National Information Assurance Partnership

Common Criteria Evaluation and Validation Scheme
Validation Report

FireEye MAS and MPS 2000, 4000, and 7000 Series with
Central Management System v.5.0

Report Number: CCEVS-VR-VID10420-2010
Version 1.0
October 11, 2010

National Institute of Standards and Technology
Information Technology Laboratory
100 Bureau Drive
Gaithersburg, MD 20899

National Security Agency
Information Assurance Directorate
9800 Savage Road STE 6757
Fort George G. Meade, MD 20755-6757
Table of Contents

1 EXECUTIVE SUMMARY .. 3
2 EVALUATION DETAILS .. 3
 2.1 Threats to Security .. 4
3 IDENTIFICATION .. 5
4 SECURITY POLICY .. 5
 4.1 Security Audit .. 5
 4.2 Identification and Authentication ... 5
 4.3 Security Management .. 6
 4.4 Protection of the TSF .. 6
 4.5 Encrypted Communications ... 6
 4.6 Intrusion Detection System .. 7
5 ASSUMPTIONS ... 7
 5.1 Intended Usage Assumptions .. 7
 5.2 Personnel Assumptions .. 7
 5.3 Physical Assumptions ... 8
6 CLARIFICATION OF SCOPE .. 8
 6.1 System Requirements .. 8
7 ARCHITECTURAL INFORMATION .. 9
 7.1 TOE Components ... 10
 7.1.1 Config ... 10
 7.1.2 CLI .. 10
 7.1.3 WebUI ... 10
 7.1.4 Linux Kernel v.2.6.32 .. 10
 7.1.5 Analysis Environment ... 10
 7.1.6 Signature Matching .. 11
 7.1.7 Events Storage ... 11
 7.1.8 Alerts .. 11
 7.1.9 Internet ... 11
 7.1.10 Monitored Network .. 11
 7.1.11 NTP Server ... 11
 7.1.12 FireEye Malware Analysis and Exchange (MAX) Network .. 11
 7.1.13 USB .. 11
8 DOCUMENTATION ... 12
9 TOE ACQUISITION ... 12
10 IT PRODUCT TESTING .. 12
 10.1 Test Methodology ... 13
 10.1.1 Vulnerability Testing .. 13
 10.1.2 Vulnerability Results .. 14
11 RESULTS OF THE EVALUATION .. 15
12 VALIDATOR COMMENTS/RECOMMENDATIONS ... 16
 12.1 Secure Installation and Configuration Documentation ... 16
13 SECURITY TARGET .. 16
14 LIST OF ACRONYMS ... 16
15 TERMINOLOGY .. 17
16 BIBLIOGRAPHY .. 18
1 Executive Summary

The Target of Evaluation (TOE) is FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System v.5.0. The TOE was evaluated by the Booz Allen Hamilton Common Criteria Test Laboratory (CCTL) in the United States and was completed in October 2010. The evaluation was conducted in accordance with the requirements of the Common Criteria, Version 3.1 Revision 3 and the Common Methodology for IT Security Evaluation (CEM), Version 3.1 Revision 3. The evaluation was for Evaluation Assurance Level 2 (EAL2) augmented with ALC_FLR.2 (Flaw Remediation - Flaw reporting procedures). The evaluation was consistent with National Information Assurance Partnership (NIAP) Common Criteria Evaluation and Validation Scheme (CCEVS) policies and practices as described on their web site (www.niap.ccevs.org).

FireEye detects malware by analyzing suspicious network flows in virtual victim machines. The FireEye appliance identifies malicious attacks, including those targeting web browsers. It secures against both widespread and targeted network malware without relying on manual IT analysis. Signature matching is used in the IDS process, but the IDS process does not rely on the signature matching components or updated signatures to function properly. After definitively confirming a targeted malware attack, the FireEye appliance is integrated into a network to block the attack, quarantine the infected host and alert Administrators to the incident.

The FireEye appliance, when configured as specified in the installation guides and user guides, satisfies all of the security functional requirements stated in the TOE’s Security Target.

The cryptography used in this product has not been FIPS-certified, nor has it been analyzed or tested to conform to cryptographic standards during this evaluation. All cryptography has only been asserted as tested by the vendor.

The technical information included in this report was largely derived from the Evaluation Technical Report and associated test reports produced by the evaluation team. The FireEye Security Target version 1.2, dated 30 August 2010 identifies the specific version and build of the evaluated TOE. This Validation Report applies only to that ST and is not an endorsement of the FireEye appliance by any agency of the US Government and no warranty of the product is either expressed or implied.

2 Evaluation Details

<table>
<thead>
<tr>
<th>Evaluated Product</th>
<th>FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System v.5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponsor & Developer</td>
<td>FireEye, Milpitas, CA</td>
</tr>
<tr>
<td>CCTL</td>
<td>Booz Allen Hamilton, Linthicum, Maryland</td>
</tr>
<tr>
<td>Completion Date</td>
<td>October 2010</td>
</tr>
</tbody>
</table>
VALIDATION REPORT
FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System with v.5.0

Interpretaions	None.
CEM	Common Methodology for Information Technology Security Evaluation, Version 3.1 Revision 3, July 2009
Evaluation Class	EAL2 Augmented ALC_FLR.2
Description	The TOE is the FireEye appliance, which is a security software product developed by FireEye, Inc. as an Intrusion Detection System.
Disclaimer	The information contained in this Validation Report is not an endorsement of the FireEye product by any agency of the U.S. Government, and no warranty of the IDS product is either expressed or implied.
PP	US Government Protection Profile Intrusion Detection System System for Basic Robustness Environments v.1.7
Evaluation Personnel	Christopher Gugel
Kevin Micciche	
Derek Scheer	
Amit Sharma	
Emmanuel Apau	
Validation Body	NIAP CCEVS

2.1 Threats to Security
Table 2 summarizes the threats that the evaluated product addresses.

Table 2 – Threats

<table>
<thead>
<tr>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>An unauthorized user may attempt to compromise the integrity of the data collected and produced by the TOE by bypassing a security mechanism.</td>
</tr>
<tr>
<td>An unauthorized user may attempt to disclose the data collected and produced by the TOE by bypassing a security mechanism.</td>
</tr>
<tr>
<td>An unauthorized user may attempt to remove or destroy data collected and produced by the TOE.</td>
</tr>
<tr>
<td>An unauthorized user may attempt to compromise the continuity of the System’s collection and analysis functions by halting execution of the TOE.</td>
</tr>
<tr>
<td>An unauthorized user may gain access to the TOE and exploit system privileges to gain access to TOE security functions and data.</td>
</tr>
<tr>
<td>An unauthorized user may inappropriately change the configuration of the TOE causing potential intrusions to go undetected.</td>
</tr>
<tr>
<td>An unauthorized user may cause malfunction of the TOE by creating an influx of data that the TOE cannot handle.</td>
</tr>
<tr>
<td>Unauthorized attempts to access TOE data or security functions may go undetected.</td>
</tr>
<tr>
<td>Security Policy</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>3 Identification</td>
</tr>
<tr>
<td>The product being evaluated is FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System v.5.0.</td>
</tr>
<tr>
<td>4 Security Policy</td>
</tr>
<tr>
<td>4.1 Security Audit</td>
</tr>
<tr>
<td>The MPS, Malware-Analysis, and CMS instances all perform their own auditing. Each appliance audits its own behavior and stores its syslog, or audit data in its respective internal database. CMS receives detections of audit events from all other instances and can display the aggregated audit data through reports via the CLI. Audit data can only be reviewed via the CLI, and only Administrators can access the audit data. Administrators can either use the CLI on each instance of FireEye to view and sort audit data for that particular appliance, or they use the CLI on the CMS to view audit data for all FireEye appliances. Audit data can be sorted based on the following: date and time, subject identity, event type, and outcome of event. Audit data is provided to the Administrator as columnar results as Linux syslog file data.</td>
</tr>
<tr>
<td>All user actions and cryptographic actions on the TOE are audited by the CLI. The CLI is a universal backend for WebUI and LCD commands, which are translated into CLI commands and forward to the TOE component where they are executed, Config or Events Storage.</td>
</tr>
<tr>
<td>4.2 Identification and Authentication</td>
</tr>
<tr>
<td>All users must be identified and authenticated to the TOE via username and password before being allowed to perform any actions on the TOE. The exception to this is that users are allowed to perform TOE functions via the password protected LCD panel without identifying themselves to the TOE. Since a username is not required to authenticate to the LCD panel, it is assumed that individuals with physical access to the TOE will also be users of the TOE. The LCD panel is meant for initial setup only, and as</td>
</tr>
</tbody>
</table>
such is not part of the TSF for the evaluated configuration. The TOE maintains specific security attributes about users in order to correctly identify them with their TOE-associated abilities as well as for future authentication attempts. If a user enters incorrect credentials multiple times, he or she is forbidden from re-attempting to authenticate until a set amount of time has elapsed. The number of incorrect attempts allowed is predetermined by the Administrator. In addition, the TOE appliances authenticate to the MAX Network and the MAX Network authenticates to the TOE appliances in order to pass updates to the Updates component. This authentication is performed through the use of vendor supplied username and password and through the use of certificates.

4.3 Security Management

The TOE maintains two roles – Administrator and Monitor. Users under the Administrator role have the ability to perform all administrative functions (e.g. user management, audit management) and monitoring functions.

Users under the Monitor role are able to perform all changes pertaining to monitoring functionality, but are not allowed to perform any other administrative functionality (i.e. user management, audit configuration). Users can perform limited configuration functions via the LCD panel. All functions performed from the LCD panel can also be performed from the WebUI or CLI once the user has authenticated to the WebUI or CLI. The LCD panel is meant for initial setup only, and therefore is not included in the evaluated configuration. Additionally, most functions performed from the CLI can also be performed from the Web UI, with the exception of reviewing audit data.

4.4 Protection of the TSF

The TOE is expected to ensure the security and integrity of all data that is stored locally and accessed remotely. The TOE ensures that all local system data is available to any remote trusted IT products (i.e. other TOE components). Additionally, the transmitted and received data is protected against unauthorized viewing by third parties through the use of encryption. All data transferred is monitored for changes during transmission, and integrity verification measures are taken if modifications have been detected. Time stamps are added to all audit logs and system events in order to maintain accurate records. The system clock time is kept accurate by automatically getting accurate time readings from the NTP Server to which the FireEye appliance is connected.

4.5 Encrypted Communications

The TOE is expected to utilize sufficient security measures to protect its data in transmission, which means it needs to utilize cryptographic methods and trusted channels. The TOE generates cryptographic keys to protect transmitted data. The TOE is also responsible for destroying these same keys when they are no longer needed.

Administrators and Monitors who access the TOE remotely rely on a trusted path to secure their communication with the TOE via the WebUI. This trusted path is established using OpenSSL 0.9.8e. OpenSSL is also used for protected communication to/from the MAX Network. Additionally, users who access the TOE via the CLI must use OpenSSH 3.8.1p1 functionality to secure their communications with the TOE. OpenSSH functionality is also used for protection of data transferred between TOE components.
4.6 Intrusion Detection System

The TOE monitors the network’s traffic for detected malicious code, service requests, and service configuration, among other information. Anything that the TOE determines is malicious becomes an event. General information is recorded for each event, and each type of event has more specific classifications that are recorded. See Section 9.1.6 for more information on the data that is collected by the TOE.

The TOE analyzes recorded data on a statistical, signature, virtual machine, and/or heuristic basis. Each analytical result is recorded with basic information, as well as changes in the OS or network, and whether or not a buffer overflow was attempted. Administrators and Monitors are able to view the data via the WebUI or CLI. Once a threat has been detected, the system sends an alarm to the Administrator or Monitor. Depending on the deployment (inline or SPAN/tap), the TOE is also capable of dropping the traffic that was shown to represent a threat.

Data in the system is protected from unauthorized deletion or modification. System data is archived to a local file once the predefined number of events has been recorded to the internal database. An alarm is used to alert Administrators and Monitors of this issue.

5 Assumptions

5.1 Intended Usage Assumptions

Table 1 – Intended Usage Assumptions

<table>
<thead>
<tr>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>The TOE has access to all the IT System data it needs to perform its functions.</td>
</tr>
<tr>
<td>The TOE will be managed in a manner that allows it to appropriately address changes in the IT System the TOE monitors.</td>
</tr>
<tr>
<td>The TOE is appropriately scalable to the IT System the TOE monitors.</td>
</tr>
<tr>
<td>There are no general-purpose computing capabilities (e.g., the ability to execute arbitrary code or applications) on the TOE.</td>
</tr>
<tr>
<td>The TOE will connect to the MAX Network for signature updates and to upload detected malware.</td>
</tr>
</tbody>
</table>

5.2 Personnel Assumptions

Table 2– Personnel Assumptions

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>There will be one or more competent individuals assigned to manage the TOE and the security of the information it contains.</td>
<td></td>
</tr>
<tr>
<td>The authorized administrators are not careless, willfully negligent, or hostile, and will follow and abide by the instructions provided by the TOE documentation.</td>
<td></td>
</tr>
<tr>
<td>The TOE can only be accessed by authorized users.</td>
<td></td>
</tr>
</tbody>
</table>
5.3 Physical Assumptions

Table 3 – Physical Assumptions

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>The TOE hardware and software critical to security policy enforcement will</td>
<td>be protected from unauthorized physical modification.</td>
</tr>
<tr>
<td>The processing resources of the TOE will be located within controlled</td>
<td>access facilities, which will prevent unauthorized physical access.</td>
</tr>
</tbody>
</table>

6 Clarification of Scope

The TOE includes all the code that enforces the policies identified (see Section 4).

The evaluated configuration of the TOE includes the FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System v.5.0 product that is comprised of the following:
- 2000 Series Appliance
- 4000 Series Appliance
- 7000 Series Appliance
- CMS running on 4000 Series Appliance

6.1 System Requirements

The following components are provided on the appliances for the TOE:

Hardware Components

FireEye running on a 2000 Series appliance
- Traffic Monitoring Ports: 2
- Physical Appliance Size: 1U half-depth
- LCD Panel: No
- Throughput: 20-45 Mbps

FireEye running on a 4000 Series appliance
- Traffic Monitoring Ports: 4
- Physical Appliance Size: 1U half-depth
- LCD Panel: Yes
- Throughput: 250 Mbps

FireEye running on a 7000 Series appliance
- Traffic Monitoring Ports: 4
- Physical Appliance Size: 2U half-depth
- LCD Panel: Yes
- Throughput: 1 Gbps

FireEye CMS running on a 4000 Series appliance
- Traffic Monitoring Ports: N/A
- Physical Appliance Size: 1U half-depth
- LCD Panel: Yes
- Throughput: N/A
Note: Software Requirements are not needed as the product is shipped on hardware. All software is provided with the TOE and no additional software can be added.

In the evaluated configuration, the TOE will consist of three machines running the analysis and central management functions of the TOE. No non-TOE software is required to run the TOE.

7 Architectural Information

The TOE’s boundary has been defined in Figure 1 and Figure 2.

Figure 1 – TOE Boundary for MPS and Malware-Analysis Appliances
7.1 TOE Components

7.1.1 Config
Component of FireEye that contains and modifies all FireEye system configurations, user configurations and auditing options.

7.1.2 CLI
Command-line interface that uses OpenSSL SSH functionality and allows Administrators to perform administrative functions. Monitors do not have access to the CLI.

7.1.3 WebUI
Browser-based interface that OpenSSL and allows Administrators to perform administrative functions, and allows both Administrators and Monitors to perform monitoring functions.

7.1.4 Linux Kernel v.2.6.32
The Kernel is Linux v2.6.32 and holds basic system functionality that is important in the TOE. The kernel is physically contained in the FireEye appliance and provides OS functionality to the rest of the TOE, including capture, clock, and audit functionalities. The basic functionality of the operating system beyond this is not security relevant for the evaluated configuration.

7.1.5 Analysis Environment
Creates and manages virtual machines that are used for simulated traffic to determine if suspicious traffic and binaries are malicious in nature.
7.1.6 Signature Matching
This checks data against known malware and botnet traffic to determine if the traffic needs to be run by the analysis environment.

7.1.7 Events Storage
Records information regarding infections and callbacks on systems within the network, and applies basic identifying information.

7.1.8 Alerts
This is the mechanism for notifying Administrators or Monitors in the event of a detected infection or callback.

7.1.9 Internet
The Internet contains the Monitored Network, the NTP Server, and the MAX Network. Additionally, the TOE can configure alerts to be sent to the Internet via SMTP, SNMP, and HTTP POST methods. The command line SMTP client used for email notifications is v2.5.1.

7.1.10 Monitored Network
In the evaluated configuration, all internet traffic passing through the switch FireEye is connected to is also passed into FireEye. This data gets sent through the Statistical, Signature, and Heuristic analysis. If the traffic is determined to be suspicious from using any of the previous analysis methods, then the traffic is sent through Virtual Machine analysis. All data transferred, including but not limited to URLs, executables, and code, is evaluated.

7.1.11 NTP Server
FireEye appliances utilize NTP Servers by default. An NTP Server keeps the system up to date with the latest system time from their servers. In this case, it is used for accurate timestamps on audit and system data.

7.1.12 FireEye Malware Analysis and Exchange (MAX) Network
The FireEye MAX Network circulates the latest malware analysis intelligence to participating FireEye appliances, ensuring customer data, intellectual property, and resources are safeguarded from the threat of network malware and botnets. The ability to connect to the MAX Network to receive signature updates and to upload detected malware is included in the evaluated configuration. The MAX Network itself is a component of the operational environment in the evaluated configuration because it is a server that sits in a server room at FireEye HQ. It’s a trusted IT product with which the TOE can interact, but it’s not considered part of the TOE since it belongs to the vendor and not the customer.

7.1.13 USB
While system updates can come from the Internet, a user can also load the updates onto a USB drive and plug it into the FireEye appliance physically. This allows users an alternate way to install updates, which must be encrypted on upload and decrypted on install. USB drives also cannot be mounted to install untrusted software to FireEye.
8 Documentation

The following end-user documents were evaluated under the ASE and AGD classes:

- FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System v.5.0 Security Target, Version 1.2
- FireEye Appliance Operator’s Guide Version 5.0
- FireEye CMS Operator’s Guide Version 5.0
- FireEye CLI Command Reference Guide Version 5.0
- FireEye™ Appliance Quick Start Guide
- Evaluated Configuration for FireEye 2000, 4000, and 7000 Series MAS and MPS with Central Management System v.5.0, dated August 2010

9 TOE Acquisition

The NIAP-certified FireEye product is acquired via normal sales channels, and physical delivery of the TOE is coordinated with the end customer by FireEye, Inc.

10 IT Product Testing

The test team's test approach is to test the security mechanisms of the FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System v.5.0 by exercising the external interfaces to the TOE and viewing the TOE behavior on the platform. Each TOE external interface is described in FireEye design documentation (e.g., FSP) in terms of the relevant claims on the TOE that can be tested through the external interface. The ST, TOE Design (TDS), Functional Specification (FSP), Security Architecture (ARC) and the vendor's test plans used to demonstrate test coverage of all EAL2 requirements for all security relevant TOE external interfaces. TOE external interfaces that will be determined to be security relevant are interfaces that

- change the security state of the product,
- permit an object access or information flow that is regulated by the security policy,
- are restricted to subjects with privilege or behave differently when executed by subjects with privilege,
- invoke or configure a security mechanism, or
- provide IDS functionality to the TOE.

Security functional requirements determined to be appropriate to a particular interface if the behavior of the TOE that supported the requirement could be invoked or observed through that interface.

The evaluation team created a test plan that contained a sample of the vendor functional test suite, and supplemental functional testing of the vendors’ tests. Booz Allen also performed vulnerability assessment and penetration testing.
VALIDATION REPORT
FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System with v.5.0

10.1 TEST METHODOLOGY

10.1.1 Vulnerability Testing

The evaluation team created a set of vulnerability tests to attempt to subvert the security of FireEye. These tests were created based upon the evaluation team's review of the vulnerability analysis evidence and independent research. The Evaluation Team conducted searches for public vulnerabilities related to the TOE. A few notable resources consulted include securityfocus.com, the cve.mitre.org, and the nvd.nist.gov.

Upon the completion of the vulnerability analysis research, the team had identified several generic vulnerabilities upon which to build a test suite. These tests were created specifically with the intent of exploiting these vulnerabilities within the TOE or its configuration.

The team tested the following areas:

- **Eavesdropping on Communications**
 In this test, the evaluators manually inspected network traffic to and from the TOE in order to ensure that no useful or confidential information could be obtained by a malicious user on the network. This test was specialized for the following interfaces:
 - WebUI
 - CLI

- **Port Scanning**
 Remote access to the TOE should be limited to the standard TOE interfaces and procedures. This test attempted to find ways to bypass these standard interfaces of the TOE and open any other vectors of attack.

- **Vulnerability Scanner (Nessus)**
 This test used the Nessus Vulnerability scanner to test any and all open interfaces on any applicable systems of the TOE. The scanner probes a wide range of vulnerabilities that includes but is not limited to the following:
 - Backdoors
 - CGI abuses
 - Denial of Service
 - Finger abuses
 - Firewalls
 - FTP
 - Gain a shell remotely
 - Gain root remotely
 - General
 - Miscellaneous
 - Netware
 - NIS
 - Port scanners
 - RPC
 - Settings
 - SMTP Problems
 - SNMP
 - Untested
 - Useless services
 - Remote file access

- **TCP Malformed Packet Flooding**
 This test attempted to shutdown TOE resources by flooding the network with large amounts of malformed tcp packets.

- **Unauthenticated Access / Directory Traversal Attack**
 This test used “URL hacking” to attempt to access protected TOE resources by injecting unexpected input into requests that were sent to the TOE. This was done using two different approaches to URL exploitation.
The first part attempted to access protected TOE resources as an unauthenticated outsider.

The second part attempted to access local TOE resources that should be protected from any remote access (unauthenticated and authenticated).

- **SQL Injection / Cross Site Scripting Attack / Cross Site Request Forgery (Paros, WebScarab)**

 This test executed automated SQL Injection and Cross Site Scripting attacks against the TOE. The evaluators determined any fields or variables that could be prone to attack. They then used a scanner, which contained a large database of standard strings that are used for testing SQL Injection and Cross Site Scripting issues. These strings were input into the various fields and variables and the output was analyzed for inconsistencies.

- **Web Server Vulnerability Scanner (Nikto)**

 This test used the Nikto web server vulnerability scanner to test for any known vulnerabilities that could be present in the TOE’s web interfaces. This scanner probed a wide range of vulnerabilities that included the following:

 - File Upload
 - Interesting File / Seen in logs
 - Misconfiguration / Default File
 - Information Disclosure
 - Injection (XSS/Script/HTML)
 - Remote File Retrieval

- **Vulnerability Scanner (Retina)**

 This test uses the Retina Vulnerability scanner to test any and all open interfaces on any applicable systems of the TOE.

 The scanner probes a wide range of vulnerabilities that includes but is not limited to the following:

 - Accounts
 - Anti-Virus
 - Backdoors
 - CGI Scripts
 - Database Issues
 - DoS
 - IP Services
 - Registry
 - Remote Access
 - RPC Services
 - Service Control
 - Spyware
 - Web Services
 - CVE Issues
 - SecurityFocus BID Issues

10.1.2 Vulnerability Results

The following lists any issues that were discovered as a result of the vulnerability testing process. These issues, along with the related guidance for mitigation, have been met in the “Evaluated Configuration for FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System v.5.0” through patching and are included in all releases of the TOE. These issues have been broken up into the following categories:
VALIDATION REPORT
FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System with v.5.0

10.1.2.1 Fixed in CC Version Based on Testing Results

- **Cross Site Scripting Vulnerability**
 There existed a cross site scripting vulnerability in the notice field of the WebUI page.

 The vendor has fixed this issue in a new release (patch 36 and later) of the product and the fix was provided to the CC as a solution to this vulnerability. The issue no longer exists in the CC version of the product. Additionally, this has been patched in the general release of the product.

- **Cipher Suite Lockdown**
 There existed a list of enabled cipher suites that were not leveraged by the TOE and were requested to be disabled.

 The vendor has fixed this issue in a new release (patch 36 and later) of the product and the fix was provided to the CC as a solution to this vulnerability. The issue no longer exists in the general release of the product.

10.1.2.2 Additional Guidance for Security

- **Configuration to place the TOE in Disconnected Mode**
 The TOE can manually or automatically update patches to the TOE along with security content information. Steps are provided within the admin guidance supplement documenting how to place the TOE in disconnected mode and manually update the product.

- **SNMP Disable**
 The TOE allowed for incoming SNMP traffic which can be disabled. An administrator can connect to the TOE through the CLI and enter the command “no snmp enable.”

11 Results of the Evaluation

The evaluation was carried out in accordance with the Common Criteria Evaluation and Validation Scheme (CCEVS) process and scheme. The evaluation demonstrated that the FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System v.5.0 TOE meets the security requirements contained in the Security Target.

The criteria against which the FireEye TOE was judged are described in the Common Criteria for Information Technology Security Evaluation, Version 3.1 Revision 3, July 2009. The evaluation methodology used by the evaluation team to conduct the evaluation is the Common Methodology for Information Technology Security Evaluation, Version 3.1 Revision 3, July 2009. The Booz Allen Hamilton Common Criteria Test Laboratory determined that the evaluation assurance level (EAL) for the FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System v.5.0 TOE is EAL2 augmented with ALC_FLR.1. The TOE, configured as specified in the installation guide, satisfies all of the security functional requirements stated in the Security Target.
The evaluation was completed in November 2010. Results of the evaluation and associated validation can be found in the Common Criteria Evaluation and Validation Scheme Validation Report.

12 Validator Comments/Recommendations

12.1 Secure Installation and Configuration Documentation

The “Evaluated Configuration for FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System v.5.0” define the recommendations and secure usage directions for the TOE as derived from testing.

13 Security Target

The security target for this product’s evaluation is FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System v.5.0 Security Target, Version 1.2, 30 August 2010.

14 List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>Common Criteria</td>
</tr>
<tr>
<td>CCEVS</td>
<td>Common Criteria Evaluation and Validation Scheme</td>
</tr>
<tr>
<td>CCIMB</td>
<td>Common Criteria Interpretations Management Board</td>
</tr>
<tr>
<td>CLI</td>
<td>Command-line Interface</td>
</tr>
<tr>
<td>CMS</td>
<td>Central Management System</td>
</tr>
<tr>
<td>COTS</td>
<td>Commercial Off the Shelf</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name System</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>EAL</td>
<td>Evaluation Assurance Level</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hypertext Transfer Protocol</td>
</tr>
<tr>
<td>HTTPS</td>
<td>Hypertext Transfer Protocol Secure</td>
</tr>
<tr>
<td>IDS</td>
<td>Intrusion Detection System</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IRC</td>
<td>Internet Relay Chat</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>MAS</td>
<td>Malware Analysis System</td>
</tr>
<tr>
<td>MAX</td>
<td>Malware Analysis and Exchange</td>
</tr>
<tr>
<td>MPS</td>
<td>Malware Protection System</td>
</tr>
<tr>
<td>NIAP</td>
<td>National Information Assurance Partnership</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System</td>
</tr>
<tr>
<td>OSI</td>
<td>Open System Interconnection</td>
</tr>
<tr>
<td>PCM</td>
<td>Platform Configuration and Management</td>
</tr>
<tr>
<td>PP</td>
<td>Protection Profile</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>SMTP</td>
<td>Same Message Transfer Protocol</td>
</tr>
<tr>
<td>SSH</td>
<td>Secure Shell</td>
</tr>
</tbody>
</table>
VALIDATION REPORT
FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System with v.5.0

<table>
<thead>
<tr>
<th>SSL</th>
<th>Secure Sockets Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>Security Target</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TFTP</td>
<td>Trivial File Transfer Protocol</td>
</tr>
<tr>
<td>TOE</td>
<td>Target of Evaluation</td>
</tr>
<tr>
<td>TSF</td>
<td>TOE Security Function</td>
</tr>
<tr>
<td>UI</td>
<td>User Interface</td>
</tr>
<tr>
<td>URL</td>
<td>Uniform Resource Locator</td>
</tr>
<tr>
<td>VM</td>
<td>Virtual Machine</td>
</tr>
</tbody>
</table>

15 Terminology

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator</td>
<td>User of the TOE who has access to both administrative functions and monitor functions.</td>
</tr>
<tr>
<td>Analyzer</td>
<td>IDS component that performs analysis functions on suspicious data or traffic to determine threats.</td>
</tr>
<tr>
<td>Attack</td>
<td>A botnet or malware callback event on the system.</td>
</tr>
<tr>
<td>Attacker</td>
<td>An entity that attempts to send malicious code or traffic to a system on the installed network.</td>
</tr>
<tr>
<td>Botnet</td>
<td>Set of software “robots” or “zombies” that are controlled remotely by a command and control server.</td>
</tr>
<tr>
<td>Botnet Server</td>
<td>Command and control server that directs the operation of a botnet.</td>
</tr>
<tr>
<td>Callback Event</td>
<td>Callback events are generated when the appliance observes outbound communications associated with a remote Command and Control server (C&C). This could include botnet command and control communications, uploads of confidential information as well as downloads of secondary payloads (such as keyloggers or spyware). Callback events indicate that there is an established communication between a bot-infected host and its C&C Server.</td>
</tr>
<tr>
<td>Command-Line Interface</td>
<td>The FireEye appliance has a CLI for administering the appliance.</td>
</tr>
<tr>
<td>Central Management System Event</td>
<td>Indicates a type of security intrusion or attack.</td>
</tr>
<tr>
<td>Guest Image</td>
<td>Software image for an operating system and applications that is run in a virtual machine to analyze suspicious or captured traffic.</td>
</tr>
<tr>
<td>Graphical User Interface</td>
<td>The FireEye appliance has a web-based GUI for managing the appliance.</td>
</tr>
<tr>
<td>Heuristic Analysis</td>
<td>Expert-based analysis that determines the susceptibility of a system towards particular threats using various decision rules or weighing methods.</td>
</tr>
<tr>
<td>Infection</td>
<td>When a machine on the network has malware or botnet programs.</td>
</tr>
<tr>
<td>Malware</td>
<td>Malicious software used by attackers to disrupt, cause data loss, or gain unauthorized access to computer systems.</td>
</tr>
<tr>
<td>MAX Network</td>
<td>A multi-enterprise alliance focused on protecting customers from botnets and other stealthy, targeted malware. The ability to connect to the MAX Network to receive signature updates and to upload detected malware is included in the evaluated configuration. The MAX Network itself is a component of the operational environment in the evaluated configuration because it is a server that sits in a server room at FireEye HQ. It's a trusted IT product with which the TOE can interact, but it's not considered part of the TOE since it belongs to the vendor and not the customer.</td>
</tr>
<tr>
<td>Monitor</td>
<td>User of the TOE who only has access to monitoring functions.</td>
</tr>
<tr>
<td>Role</td>
<td>Assigned to a user, allows users controlled access to TOE components. In this case, the three roles are Administrator, Monitor, and LCD panel administrator.</td>
</tr>
</tbody>
</table>
rsyslog | An open source program for forwarding log messages in an IP network for UNIX and Unix-like systems.

Sandbox | A closed environment in which malware is submitted and its effects on virtual machines are reported.

Scanner | IDS component that actively looks through data flows and traffic to find suspicious items.

Sensor | IDS component that views data flows and traffic passing through to find suspicious items.

System Administrator | See Authorized System Administrator.

User | In the evaluated configuration, a user is a global term for Administrators and Monitors.

Virtual Machine | A software program that runs an instance of an operating system. The operating system runs on top of a program that emulates a hardware system. In the evaluated configuration, each VM is isolated by address space and their virtual connections are isolated by bridges.

Zero-Day Attack | An attack by malware that exploits unknown or newly discovered vulnerabilities in software before they become known or before security patches are applied to fix them.

External IT Entity | Any IT product or system, trusted or not, outside of the TOE that interacts with the TOE.

Role | A predefined set of rules establishing the allowed interactions between an end user and the TOE.

TOE Security Functions (TSF) | A set consisting of all hardware, software, and firmware of the TOE that must be relied upon for the correct enforcement of the TSP.

User | Any entity (human user or external IT entity) outside the TOE that interacts with the TOE.

16 Bibliography

3. FireEye MAS and MPS 2000, 4000, and 7000 Series with Central Management System v.5.0 Security Target, Version 1.2, August 30, 2010