

Trivalent Protect (for Android)

(ASPP12/ASFEEP10) Security Target

Version 0.8

June 4, 2018

Prepared for:

Trivalent

180 Admiral Cochrane Drive
Suite 410 Annapolis, MD 21401 U.S.A.

Prepared By:

www.gossamersec.com

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 2 of 31

1. SECURITY TARGET INTRODUCTION .. 3

1.1 SECURITY TARGET REFERENCE .. 3
1.2 TOE REFERENCE .. 3
1.3 TOE OVERVIEW ... 4
1.4 TOE DESCRIPTION ... 4

1.4.1 TOE Architecture ... 4
1.4.2 TOE Documentation .. 6

2. CONFORMANCE CLAIMS .. 7

2.1 CONFORMANCE RATIONALE ... 7

3. SECURITY OBJECTIVES .. 9

3.1 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT ... 9

4. EXTENDED COMPONENTS DEFINITION .. 10

5. SECURITY REQUIREMENTS ... 11

5.1 TOE SECURITY FUNCTIONAL REQUIREMENTS ... 11
5.1.1 Cryptographic support (FCS) .. 12
5.1.2 User data protection (FDP) ... 15
5.1.3 Identification and authentication (FIA) ... 16
5.1.4 Security management (FMT) ... 17
5.1.5 Privacy (FPR) .. 18
5.1.6 Protection of the TSF (FPT) .. 18
5.1.7 Trusted path/channels (FTP) ... 19

5.2 TOE SECURITY ASSURANCE REQUIREMENTS ... 19
5.2.1 Development (ADV) ... 19
5.2.2 Guidance documents (AGD) .. 20
5.2.3 Life-cycle support (ALC) ... 21
5.2.4 Tests (ATE) .. 22
5.2.5 Vulnerability assessment (AVA) ... 22

6. TOE SUMMARY SPECIFICATION .. 23

6.1 CRYPTOGRAPHIC SUPPORT ... 23
6.2 USER DATA PROTECTION .. 27
6.3 IDENTIFICATION AND AUTHENTICATION ... 29
6.4 SECURITY MANAGEMENT ... 29
6.5 PRIVACY ... 30
6.6 PROTECTION OF THE TSF ... 30
6.7 TRUSTED PATH/CHANNELS ... 31

LIST OF TABLES

Table 5-1 TOE Security Functional Components .. 12
Table 5-2 Assurance Components ... 19
Table 6-1 Secure Parser Library CAVP Algorithms ... 23
Table 6-2 TOE Platform Cryptographic Algorithms ... 23
Table 6-3 Key Destruction... 25

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 3 of 31

1. Security Target Introduction

This section identifies the Security Target (ST) and Target of Evaluation (TOE) identification, ST conventions, ST

conformance claims, and the ST organization. The TOE is the Trivalent Protect (for Android) Version 2.6 software

application package provided by Trivalent installed in the Getac MX50 mobile device. The TOE is being evaluated

as a file encryption software application.

The Security Target contains the following additional sections:

 Conformance Claims (Section 2)

 Security Objectives (Section 3)

 Extended Components Definition (Section 4)

 Security Requirements (Section 5)

 TOE Summary Specification (Section 6)

Conventions

The following conventions have been applied in this document:

 Security Functional Requirements – Part 2 of the CC defines the approved set of operations that may be

applied to functional requirements: iteration, assignment, selection, and refinement.

o Iteration: allows a component to be used more than once with varying operations. In the ST,

iteration is indicated by a parenthetical number placed at the end of the component. For example

FDP_ACC.1(1) and FDP_ACC.1(2) indicate that the ST includes two iterations of the

FDP_ACC.1 requirement.

o Assignment: allows the specification of an identified parameter. Assignments are indicated using

bold and are surrounded by brackets (e.g., [assignment]). Note that an assignment within a

selection would be identified in italics and with embedded bold brackets (e.g., [[selected-

assignment]]).

o Selection: allows the specification of one or more elements from a list. Selections are indicated

using bold italics and are surrounded by brackets (e.g., [selection]).

o Refinement: allows the addition of details. Refinements are indicated using bold, for additions,

and strike-through, for deletions (e.g., “… all objects …” or “… some big things …”).

 Other sections of the ST – Other sections of the ST use bolding to highlight text of special interest, such as

captions.

1.1 Security Target Reference

ST Title – Trivalent Protect (for Android) (ASPP12/ASFEEP10) Security Target

ST Version – Version 0.8

ST Date – June 4, 2018

1.2 TOE Reference

TOE Identification – Trivalent Protect (for Android) Version 2.6

TOE Developer – Trivalent

Evaluation Sponsor – Trivalent

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 4 of 31

1.3 TOE Overview

The Target of Evaluation (TOE) is Trivalent Protect (for Android) Version 2.6 software application package

residing on evaluated Getac MX50 mobile devices running Android 5.1.1. The TOE is a privileged application

built-in to the Getac MX50 ruggedized table that provides the capability to handle file encryption. The Getac MX50

utilizes the Intel Atom Z8350 processor.

1.4 TOE Description

Trivalent Protect (for Android) provides file level encryption through a privileged software that is built into the

Getac MX50 mobile device. The Trivalent Protect (for Android) software uses encryption, to protect data from

unauthorized users. Trivalent Protect (for Android) enhances the level of encryption for secure data-at-rest by

providing additional encryption distinct from the data-at-rest protection provided by the platform.

Trivalent Protect (for Android) runs in the background and uses both Android and BouncyCastle keystore to protect

the File Encryption Key Encryption Key (FEKEK) that is used for encryption of user data. The FEKEK is a 256-bit

AES key that is used by Trivalent Protect (for Android) for file level encryption, transparently to all Android

applications, for the internal public app storage (“/sdcard”). Note that the applications’ sandbox storage

“/data/data/<app>” is not used to store encrypted files. Encryption using the FEKEK by Trivalent Protect (for

Android) is provided by the SPX Core (Security First, Secure Parser Library).

1.4.1 TOE Architecture

The TOE is software that is built-in to the Getac MX50 evaluated ruggedized table. The TOE is composed of three

major components: a management service application, the Trivalent system service and the FUSE daemon. The

Management Service application is delivered by Trivalent and the Trivalent system service and FUSE daemon are

delivered as part of the Getac mobile device.

 The Management Service application is responsible for system configuration, initialization,

authentication/de-authentication, FEKEK generation and centralized key management.

 The Trivalent System Service is responsible for communication with the FUSE daemon. It is also

responsible for securely passing the FEKEK from the Management Service to the FUSE daemon.

 The FUSE daemon is responsible for file I/O, and file encryption/decryption

The TOE utilizes the platform provided BouncyCastle and Android Key stores.

The Management Service obtains the user’s FUSE password (hereafter referred to as the DaR password). An AES

key derived from the DaR password unwraps one layer of the double-wrapped FEKEK. The Management Service’s

RSA private key is then used to unwrap the second layer of the FEKEK. The Management Service then wraps the

fully-unwrapped FEKEK using the Trivalent System Service’s RSA public key and sends it to the service for further

processing. The Trivalent System Service uses its RSA private key to unwrap the FEKEK before passing the user’s

FEKEK down to the FUSE daemon. The Trivalent System Service acts as a secure intermediary for the

Management Service to communicate with the FUSE daemon. An Android system service is needed as applications

cannot directly communicate with Android daemons.

The TOE utilizes Security First’s Secure Parser Library (SPX Core) for cryptographic services. The TOE uses the

SPX Core for generating 256-bit AES per-file FEK. The Android platform generates the 256-bit AES FEKEK

through the KeyGenerator API. The Android platform-based AndroidKeyStore provider is used to generate RSA

key pairs.

During evaluation testing, Gossamer tested the Trivalent FUSE on the Getac MX50 running Android 5.1.1.

The TOE is capable of communicating with a remote TLS server using platform provided TLSv1.2.

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 5 of 31

1.4.1.1 Physical Boundaries

The physical boundary of the TOE is the physical perimeter of the evaluated device (Getac MX50) on which the

TOE resides.

1.4.1.2 Logical Boundaries

This section summarizes the security functions provided by Trivalent Protect (for Android):

 Cryptographic support

 User data protection

 Identification and authentication

 Security management

 Privacy

 Protection of the TSF

 Trusted path/channels

1.4.1.2.1 Cryptographic support

The evaluated Getac MX50 platform runs Android 5.1.1 operating system. The platform’s Android APIs allow

generation of keys through KeyGenerator, and random numbers are generated using SecureRandom. Keys are used

to protect data belonging to the applications that use the TOE.

The TOE uses Security First’s SPX Core (Security First, Secure Parser Library) for cryptographic algorithms. The

SPX Core supports encryption via AES and random number generation via an SP 800-90 AES-256 CTR DRBG.

The TOE uses the platform’s cryptographic API to perform AES key wrapping and keyed hashing via HMAC. The

TOE also uses the Android platform-based AndroidKeyStore provider to generate RSA key pairs.

1.4.1.2.2 User data protection

The TOE protects user data by providing encryption services for applications to encrypt their data. The TOE allows

encryption of data using AES-256 bit keys. The TOE protects communication with a remote TLS server using a

TLS v1.2 communication path.

1.4.1.2.3 Identification and authentication

The TOE authenticates applications by requiring a PIN/passphrase to unlock the application’s file encryption key. A

wrong password results in the unsuccessful loading of the application’s BouncyCastle keystore. Without the correct

keystore, the application cannot load the keys necessary for file encryption/decryption.

1.4.1.2.4 Security management

The TOE’s services/options are inaccessible until a configuration has been created. The TOE does not allow

invocation of its services without configuration of the TOE’s settings upon first start up. The TOE allows the

changing of passwords for management purposes.

1.4.1.2.5 Privacy

The TOE does not transmit Personally Identifiable Information over any network interfaces.

1.4.1.2.6 Protection of the TSF

The TOE relies on the physical boundary of the evaluated platform as well as the Android operating system for the

protection of the TOE’s application components.

The TOE checks for updates by selecting the check current version option on its menu. If an update is needed,

Trivalent shall deliver, via email or other agreed upon method, an updated application. The TOE’s software is

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 6 of 31

digitally signed by Trivalent. Each update is accompanied by documentation outlining changes to the overall

service.

The Security First’s SPX Core and native Android (platform provided) cryptographic libraries provides the TOE’s

cryptographic services. These cryptographic service providers have built-in self-tests that are run at power-up to

ensure that the algorithms are correct. If any self-tests fail, the TOE will not be able to perform its cryptographic

services.

1.4.1.2.7 Trusted path/channels

The TOE protects all communication to a remote TLS server using TLSv1.2. All of the user data managed by the

TOE resides on the evaluated Getac MX50 platform.

1.4.2 TOE Documentation

Trivalent offers documents that describe the operation and maintenance for the TOE. The following list of

documents was examined as part of the evaluation.

 USER GUIDE Trivalent Protect 2.6 for Android, November 2017

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 7 of 31

2. Conformance Claims

This TOE is conformant to the following CC specifications:

 Common Criteria for Information Technology Security Evaluation Part 2: Security functional components,

Version 3.1, Revision 4, September 2012.

 Part 2 Extended

 Common Criteria for Information Technology Security Evaluation Part 3: Security assurance components,

Version 3.1 Revision 4, September 2012.

 Part 3 Conformant

 Package Claims:

 Protection Profile for Application Software, Version 1.2, 22 April 2016 (ASPP12) and

 Application Software Protection Profile (ASPP) Extended Package: File Encryption: Mitigating

the Risk of Disclosure of Sensitive Data on a System, Version 1.0, 10 November 2014

(ASFEEP10)

2.1 Conformance Rationale

The ST conforms to the ASPP12/ASFEEP10. As explained previously, the security problem definition, security

objectives, and security requirements have been drawn from the PP.

The ST incorporates the following NIAP Technical Decisions:

 TD0065

 TD0067

 TD0069

 TD0092

 TD0119

 TD0121

 TD0122

 TD0123

 TD0131

 TD0163

 TD0172

 TD0174

 TD0175

 TD0178

 TD0192

 TD0204

 TD0217

 TD0221

 TD0238

 TD0241

 TD0244

 TD0263

 TD0268

 TD0283

 TD0293

 TD0295

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 8 of 31

 TD0300

 TD0304

 TD0305

 TD0326

 TD0327

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 9 of 31

3. Security Objectives

The Security Problem Definition may be found in the ASPP12/ASFEEP10 and this section reproduces only the

corresponding Security Objectives for operational environment for reader convenience. The ASPP12/ASFEEP10

offers additional information about the identified security objectives, but that has not been reproduced here and the

ASPP12/ASFEEP10 should be consulted if there is interest in that material.

In general, the ASPP12/ASFEEP10 has defined Security Objectives appropriate for file encryption software

application and as such are applicable to the TOE.

3.1 Security Objectives for the Operational Environment

O.AUTHORIZATION The TOE must enforce the entry of authorization factor(s) by authorized users to be able to

encrypt and decrypt user data.

OE.AUTHORIZATION_FACTOR_STRENGTH An authorized user will be responsible for ensuring that all

externally derived authorization factors have sufficient strength and entropy to reflect the sensitivity of the data

being protected. This can apply to password- or passphrase-based, ECC CDH, and RSA authorization factors.

OE.PLATFORM The TOE relies upon a trustworthy computing platform for its execution. This includes the

underlying operating system and any discrete execution environment provided to the TOE.

OE.POWER_SAVE The non-mobile operational environment must be configurable so that there exists at least one

mechanism that will cause the system to power down after a period of time in the same fashion as the user electing

to shutdown the system (A.SHUTDOWN). Any such mechanism (e.g., sleep, hibernate) that does not conform to

this requirement must be capable of being disabled.

The mobile operational environment must be configurable such that there exists at least one mechanism that will

cause the system to lock upon a period of time.

OE.PROPER_ADMIN The administrator of the application software is not careless, willfully negligent or hostile,

and administers the software within compliance of the applied enterprise security policy.

OE.PROPER_USER The user of the application software is not willfully negligent or hostile, and uses the

software within compliance of the applied enterprise security policy.

OE.STRONG_ENVIRONMENT_CRYPTO The Operating environment will provide a cryptographic function

capability that is commensurate with the requirements and capabilities of the TOE.

OE.TRAINED_USERS Authorized users of the host machine will be trained to follow all provided guidance.

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 10 of 31

4. Extended Components Definition

All of the extended requirements in this ST have been drawn from the ASPP12/ASFEEP10. The

ASPP12/ASFEEP10 defines the following extended requirements and since they are not redefined in this ST the

ASPP12/ASFEEP10 should be consulted for more information in regard to those CC extensions.

Extended SFRs:

 FCS_CKM_EXT.1: Key Encrypting Key (KEK) Support

 FCS_CKM_EXT.1(A): Extended: Cryptographic key generation (Password/Passphrase conditioning)

(TD0067 applied)

 FCS_CKM_EXT.2: Cryptographic key generation (FEK)

 FCS_CKM_EXT.4: Extended: Cryptographic Key Destruction

 FCS_IV_EXT.1: Extended: Initialization Vector Generation

 FCS_KYC_EXT.1: Key Chaining and Key Storage

 FCS_RBG_EXT.1: Random Bit Generation Services

 FCS_RBG_EXT.2: Random Bit Generation from Application

 FCS_STO_EXT.1: Storage of Credentials

 FDP_DAR_EXT.1: Encryption Of Sensitive Application Data

 FDP_DEC_EXT.1: Access to Platform Resources

 FDP_NET_EXT.1: Network Communications

 FDP_PRT_EXT.1: Extended: Protection of Selected User Data

 FIA_AUT_EXT.1: User Authorization

 FIA_FCT_EXT.1(2): Extended: User Authorization with Password/Passphrase Authorization Factors

 FMT_CFG_EXT.1: Secure by Default Configuration

 FMT_MEC_EXT.1: Supported Configuration Mechanism

 FPR_ANO_EXT.1: User Consent for Transmission of Personally Identifiable

 FPT_AEX_EXT.1: Anti-Exploitation Capabilities

 FPT_API_EXT.1: Use of Supported Services and APIs

 FPT_FEK_EXT.1: File Encryption Key (FEK) Support

 FPT_KYP_EXT.1: Extended: Protection of Key and Key Material (FPT_KYP_EXT)

 FPT_LIB_EXT.1: Use of Third Party Libraries

 FPT_TUD_EXT.1: Integrity for Installation and Update

 FTP_DIT_EXT.1: Protection of Data in Transit

Extended SARs:

 ALC_TSU_EXT.1: Timely Security Updates

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 11 of 31

5. Security Requirements

This section defines the Security Functional Requirements (SFRs) and Security Assurance Requirements (SARs)

that serve to represent the security functional claims for the Target of Evaluation (TOE) and to scope the evaluation

effort.

The SFRs have all been drawn from the ASPP12/ASFEEP10. The refinements and operations already performed in

the ASPP12/ASFEEP10 are not identified (e.g., highlighted) here, rather the requirements have been copied from

the ASPP12/ASFEEP10 and any residual operations have been completed herein. Of particular note, the

ASPP12/ASFEEP10 made a number of refinements and completed some of the SFR operations defined in the

Common Criteria (CC) and that PP should be consulted to identify those changes if necessary.

The SARs are also drawn from the ASPP12/ASFEEP10 which includes all the SARs for EAL 1. However, the

SARs are effectively refined since requirement-specific 'Assurance Activities' are defined in the

ASPP12/ASFEEP10 that serve to ensure corresponding evaluations will yield more practical and consistent

assurance than the EAL 1 assurance requirements alone. The ASPP12/ASFEEP10 should be consulted for the

assurance activity definitions.

5.1 TOE Security Functional Requirements

The following table identifies the SFRs that are satisfied by the Trivalent Protect (for Android) TOE.

Requirement Class Requirement Component

FCS: Cryptographic support FCS_CKM.1(A): Cryptographic key generation (Password/Passphrase

conditioning)

 FCS_CKM.1(1): Cryptographic Asymmetric Key Generation

 FCS_CKM_EXT.1: Key Encrypting Key (KEK) Support

 FCS_CKM_EXT.1(A): Extended: Cryptographic key generation

(Password/Passphrase conditioning) (TD0067 applied)

 FCS_CKM_EXT.2: Cryptographic key generation (FEK)

 FCS_CKM_EXT.4: Extended: Cryptographic Key Destruction

 FCS_COP.1(1): Cryptographic operation (Data Encryption)

 FCS_COP.1(4): Cryptographic Operation (Keyed-Hash Message

Authentication)

 FCS_COP.1(5): Cryptographic operation (Key Wrapping)

 FCS_IV_EXT.1: Extended: Initialization Vector Generation

 FCS_KYC_EXT.1: Key Chaining and Key Storage

 FCS_RBG_EXT.1: Random Bit Generation Services

 FCS_RBG_EXT.2: Random Bit Generation from Application

 FCS_STO_EXT.1: Storage of Credentials

FDP: User data protection FDP_DAR_EXT.1: Encryption Of Sensitive Application Data

 FDP_DEC_EXT.1: Access to Platform Resources

 FDP_NET_EXT.1: Network Communications

 FDP_PRT_EXT.1: Extended: Protection of Selected User Data

FIA: Identification and

authentication

FIA_AUT_EXT.1: User Authorization

 FIA_FCT_EXT.1(2): Extended: User Authorization with

Password/Passphrase Authorization Factors

FMT: Security management FMT_CFG_EXT.1: Secure by Default Configuration

 FMT_MEC_EXT.1: Supported Configuration Mechanism

 FMT_SMF.1: Specification of Management Functions

FPR: Privacy FPR_ANO_EXT.1: User Consent for Transmission of Personally

Identifiable

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 12 of 31

FPT: Protection of the TSF FPT_AEX_EXT.1: Anti-Exploitation Capabilities

 FPT_API_EXT.1: Use of Supported Services and APIs

 FPT_FEK_EXT.1: File Encryption Key (FEK) Support

 FPT_KYP_EXT.1: Extended: Protection of Key and Key Material

(FPT_KYP_EXT)

 FPT_LIB_EXT.1: Use of Third Party Libraries

 FPT_TUD_EXT.1: Integrity for Installation and Update

FTP: Trusted path/channels FTP_DIT_EXT.1: Protection of Data in Transit

Table 5-1 TOE Security Functional Components

5.1.1 Cryptographic support (FCS)

5.1.1.1 Cryptographic key generation (Password/Passphrase conditioning) (FCS_CKM.1(A))

FCS_CKM.1(A).1
Requirement renamed to FCS_CKM_EXT.1(A) per TD0067.

5.1.1.2 Cryptographic Asymmetric Key Generation (FCS_CKM.1(1))

FCS_CKM.1(1).1
The platform shall [invoke platform-provided functionality] generate asymmetric cryptographic

keys in accordance with a specified cryptographic key generation algorithm [

- RSA schemes using cryptographic key sizes of 2048-bit or greater that meet the following:

FIPS PUB 186-4, 'Digital Signature Standard (DSS)', Appendix B.3 (TD0326, TD0293

applied).]

5.1.1.3 Key Encrypting Key (KEK) Support (FCS_CKM_EXT.1)

FCS_CKM_EXT.1.1
The TSF shall support KEK in the following manner based on the selection chosen in

FPT_FEK_EXT.1: [

- derive a KEK using a password-based authorization factor conditioned as defined in

FCS_CKM.1(A) and in accordance with FIA_FCT_EXT.1(3),

- using a Random Bit Generator as specified in FCS_RBG_EXT.1 (from the AS PP) and

with entropy corresponding to the security strength of AES key sizes of [256 bit]] (TD0288

applied)

FCS_CKM_EXT.1.2
All KEKs shall be [256-bit] keys corresponding to at least the security strength of the keys

encrypted by the KEK.

5.1.1.4 Extended: Cryptographic key generation (Password/Passphrase conditioning) (TD0067 applied)

(FCS_CKM_EXT.1(A))

FCS_CKM_EXT.1(A).1
The TSF shall support a password/passphrase of up to [128] characters used to generate a

password authorization factor.

FCS_CKM_EXT.1(A).2
The TSF shall allow passwords to be composed of any combination of upper case characters,

lower case characters, numbers, and the following special characters: “!”, “@”, “#”, “$”, “%”, “^”,

“&”, “*”, “(“, and “)”, and [no other characters].

FCS_CKM_EXT.1(A).3
The TSF shall perform Password-based Key Derivation Functions in accordance with a specified

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 13 of 31

cryptographic algorithm HMAC-[SHA-512], with [4096] iterations, and output cryptographic key

sizes[256] that meet the following: NIST SP 800-132.

FCS_CKM_EXT.1(A).4
The TSF shall not accept passwords less than [a value settable by the administrator] and greater

than the maximum password length defined in FCS_CKM_EXT.1(A).1.

FCS_CKM_EXT.1(A).5
The TSF shall generate all salts using a RBG that meets FCS_RBG_EXT.1 (from the AS PP) and

with entropy corresponding to the security strength selected for PBKDF in

FCS_CKM_EXT.1.3(A). (Renumbered by TD0067)

5.1.1.5 Cryptographic key generation (FEK) (FCS_CKM_EXT.2)

FCS_CKM_EXT.2.1
The TSF shall generate FEK cryptographic keys [using a Random Bit Generator as specified in

FCS_RBG_EXT.1 (from the AS PP) and with entropy corresponding to the security strength of

AES key sizes of [256 bit]]

FCS_CKM_EXT.2.2
The TSF shall create a unique FEK for each file (or set of files) using the mechanism on the client

as specified in FCS_CKM_EXT.2.1.

FCS_CKM_EXT.2.3
The FEKs must be generated by the TOE.

5.1.1.6 Extended: Cryptographic Key Destruction (FCS_CKM_EXT.4)

FCS_CKM_EXT.4.1
The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key

destruction method [

- For volatile memory, the destruction shall be executed by a [

- single overwrite consisting of [zeroes]

- destruction of reference to the key directly followed by a request for garbage

collection]

For non-volatile memory that consists of the invocation of an interface provided by the

underlying platform that[instructs the underlying platform to destroy the abstraction that

represents the key].

that meets the following: No Standard. (TD0175 applied).

5.1.1.7 Cryptographic operation (Data Encryption) (FCS_COP.1(1))

FCS_COP.1(1).1
Refinement: The application shall [implement AES encryption] shall perform data encryption and

decryption in accordance with a specified cryptographic algorithm AES used in [CBC (as defined

in NIST SP 800-38A)] mode and cryptographic key sizes [256 bits].

5.1.1.8 Cryptographic Operation (Keyed-Hash Message Authentication) (FCS_COP.1(4))

FCS_COP.1(4).1
Refinement: The application shall [invoke platform-provided functionality] to perform keyed-

hash message authentication in accordance with a specified cryptographic algorithm HMAC-

[SHA-384, SHA-512] , key size [384, 512] , and message digest size of [384, 512] bits that meet

the following: FIPS PUB 198-1, 'The Keyed-Hash Message Authentication Code', and FIPS PUB

180-4, 'Secure Hash Standard'.

5.1.1.9 Cryptographic operation (Key Wrapping) (FCS_COP.1(5))

FCS_COP.1(5).1
Refinement: The application shall [use platform-provided functionality to perform Key

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 14 of 31

Wrapping, implement functionality to perform Key Wrapping] in accordance with a specified

cryptographic algorithm [AES Key Wrap, RSA using the KTS-OAEP-basic scheme] and the

cryptographic key size [256 bits (AES), 2048 (RSA)] that meet the following: [NIST SP 800-38F'

for Key Wrap (section 6.2) and Key Wrap with Padding (section 6.3), NIST SP 800-56B' for

RSA using the KTS-OAEP-basic (section 9.2.3) and KTS-OAEP-receiver-confirmation

(section9.2.4) scheme]. (TD0263 applied)

5.1.1.10 Extended: Initialization Vector Generation (FCS_IV_EXT.1)

FCS_IV_EXT.1.1
The application shall [generate IVs] in accordance with Appendix H: Initialization Vector

Requirements for NIST-Approved Cipher Modes.

5.1.1.11 Key Chaining and Key Storage (FCS_KYC_EXT.1)

FCS_KYC_EXT.1.1
The TSF shall maintain a primary key chain of [

- KEKs originating from one or more authorization factor(s) to the FEK(s) using the

following method(s): [

 utilization of the platform key storage,

 implement key wrapping as specified in FCS_COP.1(5)] ,

while maintaining an overall effective strength of [

 [256 bits] for symmetric keys,

 [112 bits] for asymmetric keys]

commensurate with the strength of the FEK]

other supplemental key chains that protect a key or keys in the primary key chain using the

following method(s):[

 utilization of the platform key storage,

 implement key wrapping as specified in FCS_COP.1(5),

 storage in in the Bouncy Castle keystore using the a hashed DaR password

for access]
]. (TD0092, TD0123 and TD0263 applied)

5.1.1.12 Random Bit Generation Services (FCS_RBG_EXT.1)

FCS_RBG_EXT.1.1
The application shall [invoke platform-provided DRBG functionality, implement DRBG

functionality] for its cryptographic operations.

5.1.1.13 Random Bit Generation from Application (FCS_RBG_EXT.2)

FCS_RBG_EXT.2.1
The application shall perform all deterministic random bit generation (DRBG) services in

accordance with NIST Special Publication 800-90A using [CTR_DRBG (AES)].

FCS_RBG_EXT.2.2
The deterministic RBG shall be seeded by an entropy source that accumulates entropy from a

platform-based DRBG and [no other noise source] with a minimum of [256 bits] of entropy at

least equal to the greatest security strength (according to NIST SP 800-57) of the keys and hashes

that it will generate.

5.1.1.14 Storage of Credentials (FCS_STO_EXT.1)

FCS_STO_EXT.1.1
The application shall [invoke the functionality provided by the platform to securely store [RSA

keys], implement functionality to securely store [FEKEK, FEK]] to non-volatile memory.

(TD0119 applied)

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 15 of 31

5.1.1.15 TLS Client Protocol (FCS_TLSC_EXT.1)

FCS_TLSC_EXT.1.1
The application shall [invoke platform-provided TLS 1.2] supporting the following cipher suites:

(TD0174, TD0283 applied)

[TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246

TLS_RSA_WITH_AES_256_CBC_SHA as defined in RFC 5246

TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246,

TLS_DHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246,

TLS_DHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC 5246

TLS_RSA_WITH_AES_256_CBC_ SHA256 as defined in RFC 5246,

TLS_DHE_RSA_WITH_AES_128_CBC_ SHA256 as defined in RFC 5246,

TLS_DHE_RSA_WITH_AES_256_CBC_ SHA256 as defined in RFC 5246,

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC 4492,

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC 4492,

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA as defined in RFC 4492

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA as defined in RFC 4492

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5289,

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC 5289,

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289].

FCS_TLSC_EXT.1.2
The application shall verify that the presented identifier matches the reference identifier according

to RFC 6125.

FCS_TLSC_EXT.1.3
The application shall establish a trusted channel only if the peer certificate is valid.

5.1.1.16 TLS Client Protocol (FCS_TLSC_EXT.4)

FCS_TLSC_EXT.4.1
The application shall present the supported Elliptic Curves Extension in the Client Hello with the

following NIST curves: [secp256r1, secp384r1, secp521r1] and no other curves.

5.1.2 User data protection (FDP)

5.1.2.1 Encryption Of Sensitive Application Data (FDP_DAR_EXT.1)

FDP_DAR_EXT.1.1
The application shall [implement functionality to encrypt sensitive data, leverage platform-

provided functionality to encrypt sensitive data] in non-volatile memory.

5.1.2.2 Access to Platform Resources (FDP_DEC_EXT.1)

FDP_DEC_EXT.1.1
The application shall restrict its access to [network connectivity, [SD card, Bluetooth]].

FDP_DEC_EXT.1.2
The application shall restrict its access to [no sensitive information repositories].

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 16 of 31

5.1.2.3 Network Communications (FDP_NET_EXT.1)

FDP_NET_EXT.1.1
The application shall restrict network communication to [user-initiated communication for [

[communicating with a remote TLS server and application checking for updates]}].

5.1.2.4 Extended: Protection of Selected User Data (FDP_PRT_EXT.1)

FDP_PRT_EXT.1.1
The TSF shall perform encryption and decryption of the user-selected file (or set of files) in

accordance with FCS_COP.1(1).

FDP_PRT_EXT.1.2
The application shall [implement functionality] to ensure that all sensitive data created by the

TOE when decrypting/encrypting the user-selected file (or set of files) are destroyed in volatile

and non-volatile memory when the data is no longer needed. (TD0065 applied)

5.1.3 Identification and authentication (FIA)

5.1.3.1 User Authorization (FIA_AUT_EXT.1)

FIA_AUT_EXT.1.1
The application shall [provide user authorization] based on [password/passphrase authorization

factors].

5.1.3.2 Extended: Single User Authorization with Password/Passphrase Authorization Factors

(FIA_FCT_EXT.1(3))

FIA_FCT_EXT.1(3).1
The TSF shall provide a mechanism as defined in FCS_CKM_EXT.1 and FCS_COP.1(4) to

perform user authorization.

FIA_FCT_EXT.1(3).2
The TSF shall perform user authorization using the mechanism provided in FIA_FCT_EXT.1.1(3)

before allowing decryption of user data.

FIA_FCT_EXT.1(3).3
The TSF shall verify that the user-entered authorization factors are valid before decrypting the

user's encrypted files.

FIA_FCT_EXT.1(3).4
The TSF shall ensure that the method of validation for each authorization factor does not expose

or reduce the effective strength of the KEK, FEK, or CSPs used to derive the KEK or FEK.

FIA_FCT_EXT.1(3).5
The TSF shall perform user authorization using the mechanism provided in FIA_FCT_EXT.1.1(3)

before allowing the user to change the passphrase-based authorization factor as specified in

FMT_SMF.1(c). (TD0288 applied)

5.1.3.3 X.509 Certificate Validation (FIA_X509_EXT.1)

FIA_X509_EXT.1.1
The application shall [invoked platform-provided functionality] to validate certificates in

accordance with the following rules:

 RFC 5280 certificate validation and certificate path validation.

 The certificate path must terminate with a trusted CA certificate.

 The application shall validate a certificate path by ensuring the presence of the

basicConstraints extension and that the CA flag is set to TRUE for all CA certificates.

 The application shall validate the revocation status of the certificate using [

o

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 17 of 31

o a Certificate Revocation List (CRL) as specified in RFC 5759].

 The application shall validate the extendedKeyUsage field according to the following

rules:

o Certificates used for trusted updates and executable code integrity verification

shall have the Code Signing purpose (id-kp 3 with OID 1.3.6.1.5.5.7.3.3) in the

extendedKeyUsage field.

o Server certificates presented for TLS shall have the Server Authentication

purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in the extendedKeyUsage field.

o Client certificates presented for TLS shall have the Client Authentication

purpose (id-kp 2 with OID 1.3.6.1.5.5.7.3.2) in the extendedKeyUsage field.

o S/MIME certificates presented for email encryption and signature shall have the

Email Protection purpose (id-kp 4 with OID 1.3.6.1.5.5.7.3.4) in the

extendedKeyUsage field.

o OCSP certificates presented for OCSP responses shall have the OCSP Signing

purpose (id-kp 9 with OID 1.3.6.1.5.5.7.3.9) in the extendedKeyUsage field.

o Server certificates presented for EST shall have the CMC Registration Authority

(RA) purpose (id-kpcmcRA with OID 1.3.6.1.5.5.7.3.28) in the

extendedKeyUsage field.

FIA_X509_EXT.1.2
The application shall treat a certificate as a CA certificate only if the basicConstraints extension is

present and the CA flag is set to TRUE.

5.1.3.4 X.509 Certificate Authentication (FIA_X509_EXT.2)

FIA_X509_EXT.2.1
The application shall use X.509v3 certificates as defined by RFC 5280 to support authentication

for [TLS].

FIA_X509_EXT.2.2
When the application cannot establish a connection to determine the validity of a certificate, the

application shall [not accept the certificate].

5.1.4 Security management (FMT)

5.1.4.1 Secure by Default Configuration (FMT_CFG_EXT.1)

FMT_CFG_EXT.1.1
The application shall provide only enough functionality to set new credentials when configured

with default credentials or no credentials.

FMT_CFG_EXT.1.2
The application shall be configured by default with file permissions which protect the application's

binaries and data files from modification by normal unprivileged user. (TD0327)

5.1.4.2 Supported Configuration Mechanism (FMT_MEC_EXT.1)

FMT_MEC_EXT.1.1
The TSF shall [invoke the mechanisms recommended by the platform vendor for storing and

setting configuration options]. (TD0121 applied)

5.1.4.3 Specification of Management Functions (FMT_SMF.1)

FMT_SMF.1.1
The TSF shall be capable of performing the following management functions: [

a) configure password/passphrase complexity setting,
b) change password/passphrase authentication factors]. (TD0122 & TD0221 applied)

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 18 of 31

5.1.5 Privacy (FPR)

5.1.5.1 User Consent for Transmission of Personally Identifiable (FPR_ANO_EXT.1)

FPR_ANO_EXT.1.1
The application shall [not transmit PII over a network].

5.1.6 Protection of the TSF (FPT)

5.1.6.1 Anti-Exploitation Capabilities (FPT_AEX_EXT.1)

FPT_AEX_EXT.1.1
The application shall not request to map memory at an explicit address except for [none].

FPT_AEX_EXT.1.2
The application shall [not allocate any memory region with both write and execute permissions].

FPT_AEX_EXT.1.3
The application shall be compatible with security features provided by the platform vendor.

FPT_AEX_EXT.1.4
The application shall not write user-modifiable files to directories that contain executable files

unless explicitly directed by the user to do so.

FPT_AEX_EXT.1.5
The application shall be compiled with stack-based buffer overflow protection enabled.

5.1.6.2 Use of Supported Services and APIs (FPT_API_EXT.1)

FPT_API_EXT.1.1
The TSF shall use only documented platform APIs.

5.1.6.3 File Encryption Key (FEK) Support (FPT_FEK_EXT.1)

FPT_FEK_EXT.1.1
The TSF shall [- Store a FEK in Non-Volatile memory conformant with FPT_KYP_EXT.1].

5.1.6.4 Extended: Protection of Key and Key Material (FPT_KYP_EXT) (FPT_KYP_EXT.1)

FPT_KYP_EXT.1.1
The TSF shall [only store keys in non-volatile memory when

- wrapped, as specified in FCS_COP.1(5),

- encrypted, as specified in FCS_COP.1(1),

- stored in the underlying platform's keystore as specified by FCS_STO_EXT.1.1 (from

the ASPP) (TD0123 and TD0280 applied)].

5.1.6.5 Use of Third Party Libraries (FPT_LIB_EXT.1)

FPT_LIB_EXT.1.1
The application shall be packaged with only [libparser4.so, libparser4jni.so, and libcryptopp.so].

5.1.6.6 Integrity for Installation and Update (FPT_TUD_EXT.1)

FPT_TUD_EXT.1.1
The application shall [leverage the platform] to check for updates and patches to the application

software.

FPT_TUD_EXT.1.2
The application shall be distributed using the format of the platform-supported package manager.

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 19 of 31

FPT_TUD_EXT.1.3
The application shall be packaged such that its removal results in the deletion of all traces of the

application, with the exception of configuration settings, output files, and audit/log events.

FPT_TUD_EXT.1.4
The application shall not download, modify, replace or update its own binary code.

FPT_TUD_EXT.1.5
The application shall [provide the ability] to query the current version of the application software.

FPT_TUD_EXT.1.6
The application installation package and its updates shall be digitally signed such that its platform

can cryptographically verify them prior to installation.

5.1.7 Trusted path/channels (FTP)

5.1.7.1 Protection of Data in Transit (FTP_DIT_EXT.1)

FTP_DIT_EXT.1.1
The application shall [encrypt all transmitted data with [TLS]] between itself and another trusted

IT product.

5.2 TOE Security Assurance Requirements

The SARs for the TOE are the components as specified in Part 3 of the Common Criteria. Note that the SARs have

effectively been refined with the assurance activities explicitly defined in association with both the SFRs and SARs.

Requirement Class Requirement Component

ADV: Development ADV_FSP.1: Basic functional specification

AGD: Guidance documents AGD_OPE.1: Operational user guidance

 AGD_PRE.1: Preparative procedures

ALC: Life-cycle support ALC_CMC.1: Labelling of the TOE

 ALC_CMS.1: TOE CM coverage

 ALC_TSU_EXT.1: Timely Security Updates

ATE: Tests ATE_IND.1: Independent testing - conformance

AVA: Vulnerability assessment AVA_VAN.1: Vulnerability survey

Table 5-2 Assurance Components

5.2.1 Development (ADV)

5.2.1.1 Basic functional specification (ADV_FSP.1)

ADV_FSP.1.1d
The developer shall provide a functional specification.

ADV_FSP.1.2d
The developer shall provide a tracing from the functional specification to the SFRs.

ADV_FSP.1.1c
The functional specification shall describe the purpose and method of use for each SFR-enforcing

and SFR-supporting TSFI.

ADV_FSP.1.2c
The functional specification shall identify all parameters associated with each SFR-enforcing and

SFR-supporting TSFI.

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 20 of 31

ADV_FSP.1.3c
The functional specification shall provide rationale for the implicit categorisation of interfaces as

SFR-non-interfering.

ADV_FSP.1.4c
The tracing shall demonstrate that the SFRs trace to TSFIs in the functional specification.

ADV_FSP.1.1e
The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

ADV_FSP.1.2e
The evaluator shall determine that the functional specification is an accurate and complete

instantiation of the SFRs.

5.2.2 Guidance documents (AGD)

5.2.2.1 Operational user guidance (AGD_OPE.1)

AGD_OPE.1.1d
The developer shall provide operational user guidance.

AGD_OPE.1.1c
The operational user guidance shall describe, for each user role, the user-accessible functions and

privileges that should be controlled in a secure processing environment, including appropriate

warnings.

AGD_OPE.1.2c
The operational user guidance shall describe, for each user role, how to use the available interfaces

provided by the TOE in a secure manner.

AGD_OPE.1.3c
The operational user guidance shall describe, for each user role, the available functions and

interfaces, in particular all security parameters under the control of the user, indicating secure

values as appropriate.

AGD_OPE.1.4c
The operational user guidance shall, for each user role, clearly present each type of security-

relevant event relative to the user-accessible functions that need to be performed, including

changing the security characteristics of entities under the control of the TSF.

AGD_OPE.1.5c
The operational user guidance shall identify all possible modes of operation of the TOE (including

operation following failure or operational error), their consequences and implications for

maintaining secure operation.

AGD_OPE.1.6c
The operational user guidance shall, for each user role, describe the security measures to be

followed in order to fulfil the security objectives for the operational environment as described in

the ST.

AGD_OPE.1.7c
The operational user guidance shall be clear and reasonable.

AGD_OPE.1.1e
The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

5.2.2.2 Preparative procedures (AGD_PRE.1)

AGD_PRE.1.1d
The developer shall provide the TOE including its preparative procedures.

AGD_PRE.1.1c
The preparative procedures shall describe all the steps necessary for secure acceptance of the

delivered TOE in accordance with the developer's delivery procedures.

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 21 of 31

AGD_PRE.1.2c
The preparative procedures shall describe all the steps necessary for secure installation of the TOE

and for the secure preparation of the operational environment in accordance with the security

objectives for the operational environment as described in the ST.

AGD_PRE.1.1e
The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

AGD_PRE.1.2e
The evaluator shall apply the preparative procedures to confirm that the TOE can be prepared

securely for operation.

5.2.3 Life-cycle support (ALC)

5.2.3.1 Labelling of the TOE (ALC_CMC.1)

ALC_CMC.1.1d
The developer shall provide the TOE and a reference for the TOE.

ALC_CMC.1.1c
The TOE shall be labelled with its unique reference.

ALC_CMC.1.1e
The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

5.2.3.2 TOE CM coverage (ALC_CMS.1)

ALC_CMS.1.1d
The developer shall provide a configuration list for the TOE.

ALC_CMS.1.1c
The configuration list shall include the following: the TOE itself; and the evaluation evidence

required by the SARs.

ALC_CMS.1.2c
The configuration list shall uniquely identify the configuration items.

ALC_CMS.1.1e
The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

5.2.3.3 Timely Security Updates (ALC_TSU_EXT.1)

ALC_TSU_EXT.1.1d
The developer shall provide a description in the TSS of how timely security updates are made to

the TOE. Application developers must support updates to their products for purposes of fixing

security vulnerabilities.

ALC_TSU_EXT.1.2d
The developer shall provide a description in the TSS of how users are notified when updates

change security properties or the configuration of the product.

ALC_TSU_EXT.1.1c
The description shall include the process for creating and deploying security updates for the TOE

software.

ALC_TSU_EXT.1.2c
The description shall express the time window as the length of time, in days, between public

disclosure of a vulnerability and the public availability of security updates to the TOE.

ALC_TSU_EXT.1.3c
The description shall include the mechanisms publicly available for reporting security issues

pertaining to the TOE. The reporting mechanism could include web sites, email addresses, as well

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 22 of 31

as a means to protect the sensitive nature of the report (e.g., public keys that could be used to

encrypt the details of a proof-of-concept exploit).

ALC_TSU_EXT.1.1e
The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

5.2.4 Tests (ATE)

5.2.4.1 Independent testing - conformance (ATE_IND.1)

ATE_IND.1.1d
The developer shall provide the TOE for testing.

ATE_IND.1.1c
The TOE shall be suitable for testing.

ATE_IND.1.1e
The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

ATE_IND.1.2e
The evaluator shall test a subset of the TSF to confirm that the TSF operates as specified.

5.2.5 Vulnerability assessment (AVA)

5.2.5.1 Vulnerability survey (AVA_VAN.1)

AVA_VAN.1.1d
The developer shall provide the TOE for testing.

AVA_VAN.1.1c
The TOE shall be suitable for testing.

AVA_VAN.1.1e
The evaluator shall confirm that the information provided meets all requirements for content and

presentation of evidence.

AVA_VAN.1.2e
The evaluator shall perform a search of public domain sources to identify potential vulnerabilities

in the TOE.

AVA_VAN.1.3e
The evaluator shall conduct penetration testing, based on the identified potential vulnerabilities, to

determine that the TOE is resistant to attacks performed by an attacker possessing Basic attack

potential.

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 23 of 31

6. TOE Summary Specification

This section describes the security functions:

 Cryptographic support

 User data protection

 Identification and authentication

 Security management

 Privacy

 Protection of the TSF

 Trusted path/channels

6.1 Cryptographic support

The TOE operates on an evaluated Getac MX50 device running Android 5.1.1 with an Intel Atom processor. The

TOE uses the Security First’s Secure Parser Library version 4.7.1.0 for encryption services and random number

generation. The TOE also utilizes cryptographic functions provided by the TOE platform. Cryptographic functions

offered by the TOE platform are described in the following Security Targets.

 Getac MX50 (MDFPP20) Security Target, Version 1.0, 04/05/17 (VID-10756)

The following table denotes the CAVP certificates applicable to the TOE. These CAVP certificates explicitly

identify their environment to include the Intel Atom processor and Android 5.1.1.

Table 6-1 Secure Parser Library CAVP Algorithms

Functions Standards Certificates

Encryption/Decryption (Performed by Secure Parser Library)

SPX Core: AES CBC (256) and

Key Wrapping (256 bits)
FIPS PUB 197

NIST SP 800-38A

NIST SP 800-38F

AES Cert # 4636

Random bit generation (Performed by Secure Parser Library)

SPX Core AES-256 CTR_DRBG

with software based noise sources

with a minimum of 256 bits of non-

determinism

NIST SP 800-90 DRBG Cert # 1562

The following table identifies the cryptographic algorithms provided by the TOE Platform which the TOE uses.

Table 6-2 TOE Platform Cryptographic Algorithms

Functions Standards Certificates

Encryption/Decryption (TOE Invokes Platform)

TOE Platform:

AES CBC (256) and

Key Wrapping (256 bits)

FIPS PUB 197

NIST SP 800-38A

NIST SP 800-38F

AES Cert # 4352.

Secure Hashing (TOE Invokes Platform)

TOE Platform:

SHA-1, SHA_256, SHA-384

FIPS Pub 180-4 SHA Cert #3590

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 24 of 31

Functions Standards Certificates

Keyed-hash message authentication (TOE Invokes Platform)

TOE Platform:

HMAC-SHA-384

HMAC-SHA-512

FIPS Pub 198-1

FIPS Pub 180-3

HMAC Cert #2892

Key Generation (TOE Invokes Platform)

TOE Platform:

 RSA Key Generation

FIPS 186-4 RSA Cert #2350

Random bit generation (TOE Invokes Platform)

TOE Platform:

AES-256 CTR_DRBG

NIST SP 800-90 DRBG Cert # 1389

The Cryptographic support function is designed to satisfy the following security functional requirements:

 FCS_CKM.1(A): See FCS_CKM_EXT.1(A).

 FCS_CKM.1(1): The platform generates 2048-bit RSA keys for the application’s usage as described in the

FCS_KYC_EXT.1 below.

 FCS_CKM_EXT.1: The TOE generates keys using both the Security First’s Secure Parser (SPX Core)

cryptographic module) and the platform’s API (KeyGenerator) as described here. The SPX Core API uses

an SP 800-90A AES-256 CTR DRBG and the platform uses an SP 800-90A AES-256 CTR DRBG. Both

DRBGs are seeded with sufficient entropy from the platform itself.

The platform DRBG is used to generate 256-bit AES FEKEKs. The file encryption key encryption key

(FEKEK) is generated using the KeyGenerator API. The FEKEK is stored in the Management Service’s

BouncyCastle keystore. The FEKEK is wrapped twice, once using RSA and one more time using AES.

The AES key used to wrap the FEKEK is derived from the FUSE password (hereafter referred to as the

DaR password) using PBKDF2. Both the Management Service and Trivalent System Service’s RSA keys

used to wrap the FEKEK are generated using the KeyGenerator API. If the DaR password provided by the

user is not correct, then the Management Service’s BouncyCastle keystore will not properly load,

preventing the Management Service from accessing its keystore. Furthermore, an incorrect DaR password

results in the incorrect derivation of the PBKDF2 derived AES key, therefore the FEKEK will not be

unwrapped properly. The SPX Core DRBG is used to generate the FEKs. The FEK is wrapped by the

FEKEK before being stored.

 FCS_CKM_EXT.2: The TOE generates file encryption keys using the Security First’s Secure Parser

cryptographic module, which implements an SP 800-90A AES-256 CTR DRBG. The DRBG is seeded

with sufficient entropy to generate keys with 256 bits of security strength by using seeding material

collected by the evaluated platform. The FEKs are generated every time a new file is going to be

encrypted. The TOE associates a FEK with an individual file that is being encrypted by storing the

wrapped FEK in the same hidden directory as the encrypted file. The TOE automatically generates a FEK

(without user action) whenever a new file must be encrypted.

 FCS_CKM_EXT.1(A): The TOE allows the use of DaR passwords that support all special characters

mentioned in FCS_CKM_EXT.1(A). The TOE encodes the DaR password using UTF-8 before the DaR

password is passed into the evaluated Android platform’s cryptographic APIs to perform Password-Based

key derivation (SP 800-132 PBKDF2) using HMAC-SHA-512 pseudo-random function. Note that this

DaR password does not derive the FEK. The password that is input into the PBKDF2 function derives a

key that serves as a secondary AES wrap on the FEFEK in conjunction with an asymmetric key wrap using

RSA key pair stored in the Android keystore. The TOE enforces a minimum password length of 6

characters, and can support a maximum password of 128 characters. By setting the password complexity

value, the minimum length gets configured. The default value is medium complexity which requires an 8

character password. The other setting available is simple complexity and that requires a 6 character

password.

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 25 of 31

The TOE performs 4096 iterations of the key derivation function in PBKDF2 to increase the computation

needed to derive a key from the DaR password. With a thousand iterations on the evaluated platform, the

average derivation time is 249.035 milliseconds.

The salt used in the PBKDF2 operations is generated by the platform’s java.security.SecureRandom

cryptographic API. First, a byte array is declared. The byte arrays are then filled with a random value from

the platform’s nextBytes method from SecureRandom. SecureRandom uses /dev/random. The salts are

saved in /data/data, which is Android’s protected directory. The salt lengths are 64 bytes.

 FCS_CKM_EXT.4: The TOE relies on the platform and SPX Core for destroying keys. The platform

utilizes Java Garbage Collection in order to clear memory as one method to clear keys. The TOE releases

all references to objects (e.g. keys) when they are no longer needed, and the Java Garbage Collection clears

out the memory that is no longer in use. The second method the platform provides is the Android crypto

module clears keys when they are no longer needed. The SPX Core is a FIPS module, it destroys FEKs by

overwriting the targeted keys with zeroes. The SPX Core module_destroy API zeroes non-persistent CSPs

from volatile memory. For keys stored in non-volatile memory, the Android key destruction API is called.

The only key written to non-volatile storage is the Trivalent System Service’s private RSA key which is

protected by the platform in the Android key store.

Table 6-3 Key Destruction

Key Name

Cleartext

Storage

Location

Destruction
Entity responsible

for Destruction

When it is destroyed

FEK Native

RAM

Native memory

destruction

SPX Core After file

encryption/decryption

Management Service

unwrapped FEKEK

(volatile)

JAVA

RAM

Java Garbage

Collection

Platform (via

garbage collection)

After storing FEKEK to

Application’s BouncyCastle

keystore

Trivalent System

Service unwrapped

FEKEK (volatile)

JAVA

RAM

Java Garbage

Collection

Platform (via

garbage collection)

After wrapping/unwrapping

the FEK

PBKDF2 derived

key (volatile)

JAVA

RAM

Java Garbage

Collection

Platform (via

garbage collection)

After AES unwrapping double

wrapped FEKEK

Management

Service’s private

RSA key (volatile)

Java RAM Java Garbage

Collection

Platform (via

Garbage Collection)

After RSA unwrapping of

double-wrapped FEKEK

Trivalent System

Service’s private

RSA key (non-

volatile)

Android

platform K

eyStore

Platform Key

destruction API

Platform (via

Android Crypto

module

Removal of application

 FCS_COP.1(1): The TOE invokes the Security First’s Secure Parser cryptographic module to perform

AES-256-CBC encryption. The TOE invokes the SPX Core’s AES implementation to perform AES 256-

CBC encryption when encrypting files using the 256-bit FEK.

 FCS_COP.1(4): The TOE uses the platform’s HMAC-SHA-384 to hash1 the DaR password with a salt

generated by the platform’s DRBG. The hash value is used as an authentication factor to load the

Management Service’s BouncyCastle keystore, which houses an AES-wrapped RSA-wrapped file

encryption key encryption key (FEKEK). If the DaR password is incorrect, the keystore will not load, and

1 Using the platform API javax.crypto.Mac.init(Key).

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 26 of 31

the calling application does not gain access to the key used to decrypt its files. The TOE uses the

platform’s HMAC-SHA-512 to hash a PBKDF2 derived key with a second salt to produce a key used to

unwrap the FEKEK using AES key wrap. After, the now single-wrapped FEKEK is further unwrapped

using RSA-OAEP.

 FCS_COP.1(5): The TOE uses the SPX Core 256 bit AES key wrapping to wrap the FEK with the FEKEK.

The TOE uses the evaluated platform’s approved cryptographic API (e.g.

cipher.init(Cipher.WRAP_MODE, aesWrappingKey), cipher.init(Cipher.UNWRAP_MODE,

aesWrappingKey), OAEPEncoding(rsa, digest, null), cipher.wrap and cipher.unwrap) to perform all other

key wrapping functions. The evaluated platform’s API performs AES key wrapping in accordance with SP

800-38F and RSA key wrapping in accordance with SP 800-56B. The TOE’s [AGD] contains the full list

of APIs used by the TOE.

 FCS_IV_EXT.1: The TOE uses the SPX Core approved cryptographic API to perform Initialization vector

generation using the SPX Core AES-256 CTR DRBG. The TOE’s [AGD] contains the full list of APIs

used by the TOE. The TOE only uses initialization vectors when performing AES-256

encryption/decryption of user data using the FEK. IVs are not used as part of any key wrap/unwrap

process.

 FCS_KYC_EXT.1: The DaR password is used in two places. First, it is hashed using SHA-384 with a salt

(generated using the platform’s DRBG) and used to load the Management Service’s BouncyCastle

keystore. The DaR password is then used as input to PBKDF2 with 4096 iterations and HMAC-SHA-512

PRF along with a second salt value (also generated using the platform’s DRBG).

The platform retrieves the double-wrapped FEKEK from the Management Service’s BouncyCastle

keystore. The double wrapped FEKEK is AES unwrapped using the 256-bit PBKDF2 derived key,

resulting in an RSA wrapped FEKEK. The Management Service’s RSA public key is kept within

Android’s SharedPreferences under MODE_PRIVATE. All RSA keys maintain a security strength of 112-

bits.

The RSA wrapped FEKEK is unwrapped using the Management Service’s RSA keypair, resulting in a

cleartext FEKEK that is re-encrypted using the Trivalent System Service’s RSA public key. The

Management Service passes this single wrapped FEKEK to the Trivalent System Service by calling an

interface offered by the Trivalent System Service. The Trivalent System Service has an public RSA key

that is kept within Android’s SharedPreferences under MODE_PRIVATE. The private portion is stored in

the Android keystore.

The Trivalent System Service unwraps the FEKEK performs RSA-2048 unwrapping on the single wrapped

FEKEK to obtain a cleartext FEKEK and provides it to the FUSE daemon. The FEKEK is used as a 256-

bit AES key to unwrap the FEK. The FEK is a 256-bit AES key used to decrypt user data.

 FCS_RBG_EXT.1: TOE uses the Security First’s Secure Parser cryptographic module to call the platform

global DRBG for random number generation, which utilizes an SP 800-90A AES-256 CTR DRBG. This

DRBG is used to generate the File Encryption keys (FEKs). The Android platform generates the FEKEK

using the platform’s AES-256 AES CTR DRBG.

 FCS_RBG_EXT.2: The TOE uses the Security First’s Secure Parser cryptographic module to call the

platform global DRBG to generate random data. This Module always creates a global AES-256

CTR_DRBG upon load, seeds the global DRBG with 384-bits taken from /dev/urandom, uses that global

DRBG elsewhere within the module when it requires random data, and reseeds the global DRBG (again

drawing from /dev/urandom) after generating 1,000 blocks of random output.

When the TOE must generate an AES-256 bit FEK, the Security First’s Secure Parser cryptographic

module creates a separate AES-256 CTR_DRBG context that it uses solely for generation of keys. The

module will seed this AES-256 DRBG context using 384-bits of data drawn from the global DRBG.

 FCS_STO_EXT.1: All keystores live in Android’s protected directory /data/misc/keystore, which is also on

the platform’s flash storage.

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 27 of 31

- The TOE components use the evaluated Android platform’s Android keystore to store all private

RSA keys.

- The Management Service stores the double wrapped FEKEK in the BouncyCastle keystore.

- The TOE uses the Android Platform keystore to store the private RSA keys for the Trivalent

System Service.

- The wrapped FEK and IV are stored in the same hidden directory as the encrypted file, which is

all stored on flash.

 FCS_TLSC_EXT.1: The TOE utilizes platform provided TLSv1.2 to communicate to a remote TLS)

server. The following platform offered ciphersuites are accepted by the TOE.

 TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246

 TLS_RSA_WITH_AES_256_CBC_SHA as defined in RFC 5246

 TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246,

 TLS_DHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246,

 TLS_DHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC 5246

 TLS_RSA_WITH_AES_256_CBC_ SHA256 as defined in RFC 5246,

 TLS_DHE_RSA_WITH_AES_128_CBC_ SHA256 as defined in RFC 5246,

 TLS_DHE_RSA_WITH_AES_256_CBC_ SHA256 as defined in RFC 5246,

 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA as defined in RFC 4492,

 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA as defined in RFC 4492,

 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA as defined in RFC 4492

 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA as defined in RFC 4492,

 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5289,

 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC 5289,

 TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

 TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

The TOE allows a connection only when a certificate is deemed to be valid. All cryptography supporting

TLSv1.2 is performed by the platform, because the TOE utilizes platform protocols for communications,

the reference identifies and certificate pinning in effect are those supported by the platform. The platform

does not use certificate pinning. The platform uses reference identifiers of Common Name (CN) or Subject

Alternate Name (SAN) (i.e., DNS or IP Address).

 FCS_TLSC_EXT.4: The TOE allows ECDHE ciphersuites and relies upon the platform to support only

the NIST curves secp256r1, secp384r1 and secp521r1.

6.2 User data protection

The TOE protects user data by providing file level encryption, transparently to all Android applications, for the

internal public app storage (“/sdcard”). Note that the applications’ sandbox storage “/data/data/<app>” is not used

to store encrypted files. The TOE uses 256-bit AES keys to encrypt the files stored to flash. These keys are derived

from DaR passwords through a key derivation and key wrapping process. If an application does not enter the right

DaR password, the file encryption key will never be derived correctly, thus preventing the application from

decrypting its files. The AES keys used as a File Encryption Key (FEK) are generated using the Security First’s

Secure Parser cryptographic module. The random data collected to seed the SPX Core DRBG comes from the

evaluated device’s /dev/urandom.

The User data protection function is designed to satisfy the following security functional requirements:

 FDP_DAR_EXT.1: The TOE implements functionality to encrypt data and store it securely on the

evaluated platform. The TOE uses the Security First’s Secure Parser cryptographic module to generate

AES-256 bit keys for file encryption (a.k.a., FEK). When a file is encrypted by the TOE, the file is

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 28 of 31

replaced by a placeholder “metadata” file. The actual encrypted data is stored is another location, while the

metadata file contains non-sensitive information that is used by the TOE to identify and assist in the

encryption/decryption process. The TOE’s sensitive data (including its configuration information) is kept

within Android’s SharedPreferences under MODE_PRIVATE. The ASPP12 explicitly states keys must be

defined as sensitive data. For the TOE, the only key written to non-volatile storage is the Trivalent

System Service’s private RSA key which is protected by the platform in the Android key store.

 FDP_DEC_EXT.1: The TOE only uses the READ_EXTERNAL_STORAGE to write to an external SD

Card. The TOE does not access any of the listed sensitive information repositories. The TOE

communicates over networks only for the purpose of checking for TOE updates and does not transmit PII

data over a network. According to the TOE’s [AGD], the Trivalent Protect (for Android) can read/write

data to any directory in the application public storage “/sdcard”. The Bluetooth access is required because

the Getac device is only a Wi-Fi device and does not have an IEMI number. Trivalent first tries for a Wi-I

MAC address and if that is not available, gets a Bluetooth MAC address.

The TOE requires permissions in order to perform the following:

- Modify or delete the contents of SD card

- Read the contents of SD card

- Use Accounts on the device

- Full network access

- Connect and disconnect from Wi-Fi

- View network connections

- View Wi-Fi connections

- Pair with Bluetooth devices

- AuricFSAdmin

- Reorder running apps at startup

- Prevent tablet from Sleeping

 FDP_NET_EXT.1: The TOE communicates over networks only for the purpose of checking for TOE

updates and does not transmit PII data over a network. The TOE can also communicate with a remote TLS

server using TLSv1.2.

 FDP_PRT_EXT.1: The TOE encrypts each individual file separately. The encrypted files are stored in a

hidden directory at the same directory level as the original files. Before encryption, the TOE splits a file

into chunks so that access to specific parts within an encrypted file is easier. Using the SPX Core’s API,

each chunk is then encrypted separately. The original file is replaced with a directory structure of different

files after chunking and encryption. The directory structure of the encrypted file includes a metadata file

that describes the chunking structure, a hidden folder for every chunk that includes a header file, and the

encrypted file chunks split into encrypted pieces. The TOE implements functionality to ensure that

sensitive data is destroyed in volatile and non-volatile memory upon completion of either a decrypt or

encrypt operation of the sensitive files. The FUSE daemon returns the plaintext data returned by the API to

the user’s application for processing. The FUSE daemon clears all internal buffers of the data. The SPX

Core also has routines to destroy keys stored inside the SPX Core. The TOE does not create any temporary

resources.

Each chunk is decrypted separately (using the SPX Core’s decryption API). This allows much faster access

to read/write encrypted data to the encrypted file (e.g. random access files). For example, if data is added to

the middle of an encrypted file that has not been chunked, the entire file needs to be decrypted, and the data

needs to be inserted before the file is re-encrypted. In the same scenario, if the encrypted file was chunked,

then the first half of the chunks can be skipped before reaching the point at which the data needs to be

encrypted and inserted. The FUSE daemon chunks the data set on 10MB boundaries, so if only a subset of

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 29 of 31

the data is needed, the system will only encrypt the 10MB chunk that contains the desired data set. If the

data in the file wishes to be changed, then the whole file must be re-encrypted. Decrypted pieces are

retained for caching purposes for up to 30 seconds, before they are purged and the memory is wiped. Each

file has a unique FEK and IV, which is used to encrypt/decrypt each chunk. The wrapped FEK and IV are

stored in a hidden directory that resides in the same directory as the encrypted file.

The TOE programmatically destroys keys in volatile memory per Table 5 Key Destruction (such as keys

stored in RAM and used by the TOE) by calling Android’s Arrays.fill method in order to zero out the key

array.

The SPX Core also has its own zeroization. The module_destroy API zeroes the FEK and FEKEK from

volatile memory per Table 5 Key Destruction.

6.3 Identification and authentication

The TOE maintains identification and authentication by using DaR passwords. In order for an application to unlock

its files, the application must provide the correct DaR password. The DaR password is used to derive the necessary

keys in order to obtain the file encryption key, which is used to decrypt the files.

The Identification and authentication function is designed to satisfy the following security functional requirements:

 FIA_AUT_EXT.1: The TOE provides a DaR password based authorization factor in order to authenticate

to the FUSE service.

 FIA_FCT_EXT.1(3): The TOE allows a single user to login to the TOE with their own DaR password

(a.k.a., authorization factor). The TOE prompts for a DaR password when the mobile device starts. The

TOE provides user authorization by requiring a user to provide a DaR password to gain access to the

encrypted data protected by the FUSE daemon. Encrypt and Decrypt operations are transparently

performed based on applications performing file I/O to the Android public storage (“/sdcard”). The DaR

password is used to obtain two unique keys used to recover the file encryption key encryption key

(FEKEK). The DaR password is first hashed using HMAC-SHA384. The resulting hash is used as a DaR

password to load the Management Service’s BouncyCastle keystore. If the DaR password is incorrect, the

keystore will not load, and the wrapped FEKEK cannot be loaded. The DaR password previously provided

is then used to derive a key using PBKDF2 with HMAC-SHA-512 as the pseudo-random function. This

key is used to further unwrap the FEKEK. If the DaR password is incorrect, the key derived using PBKDF2

will not be able to successfully unwrap the FEKEK retrieved from the Management Service’s

BouncyCastle keystore. The FEKEK is ultimately used to decrypt the actual file encryption key used to

encrypt/decrypt files. In order to change a DaR password, the user must provide the previous DaR

password to retrieve the FEKEK. If authentication is successful, the FEKEK is loaded, and the TOE will

then use the new DaR password to derive keys to rewrap the FEKEK.

 FIA_X509_EXT.1: The TOE utilizes platform provided functionality to verify certificates authenticating

network endpoints. The platform supports both OSCP and CRL. The TOE relies upon the platforms to

verify the validity of certificates, their certificate status and their certificate path.

 FIA_X509_EXT.2: Because the TOE relies upon the platform for network communication, it also relies

upon the platform for validation of X.509v3 certificates as well as for checking the revocation status of the

certificate. The platform supports both OSCP and CRL, and does not accept certificates as valid when

revocation status cannot be determined.

6.4 Security management

The TOE permits checking of its version and license before a configuration file is created but does not allow

invocation of its encryption services until a configuration file has been created. The configuration file contains the

password complexity settings, authentication state (active/inactive) and service status (started/stopped). The

configuration options are stored in the evaluated Android 5.1.1 OS’s defined private area on flash memory. The

TOE allows users to change DaR passwords as part of its security management.

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 30 of 31

The Security management function is designed to satisfy the following security functional requirements:

 FMT_CFG_EXT.1: The TOE restricts access to its services upon first use. The services user interface is

permits checking of its version and license before a configuration file is created but does not allow access

to its encryption services. This allows the TOE to force the user to configure the TOE before accessing the

TOE’s encryptions services.

 FMT_MEC_EXT.1: The TOE’s evaluated Android platform automatically uses

/data/data/package/shared_prefs/ to store configuration options and settings. The Time-outs, Lock-outs,

and SALTs for PBKDFv2 are stored in the application-specific sandbox in /data/data/package/files/

 FMT_SMF.1: The TOE provides the ability to change DaR passwords/passphrases and configure the DaR

password/passphrase complexity setting.

6.5 Privacy

The Privacy function is designed to satisfy the following security functional requirements:

 FPR_ANO_EXT.1: The TOE does not transmit any PII over a network. The only use of a network is to

determine the currently available product version for the purpose of detecting available updates and to

communicate with an external TLS server using TLS v1.2.

6.6 Protection of the TSF

The TOE is physically protected by the boundary of the evaluated device. The TOE is executed on an evaluated

Android 5.1.1 OS. The TOE utilizes the evaluated platform’s APIs only. Android’s application management

requires application updates to be signed with an Android key, thus allowing the secure updates of its applications.

The Android OS Linux kernel is capable of ASLR (address space layout randomization), ensuring that no

application uses the same address layout on two different devices. Keys are also stored in memory, which can be

wiped by rebooting the device.

The Protection of the TSF function is designed to satisfy the following security functional requirements:

 FPT_AEX_EXT.1: The TOE components are compiled with “-v -DBUILD_JNI -DANDROID -DCyber -

O2 -fstack-protector-all -fexceptions” in order to enable ASLR and stack-based buffer overflow protection.

The Linux kernel of the TOE platform’s Android OS also provides address space layout randomization

utilizing the get_random_int(void) kernel random function to provide eight unpredictable bits to the base

address of any user-space memory mapping. The random function, though not cryptographic, ensures that

one cannot predict the value of the bits.

 FPT_API_EXT.1: The TOE uses only platform provided APIs and identified third party libraries. The

TOE’s [AGD] contains the full list of APIs used by the TOE.

 FPT_FEK_EXT.1: The TOE stores keys in non-volatile memory in conformance with FPT_KYP_EXT.1.

When keys are no longer needed, they are destroyed by the platform's mechanism. The TOE destroys keys

in volatile memory (such as keys stored in RAM and used by the TOE) by calling Android's Arrays.fill

method in order to zero out the key array. The TOE programmatically destroys these keys in memory after

they are no longer needed by the TOE (i.e. after encryption/decryption). The TOE relies on Android’s

platform application protections to prevent disclosure of application memory, which can lead to recovery of

keys. The TOE also stores FEKs on flash storage in the directory with the encrypted file. The SPX Core

has routines to destroy keys and secrets that are stored within the SPX Core. The TOE calls the SPX

Core’s module_destroy function to destroy FEKs.

 FPT_KYP_EXT.1: The TOE stores keys in non-volatile memory by relying on the Android and

BouncyCastle keystores. The TOE uses the Management Service's BouncyCastle keystore to store the

double wrapped FEKEK. The TOE uses the Android keystore to store all RSA public/private keys, which

are used to unwrap the double wrapped FEKEKS. The FEFEKs are wrapped using a password derived

Trivalent Protect (for Android)
(ASPP12/ASFEEP10) Security Target Version 0.8, June 4, 2018

 Page 31 of 31

from the user’s password via PBKDF2 and by an RSA 2048 –bit key wrap. The FEKEK is used as a wrap

of the file encryption keys (FEK, used for encrypting files). The FEK is an AES key that is stored in FUSE

daemon flash memory only while needed to encrypt or decrypt file data. The TOE utilizes the evaluated

Android platform’s AES key wrap and RSA OAEP key wrap functions to protect keys. The keys are stored

in non-volatile memory using Android’s keystore API.

 FPT_LIB_EXT.1: The TOE only uses the third party library libparser4.so, libparser4jni.so, and

libstlport_shared.so.

- libparser4.so – main SPX Core crypto library;

- libparser4jni.so – utilities used by libparser4.so; and

- libcryptopp.so – utility code for cryptographic libraries

 FPT_TUD_EXT.1: If a security vulnerability was found by a user, then the user must report it to Trivalent's

email at support@trivalent.co.

In the case that the vulnerability impacts the Trivalent System Service and FUSE daemon: Trivalent will

deliver updated code, as well as additional developer's documentation outlining any potential changes in the

implementation. In order to deliver the final resolution to the end-user, the partner developer or customer

will need to implement the updated code into the Getac device. The time for final delivery will be

dependent on their ability to update the end-user application, and to distribute to users via Mobile Device

Management Service, application store, or other delivery mechanism.

In the case the vulnerability directly relates to the Management Service: Trivalent shall deliver, via email or

other agreed upon method, an updated application with security vulnerabilities addressed. The delivered

software shall be accompanied by documentation outlining changes to the overall service. Once delivered

to the customer or partner, the application can be delivered to end-users via Internal MDM instances,

Internal 'App Stores' or other agreed upon methodologies.

The TOE's software is digitally signed by Trivalent. Each update is accompanied by documentation

outlining changes to the overall service, as well as compatible versions of the Trivalent API.

Checking for updates can be done in the app by selecting the following:

A popup will appear indicating whether an update is necessary and instructions on how to retrieve it.

6.7 Trusted path/channels

The TOE will protect all communication to a remote TLS server using TLSv1.2.

The Trusted path/channels function is designed to satisfy the following security functional requirements:

 FTP_DIT_EXT.1: The TOE has the ability to protect all communication to a remote TLS server using

TLSv1.2.

