Cisco Systems Wireless EAL3 Security Target

Release Date: April 24, 2008
Version: 1.8

Table of Contents

List of Tables 3
List of Figures 4
Introduction 4
 Identification 4
 Overview 4
 CC Conformance Claim 5
 Document Conventions 5
 Document Terminology 5
TOE Description 9
 Overview 9
 Architecture Description 10
 PhysicalBoundaries 10
 Hardware/OS Components 11
 Logical Boundaries 11
TOE Security Environment 13
 Assumptions 13
 Personnel Assumptions 13
 Physical Environment Assumptions 13
 Operational Assumptions 13
 Threats 13
 Security Objectives 14
Cisco Systems Wireless EAL3 Security Target

Table of Contents

Security Objectives For The TOE 14
Security Objectives For The Environment 15
Rationale For Security Objectives For The TOE 15
Rationale For Security Objectives For The Environment 16
Rationale For Threat Coverage 17
Rationale For Assumption Coverage 18

IT Security Requirements 19
TOE Security Functional Requirements 20
 Security Audit (FAU) 20
 Cryptographic Support (FCS) 21
 User Data Protection (FDP) 22
 Identification and Authentication (FIA) 25
 Security Management (FMT) 26
 Protection of the TSF (FPT) 27
Explicitly Stated TOE Security Functional Requirements 27
 Protection of TSF (FPT) 28
IT Environment Security Requirements 28
 Security Audit (FAU) 28
Explicitly Stated IT Environment Security Functional Requirements 28
 Protection of TSF (FPT) 28

TOE Strength of Function Claim 29
TOE Security Assurance Requirements 29
 ACM_CAP.3 Authorization Controls 30
 ACM_SCP.1 TOE CM Coverage 30
 ADO_DEL.1 Delivery Procedures 31
 ADO_IGS.1 Installation, Generation, and Start-up Procedures 31
 ADV_FSP.1 Informal Functional Ppecification 31
 ADV_HLD.2 Security Enforcing High-level Design 32
 ADV_RCR.1 Informal Correspondence Demonstration 33
 AGD_ADM.1 Administrator Guidance 33
 AGD_USR.1 User Guidance 34
 ALC_DVS.1 Identification of Security Measures 34
 ALC_FLR.1 Basic Flaw Remediation 35
 ATE_COV.2 Analysis of Coverage 35
 ATE_DPT.1 Testing: High-level Design 35
 ATE_FUN.1 Functional Testing 36
 ATE_IND.2 Independent Testing - Sample 36
 AVA_MSU.1 Examination of Guidance 37
 AVA_SOF.1 Strength of TOE Security Function Evaluation 37
 AVA_VLA.1 Developer Vulnerability Analysis 38
List of Tables

Rationale For TOE Security Requirements 38
 TOE Security Functional Requirements 38
 TOE Security Assurance Requirements 41
Rationale For IT Environment Security Requirements 41
Rationale for Explicitly Stated Security Requirements 42
Rationale For IT Security Requirement Dependencies 42
Rationale For Internal Consistency and Mutually Supportive 43
Rationale For Strength of Function Claim 44
TOE Summary Specification 44
 TOE Security Functions 44
 Audit (Accounting) 44
 Identification & Authentication (Authentication) 44
 Traffic Filtering and Routing 45
 Security Management / Access Control (Authorization) 45
 Protection of the TSF 46
Security Assurance Measures 48
Rationale for TOE Security Functions 49
 Appropriate Strength of Function Claim 49
 Security Assurance Measures & Rationale 50
Protection Profile Claims 52
 Protection Profile Modifications 52
 Protection Profile Additions 52
Rationale 52
 Security Objectives Rationale 52
 Security Requirements Rationale 52
 TOE Summary Specification Rationale 52
 Protection Profile Claims Rationale 53
Obtaining Documentation, Obtaining Support, and Security Guidelines 53

List of Tables

Table 1 TOE Device Hardware Models 9
Table 2 TOE Boundary Description 10
Table 3 Threats & IT Security Objectives Mappings 16
Table 4 Threats & IT Security Objectives Mappings for the Environment 16
Table 5 Functional Requirements 19
Table 6 FAU_GEN.1(1) Auditable Events 21
Table 7 Assurance Requirements: EAL3 29
List of Figures

Table 8 SFR to Security Objectives Mapping 38
Table 9 Environmental Security Requirements Mapping 41
Table 10 Explicitly Stated Requirement Rationale 42
Table 11 SFR Dependencies 42
Table 12 Assurance Requirements: EAL3 48
Table 13 SFR to Security Functions Mapping 49
Table 14 Assurance Measure Rationale: EAL3 50

List of Figures

Figure 1 TOE Boundary 11

Introduction

This section identifies the Security Target, Target of Evaluation (TOE), conformance claims, ST organization, document conventions, and terminology. It also includes an overview of the evaluated product.

Identification

ST Identification: Cisco Systems Wireless EAL3 Security Target

ST Version: 1.8

ST Publish Date: April 24, 2008

ST Authors: Cisco Systems, Inc.

Overview

The TOE is Cisco Wireless (1100, 1200, 1300, 1400, 3200), Cisco Devices (IAD 2430), Cisco Access Servers (5350, 5400, 5850), and Cisco Secure Access Control Server for Windows Server version 4.1.4.13 (hereafter referred to as ACS or ACS 4.1). The versions of IOS under evaluation differ by device and are fully described in Section 2.1. The hardware devices are used to construct IP networks by interconnecting multiple smaller networks or network segments. The Cisco Wireless (1100, 1200, 1300, 1400, 3200), Cisco Devices (IAD 2430), and Cisco Access Servers (5350, 5400, 5850) will hereafter be referred to as the TOE devices or just devices in this ST.

Cisco Secure Access Control Server provides a comprehensive identity-based access control solution for Cisco intelligent information networks. It is the integration and control layer for managing enterprise network users, administrators, and the resources of the network infrastructure.
Cisco IOS is a Cisco-developed highly configurable proprietary operating system that provides for efficient and effective switching and routing. Although IOS performs many networking functions, this TOE only addresses the functions that provide for the security of the TOE itself:

- Audit (Accounting)
- Identification & Authentication (Authentication)
- Access Control (Authorization)
- Traffic Filtering and Routing
- Security Management/ Access Control (Authorization)
- Protection of the TSF

The TOE does not address encryption (IPSec), VPNs, or Quality of Service (QoS).

CC Conformance Claim

The TOE does not conform to any Protection Profiles.

The assurance class ALC_FLR.1 has been added in order to allow for assurance maintenance to be performed at a later date in order to update the certified products.

Document Conventions

The CC defines four operations on security functional requirements. The conventions below define the conventions used in this ST to identify these operations.

Assignment: indicated with bold text

Selection: indicated with underlined text

Refinement: indicated with bold text and italics

Iteration: indicated with typical CC requirement naming followed by a number in parentheses for each iteration (e.g., FMT_MSA.1(1))

Document Terminology

In the Common Criteria, many terms are defined in Section 2.3 of Part 1. A subset of those definitions is included in the list below with supplemental definitions that are exclusive to Cisco products. They are listed here to aid the reader of the Security Target.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Expansion or Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Authentication, Authorizaton, and Accounting. The framework which provides services a switch needs for authenticating users, authorizing actions, and accounting.</td>
</tr>
<tr>
<td>ACS</td>
<td>The Cisco Secure Access Control Server (ACS) is a highly scalable, high-performance centralized user access control server controlling the AAA for all users in the TOE.</td>
</tr>
<tr>
<td>Acronym</td>
<td>Expansion or Definition</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Assignment</td>
<td>The specification of an identified parameter in a component.</td>
</tr>
<tr>
<td>Assurance</td>
<td>Grounds for confidence that an entity meets its security objectives.</td>
</tr>
<tr>
<td>Attack Potential</td>
<td>The perceived potential for success of an attack, should an attack be launched, expressed in terms of an attacker’s expertise, resources and motivation.</td>
</tr>
<tr>
<td>Audit Trail</td>
<td>In an IT System, a chronological record of system resource usage. This includes user login, file access, other various activities, and whether any actual or attempted security violations occurred, legitimate and unauthorized.</td>
</tr>
<tr>
<td>Authentication</td>
<td>To establish the validity of a claimed user or object.</td>
</tr>
<tr>
<td>Authorized Administrator</td>
<td>Generic term used for Network Administrators and Users that manage a TOE component; A role which human users may be associated with to administer the security parameters of the TOE. Such users are not subject to any access control requirements once authenticated to the TOE and are therefore trusted to not compromise the security policy enforced by the TOE. See FMT_SMR.1 and its footnote for applicability to the TOE.</td>
</tr>
<tr>
<td>Availability</td>
<td>Assuring information and communications services will be ready for use when expected.</td>
</tr>
<tr>
<td>BGP</td>
<td>Border Gateway Protocol. An exterior gateway protocol. It performs routing between multiple autonomous systems and exchanges routing and reachability information with other BGP systems.</td>
</tr>
<tr>
<td>Cisco IOS</td>
<td>The proprietary operating system developed by Cisco Systems.</td>
</tr>
<tr>
<td>Dependency</td>
<td>A relationship between requirements such that the requirement that is dependent upon must normally be satisfied for the other requirements to be able to meet their objectives.</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically erasable programmable read-only memory, specifically the memory in the device where the Cisco IOS is stored.</td>
</tr>
<tr>
<td>Global Configuration</td>
<td>The main command mode in Cisco IOS where a privileged administrator configures parameters that affect the switch as a whole.</td>
</tr>
<tr>
<td>Guidance Documentation</td>
<td>Guidance documentation describes the delivery, installation, configuration, operation, management and use of the TOE as these activities apply to the users, administrators, and integrators of the TOE. The requirements on the scope and contents of guidance documents are defined in a PP or ST.</td>
</tr>
<tr>
<td>Identity</td>
<td>A representation (e.g. a string) uniquely identifying an authorized user, which can either be the full or abbreviated name of that user or a pseudonym.</td>
</tr>
<tr>
<td>Integrity</td>
<td>Assuring information will not be accidentally or maliciously altered or destroyed.</td>
</tr>
<tr>
<td>Interface Configuration</td>
<td>A command mode in Cisco IOS where a privileged administrator configures a hardware or virtual interface on the switch. In order to access this mode a semi-privileged administrator must first access privileged EXEC mode.</td>
</tr>
<tr>
<td>Acronym</td>
<td>Expansion or Definition</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>NVRAM</td>
<td>Non-volatile random access memory, specifically the memory in the switch where the configuration parameters are stored.</td>
</tr>
<tr>
<td>Network Administrator</td>
<td>The authorized user with access to the privileged exec mode (and other command modes) of the Cisco IOS device responsible for senior level administration of the security parameters of the TOE. Such users are not subject to any access control requirements once authenticated to the TOE and are therefore trusted to not compromise the security policy enforced by the TOE.</td>
</tr>
<tr>
<td>OSPF</td>
<td>Open Shortest Path First. An interior gateway protocol (routes within a single autonomous system). A link-state routing protocol which calculates the shortest path to each node.</td>
</tr>
<tr>
<td>Packet</td>
<td>A block of data sent over the network transmitting the identities of the sending and receiving stations, error-control information, and message.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>A command mode in Cisco IOS that allows access to most management and troubleshooting functions, and from which the interface configuration mode is reached. Interfaces and sub-interfaces cannot be configured from this mode.</td>
</tr>
<tr>
<td>Refinement</td>
<td>The addition of details to a component.</td>
</tr>
<tr>
<td>RIP</td>
<td>Routing Information Protocol. An interior gateway protocol (routes within a single autonomous system). A distance-vector protocol that uses hop count as its metric.</td>
</tr>
<tr>
<td>ROM Monitor</td>
<td>A command mode in Cisco IOS that runs when the switch is powered up or reset and helps to initialize the processor hardware and boot the operating system software. Privileged administrators can perform certain configuration tasks, such as recovering a lost password or downloading software over the console port, by using ROM monitor.</td>
</tr>
<tr>
<td>Secret</td>
<td>Information that must be known only to authorized users and/or the TSF in order to enforce a specific SFP.</td>
</tr>
<tr>
<td>Security Attribute</td>
<td>Information associated with subjects, users and/or objects that is used for the enforcement of the TSP.</td>
</tr>
<tr>
<td>Security Function (SF)</td>
<td>A part or parts of the TOE that have to be relied upon for enforcing a closely related subset of the rules from the TSP.</td>
</tr>
<tr>
<td>Security Function Policy (SFP)</td>
<td>The security policy enforced by an SF.</td>
</tr>
<tr>
<td>Security Objective</td>
<td>A statement of intent to counter identified threats and/or satisfy identified organization security policies and assumptions.</td>
</tr>
<tr>
<td>Security Target (ST)</td>
<td>A set of security requirements and specifications to be used as the basis for evaluation of an identified TOE.</td>
</tr>
<tr>
<td>Strength of Function (SOF)</td>
<td>A qualification of a TOE security function expressing the minimum efforts assumed necessary to defeat its expected security behavior by directly attacking its underlying security mechanisms.</td>
</tr>
<tr>
<td>SOF-Basic</td>
<td>A level of the TOE strength of function where analysis shows that the function provides adequate protection against casual breach of TOE security by attackers possessing a low attack potential.</td>
</tr>
<tr>
<td>Acronym</td>
<td>Expansion or Definition</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Subinterface Configuration</td>
<td>A command mode in Cisco IOS where a privileged administrator configures a hardware or virtual sub-interface. In order to access this mode a privileged administrator must first access Interface Configuration mode.</td>
</tr>
<tr>
<td>TACACS+</td>
<td>Terminal Access Controller Access Control System. Part of AAA. Provides centralized user password authentication. Whenever a user requests some action, the switch sends the user name and password to a central server. The server consults its access control database and either permits or denies the requested action.</td>
</tr>
<tr>
<td>Target of Evaluation (TOE)</td>
<td>An IT product or system and its associated administrator and user guidance documentation that is the subject of an evaluation.</td>
</tr>
<tr>
<td>TOE Security Functions (TSF)</td>
<td>A set consisting of all hardware, software, and firmware of the TOE that must be relied upon for the correct enforcement of the TSP.</td>
</tr>
<tr>
<td>TOE Security Functions Interface (TSFI)</td>
<td>A set of interfaces, whether interactive (man-machine interface) or programmatic (application programming interface), through which TOE resources are accessed, mediated by the TSF, or information is obtained from the TSF.</td>
</tr>
<tr>
<td>TSF Data</td>
<td>Data created by and for the TOE, which might affect the operation of the TOE.</td>
</tr>
<tr>
<td>User</td>
<td>The authorized user with access to the user command mode (and no other) of the Cisco IOS switch responsible for first-level administration of the security parameters of the TOE. Such users are not subject to any access control requirements in user command mode once authenticated to the TOE and are therefore trusted to not compromise the security policy enforced by the TOE.</td>
</tr>
<tr>
<td>User EXEC</td>
<td>A command mode in Cisco IOS which provides a semi-privileged administrator basic troubleshooting and management commands. It is the default operating mode.</td>
</tr>
<tr>
<td>User VLAN</td>
<td>The authorized user with access to the user command mode (and no other) of the Cisco IOS device responsible for first-level administration of the security parameters of the TOE. Such users are not subject to any access control requirements in user command mode once authenticated to the TOE and are therefore trusted to not compromise the security policy enforced by the TOE. A VLAN is a logical, rather than physical, grouping of devices. The devices can communicate as if they were attached to the same wire when they may be located on different physical LAN segments.</td>
</tr>
<tr>
<td>Vulnerability</td>
<td>Hardware, firmware, or software flow that leaves an IT System open for potential exploitation. A weakness in automated system security procedures, administrative controls, physical layout, internal controls, and so forth, which could be exploited by a threat to gain unauthorized access to information or disrupt critical processing.</td>
</tr>
</tbody>
</table>
TOE Description

Overview

The TOE is Cisco Systems Wireless (1100, 1200, 1300, 1400, 3200), Cisco Devices (IAD 2430), Cisco Access Servers (5350, 5400, 5850) running IOS and a Cisco Secure Access Control Server for Windows Server (ACS). These devices determine the next network point to which a packet should be forwarded toward its destination. They are located at any gateway (where one network meets another). They may create or maintain a table of the available routes and their conditions and use this information along with distance and cost algorithms to determine the best route for a given packet. IP packets are forwarded to the device over one or more of its physical network interfaces, which processes them according to the system's configuration and state information dynamically maintained by the device. This processing typically results in the IP packets being forwarded out of the device over another interface.

Devices that comprise the TOE have common hardware characteristics. These characteristics affect only non-TSF relevant functions of the devices (such as throughput and amount of storage) and therefore support security equivalency of the devices in terms of hardware:

- Central processor that supports all system operations
- Dynamic memory, used by the central processor for all system operations
- Flash memory (EEPROM), used to store the IOS image (binary program)
- USB slot, used to connect USB devices to the TOE (not relevant as none of the USB devices are included in the TOE)
- Non-volatile read-only memory (ROM) is used to store the bootstrap program and power-on diagnostic programs.
- Non-volatile random-access memory (NVRAM) is used to store device configuration parameters used to initialize the system at startup.
- Physical network interfaces (minimally two). Some models have a fixed number and/or type of interfaces; some models have slots that accept additional network interfaces.

Users of the TOE are device and ACS administrators, which will hereafter be referred to generically as authorized administrators or by the roles of privileged administrator (device), semi-privileged administrator (device), and authentication administrator (ACS). Privileged administrators configure the Cisco devices using the Global configuration commands to apply the features that affect the system as a whole. To initiate global configuration mode the privileged administrator enters the configure command at the privileged EXEC mode prompt. The user interface is run from either the console port on the device or by connecting to the device using secure shell. The user interface is a Command Line Interface (CLI) running the Command Interpreter (EXEC).

The Cisco Systems TOE hardware models are:

Table 1 TOE Device Hardware Models

<table>
<thead>
<tr>
<th>Series</th>
<th>Models</th>
<th>IOS Version</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>1100, 1130</td>
<td>12.3(8)JA2</td>
<td>Wireless</td>
</tr>
<tr>
<td>1200</td>
<td>1200, 1232AG, 1242AG</td>
<td>12.3(8)JA2</td>
<td>Wireless</td>
</tr>
<tr>
<td>1300</td>
<td>1300</td>
<td>12.3(8)JA2</td>
<td>Wireless</td>
</tr>
<tr>
<td>1400</td>
<td>1400, 1410</td>
<td>12.3(8)JA2</td>
<td>Wireless</td>
</tr>
<tr>
<td>3200</td>
<td>3220, 3230, 3251, 3270</td>
<td>12.4(6)XE3</td>
<td>Wireless Flexible, modular access routers</td>
</tr>
</tbody>
</table>
The TOE also includes ACS, which provides authentication, authorization, and accounting (AAA) services to network devices that function as AAA clients.

Architecture Description

The TOE is the Cisco devices running IOS. The network on which they reside, is part of the environment. The following table lists the software, hardware and device operating system from Figure 1, below, and declares whether or not each is part of the TOE.

Table 2 **TOE Boundary Description**

<table>
<thead>
<tr>
<th>Hardware</th>
<th>TOE?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Yes</td>
</tr>
<tr>
<td>ACS Server hardware</td>
<td>No</td>
</tr>
<tr>
<td>OS</td>
<td></td>
</tr>
<tr>
<td>Windows 2000 Server (ACS Server OS)</td>
<td>No</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Software</th>
<th>TOE?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco ACS for Windows Server, Version 4.1.4.13</td>
<td>Yes</td>
</tr>
<tr>
<td>TACACS+ or RADIUS(^1)</td>
<td>Yes</td>
</tr>
<tr>
<td>Cisco IOS (version listed in Table 1)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

\(^1\) Software installed with ACS: Includes TACACS+ protocol as defined by Cisco Systems in draft 1.78 and RADIUS as specified in RFC 2865. The versions of TACACS+ and RADIUS are dependent upon ACS, so they are the same for all of the Cisco IOS versions included in the TOE.

Physical Boundaries

The TOE consists of one or more physical devices: device(s) with IOS software and ACS software. ACS software runs on a Windows 2000 Server. It should be noted that the Windows PC is not considered part of the TOE, only the ACS software operating on it. The Windows PC includes a firewall to protect the OS and the ACS. When the TOE-enabled device is in use, at least two of the network interfaces of the internetworking device will be attached to different networks. The device configuration will determine how traffic flows received on an interface will be handled. Typically, packet flows are passed through the internetworking device and forwarded to their configured destination.

The ACS will be connected to the device either via a internal network as shown in Figure 1 or via a crossover cable. The area inside the square on the figure below is the TOE Boundary which includes the device hardware, the IOS software, and the ACS server software, but not the operating system of the server platform the ACS utilizes.

The TOE can optionally connect to an NTP server on its internal network for time services.
The 1400 and the Mobile Access Router 3200 Series are the only TOE models that support NTP version 3 with MD5 authentication. The wireless access points (1100, 1130, 1200, 1232AG, 1242AG, 1300), Cisco Device (IAD 2430), and Cisco Access Servers (5350, 5400, 5850) do not. For these devices, NTP is not an option.

Also, if the device or ACS Server are to be remotely administered, then the management station must be connected to a internal network, SSH must be used to connect to the device, and SSL must be used to connect to the ACS. The ACS, remote management, and NTP boxes (if used) must all be attached to the internal (trusted) network.

Figure 1 TOE Boundary

Hardware/OS Components

Devices have two or more network interfaces. Devices are connected to at least one internal and one external network. The IOS configuration determines how packets are handled to and from the device’s network interfaces.

Logical Boundaries

The TOE addresses the following features which are relevant to the secure configuration and operation of the wireless devices.

ACS provides the architectural framework for configuring a set of three independent security functions in a consistent manner. ACS provides a modular way of performing Authentication, Authorization and Accounting.

- **Audit (Accounting)**
 The TOE generates a set of audit logs that identify specific TOE operations. For each event, the TOE records the date and time of each event, the type of event, the subject identity, and the outcome of the event. Audited events include: user identities successfully authenticated by the TOE and any use of the authentication mechanism.

- **Identification & Authentication (Authentication)**
 The TOE performs authentication, using IOS platform authentication mechanisms, to authenticate access to user exec and privileged exec command modes.
Identification and Authentication provides the method of identifying and authenticating users, including login and password dialog, challenge and response, and messaging support. Encryption of the packet body is provided through the use of TACACS+ or RADIUS (note RADIUS only encrypts the password within the packet body).

Terminal Access Controller Access Control System (TACACS+) is part of AAA. TACACS+ provides ACS centralized user password authentication for all devices that the ACS manages and is an option that can be installed with ACS. Whenever a user requests some action, the device sends the user name and password to a central server located on the same server as the ACS. The server consults its access control database and either permits or denies the requested action.

- **Traffic Filtering**

 Restricts remote terminal connectivity, using TOE platform access-control list functionality, to specific interfaces of the TOE so that sessions will only be accepted from the management station(s) identified in the management session TOE security policy.

 Access lists filter network traffic by controlling whether routed packets are forwarded or blocked at the device’s interfaces. The device examines each packet to determine whether to forward or drop the packet, on the basis of the criteria you specified within the access lists. Access list criteria could be the source address of the traffic, the destination address of the traffic, the upper-layer protocol, or other information.

 The device examines each packet to determine whether to forward or drop the packet, on the basis of the information contained within the routing tables.

- **Security Management / Access Control (Authorization)**

 The TOE allows authorized administrators to add new administrators, start-up and shutdown the device, create, modify, or delete configuration items, modify and set the time and date, and create, delete, empty, and review the audit trail. The ACS when using TACACS+ or RADIUS allows authentication administrators to modify and set the threshold for the number of permitted consecutive authentication attempt failures, restore authentication capabilities for users that have met or exceeded the threshold for permitted consecutive authentication attempt failures.

 The TOE device platform maintains privileged and semi-privileged administrator roles. The device performs role-based authorization, using TOE platform authorization mechanisms, to grant access to the semi-privileged and privileged modes.

- **Protection of the TSF**

 The TOE protects against interference and tampering by untrusted subjects by implementing identification, authentication and access controls to limit configuration to privileged administrators. Additionally IOS is not a general purpose operating system and access to IOS memory space is restricted to only IOS functions.

 The ACS component protects against interference and tampering by untrusted subjects through its own interfaces by implementing identification, authentication, and roles.

 Both the device and ACS component ensure that when data is transmitted between them that security functions to protect the data from packet sniffing are invoked successfully before that data is transmitted.

 The Cisco IOS contains a collection of features that build on the core components of the system. Those features that are not to be used include the HTTP Server, MAC address filtering, SNMP, Telnet, and VPN.

 Apart from these exceptions all types of network traffic through and to the TOE are within the scope of the evaluation.
TOE Security Environment

This section describes the security environment in which the TOE is intended to be used.

Assumptions

The assumptions are ordered into three groups: Personnel Assumptions, Physical Environment Assumptions, and Operational Assumptions.

Personnel Assumptions

A.NOEVIL The authorized administrators are not careless, willfully negligent, or hostile, and will follow and abide by the instructions provided by the TOE documentation, including the administrator guidance; however, they are capable of error.

A.TRAIN_AUDIT Administrators will be trained to periodically review audit logs to identify sources of concern.

A.TRAIN_GUIDAN Personnel will be trained in the appropriate use of the TOE to ensure security.

Physical Environment Assumptions

A.LOCATE The processing resources of the TOE will be located within controlled access facilities, which will prevent unauthorized physical access.

Operational Assumptions

A.CONFIDENTIALITY The hard copy documents that describe the configuration of the TOE, I&A information and Audit storage will be kept confidential and access will be limited to Authorized administrators.

A.GENPUR There are no general-purpose computing capabilities (e.g., the ability to execute arbitrary code or applications) and storage repository capabilities on the TOE.

A.INTEROPERABILITY The TOE will be able to function with the software and hardware of other device vendors on the network.

A.LOWEXP The threat of malicious attacks aimed at exploiting the TOE is considered low.

Threats

The TOE or IT environment addresses the threats identified in the following sections. The threat agents are either unauthorized persons or external IT entities not authorized to use the TOE itself.

T.AUDIT_REVIEW Actions performed by users may not be known to the administrators due to actions not being recorded or the audit records not being reviewed prior to the machine shutting down.

T.MEDIATE An unauthorized entity may send impermissible information to or through the TOE which results in the exploitation of resources on the network.

T.NOAUDIT An unauthorized user modifies or destroys audit data.
Security Objectives

This chapter describes the security objectives for the TOE and the TOE’s operating environment. The security objectives are divided between TOE Security Objectives (i.e., security objectives addressed directly by the TOE) and Security Objectives for the Operating Environment (i.e., security objectives addressed by the IT domain or by non-technical or procedural means).

Security Objectives For The TOE

This section defines the IT security objectives that are to be addressed by the TOE.

O.ACCESS_CONTROL The TOE will restrict access to the TOE Management functions to the privileged administrators and authentication administrators.

O.AUDIT_GEN The TOE will generate audit records which will include the time that the event occurred and if applicable, the identity of the user performing the event.

O.AUDIT_VIEW The TOE will provide the privileged administrators and authentication administrators the capability to review Audit data.

O.CFG_MANAGE The TOE will provide management tools/applications to allow privileged administrators and authentication administrators to manage its security functions.

O.IDAUTH The TOE must uniquely identify and authenticate the claimed identity of all administrative users before granting management access.

O.MEDIATE The TOE must mediate the flow of all information between hosts located on disparate internal and external networks governed by the TOE.

O.SELFPRO The TOE (both device and ACS) must protect itself against attempts by unauthorized users to bypass, deactivate, or tamper with TOE security functions.

O.STARTUP_TEST The device will perform initial startup tests upon bootup of the system.

O.TIME The device will provide a reliable time stamp for its own use.

T.NOAUTH An unauthorized person may attempt to bypass the security of the TOE so as to access and use security functions and/or non-security functions provided by the TOE to disrupt operations of the TOE.

T.NOMGT The administrator is not able to easily manage the security functions of the TOE, resulting in the potential for the TOE configuration to compromise security objectives and policies.

T.UNAUTH_MGT_ACCESS An unauthorized user gains management access to the TOE and views or changes the TOE security configuration.

T.TIME An authorized administrator will not be able to determine the sequence of events in the audit trail because the audit records are not correctly time-stamped.
Security Objectives For The Environment

The following IT security objectives for the environment are to be addressed by the IT environment via technical means.

OE.ACS_PROTECT The ACS software and related files will be partially protected by the host operating system on a properly secured and configured Windows Server host.

OE.ACS_TIME The ACS will have access to a reliable time stamp from the environment.
The non-IT security objectives listed below are to be satisfied without imposing technical requirements on the TOE. Thus, they will be satisfied through application of procedural or administrative measures

OE.AUDIT_REVIEW Administrators will be trained to periodically review the audit logs to identify sources of concern.

OE.CONFIDENTIALITY The hard copy documents that describe the configuration of the TOE, I&A information and Audit storage will be kept confidential and access will be limited to Authorized administrators.

OE.GENPUR There are no general-purpose computing capabilities (e.g., the ability to execute arbitrary code or applications) and storage repository capabilities on the TOE.

OE.INTEROPERABILITY The TOE will be able to function with the software and hardware of other vendors on the network.

OE.LOCATE The processing resources of the TOE will be located within controlled access facilities, which will prevent unauthorized physical access.

OE.LOWEXP The threat of malicious attacks aimed at exploiting the TOE is considered low.

OE.NOEVIL The authorized administrators are not careless, willfully negligent, or hostile, and will follow and abide by the instructions provided by the TOE documentation, including the administrator guidance; however, they are capable of error.

OE.TRAIN_GUIDAN Personnel will be trained in the appropriate use of the TOE to ensure security and will refer to all administrative guidance to ensure the correct operation of the TOE.

Rationale For Security Objectives For The TOE

This section provides the rationale that all security objectives are traced back to aspects of the addressed threats.

See the “Rationale For Threat Coverage” section on page 17 for a justification that the TOE security objectives counter the threats addressed by the TOE.
Rationale For Security Objectives For The Environment

This section provides the rationale that all security objectives for the environment are traced back to aspects of the addressed threats or assumptions.

See the “Rationale For Threat Coverage” section on page 17 for a justification that the security objectives for the environment counter the threats addressed by the operating environment.

See the “Rationale For Assumption Coverage” section on page 18 for a justification that the security objectives cover the assumptions.

Table 3 Threats & IT Security Objectives Mappings

<table>
<thead>
<tr>
<th>Threat Category</th>
<th>T.AUDIT_REVIEW</th>
<th>T.MEDIATE</th>
<th>T.NOAUTH</th>
<th>T.NOMGT</th>
<th>T.UNAUTH_MGT_ACCESS</th>
<th>T.TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.ACCESS_CONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>O.AUDIT_GEN</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.AUDIT_VIEW</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.CFG_MANAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.IDAUTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>O.MEDIATE</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.SELFPRE</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.STARTUP_TEST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>O.TIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Table 4 Threats & IT Security Objectives Mappings for the Environment

<table>
<thead>
<tr>
<th>Threat Category</th>
<th>A.NOEVIL</th>
<th>A.TRAIN_AUDIT</th>
<th>A.TRAIN_GUIDAN</th>
<th>A.LOCATE</th>
<th>A.CONFIDENTIALITY</th>
<th>A.GENPUR</th>
<th>A.INTEROPERABILITY</th>
<th>A.LOWEXP</th>
<th>T.AUDIT_REVIEW</th>
<th>T.NOAUTH</th>
<th>T.NOAUTH</th>
<th>T.TIME</th>
<th>T.UNAUTH_MGT_ACCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE.AUDIT_REVIEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OE.NOEVIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OE.TRAIN_GUIDAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OE.LOCATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This section provides a justification that for each threat, the security objectives counter the threat.

T.AUDIT_REVIEW Actions performed by users may not be known to the administrators due to actions not being recorded or the audit records not being reviewed prior to the machine shutting down.

The O.AUDIT_GEN objective requires that the TOE generate audit records. The O.AUDIT_VIEW requires the TOE to provide the Authorized administrator with the capability to view Audit data. These two objectives provide complete TOE coverage of the threat. The OE.AUDIT_REVIEW objective on the environment assists in covering this threat on the TOE by requiring that the administrator periodically check the audit record.

T.MEDIATE An unauthorized entity may send impermissible information to or through the TOE which results in the exploitation of resources on the network.

The O.MEDIATE security objective requires that all information that passes through the network is mediated by the TOE. The O.SELFPRO security objective requires that the device protect its own interface.

T.NOAUDIT An unauthorized user modifies or destroys audit data.

The O.AUDIT_VIEW objective requires that the TOE will provide the Authorized administrator the capability to review Audit data. The O.SELFPRO objective requires that the TOE protect itself from attempts to bypass, deactivate, or tamper with TOE security functions. The OE.ACS_PROTECT objective requires that the host system assist the ACS with protecting itself from attempts to bypass, deactivate, or tamper with TOE security functions.

T.NOAUTH An unauthorized person may attempt to bypass the security of the TOE so as to access and use security functions and/or non-security functions provided by the TOE to disrupt operations of the TOE.

The O.SELFPRO objective requires that the TOE protect itself from attempts to

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OE.GENPUR</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OE.INTEROPERABILITY</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OE.LOWEXP</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OE.ACS_TIME</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OE.ACS_PROTECT</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
bypass, deactivate, or tamper with TOE security functions. The OE.ACS_PROTECT objective requires that the host system the ACS is loaded on assist with this protection.

T.NOMGT The administrator is not able to easily manage the security functions of the TOE, resulting in the potential for the TOE configuration to compromise security objectives and policies.

The O.CFG_MANAGE objective requires that the TOE will provide management tools/applications for the administrator to manage its security functions, reducing the possibility for error.

T.UNAUTH_MGT_ACCESS An unauthorized user gains management access to the TOE and views or changes the TOE security configuration.

The O.ACCESS_CONTROL objective restricts access to the TOE management functions to authorized administrators. The O.IDAUTH objective requires a user to enter a unique identifier and authentication before management access is granted. The O.STARTUP_TEST objective perform initial tests upon system startup to ensure the integrity of the TOE security configuration. The O.SELFPRO objective requires that the TOE protect itself from attempts to bypass, deactivate, or tamper with TOE security functions.

OE.ACS_PROTECT objective requires that the host system assist the ACS in protecting itself from attempts to bypass, deactivate, or tamper with TOE security functions. This assistance is limited to ensuring file permissions are preserved on the operating system. ACS has its own discrete access control mechanisms covered under O.SELFPRO.

T.TIME An authorized administrator will not be able to determine the sequence of events in the audit trail because the audit records are not correctly time-stamped.

The O.TIME objective mitigates this threat by providing the accurate time to the TOE for use in the audit records. OE.ACS_TIME mitigates this threat for the ACS by ensuring that NTP is running on the host server.

Rationale For Assumption Coverage

This section provides a justification that for each assumption, the security objectives for the environment cover that assumption.

A.NOEVIL The authorized administrators are not careless, willfully negligent, or hostile, and will follow and abide by the instructions provided by the TOE documentation, including the administrator guidance; however, they are capable of error.

The OE.NOEVIL objective ensures that authorized administrators are not careless, willfully negligent, or hostile, and will follow and abide by the instructions provided by the TOE documentation, including the administrator guidance; however, they are capable of error.

A.TRAIN_GUIDAN Personnel will be trained in the appropriate use of the TOE to ensure security and will refer to all administrative guidance to ensure the correct operation of the TOE.

The OE.TRAIN_GUIDAN objective ensures that authorized administrators will be trained in the appropriate use of the TOE to ensure security and will refer to all administrative guidance to ensure the correct operation of the TOE.

A.TRAIN_AUDIT Administrators will be trained to periodically review audit logs to identify sources of
The security requirements that are levied on the TOE and the IT environment are specified in this section of the ST.

The functional security requirements for this Security Target consist of the following components from Part 2 of the CC, summarized in the following table. These security requirements are defined in the following sections.

Table 5
Functional Requirements

<table>
<thead>
<tr>
<th>TOE Security Functional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU_GEN.1</td>
</tr>
<tr>
<td>FAU_SAR.1(1)</td>
</tr>
<tr>
<td>FAU_SAR.1(2)</td>
</tr>
<tr>
<td>FCS_CKM.1(1), (2), and (3)</td>
</tr>
<tr>
<td>FCS_CKM.4</td>
</tr>
</tbody>
</table>
Table 5 Functional Requirements (continued)

<table>
<thead>
<tr>
<th>TOE Security Functional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS_COP.1(1), (2), and (3) Cryptographic operation</td>
</tr>
<tr>
<td>FDP_IFC.1(1) and (2) Subset Information Flow Control</td>
</tr>
<tr>
<td>FDP_IFF.1(1) and (2) Simple Security Attributes</td>
</tr>
<tr>
<td>FIA_AFL.1 Authentication Failure Handling</td>
</tr>
<tr>
<td>FIA_ATD.1 User attribute definition</td>
</tr>
<tr>
<td>FIA_UAU.2 User authentication before any action</td>
</tr>
<tr>
<td>FIA_UID.2 User identification before any action</td>
</tr>
<tr>
<td>FMT_MOF.1(1) Management of security functions behavior on Device</td>
</tr>
<tr>
<td>FMT_MOF.1(2) Management of security functions behavior on ACS</td>
</tr>
<tr>
<td>FMT_MSA.2 Secure Security Attributes</td>
</tr>
<tr>
<td>FMT_MSA.3 Static Attribute Initialization</td>
</tr>
<tr>
<td>FMT_MTD.1 Management of TSF data</td>
</tr>
<tr>
<td>FMT_SMF.1 Specification of Management Functions</td>
</tr>
<tr>
<td>FMT_SMR.1 Security roles</td>
</tr>
<tr>
<td>FPT_RVM.1(1) Non-bypassability of the TSP</td>
</tr>
</tbody>
</table>

Explicitly Stated TOE Security Functional Requirements

| FPT_SEP_EXP.1 Partial TSF domain separation |
| FPT_STM_RTR_EXP.1 Device Reliable time stamps |
| FPT_ATM_RTR_EXP.1 Device Abstract machine testing |

IT Environment Security Functional Requirements

| FPT_RVM.1(2) Non-bypassability of the TSP |
| FAU_STG.1 Protected audit trail storage |

Explicitly Stated IT Environment Security Functional Requirements

| FPT_SEP_ENV_EXP.1 Partial Environment TSF domain separation |
| FPT_STM_ENV_EXP.1 Environment Reliable time stamps |

TOE Security Functional Requirements

The SFRs defined in this section are taken from Part 2 of the CC.

Security Audit (FAU)

FAU_GEN.1 Audit Data Generation

FAU_GEN.1.1(1) The TSF shall be able to generate an audit record of the following auditable events:

a) Start-up and shutdown of the audit functions;

b) All auditable events for the not specified level of audit specified in Table 6; and

c) no additional events.
FAU_GEN.1.2(1) The TSF shall record within each audit record at least the following information:

a) Date and time of the event, type of event, subject identity, and the outcome (success or failure) of the event; and

b) For each audit event type, based on the auditable event definitions of the functional components included in the PP/ST, information specified in the Additional Audit Record Contents column of Table 6.

Table 6 FAU_GEN.1(1) Auditable Events

<table>
<thead>
<tr>
<th>Functional Complete</th>
<th>Auditable Event</th>
<th>Additional Audit Record Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_IFC.1.1</td>
<td>Any failure of a packet to match an ACL rule allowing traversal of the switch.</td>
<td>The source, destination and protocol attributes of the traffic.</td>
</tr>
</tbody>
</table>

FAU_SAR.1(1) Audit Review on Device

FAU_SAR.1.1(1) The TSF shall provide a privileged administrator with the capability to read all device audit trail data from the audit records.

FAU_SAR.1.2(1) The TSF shall provide the audit records in a manner suitable for the user to interpret the information.

FAU_SAR.1(2) Audit Review on ACS

FAU_SAR.1.1(2) The TSF shall provide an authentication administrator with the capability to read all ACS audit trail data from the audit records.

FAU_SAR.1.2(2) The TSF shall provide the audit records in a manner suitable for the user to interpret the information.

Cryptographic Support (FCS)

FCS_CKM.1(1) Cryptographic Key Generation – RSA

FCS_CKM.1.1(1) The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm **RSA** and specified cryptographic key sizes **512, 1024, and 2048 bits** that meet the following: **PKCS #1**.

FCS_CKM.1(2) Cryptographic Key Generation – Diffie-Hellman

FCS_CKM.1.1(2) The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm **Diffie-Hellman** and specified cryptographic key sizes **2048 bits** that meet the following: **none**.

FCS_CKM.1(3) Cryptographic Key Generation – Wireless

FCS_CKM.1.1(3) The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm **AES** and specified cryptographic key sizes **128 or 256 bits** that meet the following: **IEEE 802.11i**.
FCS_CKM.4 Cryptographic Key Destruction

FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method **overwrite** that meets the following: no standard.

FCS_COP.1(1) Cryptographic Operation – Remote Administration (SSH and SSL)

FCS_COP.1.1(1) The TSF shall perform encryption of remote authorized administrator sessions in accordance with a specified cryptographic algorithm: **Triple Data Encryption Standard (DES)** as specified in FIPS PUB 46-3 and implementing any mode of operation specified in FIPS PUB 46-3 with Keying Option 1 (K1, K2, K3 are independent keys) or **Advanced Encryption Standard (AES)** as specified in FIPS PUB 197 and cryptographic key sizes that are 192 or 128, 192, or 256 binary digits in length that meet the following: FIPS PUB 46-3 with Keying Option 1 and FIPS PUB 140-1 (Level 1) or FIPS 197.

FCS_COP.1(2) Cryptographic Operation – Authentication Data Encryption

FCS_COP.1.1(2) The TSF shall perform encryption of authentication data in accordance with a specified cryptographic algorithm **MD5** and cryptographic key sizes **128 bit** that meet the following: RFC 2403.

FCS_COP.1(3) Cryptographic Operation – Wireless Encryption

FCS_COP.1.1(3) The TSF shall perform encryption of wireless data in accordance with a specified cryptographic algorithm **AES** and cryptographic key sizes **128 or 256 bits** that meet the following: IEEE 802.11i.

User Data Protection (FDP)

FDP_IFC.1(1) Subset Information Flow Control - IP

FDP_IFC.1.1(1) The TSF shall enforce the unauthenticated SFP on:

a) **subjects**: unauthenticated external IT entities that send and receive information through the TOE to one another (acting as source and destination);

b) **information**: network packets (and data link frames with those packets);

c) **operation**: pass information by opening a relay connection through the TSF on behalf of the source subject to the destination subject, and with the TSF ensuring the following conditions:

 - the connection from the source subject is from a valid adjacent network,
 - the new relay connection is established to the destination subject on a valid adjacent network.

FDP_IFF.1(1) Simple Security Attributes - IP

FDP_IFF.1.1(1) The TSF shall enforce the unauthenticated SFP based on the following types of subject and information security attributes:
a) security subject attributes:
 - Presumed IP network address of source subject;
 - Presumed IP network address of destination subject;
 - Transport layer protocol and their flags and attributes (UDP, TCP);
 - Network layer protocol (IP, ICMP);
 - TOE interface on which traffic arrives and departs;

FDP_IFF.1.2(1) The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold:

a) Subjects on an internal network can cause information to flow through the TOE to another connected network if:
 - All the information security attribute values are unambiguously permitted by the information flow security policy rules, where such rules may be composed from all possible combinations of the values of the information flow security attributes, created by the authorized administrator;
 - The presumed IP address of the source subject, in the information, translates to an internal network address;
 - And the presumed IP address of the destination subject, in the information, translates to an address on the other connected network.

b) Subjects on the external network can cause information to flow through the TOE to another connected network if:
 - All the information security attribute values are unambiguously permitted by the information flow security policy rules, where such rules may be composed from all possible combinations of the values of the information flow security attributes, created by the authorized administrator;
 - The presumed IP address of the source subject, in the information, translates to an external network address;
 - And the presumed IP address of the destination subject, in the information, translates to an address on the other connected network.

FDP_IFF.1.3(1) The TSF shall enforce the none.
FDP_IFF.1.4(1) The TSF shall provide the following none.
FDP_IFF.1.5(1) The TSF shall explicitly authorize an information flow based on the following rules: none.
FDP_IFF.1.6(1) The TSF shall explicitly deny an information flow based on the following rules:
 a) The TOE shall reject requests for access or services where the information arrives on an external TOE interface, and the presumed IP address of the source subject is an external IT entity on an internal network;
 b) The TOE shall reject requests for access or services where the information arrives on an internal TOE interface, and the presumed IP address of the source subject is an external IT entity on the external network;
 c) The TOE shall reject requests for access or services where the information arrives on either an internal or external TOE interface, and the presumed IP address of the source subject is an external IT entity on a broadcast network;
d) The TOE shall reject requests for access or services where the information arrives on either an internal or external TOE interface, and the presumed IP address of the source subject is an external IT entity on the loopback network.

e) The TOE shall drop requests in which the information received by the TOE does not correspond to an entry in the routing table.

Application Note

These (IP) iterations of FDP_IFC.1 and FDP_IFF.1 apply to all versions of the TOE.

FDP_IFC.1(2) Subset Information Flow Control - IPX

FDP_IFC.1.1(2) The TSF shall enforce the unauthenticated SFP on:

a) subjects: unauthenticated external IT entities that send and receive information through the TOE to one another (acting as source and destination);

b) information: network packets (and data link frames with those packets);

c) operation: pass information by opening a relay connection through the TSF on behalf of the source subject to the destination subject, and with the TSF ensuring the following conditions:

- the connection from the source subject is from a valid adjacent network,
- the new relay connection is established to the destination subject on a valid adjacent network.

FDP_IFF.1(2) Simple Security Attributes - IPX

FDP_IFF.1.1(2) The TSF shall enforce the unauthenticated SFP based on the following types of subject and information security attributes:

a) security subject attributes:

- presumed IPX network address of source subject;
- presumed IPX network address of destination subject;
- transport layer protocol and their flags and attributes (SPX);
- network layer protocol (IPX);
- TOE interface on which traffic arrives and departs;

FDP_IFF.1.2(2) The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold:

a) Subjects on an internal network can cause information to flow through the TOE to another connected network if:

- all the information security attribute values are unambiguously permitted by the information flow security policy rules, where such rules may be composed from all possible combinations of the values of the information flow security attributes, created by the authorized administrator;
- the presumed IPX address of the source subject, in the information, translates to an internal network address;
- and the presumed IPX address of the destination subject, in the information, translates to an address on the other connected network.
b) Subjects on the external network can cause information to flow through the TOE to another connected network if:
 - all the information security attribute values are unambiguously permitted by the information flow security policy rules, where such rules may be composed from all possible combinations of the values of the information flow security attributes, created by the authorized administrator;
 - the presumed IPX address of the source subject, in the information, translates to an external network address;
 - and the presumed IPX address of the destination subject, in the information, translates to an address on the other connected network.

FDP_IFF.1.3(2) The TSF shall enforce the none.
FDP_IFF.1.4(2) The TSF shall provide the following none.
FDP_IFF.1.5(2) The TSF shall explicitly authorize an information flow based on the following rules: none.
FDP_IFF.1.6(2) The TSF shall explicitly deny an information flow based on the following rules:
 a) The TOE shall reject requests for access or services where the information arrives on an external TOE interface, and the presumed IPX address of the source subject is an external IT entity on an internal network;
 b) The TOE shall reject requests for access or services where the information arrives on an internal TOE interface, and the presumed IPX address of the source subject is an external IT entity on the external network;
 c) The TOE shall reject requests for access or services where the information arrives on either an internal or external TOE interface, and the presumed IPX address of the source subject is an external IT entity on a broadcast network;
 d) The TOE shall reject requests for access or services where the information arrives on either an internal or external TOE interface, and the presumed IPX address of the source subject is an external IT entity on the loopback network.
 e) The TOE shall drop requests in which the information received by the TOE does not correspond to an entry in the routing table.

Application Note: These (IPX) iterations of FDP_IFC.1 and FDP_IFF.1 apply to only the following versions of the TOE: the AS5350, AS5450, and AS5450HPX.

Identification and Authentication (FIA)

FIA_AFL.1 Authentication Failure Handling

FIA_AFL.1.1 The TSF shall detect when an administrator configurable positive integer within one and five unsuccessful authentication attempts occur related to login via ACS.
FIA_AFL.1.2 When the defined number of unsuccessful authentication attempts has been met or surpassed, the TSF shall lock the account until the authentication administrator re-enables it.
FIA_ATD.1 User Attribute Definition

FIA_ATD.1.1 The TSF shall maintain the following list of security attributes belonging to individual users:

a) identity;

b) authentication data (e.g., password).

FIA_UAU.2 User Authentication Before Any Action

FIA_UAU.2.1 The TSF shall require each user to be successfully authenticated before allowing any other TSF mediated actions on behalf of that user.

FIA_UID.2 User Identification Before Any Action

FIA_UID.2.1 The TSF shall require each user to identify itself before allowing any other TSF-mediated actions on behalf of that user.

Security Management (FMT)

FMT_MOF.1(1) Management of Security Functions Behavior on Device

FMT_MOF.1.1(1) The TSF shall restrict the ability to determine the behavior of the functions listed below to the privileged administrator:

a) start-up and shutdown;

b) create, modify, or delete configuration items;

c) modify and set the time and date;

d) create, delete, empty, and review the device audit trail;

e) create, delete, modify, and view filtering rules;

and the semi-privileged administrator:

a) review the device audit trail.

FMT_MOF.1(2) Management of Security Functions Behavior on ACS

FMT_MOF.1.1(2) The TSF shall restrict the ability to determine the behavior of the functions listed below to the authentication administrator:

a) modify and set the threshold for the number of permitted consecutive authentication attempt failures;

b) restore authentication capabilities for users that have met or exceeded the threshold for permitted consecutive authentication attempt failures;

c) create, delete, empty, and review the ACS audit trail;

FMT_MSA.2 Secure Security Attribute

FMT_MSA.2.1 The TSF shall ensure that only secure values are acceptable for security attributes.
FMT_MSA.3 Static Attribute Initialization

FMT_MSA.3.1 The TSF shall enforce the **unauthenticated** SFP to provide **permissive** default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2 The TSF shall allow the **privileged administrator** to specify alternative initial values to override the default values when an object or information is created.

FMT_MTD.1 Management of TSF Data

FMT_MTD.1.1 The TSF shall restrict the ability to **modify** all device TOE data and all ACS TOE data to privileged administrators and authentication administrators, respectively.

FMT_SMF.1 Specification of Management Functions

FMT_SMF.1 The TSF shall be capable of performing the following security management functions:

a) **start-up and shutdown**;

b) create, modify, or delete configuration items;

c) modify and set the time and date;

d) create, delete, empty, and review the audit trail;

e) create, delete, modify, and view filtering rules.

FMT_SMR.1 Security Roles

FMT_SMR.1.1 The TSF shall maintain the roles: privileged administrator, semi-privileged administrator and authentication administrator.

FMT_SMR.1.2 The TSF shall be able to associate users with roles.

Protection of the TSF (FPT)

FPT_ITT.1 Basic internal TSF Data Transfer Protection

FPT_ITT.1.1 The TSF shall protect TSF data from disclosure when it is transmitted between separate parts of the TOE.

FPT_RVM.1(1) Non-bypassability of the TSP

FPT_RVM.1.1(1) The TSF shall ensure that TSP enforcement functions are invoked and succeed before each function within the TSC is allowed to proceed.

Explicitly Stated TOE Security Functional Requirements

The SFRs defined in this section are explicitly stated and are derived from similar requirements in Part 2 of the CC.

1. The term “authorized administrators” is still used generically in some places in the ST. Where used clarification will follow if it does not refer to all three roles.
Protection of TSF (FPT)

FPT_SEP_EXP.1.1 The TSF shall maintain a security domain for its own execution that protects it from interference and tampering by untrusted subjects initiating actions through its own TSFI.

FPT_SEP_EXP.1.2 The TSF shall enforce separation between the security domains of subjects in the TSC.

FPT_STM_RTR_EXP.1 Device Reliable Time Stamps

FPT_STM_RTR_EXP.1.1 The TSF shall be able to provide reliable time stamps for the device component’s use.

FPT_AMT_RTR_EXP.1 Device Abstract Machine Testing

FPT_AMT_RTR_EXP.1.1 The TSF shall run a suite of tests at the request of the authorized user to demonstrate the correct operation of the security assumptions provided by the abstract machine that underlies the TSF for the device TOE component.

IT Environment Security Requirements

Security Audit (FAU)

FAU_STG.1 Protected audit trail storage

FAU_STG.1.1 The IT environment shall protect the stored audit records from unauthorized deletion.

FAU_STG.1.2 The IT environment shall be able to prevent unauthorized modifications to the stored audit records in the audit trail.

FPT_RVM.1(2) Non-bypassability of the TSP

FPT_RVM.1.1(2) The IT environment shall ensure that TSP enforcement functions are invoked and succeed before each function within the TSC is allowed to proceed.

Explicitly Stated IT Environment Security Functional Requirements

The SFRs on the IT environment defined in this section are explicitly stated and are derived from similar requirements in Part 2 of the CC.

Protection of TSF (FPT)

FPT_SEP_ENV_EXP.1 Partial Environment TSF Domain Separation

FPT_SEP_ENV_EXP.1.1 The IT environment shall maintain a security domain for the TOE’s execution that protects it from interference and tampering by untrusted subjects.

FPT_SEP_ENV_EXP.1.2 The IT environment shall enforce separation between the security domains of subjects in the TSC.
FPT_STM_ENV_EXP.1 Environment Reliable Time Stamps

FPT_STM_ENV_EXP.1.1 The IT environment shall be able to provide reliable time stamps for the ACS component’s use.

TOE Strength of Function Claim

The only probabilistic or permutational mechanisms in the product are the password mechanism used to authenticate users and the cryptographic mechanisms. Strength of cryptographic algorithms is outside the scope of the Common Criteria.

The minimum strength level for the TOE security functions realized by a probabilistic or permutational mechanism is SOF-basic. For a rationale for this selected level, see the “Rationale For Strength of Function Claim” section on page 44.

Specific strength of function metrics are defined for the following requirements:

FIA_UAU.2 Strength of Function shall be demonstrated such that the probability that authentication data can be guessed is no greater than one in one million (000001).

TOE Security Assurance Requirements

The assurance security requirements for this Security Target are taken from Part 3 of the CC. These assurance requirements compose an Evaluation Assurance Level 3 (EAL3) as defined by the CC and additionally meets the ALC_FLR.1 assurance requirement. The assurance components are summarized in the following table.

<table>
<thead>
<tr>
<th>Assurance Class</th>
<th>Assurance Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM: Configuration management</td>
<td>ACM_CAP.3 Authorization controls</td>
</tr>
<tr>
<td></td>
<td>ACM_SCP.1 TOE CM coverage</td>
</tr>
<tr>
<td>ADO: Delivery and operation</td>
<td>ADO_DEL.1 Delivery procedures</td>
</tr>
<tr>
<td></td>
<td>ADO_IGS.1 Installation, generation, and start-up procedures</td>
</tr>
<tr>
<td>ADV: Development</td>
<td>ADV_FSP.1 Informal functional specification</td>
</tr>
<tr>
<td></td>
<td>ADV_HLD.2 Security enforcing high-level design</td>
</tr>
<tr>
<td></td>
<td>ADV_RCR.1 Informal correspondence demonstration</td>
</tr>
<tr>
<td>AGD: Guidance documents</td>
<td>AGD_ADM.1 Administrator guidance</td>
</tr>
<tr>
<td></td>
<td>AGD_USR.1 User guidance</td>
</tr>
<tr>
<td>ALC: Life cycle support</td>
<td>ALC_DVS.1 Identification of security measures</td>
</tr>
<tr>
<td></td>
<td>ALC_FLR.1 Basic Flaw Remediation</td>
</tr>
<tr>
<td>ATE: Tests</td>
<td>ATE_COV.2 Analysis of coverage</td>
</tr>
<tr>
<td></td>
<td>ATE_DPT.1 Testing: high-level design</td>
</tr>
<tr>
<td></td>
<td>ATE_FUN.1 Functional testing</td>
</tr>
<tr>
<td></td>
<td>ATE_IND.2 Independent testing - sample</td>
</tr>
</tbody>
</table>
Cisco Systems Wireless EAL3 Security Target

Table 7 Assurance Requirements: EAL3 (continued)

<table>
<thead>
<tr>
<th>Assurance Class</th>
<th>Assurance Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVA: Vulnerability assessment</td>
<td>AVA_MSU.1 Examination of guidance</td>
</tr>
<tr>
<td></td>
<td>AVA_SOF.1 Strength of TOE security function evaluation</td>
</tr>
<tr>
<td></td>
<td>AVA_VLA.1 Developer vulnerability analysis</td>
</tr>
</tbody>
</table>

ACM_CAP.3 Authorization Controls

Developer action elements:
- ACM_CAP.3.1D The developer shall provide a reference for the TOE.
- ACM_CAP.3.2D The developer shall use a CM system.
- ACM_CAP.3.3D The developer shall provide CM documentation.

Content and presentation of evidence elements:
- ACM_CAP.3.1C The reference for the TOE shall be unique to each version of the TOE.
- ACM_CAP.3.2C The TOE shall be labeled with its reference.
- ACM_CAP.3.3C The CM documentation shall include a configuration list and a CM plan.
- ACM_CAP.3.XC The configuration list shall uniquely identify all configuration items that comprise the TOE. (Interpretation 003)
- ACM_CAP.3.4C The configuration list shall describe the configuration items that comprise the TOE.
- ACM_CAP.3.5C The CM documentation shall describe the method used to uniquely identify the configuration items.
- ACM_CAP.3.6C The CM system shall uniquely identify all configuration items.
- ACM_CAP.3.7C The CM plan shall describe how the CM system is used.
- ACM_CAP.3.8C The evidence shall demonstrate that the CM system is operating in accordance with the CM plan.
- ACM_CAP.3.9C The CM documentation shall provide evidence that all configuration items have been and are being effectively maintained under the CM system.
- ACM_CAP.3.10C The CM system shall provide measures such that only authorized changes are made to the configuration items.

Evaluator action elements:
- ACM_CAP.3.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

ACM_SCP.1 TOE CM Coverage

Developer action elements: (Interpretation 004)
- ACM_SCP.1.1D The developer shall provide a list of configuration items for the TOE.
Content and presentation of evidence elements: (Interpretations 004 and 038)

ACM_SCP.1.1C The list of configuration items shall include the following: implementation representation and the evaluation evidence required by the assurance components in the ST.

Evaluator action elements:

ACM_SCP.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

ADO_DEL1 Delivery Procedures

Developer action elements:

ADO_DEL.1.1D The developer shall document procedures for delivery of the TOE or parts of it to the user.

ADO_DEL.1.2D The developer shall use the delivery procedures.

Content and presentation of evidence elements:

ADO_DEL.1.1C The delivery documentation shall describe all procedures that are necessary to maintain security when distributing versions of the TOE to a user's site.

Evaluator action elements:

ADO_DEL.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

ADO_IGS.1 Installation, Generation, and Start-up Procedures

Developer action elements:

ADO_IGS.1.1D The developer shall document procedures necessary for the secure installation, generation, and start-up of the TOE.

Content and presentation of evidence elements:

ADO_IGS.1.1C The installation, generation and start-up documentation shall describe all the steps necessary for secure installation, generation, and start-up of the TOE. (Interpretation 051)

Evaluator action elements:

ADO_IGS.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

ADO_IGS.1.2E The evaluator shall determine that the installation, generation, and start-up procedures result in a secure configuration.

ADV_FSP.1 Informal Functional Ppecification

Developer action elements:

ADV_FSP.1.1D The developer shall provide a functional specification.
Content and presentation of evidence elements:

ADV_FSP.1.1C The functional specification shall describe the TSF and its external interfaces using an informal style.
ADV_FSP.1.2C The functional specification shall be internally consistent.
ADV_FSP.1.3C The functional specification shall describe the purpose and method of use of all external TSF interfaces, providing details of effects, exceptions, and error messages, as appropriate.
ADV_FSP.1.4C The functional specification shall completely represent the TSF.

Evaluator action elements:

ADV_FSP.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.
ADV_FSP.1.2E The evaluator shall determine that the functional specification is an accurate and complete instantiation of the TOE security requirements.

ADV_HLD.2 Security Enforcing High-level Design

Developer action elements:

ADV_HLD.2.1D The developer shall provide the high-level design of the TSF.

Content and presentation of evidence elements:

ADV_HLD.2.1C The presentation of the high-level design shall be informal.
ADV_HLD.2.2C The high-level design shall be internally consistent.
ADV_HLD.2.3C The high-level design shall describe the structure of the TSF in terms of subsystems.
ADV_HLD.2.4C The high-level design shall describe the security functionality provided by each subsystem of the TSF.
ADV_HLD.2.5C The high-level design shall identify any underlying hardware, firmware, and/or software required by the TSF with a presentation of the functions provided by the supporting protection mechanisms implemented in that hardware, firmware, or software.
ADV_HLD.2.6C The high-level design shall identify all interfaces to the subsystems of the TSF.
ADV_HLD.2.7C The high-level design shall identify which of the interfaces to the subsystems of the TSF are externally visible.
ADV_HLD.2.8C The high-level design shall describe the purpose and method of use of all interfaces to the subsystems of the TSF, providing details of effects, exceptions and error messages, as appropriate.
ADV_HLD.2.9C The high-level design shall describe the separation of the TOE into TSP-enforcing and other subsystems.

Evaluator action elements:

ADV_HLD.2.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.
ADV_HLD.2.2E The evaluator shall determine that the high-level design is an accurate and complete instantiation of the TOE security requirements.
ADV_RCR.1 Informal Correspondence Demonstration

Developer action elements:
ADV_RCR.1.1D The developer shall provide an analysis of correspondence between all adjacent pairs of TSF representations that are provided.

Content and presentation of evidence elements:
ADV_RCR.1.1C For each adjacent pair of provided TSF representations, the analysis shall demonstrate that all relevant security functionality of the more abstract TSF representation is correctly and completely refined in the less abstract TSF representation.

Evaluator action elements:
ADV_RCR.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

AGD_ADM.1 Administrator Guidance

Developer action elements:
AGD_ADM.1.1D The developer shall provide administrator guidance addressed to system administrative personnel.

Content and presentation of evidence elements:
AGD_ADM.1.1C The administrator guidance shall describe the administrative functions and interfaces available to the authorized administrators of the TOE.
AGD_ADM.1.2C The administrator guidance shall describe how to administer the TOE in a secure manner.
AGD_ADM.1.3C The administrator guidance shall contain warnings about functions and privileges that should be controlled in a secure processing environment.
AGD_ADM.1.4C The administrator guidance shall describe all assumptions regarding user behavior that are relevant to secure operation of the TOE.
AGD_ADM.1.5C The administrator guidance shall describe all security parameters under the control of the authorized administrators, indicating secure values as appropriate.
AGD_ADM.1.6C The administrator guidance shall describe each type of security-relevant event relative to the administrative functions that need to be performed, including changing the security characteristics of entities under the control of the TSF.
AGD_ADM.1.7C The administrator guidance shall be consistent with all other documentation supplied for evaluation.
AGD_ADM.1.8C The administrator guidance shall describe all security requirements for the IT environment that are relevant to the authorized administrators.

Evaluator action elements:
AGD_ADM.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.
AGD_USR.1 User Guidance

Developer action elements:
AGD_USR.1.1D The developer shall provide user guidance.

Content and presentation of evidence elements:
AGD_USR.1.1C The user guidance shall describe the functions and interfaces available to the non-administrative users of the TOE.
AGD_USR.1.2C The user guidance shall describe the use of user-accessible security functions provided by the TOE.
AGD_USR.1.3C The user guidance shall contain warnings about user-accessible functions and privileges that should be controlled in a secure processing environment.
AGD_USR.1.4C The user guidance shall clearly present all user responsibilities necessary for secure operation of the TOE, including those related to assumptions regarding user behavior found in the statement of TOE security environment.
AGD_USR.1.5C The user guidance shall be consistent with all other documentation supplied for evaluation.
AGD_USR.1.6C The user guidance shall describe all security requirements for the IT environment that are relevant to the user.

Evaluator action elements:
AGD_USR.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

ALC_DVS.1 Identification of Security Measures

Developer action elements:
ALC_DVS.1.1D The developer shall produce development security documentation.

Content and presentation of evidence elements:
ALC_DVS.1.1C The development security documentation shall describe all the physical, procedural, personnel, and other security measures that are necessary to protect the confidentiality and integrity of the TOE design and implementation in its development environment.
ALC_DVS.1.2C The development security documentation shall provide evidence that these security measures are followed during the development and maintenance of the TOE.

Evaluator action elements:
ALC_DVS.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.
ALC_DVS.1.2E The evaluator shall confirm that the security measures are being applied.
ALC_FLR.1 Basic Flaw Remediation

Developer action elements:
ALC_FLR.1.1D The developer shall provide flaw remediation procedures addressed to TOE developers.

Content and presentation of evidence elements:
ALC_FLR.1.1C The flaw remediation procedures documentation shall describe the procedures used to track all reported security flaws in each release of the TOE.
ALC_FLR.1.2C The flaw remediation procedures shall require that a description of the nature and effect of each security flaw be provided, as well as the status of finding a correction to that flaw.
ALC_FLR.1.3C The flaw remediation procedures shall require that corrective actions be identified for each of the security flaws.
ALC_FLR.1.4C The flaw remediation procedures documentation shall describe the methods used to provide flaw information, corrections and guidance on corrective actions to TOE users.

Evaluator action elements:
ALC_FLR.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

ATE_COV.2 Analysis of Coverage

Developer action elements:
ATE_COV.2.1D The developer shall provide evidence of the test coverage.

Content and presentation of evidence elements:
ATE_COV.2.1C The analysis of the test coverage shall demonstrate the correspondence between the tests identified in the test documentation and the TSF as described in the functional specification.
ATE_COV.2.2C The analysis of the test coverage shall demonstrate that the correspondence between the TSF as described in the functional specification and the tests identified in the test documentation is complete.

Evaluator action elements:
ATE_COV.2.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

ATE_DPT.1 Testing: High-level Design

Developer action elements:
ATE_DPT.1.1D The developer shall provide the analysis of the depth of testing.
Content and presentation of evidence elements:

ATE_DPT.1.1C The depth analysis shall demonstrate that the tests identified in the test documentation are sufficient to demonstrate that the TSF operates in accordance with its high-level design.

Evaluator action elements:

ATE_DPT.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

ATE_FUN.1 Functional Testing

Developer action elements:

ATE_FUN.1.1D The developer shall test the TSF and document the results.
ATE_FUN.1.2D The developer shall provide test documentation.

Content and presentation of evidence elements:

ATE_FUN.1.1C The test documentation shall consist of test plans, test procedure descriptions, expected test results and actual test results.
ATE_FUN.1.2C The test plans shall identify the security functions to be tested and describe the goal of the tests to be performed.
ATE_FUN.1.3C The test procedure descriptions shall identify the tests to be performed and describe the scenarios for testing each security function. These scenarios shall include any ordering dependencies on the results of other tests.
ATE_FUN.1.4C The expected test results shall show the anticipated outputs from a successful execution of the tests.
ATE_FUN.1.5C The test results from the developer execution of the tests shall demonstrate that each tested security function behaved as specified.

Evaluator action elements:

ATE_FUN.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

ATE_IND.2 Independent Testing - Sample

Developer action elements:

ATE_IND.2.1D The developer shall provide the TOE for testing.

Content and presentation of evidence elements:

ATE_IND.2.1C The TOE shall be suitable for testing.
ATE_IND.2.2C The developer shall provide an equivalent set of resources to those that were used in the developer’s functional testing of the TSF.

Evaluator action elements:

ATE_IND.2.1E The evaluator shall confirm that the information provided meets all requirements for
content and presentation of evidence.

ATE_IND.2.2E The evaluator shall test a subset of the TSF as appropriate to confirm that the TOE operates as specified.

ATE_IND.2.3E The evaluator shall execute a sample of tests in the test documentation to verify the developer test results.

AVA_MSU.1 Examination of Guidance

Developer action elements:
AVA_MSU.1.1D The developer shall provide guidance documentation.

Content and presentation of evidence elements:
AVA_MSU.1.1(118,828),(881,996)

Evaluator action elements:
AVA_MSU.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

AVA_MSU.1.2E The evaluator shall repeat all configuration and installation procedures to confirm that the TOE can be configured and used securely using only the supplied guidance documentation.

AVA_MSU.1.3E The evaluator shall determine that the use of the guidance documentation allows all insecure states to be detected.

AVA_SOF.1 Strength of TOE Security Function Evaluation

Developer action elements:
AVA_SOF.1.1D The developer shall perform a strength of TOE security function analysis for each mechanism identified in the ST as having a strength of TOE security function claim.

Content and presentation of evidence elements:
AVA_SOF.1.1C For each mechanism with a strength of TOE security function claim the strength of TOE security function analysis shall show that it meets or exceeds the minimum strength level defined in the PP/ST.

AVA_SOF.1.2C For each mechanism with a specific strength of TOE security function claim the strength of TOE security function analysis shall show that it meets or exceeds the specific strength of function metric defined in the PP/ST.
Evaluator action elements:

AVA_SOF.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

AVA_SOF.1.2E The evaluator shall confirm that the strength claims are correct.

AVA_VLA.1 Developer Vulnerability Analysis

Developer action elements: (Interpretation 051)

AVA_VLA.1.1D The developer shall perform a vulnerability analysis.

AVA_VLA.1.2D The developer shall provide vulnerability analysis documentation.

Content and presentation of evidence elements: (Interpretation 051)

AVA_VLA.1.1C The vulnerability analysis documentation shall describe the analysis of the TOE deliverables performed to search for obvious ways in which a user can violate the TSP.

AVA_VLA.1.2C The vulnerability analysis documentation shall describe the disposition of obvious vulnerabilities.

AVA_VLA.1.3C The vulnerability analysis documentation shall show, for all identified vulnerabilities, that the vulnerability cannot be exploited in the intended environment for the TOE.

Evaluator action elements:

AVA_VLA.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence.

AVA_VLA.1.2E The evaluator shall conduct penetration testing, building on the developer vulnerability analysis, to ensure obvious vulnerabilities have been addressed.

Rationale For TOE Security Requirements

TOE Security Functional Requirements

Table 8 SFR to Security Objectives Mapping

<table>
<thead>
<tr>
<th>SFR</th>
<th>O.ACCESS_CONTROL</th>
<th>O.AUDIT_GEN</th>
<th>O.AUDIT_VIEW</th>
<th>O.CFG_MANAGE</th>
<th>O.IDAUTH</th>
<th>O.MEDIATE</th>
<th>O.SELFPRO</th>
<th>O.STARTUP_TEST</th>
<th>O.TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU_GEN.1(1)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAU_SAR.1(1) and (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_COP.1(1), (2), and (3)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_CKM.1(1), (2), and (3)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cisco Systems Wireless EAL3 Security Target

38
Table 8
SFR to Security Objectives Mapping (continued)

<table>
<thead>
<tr>
<th>SFR to Security Objectives Mapping (continued)</th>
<th>O.ACCESS_CONTROL</th>
<th>O.AUDIT_GEN</th>
<th>O.AUDIT_VIEW</th>
<th>O.CFG_MANAGE</th>
<th>O.IDAUTH</th>
<th>O.MEDIATE</th>
<th>O.SELFPRO</th>
<th>O.STARTUP_TEST</th>
<th>O.TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS_CKM.4</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_IFC.1(1) and (2)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDP_IFF.1(1) and (2)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIA_AFL.1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIA_ATD.1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIA_UAU.2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIA_UID.2</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMT_MOE.1(1) and (2)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.2</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMT_MTD.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMT_SMF.1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMT_SMR.1</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPT_ITT.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPT_RVM.1(1)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPT_SEP_EXP.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPT_STM_RTR_EXP.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPT_AMT_RTR_EXP.1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

O.ACCESS_CONTROL The TOE will restrict access to the TOE Management functions to the Authorized administrators.

The TOE is required to provide the ability to restrict the use of TOE management/administration/security functions to authorized administrators of the TOE. These functions are divided between the device (privileged administrator) and the ACS (authentication administrator) [FMT_MOE.1(1) and (2)]. Only authorized administrators of the TOE may modify TOE data [FMT_MTD.1]. The TOE must be able to recognize the administrative role that exists for the TOE [FMT_SMR.1]. The TOE must allow the privileged administrator to specify alternate initial values when an object is created [FMT_MSA.3]. The TOE ensures that all user actions resulting in the access to TOE security functions and configuration data are controlled. The TOE ensures that access to TOE security functions and configuration data is based on the assigned user role.

O.AUDIT_GEN The TOE will generate audit records which will include the time that the event occurred and if applicable, the identity of the user performing the event.

Security relevant events must be defined and auditable for the TOE [FAU_GEN.1].
Timestamps associated with the audit record must be reliable [FPT_STM.1].

O.AUDIT_VIEW
The TOE will provide the privileged administrators and authentication administrators the capability to review Audit data.

Security relevant events must be available for review by authorized administrators (both privileged administrators and authentication administrators) [FAU_SAR.1(1) and (2)].

O.CFG_MANAGE
The TOE will provide management tools/applications to allow privileged administrators and authentication administrators to manage its security functions.

The TOE is required to provide the ability to for authorized administrators (both privileged administrators and authentication administrators) to perform management/administration/security [FMT_MOF.1(1) and (2)]. The TOE is capable of performing numerous management functions including startup, shutdown, and creating/modifying/deleting configuration items [FMT_SMF.1]. The TOE must be able to recognize the administrative role that exist for the TOE [FMT_SMR.1]. The TOE must allow the privileged administrator to specify alternate initial values when an object is created [FMT_MSA.3]. The TOE requires that all users, devices and hosts actions resulting in the access to TOE security functions and configuration data are controlled to prevent unauthorized activity. The TOE ensures that access to TOE security functions and configuration data is done in accordance with the rules of the access control policy.

O.IDAUTH
The TOE must uniquely identify and authenticate the claimed identity of all administrative users before granting management access.

The TOE is required to provide users with security attributes to enforce the authentication policy of the TOE and to associate security attributes with users [FIA_ATD.1]. Users authorized to access the TOE must be defined using an identification and authentication process [FIA_UID.2, FIA_UAU.2]. Before anything occurs on behalf of the user, the user’s identity is identified to the TOE [FIA_UID.2]. Multiple consecutive unsuccessful attempts to authenticate using ACS result in locking of the account until the authentication administrator re-enables it [FIA_AFL.1].

O.MEDIATE
The TOE must mediate the flow of all information between clients and servers located on internal and external networks governed by the TOE.

The TOE is required to identify the entities involved in the unauthenticated information flow control SFP [FDP_IFC.1(1) and (2), FDP_IFF.1(1) and (2)] and to identify the attributes of the users sending and receiving the information in the unauthenticated SFP [FDP_IFF.1(1) and (2)]. The policy is defined by saying under what conditions information is permitted to flow [FDP_IFF.1(1) and (2)]. Information that is permitted to flow will then be routed according to the information in the routing table [FDP_IFF.1(1) and (2)]. The TOE ensures that there is a default deny policy for the information flow control security rules [FMT_MSA.3].

O.SELFPRO
The TOE (both device and ACS) must protect itself against attempts by unauthorized users to bypass, deactivate, or tamper with TOE security functions.

The device component of the TOE ensures that the TSF has a domain of execution that is separate and that cannot be violated by unauthorized users [FPT_SEP_EXP.1]. The ACS component provides a domain that protects itself from untrusted users and from interference through its own interfaces that would prevent it from performing its functions [FPT_SEP_EXP.1] The TOE ensures that the TSP enforcement functions cannot be bypassed [FPT_RVM.1(1)].
The device component of the TOE provides an encrypted (SSH) mechanism for remote management of the TOE. [FCS_COP.1(1), (2), and (3), FCS_CKM.1(1), (2), and (3), FCS_CKM.4, FMT_MSA.2, FPT_ITT.1]

O.STARTUP_TEST The device will perform initial startup tests upon bootup of the system.

The TOE device is required to demonstrate the correct operation of the security assumptions on startup by running initialization tests [FPT_AMT_RTR_EXP.1].

O.TIME The device will provide a reliable time stamp for its own use.

The TOE device is required to provide reliable timestamps for use with the audit record. [FPT_STM_RTR_EXP.1].

TOE Security Assurance Requirements

EAL3 augmented with ALC_FLR.1 was chosen to provide a low to moderate level of independently assured security. The chosen assurance level is consistent with the threat environment. Specifically, that the threat of malicious attacks is not greater than moderate and the product will have undergone a search for obvious flaws. Including the assurance requirement ALC_FLR.1 is to allow for future assurance maintenance activities.

Rationale For IT Environment Security Requirements

<table>
<thead>
<tr>
<th>Table 9</th>
<th>Environmental Security Requirements Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OE.ACS_PROTECT</td>
</tr>
<tr>
<td>FAU_STG.1</td>
<td>X</td>
</tr>
<tr>
<td>FPT_RVM.1(2)</td>
<td>X</td>
</tr>
<tr>
<td>FPT_SEP_ENV_EXP.1</td>
<td>X</td>
</tr>
<tr>
<td>FPT_STM_ENV_EXP.1</td>
<td>X</td>
</tr>
</tbody>
</table>

OE.ACS_PROTECT The Windows Server Host must protect the ACS against attempts by unauthorized users to bypass, deactivate, or tamper with TOE security functions through attacking the Windows operating system.

The ACS ensures that the TSF has a domain of execution that is separate and that cannot be violated by unauthorized users [FPT_SEP_ENV_EXP.1] through its independent system of authentication. The Windows Server host ensures that the TSP enforcement functions cannot be bypassed [FPT_RVM.1(2)]. The Windows Server host also protects stored audit records from unauthorized deletion [FAU_STG.1].

OE.ACS_TIME The Windows Server Host will provide a reliable time stamp for use.
The Windows Server Host is required to provide reliable timestamps for use with the audit record. [FPT_STM ENV_EXP.1]. This in turn is taken by the ACS to satisfy O.AUDIT_GEN for events internal to the ACS.

Rationale for Explicitly Stated Security Requirements

The table below presents the rationale for the inclusion of the explicit requirements found in this Security Target.

Table 10 Explicitly Stated Requirement Rationale

<table>
<thead>
<tr>
<th>Explicit Requirement</th>
<th>Identifier</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPT_SEP_EXP.1.1</td>
<td>Partial TSF Domain Separation</td>
<td>This requirement is necessary because the domain separation on the TOE is partially met by the TOE and partially met on the IT environment.</td>
</tr>
<tr>
<td>FPT_STM_RTR_EXP.1.1</td>
<td>Device Reliable Time Stamps</td>
<td>This requirement is necessary because the CC version of FPT_STM.1 does not specify portions of the TOE. This is specific to the device component. This requirement is split between the TOE and the environment.</td>
</tr>
<tr>
<td>FPT_SEP_ENV_EXP.1.1</td>
<td>Partial Environment TSF Domain Separation</td>
<td>This requirement is necessary because a separate version of the CC requirement FPT_SEP.1 is needed for the environment of the TOE.</td>
</tr>
<tr>
<td>FPT_STM_ENV_EXP.1.1</td>
<td>Environment Reliable Time Stamps</td>
<td>This requirement is necessary because the CC version of FPT_STM.1 does not allow the time stamp source to be split. This is specific to the TOE environment. This requirement is split between the TOE and the environment.</td>
</tr>
</tbody>
</table>

Rationale For IT Security Requirement Dependencies

This section includes a table of the requirements are their dependencies and a rationale for any dependencies that are not satisfied.

Table 11 SFR Dependencies

<table>
<thead>
<tr>
<th>Functional Component</th>
<th>Dependency</th>
<th>Included</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU_GEN.1</td>
<td>FPT_STM.1</td>
<td>YES</td>
</tr>
<tr>
<td>FAU_SAR.1</td>
<td>FAU_GEN.1</td>
<td>YES</td>
</tr>
<tr>
<td>FCS_CKM.1</td>
<td>FCS_COP.1, FCS_CKM.4, FMT_MSA.2</td>
<td>YES</td>
</tr>
<tr>
<td>FCS_CKM.4</td>
<td>FCS_CKM.1, FMT_MSA.2</td>
<td>YES</td>
</tr>
<tr>
<td>FSC_COP.1</td>
<td>FCS_CKM.1, FCS_CKM.4, FMT_MSA.2</td>
<td>YES</td>
</tr>
<tr>
<td>FDP_IFC.1</td>
<td>FDP_IFF.1</td>
<td>YES</td>
</tr>
</tbody>
</table>
Cisco Systems Wireless EAL3 Security Target

IT Security Requirements

Table 11 SFR Dependencies (continued)

<table>
<thead>
<tr>
<th>Functional Component</th>
<th>Dependency</th>
<th>Included</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDP_IFF.1</td>
<td>FDP_IFC.1</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.3</td>
<td>YES</td>
</tr>
<tr>
<td>FIA_AFL.1</td>
<td>FIA_UAU.1</td>
<td>YES, via FIA_UAU.2</td>
</tr>
<tr>
<td>FIA_ATD.1</td>
<td>none</td>
<td>N/A</td>
</tr>
<tr>
<td>FIA_UAU.2</td>
<td>FIA_UID.1</td>
<td>YES, via FIA_UID.2</td>
</tr>
<tr>
<td>FIA_UID.2</td>
<td>none</td>
<td>N/A</td>
</tr>
<tr>
<td>FMT_MOF.1</td>
<td>FMT_SMF.1</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1</td>
<td>YES</td>
</tr>
<tr>
<td>FMT_MSA.2</td>
<td>FDP_IFC.1</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.1</td>
<td>No, see rational below.</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1</td>
<td>YES</td>
</tr>
<tr>
<td>FMT_MSA.3</td>
<td>FMT_MSA.1</td>
<td>No, see rational below.</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1</td>
<td>YES</td>
</tr>
<tr>
<td>FMT_MTD.1</td>
<td>FMT_SMF.1</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.1</td>
<td>YES</td>
</tr>
<tr>
<td>FMT_SMF.1</td>
<td>none</td>
<td>N/A</td>
</tr>
<tr>
<td>FMT_SMR.1</td>
<td>FIA_UID.1</td>
<td>YES</td>
</tr>
<tr>
<td>FPT_ATM.1</td>
<td>none</td>
<td>N/A</td>
</tr>
<tr>
<td>FPT_RVM.1(1)</td>
<td>none</td>
<td>N/A</td>
</tr>
<tr>
<td>FPT_SEP_EXP.1</td>
<td>none</td>
<td>N/A</td>
</tr>
<tr>
<td>FPT_STM_RTR_EXP.1</td>
<td>none</td>
<td>N/A</td>
</tr>
<tr>
<td>FPT_AMT_RTR_EXP.1</td>
<td>none</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Functional component FMT_MSA.3 depends on functional component FMT_MSA.1 Management of security attributes. In an effort to place all the management requirements in a central place, FMT_MOF.1 was used. Therefore FMT_MOF.1a more than adequately satisfies the concerns of leaving FMT_MSA.1 out of this Security Target.

Rationale For Internal Consistency and Mutually Supportive

The ST includes all the functional security requirements to address security functionality provided by the TOE. All operations performed on the security requirements comply with the rules and intent required by the operation in the CC. The requirements defined in the ST are not contradictory.

The selected requirements together form a mutually supportive whole by:

- satisfying all dependencies or providing an acceptable rationale for not satisfying the dependency as demonstrated in Section Rationale For IT Security Requirement Dependencies
- tracing security functional requirements to security objectives and justifying that tracing as demonstrated in Section TOE Security Functional Requirements
- including audit requirements to detect security-related actions and potential attacks
• including security management requirements to ensure that the TOE is managed and configured securely.

Rationale For Strength of Function Claim

The rationale for the chosen level of SOF-basic is based on the low attack potential of the threat agents identified. The evaluated TOE is intended to operate in commercial and DoD low robustness environments processing unclassified information. The security objectives imply probabilistic or permutational security mechanism and the TOE password constraints satisfy the minimal “industry” accepted constraints that should be good enough for SOF-Basic.

TOE Summary Specification

TOE Security Functions

Audit (Accounting)

The TOE device and the ACS provide basic data logging and security auditing. Audit data is stored in memory on the device. Although the data may be reviewed, it is not persistent and will be deleted upon system reboot. Permanent audit data is stored by the ACS either in a CSV file on the server or in a SQL database on the server.

Audit data generation: FAU_GEN.1.

Audit data is generated by IOS. Audit data includes audit records for each of the auditable events specified in Table 6.

Audit records include the date and time of the event, the type of event, subject identity, and if the record addresses a success or a failure. Additional data collected for specific audit events are provided in Table 6.

Security Audit review and restricted review: FAU_SAR.1(1) and (2)

Both the ACS and the device provide the ability for authorized administrators to read audit information. The authentication administrator can read audit information on ACS, and the privileged administrator can read audit information on the device.

Reliable Time Stamps: FPT_STM_RTR_EXP.1

The device hardware clock provides reliable time stamps for use by the device component of the TOE. The reliable time stamp for the ACS portion of the TOE is provided by the underlying Windows OS (FPT_STM_ENV_EXP.1).

Identification & Authentication (Authentication)

Identification and Authentication for logging on to the device can be provided either locally on the device or through the ACS using TACACS+ or RADIUS. Authorized administrators (all roles) of the TOE must be identified and authenticated prior to using the system. Username/Password combinations will be set to enter privileged administrative modes (Privileged Exec, User) as well as access to auxiliary, console, and connecting to the device using SSH.
User attribute definition: FIA_ATD.1
The user security attributes for both the device and ACS are identity and password.

Timing of Identification and authentication: FIA_UAU.2, FIA_UID.2.
It is possible for a privileged or semi-privileged administrator to log directly into IOS on the device by connecting directly to the console port. These administrators log into IOS to perform local maintenance, diagnostics, or debugging. Identification and authentication must take place before any other actions can be performed.

The authentication mechanism is the only security function realized by a probabilistic or permutational security mechanism. The minimum password length for users and administrators is 8 characters (with a character set of at least 80 characters), which meets the SOF claim of SOF-basic.

Identification and Authentication for authentication administrators logging on to the ACS checks its internal user database. Successful identification and authentication must take place before other administrative actions are performed.

ACS Identification and Authentication of users involves checking the internal ACS user database. If the user exists in the internal user database, ACS tries to authenticate the user with the specified password type against the internal database. Authentication for that user either passes or fails, depending on whether correct credentials are entered, whether the correct privileges exist for that user, and whether that user has been locked out by too many incorrect authentication attempts. Failure handling: FIA_AFL.1.

For ACS authentication, the authentication administrator configures the ACS server to lockout accounts after one to five consecutive failed authentication attempts. This results in users that reach that limit having their accounts locked until the authentication administrator unlocks them.

Traffic Filtering and Routing

Information Flow and Security Attributes: FDP_IFC.1(1) and (2), FDP_IFF.1(1) and (2)
The device supports routing of the traffic that is permitted by the information flow policies. All traffic passing through the device is processed by the ACL attached to the interface/protocol. The ACL is processed top-down, with processing continuing until the first match is made.

All traffic that successfully clears the ACLs is processed by the routing tables. The routing table is processed top-down, with processing continuing until the first match is made. The routing table may be statically updated by a privileged administrator or dynamically through routing protocols.

Security Management / Access Control (Authorization)

The TOE allows administrators to add new administrators, start-up and shutdown the device, create, modify, or delete configuration items, modify and set the threshold for the number of permitted authentication attempt failures, restore authentication capabilities for users that have met or exceeded the threshold for permitted authentication attempt failures, modify and set the time and date, and create, delete, empty, and review the audit trail.

Management and specification of security functions: FMT_MOF.1(1) and (2), FMT_SMF.1
The following functions are specified for the TOE and are restricted to authentication administrators and privileged administrators:

a. start-up and shutdown (privileged administrators only);

b. create, modify, or delete configuration items (both privileged administrators and authentication administrators);
c. modify and set the time and date (privileged administrators only);

d. modify and set the threshold for the number of permitted consecutive authentication attempt failures (authentication administrators only);

e. restore authentication capabilities for users that have met or exceeded the threshold for permitted consecutive authentication attempt failures (authentication administrators only);

f. create, delete, empty, and review the audit trail (both privileged administrators and authentication administrators);

g. create, delete, modify, and view filtering rules (privileged administrators only).

Static Attribute Initialization: FMT_MSA.3
By default, the TOE allows information flow with the unauthenticated SP (i.e., the TOE allows all data to pass through). The administrator is instructed in administrator guidance how to set default attribute values in a secure manner.

Management of TSF data: FMT_MTD.1
This requirement states that TOE data can only be queried and modified by a privileged administrator.

Security Roles: FMT_SMR.1.
The TOE maintains the roles of the privileged administrator, semi-privileged administrator and authentication administrator.
The device maintains all IOS administrator roles (privileged and semi-privileged administrators). The Device can and shall be configured to authenticate both unprivileged and privileged access to the command line interface using a username and password. Privileged access is defined by any privilege level entering an enable password after their individual login.
The TOE also maintains the ACS administrator (authentication administrator).

Protection of the TSF

Abstract Machine Testing: FPT_AMT_RTR_EXP.1
The device initiates a suite of tests upon startup to ensure proper operation of the underlying abstract machine that underlies the TOE. The switch plus IOS image is considered the abstract machine.
The TOE device is required to demonstrate the correct operation of the security assumptions at the request of the authorized administrator by generating a one-way MD5 hash of the running IOS image to demonstrate if the file has been corrupted. The administrator can match this MD5 hash to one on the Cisco download website to ensure integrity of the file. Alternately the administrator can enter the expected hash at the command line and the TOE can verify that the value matches the one of the running image.

Internal data transfer: FPT_ITT.1
The TOE protects data transferred between the device and the ACS server from disclosure by using the RADIUS and TACACS+ protocols. RADIUS uses MD5 hashes derived from a shared secret to protect passwords being transmitted between the device and the ACS. TACACS+ uses MD5 hashes derived from a shared secret to protect the entire data transmission.
Non-bypassability of the TSP: FPT_RVM.1(1)

The TOE protects its management functions by isolating them through identification and authentication of administrative users. Additionally, the IT environment requirement ensures that untrusted subjects on the host OS cannot interfere with TOE operation or bypass its checks (FPT_RVM.1(2)).

TSF domain separation: FPT_SEP_EXP.1

The device component of the TOE protects itself from interference and tampering by untrusted subjects by implementing authentication and access controls to limit configuration to privileged administrators. IOS is not a general purpose operating system and access to IOS memory space is restricted to IOS functions. Additionally, IOS is the only software running on the devices in the TOE.

The external interfaces to the ACS component of the TOE ensure that users must login prior to accessing administrative ACS functions and resources. In addition, the external interfaces to the ACS ensure that users must login prior to accessing other ACS resources. Protection of the ACS component of the TOE from physical and logical tampering from other methods is ensured by the physical security assumptions and by the domain separation requirements on the ACS hardware and operating system in the environment.

The protection of the security domain for the ACS component’s execution is provided by the underlying Windows OS (FPT_SEP_ENV_EXP.1).

Remote Management: FCS_COP.1(1), (2), and (3), FCS_CKM.1(1), (2), and (3), FCS_CKM.4, and FMT_MSA.2

The TOE implements Secure Shell (SSH) using RSA key generation and 192 bit 3DES or 128, 192, or 256 bit AES encryption for the purposes of remote management of the device. The implementation of SSH provides an integrated single use mechanism in that the transport protocol provides a unique session identifier that is bound to the key exchange process. This is used by higher level protocols to bind data to a given session and prevent replay of data from prior sessions. See section 9.2.3 Replay of the SSH Protocol Architecture internetworking draft for more information on the SSH protocol (http://www.ietf.org/internet-drafts/draft-ietf-secsh-architecture-21.txt). Implementation of the various cryptographic standards ensure that only appropriate secure values are used for the cryptographic functions performed.

The TOE implements SSL using RSA or Diffie-Hellman key generation and 128 bit AES encryption for the purposes of remote management of the ACS. Implementation of the various cryptographic standards ensure that only appropriate secure values are used for the cryptographic functions performed.

Encryption is implemented using 128 bit MD5 hashing for purposes of protecting authentication data transferred between the device and the ACS server from disclosure.

Encryption of wireless traffic is implemented using 128 or 256 bit AES for the purpose of authenticating and protecting wireless data.

Key overwriting is done upon creation of new cryptographic keys, and the new key is written over the old one in NVRAM.

Remote management of the device via SSH provides full access to the CLI command set. Remote management of the ACS via SSL provides full access to the ACS GUI.

The cryptography used in this product has not been FIPS certified nor has it been analyzed or tested to conform to cryptographic standards during this evaluation. All cryptography has only been asserted as tested by the vendor.
Security Assurance Measures

Table 12
Assurance Requirements: EAL3

<table>
<thead>
<tr>
<th>Assurance Requirement</th>
<th>Assurance Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM_CAP.3</td>
<td>The description of the configuration items and controls used to prevent unauthorized modification is provided in Cisco’s Configuration Management Plan and Delivery Procedure.</td>
</tr>
<tr>
<td>ACM_SCP.1</td>
<td>The description of the scope of control for configuration items is provided in Cisco’s Configuration Management Plan and Delivery Procedure.</td>
</tr>
<tr>
<td>ADO_DEL.1</td>
<td>The description of the delivery procedures is provided in Cisco’s Configuration Management Plan and Delivery Procedure.</td>
</tr>
<tr>
<td>ADO_IGS.1</td>
<td>The installation, generation, and start-up procedures are provided in Installation and Configuration for Common Criteria EAL3 Evaluated Cisco IOS/AAA Wireless.</td>
</tr>
<tr>
<td>ADV_FSP.1</td>
<td>The informal functional specification is provided in Cisco IOS / AAA Functional Specification EAL3.</td>
</tr>
<tr>
<td>ADV_HLD.2</td>
<td>The security enforcing high-level design is provided in Cisco IOS / AAA High Level Design EAL3.</td>
</tr>
<tr>
<td>ADV_RCR.1</td>
<td>The informal correspondence demonstration is provided in Cisco IOS / AAA Functional Specification EAL3.</td>
</tr>
<tr>
<td>AGD_ADM.1</td>
<td>The administrator guidance is provided in the following documents: Installation and Configuration for Common Criteria EAL3 Evaluated Cisco IOS/AAA and documents referenced therein.</td>
</tr>
<tr>
<td>AGD_USR.1</td>
<td>See AGD_ADM.1</td>
</tr>
<tr>
<td>ALC_DVS.1</td>
<td>The life cycle measures are described in Cisco Systems Development Security for Cisco IOS.</td>
</tr>
<tr>
<td>ALC_FLR.1</td>
<td>The flaw remediation measures are described in Cisco Systems Development Security for Cisco IOS.</td>
</tr>
<tr>
<td>ATE_COV.2</td>
<td>The analysis of coverage is provided in Cisco IOS Wireless EAL3 Detailed Test Plan</td>
</tr>
<tr>
<td>ATE_DPT.1</td>
<td>The depth of testing analysis is provided in Cisco IOS Wireless EAL3 Detailed Test Plan</td>
</tr>
<tr>
<td>ATE_FUN.1</td>
<td>The functional testing description is provided in Cisco IOS Wireless EAL3 Detailed Test Plan</td>
</tr>
<tr>
<td>ATE_IND.2</td>
<td>The TOE and testing documentation were made available to the CC testing laboratory for independent testing.</td>
</tr>
<tr>
<td>AVA_MSU.1</td>
<td>The following documentation is free from misleading, unreasonable and conflicting guidance: Cisco IOS / AAA Vulnerability, Misuse and Strength of Function, EAL 3</td>
</tr>
</tbody>
</table>
Rationale for TOE Security Functions

This section contains a table which relates the security functional requirements to the TOE security functions. The rationale that the security functions cover the security functional requirements is in the “TOE Security Functions” section on page 44.

Appropriate Strength of Function Claim

Table 13 SFR to Security Functions Mapping

<table>
<thead>
<tr>
<th>Assurance Requirement</th>
<th>Assistance Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU_GEN.1(1)</td>
<td>X</td>
</tr>
<tr>
<td>FAU_SAR.1(1) and (2)</td>
<td>X</td>
</tr>
<tr>
<td>FCS_COP.1(1), (2), and (3)</td>
<td>X</td>
</tr>
<tr>
<td>FCS_CKM.1(1), (2), and (3)</td>
<td>X</td>
</tr>
<tr>
<td>FCS_CKM.4</td>
<td>X</td>
</tr>
<tr>
<td>FDP_IFC.1(1) and (2)</td>
<td>X</td>
</tr>
<tr>
<td>FDP_IFF.1(1) and (2)</td>
<td>X</td>
</tr>
<tr>
<td>FIA_AFL.1</td>
<td>X</td>
</tr>
<tr>
<td>FIA_ATD.1</td>
<td>X</td>
</tr>
<tr>
<td>FIA_UAU.2</td>
<td>X</td>
</tr>
<tr>
<td>FIA_UID.2</td>
<td>X</td>
</tr>
<tr>
<td>FMT_MOF.1(1) and (2)</td>
<td>X</td>
</tr>
<tr>
<td>FMT_MSA.2</td>
<td>X</td>
</tr>
<tr>
<td>FMT_MSA.3</td>
<td>X</td>
</tr>
<tr>
<td>FMT_MTD.1</td>
<td>X</td>
</tr>
<tr>
<td>FMT_SMF.1</td>
<td>X</td>
</tr>
</tbody>
</table>
The “Rationale For Strength of Function Claim” section on page 44 contains a justification for the claim of SOF-basic.

The password authentication mechanism implemented by FIA_UAU.2 meet the strength of function claim of SOF-basic by requiring, through guidance, a password of at least 8 characters with a character set of at least 80 characters.

Security Assurance Measures & Rationale

The assurance documentation listed below will be developed to meet the developer action and content and presentation of evidence elements for each assurance requirement defined in the CC. Specific versions will be added near the end of the evaluation.

Table 14 Assurance Measure Rationale: EAL3

<table>
<thead>
<tr>
<th>Assurance Requirement</th>
<th>Assurance Measures</th>
<th>Assurance Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM_CAP.3</td>
<td>Cisco’s Configuration Management Plan and Delivery Procedure v0-9, April 2007</td>
<td>The configuration management document defines the configuration items and contains the necessary information to demonstrate that a CM system is used and that there is a unique reference for the TOE.</td>
</tr>
<tr>
<td>ACM_SCP.1</td>
<td>Cisco AAA Configuration Items v0-14, March 2008</td>
<td>The delivery document describes the steps performed to ensure consistent, dependable delivery of the TOE to the customer.</td>
</tr>
<tr>
<td>ADO_DEL.1</td>
<td>Cisco’s Configuration Management Plan and Delivery Procedure v0-9, April 2007</td>
<td>The delivery document describes the steps performed to ensure consistent, dependable delivery of the TOE to the customer.</td>
</tr>
</tbody>
</table>
Table 14 Assurance Measure Rationale: EAL3 (continued)

<table>
<thead>
<tr>
<th>Assurance Requirement</th>
<th>Assurance Measures</th>
<th>Assurance Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADV_FSP.1</td>
<td>Cisco Systems IOS / AAA Functional Specification EAL3 Wireless, March 2008, v0-16</td>
<td>The informal functional specification document identifies the external interfaces that completely represent the TSF and describes the purpose and method of use of all external TSF interfaces. It also describes the effects, exceptions, and error messages for each of the external TSF interfaces.</td>
</tr>
<tr>
<td>ADV_HLD.2</td>
<td>Cisco Systems IOS / AAA High Level Design EAL3 Wireless, January 2008, v0-14</td>
<td>The security enforcing high-level design describes the complete TSF in terms of subsystems. The security functions for each subsystem are described. The subsystem interfaces are defined and the externally visible interfaces are identified.</td>
</tr>
<tr>
<td>ADV_RCR.1</td>
<td>Cisco Systems IOS / AAA Functional Specification EAL3 Wireless, March 2008, v0-16</td>
<td>The informal correspondence document maps the security functionality as described in the FSP and ST and as described in the FSP and HLD.</td>
</tr>
<tr>
<td>AGD_ADM.1</td>
<td>See ADO_IGS.1</td>
<td>The administrator guidance document provides complete administrative guidance for the TOE, including all security features and configuration items.</td>
</tr>
<tr>
<td>AGD_USR.1</td>
<td>N/A</td>
<td>Because the TOE is transparent to non-administrative users and all operations are administrative in nature and are performed by solely by authorized administrators, there is no guidance documentation available for non-administrative functions.</td>
</tr>
<tr>
<td>ALC_DVS.1</td>
<td>Cisco Systems Development Security for Cisco IOS, February 2005, v0-2</td>
<td>Documentation on the security of the development environment describing all physical, procedural, personnel, and other security measures, that are necessary to protect the confidentiality and integrity of the TOE design and implementation in its development environment.</td>
</tr>
<tr>
<td>ALC_FLR.1</td>
<td>Cisco’s Configuration Management Plan and Delivery Procedure v0-9, April 2007</td>
<td>Documentation on the security of the development environment describing the handling of all product defects and how they are tracked.</td>
</tr>
<tr>
<td>ATE_COV.2</td>
<td>Cisco IOS Wireless EAL3 Detailed Test Plan, March 2008, v1.16</td>
<td>The test coverage document provides a mapping of the test cases performed against the TSF.</td>
</tr>
<tr>
<td>ATE_FUN.1</td>
<td>Cisco IOS Wireless EAL3 Detailed Test Plan, March 2008, v1.16</td>
<td>The functional testing document includes the test plans, test procedures, and associated test cases of the TOE functional testing effort.</td>
</tr>
<tr>
<td>ATE_IND.2</td>
<td>The TOE and testing documentation will be made available to the CC testing laboratory for independent testing.</td>
<td>The TOE hardware, software, guidance, and testing documentation were made available to the CC testing laboratory for independent testing.</td>
</tr>
<tr>
<td>AVA_MSU.1</td>
<td>Refer to AGD_ADM.1 and ADO_IGS.1 assurance measures IOS / AAA Vulnerability, Misuse and Strength of Function, EAL 3, Version: 0-12, Date: January 2008</td>
<td>The guidance documentation provided is complete and clear. Correct use of the guidance will result in the prevention and/or detection of insecure TOE states.</td>
</tr>
</tbody>
</table>
Protection Profile Claims

This Security Target does not claim conformance to any Protection Profiles.

Protection Profile Modifications

This Security Target does not claim conformance to any Protection Profiles.

Protection Profile Additions

This Security Target does not claim conformance to any Protection Profiles.

Rationale

Security Objectives Rationale

Sections “Rationale For Security Objectives For The TOE” section on page 15 through “Rationale For Assumption Coverage” section on page 18 provide the security objectives rationale.

Security Requirements Rationale

Sections “Rationale For TOE Security Requirements” section on page 38 through “Rationale For Strength of Function Claim” section on page 44 provides the security requirements rationale.

TOE Summary Specification Rationale

Sections “Rationale for TOE Security Functions” section on page 49 through “Security Assurance Measures & Rationale” section on page 50 provides the TSS rationale.
Protection Profile Claims Rationale

This Security Target does not claim conformance to any Protection Profiles.

Obtaining Documentation, Obtaining Support, and Security Guidelines

For information on obtaining documentation, obtaining support, providing documentation feedback, security guidelines, and also recommended aliases and general Cisco documents, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:
