

Security Target Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode

EVALUATION ASSURANCE LEVEL: EAL2+ JUNE 20, 2011 | VERSION 0.9

Prepared for:

NetApp, Inc.

495 East Java Drive Sunnyvale, CA 94089 United States of America Phone: +1 408 822 6000 http://www.netapp.com Prepared by:

Corsec Security, Inc.

10340 Democracy Lane, Suite 201 Fairfax, VA 22030 United States of America Phone: +1 703 267 6050

http://www.corsec.com

This document provides the basis for an evaluation of a specific Target of Evaluation (TOE), Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode. This Security Target (ST) defines a set of assumptions about the aspects of the environment, a list of threats that the product intends to counter, a set of security objectives, a set of security requirements, and the Information Technology (IT) Security Functions provided by the TOE which meet the set of requirements.

TABLE OF CONTENTS

1	INTRODUCTION1					
	1.1	Purpose				
	1.2	SECURITY TARGET AND TOE REFERENCES				
	1.3	PRODUCT OVERVIEW2				
	1.4	TOE O	VERVIEW	2		
		1.4.1	Brief Description of the Components of the TOE	3		
		1.4.2	TOE Environment Hardware	7		
		1.4.3	TOE Environment Software	7		
	1.5	1.5 TOE DESCRIPTION				
		1.5.1	Physical Scope	8		
		1.5.2	Logical Scope	9		
		1.5.3	Product Physical and Logical Features and Functionality not included in the TOE	11		
2	CON	IFORM	ANCE CLAIMS	12		
3	SEC	URITY	PROBLEM	13		
	3.1	THREAT	rs to Security	13		
	3.2	ORGANIZATIONAL SECURITY POLICIES14				
	3.3	Assumptions14				
4	SEC		OBJECTIVES			
	4.1	SECURI	SECURITY OBJECTIVES FOR THE TOE			
	4.2	SECURI	TY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT			
		4.2.1	IT Security Objectives	16		
		4.2.2	Non-IT Security Objectives	16		
5	EXT	EXTENDED COMPONENTS1				
	5.1	EXTEN	DED TOE SECURITY FUNCTIONAL COMPONENTS	18		
		5.1.1	Class EXT_FPT: Extended Protection of the TSF	19		
6	SEC	URITY	REQUIREMENTS	21		
	6.1	CONVENTIONS				
	6.2 SECURITY FUNCTIONAL REQUIREMENTS		TY FUNCTIONAL REQUIREMENTS	21		
		6.2.1	Class FAU: Security Audit	23		
		6.2.2	Class FDP: User Data Protection	26		
		6.2.3	Class FIA: Identification and Authentication	31		
		6.2.4	Class FMT: Security Management			
		6.2.5	Class FPT: Protection of the TSF	36		
		6.2.6	Class FTA: TOE Access	37		
	6.3	SECURI	ITY ASSURANCE REQUIREMENTS	38		
7	TOE	SPEC	IFICATION	39		
	71	TOF S	ECUPITY FUNCTIONS	30		

		7.1.1	Security Audit	
		7.1.2 7.1.3	User Data Protection	
		7.1.3 7.1.4	Security Management	
		7.1.5	Protection of the TSF	
		7.1.6	TOE Access	_
8			.E	
	8.1		RMANCE CLAIMS RATIONALE	
	8.2		ITY OBJECTIVES RATIONALE	
		8.2.1	Security Objectives Rationale Relating to Threats	
		8.2.2	Security Objectives Rationale Relating to Assumptions	
	8.3		NALE FOR EXTENDED SECURITY FUNCTIONAL REQUIREMENTS	
	8.4		ITY REQUIREMENTS RATIONALE	
		8.4.1	Rationale for Security Functional Requirements of the TOE Objectives	
		8.4.2	Security Assurance Requirements Rationale	
		8.4.3	Dependency Rationale	60
9	ACR	ONYM	1S	63
Figu	JRE 4	– EXT	FPT_SEP FAMILY DECOMPOSITION	ı 19
Figu			MULTISTORE ENABLES SECURE MULTI-TENANCY FOR SHARED S	
TAI	BLE	OF T	ABLES	
Таві	LE 1 -	- ST AN	ID TOE REFERENCES	1
Тав	LE 2 -	- TSF (USER DATA SECURITY ATTRIBUTE DESCRIPTIONS	6
Таві	LE 3 -	-TOE (CLIENT SECURITY ATTRIBUTE DESCRIPTIONS	7
TABLE 4 – CC AND PP CONFORMANCE				
Таві	LE 5 -	- THRE	ATS	13
Tabi	LE 6 -	- Assu	MPTIONS	14
	_		RITY OBJECTIVES FOR THE TOE	
			CURITY OBJECTIVES	
I ABI	LE 9 -	- NON-l	T SECURITY OBJECTIVES	16

Table 10 – Extended TOE Security Functional Requirements	18
TABLE 11 – TOE SECURITY FUNCTIONAL REQUIREMENTS	21
Table 12 – FAU_GEN.1.2 Audit Generation Details	23
TABLE 13 – FDP_ACC.1.1 DETAIL	26
TABLE 14 – FDP_ACF.1.1 DETAIL	26
TABLE 15 – FDP_ACF.1.2 DETAIL	28
TABLE 16 – ROLES MAINTAINED BY THE TOE	33
Table 17 – Assurance Requirements	38
Table 18 — Mapping of TOE Security Functions to Security Requirements	
Table 19 – Audit Trail Storage Access by Role	40
TABLE 20 – UNIX-STYLE FILE ACCESS REQUESTS	43
TABLE 21 – NTFS-STYLE FILE ACCESS REQUESTS	43
TABLE 22 – SECURITY FUNCTION CAPABILITIES	47
Table 23 – Threats:Objectives Mapping	52
TABLE 24 – ASSUMPTIONS:OBJECTIVES MAPPING	56
TABLE 25 – OBJECTIVES:SFRS MAPPING	58
TABLE 26 – FUNCTIONAL REQUIREMENTS DEPENDENCIES	61
Table 27 – Acronyms	63

1 INTRODUCTION

This section identifies the ST, TOE, and the ST organization. The TOE includes two versions of the NetApp Data ONTAP operating system, Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode. The TOE is a microkernel operating system that supports multi-protocol services and advanced data management capabilities for consolidating and protecting data for enterprise applications and users. NetApp's storage appliances are based on the Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode microkernel operating systems, where a single storage appliance is capable of running one version of the TOE. The differences between these two versions are limited to minor revisions and do not include any modifications that would affect the security posture of the TOE.

1.1 PURPOSE

This ST is divided into nine sections, as follows:

Introduction (Section 1) – Provides a brief summary of the ST contents and describes the organization of other sections within this document. It also provides an overview of the TOE security functions and describes the physical and logical scope for the TOE, as well as the ST and TOE references.

Conformance Claims (Section 2) – Provides the identification of any Common Criteria (CC), ST Protection Profile, and Evaluation Assurance Level (EAL) package claims. It also identifies whether the ST contains extended security requirements.

Security Problem (Section 3) – Describes the threats, organizational security policies, and assumptions that pertain to the TOE and its environment.

Security Objectives (Section 4) – Identifies the security objectives that are satisfied by the TOE and its environment.

Extended Components (Section 5) – Identifies new components (extended Security Functional Requirements (SFRs) and extended Security Assurance Requirements (SARs)) that are not included in CC Part 2 or CC Part 3.

Security Requirements (Section 6) - Presents the SFRs and SARs met by the TOE.

TOE Specification (Section 7) – Describes the security functions provided by the TOE that satisfy the security functional requirements and objectives.

Rationale (Section 8) - Presents the rationale for the security objectives, requirements, and SFR dependencies as to their consistency, completeness, and suitability.

Acronyms (Section 9) - Defines the acronyms and terminology used within this ST.

1.2 SECURITY TARGET AND TOE REFERENCES

Table 1 - ST and TOE References

ST Title	NetApp, Inc. Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode Security Target	
ST Version	Version 0.9	
ST Author	Corsec Security, Inc.	
Publication Date	6/20/2011	
TOE Reference	NetApp Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode	
Keywords	Operating System, Access Control, Discretionary Access Control (DAC), Storage Area Network (SAN), Common Internet File System (CIFS), Network File System (NFS), Small Computer System Interface (SCSI), Internet Small Computer System Interface (iSCSI), Fibre Channel (FC), Fibre Channel Protocol (FCP), Serial Attached SCSI (SAS), Serial Advanced Technology Attachment (SATA)	

1.3 PRODUCT OVERVIEW

The Product Overview provides a high level description of the product that is the subject of the evaluation.

Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode are proprietary microkernel operating systems developed by NetApp. The microkernel is included in the distribution of several of NetApp's storage solution products including the Fabric Attached Storage (FAS) and V-Series appliances. Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode provide data management functions that include providing secure data storage and multi-protocol access.

Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode are software products that is distributed with the following NetApp storage solution products:

FAS: NetApp's FAS systems offer seamless access to a full range of enterprise data for users

on a variety of platforms. FAS systems support NFS and CIFS for file access, as well as FCP and iSCSI for block-storage access.

FCP and ISCSI for block-storage access

V-Series: The V-Series product family provides unified NAS and SAN access to data stored in FC SAN storage arrays enabling data center storage deployment.

V-Series and FAS products use the same hardware controller and run the same Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode operating systems. The key difference between a V-Series system front ending a storage array and a FAS system with NetApp disks is that the V-Series controller no longer runs Redundant Array of Independent Disks (RAID) 4 or RAID-DP™1. Instead, the V-Series system offloads the RAID protection to the storage array. V-Series storage pools are large RAID 0 stripe sets of iSCSI or FC Logical Unit Numbers (LUNs).

For a complete list of NetApp Storage Controllers on which the product operates, see section 1.4.2. The products support both single controller and High Availability controller pairs as Storage Controller options on some models.

The TOE supports multiple authentication mechanisms:

For CIFS shares, the TOE can authenticate end users with Kerberos[†] or NTLM^{2†} against an Active Directory (AD) domain, with NTLM[†] against an Windows NT-style domain, or locally using NT-style NTLM authentication against a local user database.

For NFS shares, the TOE can authenticate end users with Kerberos[†] against both an Active Directory domain and a Network Information Service (NIS) domain, or locally against User Identifiers (UID) and passwords in local UNIX identity stores and /etc/passwd/.

For administration, the TOE authenticates administrators against a local user repository.

The following section, TOE Overview, will provide the introduction to the parts of the overall product offering that are specifically being evaluated.

1.4 TOE OVERVIEW

The TOE Overview summarizes the usage and major security features of the TOE. The TOE Overview provides a context for the TOE evaluation by identifying the TOE type, describing the product, and defining the specific evaluated configuration. Functionality included in the logical software-only TOE boundary includes:

Secure Multi-protocol Data Storage Access

Secure storage is provided by the TOE by implementing strict access control rules to data managed by the TOE. Multi-protocol access support is provided by the TOE by supporting both NFS and CIFS clients and providing transparent access to data.

¹ RAID-DP – a NetApp proprietary Double Parity RAID 6 implementation that prevents data loss when two drives fail

² NTLM – New Technology Local Area Network Manager

[†] Off-box Identification and Authentication to a NIS or AD domain via either NTLM or Kerberos is a functionality provided by the IT Environment. Identification and Authentication of end-users is not a claimed security functionality of the TOE whether local or remote.

Identification and Authentication

The TOE supports on-box Identification and Authentication of administrators against a local user repository.

Domain Separation

The TOE can function as a storage server for multiple groups of users within the TOE's scope of control which must remain isolated from one another through the implementation of NetApp's MultiStore virtualization technology.

Management

The Management functionality included in the TOE's logical boundary supports functionality that enables users to modify TOE Data and TSF security functional behavior.

Audit

The Audit functionality provided by the TOE generates audit records for administrator logins and configuration changes.

Figure 1 shows the details of the deployment configuration of the TOE:

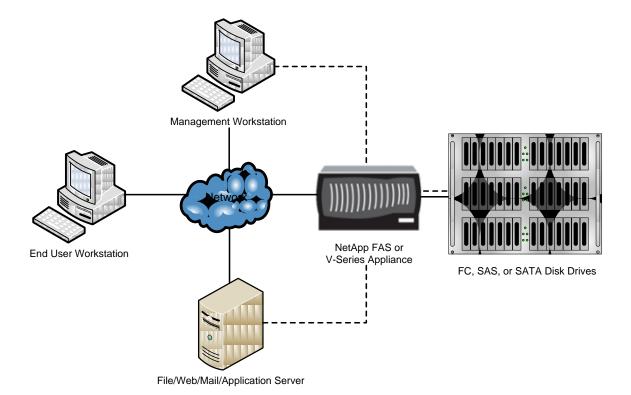


Figure 1 – Deployment Configuration of the TOE

1.4.1 Brief Description of the Components of the TOE

Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode are divided into three components: Write Anywhere File Layout® (WAFL), System Administration, and the Operating System Kernel. The three components are described below. Their relationship to the IT Environment-supplied components is depicted in Table 1.

WAFL The TOE's WAFL component is responsible for implementing the TOE's DAC Security Functional Policy (SFP). The DAC SFP includes enforcing access rules to user data based on client type, client

security attributes, file types, file security attributes and access request (create, read, write, execute, delete, change permission, and change owner).

System Administration The System Administration component provides an administrator with an interface supporting operator functions including enforcing identification and authentication, user roles, and providing the necessary user interface commands that enable an operator to support the TOE's security functionality. The System Administration function is performed by a user with the *root*, or *admin* role, and this functionality is available locally and remotely via a Command Line Interface (CLI), or remotely via one of several management interfaces detailed in section 7.1.4. System Administration functions are audited by default

Operating System Kernel The Kernel facilitates communication between the components of the Operating System.

1.4.1.1 WAFL Functionality Detail

The TOE's WAFL Component protects User data. The TOE uses the subject, subject's security attributes, the object, the object's security attributes and the requested operation to determine if access is granted. The subjects are end users on remote systems that access the TOE via NFS or CIFS. Figure 2 depicts the WAFL functionality.

The following acronyms not yet defined are used in Figure 2 below:

- ACL Access Control List
- ACE Access Control Entry
- UID User Identifier
- GID Group Identifier
- NTFS New Technology File System
- SD Security Descriptor
- SID Security Identifier

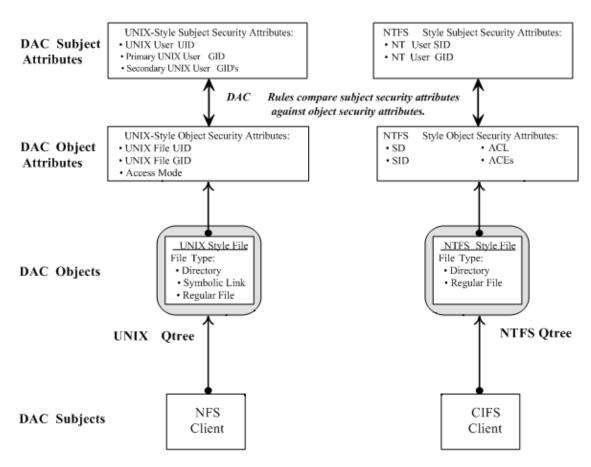


Figure 2 - WAFL Functionality Detail

1.4.1.1.1 **TSF User Data**

The TSF User Data that is covered by the DAC SFP are the files that reside within the TOE's scope of control (i.e. user files on NetApp disks attached to an FAS series appliance, or SANs attached to a V-Series appliance). Each file maintained by the TOE has a file style associated with it. The TOE maintains three styles of files: NFSv3 UNIX-Style files, NFSv4 UNIX-Style files, and NTFS-Style files. NFSv3 UNIX-Style files have UNIX-Style security attributes, NFSv4 UNIX-Style files have NFSv4 security attributes, and NTFS-Style files have NTFS-Style security attributes.

In addition to a file style, each file has a file type. The file types may be directories, symbolic links or regular files. UNIX-Style files may be a directory, a symbolic link or a regular file. NTFS-Style files do not have symbolic links; therefore the file type will be either a directory or a regular file.

In addition to the file type, the TOE maintains three different storage types: UNIX Qtrees, NTFS Qtrees and Mixed Qtrees. A Qtree is a disk space partition. UNIX Qtrees store UNIX-Style files with UNIX-Style security attributes. NTFS Qtrees store NTFS-Style files with NTFS Style security attributes. Mixed Qtrees store both styles of files. Files stored in Mixed Qtrees always have the security attributes associated with the client that was last used to change their access permissions or ownership. Mixed Qtrees are not part of the evaluated configuration.

A file's security attributes are determined when the file is created. The TOE will create UNIX-Style security attributes for a file stored in a UNIX Qtree. The TOE will create NTFS-Style security attributes for a file stored in an NTFS Qtree. These security attributes are outlined in Table 2 below:

Table 2 - TSF User Data Security Attribute Descriptions

Security Attribute	Description		
Access Control Entry (ACE)	A data structure associated with New Technology File System (NTFS)-Style files. Each ACE explicitly allows or denies access to a user or group for a specific NTSF-Style supported operation.		
Access Control List (ACL)	A data structure associated with NTFS-Style files. Each ACL includes one or more ACEs.		
Access Mode	A data structure associated with a UNIX-Style Files. An access mode string is the last nine characters of a UNIX-Style File Permission string (drwxrwxrwx). The nine characters represent the access mode for the file in three sets of rwx triplets. The first triplet specifies the permission for the file's owner (UID). The next triplet specifies the permissions for the group associated with the file (UNIX file GID). The last three characters specify the permission for the users who are neither the owner nor members of the file's group (other). The rwx triplet identifies the permission for that set (owner, group, other). The three characters represent read, write or execute privileges. If the character is a dash, the set does not have permissions to perform the specific action.		
File Permission String	A data structure associated with a UNIX-Style file. The file permission string is represented in ten characters common to all UNIX files (e.g. drwxrwxrwx). The first character contains one of three characters that identify the file type: d for directory, I for a symbolic link, or a dash (-) indicates the file is a regular file. The following 9 characters represent the access mode for the file in three sets of rwx triplets.		
Security Descriptor (SD)	A data structure associated with NTFS-Style files. A SD contains a SID and an ACL.		
Security Identifier (SID)	The CIFS User SID of the file's owner.		
Group Identifier (GID)	A UNIX File GID identifies the groups associated with the UNIX-Style file.		
User Identifier (UID)	The UNIX User UID of the file's owner.		

1.4.1.1.2**TOE Clients**

End user access to TSF data is possible through the use of at either the NFS or CIFS client protocol. In a typical deployment as depicted in Figure 1 above, end user workstations or the file, web, mail, or application servers of the IT Environment connect to the TOE that hosts the TSF data residing on the storage arrays. The TOE is positioned between these workstations and servers, and the storage arrays, facilitating seamless NFS or CIFS connectivity between them while adding increased performance, efficiency, manageability, scalability, security, redundancy, and fault tolerance.

End system workstations and the file, web, mail, or application servers authenticate with the TOE according to the operating procedures of the organization and IT Environment. Typical scenarios include the file, web, mail, or application servers prompting end users for credentials as they attempt to access a web page, e-mail system, or stand alone application, or the TOE prompting end users for credentials as they attempt to access shared network directories (NFS or CIFS). The TOE facilitates server and end-user authentication of the end users attempting to access the TSF data residing within the TOE's scope of control via NFS or CIFS.

To determine if file access is allowed, the TOE compares a client's security attributes with the file's security attributes, listed in Table 3 below. The type of client security attributes (UNIX-Style or NTFS-Style) required by the TOE depends on the type of security attributes maintained by the file and the operation requested. The file or operation will require UNIX-Style subject security attributes (NFSv3 or NFSv4), NTFS-Style subject security attributes or both. If the file or operation requires UNIX-Style security attributes for a client, the TOE will attempt to obtain the client's UNIX User UID and UNIX User GID. If the file or operation requires NTFS-Style subject security attributes, the TOE will attempt to acquire the client's Windows User SID and a Windows User GID. Because of the native operating systems of the two clients, NFS clients are associated with UNIX-Style security attributes and CIFS Clients are associated with NTFS-Style security attributes.

The resolution of client security attributes is processed differently by the TOE for each type of client because the two protocols are different. NTFS-Style security attributes for a CIFS client are resolved when the CIFS client logs into the remote system and joins the Windows domain (of which the TOE is a member). Therefore, NTFS-Style security attributes for a CIFS client is completed before the TOE receives a CIFS request. Alternatively, NFS client security attributes are resolved per NFS request. The UNIX User UID is passed in each NFS request and this UID is used to resolve the required client security attributes.

Table 3 - TOE Client Security Attribute Descriptions

Security Attribute	Description		
Windows User SID	The Windows user ID number. Each user in a Windows system is assigned a unique Windows User SID.		
Windows User GID	The Windows group ID number. Each user in a Windows system is assigned to a group and that group is assigned a unique GID.		
UNIX User UID	The UNIX user ID number. Each user in a UNIX system is assigned a unique UNIX User UID.		
UNIX User GID	The UNIX group ID number. Each user in an UNIX system is assigned to a group and that group is assigned a unique GID.		

1.4.2 TOE Environment Hardware

The IT Environment Hardware includes the appliance hardware of the FAS or V-Series systems. The product functionality provided by the FAS and V-Series products is supplied by the IT Environment. For a complete list of NetApp Storage Controllers on which TOE operates, refer to the release notes for Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode respectively.

1.4.3 TOE Environment Software

The IT Environment Software includes several components of the NetApp storage solutions that are outside the TOE boundary. The following functionality is used by the TOE, however is not evaluated:

CIFS Client software, CIFS Server software, NFS Client software, and NFS Server software

The TOE provides secure access to files under control of the TOE. The TOE provides a protective layer between NFS Clients and CIFS Clients and NFS Servers and CIFS Servers ensuring that only authorized users (clients) can access TOE protected files. The CIFS Client, NFS Client, CIFS Server and NFS Server software is supplied by the IT Environment.

iSCSI Protocol, FCP Protocol

Storage systems can be fabric-attached, network-attached, or direct-attached to support iSCSI over TCP^3/IP^4 as well as SCSI over FCP for block-storage access.

RAID Manager

The RAID Manager supports multiple disk drives which provide fault tolerance and performance. The RAID Manager is supplied by the IT Environment.

TCP/IP Protocol

The UDP⁵/TCP/IP protocol stack is supplied by the IT Environment.

1.5 TOE DESCRIPTION

This section primarily addresses the physical and logical components of the TOE included in the evaluation.

³ TCP – Transport Control Protocol

⁴ IP – Internet Protocol

⁵ UDP – User Datagram Protocol

1.5.1 Physical Scope

Figure 3 illustrates the physical scope and the physical boundary of the overall solution, its deployment in a networked environment, and ties together all of the components of the TOE and the constituents of the TOE Environment. The essential physical component for the proper operation of the TOE in the evaluated configuration are the Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode operating systems which consists of the WAFL, the System Administration module, and the Operating System Kernel as depicted in Figure 3 below:

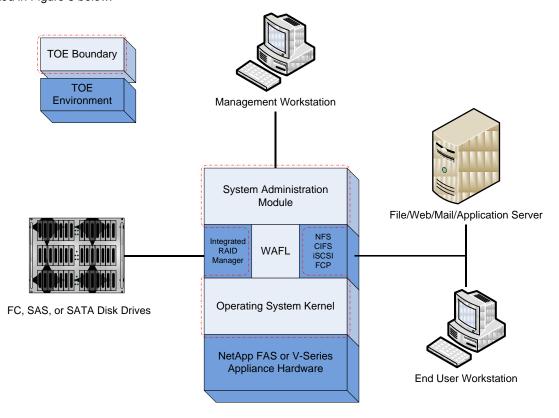


Figure 3 - Physical TOE Boundary

1.5.1.1 TOE Software

The TOE software is a microkernel operating system which runs on a subset of NetApp's proprietary 64-bit x86-based storage controller platforms listed above in section 1.4.2.

The follow statements describe the TOE's evaluated configuration:

The wafl.root_only_chown option for the evaluated configuration is disabled. When enabled, only a root user has permission to change the owner of a file. When disabled, the wafl.root_only_chown option enables the owner of a file to change ownership of a file.

All authorized NetApp Administrators have the TSF admin role.

The security.admin.authentication parameter is set to "internal". When set to "internal", administrators are authenticated locally, and LDAP, NIS, etc. authentication is disabled.

The security.passwd.rules.everyone parameter is set to "on". When set to "on", all administrative users, including the 'root' and 'administrator' accounts are subject to password rules such as account lock-out.

The options auditlog.enable parameter is set to "on". When set to "on", the auditing functionality of the TOE is enabled.

The evaluated configuration does not support changing a Qtree's style once the Qtree is configured.

1.5.1.2 Guidance Documentation

The following guides are required reading and part of the TOE:

- Administrator and User guidance for Data ONTAP Common Criteria deployments for Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode
- NetApp Manual (Man) Pages
- Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode System Administration Guides
- Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode MultiStore Management Guides
- Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode File Access and Protocols Management Guides
- Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode Release notes

1.5.2 Logical Scope

The security functional requirements implemented by the TOE are usefully grouped under the following Security Function Classes:

- Security Audit
- User Data Protection
- Identification and Authentication
- Security Management
- Protection of TOE Security Functions
- TOE Access
- Each of these security functions is discussed below:

1.5.2.1 Security Audit

The TOE keeps track of auditable events through the Audit Log, stored in /etc/log/auditlog.

An audit log is a record of commands executed at the console or a secure shell (SSH). All the commands executed in a source file script are also recorded in the audit log. Administrative Hypertext Transfer Protocol (HTTP) operations, such as those resulting from the use of FilerView, are logged. All login attempts to access the storage system, with success or failure, are also logged.

In addition, changes made to configuration and registry files are logged. Read-only Application Programming Interfaces (APIs) by default are not logged but an administrator can enable auditing with the auditlog.readonly api.enable option.

For configuration changes, the audit log shows the following information:

What configuration files were accessed

When the configuration files were accessed

What has been changed in the configuration files

For commands executed through the console or an SSH shell, the audit log shows the following information:

What commands were executed

Who executed the commands

When the commands were executed.

The TOE ensures that the audit trail storage is protected by rotating log files as they reach an administrator-configurable maximum size, and overwriting the oldest log file when the audit trail reaches an administrator-

configurable maximum size. In addition, the log files are accessible for viewing by an authorized administrator via NFS, CIFS, or HTTPS. For more information on how the TOE protects audit trail storage and allows administrators to view log files, see section 0.

1.5.2.2 User Data Protection

User data protection defines how users connecting to the TOE are allowed to perform operations on objects.

User access to objects controlled by the TOE is governed by the enforcement of the DAC SFP. Access to NTFS style files via a CIFS share is authorized locally by file ACEs. Access to NFSv3 UNIX style files via an NFSv3 export is authorized locally by file/directory ownership and UNIX-Style security attributes. Access to NFSv4 UNIX style files via an NFSv4 export is authorized locally by file ACEs.

The TOE provides authorized administrators with several management interfaces outlined in section 1.5.2.4 to configure end-user network access. The management interfaces provide for the creation of rules that define actions the TOE is to take based on a set of conditions. The conditions and actions affect either the allowed access to user data by end-users (DAC SFP), or the way administrators interact with the TOE.

For more information on the User Data Protection functionality of the TOE, see section 7.1.2.

1.5.2.3 Identification and Authentication

The Identification and Authentication (I&A) functionality of the TOE enforces human administrators to identify and authenticate themselves to the TOE before allowing any modifications to TOE managed TSF Data. Authentication credentials are maintained by the TOE in a local registry.

The TOE enforces minimum password strength requirements. Passwords must have a length of at least 8 characters and contain at least one numeric character and at least two alphabetic characters.

The TOE will lock out an administrator account if the user fails to enter the proper credentials after 6 failed login attempts.

For more information on the I&A functionality of the TOE, see section 7.1.3.

1.5.2.4 Security Management

The TSF management functionality provides the necessary functions to allow a NetApp administrator to manage and support the TSF. Included in this functionality are the rules enforced by the TOE that define access to TOE-maintained TSF Data and its corresponding security attributes, and TSF Functions.

The security attributes include authentication data (used to authenticate end users), roles, security attribute data (used for DAC SFP enforcement) and other TSF data (used for DAC SFP subject security attribute resolution).

The TOE maintains the following roles for users: *root, admin, power, backup, compliance, audit, none.* A "NetApp Administrator" is defined to be any human user who is assigned any of the administrative roles (except for *none*) listed above.

The TSF Functions include the following groups of capabilities (which are defined in detail in Table 22): *login, CLI, security, API, compliance,* and *filerview.* For more information on the TSF management functionality, see section 7.1.4.

1.5.2.5 Protection of TOE Security Functions

The TOE protects the TOE Security Function (TSF) via the implementation of domain separation made possible by MultiStore virtualization functionality.

For more information on domain separation and Protection of the TSF, see section 7.1.5.

1.5.2.6 TOE Access

The TOE mitigates unauthorized administrator access by automatically terminating administrator sessions after 10 minutes of inactivity at the CLI and 5 minutes of inactivity at the NetApp FilerView.

Product Physical and Logical Features and Functionality not included in the TOE 1.5.3

Features and Functionality that are not part of the evaluated configuration of the TOE are:

- Appliance hardware and firmware
- High Availability appliance pairs
- Cluster Mode
- Remote resolution of authentication data via the nsswitch.conf passwd file (i.e. UNIX LDAP⁶)
- Cross-protocol support (NFS access to NTFS-style files, CIFS access to UNIX-style files)
- Shared level ACLs
- Bypass traverse checking option
- Windows Group Policy Objects
- wafl.root only chown is disabled in the evaluated version (when disabled, file owners, in addition to the root account, can change ownership of files)
- Native File Blocking (File Screening)
- Mixed Qtrees
- Changing a Qtree's style once the Qtree has been configured
- Remote CLIs accessible via:
- Ethernet connections to an RLM⁷ or a BMC⁸ installed in the appliance
- A Telnet session to the appliance
- A remote shell program, such as RSH9
- Trivial File Transfer Protocol (TFTP)
- **HTTP**

⁶ LDAP – Lightweight Directory Access Protocol

⁷ RLM – Remote Local Area Network (LAN) Management

⁸ BMC – Baseboard Management Controller

⁹ RSH – Remote Shell

2 CONFORMANCE CLAIMS

This section provides the identification for any CC, Protection Profile (PP), and EAL package conformance claims. Rationale is provided for any extensions or augmentations to the conformance claims. Rationale for CC and PP conformance claims can be found in Section 8.1.

Table 4 - CC and PP Conformance

Common Criteria (CC) Identification and Conformance	Common Criteria for Information Technology Security Evaluation, Version 3.1, Revision 3, July 2009; CC Part 2 extended; CC Part 3 conformant; PP claim (none); Parts 2 and 3 Interpretations from the CEM as of 2010/08/31 were reviewed, and no interpretations apply to the claims made in this ST.
PP Identification	None
Evaluation Assurance Level	EAL2+ (Augmented with Flaw Remediation (ALC_FLR.3))

3 SECURITY PROBLEM

This section describes the security aspects of the environment in which the TOE will be used and the manner in which the TOE is expected to be employed. It provides the statement of the TOE security environment, which identifies and explains all:

- Known and presumed threats countered by either the TOE or by the security environment
- Organizational security policies with which the TOE must comply
- Assumptions about the secure usage of the TOE, including physical, personnel and connectivity aspects.

3.1 THREATS TO SECURITY

This section identifies the threats to the IT assets against which protection is required by the TOE or by the security environment. The threat agents are divided into three categories:

- Attackers who are not TOE users: They have public knowledge of how the TOE operates and are assumed to possess a low skill level, limited resources to alter TOE configuration settings or parameters and no physical access to the TOE.
- TOE users: They have extensive knowledge of how the TOE operates and are assumed to possess a
 high skill level, moderate resources to alter TOE configuration settings or parameters and physical
 access to the TOE. (TOE users are, however, assumed not to be willfully hostile to the TOE.)
- Agents or processes working either on behalf of attackers or autonomously: They may or may not have knowledge of the public or proprietary TOE configuration settings/parameters. These agents and processes can take many forms, such as bots or botnets designed to exploit common vulnerabilities or deny others access to IT products and services.

All three are assumed to have a low level of motivation. The IT assets requiring protection are the TSF and user data saved on or transitioning through the TOE and the hosts on the protected network. Removal, diminution and mitigation of the threats are through the objectives identified in Section 4 Security Objectives. The following threats are applicable:

Table 5 - Threats

Name	Description
T.MASQUERADE	A TOE user or process may masquerade as another entity in order to gain unauthorized access to data or TOE resources.
T.TAMPER	A TOE user or process may be able to bypass the TOE's security mechanisms by tampering with the TOE or TOE environment.
T.UNAUTH	A TOE user may gain access to security data on the TOE, even though the user is not authorized in accordance with the TOE security policy.
T.DATALOSS	Threat agents may attempt to remove or destroy data collected and produced by the TOE.
T.NO_AUDIT	Threat agents may perform security-relevant operations on the TOE without being held accountable for it.
T.IA	Threat agents may attempt to compromise the TOE or network resources controlled by the TOE by attempting actions that it is not authorized to perform on the TOE or network resources.

3.2 ORGANIZATIONAL SECURITY POLICIES

An Organizational Security Policy (OSP) is a set of security rules, procedures, or guidelines imposed by an organization on the operational environment of the TOE. No OSPs are presumed to be imposed upon the TOE or its operational environment by any organization implementing the TOE in the CC evaluated configuration.

3.3 ASSUMPTIONS

This section describes the security aspects of the intended environment for the evaluated TOE. The operational environment must be managed in accordance with assurance requirement documentation for delivery, operation, and user guidance. The following specific conditions are required to ensure the security of the TOE and are assumed to exist in an environment where this TOE is employed.

Table 6 - Assumptions

Name	Description
A.PEER	Any other systems with which the TOE communicates are assumed to be under the same management control and use a consistent representation for specific user and group identifiers.
A.NETWORK	Security Management shall be provided to protect the Confidentiality and Integrity of transactions on the network.
A.MANAGE	There will be one or more competent individuals assigned to manage the TOE and the security of the information it contains.
A.NO_EVIL_ADM	The system administrative personnel are not hostile and will follow and abide by the instructions provided by the administrator documentation.
A.COOP	Authorized users possess the necessary authorization to access at least some of the information managed by the TOE and are expected to act in a cooperating manner in a benign environment.
A.STRONG_PWD	Authorized users will maintain strong passwords.
A.PROTECT	The processing resources of the TOE critical to the security policy enforcement will be protected from unauthorized physical modification by potentially hostile outsiders.
A.ADMIN_ACCESS	Administrative functionality shall be restricted to authorized administrators.

4 SECURITY OBJECTIVES

Security objectives are concise, abstract statements of the intended solution to the problem defined by the security problem definition (see Section 3). The set of security objectives for a TOE form a high-level solution to the security problem. This high-level solution is divided into two part-wise solutions: the security objectives for the TOE, and the security objectives for the TOE's operational environment. This section identifies the security objectives for the TOE and its supporting environment.

4.1 SECURITY OBJECTIVES FOR THE TOE

The specific security objectives for the TOE are as follows:

Table 7 – Security Objectives for the TOE

Name	Description
O.ADMIN_ROLES	The TOE will provide administrative roles to isolate administrative actions.
O.AUDIT	The TOE will audit all administrator authentication attempts, whether successful or unsuccessful, as well as TOE user account configuration changes.
O.DAC_ACC	TOE users will be granted access only to user data for which they have been authorized based on their user identity and group membership.
O.ENFORCE	The TOE is designed and implemented in a manner that ensures the security policies can't be bypassed or interfered with via mechanisms within the TOE's scope of control.
O.IA	The TOE will require users to identify and authenticate themselves.
O.MANAGE	The TSF will provide functions and facilities necessary to support the authorized administrators that are responsible for the management of TOE security.
O.STRONG_PWD	The TOE must ensure that all passwords will be at least 8 characters in length and will consist of at least one number and at least two alphabetic characters. Password construction will be complex enough to avoid use of passwords that are easily guessed or otherwise left vulnerable, e.g. names, dictionary words, phone numbers, birthdays, etc. should not be used.
O.INACTIVE	The TOE will terminate an inactive management session after a configurable interval of time.
O.TIMESTAMP	The TOE will provide a reliable timestamp for use by the TOE.

4.2 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT

4.2.1 IT Security Objectives

The following IT security objectives are to be satisfied by the environment:

Table 8 - IT Security Objectives

Name	Description
OE.ACCESS	The IT Environment will ensure that users gain only authorized access to the data the IT Environment manages.
OE.ADMIN_ROLES	The IT Environment will provide administrative roles to isolate administrative actions.
OE.ENFORCE	The IT Environment will support the TOE by providing mechanisms to ensure the TOE is neither bypassed nor interfered with via mechanisms outside the TSC.
OE.IA	The IT Environment must require authorized CIFS and NFS Clients to successfully I&A before allowing access to the TOE.
OE.NETWORK	The network path between the TOEs is a trusted channel. The network path between the CLI client and the TOE is a trusted channel.
OE.NTP	The IT Environment will enable the TOE to provide reliable time stamps by implementing the Network Time Protocol (NTP).
OE.SUBJECTDATA	The IT Environment will provide the TOE with the appropriate subject security attributes.

4.2.2 Non-IT Security Objectives

The following non-IT environment security objectives are to be satisfied without imposing technical requirements on the TOE. That is, they will not require the implementation of functions in the TOE hardware and/or software. Thus, they will be satisfied largely through application of procedural or administrative measures.

Table 9 - Non-IT Security Objectives

Name	Description
ON.CREDEN	Those responsible for the TOE must ensure that all access credentials, such as passwords, are protected by the users in a manner that maintains IT security objectives.
ON.INSTALL	Those responsible for the TOE and hardware required by the TOE must ensure that the TOE is delivered, installed, configured, managed, and operated in a manner which maintains IT security objectives.
ON.PHYSICAL	Those responsible for the TOE must ensure that those parts of the TOE and the IT Environment critical to security policy are protected from any physical attack that might compromise the IT security objectives.
ON.TRAINED	Those responsible for the TOE will be properly trained and provided the necessary information that ensures secure management of the TOE and the IT Environment.
ON.STRONG_PWD	Those responsible for the TOE must ensure that all passwords will be at

Name	Description
	least 8 characters in length and will consist of at least one number and at least two alphabetic characters. Password construction will be complex enough to avoid use of passwords that are easily guessed or otherwise left vulnerable, e.g. names, dictionary words, phone numbers, birthdays, etc. should not be used.

5 EXTENDED COMPONENTS

This section defines the extended SFRs and extended SARs met by the TOE. These requirements are presented following the conventions identified in Section 6.1.

5.1 EXTENDED TOE SECURITY FUNCTIONAL COMPONENTS

This section specifies the extended SFRs for the TOE. The extended SFRs are organized by class. Table 10 identifies all extended SFRs implemented by the TOE

Table 10 – Extended TOE Security Functional Requirements

Name	Description
EXT_FPT_SEP.1	TSF domain separation for software TOEs

5.1.1 Class EXT_FPT: Extended Protection of the TSF

Domain separation functions involve maintaining the integrity and management of the mechanisms that constitute the TSF and to the integrity of TSF data. The EXT_FTP: Extended Protection of the TSF class was modeled after the CC FPT: Protection of the TSF class. See section 8.3 for information regarding the rationale for extending this class.

Figure 4 – EXT_FPT: Extended Protection of the TSF Class Decomposition

5.1.1.1 TSF Domain Separation for Software TOEs (EXT_FPT_SEP)

Family Behaviour:

This family defines the requirements for domain separation of TSF data.

Component Leveling:

Figure 5 - EXT_FPT_SEP family decomposition

EXP_FPT_SEP: TSF Domain Separation for Software TOEs provides the capability of the TOE to maintain a separate security domain to protect it from untrusted objects in the TOE's scope of control.

Management: EXT_FPT_SEP.1

The following actions could be considered for the management functions in EXT_FPT_SEP.1:

- Physical storage system administrators performing maintenance (deletion, modification, addition) of vFiler units, volumes, users, and groups of users, and their assignment to various vFilers within the TOE's scope of control.
- vFiler (security domain) administrators performing maintenance (deletion, modification, addition) of volumes, users, and groups of users within the security domain's scope of control.

Audit: EXT_FPT_SEP.1

The following actions should be auditable if FAU_GEN Security audit data generation is included in the PP/ST:

• Maintenance (deletion, modification, addition) of vFiler units, users, and groups of users, and their assignment to various security domains within the TOE's scope of control.

EXT_FPT_SEP.1 TSF Domain Separation for Software TOEs

Hierarchical to: [No other components]

EXT_FPT_SEP.1.1

The TSF shall maintain a security domain that protects it from interference and tampering by untrusted subjects in the TOE's scope of control.

EXT_FPT_SEP.1.2

The TSF shall enforce separation between the security domains of subjects in the TOE's scope of control.

Dependencies: [No dependencies.]

6 SECURITY REQUIREMENTS

This section defines the SFRs and SARs met by the TOE. These requirements are presented following the conventions identified in Section 6.1.

6.1 CONVENTIONS

There are several font variations used within this ST. Selected presentation choices are discussed here to aid the Security Target reader.

The CC allows for assignment, refinement, selection and iteration operations to be performed on security functional requirements. All of these operations are used within this ST. These operations are performed as described in Part 2 of the CC, and are shown as follows:

- Completed assignment statements are identified using [italicized text within brackets].
- Completed selection statements are identified using [underlined text within brackets].
- Refinements are identified using **bold text**. Any text removed is stricken (Example: TSF Data) and should be considered as a refinement.
- Extended Functional and Assurance Requirements are identified using "EXT_" at the beginning of the short name.
- Iterations are identified by appending a letter in parentheses following the component title. For example, FAU_GEN.1(a) Audit Data Generation would be the first iteration and FAU_GEN.1(b) Audit Data Generation would be the second iteration.

6.2 SECURITY FUNCTIONAL REQUIREMENTS

This section specifies the SFRs for the TOE. This section organizes the SFRs by CC class. Table 11 identifies all SFRs implemented by the TOE and indicates the ST operations performed on each requirement.

Table 11 - TOE Security Functional Requirements

Name	Description		Α	R	1
FAU_GEN.1	Audit data generation	✓	✓		
FAU_GEN.2	User Identity Association				
FAU_SAR.1	Audit review		✓		
FAU_SAR.2	Restricted audit review				
FAU_STG.1	Protected audit trail storage				
FAU_STG.4	Prevention of audit data loss		✓		
FDP_ACC.1	Subset access control		✓		
FDP_ACF.1	Security attribute based access control		✓		
FIA_AFL.1	Authentication failure handling	✓	✓		
FIA_ATD.1	User attribute definition		✓		

Name	Description			R	L
FIA_SOS.1	Verification of secrets		✓		
FIA_UAU.2	User authentication before any action			✓	
FIA_UID.2	User identification before any action			✓	
FMT_MOF.1	Management of security function behaviour	✓	✓	✓	
FMT_MSA.1	Management of security attributes	✓	✓		
FMT_MSA.3	Static attribute initialisation	✓	✓		
FMT_MTD.1(a)	Management of TSF data	✓	✓		✓
FMT_MTD.1(b)	Management of TSF data	✓	✓		✓
FMT_SMF.1	Specification of management functions		✓		
FMT_SMR.1	Security roles		✓		
EXT_FPT_SEP.1	TSF domain separation for software TOEs				
FPT_STM.1	Reliable Time Stamps				
FTA_SSL.3	TSF-initiated termination		✓	\	

Note: S=Selection; A=Assignment; R=Refinement; I=Iteration

6.2.1 Class FAU: Security Audit

FAU_GEN.1 Audit Data Generation Hierarchical to: No other components.

FAU_GEN.1.1

The TSF shall be able to generate an audit record of the following auditable events:

Start-up and shutdown of the audit functions;

All auditable events, for the [not specified] level of audit; and

[The events specified in Table 12 below].

FAU_GEN.1.2

The TSF shall record within each audit record at least the following information:

Date and time of the event, type of event, subject identity (if applicable), and the outcome (success or failure) of the event; and

For each audit event type, based on the auditable event definitions of the functional components included in the PP/ST, [the additional event information specified in Table 12 below].

Table 12 - FAU_GEN.1.2 Audit Generation Details

SFR Addressed	Auditable Events	Additional Event Information
FIA_UAU.2, FIA_UID.2	Successful local logon	User identity, security domain
FIA_UAU.2, FIA_UID.2	Unsuccessful local logon	User identity supplied, security domain
FMT_SMF.1	User created	User ID ¹⁰ created, User ID of the administrator performing the action, security domain
FMT_SMF.1	User deleted	User ID deleted, User ID of the administrator performing the action, security domain
FMT_SMF.1	Group created	Group created, User ID of the administrator performing the action, security domain
FMT_SMF.1	Group deleted	Group deleted, User ID of the administrator performing the action, security domain
FMT_SMF.1	Group member added	User ID and group associated, User ID of the administrator performing the action, security domain
FMT_SMF.1	Group member deleted	User ID and group disassociated, user ID of the administrator performing the action, security domain

Dependencies: FPT_STM.1 Reliable time stamps

-

¹⁰ ID - Identifier

FAU_GEN.2 User identity association

Hierarchical to: No other components.

FAU_GEN.2.1

For audit events resulting from actions of identified users, the TSF shall be able to associate each auditable event with the identity of the user that caused the event.

Dependencies: FAU_GEN.1 Audit data generation

FIA_UID.1 Timing of identification

FAU_SAR.1 Audit review

Hierarchical to: No other components.

FAU_SAR.1.1

The TSF shall provide [authorised administrators] with the capability to read [all audit information] from the audit records.

FAU_SAR.1.2

The TSF shall provide the audit records in a manner suitable for the user to interpret the information.

Dependencies: FAU_GEN.1 Audit data generation

FAU_SAR.2 Restricted audit review

Hierarchical to: No other components.

FAU_SAR.2.1

The TSF shall prohibit all users read access to the audit records, except those users that have been granted explicit read-access.

Dependencies: FAU_SAR.1 Audit review

FAU_STG.1 Protected audit trail storage

Hierarchical to: No other components.

FAU STG.1.1

The TSF shall protect the stored audit records in the audit trail from unauthorised deletion.

FAU_STG.1.2

The TSF shall be able to [prevent] unauthorised modifications to the stored audit records in the audit trail.

Dependencies: FAU_GEN.1 Audit data generation

FAU_STG.4 Prevention of audit data loss

Hierarchical to: FAU_STG.3 Action in case of possible audit data loss

FAU_STG.4.1

The TSF shall [overwrite the oldest stored audit records] and [no other actions] if the audit trail is full

Dependencies: FAU_STG.1 Protected audit trail storage

6.2.2 Class FDP: User Data Protection

FDP_ACC.1 Subset access control Hierarchical to: No other components.

FDP_ACC.1.1

The TSF shall enforce the [DAC SFP] on [the subjects, objects, and operations among subjects and objects listed in Table 13 below].

Table 13 - FDP_ACC.1.1 Detail

Subject	Object (Files on the Storage Appliar	Operation among Subject and Object covered by the		
Subject	File Style	File Type	Qtree Type	DAC SFP	
NFSv3 Client	NFSv3 UNIX- Style File	Directory, Symbolic Link, Regular File	UNIX Qtree	Create, read, write, execute, delete, change permissions, change ownership	
NFSv4 Client	NFSv4 Unix- Style File	Directory, Symbolic Link, Regular File	UNIX Qtree	Create, read, write, execute, delete, change permissions, change ownership	
CIFS Client	NTFS-Style File	Directory, Regular File	NTFS Qtree	Create, read, write, execute, delete, change permissions, change ownership	

Dependencies: FDP_ACF.1 Security attribute based access control

FDP_ACF.1 Security attribute based access control

Hierarchical to: No other components.

FDP_ACF.1.1

The TSF shall enforce the [DAC SFP] to objects based on the following [the subjects, objects, operations, and associated security attributes listed in Table 14 below:]

Table 14 – FDP_ACF.1.1 Detail

			Subject		Object (file)	Other Objects and Security
Operation	Operation Subject Object (File)	Security Attribute	Other TSF Data	Security Attribute	Attributes used for DAC SFP	
Create	NFSv3 Client	NFSv3 UNIX-Style file	UNIX User UID, UNIX User GID	UNIX Username	N/A	UNIX Parent Directory UID, UNIX Parent Directory GID and access mode
	NFSv4 Client	NFSv4 UNIX-Style file	UNIX User UID, UNIX User GID	UNIX Username	N/A	UNIX Parent Directory UID, UNIX Parent Directory ACEs

			Suk	oject	Object (file)	Other Objects
Operation	Subject	Object (File)	Security Attribute	Other TSF Data	Security Attribute	and Security Attributes used for DAC SFP
	CIFS Client	NTFS-Style file	Windows User SID, Windows User GID	Windows Username	N/A	Qtree type, Parent directory's SID and ACEs
	NFSv3 Client	NFSv3 UNIX-Style file	UNIX User UID, UNIX User GID	None	UNIX file UID, UNIX file GID, access mode	None
Read, Write, Execute	NFSv4 Client	NFSv4 UNIX-Style file	UNIX User UID, UNIX User GID	None	UNIX User UID, ACEs	None
	CIFS Client	NTFS-Style file	Windows User SID, Windows User GID	Windows Username	SID and ACEs	None
	NFSv3 Client	NFSv3 UNIX-Style file	UNIX User UID, UNIX User GID	UNIX Username	None	UNIX Parent Directory UID, UNIX Parent Directory GID and access mode
Delete	NFSv4 Client	NFSv4 UNIX-Style file	UNIX User UID UNIX User GID	None	UNIX User UID, ACEs	UNIX Parent Directory UID, UNIX Parent Directory ACEs
	CIFS Client	NTFS-Style file	Windows User SID, Windows User GID	Windows Username	SID and ACEs	Parent directory's SID and ACEs
	NFSv3 Client	NFSv3 UNIX-Style file	UNIX User UID, UNIX User GID	UNIX Username	None	UNIX Parent Directory UID, UNIX Parent Directory GID and access mode
Change Permission	NFSv4 Client	NFSv4 UNIX-Style file	UNIX User UID UNIX User GID	None	UNIX User UID, ACEs	UNIX Parent Directory UID, UNIX Parent Directory ACEs
	CIFS Client	NTFS-Style file	Windows User SID, Windows User GID	Windows Username	SID and ACEs	Parent directory's SID and ACEs
	NFSv3 Client	NFSv3 UNIX-Style file	UNIX User UID	None	UNIX User UID	None
Change Owner	NFSv4 Client	NFSv4 UNIX-Style file	UNIX User UID	None	UNIX User UID	None
	CIFS Client	NTFS-Style file	Windows User SID, Windows User GID	None	SID and ACEs	None

FDP_ACF.1.2

The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed: [access is granted if one of the following conditions listed in Table 15 below is true:]

Table 15 – FDP_ACF.1.2 Detail

Operation	Subject	Object (File)	=DAC Rule
	NFSv3 Client	NFSv3 UNIX- Style file	1. The subject is the owner of the parent directory and the owner has been granted Write and Execute access (UNIX-Style security attributes). 2. The subject is not the owner of the parent directory but is a member of the parent directory's group and the group has Write and Execute access (UNIX-Style security attributes). 3. The subject is neither the owner of the parent directory nor a member of the parent directory's group but Write and Execute access has been granted to all subjects (UNIX-Style security attributes).
Create	NFSv4 Client	NFSv4 UNIX- Style file	 4. The subject is the owner of the parent directory and the owner has been granted Write and Execute access (UNIX-Style security attributes). 5. There is no parent directory ACE that denies Write or Execute access to the subject and parent directory ACEs exist that grant Write and Execute permission to the subject (NFSv4-Style security attributes). 6. There is no parent directory ACE that denies Write or Execute access to any group that the subject is a member of and parent directory ACEs exist that grant Write and Execute permission to any group the subject is a member of (NFSv4-Style security attributes).
CIFS	CIFS Client	NTFS-Style file	7. There is no parent directory ACE that denies Write or Execute access to the subject and parent directory ACEs exist that grant Write and Execute permission to the subject (NTFS-Style security attributes). 8. There is no parent directory ACE that denies Write or Execute access to any group that the subject is a member of and parent directory ACEs exist that grant Write and Execute permission to any group the subject is a member of (NTFS-Style security attributes).
Read, Write Execute	NFSv3 Client	NFSv3 UNIX- Style file	 9. The subject is the owner of the file and the owner has been granted access for the specific operation (UNIX-Style security attributes). 10. The subject is not the owner of the file but is a member of the object's group and the object's group has access for the specific operation (UNIX-Style security attributes).

Operation	Subject	Object (File)	=DAC Rule
			11. The subject is neither the owner of the file nor a member of the object's group but the specific access request has been granted to all subjects (UNIX-Style security attributes)
			 12. The subject is the owner of the file and the owner has been granted access for the specific operation (UNIX-Style security attributes). 13. There is no ACE that denies access to the subject for the specific operation and an ACE exists
	NFSv4 Client	NFSv4 UNIX- Style file	that grants permission to the subject for the specific operation (NFSv4-Style security attributes).
			14. There is no ACE that denies access for the specific operation to any group that the subject is a member of and an ACE exists that grants permission to any group the subject is a member of for the specific operation (NFSv4-Style security attributes).
	2172 21		15. There is no ACE that denies access to the subject for the specific operation and an ACE exists that grants permission to the subject for the specific operation (NTFS-Style security attributes).
	CIFS Client	NTFS-Style file	16. There is no ACE that denies access for the specific operation to any group that the subject is a member of and an ACE exists that grants permission to any group the subject is a member of for the specific operation (NTFS-Style security attributes).
	NFSv3 Client	NFSv3 UNIX- Style file	17. Rule 1, 2 or 3 above is true (subject has Write and Execute UNIX-Style permission for parent directory).
	NFSv4 Client	NFSv4 UNIX- Style file	18. Rule 12, 13, or 14 above is true (subject has Delete NFSv4-style permission or is UNIX owner for parent directory)
			19. Rule 15 or 16 above is true for Delete operation (subject has Delete NTFS-Style permission for object).
Delete			20. Rule 12 above fails and Rule 14 or 15 below are true (subject has Delete Child NTFS-Style permission for parent directory)
C	CIFS Client	NTFS-Style file	21. There is no parent directory ACE that denies Delete Child access to the subject and a parent directory ACE exists that grants Delete Child permission to the subject (NTFS-Style security attribute).
			22. There is no parent directory ACE that denies Delete Child access to any group that the subject is a member of and an object ACE exists that grants Delete Child permission to a group the subject is a member of (NTFS-Style security attribute).
Change Permission	NFSv3 Client	NFSv3 UNIX- Style file	23. Rule 1, 2 or 3 above is true (subject has Write and Execute UNIX-Style permission for parent

Operation	Subject	Object (File)	=DAC Rule
			directory) and rule 6, 7 or 8 above is true for Write operation (UNIX-Style permission for object).
	NFSv4 Client	NFSv4 UNIX- Style file	24. Rule 4, 5, or 6 above is true (subject has Write and Execute NFSv4-Style permission for parent directory) and rule 12, 13, or 14 above is true for Change Permission operation (UNIX and NFSv4 Style permission for object)
	CIFS Client	NTFS-Style file	25. Rule 7 or 8 above is true (subject has Write and Execute NTFS-Style permission for parent directory) and rule 15 or 16 above is true for Change Permission operation (NTFS-Style permission for object).
	NFSv3 Client	NFSv3 UNIX- Style file	26. If the UNIX UID is root, or the owner of the file, the operation is allowed.
Change Ownership	NFSv4 Client	NFSv4 UNIX- Style file	27. Rule 12, 13, or 14 above is true for Change Ownership operation (subject has Change Owner NFSv4-Style permission or is UNIX-Style owner for object)
	CIFS Client	NTFS-Style file	28. Rule 15 or 16 above is true for Change Ownership operation (subject has Change Owner NTFS-Style permission for object).

FDP_ACF.1.3

The TSF shall explicitly authorise access of subjects to objects based on the following additional rules: [access is granted if the object is a UNIX-style file and the subject is roof].

FDP_ACF.1.4

The TSF shall explicitly deny access of subjects to objects based on the [following additional rule: access is denied if the subject does not have an Administrative Role].

Dependencies: FDP_ACC.1 Subset access control

FMT_MSA.3 Static attribute initialization

6.2.3 Class FIA: Identification and Authentication

FIA_AFL.1 Authentication failure handling

Hierarchical to: No other components.

FIA_AFL.1.1

The TSF shall detect when [6] unsuccessful authentication attempts occur related to [login attempts].

FIA AFL.1.2

When the defined number of unsuccessful authentication attempts has been [surpassed], the TSF shall [lock the user, except for the root account, out of the system].

Dependencies: FIA_UAU.1 Timing of authentication

FIA_ATD.1 User attribute definition

Hierarchical to: No other components.

FIA ATD.1.1

The TSF shall maintain the following list of security attributes belonging to individual users: [TOE user name, password, group membership; UNIX User UID and GID; Windows User SID and GID].

Dependencies: No dependencies

FIA_SOS.1 Verification of secrets

Hierarchical to: No other components.

FIA_SOS.1.1

The TSF shall provide a mechanism to verify that secrets meet [the following criteria: at least 8 characters in length and consist of at least one number and at least two alphabetic characters].

Dependencies: No dependencies

FIA_UAU.2 User authentication before any action

Hierarchical to: FIA_UAU.1 Timing of authentication

FIA_UAU.2.1

The TSF shall require each user administrator to be successfully authenticated before allowing any other TSF-mediated actions on behalf of that user.

Dependencies: FIA_UID.1 Timing of identification

FIA_UID.2 User identification before any action Hierarchical to: FIA_UID.1 Timing of identification

FIA_UID.2.1

The TSF shall require each user administrator to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

Dependencies: No dependencies

6.2.4 Class FMT: Security Management

FMT_MOF.1 Management of security functions behaviour

Hierarchical to: No other components.

FMT_MOF.1.1

The TSF shall restrict the ability to [determine the behaviour of, disable, enable, modify the behaviour of perform] the functions [Default capability assignments in Table 16 below] to [the roles listed in Table 16 below].

Dependencies: FMT_SMF.1 Specification of management functions

FMT_SMR.1 Security roles

Table 16 – Roles maintained by the TOE

Role	Default capability assignments	Summary of default granted capabilities	
root	*	Grants all possible capabilities.	
Admin	cli-*, api-*, login-*, security-*	Grants all CLI, API, login, and security capabilities.	
		Grants the ability to :	
Power	cli-cifs*, cli-exportfs*, cli-nfs*, cli- useradmin*, api-cifs-*, api-nfs-*, login- telnet, login-http-admin, login-rsh, login- ssh,api-system-api-*	Invoke all cifs, exportfs,nfs, and useradmin CLI commands	
Power		Make all cifs and nfs APIcalls	
		Log in using Telnet, HTTP,RSH, and SSH sessions	
Backup	login-ndmp	Grants the ability to make NDMP requests.	
	cli-cifs*, cli-exportfs*, cli-nfs*, cli-	Grants compliance-related capabilities in addition to all the capabilities granted by the power role.	
Compliance	useradmin*, api-cifs-*, api-nfs-*, login- telnet, login-http-admin, login-rsh, login- ssh, api-system-api-*, cli-snaplock*, api- snaplock-*, api-file-*, compliance-*	Note: The compliance role is the default role for the Compliance. Administrators, group. The	
Audit	api-snmp-get, api-snmp-get-next	Grants the ability to make snmp-get and snmp-get-next API calls.	
None	none	Grants no administrative capabilities.	

FMT_MSA.1 Management of security attributes

Hierarchical to: No other components.

FMT_MSA.1.1

The TSF shall enforce the [DAC SFP] to restrict the ability to [modify, delete, add] the security attributes [TOE User UID and Primary TOE User GID maintained locally by the TOE] to [an authorised administrator].

Dependencies: FMT_SMF.1 Specification of management functions

FMT_SMR.1 Security roles

[FDP_ACC.1 Subset access control, or

FDP_IFC.1 Subset information flow control]

FMT_MSA.3 Static attribute initialisation

Hierarchical to: No other components.

FMT_MSA.3.1

The TSF shall enforce the [DAC SFP] to provide [restrictive] default values for security attributes that are used to enforce the SFP

FMT_MSA.3.2

The TSF shall allow the [no authorized identified roles] to specify alternative initial values to override the default values when an object or information is created.

Dependencies: FMT_MSA.1 Management of security attributes

FMT_SMR.1 Security roles

FMT_MTD.1(a) Management of TSF data

Hierarchical to: No other components.

FMT_MTD.1.1

The TSF shall restrict the ability to [query, modify, delete] the [local user account repository] to [authorised administrators with the root or Admin role]

Dependencies: FMT_SMF.1 Specification of management functions

FMT_SMR.1 Security roles

FMT_MTD.1(b) Management of TSF data

Hierarchical to: No other components.

FMT_MTD.1.1

The TSF shall restrict the ability to [modify] the [state of the TOE] to [authorised administrators with the root or Admin role].

Dependencies: FMT_SMF.1 Specification of management functions

FMT_SMR.1 Security roles

FMT_SMF.1 Specification of Management Functions

Hierarchical to: No other components.

FMT_SMF.1.1

The TSF shall be capable of performing the following management functions: [management of security functions behaviour, management of security attributes, and management of TSF data].

Dependencies: No Dependencies

FMT_SMR.1 Security roles

Hierarchical to: No other components.

FMT_SMR.1.1

The TSF shall maintain the roles: [root, Admin, Power, Backup, Compliance, Audit, None].

FMT_SMR.1.2

The TSF shall be able to associate users with roles.

Dependencies: FIA_UID.1 Timing of identification

6.2.5 Class FPT: Protection of the TSF

FPT_STM.1 Reliable time stamps
Hierarchical to: No other components.

FMT_STM.1.1

The TSF shall be able to provide reliable time stamps.

Dependencies: No dependencies.

EXT_FPT_SEP.1 TSF Domain Separation for Software TOEs

Hierarchical to: No other components

EXT_FPT_SEP.1.1

The TSF shall maintain a security domain that protects it from interference and tampering by untrusted subjects in the TOE'S scope of control.

EXT_FPT_SEP.1.2

The TSF shall enforce separation between the security domains of subjects in the TOE'S scope of control.

Dependencies: No dependencies.

6.2.6 Class FTA: TOE Access

FTA_SSL.3 TSF-initiated termination Hierarchical to: No other components.

FTA_SSL.3.1

The TSF shall terminate an interactive session after [10 minutes of user inactivity at the CLI and 5 minutes of user inactivity at the NetApp FilerView].

Dependencies: No dependencies

6.3 SECURITY ASSURANCE REQUIREMENTS

This section defines the assurance requirements for the TOE. Assurance requirements are taken from the CC Part 3 and are EAL2 augmented with ALC_FLR.3. Table 17 – Assurance Requirements summarizes the requirements.

Table 17 - Assurance Requirements

Assurance Requirements		
	ASE_CCL.1 Conformance claims	
	ASE_ECD.1 Extended components definition	
	ASE_INT.1 ST introduction	
Class ASE: Security Target evaluation	ASE_OBJ.2 Security objectives	
	ASE_REQ.2 Derived security requirements	
	ASE_SPD.1 Security problem definition	
	ASE_TSS.1 TOE summary specification	
	ALC_CMC.2 Use of a CM system	
Class ALC : Life Cycle Support	ALC_CMS.2 Parts of the TOE CM coverage	
Class ALC . Life Cycle Support	ALC_DEL.1 Delivery Procedures	
	ALC_FLR.3 Systematic Flaw Remediation	
	ADV_ARC.1 Security Architecture Description	
Class ADV: Development	ADV_FSP.2 Security-enforcing functional specification	
	ADV_TDS.1 Basic design	
Class AGD: Guidance documents	AGD_OPE.1 Operational user guidance	
Class AGD. Guidance documents	AGD_PRE.1 Preparative procedures	
	ATE_COV.1 Evidence of coverage	
Class ATE: Tests	ATE_FUN.1 Functional testing	
	ATE_IND.2 Independent testing – sample	
Class AVA: Vulnerability assessment	AVA_VAN.2 Vulnerability analysis	

7 TOE SPECIFICATION

This section presents information to detail how the TOE meets the functional requirements described in previous sections of this ST.

7.1 TOE SECURITY FUNCTIONS

Each of the security requirements and the associated descriptions correspond to the security functions. Hence, each function is described by how it specifically satisfies each of its related requirements. This serves to both describe the security functions and rationalize that the security functions satisfy the necessary requirements.

Table 18 – Mapping of TOE Security Functions to Security Functional Requirements

TOE Security Function	SFR ID	Description
	FAU_GEN.1	Audit data generation
	FAU_GEN.2	User Identity Association
Security Audit	FAU_SAR.1	Audit review
Security Addit	FAU_SAR.2	Restricted audit review
	FAU_STG.1	Protected audit trail storage
	FAU_STG.4	Prevention of audit data loss
	FDP_ACC.1	Subset access control
User Data Protection	FDP_ACF.1	Security attribute based access control
	FIA_AFL.1	Authentication failure handling
	FIA_ATD.1	User attribute definition
Identification and Authentication	FIA_SOS.1	Verification of secrets
	FIA_UAU.2	User authentication before any action
	FIA_UID.2	User identification before any action
	FMT_MOF.1	Management of security function behaviour
	FMT_MSA.1	Management of security attributes
	FMT_MSA.3	Static attribute initialisation
Security Management	FMT_MTD.1(a)	Management of TSF data
	FMT_MTD.1(b)	Management of TSF data
	FMT_SMF.1	Specification of management functions
	FMT_SMR.1	Security roles

TOE Security Function	SFR ID	Description
Protection of TOE Security Functions	EXT_FPT_SEP.1	TSF domain separation for software TOEs
	FPT_STM.1	Reliable Time Stamps
TOE Access	FTA_SSL.3	TSF-initiated termination

7.1.1 Security Audit

The TOE generates audit event records for events involving administrator logons as well as configuration changes, specifically for locally-defined users and groups. The audit function is normally executing any time the TOE is operational and the <code>options auditlog.enable</code> parameter is set to "on". If the audit function is started or stopped, an audit event record is generated. All audit event records include a reliable timestamp.

The TOE ensures that the audit trail storage is protected by rotating log files as they reach an administrator-configurable maximum size, and overwriting the oldest log file when the audit trail reaches an administrator-configurable maximum size.

The maximum size of the audit-log file is specified by the auditlog.max_file_size option. The maximum size of an audit entry in the audit-log file is 200 characters. An audit entry is truncated to 200 characters if it exceeds the size limit.

Every Saturday at midnight, the /etc/log/auditlog file is copied to /etc/log/auditlog.0, /etc/log/auditlog.0 is copied to /etc/log/auditlog.1, and so on. This also occurs if the audit-log file reaches the maximum size specified by auditlog.max file size.

The system saves audit-log files for six weeks, unless any audit-log file reaches the maximum size, in which case the oldest audit-log file is discarded.

Administrators can access the audit-log files using the NFS or CIFS clients, or using HTTPS. The TOE ensures that the audit trail storage is protected from unauthorized deletion or modification by enforcing role-based permissions to the audit trail as described in Table 19 below:

Table 19 - Audit Trail Storage Access by Role

Role	Permission
root	create, read, write, execute, delete, change permission, change owner
Admin	create, read, write, execute, delete, change permission
Power	read
Backup	read
Compliance	read
Audit	none
None	none

To access the log files via NFS, the administrator must mount the root directory <system name>:/vol/vol0) to a desired mount point on the management workstation (where

<system_name> is the short name, Fully Qualified Domain Name (FQDN), or IP address of the storage
system). The administrator can then change directories to <mount point>/etc/log/ to view log files in
a text editor program (where <mount point> is the desired mount point on the management workstation).

To access the log files via CIFS, the administrator must mount the $\space{100}$ share to a desired drive letter on the management workstation (where $\space{100}$ is the short name, FQDN, or IP address of the storage system). The administrator can then change directories to $\space{100}$ letter>\etc\log\ to view log files in a text editor program (where $\space{100}$ letter> is the desired drive letter on the management workstation).

To access the log files via HTTPS, the administrator must ensure that the httpd.autoindex.enable option is set to **on** and that the httpd.admin.access option is set to **allow administrative access**. The administrator can then point the web browser on the management workstation to https://<system_name>/na_admin/logs/ to download log files to the management workstation (where <system_name> is the short name, FQDN, or IP address of the storage system). Log files are in Microsoft Windows Event Viewer format (EVT) and can be opened by Windows Event Viewer.

Administrators can also configure auditing for specific file access protocols, and forward audit logs to a remote Syslog log host.

TOE Security Functional Requirements Satisfied: FAU_GEN.1, FAU_GEN.2, FAU_SAR.1, FAU_SAR.2, FAU_STG.1, FAU_STG.4

7.1.2 User Data Protection

The TSF mediates access of subjects and objects.

The subjects covered by the DAC SFP are NFS Clients and CIFS Clients.

The objects covered by the DAC SFP are files (TSF user data). The TOE maintains files with either NTFS-Style security attributes or UNIX-Style security attributes.

The access modes covered by the DAC SFP are: create, read, write, execute, delete, change permission and change owner.

The DAC SFP is detailed below:

7.1.2.1 Discretionary Access Control (DAC) Security Function

The DAC SFP protects user data (FDP_ACC.1). The DAC SFP uses the subject type, subject's security attributes, the object, the object's security attributes and the access mode (operation) to determine if access is granted. For some operations, the security attributes of the object's parent directory are also used. The following sections describe the DAC SFP and provide the Security Functional Requirements that meet the Security Function.

7.1.2.1.1 DAC SFP Object Security Attributes

The TSF User Data that is covered by the DAC SFP are files (objects). Each file maintained by the TOE has a file style associated with it. The type of security attributes associated with the file defines a file style. The TOE maintains two styles of files: UNIX-Style files and NTFS-Style files. UNIX-Style files have UNIX-Style security attributes and NTFS-Style files have NTFS-Style security. Each file style is assigned different security attributes that are used by the DAC SFP to determine if access is granted for a subject.

In addition to a file style, each file has a file type. The file types may be directories, symbolic links or regular files. UNIX-Style files may be a directory, a symbolic link or a regular file (FDP_ACC.1). NTFS-Style files do not have symbolic links; therefore, the file type will be either directory or regular file (FDP_ACC.1).

In addition to the file type, the TOE maintains three different storage types: UNIX Qtrees, NTFS Qtrees or mixed Qtrees. A Qtree is a disk space partition. UNIX Qtrees store UNIX-Style files with UNIX-Style security attributes. NTFS Qtrees store NTFS-Style files with NTFS-Style security attributes. Mixed Qtrees store both styles of files. Any file may have either UNIX-Style security attributes or NTFS-Style security attributes associated with them. Mixed Qtrees will not be part of the evaluated configuration. The following sections describe the security attributes associated with the objects.

7.1.2.1.1.1 NFSv3 UNIX-Style File Security Attribute Description

A UNIX-Style file managed by the TOE has eleven security attributes that are used to determine file access. The security attributes include a UNIX File UID, a UNIX file GID and a nine character access mode string. The UNIX File UID is the UID of the file's owner. The UNIX file GID is the GID associated with the file. The access mode is a subset of characters within the file's file permission string. The file permission string is represented in ten characters common to all UNIX files (e.g. drwxrwxrwx). The first character contains one of three characters that identify the file type: d for directory, I for a symbolic link, or a dash (-) indicates the file is a regular file. The following 9 characters represent the access mode for the file in three sets of rwx triplets. The first triplet specifies the permission for the file's owner (UID). The next triplet specifies the permissions for the group associated with the file (UNIX file GID). The last three characters specify the permission for the users who are neither the owner nor members of the file's group (other). The rwx triplet identifies the permission for that set (owner, group, other). The three characters represent Read, write or execute privileges. If the character is a dash, the set does not have permissions to perform the specific action (FDP_ACF.1). A directory's permission string may also contain a "sticky bit" represented at the end of the nine character access mode string by a "T" (e.g. drwxrwxrwxT). A sticky bit-enabled directory signifies that files or folders created within this directory can only be deleted by the file owner.

To determine if a client has read, write or execute permission for a UNIX-Style file, the TOE first compares the client's UNIX User UID with the file's UID. If a match occurs (the client is the owner) and the file's access mode specifies permission for the specific access request (rwx), the request is allowed. If the owner does not have permission to perform the request, the request is denied. If the client is not the file's owner, the TOE determines if the client is a member of the file's group by comparing the client's Primary UNIX User GID to the file's GID. If the client is a member of the file's group and the access mode specifies permission for the specific access request, the request is allowed. If the group does not have permission to perform the request, the request is denied. If the client is not the file's owner or a member of the file's group, the TOE then determines if all others (the last triplet) have permission to perform the request. If all others have permission, the request is honored. Otherwise the request is denied (FDP_ACF.1).

For the remainder of this document, when the DAC SFP rules state that the TOE determines if a client, using UNIX-Style security attributes, has access, the above steps are what the TOE performs: the TOE walks through the owner, group and other attributes to determine access.

7.1.2.1.1.2 NFSv4 UNIX-Style File

The TOE's NFSv4 UNIX-Style file security attributes are NFSv4 ACLs. Each file has a data structure associated with it containing the file owner's UID and an ACL. Each ACL consists of one or more ACE. Each ACE explicitly allows or denies access to a single user or group. Access is allowed if there is no ACE that denies access to the user or any group that the user is a member of and if an ACE exists that grants permission to the user or any group the user is a member of.

This determination is made by consulting the ownership, permissions, and ACEs on the file or directory and comparing against the UID and GID of the requesting user. The group memberships (and possibly username to UID number mapping) are obtained from local files or a directory service, while the file permissions and ACLs are stored in the file system.

For the remainder of this document, when the DAC SFP rules state that the TOE determines if a client, using NFSv4 UNIX-Style security attributes, has access, the above steps are what the TOE performs to determine access.

7.1.2.1.1.3 NTFS-Style File Security Attributes Description

The TOE's NTFS-Style file security attributes are standard Windows file security attributes. Each file has a data structure associated with an SD. This SD contains the file owner's SID, group's SID, DACL¹¹, and SACL¹². Each ACL consists of one or more Access Control Entries (ACEs). Each ACE explicitly allows or denies access to a single user or group. Access is allowed if there is no ACE that denies access to the user or any group that the user is a member of and if an ACE exists that grants permission to the user or any group the user is a member of.

¹¹ DACL – Discretionary ACL: Used to determine permissions.

¹² SACL – System ACL: Used for auditing purposes.

For the remainder of this document, when the DAC SFP rules state that the TOE determines if a client, using NTFS-Style security attributes, has access, the above steps are what the TOE performs to determine access.

7.1.2.1.2 DAC SFP Access Requests

Access requests define what operation a subject requests to perform on an object. The TOE's DAC SFP addresses seven access requests: create, read, write, execute, delete, change permissions, and change owner (FDP_ACC.1). The following sections define the operations.

7.1.2.1.2.1 UNIX-Style Access Requests

The following table identifies the operations of subjects on UNIX-Style files (objects) covered by the DAC SFP and explains what each of the file access request means.

Table 20 - UNIX-Style File Access Requests

DAC SED On oration	UNIX-Style File Types			
DAC SFP Operation	Directory	Symbolic Link	Normal File	
Create	Create a directory.	Create a symbolic link.	Create a file.	
Read	Get info about the directory or its contents.	Read the file the symbolic link contains the name of.	Read the file.	
Write	Add a file in the directory.	Write to the file the symbolic link contains the name of.	Append/write/truncate the file.	
Execute	1	Execute the file the symbolic link contains the name of.	Execute the file.	
Delete	Delete the directory.	Delete the symbolic link.	Delete the file.	
Change Permission	Change the permission of the directory.	Change the permission of the symbolic link.	Change the permission of the file.	
Change Owner	No effect.	Become the symbolic link's owner.	Become the file's owner.	

7.1.2.1.2.2 NTFS-Style File Access Requests

The NTFS-Style file security attributes define more access modes than UNIX does. There are, however, no symbolic links in NTFS-Style files. The following table identifies the operations of subjects on NTFS-Style files (objects) covered by the DAC SFP and explains what each of the basic file access request means.

Table 21 - NTFS-Style File Access Requests

DAC SFP Operation	NTFS-Style File Types	
DAC SEE Operation	Directory	Normal File
Create	Create a directory	Create a file.

DAC SED Operation	NTFS-Style File Types		
DAC SFP Operation	Directory	Normal File	
Read	Get info about the directory or its contents	Read the file.	
Write	Add a file in the directory	Truncate, append, or overwrite the file.	
Execute	No effect	If the file has an extension of .exe or .com, attempt to execute it as a native binary. If it has an extension of .bat or .cmd, attempt to execute it as a batch or command file using the command interpreter.	
Delete	Delete the directory. Delete privilege must be explicitly granted on the contained files and subdirectories before they can be deleted. A directory may not be deleted unless it is empty.		
Change Permission	Change the permissions on the directory (change the directory's ACL)	Change the file's ACL.	
Change Owner	Become the directory's owner	Become the file's owner.	

7.1.2.1.3 DAC Operations and Rules

In general the TOE supports access to all objects from all subjects. However, the following exceptions apply:

Client The DAC SFP supports client protocol-specific support for create, read, write, execute, delete, change permission and change owner operations.

File Style The file style (UNIX-Style or NTFS-Style) is considered in the TOE's DAC SFP Rules because the type of security attributes maintained by the object aids in determining the type of security attributes required by the client.

File Type The file type (directory, symbolic link or regular file) is considered when determining if object access is allowed for a subject. The CIFS protocol does not know about symbolic links. Therefore, CIFS Clients will not request an operation for a symbolic link; the only operations for objects with file type of symbolic link applicable to the DAC SFP are NFS Client operations for UNIX-Style files.

Additional Data As well as client security attributes and object security attributes, certain operations require the TOE to examine the security attributes of other objects to determine if access is allowed, specifically, the object's parent directory. The TOE examines the security attributes of an object's parent directory for create, delete and change permission operations.

Operation The operations supported by the DAC are: Create, Read, Write, Execute, Delete, Change Permissions, and Change Owner. The execute command is treated differently for the different file styles and file types. Executing an NTFS directory has no effect. Executing a UNIX-Style directory means to traverse the directory; change the working directory, or access a file or subdirectory in the directory.

7.1.2.1.4 DAC SFP Subject Security Attributes

The subjects that apply to the DAC SFP are subjects with or without administrative roles; they access the TOE as NFS Clients and CIFS Clients (FDP_ACC.1). To determine if access is permitted for an object, the

TOE requires the security attributes associated with the client. These security attributes may be resolved by the TOE or the IT Environment.

The subject security attributes required by the DAC SFP depend on the type of security attributes maintained by the object; the object will require either UNIX-Style subject security attributes or NTFS-Style subject security attributes to determine if access is permitted. Based on the native systems, NFS clients are typically associated with UNIX-Style security attributes and CIFS Clients are associated with NTFS-Style security attributes. The following sections describe the TOE's subject security attribute resolution used to enforce the DAC SFP.

7.1.2.1.5 Derivation of UNIX-Style Client Subject Security Attributes

If the TOE determines that NFSv3 UNIX-Style security attributes should be used to determine access for an object, the TOE requires a client's (subject's) UNIX User UID and UNIX User GID (FDP ACF.1).

If the TOE determines that the NFSv4 UNIX-Style security attributes should be used to determine access for an object, the TOE requires a client's (subject's) UNIX User UID and GID with permission matching the file's ACL (FDP_ACF.1).

If the access request is initiated by an NFS Client, the TOE received the NFS Client's UNIX User UID in the NFS request (IT Environment). The TOE then searches the IT Environment to get the UNIX User GID and UNIX username (FDP ACF.1).

7.1.2.1.5.1 Derivation of NTFS-Style Client Subject Security Attributes

If the TOE determines that NTFS-Style security attributes should be used to determine access for an object, the TOE requires two subject security attributes: a Windows User SID and a Windows User GID.

If the access request is initiated by a CIFS Client, the TOE obtained the CIFS Client's username (Windows username) when the client logged onto the remote system and joined the Windows Domain. In addition to this, the IT Environment queried the domain controller to obtain the Windows User SID and the Windows User GID.

7.1.2.1.6 **DAC SFP Rules**

The DAC SFP rules that apply depend on the subject, the operation, and the object. In addition, the objects file type (directory, symbolic link and regular) is used to determine access and the type of Qtree the file is stored in. The six access modes under the control of the TOE DAC SFP are described below.

CREATE ACCESS REQUEST

To determine if a client has permissions to create a file, the TOE first looks at the parent directory's security attributes.

If the parent directory is NTFS-Style, the TOE uses NTFS-Style security attributes for both subject and object to determine if access is permitted. If the client does not have write and execute privileges to the parent directory, the request is denied. If the client has write and execute privileges for the parent directory, the file is created (FDP_ACF.1). In an NTFS Qtree, the new file inherits the NTFS-Style security attributes from the parent directory (FMT_MSA.3).

If the parent directory is NFSv3 UNIX-Style, the TOE uses NFSv3 UNIX-Style security attributes for both subject and object to determine access. If the client does not have write and execute privileges to the parent directory, the request is denied. If the client has write and execute privileges for the parent directory, the file is created (FDP_ACF.1). In a UNIX Qtree, the new file's NFSv3 UNIX-Style security attributes are determined by the file mode creation mask, also known as the User Mask (umask) of the user-owned process creating the file (FMT MSA.3).

If the parent directory is NFSv4 UNIX-Style, the TOE uses NFSv4-Style ACL security attributes for the object, and UNIX user UID and GID for the subject. If the client has write and execute privileges for the parent directory, the file is created (FDP_ACF.1). In an NFSv4 UNIX-Style Qtree, the new file inherits the NFSv4 UNIX-Style security attributes from the parent directory (FMT_MSA.3).

READ, WRITE, EXECUTE ACCESS REQUESTS

To determine if a client has permission to read, write or execute a file, the TOE first examines the client type. If a client requests access to a file with NFSv3 UNIX-style security attributes, the TOE uses NFSv3 UNIX-Style security attributes for both subject and object to determine if read, write or execute access request is permitted. If the client has read, write or execute permission for the file, access is permitted (FDP_ACF.1). If the client does not have access, the request is denied.

Otherwise, the TOE uses the file's ACL to determine if read, write or execute permission is allowed. The TOE uses NFSv4 or NTFS-Style security attributes for both subject and object to determine access. The TOE determines if the file's ACEs allow permission for the specific request. If they do, access is granted (FDP_ACF.1). If the ACEs do not grant permission, access is denied.

CLIENT DELETE ACCESS REQUEST

To determine if a client has permission to delete a file, the TOE looks at the styles of the file and parent directory.

NFSv3 UNIX-Style File stored in a UNIX-Style Parent Directory

The TOE, using NFSv3 UNIX-Style security attributes for both subject and object, determines if the client has write and execute access for the file's parent directory. If the client does, the delete access is permitted (FDP_ACF.1). Otherwise, access is denied.

NFSv4 and NTFS-Style File stored in an NTFS-Style Parent Directory

The TOE, using NFSv4 and NTFS-Style security attributes for both subject and object, first determines if the file's ACL grants the client delete access to the file. If so, access is granted (FDP_ACF.1). If the file's ACEs do not grant delete permission for the client, the TOE determines if the parent directory has a DC (Delete Child) ACE that grants access for the subject. If the parent does, delete access is permitted (FDP_ACF.1). Otherwise, access is denied.

CHANGE PERMISSION ACCESS REQUESTS

To determine if a client has permission to change the permissions of a file, the TOE looks at the styles of the file and parent directory.

NFSv3 UNIX-Style File stored in a UNIX-Style Parent Directory

The TOE, using NFSv3 UNIX-Style security attributes for both subject and object, determines if the client has write and execute access for the file's parent directory. If the client does, and the client also has write access for the file, the change permission access is permitted (FDP_ACF.1). Otherwise, access is denied.

NFSv4 and NTFS-Style File stored in an NTFS-Style Parent Directory

The TOE, using NFSv4 and NTFS-Style security attributes for both subject and object, determines if the file's ACL grants the client change permission access to the file. If so, the TOE determines if the parent directory's ACL grants write and execute access for the subject. If so, change permission access is permitted (FDP_ACF.1). Otherwise, access is denied.

CHANGE OWNER ACCESS REQUESTS

The DAC SFP distinguishes between the NFS Client Change Owner (chown) UNIX command and the CIFS Client Change Owner (Change Ownership) command.

NFSv3 Clients

If an NFSv3 Client requests a Change Owner request (chown) for an NTFS-Style file, the request is denied (FDP_ACF.1). If an NFS Client sends a Change Owner request (chown) for an NFSv3 UNIX-Style directory, the request is denied. For other UNIX-Style file types, the TOE determines if the client is root (UNIX User UID is root UID) or the file owner. If the client is root or the file owner, access is allowed (FDP_ACF.1) and the TOE changes the object's owner to the owner specified in the chown request. If the object had an ACL, the TOE removes the ACL.

NFSv4 Clients

If an NFSv4 Client requests a Change Owner request for an NTFS-Style file, the request is denied (FDP_ACF.1). If the file is an NFSv4 UNIX-Style file, the TOE determines if the client has Change Owner ACE privileges for the file. If the client does, access is allowed (FDP_ACF.1). The TOE will replace the

existing owner ACE with the new ACE sent in the command. If the NFSv4 Client does not have Change Owner privileges, the request is denied.

CIFS Client

If a CIFS Client requests a Change Owner request for a UNIX-Style file, the request is denied (FDP_ACF.1). If the file is an NTFS-Style file, the TOE determines if the client has Change Owner privileges for the file. If the client does, access is allowed (FDP_ACF.1). The TOE will replace the existing owner ACE with the new ACE sent in the command. If the CIFS Client does not have Change Owner privileges, the request is denied.

TOE Security Functional Requirements Satisfied: FDP ACC.1, FDP ACF.1

7.1.3 Identification and Authentication

The TOE's I&A functionality enforces human administrators to identify and authenticate themselves to the TOE before allowing any modifications to TOE managed TSF Data (FIA_UID.2, FIA_UAU.2).

Administrators' authentication credentials are maintained by the TOE in a local registry. The file contains the username, password, full name, password aging, role, and other similar characteristics for each administrator. Authentication credentials are maintained by the TOE in a local registry. Several roles exist for administrator authentication: *root, admin, power, backup, compliance,* and *audit.*

The TOE enforces minimum password strength requirements. Passwords must have a length of at least 8 characters and contain at least one numeric character and at least two alphabetic characters (FIA_SOS.1). The TOE also maintains the following attributes for administrative accounts: *TOE user name, password, group membership, UNIX User UID and GID, and Windows User SID and GID* (FIA_ATD.1).

Administrators are authenticated locally using role based access control.

The TOE will lock out an administrator account if the user fails to enter the proper credentials after 6 failed login attempts (FIA_AFL.1).

TOE Security Functional Requirements Satisfied: FIA_AFL.1, FIA_ATD.1, FIA_SOS.1, FIA_UAU.2, FIA_UID.2

7.1.4 Security Management

The Security Management functionality of the TOE allows TOE administrators to manage the behavior of security functions, manage security attributes, manage TSF data, and manage roles. The TOE allows administrators to manage security functions associations with roles, and assign those roles to TOE users. In addition, the TOE allows administrators to associate security attributes with TSF data.

7.1.4.1 Management of Security Functions Behavior

The Administrative Security Function provides the necessary functions, or capabilities, to allow a NetApp administrator to manage and support the TSF. Included in this functionality are the rules enforced by the TOE that define access to TOE-maintained TSF Data and TSF Functions. The TSF Functions are categorized into the groups of capabilities listed in Table 22 below:

Table 22 – Security Function Capabilities

Capability Type	Capabilities
	login-* grants the specified role the capability to log in through all supported protocols.
	Login-protocol grants the specified role the capability to log in through a specified protocol. Supported protocols include the following:
Login	login-console grants the specified role the capability to log in to the storage system using the console.
	login-ndmp grants the specified role the capability to make NDMP requests.
	login-snmp grants the specified role the capability to log in to the storage system using SNMPv3.

Capability Type	Capabilities
	login-ssh grants the specified role the capability to log in to the storage system using SSH.
	Grants the specified role the capability to execute one or more Data ONTAP command line interface (CLI) commands.
CLI	cli-* grants the specified role the capability to execute all supported CLI commands.
CLI	$\verb cli-cmd* grants the specified role the capability to execute all commands associated with the CLI command cmd.$
	Note: Users with cli capability also require at least one login capability to execute CLI commands.
	Grants the specified role security-related capabilities, such as the capability to change other users' passwords or to invoke the CLI priv set advanced command.
	Security-* grants the specified role all security capabilities
	security-capability grants the specified role one of the following specific security capabilities:
Security	security-passwd-change-others grants the specified role the capability to change the passwords of all users with equal or fewer capabilities.
	${\tt security-priv-advanced} \ \ \textbf{grants} \ \ \textbf{the specified role the capability to access the advanced CLI commands}.$
	security-load-lclgroups grants the specified role the capability to reload the lclgroups.cfg file.
	security-complete-user-control grants the specified role the capability to create, modify, and delete users, groups, and roles with greater capabilities.
	Grants the specified role the capability to execute Data ONTAP API calls.
	Api-* grants the specified role all API capabilities.
API	${\tt Api-api_call_family-*} \ \ \text{grants the specified role the capability to call all API routines in the family api_call_family.}$
	Api-api_call grants the specified role the capability to call the API routine api_call.
	Grants the specified role the capability to execute compliance-related operations.
	Compliance-* grants the specified role the capability to execute all compliance-related operations.
Compliance	${\tt Compliance-privileged-delete} \ \ \textbf{grants the specified role the capability to execute privileged deletion of compliance data}.$
	Note : The compliance capabilities (compliance-*) are included in the default capabilities of the compliance role. The compliance capabilities cannot be removed from the compliance role or added to other roles.
	Grants the specified role read-only access to FilerView.
Filerview	This capability type includes only the filerview-readonly capability, which grants the specified role the capability to view but not change manageable objects on systems managed by FilerView.

Only end users associated with the specific roles as outlined in Table 16 may modify the association between users, groups, and any of the above capabilities.

The TOE provides several interfaces for administrators to use to manage the behavior of the TSFs. The various management interfaces available to administrators are outlined below:

CLI

Local CLI available via a serial terminal connected to the console port of the appliance

Remote CLI available via a secure shell program, such as SSH, OpenSSH, PuTTY, etc.

(See section 1.5.3 for a list of other methods of accessing the CLI which are not included in the evaluated configuration of the TOE)

NetApp FilerView

A Web-based graphical management interface hosted by the TOE accessible at https://[system_name]/na_admin (where [system_name] is the short name, FQDN, or IP address of the storage system)

Editing of Configuration Files

By mounting the root directory of the storage system on a UNIX workstation

By mounting the C\$ share of the storage system on a Windows workstation

7.1.4.2 Management of Security Attributes

The TOE protects TSF data via the implementation of the DAC SFP as described in section 7.1.2.1 above. The security attributes upon which the DAC SFP relies for access control are configurable only by users who are owners of the object or users who are assigned the *root*, *admin*, or *power* role.

The management of security attributes is performed by editing the attributes of individual objects such as the SD of NTFS-style files, the ACL of NFSv4 UNIX-style files, or the nine character access mode string of NFSv3 UNIX-style files, by editing the file's group membership, or by editing a user's membership in a group. For more information on the security attributes of TSF data, see section 7.1.2.1.1 and its subsections above.

7.1.4.3 Management of TSF Data

The TOE's Administration Security Function includes TSF Data Management. The TSF Data Management includes management of both authentication data and security attributes. The following data is managed by the TOE:

TOE Username Management.

Deny unauthorized administrative login attempts via Data ONTAP.

Implement a "Sleep Mode" function call to Data ONTAP to deny access and initiate a time out period for further login attempts, for brute force password guessing.

TOE USERNAME MANAGEMENT

The TOE maintains authentication data locally that is used authenticate the NetApp Administrators. This authentication database can only be accessed through the useradmin command.

7.1.4.4 Management of Roles

The TOE maintains the following roles for users: *root, admin, power, backup, compliance, audit, none.* The *root* and *admin* roles have the default capability to administratively access the TOE and modify security attributes. The other administrative roles have varying functionality as defined in Table 16.

NetApp Administrators are required to identify and authenticate themselves to the TOE. The authentication data used for I&A, username and password, is maintained locally by the TOE; administration of user authentication data by the IT Environment is not supported. NetApp Administrators are allowed to modify TOE-managed TSF data including authentication data, security attributes and other TSF Data.

Non-administrators are users who access the TOE via a remote system using NFS or CIFS client software (process acting on behalf of a user). Non-administrators have access to TOE managed user data, but do not have authority to modify TOE managed TSF data. Access to TOE managed user data by non-administrators is covered by the TOE's DAC SFP.

TOE Security Functional Requirements Satisfied: FMT_MOF.1, FMT_MSA.1, FMT_MSA.3, FMT_MTD.1(a), FMT_MTD.1(b), FMT_SMF.1, FMT_SMR.1

7.1.5 Protection of the TSF

The TOE protects the TOE Security Function (TSF) via the implementation of domain separation made possible by MultiStore virtualization functionality.

MultiStore enables administrators to partition the storage and network resources of a single storage system so that it appears as multiple storage systems on the network. MultiStore is an individually licensed software feature of Data ONTAP® 8.0.0 7-Mode and Data ONTAP® 8.0.1 7-Mode. Each virtual storage controller created as a result of partitioning is called a vFiler™ unit, while the physical storage controller is known as the host storage system.

A virtual storage controller is a lightweight instance of a multiprotocol server. Physical resources of the storage system such as system memory and processor are shared between virtual storage controllers. A virtual storage controller consists of data stored in a volume or a qtree, the IP address(es) necessary to reach the virtual storage controller, and the security and other attributes associated with the data. From the client systems and management software perspective the data is completely secured and isolated from all other virtual storage controllers.

As illustrated in Figure 6 below, a virtual storage controller's configuration allows it to store and retrieve data in the correct context in its storage units. This information also allows the virtual storage controller to correctly interpret the access control and security-related metainformation embedded in its storage.

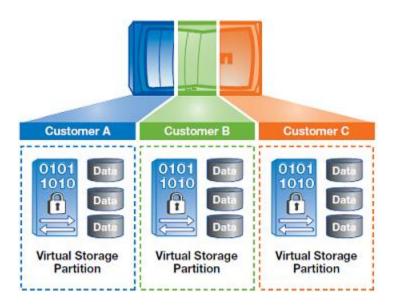


Figure 6 – Multistore enables secure multi-tenancy for shared storage implementations.

Enabling a MultiStore license will create a virtual storage controller named "vFiler0". "vFiler0" is referred to as a default virtual storage controller and cannot be renamed. Any other virtual storage controller created on the storage system is referred to as a nondefault virtual storage controller. The "vFiler0" unit owns all the resources of the storage system. When administrators create vFiler units and assign resources to them, the resources are assigned from "vFiler0". Therefore, "vFiler0" owns all resources that are not owned by nondefault vFiler units.

A virtual storage controller configuration includes:

Quota, exports, and log information

Configuration for hosts, DNS, and NIS

CIFS domain info, local users, groups, shares

The subset of storage system options that are specific to a virtual storage controller

Virtual storage controller registry data

Administrators of vFiler unit can manage all vFiler units that they are authorized to access. However, vFiler unit administrators have access rights different from those of storage system administrators. The hosting storage system administrator can access all the data contained in a vFiler unit by using the vfiler context or the vfiler run commands. However, after assigning a qtree or volume to a vFiler unit, the hosting storage system administrator no longer has access to the data in that qtree or volume.

The system clock is set at boot via the Network Time Protocol and provides reliable timestamps for use by the TOE.

TOE Security Functional Requirements Satisfied: EXT_FPT_SEP.1, FPT_STM.1

7.1.6 TOE Access

The TOE mitigates unauthorized administrator access by automatically terminating administrator sessions after 10 minutes of inactivity at the CLI and 5 minutes of inactivity at the NetApp FilerView.

TOE Security Functional Requirements Satisfied: FTA_SSL.3

8 RATIONALE

8.1 CONFORMANCE CLAIMS RATIONALE

This Security Target extends Part 2 and conforms to Part 3 of the Common Criteria Standard for Information Technology Security Evaluations, version 3.1, revision 3. The extended SFR contained within this ST is EXT_FPT_SEP.1. This SFR was included to define the security functionality provided by the use of MultiStore virtualization.

There are no protection profile claims for this Security Target.

8.2 SECURITY OBJECTIVES RATIONALE

This section provides a rationale for the existence of each threat, policy statement, and assumption that compose the Security Target. Sections 8.2.1 and 8.2.2 demonstrate the mappings between the threats, policies, and assumptions to the security objectives are complete. The following discussion provides detailed evidence of coverage for each threat, policy, and assumption.

8.2.1 Security Objectives Rationale Relating to Threats

Table 23 - Threats: Objectives Mapping

Threats	Objectives	Rationale
T.MASQUERADE A TOE user or process may	O.ADMIN_ROLES The TOE will provide administrative roles to isolate administrative actions.	
masquerade as another entity in order to gain unauthorized access to data or TOE resources.	O.DAC_ACC TOE users will be granted access only to user data for which they have been authorized based on their user identity and group membership.	The TOE will prevent access to TSF data by users masquerading as other entities by implementing discretionary access control. Users shall be granted access only to data for which they have been authorized based on their user identity and group membership.
T.TAMPER A TOE user or process may be able to bypass the TOE's security mechanisms by tampering with the TOE or TOE environment.	O.ADMIN_ROLES The TOE will provide administrative roles to isolate administrative actions.	The TOE will monitor attempts to access configuration data or other trusted data that could result in system failure resulting in unauthorized access to trusted data. Authorized roles are required for users to perform administrative procedures, thus isolating the amount of damage a user can perform.
	O.IA The TOE will require users to identify and authenticate	The TOE will monitor attempts to access configuration data or other trusted data that could result in system failure resulting in

Threats	Objectives	Rationale
	themselves.	unauthorized access to trusted data. Users are required to identify and authenticate themselves to the TOE before attempting to modify TSF data or administrative functions.
	O.MANAGE	
	The TSF will provide functions and facilities necessary to support the authorized administrators that are responsible for the management of TOE security.	methods and permissions for
	O.STRONG_PWD	
	The TOE must ensure that all passwords will be at least 8 characters in length and will consist of at least one number and at least two alphabetic characters. Password construction will be complex enough to avoid use of passwords that are easily guessed or otherwise left vulnerable, e.g. names, dictionary words, phone numbers, birthdays, etc. should not be used.	The TOE will have defined password rules that require strong passwords. The default password rules require passwords that are at least 8 characters in length and consist of at least one numeric and as least two alphabetic characters.
	OE.ACCESS The IT Environment will ensure that users gain only authorized access to the data the IT Environment manages.	The IT Environment will monitor attempts to access configuration data or other trusted data that could result in system failure resulting in unauthorized access to trusted data.
	OE.ADMIN_ROLES The IT Environment will provide administrative roles to isolate administrative actions.	The IT Environment will monitor attempts to access configuration data or other trusted data that could result in system failure resulting in unauthorized access to trusted data. Authorized roles are required for users to perform administrative procedures, thus isolating the amount of damage a user can perform.
T.UNAUTH A TOE user may gain access to security data on the TOE, even		The TOE will require authorized roles for users to perform administrative procedures therefore, isolating the amount of damage a user can perform.
though the user is not authorized in accordance with the TOE security policy.	O.ENFORCE The TOE is designed and implemented in a manner that ensures the security policies can't	

Threats	Objectives	Rationale
	be bypassed or interfered with via mechanisms within the TOE's scope of control.	
		The TOE will require users to identify and authenticate themselves before attempting to modify TSF data or security attributes.
	O.MANAGE	
	The TSF will provide functions and facilities necessary to support the authorized administrators that are responsible for the management of TOE security.	methods and permissions for modification of configuration data.
	O.INACTIVE The TOE will terminate an inactive management session after a configurable interval of time.	The TOE will prevent users from gaining access to security data on the TOE, even though the user is not authorized in accordance with the TOE security policy, by terminating an inactive management session after a configurable interval of time.
	that users gain only authorized	The IT Environment will enforce restrictive access and modification rules for security attributes and TSF Data managed by the IT Environment and used by the TOE to enforce the DAC SFP.
		The IT Environment will require authorized roles for users to perform administrative procedures thus, isolating the amount of damage a user can perform.
	OE.ENFORCE	
	The IT Environment will support the TOE by providing mechanisms to ensure the TOE is neither bypassed nor interfered with via mechanisms outside the TSC.	The IT Environment will ensure the security policy enforcement of the TOE is invoked and not interfered with outside the TOE.
T.DATALOSS Threat agents may attempt to remove or destroy data collected and produced by the TOE.	O.IA The TOE will require users to identify and authenticate themselves.	
T.NO_AUDIT	O.AUDIT	The TOE will prevent a threat agent from performing a security-
Threat agents may perform	The TOE will audit all administrator	

Threats	Objectives	Rationale
security-relevant operations on the TOE without being held accountable for it.	authentication attempts, whether successful or unsuccessful, as well as TOE user account configuration changes.	
	O.TIMESTAMP The TOE will provide a reliable timestamp for use by the TOE.	The TOE will prevent a threat agent from performing a security-related action without being held accountable by auditing all security-related activity on the TOE and recording the time those activities were performed.
	TOE to provide reliable time	The IT Environment will ensure that the TOE is able to perform reliable auditing by ensuring that the timestamp is reliable through the implementation of the Network Time Protocol.
		The TOE will prevent attempts to compromise the TOE or network resources controlled by the TOE by threat agents attempting actions that they are not authorized to perform by providing an administrator role and restricting access to the resources to users associated with that role.
T.IA Threat agents may attempt to compromise the TOE or network resources controlled by the TOE by attempting actions that it is not	O.DAC_ACC TOE users will be granted access only to user data for which they have been authorized based on their user identity and group membership.	The TOE will prevent attempts to compromise the TOE or network resources controlled by the TOE by threat agents attempting actions that they are not authorized to perform by only granting users access to user data for which they have been authorized based on the identity of users and groups of users.
attempting actions that it is not authorized to perform on the TOE or network resources.	O.IA The TOE will require users to identify and authenticate themselves.	The TOE will prevent attempts to compromise the TOE or network resources controlled by the TOE by threat agents attempting actions that they are not authorized to perform by requiring users to identify and authenticate themselves.
	OE.IA The IT Environment must require authorized CIFS and NFS Clients to successfully I&A before allowing access to the TOE.	The IT Environment will prevent attempts to compromise the TOE or network resources controlled by the TOE by threat agents attempting actions that they are not authorized to perform by requiring users to identify and authenticate themselves.

Every Threat is mapped to one or more Objectives in the table above. This complete mapping demonstrates that the defined security objectives counter all defined threats.

8.2.2 Security Objectives Rationale Relating to Assumptions

Table 24 - Assumptions: Objectives Mapping

Assumptions	Objectives	Rationale
A.PEER Any other systems with which the TOE communicates are assumed to be under the same management control and use a consistent representation for specific user and	OE.SUBJECTDATA The IT Environment will provide the TOE with the appropriate subject security attributes.	The security attributes provided by the IT Environment will be meaningful because the representations between the TOE and IT Environment systems are consistent.
A.NETWORK Security Management shall be provided to protect the Confidentiality and Integrity of transactions on the network.	OE.NETWORK The network path between the TOEs is a trusted channel. The network path between the CLI client and the TOE is a trusted channel.	the channel between the TOE and
A.MANAGE There will be one or more competent	ON.INSTALL Those responsible for the TOE and hardware required by the TOE must ensure that the TOE is delivered, installed, configured, managed, and operated in a manner which maintains IT security objectives.	The TOE will be managed appropriately by one or more competent individuals.
individuals assigned to manage the TOE and the security of the information it contains.	ON.TRAINED Those responsible for the TOE will be properly trained and provided the necessary information that ensures secure management of the TOE and the IT Environment.	necessary information that ensures
A.NO_EVIL_ADM The system administrative personnel are not hostile and will follow and abide by the instructions provided by the administrator documentation.	ON.INSTALL Those responsible for the TOE and hardware required by the TOE must ensure that the TOE is delivered, installed, configured, managed, and operated in a manner which maintains IT security objectives.	The TOE will be delivered, installed, managed, and operated by a non-hostile administrator in a manner which maintains IT security objectives.
A.COOP Authorized users possess the necessary authorization to access at least some of the information managed by the TOE and are expected to act in a cooperating manner in a benign environment.	ON.CREDEN Those responsible for the TOE must ensure that all access credentials, such as passwords, are protected by the users in a manner that maintains IT security objectives.	Authorized user will provide for the physical protection of the TOE's access credentials.

Assumptions	Objectives	Rationale
passwords.	O.STRONG_PWD The TOE must ensure that all passwords will be at least 8 characters in length and will consist of at least one number and at least two alphabetic characters. Password construction will be complex enough to avoid use of passwords that are easily guessed or otherwise left vulnerable, e.g. names, dictionary words, phone numbers, birthdays, etc. should not be used.	Strong passwords will be used by the NetApp Administrators by ensuring that all passwords will be at least 8 characters in length and will consist of at least 1 numeric character and 2 alphabetic characters. Password construction will be complex enough to avoid use of passwords that are easily guessed or otherwise left vulnerable, e.g. names, dictionary words, phone numbers, birthdays, etc. should not be used.
	ON.STRONG_PWD Those responsible for the TOE must ensure that all passwords will be at least 8 characters in length and will consist of at least one number and at least two alphabetic characters. Password construction will be complex enough to avoid use of passwords that are easily guessed or otherwise left vulnerable, e.g. names, dictionary words, phone numbers, birthdays, etc. should not be used.	Strong passwords will be used by the NetApp Administrators by ensuring that all passwords will be at least 8 characters in length and will consist of lower-case alphabetic characters and at least 2 of the following 3 attributes: upper-case alphabetic, numeric, special characters (such as !, \$, or <). Password construction will be complex enough to avoid use of passwords that are easily guessed or otherwise left vulnerable, e.g. names, dictionary words, phone numbers, birthdays, etc. should not be used.
A.PROTECT The processing resources of the TOE critical to the security policy enforcement will be protected from unauthorized physical modification by potentially hostile outsiders.	ON.PHYSICAL Those responsible for the TOE must ensure that those parts of the TOE and the IT Environment critical to security policy are protected from any physical attack that might compromise the IT security objectives.	The security critical components of the TOE are protected from physical attacks by ensuring that that the TOE is protected from unauthorized physical modification by hostile outsiders.
	O.ADMIN_ROLES The TOE will provide administrative roles to isolate administrative actions.	The TOE will provide a distinct role for administrators, thereby enabling administrative functions to be associated with just that role.
A.ADMIN_ACCESS Administrative functionality shall be restricted to authorized	O.IA The TOE will require users to identify and authenticate themselves.	The TOE will provide a mechanism to I&A specific users, which is a prerequisite for associating a role with a user.
administrators.	O.MANAGE The TSF will provide functions and facilities necessary to support the authorized administrators that are responsible for the management of TOE security.	The TOE will provide administrative functions that can be restricted to administrative roles.

Every assumption is mapped to one or more Objectives in the table above. This complete mapping demonstrates that the defined security objectives uphold all defined assumptions.

8.3 RATIONALE FOR EXTENDED SECURITY FUNCTIONAL REQUIREMENTS

A class of EXT_FPT (Extended Protection of the TSF) and a family of EXT_FPT_SEP requirements was created to specifically address domain separation within the TOE's scope of control. The FPT_SEP family from CC v2.3 was used as a model for creating this requirement. The purpose of this family of requirements is to define multiple security domains created by the implementation of MultiStore technology. These requirements have no dependencies since the stated requirements embody all the necessary security functions. These requirements exhibit functionality that can be easily documented in the ADV assurance evidence and thus do not require any additional Assurance Documentation.

8.4 SECURITY REQUIREMENTS RATIONALE

The following discussion provides detailed evidence of coverage for each security objective.

8.4.1 Rationale for Security Functional Requirements of the TOE Objectives

Table 25 - Objectives: SFRs Mapping

Objective	Requirements Addressing the Objective	Rationale	
O.ADMIN_ROLES	FMT_SMR.1	Defines the user roles implemented by the DAC SFP requiring authorized	
The TOE will provide administrative roles to isolate administrative actions.	Security roles	roles for NetApp Administrators to perform administrative procedures.	
	FAU_GEN.1 Audit data generation	Requires the TOE to generate audit event records for administrator logons and configuration changes, and defines the information saved in these records.	
	FAU_GEN.2 User Identity Association	Requires the TOE to associate a specific user with the audit event records.	
O.AUDIT	FAU_SAR.1	Requires the TOE to allow users to review audit event records.	
The TOE will audit all administrator	Audit review		
authentication attempts, whether successful or unsuccessful, as well as	FAU_SAR.2	Requires the TOE to only allow administrators to review audit event	
TOE user account configuration changes.	Restricted audit review	records.	
	FAU_STG.1 Protected audit trail storage	Requires the TOE to restrict the ability to modify or delete the audit trail to administrators, and to detect any such behavior by auditing all management operations.	
	FAU_STG.4 Prevention of audit data loss	The TOE will continue to audit management activity if the audit trail is full by backing up the current audit trail, deleting the oldest audit trail file, and creating a new audit trail file.	

Objective	Requirements Addressing the Objective	Rationale	
	FDP_ACC.1 Subset access control	Identifies the subjects, objects, and operation of subjects on objects covered by the DAC SFP.	
O.DAC_ACC TOE users will be granted access only to user data for which they have been authorized based on their user identity and group membership.	FDP_ACF.1 Security attribute based access control	Identifies the subject and object security attributes used to enforce the DAC SFP, and defines the DAC rules enforced by the TOE that define access rules for TOE managed user data.	
	FMT_MSA.3 Static attribute initialisation	Ensures restrictive default values are defined for the TOE's object security attributes used to enforce the DAC SFP.	
O.ENFORCE The TOE is designed and implemented in a manner that ensures the security policies can't be bypassed or interfered with via mechanisms within the TOE's scope of control.	EXT_FPT_SEP.1 TSF domain separation for software TOEs	The TOE tracks user sessions individually and enforces the TSP appropriately for each session. User sessions cannot interfere with one another within the TOE. Without this assurance, there would not be assurance that the TOE could not be interfered with.	
	FIA_AFL.1 Authentication failure handling	Protects the TOE from malicious brute-force and dictionary password attacks by locking out accounts after 6 failed login attempts.	
O.IA The TOE will require users to identify and authenticate themselves.	FIA_UAU.2 User authentication before any action	Ensures that users must authenticate themselves before any TSF mediated access to the TOE functions or TSF data is allowed.	
	FIA_UID.2 User identification before any action	Ensures that users must identify themselves before any TSF mediated access to the TOE functions or TSF data is allowed.	
O.MANAGE	FIA_ATD.1 User attribute definition	Identifies the TOE maintained subject security attributes of TOE maintained objects.	
The TSF will provide functions and facilities necessary to support the authorized administrators that are responsible for the management of TOE security.	FMT_MOF.1 Management of security function behaviour	Defines the restrictions enforced by the DAC SFP to modify roles associated with adminstrators managed by the TOE and used to enforce the DAC SFP.	
O.MANAGE The TSF will provide functions and facilities necessary to support the authorized administrators that are responsible for the management of TOE security.	FMT_MSA.1 Management of security attributes	Only authorized NetApp Administrators responsible for the management of TOE security may modify, delete or add the security attributes (TOE User UID and Primary TOE User GID) maintained locally by the TOE and used to enforce the DAC SFP.	

Objective	Requirements Addressing the Objective	Rationale
O.MANAGE	FMT_MTD.1(a) Management of TSF data	Defines the restrictions enforced by the DAC SFP to modify user accounts and roles managed by the TOE and used to enforce the DAC SFP.
The TSF will provide functions and facilities necessary to support the authorized administrators that are responsible for the management of	FMT_MTD.1(b) Management of TSF data	Defines the restrictions enforced by the DAC SFP to modify the listening state of the TOE.
TOE security.	FMT_SMF.1 Specification of management functions	Defines the TSF management functions provided by the TOE that ensures the TOE's SFPs can be enforced.
O.STRONG_PWD The TOE must ensure that all passwords will be at least 8 characters in length and will consist of at least one number and at least two alphabetic characters. Password construction will be complex enough to avoid use of passwords that are easily guessed or otherwise left vulnerable, e.g. names, dictionary words, phone numbers, birthdays, etc. should not be used.	FIA_SOS.1 Verification of secrets	The TOE ensures that all passwords will be at least 8 characters in length and will consist of at least one number and at least two alphabetic characters.
O.INACTIVE The TOE will terminate an inactive management session after a configurable interval of time.	FTA_SSL.3 TSF-initiated termination	The TOE will terminate an administrator's session after 10 minutes of inactivity at the CLI and 5 minutes of inactivity at the NetApp FilerView.
O.TIMESTAMP The TOE will provide a reliable timestamp for use by the TOE.	FPT_STM.1 Reliable Time Stamps	The Operating System Kernel will provide a reliable timestamp for use by the TOE.

8.4.2 Security Assurance Requirements Rationale

EAL2 was chosen to provide a low to moderate level of assurance that is consistent with good commercial practices. As such, minimal additional tasks are placed upon the vendor assuming the vendor follows reasonable software engineering practices and can provide support to the evaluation for design and testing efforts. The chosen assurance level is appropriate with the threats defined for the environment. While the System may monitor a hostile environment, it is expected to be in a non-hostile position and embedded in or protected by other products designed to address threats that correspond with the intended environment. At EAL2, the System will have incurred a search for obvious flaws to support its introduction into the non-hostile environment.

The augmentation of ALC_FLR.3 was chosen to give greater assurance of the developer's on-going flaw remediation processes.

8.4.3 Dependency Rationale

This ST does satisfy all the requirement dependencies of the Common Criteria. Table 26 lists each requirement to which the TOE claims conformance with a dependency and indicates whether the dependent requirement was included. As the table indicates, all dependencies have been met.

Table 26 – Functional Requirements Dependencies

SFR ID	Dependencies	Dependency Met	Rationale
FAU_GEN.1	FPT_STM.1	✓	
FAU_GEN.2	FIA_UID.2	✓	Although FAU_GEN.2 is dependent on FIA_UID.1 which is not claimed, the dependency SFR is substituted by FIA_UID.2 which is hierarchical to FIA_UID.1 and claimed because the TOE does not permit any TSF-mediated actions before users are identified.
	FAU_GEN.1	✓	
FAU_SAR.1	FAU_GEN.1	✓	
FAU_SAR.2	FAU_SAR.1	✓	
FAU_STG.1	FAU_GEN.1	✓	
FAU_STG.4	FAU_STG.1	✓	
FDP_ACC.1	FDP_ACF.1	✓	
EDD ACE 4	FDP_ACC.1	✓	
FDP_ACF.1	FMT_MSA.3	✓	
FIA_AFL.1	FIA_UAU.2	✓	Although FIA_AFL.1 is dependent on FIA_UID.1 which is not claimed, the dependency SFR is substituted by FIA_UID.2 which is hierarchical to FIA_UID.1 and claimed because the TOE does not permit any TSF-mediated actions before users are identified.
FIA_ATD.1	No dependencies		
FIA_SOS.1	No dependencies		
FIA_UAU.2	FIA_UID.2	✓	Although FIA_UAU.2 is dependent on FIA_UID.1 which is not claimed, the dependency SFR is substituted by FIA_UID.2 which is hierarchical to FIA_UID.1 and claimed because the TOE does not permit any TSF-mediated actions before users are identified.

Dependencies	Dependency Met	Rationale
No dependencies		
FMT_SMF.1	✓	
FMT_SMR.1	✓	
FMT_SMR.1	✓	
FMT_SMF.1	✓	
FDP_ACC.1	✓	
FMT_MSA.1(a)	✓	
FMT_MSA.1(b)	✓	
FMT_SMR.1	✓	
FMT_SMR.1	✓	
FMT_SMF.1	✓	
FMT_SMR.1	✓	
FMT_SMF.1	✓	
No dependencies		
FIA_UID.2	✓	Although FMT_SMR.1 is dependent on FIA_UID.1 which is not claimed, the dependency SFR is substituted by FIA_UID.2 which is hierarchical to FIA_UID.1 and claimed because the TOE does not permit any TSF-mediated actions before users are identified.
No dependencies		
No dependencies		
No dependencies		
	No dependencies FMT_SMF.1 FMT_SMR.1 FMT_SMR.1 FMT_SMF.1 FDP_ACC.1 FMT_MSA.1(a) FMT_MSA.1(b) FMT_SMR.1 FMT_SMR.1 FMT_SMR.1 FMT_SMF.1 FMT_SMF.1 No dependencies No dependencies No dependencies	No dependencies FMT_SMF.1 FMT_SMR.1 FMT_SMR.1 FMT_SMF.1 FMT_SMF.1 FDP_ACC.1 FMT_MSA.1(a) FMT_SMR.1 FMT_SMR.1 FMT_SMR.1 FMT_SMR.1 FMT_SMF.1 FMT_SMF.1 V FMT_SMF.1 V No dependencies No dependencies No dependencies

9 ACRONYMS

This section describes the acronyms.

Table 27 – Acronyms

Acronym	Definition
ACE	Access Control Entry
ACL	Access Control List
API	Application Programming Interface
ВМС	Baseboard Management Controller
CC	Common Criteria
CIFS	Common Internet File System
CLI	Command Line Interface
СМ	Configuration Management
DAC	Discretionary Access Control
DACL	Discretionary Access Control List
EAL	Evaluation Assurance Level
EVT	Microsoft Windows Event Viewer format
FAS	Fabric Attached Storage
FC	Fibre Channel
FCP	Fibre Channel Protocol
FQDN	Fully Qualified Domain Name
GID	Group Identifier
HTTP	Hypertext Transfer Protocol
I&A	Identification and Authentication
ID	Identifier
IP	Internet Protocol
iSCSI	Internet Small Computer System Interface
IT	Information Technology
KDC	Key Distribution Center
LAN	Local Area Network
LDAP	Lightweight Directory Access Protocol
LUN	Logical Unit Number
MAN	Manual
NFS	Network File System
NIS	Network Information Service

Acronym	Definition
NTFS	New Technology File System
NTLM	New Technology Local Area Network Manager
NTP	Network Time Protocol
os	Operating System
PAM	Pluggable Authentication Module
RAID	Redundant Array of Independent Disks
RLM	Remote LAN Management
RSH	Remote Shell
SACL	System Access Control List
SAN	Storage Area Network
SAR	Security Assurance Requirement
SAS	Serial Attached Small Computer System Interface
SATA	Serial Advanced Technology Attachment
SD	Security Descriptor
SFP	Security Functional Profile
SFR	Security Functional Requirement
SID	Security Identifier
SSH	Secure Shell
ST	Security Target
TCP	Transport Control Protocol
TFTP	Trivial File Transfer Protocol
TOE	Target of Evaluation
TSF	TOE Security Function
TSP	TOE Security Policy
UDP	User Datagram Protocol
UID	User Identifier
UMASK	User Mask
WAFL	Write Anywhere File Layout®

NetApp provides no representations or warranties regarding the accuracy, reliability or serviceability of any information or recommendations provided in this publication, or with respect to any results that may be obtained by the use of the information or observance of any recommendations provided herein. The information in this document is distributed AS IS, and the use of this information or the implementation of any recommendations or techniques herein is a customer's responsibility and depends on the customer's ability to evaluate and integrate them into the customer's operational environment. This document and the information contained herein must be used solely in connection with the NetApp products discussed in this document.

© 2011 NetApp, Inc. All rights reserved. No portions of this document may be reproduced without prior written consent of NetApp. Specifications are subject to change without notice. NetApp, the NetApp logo, Go further, faster, Data ONTAP, NearStore, SnapMirror, SnapVault, and WAFL are trademarks or registered trademarks of NetApp, Inc. in the United States and/or other countries. Windows is a