Nessus 10.5.3

Security Target

Version 1.1

28 June 2023

Prepared for:

6100 Merriweather Drive 12th Floor Columbia, MD 21044

Prepared by:

Accredited Testing and Evaluation Labs 6841 Benjamin Franklin Drive Columbia, MD 21046

Contents

1	Security Tar	get Introduction	1
	1.1 Security	Target, TOE and CC Identification	1
		nance Claims	
		tions	
	1.3.1 Ter	minology	4
		previations and Acronyms	
2		TOE Description	
		·	
		ction	
		Overview	_
		erview	
		hitecture	
	•	rsical Boundary	
	•	ical Boundary	
	2.4.2.1	Timely Security Updates	
	2.4.2.2	Cryptographic Support	
	2.4.2.3 2.4.2.4	User Data Protection Identification and Authentication	
	2.4.2.4		
	_	Security Management	
	2.4.2.6	Privacy	
	2.4.2.7 2.4.2.8	Protection of the TSF Trusted Path/Channels	
		cumentation	
3		blem Definition	
J	•		
4	Security Obj	ectives	13
5	IT Security F	Requirements	14
	5.1 Extende	d Requirements	14
		urity Functional Requirements	
		ptographic Support (FCS)	
	5.2.1.1	FCS_CKM_EXT.1 Cryptographic Key Generation Services	
	5.2.1.2	FCS CKM.1/AK Cryptographic Asymmetric Key Generation	
	5.2.1.3	FCS_CKM_EXT.1/PBKDF Password Conditioning	16
	5.2.1.4	FCS_CKM.2 Cryptographic Key Establishment	
	5.2.1.5	FCS_COP.1/SKC Cryptographic Operation – Encryption/Decryption	
	5.2.1.6	FCS_COP.1/Hash Cryptographic Operation – Hashing	
	5.2.1.7	FCS_COP.1/Sig Cryptographic Operation – Signing	18
	5.2.1.8	FCS_COP.1/KeyedHash Cryptographic Operation – Keyed-Hash Message	
	Authentic	ation	18
	5.2.1.9	FCS_HTTPS_EXT.1/Server HTTPS Protocol	18
	5.2.1.10	FCS_HTTPS_EXT.2 HTTPS Protocol with Mutual Authentication	18
	5.2.1.11	FCS_RBG_EXT.1 Random Bit Generation Services	
	5.2.1.12	FCS_RBG_EXT.2 Random Bit Generation from Application	19
	5.2.1.13	FCS_STO_EXT.1 Storage of Credentials	
	5.2.1.14	FCS_TLS_EXT.1 TLS Protocol (TLS Package)	19

	5.2.1.15	FCS_TLSS_EXT.1 TLS Server Protocol (TLS Package)	19
	5.2.1.16	FCS_TLSS_EXT.2 TLS Server Support for Mutual Authentication (TLS Package)	20
	5.2.2 Use	er Data Protection (FDP)	20
	5.2.2.1	FDP_DAR_EXT.1(1) Encryption of Sensitive Application Data (by TOE)	20
	5.2.2.2	FDP_DAR_EXT.1(2) Encryption of Sensitive Application Data (by OE)	20
	5.2.2.3	FDP_DEC_EXT.1 Access to Platform Resources	20
	5.2.2.4	FDP_NET_EXT.1 Network Communications	21
	5.2.3 Ide	ntification and Authentication (FIA)	21
	5.2.3.1	FIA_X509_EXT.1 X.509 Certificate Validation	21
	5.2.3.2	FIA_X509_EXT.2 X.509 Certificate Authentication	22
	5.2.4 Sec	curity Management (FMT)	22
	5.2.4.1	FMT_CFG_EXT.1 Secure by Default Configuration	22
	5.2.4.2	FMT_MEC_EXT.1 Supported Configuration Mechanism	22
	5.2.4.3	FMT_SMF.1 Specification of Management Functions	22
	5.2.5 Pri	vacy (FPR)	22
	5.2.5.1	FPR_ANO_EXT.1 User Consent for Transmission of Personally Identifiable Inform	mation
		22	
	5.2.6 Pro	otection of the TSF (FPT)	22
	5.2.6.1	FPT_AEX_EXT.1 Anti-Exploitation Capabilities	22
	5.2.6.2	FPT_API_EXT.1 Use of Supported Services and APIs	23
	5.2.6.3	FPT_IDV_EXT.1 Software Identification and Versions	23
	5.2.6.4	FPT_LIB_EXT.1 Use of Third Party Libraries	
	5.2.6.5	FPT_TUD_EXT.1 Integrity for Installation and Update	23
	5.2.6.6	FPT_TUD_EXT.2 Integrity for Installation and Update	23
	5.2.7 Tru	sted Path/Channels (FTP)	24
	5.2.7.1	FTP_DIT_EXT.1 Protection of Data in Transit	24
5.3	TOE Sec	curity Assurance Requirements	24
6	TOE Summa	ary Specification	26
<i>C</i> 1	Timely	Security Updates	26
6.1 6.2	•	graphic Support	
6.3	,, ,	ita Protection	
		cation and Authentication	
6.4		/ Management	
6.5			
6.6	,	ion of the TCE	
6.7 6.8		ion of the TSF	
		Path/ChannelsPath/ChannelsProfile Claims	
7	Protection	Profile Claims	36
8	Rationale		37
8.1	TOE Sui	mmary Specification Rationale	37
_		OE Usage of Third-Party Components	
A.1		n APIs	
A.2		arty Libraries	
H.2	i iiiiu-P	arty Libraries	40
Tab	les		
Table	: 1: Terms a	nd Definitions	4
Table	2: Abbrevi	ations and Acronyms	4

Table 3: TOE Security Functional Components	15
Table 4: Assurance Components	
Table 5: Cryptographic Functions	
Table 6: Sensitive Data	
Table 7: TOE Network Usage	30
Table 8: Security Functions vs. Requirements Mapping	37

1 Security Target Introduction

The Security Target (ST) contains the following additional sections:

- Product and TOE Description (Section 2)
- Security Problem Definition (Section 3)
- Security Objectives (Section 4)
- IT Security Requirements (Section 5)

•

• The [TLS_PKG] does contain evaluation activities for how to evaluate its SFR claims as part of the evaluation of ASE_TSS.1, AGD_OPE.1, AGD_PRE.1, and ATE_IND.1. All Security Functional Requirements specified by [TLS_PKG] will be evaluated in the manner specified in that package.

Page 1 of 45

• TOE Summary Specification (Section 0)

•

- Protection Profile Claims (Section 0)
- This ST is conformant to the Protection Profile for Application Software, Version 1.4, 7 October 2021 ([APP_PP]) and Functional Package for Transport Layer Security (TLS), Version 1.1, 1 March 2019 ([TLS_PKG]) along with all applicable errata and interpretations from the certificate issuing scheme.

The TOE consists of a software application that runs on a Linux or Windows operating system as its platform.

As explained in section 3, Security Problem Definition, this ST includes the Security Problem Definition of [APP_PP] by reference.

As explained in section 4, Security Objectives, this ST includes the Security Objectives of [APP_PP] by reference.

All claimed SFRs are defined in [APP_PP] or [TLS_PKG]. The ST claims all mandatory SFRs and does not claim any optional or objective SFRs. Selection-based SFR claims are consistent with the selections made in the mandatory SFRs that prompt their inclusion.

- Rationale (Section 0)
- TOE Usage of Third-Party Components (Appendix A).

1.1 Security Target, TOE and CC Identification

ST Title - Nessus 10.5.3 Security Target

ST Version – Version 1.1

ST Date – 28 June 2023

TOE Identification – Nessus 10.5.3, supported on RHEL 8.7 and Windows Server 2019

TOE Developer – Tenable, Inc.

Evaluation Sponsor – Tenable, Inc.

CC Identification – Common Criteria for Information Technology Security Evaluation, Version 3.1, Revision 5, April 2017

1.2 Conformance Claims

This ST and the TOE it describes are conformant to the following CC specifications:

- Protection Profile for Application Software, Version 1.4, 7 October 2021 ([APP_PP]) with the following optional and selection-based SFRs:
 - o FCS CKM.1/AK
 - o FCS CKM.1/PBKDF
 - o FCS CKM.2
 - FCS_COP.1/SKC
 - o FCS COP.1/Hash
 - o FCS_COP.1/Sig
 - o FCS_COP.1/KeyedHash
 - o FCS_HTTPS_EXT.1/Server
 - o FCS HTTPS EXT.2
 - o FCS_RBG_EXT.2
 - o FIA X509 EXT.1
 - o FIA_X509_EXT.2
- Functional Package for Transport Layer Security (TLS), Version 1.1, 1 March 2019 ([TLS_PKG]) with the following optional and selection-based SFRs:
 - o FCS TLSS EXT.1
 - FCS_TLSS_EXT.2
- The following NIAP Technical Decisions affecting [APP_PP] apply to the TOE and have been accounted for in the ST development and the conduct of the evaluation, or were considered to be non-applicable for the reasons stated:

TD0624: Addition of DataStore for Storing and Setting Configuration Options

o N/A; the TOE is not evaluated on an Android platform.

TD0628: Addition of Container Image to Package Format

The ST accounts for this TD.

TD0650: Conformance claim sections updated to allow for MOD_VPNC_V2.3 and 2.4

 No change to ST; affects only PP conformance claims and the ST does not claim conformance to the relevant PP-Module.

TD0664: Testing activity for FPT_TUD_EXT.2.2

No change to ST; affects only evaluation activities.

TD0669: FIA_X509_EXT.1 Test 4 Interpretation

No change to ST; affects only evaluation activities.

TD0717: Format changes for PP_APP_V1.4

The ST accounts for this TD.

TD0719: ECD for PP APP V1.3 and 1.4

No change to ST; affects only PP conformance to CC.

TD0736: Number of elements for iterations of FCS_HTTPS_EXT.1

The ST accounts for this TD.

TD0743: FTP_DIT_EXT.1.1 Selection exclusivity

- The ST accounts for this TD.
- The following NIAP Technical Decisions affecting [TLS_PKG] apply to the TOE and have been accounted for in the ST development and the conduct of the evaluation, or were considered to be non-applicable for the reasons stated:

TD0442: Updated TLS Ciphersuites for TLS Package

o No change to ST; affects selections in FCS TLSS EXT.1 that are not applicable to the TOE.

TD0469: Modification of test activity for FCS_TLSS_EXT.1.1 test 4.1

No change to ST; the TD modifies evaluation activities only.

TD0499: Testing with pinned certificates

N/A; the TOE does not claim FCS_TLSC_EXT.1.

TD0513: CA Certificate loading

N/A; the TOE does not claim FCS_TLSC_EXT.1.

TD0588: Session Resumption Support in TLS package

The ST accounts for this TD.

TD0726: Corrections to (D)TLSS SFRs in TLS 1.1 FP

The ST accounts for this TD.

TD0739: PKG_TLS_V1.1 has 2 different publication dates

- o N/A; the TOE does not implement RSA-based key establishment methods.
- Common Criteria for Information Technology Security Evaluation Part 2: Security functional components, Version 3.1, Revision 5, April 2017.
 - o Part 2 Extended
- Common Criteria for Information Technology Security Evaluation Part 3: Security assurance components, Version 3.1 Revision 5, April 2017.
 - o Part 3 Extended

1.3 Conventions

The following conventions have been applied in this document:

- Security Functional Requirements Part 2 of the CC defines the approved set of operations that may be applied to functional requirements: iteration, assignment, selection, and refinement.
 - Iteration: allows a component to be used more than once with varying operations. This ST includes iterated requirements reproduced from [APP_PP], which uses descriptive strings to distinguish iterations of a requirement. For example, [APP_PP] identifies iterations of FCS_COP.1 as follows: FCS_COP.1/SKC, FCS_COP.1/Hash, FCS_COP.1/Sig, and FCS_COP.1/KeyedHash. ST-defined iterations (i.e., those not reproduced from [APP_PP]) use digits inside parentheses (e.g., '(1)') to distinguish between iterations of an SFR (e.g., FDP_DAR_EXT.1(1) and FDP_DAR_EXT.1(2)).
 - Assignment: allows the specification of an identified parameter. Assignments are indicated
 using italics and are surrounded by brackets (e.g., [assignment item]). Note that an
 assignment within a selection would be identified in both italics and underline, with the
 brackets themselves underlined since they are explicitly part of the selection text, unlike the
 brackets around the selection itself (e.g., [selection item, [assignment item inside selection]]).
 - Selection: allows the specification of one or more elements from a list. Selections are indicated using underlines and are surrounded by brackets (e.g., [selection item]).
 - Refinement: allows technical changes to a requirement to make it more restrictive and allows non-technical changes to grammar and formatting. Refinements are indicated using bold, for additions, and strike-through, for deletions (e.g., "... all objects ..." or "... some big things ..."). Note that minor grammatical changes that do not involve the addition or removal of entire words (e.g., for consistency of quantity such as changing "meets" to "meet") do not have formatting applied.
- Other sections of the ST Other sections of the ST use bolding to highlight text of special interest, such as captions.
- The ST does not show operations that have been completed by the PP authors, though it does preserve brackets to show where such operations have been made.

1.3.1 Terminology

The following terms are used in this ST:

Table 1: Terms and Definitions

Term	Definition
Nessus Agent	An environmental component that is installed on an endpoint system to collect details about that system's configuration and behavior.
Nessus Network Monitor	An environmental component that collects and analyzes raw network traffic.
Nessus	The TOE; an application that conducts remote scans of systems to collect data about their configuration and behavior and is used to deploy and collect data from remote Nessus Agent instances.
Platform	A general-purpose computer on which the TOE is installed.
Scan	The process by which the TOE actively collects data from a target system.
SecurityCenter or Tenable.sc	An environmental component that functions as a centralized aggregator for data collected by the TOE and by other environmental components.

1.3.2 Abbreviations and Acronyms

Table 2: Abbreviations and Acronyms

Term	Definition	
API	Application Programming Interface	
AES Advanced Encryption Standard		
ASLR	Address Space Layout Randomization	
CA	Certificate Authority	
CAVP	Cryptographic Algorithm Validation Program	
CBC	Cipher Block Chaining	
СС	Common Criteria for Information Technology Security Evaluation	
CCECG	Common Criteria Evaluated Configuration Guidance	
CEM	Common Evaluation Methodology for Information Technology Security	
CN	Common Name	
CTR	Counter (cryptographic mode)	
CVE	Common Vulnerabilities and Exposures	
DRBG	Deterministic Random Bit Generator	
EAR	Entropy Analysis Report	
ECC	Elliptic Curve Cryptography	
ECDHE	Elliptic Curve Diffie-Hellman (Ephemeral)	
ECDSA	Elliptic Curve Digital Signature Algorithm	
FIPS	Federal Information Processing Standard	
FQDN	Fully Qualified Domain Name	
GB	Gigabyte	
GCM	Galois/Counter Mode	
GUI	Graphical User Interface	
HMAC	Hashed Message Authentication Code	
LCE	Log Correlation Engine	

Term	Definition	
NIAP	National Information Assurance Partnership	
NIST	National Institute of Standards and Technology	
NNM	NNM Nessus Network Monitor	
OCSP	Online Certificate Status Protocol	
OE Operational Environment		
OID	Original Issue Document	
OS	Operating System	
PBKDF	Password-Based Key Derivation Function	
PGP	Pretty Good Privacy	
PII	Personally Identifiable Information	
PKI	Public Key Infrastructure	
PP	Protection Profile	
RAM	Random Access Memory	
RPC	Remote Procedure Call	
RSA	Rivest, Shamir and Adleman (algorithm for public-key cryptography)	
SAN	Subject Alternative Name	
SAR	Security Assurance Requirement	
SFR	Security Functional Requirement	
SHA	Secure Hash Algorithm	
SSH	Secure Shell	
SSL	Secure Sockets Layer	
ST	Security Target	
TCP	Transmission Control Protocol	
TLS	Transport Layer Security	
TOE	Target of Evaluation	
TSF	TOE Security Function	
WMI	Windows Management Instrumentation	
XML	Extensible Markup Language	

2 Product and TOE Description

2.1 Introduction

Nessus 10.5.3 is a software product that is designed to perform remote system scanning to determine configuration and patch levels that may indicate potential vulnerability risks to those systems. It is also designed to deploy, manage, and coordinate instances of the Nessus Agent application that is installed on endpoint systems to collect more detailed scan data than remote scanning can achieve on its own.

In addition to interacting with Nessus Agent applications in its operational environment, Nessus also connects to an environmental instance of Tenable.sc (SecurityCenter) which serves as a single point to aggregate and analyze data collected from various Tenable applications, including Nessus.

The TOE conforms to [APP_PP] and [TLS_PKG]. As such, the security-relevant functionality of the product is limited to the claimed requirements in those standards. The security-relevant functionality is described in sections 2.3 and 2.4. The product overview in section 2.2 below is intended to provide the reader with an overall summary of the entire product so that its intended usage is clear. The subset of the product functionality that is within the evaluation scope is subsequently described in the sections that follow it.

2.2 Product Overview

Nessus is a vulnerability management product that is designed to provide visibility into system assets. The product is used to discover and scan assets such as servers, endpoints, network devices, operating systems, databases, and applications. It can do this on its own through remote scanning. However, Nessus can also be used to deploy, configure, and collect data from environmental Nessus Agent applications that are installed on endpoint systems to collect more detailed system data through local scanning. Regardless of how it is obtained, information collected by Nessus can be fed to the environmental Tenable.sc product for centralized aggregation, analysis, and reaction.

Nessus also supports plugins, which can be downloaded and added to the product to detect specific vulnerabilities.

2.3 TOE Overview

The Target of Evaluation (TOE) for Nessus consists of the mandatory functionality prescribed by [APP_PP] and [TLS_PKG], as well as some selection-based functionality where needed.

The logical boundary is summarized in section 2.4.2 below. In general, the following Nessus capabilities are considered to be within the scope of the TOE:

- Protection of sensitive data at rest: the TOE uses encryption to protect credentials and other sensitive data.
- **Protection of data in transit:** the TOE secures data in transit between itself and its operational environment using TLS and HTTPS.
- Trusted updates: the TOE provides visibility into its current running version and the vendor distributes updates to it that are digitally signed so that administrators can securely maintain upto-date software.

Page 9 of 45

- **Remote administration:** the TOE provides a Web GUI to administer its security functions. Note however that the bulk of the product's administration functions are outside the scope of the App PP and TLS Package and are therefore not part of the TOE.
- **Cryptographic services:** the TOE includes an implementation of OpenSSL with NIST-validated algorithm services that it uses to secure data at rest and in transit.
- Secure interaction with operating system: the TOE is designed to interact with underlying host operating system platforms in such a way that the TOE cannot be used as an attack vector to compromise an operating system.

The TOE's scanning and data collection capabilities are outside the scope of the TOE (aside from the trusted channel used to transmit the collected data), as is any other product behavior that is not described in [APP_PP] or [TLS_PKG]. The content and execution of plugins is similarly excluded from the TOE, although they are discussed in the context of network communications because the TSF must use platform network resources to acquire them.

2.4 TOE Architecture

The Nessus TOE consists of the Nessus application, which is a C/C++ application. The TOE has both Linux and Windows platform versions.

2.4.1 Physical Boundary

The TOE consists of the following component, as shown in Figure 1 below:

Nessus 10.5.3.

Figure 1 shows the TOE in a sample deployment with other Tenable applications in its operational environment.

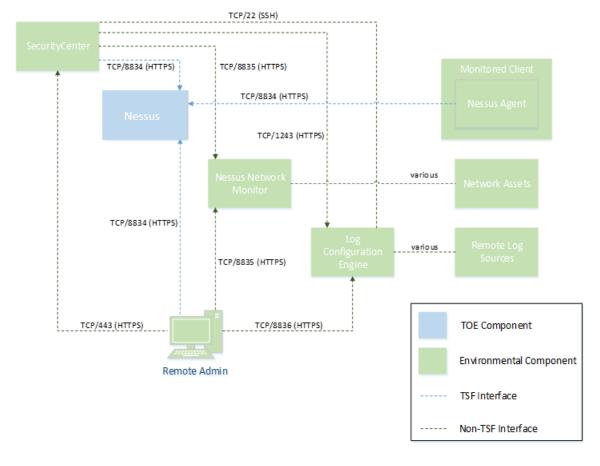


Figure 1 - TOE Boundary

TSF-relevant remote interfaces are shown in Figure 1. Note that the TOE consists of exactly one instance of Nessus.

The TOE has the following minimum system requirements for its host platform (for managing up to 10,000 agents):

- 4 x 2GHz cores
- 16 GB RAM
- 30 GB disk storage (direct-attached storage required)

These system requirements reflect the lightest usage scenarios for the TOE. Additional factors such as network size and storage retention requirements will affect the system requirements for a particular deployment. Refer to the relevant TOE documentation (as referenced in section 2.5) for the specific system requirements that apply to a given deployment.

There are no fixed network ports that must always be open for the TOE to function. Some network ports must be open, but these are configurable if the default ports cannot be used. The connections and their default ports are as follows:

• TCP/8834 (for administrator communications, communications with Tenable.sc, and communications with Nessus Agents)

Nessus will perform unauthenticated remote scans against target systems on various ports to determine whether services are available on those systems. This functionality is not within the scope of the TOE because it is not "sensitive data" but it is necessary for the product to function as advertised. In particular, if network configuration between Nessus and a target system blocks traffic to that system, it may result in a false negative if a service is actually running on the target system but cannot be detected by Nessus because of network configuration. The remote scan may also require Nessus to invoke the OS platform's SSH client to communicate with a remote system using SSH. This is not a TSF interface so it is outside the scope of this ST.

The TOE's operational environment includes the following:

- Other Tenable components (an instance of Tenable.sc and one or more instance of Nessus Agent applications—Nessus Network Monitor and Log Correlation Engine are expected to be present in the TOE's operational environment because they also interface with Tenable.sc but the TOE does not interact with these applications directly).
- Platform (hardware and software) on which the TOE is hosted.
 - The TOE is capable of running on a general-purpose Windows or Linux operating system on standard consumer-grade hardware on either a physical or virtual machine. For the evaluated configuration, the TOE was tested on virtualized instances of Windows Server 2019 and RHEL 8.7, each running on VMware ESXi 6.5 on a system using an AMD Ryzen Threadripper 1950X processor with the Zen microarchitecture.
- Full disk encryption is required for the TOE platform to ensure adequate data-at-rest protection.
- Web browser, used to access the GUI.

2.4.2 Logical Boundary

This section summarizes the security functions provided by the TOE:

- Timely Security Updates
- Cryptographic Support
- User Data Protection
- Identification and Authentication
- Security Management
- Privacy
- Protection of the TSF
- Trusted Path/Channels.

2.4.2.1 Timely Security Updates

The TOE developer has internal mechanisms for receiving reports of security flaws, tracking product vulnerabilities, and distributing software updates to customers in a timely manner.

2.4.2.2 Cryptographic Support

The TOE implements cryptography to protect data at rest and in transit.

For data at rest, the TOE stores credential data used to log in to the TOE as well as passphrase data used to protect PKI certificates that the TOE uses to authenticate to environmental components. This stored data is encrypted using AES or a PBKDF, depending on the data that is being stored.

For data in transit, the TOE implements TLS/HTTPS as a server. The TOE implements a TLS server for its administrative interface and to receive communications from other Tenable components in the operational environment.

The TOE implements all cryptography used for these functions using its own implementations of OpenSSL with NIST-approved algorithms. The TOE's DRBG is seeded using entropy from the underlying OS platform.

2.4.2.3 User Data Protection

The TOE uses cryptographic mechanisms to protect sensitive data at rest. The key used by the TOE to encrypt and decrypt sensitive data is cryptographically protected by the TOE platform.

The TOE relies on the network connectivity and system log capabilities of its host OS platform. The TOE supports user-initiated, externally-initiated, and application-initiated uses of the network. The TOE also access various system resources as part of conducting system scans. Specifically, the TOE supports remote scanning of a variety of target host systems from network devices to PCs running general-purpose operating systems. For the target system, the TOE can examine externally-visible ports and services. If provided credentials (either by receiving them from Tenable.sc or by direct administrator input), the TOE can authenticate to the target system and utilize platform specific tools such as apt, yum, and WMI to collect more detailed information about the system.

2.4.2.4 Identification and Authentication

The TOE supports X.509 certificate validation as part of establishing TLS and HTTPS connections. The TOE supports various certificate validity checking methods and can also check certificate revocation status using OCSP. If the validity status of a certificate cannot be determined, the certificate will be accepted. All other cases where a certificate is found to be invalid will result in rejection without an administrative override.

2.4.2.5 Security Management

The TOE itself and the configuration settings it uses are stored in locations recommended by the platform vendor for both Windows and Linux application versions.

The TOE includes a web GUI. This interface enforces username/password authentication using locally-stored credentials that are created using the TOE. The TOE does not include a default user account to access its management interface.

The security-relevant management functions supported by the TOE relate to configuration of transmission of system data (through execution of remote scanning) and configuration of transmission of application state information.

2.4.2.6 Privacy

The TOE does not handle personally identifiable information (PII) of any individuals.

2.4.2.7 Protection of the TSF

The TOE enforces various mechanisms to prevent itself from being used as an attack vector to its host OS platform. Each TOE platform version (Windows and Linux) implements address space layout randomization (ASLR), does not allocate any memory with both write and execute permissions, does not write user-modifiable files to directories that contain executable files, is compiled using stack overflow protection, and is compatible with the security features of its host OS platform.

Each TOE platform version contains libraries and invokes system APIs that are well-known and explicitly identified.

The TOE has a mechanism to determine its current software version. Software updates to the TOE can be acquired by leveraging its OS platform. The format of the software update is dependent on the TOE platform version. All updates are digitally signed to guarantee their authenticity and integrity.

2.4.2.8 Trusted Path/Channels

The TOE encrypts sensitive data in transit between itself and its operational environment using TLS and HTTPS. It facilitates the transmission of sensitive data from remote users over TLS and HTTPS.

2.5 TOE Documentation

Tenable provides the following product documentation in support of the installation and secure use of the TOE:

Nessus 10.5.x User Guide, Last Revised: May 19, 2023.

3 Security Problem Definition

This ST includes by reference the Security Problem Definition, composed of threats and assumptions, from [APP_PP]. The Common Criteria also provides for organizational security policies to be part of a security problem definition, but no such policies are defined in [APP_PP].

As a functional package, [TLS_PKG] does not contain a Security Problem Definition. The TOE's use of TLS is intended to mitigate the T.NETWORK_ATTACK and T.NETWORK_EAVESDROP threats defined by [APP_PP].

In general, the threat model of [APP_PP] is designed to protect against the following:

- Disclosure of sensitive data at rest or in transit that the user has a reasonable expectation of security for.
- Excessive or poorly-implemented interfaces with the underlying platform that allow an application to be used as an intrusion point to a system.

This threat model is applicable to the TOE because aggregated and analyzed vulnerability scan results could show an attacker what system weaknesses are present in the environment if they were able to obtain this data. It is also applicable because the TOE is a collection of executable binaries that an attacker could attempt to use to compromise the underlying OS platform if it was designed in such a manner that this exploitation was possible.

4 Security Objectives

As with the Security Problem Definition, this ST includes by reference the security objectives defined in [APP_PP]. This includes security objectives for the TOE (used to mitigate threats) and for its operational environment (used to satisfy assumptions).

As a functional package, [TLS_PKG] does not contain a Security Problem Definition. The TOE's use of TLS is intended to satisfy the O.PROTECTED_COMMS objective of [APP_PP] by implementing a specific method by which network communications are protected.

5 IT Security Requirements

This section defines the Security Functional Requirements (SFRs) and Security Assurance Requirements (SARs) that serve to represent the security functional claims for the Target of Evaluation (TOE) and to scope the evaluation effort.

The SFRs have all been drawn from the following Protection Profiles (PP) and Functional Packages:

- Protection Profile for Application Software, Version 1.4, 7 October 2021
- Functional Packages for Transport Layer Security (TLS), Version 1.1, 1 March 2019.

As a result, any selection, assignment, or refinement operations already performed by that PP on the claimed SFRs are not identified here (i.e., they are not formatted in accordance with the conventions specified in section 1.3 of this ST). Formatting conventions are only applied on SFR text that was chosen at the ST author's discretion.

5.1 Extended Requirements

All of the extended requirements in this ST have been drawn from [APP_PP] and [TLS_PKG]. These documents define the following extended SAR and extended SFRs; since they have not been redefined in this ST, [APP_PP] and [TLS_PKG] should be consulted for more information regarding these extensions to CC Parts 2 and 3.

Defined in [APP PP]:

- ALC_TSU_EXT.1 Timely Security Updates
- FCS_CKM_EXT.1 (as specified in NIAP TD0717)
- FCS CKM EXT.1/PBKDF (as specified in NIAP TD0717)
- FCS HTTPS EXT.1/Server HTTPS Protocol
- FCS HTTPS EXT.2 HTTPS Protocol with Mutual Authentication
- FCS RBG EXT.1 Random Bit Generation Services
- FCS_RBG_EXT.2 Random Bit Generation from Application
- FCS STO EXT.1 Storage of Credentials
- FDP_DAR_EXT.1 Encryption of Sensitive Application Data
- FDP DEC EXT.1 Access to Platform Resources
- FDP_NET_EXT.1 Network Communications
- FIA X509 EXT.1 X.509 Certificate Validation
- FIA_X509_EXT.2 X.509 Certificate Authentication
- FMT_CFG_EXT.1 Secure by Default Configuration
- FMT_MEC_EXT.1 Supported Configuration Mechanism
- FPR ANO EXT.1 User Consent for Transmission of Personally Identifiable Information
- FPT AEX EXT.1 Anti-Exploitation Capabilities
- FPT API EXT.1 Use of Supported Services and APIs
- FPT IDV EXT.1 Software Identification and Versions
- FPT_LIB_EXT.1 Use of Third Party Libraries
- FPT TUD EXT.1 Integrity for Installation and Update
- FPT_TUD_EXT.2 Integrity for Installation and Update
- FTP DIT EXT.1 Protection of Data in Transit.

Defined in [TLS_PKG]:

- FCS_TLS_EXT.1 TLS Protocol
- FCS_TLSS_EXT.1 TLS Server Protocol
- FCS_TLSS_EXT.2 TLS Server Support for Mutual Authentication.

5.2 TOE Security Functional Requirements

The following table identifies the SFRs that are satisfied by the TOE.

Table 3: TOE Security Functional Components

Requirement Class	Requirement Component	
FCS: Cryptographic Support	FCS_CKM.1/AK Cryptographic Asymmetric Key Generation	
	FCS_CKM_EXT.1/PBKDF Password Conditioning	
	FCS_CKM.2 Cryptographic Key Establishment	
	FCS_CKM_EXT.1 Cryptographic Key Generation Services	
	FCS_COP.1/SKC Cryptographic Operation – Encryption/Decryption	
	FCS_COP.1/Hash Cryptographic Operation – Hashing	
	FCS_COP.1/Sig Cryptographic Operation – Signing	
	FCS_COP.1/KeyedHash Cryptographic Operation – Keyed-Hash Message Authentication	
	FCS_HTTPS_EXT.1/Server HTTPS Protocol	
	FCS_HTTPS_EXT.2 HTTPS Protocol with Mutual Authentication	
	FCS_RBG_EXT.1 Random Bit Generation Services	
	FCS_RBG_EXT.2 Random Bit Generation from Application	
	FCS_STO_EXT.1 Storage of Credentials	
	FCS_TLS_EXT.1 TLS Protocol (TLS Package)	
	FCS_TLSS_EXT.1 TLS Server Protocol (TLS Package)	
	FCS_TLSS_EXT.2 TLS Server Support for Mutual Authentication (TLS Package)	
FDP: User Data Protection	FDP_DAR_EXT.1(1) Encryption of Sensitive Application Data (by TOE)	
	FDP_DAR_EXT.1(2) Encryption of Sensitive Application Data (by OE)	
	FDP_DEC_EXT.1 Access to Platform Resources	
	FDP_NET_EXT.1 Network Communications	
FIA: Identification and	FIA_X509_EXT.1 X.509 Certificate Validation	
authentication	FIA_X509_EXT.2 X.509 Certificate Authentication	
FMT: Security Management	FMT_CFG_EXT.1 Secure by Default Configuration	
	FMT_MEC_EXT.1 Supported Configuration Mechanism	
	FMT_SMF.1 Specification of Management Functions	
FPR: Privacy	FPR_ANO_EXT.1 User Consent for Transmission of Personally Identifiable Information	
FPT: Protection of the TSF	FPT_AEX_EXT.1 Anti-Exploitation Capabilities	
	FPT_API_EXT.1 Use of Supported Services and APIs	

Requirement Class	Requirement Component
	FPT_IDV_EXT.1 Software Identification and Versions
	FPT_LIB_EXT.1 Use of Third Party Libraries
	FPT_TUD_EXT.1 Integrity for Installation and Update
	FPT_TUD_EXT.2 Integrity for Installation and Update
FTP: Trusted Path/Channels FTP_DIT_EXT.1 Protection of Data in Transit	

5.2.1 Cryptographic Support (FCS)

5.2.1.1 FCS CKM EXT.1 Cryptographic Key Generation Services

FCS_CKM_EXT.1.1¹ The application shall [

• Implement asymmetric key generation

].

5.2.1.2 FCS_CKM.1/AK Cryptographic Asymmetric Key Generation

FCS_CKM.1.1/AK² The application shall [

• implement functionality

] to generate asymmetric cryptographic keys in accordance with a specified cryptographic key generation algorithm [

• [ECC schemes] using ["NIST curves" P-384 and [P-256, P-521]] that meet the following: [FIPS PUB 186-4, "Digital Signature Standard (DSS)", Appendix B.4]

].

5.2.1.3 FCS CKM EXT.1/PBKDF³ Password Conditioning

FCS_CKM_EXT.1.1/PBKDF A password/passphrase shall perform [Password-based Key Derivation

Functions] in accordance with a specified cryptographic algorithm as specified in FCS_COP.1/KeyedHash, with [10,000] iterations, and output cryptographic leavings [138] that most the following [NUST SP 200, 132]

key sizes [128] that meet the following [NIST SP 800-132].

FCS_CKM_EXT.1.2/PBKDF The TSF shall generate salts using a RBG that meets FCS_RBG_EXT.1 and with entropy corresponding to the security strength selected for PBKDF in

FCS_CKM_EXT.1.1/PBKDF.

Page 19 of 45

¹ Modified in accordance with TD0717

² Modified in accordance with TD0717.

³ Modified in accordance with TD0717.

5.2.1.4 FCS_CKM.2 Cryptographic Key Establishment

FCS_CKM.2.1

The application shall [implement functionality] to perform cryptographic key establishment in accordance with a specified cryptographic key establishment method: [

 [Elliptic curve-based key establishment schemes] that meet the following: [NIST Special Publication 800-56A, "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography"]

].

5.2.1.5 FCS_COP.1/SKC Cryptographic Operation – Encryption/Decryption

FCS_COP.1.1/SKC4

The application shall perform [encryption/decryption] in accordance with a specified cryptographic algorithm [

- AES-CBC (as defined in NIST SP 800-38A) mode,
- AES-GCM (as defined in NIST SP 800-38D) mode,
- AES-XTS (as defined in NIST SP 800-38E) mode

] and cryptographic key sizes [128-bit, 256-bit].

Application Note:

The TOE uses both 128 and 256-bit AES-CBC and AES-GCM keys in support of TLS. The TOE encrypts passphrases used for certificate encryption using a 256-bit AES-XTS key. Although the TOE's cryptographic module is capable of using 128-bit keys in AES-XTS mode, the TOE does not make use of this capability.

5.2.1.6 FCS_COP.1/Hash Cryptographic Operation – Hashing

FCS COP.1.1/Hash⁵

The application shall perform [cryptographic hashing services] in accordance with a specified cryptographic algorithm [

- SHA-256,
- SHA-384,
- SHA-512

] and message digest sizes [

- 256,
- 384,
- 512

] bits that meet the following: [FIPS Pub 180-4].

Page 20 of 45

⁴ Modified in accordance with TD0717.

⁵ Modified in accordance with TD0717.

5.2.1.7 FCS_COP.1/Sig Cryptographic Operation – Signing

FCS_COP.1.1/Sig⁶

The application shall perform [cryptographic signature services (generation and verification)] in accordance with a specified cryptographic algorithm [

 RSA schemes using cryptographic key sizes of [2048-bit or greater] that meet the following: [FIPS PUB 186-4, "Digital Signature Standard (DSS)", Section 5]

].

5.2.1.8 FCS_COP.1/KeyedHash Cryptographic Operation – Keyed-Hash Message Authentication

FCS_COP.1.1/KeyedHash⁷ The application shall perform [keyed-hash message authentication] in accordance with a specified cryptographic algorithm [

- HMAC-SHA-256
- HMAC-SHA-384
- HMAC-SHA-512]

and [

• no other algorithms

] with key sizes [256 bits, 384 bits, 512 bits] and message digest sizes [256, 384, 512] and [no other size] bits that meet the following: [FIPS Pub 198-1, 'The Keyed-Hash Message Authentication Code' and FIPS Pub 180-4, 'Secure Hash Standard'].

5.2.1.9 FCS_HTTPS_EXT.1/Server⁸ HTTPS Protocol

FCS_HTTPS_EXT.1.1/Server The application shall implement the HTTPS protocol that complies with

RFC 2818.

FCS_HTTPS_EXT.1.2/Server The application shall implement HTTPS using TLS as defined in the

Functional Package for TLS.

FCS HTTPS EXT.1.3/Server The application shall [[not establish the connection]] if the peer

certificate is deemed invalid.

5.2.1.10 FCS HTTPS EXT.2 HTTPS Protocol with Mutual Authentication

FCS_HTTPS_EXT.2.1 The application shall [not establish the connection] if the peer certificate is deemed invalid.

5.2.1.11 FCS RBG EXT.1 Random Bit Generation Services

FCS_RBG_EXT.1.1 The application shall [

implement DRBG functionality

] for its cryptographic operations.

Page 21 of 45

⁶ Modified in accordance with TD0717.

⁷ Modified in accordance with TD0717.

⁸ Modified in accordance with TD0736.

5.2.1.12 FCS_RBG_EXT.2 Random Bit Generation from Application

FCS_RBG_EXT.2.1

The application shall perform all deterministic random bit generation (DRBG) services in accordance with NIST Special Publication 800-90A using [CTR_DRBG (AES)].

FCS_RBG_EXT.2.2

The deterministic RBG shall be seeded by an entropy source that accumulates entropy from a platform-based DRBG and [

no other noise source

] with a minimum of [

• 256 bits

] of entropy at least equal to the greatest security strength (according to NIST SP 800-57) of the keys and hashes that it will generate.

5.2.1.13 FCS STO EXT.1 Storage of Credentials

FCS STO EXT.1.1

The application shall [

 implement functionality to securely store [Web GUI authentication credentials, PKI certificate passphrases] according to [FCS_COP.1/SKC, FCS_CKM_EXT.1/PBKDF]

] to non-volatile memory.

5.2.1.14 FCS TLS EXT.1 TLS Protocol (TLS Package)

FCS TLS EXT.1.1

The product shall implement [

TLS as a server

1.

5.2.1.15 FCS TLSS EXT.1 TLS Server Protocol (TLS Package)

FCS_TLSS_EXT.1.19

The product shall implement TLS 1.2 (RFC 5246) and [no earlier TLS versions] as a server that supports the cipher suites [

- TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5289,
- TLS ECDHE RSA WITH AES 128 GCM SHA256 as defined in RFC 5289,
- TLS ECDHE RSA WITH AES 256 CBC SHA384 as defined in RFC 5289,
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289]

and also supports functionality for [

mutual authentication

].

FCS_TLSS_EXT.1.2

The product shall deny connections from clients requesting SSL 2.0, SSL 3.0, TLS 1.0 and [TLS 1.1].

⁹ This element is modified by TD0442.

FCS_TLSS_EXT.1.3¹⁰ The product shall perform key establishment for TLS using [

• <u>ECDHE parameters using elliptic curves [secp256r1, secp384r1, secp521r1]</u> and no other curves

].

5.2.1.16 FCS TLSS EXT.2 TLS Server Support for Mutual Authentication (TLS Package)

FCS_TLSS_EXT.2.1 The product shall support authentication of TLS clients using X.509v3 certificates.

FCS_TLSS_EXT.2.2 The product shall not establish a trusted channel if the client certificate is invalid.

FCS_TLSS_EXT.2.3 The product shall not establish a trusted channel if the Distinguished Name (DN) or Subject Alternative Name (SAN) contained in a certificate does not match one

or Subject Alternative Name (SAN) contained in a certificate does not match on of the expected identifiers for the client.

5.2.2 User Data Protection (FDP)

5.2.2.1 FDP_DAR_EXT.1(1) Encryption of Sensitive Application Data (by TOE)

FDP_DAR_EXT.1.1(1) The application shall [

protect sensitive data in accordance with FCS_STO_EXT.1

] in non-volatile memory.

Application Note:

"Sensitive data" includes both the credential data specified in FCS_STO_EXT.1 as well as system scan, network traffic, and log data that is collected from the Operational Environment. This data is not credential data, but it is still protected using the methods specified in FCS_STO_EXT.1. This is because all sensitive data, regardless of whether or not it is credential data, is stored in an encrypted database.

5.2.2.2 FDP DAR EXT.1(2) Encryption of Sensitive Application Data (by OE)

FDP_DAR_EXT.1.1(2) The application shall [

• leverage platform-provided functionality to encrypt sensitive data

] in non-volatile memory.

Application Note:

The database encryption referenced in FDP_DAR_EXT.1(1) requires a secret key to be stored on the platform. This is considered to be sensitive data and is therefore protected using platform-provided means.

5.2.2.3 FDP DEC EXT.1 Access to Platform Resources

FDP_DEC_EXT.1.1 The application shall restrict its access to [

network connectivity

].

FDP_DEC_EXT.1.2

The application shall restrict its access to [

- system logs,
- [system configuration]

].

Page 23 of 45

¹⁰ This element is modified by TD0726.

5.2.2.4 FDP_NET_EXT.1 Network Communications

FDP NET EXT.1.1

The application shall restrict network communication to [

- <u>User-initiated communication for [</u>
 - o access to Web GUI,
 - o checking for and downloading plugin updates]
- Respond to [
 - o collection of scan results from Nessus Agents,
 - o retrieval of scan results by Tenable.sc,
 - o receipt of pushed plugin updates from Tenable.sc]
- [application-initiated network communication for
 - checking for and downloading plugin updates,

].

5.2.3 Identification and Authentication (FIA)

5.2.3.1 FIA X509 EXT.1 X.509 Certificate Validation

FIA_X509_EXT.1.1

The application shall [implement functionality] to validate certificates in accordance with the following rules:

- RFC 5280 certificate validation and certificate path validation.
- The certificate path must terminate with a trusted CA certificate.
- The application shall validate a certificate path by ensuring the presence of the basicConstraints extension and that the CA flag is set to TRUE for all CA certificates, and that any path constraints are met.
- The application shall validate that any CA certificate includes caSigning purpose in the key usage field.
- The application shall validate the revocation status of the certificate using [OCSP as specified in RFC 6960].
- The application shall validate the extendedKeyUsage (EKU) field according to the following rules:
 - Certificates used for trusted updates and executable code integrity verification shall have the Code Signing purpose (id-kp 3 with OID 1.3.6.1.5.5.7.3.3) in the extendedKeyUsage field.
 - Server certificates presented for TLS shall have the Server Authentication purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in the EKU field.
 - Client certificates presented for TLS shall have the Client Authentication purpose (id-kp 2 with OID 1.3.6.1.5.5.7.3.2) in the EKU field.
 - S/MIME certificates presented for email encryption and signature shall have the Email Protection purpose (id-kp 4 with OID 1.3.6.1.5.5.7.3.4) in the EKU field.
 - OCSP certificates presented for OCSP responses shall have the OCSP Signing purpose (id-kp 9 with OID 1.3.6.1.5.5.7.3.9) in the EKU field.

 Server certificates presented for EST shall have the CMC Registration Authority (RA) purpose (id-kp-cmcRA with OID 1.3.6.1.5.5.7.3.28) in the EKU field.

FIA_X509_EXT.1.2 The application shall treat a certificate as a CA certificate only if the basicConstraints extension is present and the CA flag is set to TRUE.

5.2.3.2 FIA X509 EXT.2 X.509 Certificate Authentication

FIA_X509_EXT.2.1 The application shall use X.509v3 certificates as defined by RFC 5280 to support authentication for [HTTPS, TLS].

FIA_X509_EXT.2.2 When the application cannot establish a connection to determine the validity of a certificate, the application shall [accept the certificate].

5.2.4 Security Management (FMT)

5.2.4.1 FMT_CFG_EXT.1 Secure by Default Configuration

FMT_CFG_EXT.1.1 The application shall provide only enough functionality to set new credentials when configured with default credentials or no credentials.

FMT_CFG_EXT.1.2 The application shall be configured by default with file permissions which protect the application's binaries and data files from modification by normal unprivileged users.

5.2.4.2 FMT MEC EXT.1Supported Configuration Mechanism

FMT_MEC_EXT.1.1 The application shall [invoke the mechanisms recommended by the platform vendor for storing and setting configuration options].

5.2.4.3 FMT SMF.1 Specification of Management Functions

FMT_SMF.1.1

The TSF shall be capable of performing the following management functions [

- <u>enable/disable the transmission of any information describing the system's hardware, software, or configuration,</u>
- <u>enable/disable transmission of any application state (e.g. crashdump)</u> information,

].

5.2.5 Privacy (FPR)

5.2.5.1 FPR_ANO_EXT.1 User Consent for Transmission of Personally Identifiable Information

FPR_ANO_EXT.1.1 The application shall [

• not transmit PII over a network

].

5.2.6 Protection of the TSF (FPT)

5.2.6.1 FPT AEX EXT.1 Anti-Exploitation Capabilities

FPT_AEX_EXT.1.1 The application shall not request to map memory at an explicit address except for [no exceptions].

FPT_AEX_EXT.1.2 The application shall [

• not allocate any memory region with both write and execute permissions

].

FPT_AEX_EXT.1.3 The application shall be compatible with security features provided by the platform vendor.

FPT_AEX_EXT.1.4 The application shall not write user-modifiable files to directories that contain executable files unless explicitly directed by the user to do so.

FPT_AEX_EXT.1.5 The application shall be built with stack-based buffer overflow protection enabled.

5.2.6.2 FPT API EXT.1 Use of Supported Services and APIs

FPT_API_EXT.1.1 The application shall use only documented platform APIs.

5.2.6.3 FPT IDV EXT.1 Software Identification and Versions

FPT_IDV_EXT.1.1 The application shall be versioned with [[semantic versioning (SemVer)]].

5.2.6.4 FPT LIB EXT.1 Use of Third Party Libraries

FPT_LIB_EXT.1.1 The application shall be packaged with only [third-party libraries listed in Appendix A.2].

Application Note: The TOE uses a large number of third-party libraries so this information has been provided in an Appendix for readability purposes.

5.2.6.5 FPT_TUD_EXT.1 Integrity for Installation and Update

FPT_TUD_EXT.1.1 The application shall [leverage the platform] to check for updates and patches to the application software.

FPT_TUD_EXT.1.2 The application shall [provide the ability, leverage the platform] to query the current version of the application software.

FPT_TUD_EXT.1.3 The application shall not download, modify, replace, or update its own binary code.

FPT_TUD_EXT.1.4 Application updates shall be digitally signed such that the application platform can cryptographically verify them prior to installation.

FPT_TUD_EXT.1.5 The application is distributed [as an additional software package to the platform OS].

5.2.6.6 FPT TUD EXT.2 Integrity for Installation and Update

FPT_TUD_EXT.2.1¹¹ The application shall be distributed using [the format of the platform-supported package manager].

FPT_TUD_EXT.2.2 The application shall be packaged such that its removal results in the deletion of all traces of the application, with the exception of configuration settings, output files, and audit/log events.

Page 26 of 45

¹¹ Modified in accordance with TD0628.

FPT_TUD_EXT.2.3 The application installation package shall be digitally signed such that its platform can cryptographically verify them prior to installation.

5.2.7 Trusted Path/Channels (FTP)

5.2.7.1 FTP DIT EXT.1 Protection of Data in Transit

FTP_DIT_EXT.1.1¹² The application shall [

- encrypt all transmitted [sensitive data] with [
 - HTTPS as a server in accordance with FCS HTTPS EXT.1/Server for [retrieval of scan results by Tenable.sc, securing administrator interactions with the TOE],
 - HTTPS as a server using mutual authentication in accordance with FCS_HTTPS_EXT.2 for [retrieval of scan results by Tenable.sc, securing administrator interactions with the TOE],
 - TLS as a server as defined in the Functional Package for TLS and also supports functionality for [mutual authentication] for [collecting local scan results from connected Nessus Agent]]

] between itself and another trusted IT product.

Application Note: HTTPS server functionality also implements mutual authentication (FCS_HTTPS_EXT.2).

5.3 TOE Security Assurance Requirements

The security assurance requirements for the TOE are included by reference to the App PP.

Requirement Class	Requirement Component	
ADV: Development	ADV_FSP.1 Basic Functional Specification	
AGD: Guidance Documentation	AGD_OPE.1 Operational User Guidance	
	AGD_PRE.1 Preparative Procedures	
ALC: Life-cycle Support	ALC_CMC.1 Labeling of the TOE	
	ALC_CMS.1 TOE CM coverage	
	ALC_TSU_EXT.1 Timely Security Updates	
ATE: Tests	ATE_IND.1 Independent Testing – Conformance	
AVA: Vulnerability Assessment	AVA_VAN.1 Vulnerability Survey	

Table 4: Assurance Components

As a functional package, [TLS_PKG] does not define its own SARs. The expectation is that all SARs required by [APP_PP] will apply to the entire TOE, including the portions addressed by [TLS_PKG]. Consequently, the evaluation activities specified in [APP_PP] apply to the entire TOE evaluation, including any changes made to them by subsequent NIAP Technical Decisions as summarized in section 1.2 above.

Page 27 of 45

¹² Modified in accordance with TD0743.

The [TLS_PKG] does contain evaluation activities for how to evaluate its SFR claims as part of the evaluation of ASE_TSS.1, AGD_OPE.1, AGD_PRE.1, and ATE_IND.1. All Security Functional Requirements specified by [TLS_PKG] will be evaluated in the manner specified in that package.

6 TOE Summary Specification

This chapter describes the security functions of the TOE:

- Timely Security Updates
- Cryptographic Support
- User Data Protection
- Identification and Authentication
- Security Management
- Privacy
- Protection of the TSF
- Trusted Path/Channels.

6.1 Timely Security Updates

Tenable supports a timely security update process for the TOE In addition to their own internal research, the product vendor supports disclosure of potential issues using community forums, direct engagement, encrypted email (PGP) from customers and researchers, and the Tenable support channel. For issues where there is a potential security concern, the support channel uses HTTPS for secure disclosure.

When an issue is reported, Tenable will determine its applicability to the product. The length of time needed to make this determination depends on the complexity of the issue and the extent to which it can be reproduced; well-documented issues such as exposure to a published CVE can be made quickly. If found to be a security issue, a patch is released within 30 days. Tenable monitors the third-party components used by the TOE for potential security issues as well. However, an issue with a dependent component may not be addressed if found not to be applicable to the TOE. For example, security issues are frequently found within the PHP image library but Tenable does not install this library as part of the Nessus distribution.

Security updates to the TOE are delivered as regular update packages in the same manner as a functional update. This process is described in section 6.7 below.

6.2 Cryptographic Support

The TOE uses cryptography to secure data in transit between itself and its operational environment.

All TOE cryptographic services are implemented by the OpenSSL cryptographic library. The TOE uses OpenSSL 3.0.9. The cryptographic algorithms supplied by the TOE are NIST-validated. The following table identifies the cryptographic algorithms used by the TSF, the associated standards to which they conform, and the NIST certificates that demonstrate that the claimed conformance has been met.

Table 5: Cryptographic Functions

Functions	Standards	Certificates	
FCS_CKM.1/AK Cryptographic Asymmetric Key Generation			
ECC key pair generation (NIST curves P-256, P-384, P-521)	FIPS PUB 186-4	A3617: ECDSA KeyGen (FIPS186-4)	

Functions	Standards	Certificates		
FCS_CKM.2 Cryptographic Key Establishment				
ECDSA based key establishment	NIST SP 800-56A	A3617: KAS-ECC-SSC Sp800-56Ar3		
FCS_COP.1/SKC Cryptographic Operation – E	Encryption/Decryption			
AES-CBC (128, 256 bits)	CBC as defined in NIST SP 800-38A	A3617: AES-CBC		
AES-GCM (128, 256 bits)	GCM as defined in NIST SP 800-38D	A3617: AES-GCM		
AES-XTS (256 bits)	XTS as defined in NIST SP 800-38E	A3617: AES-XTS		
FCS_COP.1/Hash Cryptographic Operation –	Hashing			
SHA-256, SHA-384, SHA-512 (digest sizes	FIPS PUB 180-4	A3617: SHA2-256		
256, 384, and 512 bits)		A3617: SHA2-384		
		A3617: SHA2-512		
FCS_COP.1/Sig Cryptographic Operation – Si	gning			
RSA (2048-bit or greater)	FIPS PUB 186-4, Section 4	A3617: RSA SigGen (FIPS 186-4)		
		A3617: RSA SigVer (FIPS 186-4)		
FCS_COP.1/KeyedHash Cryptographic Opera	FCS_COP.1/KeyedHash Cryptographic Operation – Keyed Hash Message Authentication			
HMAC-SHA-256, HMAC-SHA-384, and	FIPS PUB 198-1	A3617: HMAC-SHA2-256		
HMAC-SHA-512	FIPS PUB 180-4	A3617: HMAC-SHA2-384		
		A3617: HMAC-SHA2-512		
FCS_RBG_EXT.2 Random Bit Generation from Application				
CTR_DRBG	NIST SP 800-90A	A3617: Counter DRBG		
DRBG (256 bits)	NIST SP 800-57			

The TOE generates asymmetric keys in support of trusted communications. The TSF generates ECC keys using P-256, P-384, and P-521. These keys are generated in support of the ECDHE key establishment schemes that are used for TLS/HTTPS communications. To ensure sufficient key strength, the TOE also implements DRBG functionality for key generation, using the AES-CTR_DRBG. The proprietary Entropy Analysis Report (EAR) describes how the TSF extracts random data from software-based sources to ensure that an amount of entropy that is at least equal to the strength of the generated keys is present (i.e., at least 256 bits when the largest supported keys are generated) when seeding the DRBG for key generation purposes. The Windows platform version of the TOE relies on a third-party entropy source provided by the platform vendor. The Linux platform version of the TOE relies on the OS platform entropy source as well. Specifically, random numbers are obtained from the following platform APIs, depending on the platform used:

Windows: SystemPRNG

• Linux: invocation of /dev/random pseudo-device

In both cases, it is assumed that these platforms provide at least 256 bits of entropy.

The TOE uses TLS 1.2 for server communications. In the case where the TOE acts as a TLS server, all other TLS versions are rejected. The TLS server implementation support the following TLS cipher suites in the TOE's evaluated configuration:

- TLS ECDHE RSA WITH AES 128 CBC SHA256
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
- TLS ECDHE RSA WITH AES 256 GCM SHA384

All supported ciphersuites use elliptic curves as the method of key establishment. The TSF presents secp256r1, secp384r1, and secp521r1 as the supported values in the Supported Groups extension and uses the same NIST curves for key establishment.

As part of certificate validation in the establishment of TLS connectivity, the TOE will validate the reference identifier of a presented server certificate. For all TOE usage of mutual TLS authentication, the TSF will perform the same verification of a presented client certificate. This is done through validation of the Common Name (CN) and Subject Alternative Name (SAN) certificate fields, the latter of which is expected to contain the FQDN of the external system that is presenting the certificate to the TOE. The reference identifier is established by configuration. IP addresses are not supported. Wildcards are only supported for the left-most label immediately preceding the public suffix. Certificate pinning is not supported. All digital signatures used for the establishment of TLS communications use 2048-bit RSA.

The TOE uses TLS server functionality for communications between the TOE and other Tenable applications (Tenable.sc and Nessus Agent) and from remote administrators to the Web GUI interface. All uses of the TOE's TLS server support mutual authentication. The TOE's implementation of HTTPS conforms to RFC 2818. The connection will be rejected if certificate validation fails.

The TOE also uses OpenSSL to secure credential data at rest. Specifically, the TOE stores the following credentials:

- Web GUI authentication credentials: username and hashed password data for locally-defined users
- Passphrases for certificate encryption: used to encrypt PKI certificates that the TOE uses for communications with remote administrators and with environmental Tenable applications when using TLS mutual authentication.

The TOE may receive system credential data from Tenable.sc in its operational environment to initiate an authenticated scan of a target system, but the TSF does not maintain this data persistently and it is purged from memory after use.

The TOE encrypts passphrases used for certificate encryption using AES in XTS mode with a 256-bit key. The TOE encrypts administrative credentials using PBKDF2. The TOE uses the DRBG specified in FCS_RBG_EXT.2 to generate salts that contain at least as many entropy bits as the output key length. The TOE's PBKDF2 implementation performs 10,000 iterations and outputs a 128-bit strength key. Password-based derived keys are formed using a 128-bit salt that is randomly generated by the TOE's DRBG. This is input to the PBKDF function along with the password and specified hashing algorithm, which is SHA-512.

The TOE does not maintain a key hierarchy; the TOE's usage of PBKDF is to generate a hash.

The Cryptographic Support security function is designed to satisfy the following security functional requirements:

- FCS_CKM_EXT.1 The TOE implements its own cryptographic functionality.
- FCS_CKM.1/AK The TOE uses a NIST-validated implementation to generate asymmetric keys in support of TLS communications.
- FCS_CKM_EXT.1/PBKDF The TOE performs password-based key derivation in support of secure storage of credentials.
- FCS_CKM.2 The TOE performs NIST-validated key establishment in support of TLS communications.
- FCS_COP.1/SKC The TOE uses a NIST-validated implementation to perform AES encryption and decryption in support of both TLS communications and secure storage of credentials.
- FCS_COP.1/Hash The TOE uses a NIST-validated implementation to perform cryptographic hashing in support of TLS communications.
- FCS_COP.1/Sig The TOE uses a NIST-validated implementation to generate and verify RSA digital signatures in support of TLS communications.
- FCS_COP.1/KeyedHash The TOE uses a NIST-validated implementation to perform HMAC functions in support of TLS communications and the pseudo-random function used for passwordbased key derivation.
- FCS_HTTPS_EXT.1/Server The TOE implements HTTPS as a server to secure data in transit.
- FCS_HTTPS_EXT.2 The TOE implements mutual authentication when acting as an HTTPS server.
- FCS_RBG_EXT.1 The TOE implements its own random bit generation services.
- FCS_RBG_EXT.2 The TOE uses a NIST-validated implementation to generate pseudo-random bits and this implementation is seeded with sufficiently strong entropy collected from the operational environment.
- FCS_STO_EXT.1 The TOE uses its own cryptographic functions to secure credential data at rest.
- FCS TLS EXT.1 The TOE implements TLS to secure data in transit.
- FCS TLSS EXT.1 The TOE implements TLS as a server.
- FCS TLSS EXT.2 The TOE's TLS server implementation supports mutual authentication.

6.3 User Data Protection

[APP_PP] defines 'sensitive data' as follows: "Sensitive data may include all user or enterprise data or may be specific application data such as emails, messaging, documents, calendar items, and contacts. Sensitive data must minimally include PII, credentials, and keys. Sensitive data shall be identified in the application's TSS by the ST author."

The table below lists the data that is considered to be 'sensitive data' for this TOE along with where that data resides.

Table 6: Sensitive Data

Sensitive Data	Exchange	Protection at Rest	Protection in Transit
GUI credentials	Admin's browser to TOE over browser connection	FCS_STO_EXT.1 (PBKDF)	HTTPS
Remote system scan credentials	Tenable.sc to TOE; TOE to remote system	N/A – data only exists ephemerally and is not stored persistently	TLS; native protocol used by applicable OE authentication mechanism
Passphrase for PKI certificate encryption	None	FCS_STO_EXT.1 (AES)	N/A
Collected system scan data	Nessus Agent to TOE and TOE to Tenable.sc	FCS_STO_EXT.1 (AES)	HTTPS
Database encryption key (used for all AES operations listed above)	None	FDP_DAR_EXT.1(2)	N/A

The database encryption key is generated by the TOE's DRBG as part of the initial setup process. The key is stored as a read-only file owned by root or SYSTEM, depending on platform. The administrator has the ability to optionally set a passphrase to unlock the use of this key; if this option is chosen, they must enter the passphrase when the TOE first starts. The database encryption key is protected cryptographically by the platform's use of full disk encryption.

The underlying platform functionality that the TOE interacts with includes network connectivity, system configuration, and system logs. The TOE uses network connectivity for remote management, connections to environmental components, and remote scanning of target systems. The TOE accesses system configuration to collect data about a remote system and to generate a diagnostic report of local system configuration for troubleshooting purposes. The TOE accesses system logs on the local system (/var/log/messages or Windows Event Log) to record data about its own behavior.

The TOE uses environmental network capabilities in various ways. All communications between the TOE and environmental Tenable components are encrypted, as is administrative access. The following table highlights the TOE's network usage.

Component	User-Initiated	Externally-Initiated	TOE-Initiated
Nessus	Access to Web GUI	Collection of scan results from Nessus Agents	Check for and download of plugin updates
	Check for and download of plugin updates	Retrieval of scan results by Tenable.sc	
	Retrieve pushed plugin updates from Tenable.sc		
			Check for and download of binary and plugin updates from Nessus

Table 7: TOE Network Usage

The User Data Protection security function is designed to satisfy the following security functional requirements:

FDP_DAR_EXT.1(1) – Sensitive data at rest is protected by the TOE's implementation of AES.

- FDP_DAR_EXT.1(2) the AES key used by the TOE to protect sensitive data at rest is protected in turn by the platform's use of full disk encryption.
- FDP_DEC_EXT.1 The TOE's use of platform services is well understood by users prior to authorizing the TOE activity.
- FDP_NET_EXT.1 The TOE communicates over the network for well-defined purposes. Depending
 on the function, the use of network resources is user-initiated directly through the TSF, remotely
 initiated by a user performing an action in the operational environment, or initiated by the TOE
 itself.

6.4 Identification and Authentication

The TOE uses X.509 certificates for authentication of the following trusted communications: validation of administrator TLS client certificate; validation of Nessus Agent TLS client certificates; and validation of Tenable.sc TLS client certificate. It validates X.509 certificates using the path validation algorithm defined in RFC 5280, which can be summarized as follows:

- Check the public key algorithm and parameters of each certificate in the path
- Check the current date/time against the validity period of each certificate in the path
- Check the revocation status of each certificate in the path
- Check the issuer name to ensure it equals the subject name of the previous certificate in the path
- Check name constraints to make sure the subject name is within the permitted subtrees list of all
 previous CA certificates and not within the excluded subtrees list of any previous CA certificate
- Check the asserted certificate policy OIDs against the permissible OIDs of the previous certificate, including any policy mapping equivalencies asserted by the previous certificate
- Check policy constraints to ensure any explicit policy requirements are not violated
- For all CA certificates, confirm the presence of the basicConstraints extension and that the CA flag
 is set to TRUE, and ensure the key usage field includes the caSigning purpose
- Check the path length does not exceed any maximum path length asserted in this or a previous certificate
- Check the key usage extension
- Process any other recognized critical extensions.

The TOE validates the extendedKeyUsage field according to the following rules:

- Client certificates presented for TLS shall have the Client Authentication purpose (id-kp 2 with OID 1.3.6.1.5.5.7.3.2) in the extendedKeyUsage field.
- OCSP certificates presented for OCSP responses shall have the OCSP Signing purpose (id-kp 9 with OID 1.3.6.1.5.5.7.3.9) in the EKU field.

The TOE does not use any of the other values for the extended KeyUsage field listed in the requirement (i.e., Code Signing, Server Authentication, Email Protection, or CMC Registration Authority), so this part of the requirement is trivially satisfied.

The TOE validates the certificate chain to its root to ensure it terminates with a trusted CA certificate. It performs a revocation check on each certificate in the chain (except the root certificate) using Online Certificate Status Protocol (OCSP) in accordance with RFC 6960. In the event the revocation status of a certificate cannot be verified (i.e., the OCSP responder cannot be reached), the TOE accepts the certificate.

Because the TOE's use of the certificate validation function is to validate the authenticity of remote endpoints, the TSF chooses what certificates to use based on what is presented to it as part of establishing

the TLS session. The TOE is only assigned one certificate for its own use, so there is only one certificate that it will present in cases where a remote entity may need to validate it.

The Identification and Authentication security function is designed to satisfy the following security functional requirements:

- FIA_X509_EXT.1 X.509 certificates are validated by the TSF when establishing trusted communications.
- FIA_X509_EXT.2 X.509 certificates are used for TLS. When revocation status of a certificate cannot be determined, the TSF accepts the certificate by default.

6.5 Security Management

The TOE provides a web-based graphical user interface (GUI) that requires user authentication to access. As part of initial setup of the TOE, the administrator performing the install must specify an initial username/password that is used to log on to the web GUI; the TOE is not pre-loaded with "default" administrator credentials. These credentials are stored locally and protected by the TSF as per FCS STO EXT.1. Following the initial installation, additional accounts can be created.

During general operations, an administrator will typically interact with the TOE only through the environmental instance of Tenable.sc. However, Tenable.sc does not include the ability to directly modify the initial configuration settings of the TOE, or to configure the behavior of environmental Nessus Agents.

The TOE is installed into the following locations, depending on the platform version:

- Windows: C:\Program Files\Tenable\nessus
- Linux: /opt/nessus

All directories containing TOE software and data are configured by default in such a manner that nothing is world-writable on Linux and Administrator privileges are required to access them on Windows. Configuration settings that affect the TOE's interaction with the host OS platform are stored in /etc for Linux and the Windows Registry for Windows.

The TOE supports the following security-relevant management functions:

- Configuration of transmission of system's hardware, software, or configuration information
 - Conducts remote scanning of target systems and creates scan jobs for managed Nessus Agents to perform when scheduled
- Configuration of transmission of application state (crashdump) information
 - o Includes a diagnostics utility that is manually-initiated and is used to collect application state information that can be sent to Tenable for troubleshooting purposes

The Security Management security function is designed to satisfy the following security functional requirements:

- FMT_CFG_EXT.1 The TOE requires credentials to be defined before administrative use. The TOE is protected from direct modification by untrusted users via its host OS platform.
- FMT_MEC_EXT.1 Configuration settings for the TOE are stored in appropriate locations for each supported host OS platform.

 FMT_SMF.1 – Administrators can use the TSF to configure the collection of system data from the TOE's operational environment or to collect application state information that is used for troubleshooting.

6.6 Privacy

The TOE's primary function is to examine organizational assets for configuration or operational states that may indicate the presence of a vulnerability or misuse of organizational resources. To this end, the TOE collects data about system configuration and transmits it to the environmental Tenable.sc application for aggregation, analysis, and reporting. The TOE is not responsible for the collection or transmission of PII. The TOE accepts administrative credentials as part of the GUI login process but user account information is not considered to be PII.

The Privacy security function is designed to satisfy the following security functional requirements:

• FPR_ANO_EXT.1 – The TOE prevents the unnoticed/unauthorized transmission of PII across a network by not having functionality that is intended for such transmissions.

6.7 Protection of the TSF

The TOE implements several mechanisms to protect against exploitation. The TOE implements address space layout randomization (ASLR) through the use of the <code>/DYNAMICBASE</code> (Windows) and <code>-f PIC</code> (Linux) compiler flags and relies fully on its underlying host platforms to perform memory mapping. The TOE also does not use both <code>PROT_WRITE</code> and <code>PROT_EXEC</code> on the same memory regions. There is no situation where the TSF maps memory to an explicit address. The TOE is written in C and C++. The TOE is compiled with stack overflow protection, whether it is intended for use on Linux or Windows. The Linux platform version is compiled with <code>-fstack-protector-strong</code> and the Windows platform version is compiled with <code>/GS</code>. The TOE also has a web-based front-end, based on PHP and JavaScript. This is interpreted code to which compilation instructions do not apply.

Both platform versions of the TOE are designed to run on host OS platforms where platform security features have been enabled (e.g., Windows Defender Export Guard, SELinux enabled and enforcing). The TOE uses only documented platform APIs. Appendix A.1 lists the APIs used by the TOE. The TOE also makes use of third-party libraries. Appendix A.2 lists the libraries used by the TOE. The TOE is versioned using semver (Semantic Versioning) in the format x.y(.z) where x is the major version, y is the minor version, and the optional z is the patch version; SWID is not used. The TOE is a standalone application that is not natively bundled as part of a host OS.

The TOE can identify its current running versions through both platform and TSF-mediated methods. The Linux platform version of the TOE is installed as an RPM and will identify its version in RPM itself. The TOE will also return its version information if its binary is invoked with the -v flag on the OS platform, regardless of which platform version it is. An administrator can also check the version of the TOE by logging into its Web GUI, or they can use the environmental instance of Tenable.sc that is connected to the TOE to check the TOE's version.

The TOE can leverage its OS platform to check for software updates and acquire them if they are available. In this case, candidate updates are obtained by the administrator downloading them directly from Tenable's website or through a package manager such as yum. The TOE will not download, modify, replace, or update its own binary code. The TOE is packaged as an .rpm file for Linux and an .exe file for

Windows. Each are digitally signed by Tenable using 2048-bit RSA. Removing (uninstalling) the product will remove all executable code from the host system.

The Protection of the TSF security function is designed to satisfy the following security functional requirements:

- FPT_AEX_EXT.1 The TOE interacts with its host OS platform in a manner that does not expose the system to memory-related exploitation.
- FPT_API_EXT.1 The TOE uses documented platform APIs.
- FPT IDV EXT. 1 The TOE is versioned using semver.
- FPT_LIB_EXT.1 The set of third-party libraries used by the TOE is well-defined.
- FPT_TUD_EXT.1 There is a well-defined method for checking what version of the TOE is currently installed and whether updates to it are available. Updates are signed by the vendor and validated by the host OS platform prior to installation.
- FPT TUD EXT.2 The TOE can be updated through installation packages.

6.8 Trusted Path/Channels

In the evaluated configuration, the TOE uses its own cryptographic implementation to encrypt sensitive data in transit. Listed below are the various external interfaces to the TOE that rely on trusted communications.

Between TOE and operational environment:

- Between administrator and TOE Web GUI
 - Communications use mutually authenticated TLS/HTTPS (TOE is server)
 - o Configurable TCP port, 8834 is default
 - Used to secure administrator interactions with the TOE

Between TOE and environmental Tenable components:

- Between Tenable.sc and TOE
 - Communications use XML RPCs over mutually-authenticated TLS/HTTPS (Tenable.sc is client and TOE is server)
 - o Configurable TCP port, 8834 is default
 - Used by Tenable.sc to retrieve Nessus/Nessus Agent scan results from the TOE.
- Between TOE and Nessus Agent
 - Communications use TLS/HTTPS (Nessus Agent is client and TOE is server)
 - o Configurable TCP port, 8834 is default
 - Used by TOE to collect local scan results from the connected Nessus Agent

Note that remote acquisition of system data from the operational environment is not necessarily captured in an encrypted format because the TOE captures this data in the native formats used by the target systems. As such, this is not considered to be 'sensitive data' requiring data-in-transit protection.

The Trusted Path/Channels security function is designed to satisfy the following security functional requirements:

• FTP_DIT_EXT.1 – The TOE relies on its own mechanisms to secure data in transit between itself and its operational environment.

7 Protection Profile Claims

This ST is conformant to the *Protection Profile for Application Software*, Version 1.4, 7 October 2021 ([APP_PP]) and *Functional Package for Transport Layer Security (TLS)*, Version 1.1, 1 March 2019 ([TLS_PKG]) along with all applicable errata and interpretations from the certificate issuing scheme.

The TOE consists of a software application that runs on a Linux or Windows operating system as its platform.

As explained in section 3, Security Problem Definition, this ST includes the Security Problem Definition of [APP PP] by reference.

As explained in section 4, Security Objectives, this ST includes the Security Objectives of [APP_PP] by reference.

All claimed SFRs are defined in [APP_PP] or [TLS_PKG]. The ST claims all mandatory SFRs and does not claim any optional or objective SFRs. Selection-based SFR claims are consistent with the selections made in the mandatory SFRs that prompt their inclusion.

8 Rationale

This Security Target includes by reference the [APP_PP] Security Problem Definition, Security Objectives, and Security Assurance Requirements. The Security Target does not add, remove, or modify any of these items. Security Functional Requirements have been reproduced with the Protection Profile operations completed. All selections, assignments, and refinements made on the claimed Security Functional Requirements have been performed in a manner that is consistent with what is permitted by [APP_PP] and [TLS_PKG]. The Security Target claims the proper set of selection-based requirements based on the selections made in the mandatory requirements. Consequently, the claims made by this Security Target are sufficient to address the TOE's security problem. Rationale for the sufficiency of the TOE Summary Specification is provided below.

8.1 TOE Summary Specification Rationale

This section in conjunction with Section 0, the

The [TLS_PKG] does contain evaluation activities for how to evaluate its SFR claims as part of the evaluation of ASE_TSS.1, AGD_OPE.1, AGD_PRE.1, and ATE_IND.1. All Security Functional Requirements specified by [TLS_PKG] will be evaluated in the manner specified in that package.

Page 40 of 45

TOE Summary Specification, provides evidence that the security functions meet the TOE security requirements. Each description includes rationale indicating which requirements the corresponding security functions satisfy. The combined security functions work together to satisfy all of the security requirements. The security functions described in Section 6 are necessary for the TSF to enforce the required security functionality. Table 8 demonstrates the relationship between security requirements and functions.

Table 8: Security Functions vs. Requirements Mapping

	Cryptographic Support	User Data Protection	Identification and Authentication	Security Management	Privacy	Protection of the TSF	Trusted Path/Channels
FCS_CKM_EXT.1	Х						
FCS_CKM.1/AK	Х						
FCS_CKM_EXT.1/PBKDF	Х						
FCS_CKM.2	Х						
FCS_COP.1/SKC	Х						
FCS_COP.1/Hash	Х						
FCS_COP.1/Sig	Х						
FCS_COP.1/KeyedHash	Х						
FCS_HTTPS_EXT.1/Server	Х						
FCS_HTTPS_EXT.2	Х						
FCS_RBG_EXT.1	Х						
FCS_RBG_EXT.2	Х						
FCS_STO_EXT.1	Х						
FCS_TLS_EXT.1	Х						
FCS_TLSS_EXT.1	Х						
FCS_TLSS_EXT.2	Х						
FDP_DAR_EXT.1(1)		Х					
FDP_DAR_EXT.1(2)		Х					
FDP_DEC_EXT.1		Х					
FDP_NET_EXT.1		Х					
FIA_X509_EXT.1			Х				
FIA_X509_EXT.2			Х				
FMT_CFG_EXT.1				Х			
FMT_MEC_EXT.1				Х			
FMT_SMF.1				Х			

	Cryptographic Support	User Data Protection	Identification and Authentication	Security Management	Privacy	Protection of the TSF	Trusted Path/Channels
FPR_ANO_EXT.1					Х		
FPT_AEX_EXT.1						Х	
FPT_API_EXT.1						Х	
FPT_IDV_EXT.1						Х	
FPT_LIB_EXT.1						Х	
FPT_TUD_EXT.1						Х	
FPT_TUD_EXT.2						Х	
FTP_DIT_EXT.1							Х

Appendix A TOE Usage of Third-Party Components

This Appendix lists the platform APIs and third-party libraries that are used by the TOE.

A.1 Platform APIs

Listed below are the platform APIs used by the TOE. Note that these APIs do not necessarily relate to the TOE functionality claimed in the Security Target; however, since they are bundled with the product itself they are disclosed since a vulnerability outside the logical boundary of the product could still present an exploitable vulnerability.

Windows:

CrtSetDbgFlag, heapmin, set invalid parameter handler, strtoi64, unix2windows 64, wtoi, wtoi64, accept, AllocateAndInitializeSid,bind, CheckTokenMembership, CloseHandle, CloseServiceHandle, closesocket, CoCreateInstance, CoInitializeEx, CoInitializeSecurity, CompareStringW,connect, ControlService, CoSetProxyBlanket, CoUninitialize, CreateEvent, CreateFile, CreateFileA, CreatePipe, CreateProcess, CreateService, CreateThread, CreateToolhelp32Snapshot,ctime_s, DeleteFileA, DeleteService, EnterCriticalSection, EnumServicesStatus, FileTimeToSystemTime, FindClose, FindFirstFileA, FindNextFile, FormatMessage, FreeLibrary, FreeSid, GetComputerNameA, GetConsoleMode, GetCurrentProcess, GetCurrentProcessId, GetCurrentThreadId,getenv, GetExitCodeProcess, GetFileAttributes, GetFileSize, GetFileVersionInfoExW, GetFileVersionInfoSizeExW, GetLastError, GetModuleHandle, GetProcAddress, GetProcessHeap, GetProcessId, GetSecurityDescriptorControl, GetSecurityInfo, GetServiceDisplayNameA,getsockname, GetStdHandle, GetSystemTimeAsFileTime, GetTcpTable, GetTimeZoneInformation, GetUserName, GetVersionEx, GetWindowsDirectoryA, GlobalMemoryStatusEx, HeapAlloc, HeapFree, HeapLock, HeapReAlloc, HeapSetInformation, HeapUnlock, HeapWalk, htonl, htons, IEnumWbemClassObject Next, IEnumWbemClassObject Release, IsValidSecurityDescriptor, IsWindowsServer, IWbemCallResult GetCallStatus, IWbemCallResult GetResultObject, IWbemCallResult Release, IWbemClassObject BeginEnumeration, IWbemClassObject EndEnumeration, IWbemClassObject Get, IWbemClassObject GetMethod, IWbemClassObject Next, IWbemClassObject Put, IWbemClassObject QueryInterface, IWbemClassObject Release, IWbemClassObject SpawnInstance, IWbemLocator ConnectServer, IWbemLocator Release, IWbemServices AddRef, IWbemServices_ExecMethod, IWbemServices_ExecQuery, IWbemServices_GetObject, IWbemServices Release, LeaveCriticalSection, listen, LoadLibrary, LocalFree, localtime s, LsaClose, LsaEnumerateAccountsWithUserRight, LsaFreeMemory, LsaLookupNames, LsaLookupSids, LsaOpenPolicy, LsaQueryDomainInformationPolicy, LsaQueryInformationPolicy,IstrlenW,memset, Module32First, Module32Next, MultiByteToWideChar, NetApiBufferFree, NetGroupGetUsers, NetLocalGroupGetMembers, NetServerEnum, NetServerGetInfo, NetSessionEnum, NetShareEnum, NetUserGetGroups, NetUserGetInfo, NetUserGetLocalGroups, NetUserModalsGet, NetWkstaGetInfo, NetWkstaUserEnum, OpenProcess, OpenSCManagerA, OpenService, PdhAddCounterA, PdhCollectQueryData, PdhOpenQueryA, poll, QueryServiceObjectSecurity, QueryServiceStatus, RaiseException, ReadConsole, ReadFile, recv, RegCloseKey, RegCreateKeyExA, RegEnumKeyA, RegEnumKeyExA, RegEnumValueA, RegGetKeySecurity, RegOpenKeyA, RegOpenKeyExA, RegQueryInfoKeyA, RegQueryValueExA, RegSetValueExA, SafeArrayAccessData, SafeArrayCreateVector, SafeArrayGetDim, SafeArrayGetLBound, SafeArrayGetUBound, SafeArrayUnaccessData,

Page 43 of 45

SamCloseHandle, SamConnect, SamFreeMemory, SamOpenDomain, SamQueryInformationDomain, saturate, send, SetConsoleCtrlHandler, SetConsoleMode, SetFilePointer, SetHandleInformation, SetLastError, setsockopt, SetStdHandle, SetUnhandledExceptionFilter, SHGetFolderPath, Sleep, socket, StackWalk64, StartService, SysAllocStringByteLen, SysAllocStringLen, SysFreeString, SysStringLen, SystemTimeToFileTime, SystemTimeToTzSpecificLocalTime, TerminateProcess, time, TzSpecificLocalTimeToSystemTime, VariantClear, VerQueryValueA, vsnprintf_s, w32_change_privilege, WaitForSingleObject, WideCharToMultiByte, Win32, WriteFile, WSACleanup, WSAGetLastError, WSAStartup, ZeroMemory

Linux:

GNU C Library, GNU Standard C++ Library

Used by plugins:

cat, grep, echo, wc, find, ps, type, uname, ls, awk, sysinfo, sysctl, which, strings, head, echo, test, read, readlink, rm, chmod, od, tr, sh, cut, sort, tee, chown, do, while, if, hexdump, strcat, tail, sed, xargs, dd, netstat, ifconfig, ip, hostname

Used by plugins, to test specific platforms/applications:

init, unzip, nwmgr, lanscan, docker, cli, dhcpd, unzip, equery, xl, sqlite3, db2ls, db2level, db2, md5sum, sha2s6sum, sha1sum, yara, lsof, cmdagent, nails, sc, sc4, vmware-view, loginsight, bash, dmidecode, wget, curl, rpm, cfservd, prelink, netstat, rmsock, inpcb, proctree, service, dpkg, iptables, lsmod, openssl, splunk, namei, java, dd

Used by Nessus bug report generator:

uname, dmesg, tail, killall, sh, uptime, ls, ps, grep, xargs, netstat, arp, df, cat, tail, rpm, free, ifconfig, du, tar

A.2 Third-Party Libraries

Listed below are the third-party libraries used by the TOE. Note that these libraries do not necessarily relate to the TOE functionality claimed in the Security Target; however, since they are bundled with the product itself they are disclosed since a vulnerability outside the logical boundary of the product could still present an exploitable vulnerability.

Library	Version
ced	Commit 3ba47203
expat	2.5.0
icu	71.1
jemalloc	5.2.1
libbzip2	1.0.8
libpcap	1.9.1
libpcre	8.42

Library	Version
libjpeg	9d
libxml2	2.11.1
libxslt	1.1.37
libxmlsec	1.2.25
zlib	1.2.13
openssl	3.0.9
sqlite	3.34.1
npcap	1.10
jsonsl	Commit 684b60f
Snappy	1.1.7
RapidJSON	1.1.0
MS VC Redist	14.22
Chart.js	2.9.4
Flatiron Director	1.2.6
Handlebars	4.7.7
jQuery	3.5.1
jQuery FileUpload	10.32.0
jQuery HotKeys	0.8+
jQuery ScrollTo	2.1.3
jQuery UI	1.13.2
Less	4.1.3
Moment	2.29.4
Moment Timezone	0.5.17
Spin	2.3.2
Font Awesome	3.2.1
Glyphicons Pro	1.8.1
Select2	4.0.13
Underscore	1.13.2
DataTables	1.13.2
Pendo	2.98.1