the image data where data composing the actual image is recorded. When image data is logically deleted, this area will remain. This remaining area will be called “residue area”.</td>
</tr>
</tbody>
</table>
Overwrite-Erase

This is to overwrite on the actual image data area with meaningless character strings when receiving an instruction for deletion of the stored image data in the HDD, and to delete the management information of the image data after the actual data area is completely erased. Thus it disables re-usage of the data.

Operation Panel

This is installed on the uppermost part of the MFP, and is constituted by a liquid crystal panel. It is an external interface, and users can utilize the TOE via this operation panel.

Solution Platform (HyPAS)

The solution platform is a function to operate by installing the application software on the MFP to do the daily business of MFP more efficiently.

8.2. Definitions of acronyms

The definitions of the acronyms used in this ST are indicated in Table 8.2.

Table 8.2 Definitions of acronyms used in this ST

<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Common Criteria</td>
</tr>
<tr>
<td>ST</td>
<td>Security Target</td>
</tr>
<tr>
<td>EAL</td>
<td>Evaluation Assurance Level</td>
</tr>
<tr>
<td>SFR</td>
<td>Security Functional Requirement</td>
</tr>
<tr>
<td>SAR</td>
<td>Security Assurance Requirement</td>
</tr>
<tr>
<td>TOE</td>
<td>Target of Evaluation</td>
</tr>
<tr>
<td>TSF</td>
<td>TOE Security Function</td>
</tr>
<tr>
<td>AES</td>
<td>Advanced Encryption Standard</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electronically Erasable Programmable ROM</td>
</tr>
<tr>
<td>HDD</td>
<td>Hard Disk Drive</td>
</tr>
<tr>
<td>MFP</td>
<td>Multi Function Printer</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
</tbody>
</table>