COMMON CRITERIA PROTECTION PROFILE

for

NEW GENERATION CASH REGISTER FISCAL APPLICATION SOFTWARE 2

(NGCRFAS-2 PP)

TSE-CCC/PP-008

<table>
<thead>
<tr>
<th>Revision No</th>
<th>1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision Date</td>
<td>06.05.2015</td>
</tr>
<tr>
<td>Document Code</td>
<td>TSE-CCC/PP-008</td>
</tr>
<tr>
<td>File Name</td>
<td>NGCRFAS-2 PROTECTION PROFILE</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Oğuz DEMİROĞLU</td>
</tr>
<tr>
<td>Approved by</td>
<td>Salih SARI</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Revision No</th>
<th>Revision Reason</th>
<th>Date of Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>First Draft</td>
<td>04.12.2014</td>
</tr>
<tr>
<td>1.1</td>
<td>Final Version</td>
<td>25.12.2014</td>
</tr>
<tr>
<td>1.2</td>
<td>Maintenance</td>
<td>29.04.2015</td>
</tr>
<tr>
<td>1.3</td>
<td>Maintenance</td>
<td>06.05.2015</td>
</tr>
</tbody>
</table>
CONTENTS

1. PP INTRODUCTION .. 4
 1.1 PP Reference ... 4
 1.2 TOE Overview ... 5

2. CONFORMANCE CLAIMS ... 11
 2.1 CC Conformance Claim .. 11
 2.2 PP Claim ... 11
 2.3 Package Claim ... 11
 2.4 Conformance Claim Rationale ... 11
 2.5 Conformance Statement .. 11

3. SECURITY PROBLEM DEFINITION .. 12
 3.1 Introduction ... 12
 3.2 Threats .. 15
 3.3 OSP ... 18
 3.4 Assumptions .. 20

4. SECURITY OBJECTIVES .. 21
 4.1 Security Objectives for the TOE .. 21
 4.2 Security Objectives for the Operational Environment ... 21
 4.3 Security Objective Rationale .. 23

5. EXTENDED COMPONENTS DEFINITION ... 28

6. SECURITY REQUIREMENTS .. 29
 6.1 Security Functional Requirements for the TOE ... 29
 6.2 Security Assurance Requirements for the TOE ... 53
 6.3 Security Requirements Rationale ... 53

7. ACRONYMS ... 70

8. BIBLIOGRAPHY .. 72
1. PP INTRODUCTION

This Protection Profile (PP) describes the following items:

- The Target of Evaluation (TOE) as a product and its position in production life cycle,
- The security environment of the TOE includes: the assets to be protected, the threats to be encountered by the TOE, the development environment and production utilization phases,
- The security objectives of the TOE and its supporting environment in terms of integrity and confidentiality of application data and programs,
- Protection of the TOE and associated documentation during the development and production phases,
- The Information Technology (IT) security requirements which include the TOE functional requirements and the TOE assurance requirements.

1.1 PP Reference

Title: Common Criteria Protection Profile for New Generation Cash Register Fiscal Application Software-2 (NGCRFAS-2 PP)
Sponsor: Presidency of Revenue Administration (PRA)
Editor(s):
Prepared by Oğuz DEMİĞROĞLU
Approved by Salih SARI
CC Version: 3.1 (Revision 4)
Assurance Level: Minimum assurance level for this PP is EAL 2.
General Status: Final
Version Number: 1.3as of 6th May 2015
Registration: TSE-CCCS/PP-008
Key words: New Generation Cash Register, EMV, EFT-POS, SMART PINPAD, PRA, Electronic Registration Unit.
Note: A glossary of terms used in the Protection Profile is given ACRONYMS section of the document (Section 7).
1.2 TOE Overview

The TOE addressed by this Protection Profile (PP) is an application software and crypto library which is the main item of a Fiscal Cash Register (FCR). TOE is used to process the transaction amount of purchases which can be viewed by both seller and buyer. Since transaction amount is used to determine tax revenues; secure processing, storing and transmission of this data is very important.

The FCR is mandatory for first-and second-class traders and is not mandatory for sellers who sell the goods back to their previous seller as completely the same as the purchased good.

In addition to TOE, which is the main item of FCR, FCR may consist of several other hardware and software components as described in Section 1.2.1, 1.2.2 for full functionality. TOE and related components are given in Figure 1. Usage and major security features of TOE are described in section 1.2.3.

1.2.1 General overview of the TOE and related components

Figure 1 shows the general overview of the TOE and its related components as regarded in this PP. The green part of Figure 1 is the TOE. Yellow parts; that are given as input/output interface, fiscal memory, daily memory, database, ERU, fiscal certificate memory; are TOE’s environmental components which are crucial for functionality and security. Connections between the TOE and its environment are also subject to evaluation since these connections are made over the interfaces of the TOE.
1.2.2 Required Non-TOE Hardware/Software

Software and hardware environment of the TOE are described below.

1.2.2.1 Software environment of TOE

Application runs at the top of an operating system’s kernel, file-system as in a typical software environment. This structure is shown in Table 1.

<table>
<thead>
<tr>
<th>File System</th>
<th>Operating System Kernel</th>
</tr>
</thead>
</table>

In addition to TOE, following software components are also necessary for security and functionality of the FCR:

- FCR **operating system** which supports following features
 - at least 32-bit data processing capacity
 - multi-processing
 - IPv4 and IPv6
- NTP (Network Time Protocol)

- **Database**, which is used to store sales data, has the following features;

 i. Database has data recording, organizing, querying, reporting features

 ii. Database stores sales records for main product groups (food, clothing, electronics, glassware etc.) and sub-product groups (milk, cigarette, fruit, trousers etc.) in order to track detailed statistics

 iii. Database has an indexing mechanism

1.2.2.2 Hardware Environment of TOE

In addition to TOE, following hardware components are also necessary for security and functionality of the FCR:

- **Fiscal memory**

 i. **Fiscal memory** has following features;

 a. Fiscal memory has the capacity to store at least 10 years (3650 days) of data,

 b. Fiscal memory keeps data at least 5 years after the capacity specified in (a) has been reached,

 c. Fiscal memory has to be fixed within FCR in a way that it cannot be removed without damaging the chassis.

 d. Fiscal memory is protected by mesh cover,

 e. Fiscal memory has the ability to be protected against magnetic and electronic threats,

 When the connection between fiscal memory and main processor is broken, FCR enters in maintenance mode,

 f. The data stored in the fiscal memory is not be lost in case of power off,

 g. Fiscal memory accepts only positive amounts from the application and the peripherals,

 h. FCR checks "Z" reports from fiscal memory during device start-up. In case where there are days for which Z report was not generated, FCR will be able to run in normal mode only after it generates Z report for the missing days. Seasonal firms can take cumulative Z report by specifying date and time range.

 ii. Fiscal Memory includes following data;

 a. Fiscal symbol, company code and identification number of the device,

 b. Cumulative sum of the total sales and Value Added Tax (VAT) amounts for all sales receipts, starting from the device activation time (i.e. first use),
c. Date and number of "Z" reports with total sales and VAT per day,

 d. The number of receipts per day.

- **Daily memory** has following features;

 i. Receipt total and total VAT amount for each receipt are to be stored in the daily memory instantly. This data can be transmitted to PRA-IS, instantly or daily depending on demand.

 ii. Data in the daily memory, which is not already transmitted to fiscal memory, cannot be modified in an uncontrolled way.

 iii. Data transmitted from daily memory to fiscal memory is to be kept in daily memory for at least 10 days.

 iv. Z reports, taken at the end of the day; and X reports, taken within the current day are produced by using the data in the daily memory.

 v. Following values are stored in the daily memory

 a. total VAT amount per day,

 b. total daily sales values per day grouped by payment type

 c. payment type (Cash, credit card etc.)

 d. number of receipts.

- **FCR supports X.509 formatted digital certificate generated by Authorized Certificate Authority. This Public Key Infrastructure(PKI) compatible digital certificate is called fiscal certificate and is used for authentication and secure communication between PRA-IS and FCR through Trusted Service Manager (TSM). For physical security, FCR is protected by electronic and mechanic systems called electronic seal. FCR uses cryptographic library for secure communication with PRA-IS and TSM**

- **Electronic Record Unit(ERU)** is used to keep second copy of the receipt and has following features;

 i. ERU stores information about receipts and FCR reports (except ERU reports) in a retrievable form.

 ii. ERU has at least 1.2 million row capacity. ERU may be included in the sealed part of the FCR. In this case ERU must have at least 40 million row capacity.

 iii. Data stored in ERU cannot be modified

 iv. ERU also supports features specified in “Fiscal Cash Register General Communique Serial Number: 67, Part A” which is about Law No: 3100 except item (ii) above.
FCR devices support at least one of the internal ETHERNET, PSTN or mobile communication technology (GPRS etc.) interfaces and EFTPOS-integrated FCR devices support at least two of these interfaces for communication with PRA-IS (for data transfer) and TSM system (for parameter management and software update). External ETHERNET may be accepted as internal in case the data is encrypted in fiscal unit.

- Incoming and outgoing data traffic for FCR passes over a firewall
- FCR supports the use of EFT-POS/SMART PINPAD.
- FCR has a printer to print sales receipt.
- FCR has some input/output devices for functionalities listed below;
 i. FCR has a keyboard unit. It may optionally use a touch screen additionally.
 ii. FCR has separate displays for cashier and buyer.
 iii. FCR has an internal battery to keep time information.

1.2.3 Major security and functional features

The major functional and security features of the TOE are described below.

1.2.3.1 TOE functional features

The TOE is a part of a FCR which is an electronic device for calculating and recording sales transactions and for printing receipts. TOE provides the following services;

i. TOE stores sales data in fiscal memory.
ii. TOE stores total receipt and total VAT amount for each receipt in daily memory.
iii. TOE is able to generate reports (X report, Z report etc.).
iv. TOE is able to transmit Z reports, receipt information, sale statistics and other information determined by PRA to PRA-IS in PRA Messaging Protocol format.
v. TOE stores records of important events as stated in PRA Messaging Protocol Document [6] and transmits to PRA-IS in PRA Messaging Protocol format in a secure way.
vi. TOE is able to be used by users in secure state or maintenance mode. Roles and modes of operation are described in 3.1.2 and 3.1.3 respectively.

1.2.3.2 TOE major security features

The TOE provides following security features;

i. TOE supports access control.
ii. TOE is able to detect disconnection between main processor and fiscal memory and enter into the maintenance mode.

iii. TOE supports usage of ITU X509 v3 formatted certificate and its protected private key for authentication and secure communication with PRA-IS and TSM.

iv. TOE supports secure communication with EFT-POS/Smart PinPad.

v. TOE supports secure communication between FCR-PRA-IS and FCR–TSM.

vi. TOE ensures the integrity of event data, sales data, authentication data, characterization data and FCR parameters.

vii. TOE records important events defined in PRA Messaging Protocol Document [6] and sends urgent event data immediately to PRA-IS in a secure way.

viii. TOE detects physical attacks to FCR and enters into the maintenance mode in such cases.

1.2.4 TOE type

TOE is a embedded software application and hardware or software crypto library within FCR.
2. CONFORMANCE CLAIMS

2.1 CC Conformance Claim

This protection profile claims conformance to:

As follows

- Part 2 conformant,
- Part 3 conformant.

2.2 PP Claim

This PP does not claim conformance to any protection profile.

2.3 Package Claim

The current PP is conformant to the following security requirements package:

- Assurance package EAL2 conformant to CC, part 3.

2.4 Conformance Claim Rationale

Since this PP does not claim conformance to any protection profile, this section is not applicable.

2.5 Conformance Statement

This PP requires demonstrable conformance of any ST or PP claiming conformance to this PP.
3. SECURITY PROBLEM DEFINITION

3.1 Introduction

3.1.1 External Entities

PRA-IS
PRA-IS takes sales data and event data from FCR by sending query with parameters to FCR through TSM.

Trusted Service Manager
TSM is the system which is used to load parameters, update software and manage FCR.

Attacker
Attacker tries to manipulate the TOE in order to change its expected behavior and functionality. Attacker tries to breach confidentiality, integrity and availability of the FCR.

PRA On-site Auditor
PRA On-site Auditor is an employee of PRA who performs onsite audits to control the existence of expected FCR functionalities by using the rights of FCR Authorised User.

Certificate storage
The certificate storage holds certificates and private key used for authentication and secure communication. Certificate storage is protected inside a physical and logical tampering system.

Time Information
FCR gets time information from trusted server. Time information is used during receipt, event, fiscal memory record, daily memory record and ERU record creation and is also used to send information to PRA-IS according to FCR Parameters.

Audit storage
Audit storage can be any appropriate memory unit in FCR. Audit storage stores important events according to their criticality level (urgent, high, warning and information). List of events can be found in PRA messaging protocol document [6].

Storage unit
Storage units of FCR are database, fiscal memory, daily memory and ERU.

Input interface
Input interfaces provide necessary input data from input devices to the TOE. Input devices for FCR may be keyboard, barcode reader, QR code (matrix barcode) reader, order tracking device and global positioning devices.

External Device

External Device is the device which is used to communicate with FCR by using secure channel according to External Device Communication Protocol Document[7]

Output interface

Output interfaces deliver outputs of the TOE to the output devices. Output devices for FCR may be printer, display etc.

3.1.2 Roles

FCR Authorised User

FCR Authorised User is the user who uses the functions of FCR and operates FCR by accessing the device over an authentication mechanism.

Authorised Manufacturer User

Authorised Manufacturer User works for FCR manufacturer and conducts maintenance works on FCR.

3.1.3 Modes of FCR

Maintenance Mode: Maintenance Mode is the mode that allows only Authorised Manufacturer User;

- to change date and time information
- to change IP/Port information of TSM
- to review event data
- to start update operation of TOE

FCR does not allow any fiscal transaction in maintenance mode. FCR enters this mode when the following occur:

- FCR Certificate check fails,
- Mesh cover monitoring check fails,
- A disconnection between fiscal memory and main processor occurs,
- Electronic seal is opened or forced by unauthorised persons,
- A technical problem is determined by FCR Manufacturer.

Secure State Mode: Secure State Mode is the mode that allows;
FCR Authorised User:

- to configure FCR,
- to take fiscal reports

Secure State Mode is also allows:

Unauthenticated Users:
- to do fiscal sales,
- to get FCR reports (except fiscal reports).

3.1.4 Assets

Sensitive data
Sensitive data is used for secure communication with PRA-IS and TSM. Confidentiality and integrity of this asset need to be protected.

Application Note 1: Sensitive data may consist of symmetric keys (TREK, TRAK, TRMK, TDK and TRMKD).

- **TREK** is used for provide confidentiality of data transfer to PRA-IS.
- **TRAK** is used for integrity control of data transferred to the PRA-IS.
- **TDK** is used for provide confidentiality of data transfer to the TSM.
- **TRMK** is used for key transportation from PRA-IS to TOE.
- **TRMKD** is used for key transportation from TSM to TOE.

Event data
Event data is used to obtain information about important events saved in audit storage. The integrity of this asset is crucial while stored in FCR and both integrity and confidentiality of this asset are important while it is transferred from TOE to PRA-IS. Event data is categorized in PRA Messaging Protocol Document [6].

Sales data
Sales data is stored in storage unit. Sales data is required by PRA-IS to calculate tax amount and to provide detailed statistics about sales. The integrity of this asset has to be protected while stored in FCR; and both integrity and confidentiality have to be protected while it is transferred from TOE to PRA-IS.

Characterization data (Identification data for devices)
Characterization data is a unique number assigned to each FCR by the manufacturer. PRA-IS uses characterization data for system calls to acquire sales data or event data of an FCR. Integrity of this asset has to be protected.

Authentication data

Authentication data contains authentication information which is required for FCR Authorised User and Authorised Manufacturer User to gain access to FCR functionalities. Both integrity and confidentiality of this asset have to be protected.

Time Information

Time information is stored in FCR and synchronized with trusted server. Time information is important when logging important events and sending reports to the PRA-IS. The integrity of this asset has to be protected.

Server Certificates

Server certificates contain PRA-IS and TSM certificates (P_{PRA}, P_{PRA-SIGN}, P_{TSM} and P_{TSM-SIGN})

P_{PRA} and P_{PRA-SIGN} certificates are used for signing and encryption process during key transport between TOE and PRA-IS.

P_{TSM} certificate is used for encryption process during key transport between TOE and TSM and P_{TSM-SIGN} is used for signature verification of FCR parameters by TOE.

FCR Parameters

FCR parameters stored in FCR are updated by TSM after Z report is printed.

FCR parameters set;

- Sales and event data transferring time
- Criticality level of event data sent to the PRA-IS
- Maximum number of days that FCR will work without communicating with PRA-IS

3.2 Threats

Threats averted by TOE and its environment are described in this section. Threats described below result from assets which are protected or stored by TOE or from usage of TOE with its environment.

T.AccessControl

Adverse action: Authenticated users could try to use functions which are not allowed.

(e.g. FCR Authorised User gaining access to Authorised ManufacturerUser functions)

Threat agent: An attacker who has basic attack potential, has physical and logical access to FCR.
Asset: Event data, sales data, time information.

T. Authentication
Adverse action: Unauthenticated users could try to use FCR functions except doing fiscal sales and taking reports which are not fiscal.
Threat agent: An attacker who has basic attack potential, has logical and physical access to the FCR
Asset: Sales data, event data, time information

T. MDDData - Manipulation and disclosure of data
Adverse action: This threat deals with five types of data: event data, sales data, characterization data, authentication data and FCR parameters.

- An attacker could try to manipulate the event data to hide its actions and unauthorised access to the FCR, failure reports, and deletion of logs. An attacker also could try to disclose important events while transmitted between PRA-IS and FCR.
- An attacker could try to manipulate or delete the sales data generated by TOE which may result in tax fraud. In addition, an attacker also could try to disclose sales data while transmitted between PRA-IS and FCR. Manipulation and deletion of sales data may be caused by magnetic and electronic reasons.
- An attacker could try to manipulate the characterization data to cover information about tax fraud; to masquerade the user identity.
- An attacker could try to manipulate the FCR parameters to use FCR in undesired condition.
- An attacker also could try to disclose and modify authentication data in FC to gain access to functions which are not allowed to his/her.

Threat agent: An attacker who has basic attack potential, has physical and logical access to the FCR.
Asset: Event data, sales data, characterization data, FCR parameters and authentication data.

T. Eavesdrop - Eavesdropping on event data, sales data and characterization data
Adverse action: An attacker could try to eavesdrop event data, sales data and characterization data transmitted between the TOE and the PRA-IS and also between the TOE and the distributed memory units (Fiscal Memory, Database, Daily Memory, ERU).
Threat agent: An attacker who has basic attack potential, physical and logical access to the FCR.
Asset: Characterization data, sales data, and event data.

T.Counterfeit - FCR counterfeiting

Adverse action: An attacker could try to imitate FCR by using sensitive data while communicating with PRA-IS and TSM to cover information about tax fraud.

Threat agent: An attacker who has basic attack potential, has physical and logical access to the FCR.

Asset: Sensitive data (TRMK, TRMKD, TREK, TRAK and TDK)

T. Server counterfeiting

Adverse action: An attacker could try to imitate PRA-IS and TSM by changing server certificates (P_{PRA}, $P_{PRA\text{-SIGN}}$, P_{TSM} and $P_{TSM\text{-SIGN}}$) in FCR. In this way, the attacker could try to receive information from FCR while communicating with PRA-IS and to imitate TSM to set parameters to FCR.

Threat agent: An attacker who has basic attack potential, has physical and logical access to the FCR.

Asset: Server Certificates

T.Malfunction - Cause malfunction in FCR

Adverse action: An attacker may try to use FCR out of its normal operational conditions to cause malfunction without the knowledge of TOE

Threat agent: An attacker who has basic attack potential, has physical access to the FCR.

Asset: Sales data, event data.

T.ChangingTime

Adverse action: An attacker may try to change time to invalidate the information about logged events and reports in FCR.

Threat agent: An attacker who has basic attack potential, has physical and logical access to the FCR.

Asset: Time Information.
3.3 OSP

This section describes organizational security policies that must be satisfied.

P.Certificate

It has to be assured that certificates, which are installed at initialization step, are compatible with ITU X.509 v3 format. FCR contains:

- FCR certificate,
- Certification Authority root and sub-root (subordinate) certificates that are used for verification of all certificates that are produced by Certification Authority,
- P_{PRA} and P_{TSM} certificates that are used for key transport process between FCR-PRA-IS and FCR-TSM,
- $P_{\text{PRA-SIGN}}$ and $P_{\text{TSM-SIGN}}$ certificates which are used by TOE for signature verification,
- Update Control certificate that is used to verify the signature of the TOE.

P.Certificate Installation

It has to be assured that environment of TOE provides secure installation of certificates (P_{PRA}, $P_{\text{PRA-SIGN}}$, P_{TSM}, $P_{\text{TSM-SIGN}}$, Certification Authority root and sub-root certificates, Update Control certificate, FCR certificates if handled as soft) into the FCR at initialization phase. Before the installation of certificates, it has to be assured that asymmetric key pair is generated in a manner which maintains security posture.

P.Comm_EXT - Communication between TOE and External Device

It has to be assured that communication between TOE and External Devices is encrypted using AES algorithm with 256 bits according to External Device Communication Protocol Document [7].

P.Information Leakage - Information leakage from FCR

It has to be assured that TOE’s environment provides a secure mechanism which prevents attacker to obtain sensitive information (privatekey) when FCR performs signature operation; i.e. by side channel attacks like SPA(Simplepower analysis), SEMA (Simple Electromagnetic Analysis), DPA (Differential power analysis), DEMA (Differential electromagnetic analysis).

P.Secure Environment

It has to be assured that environment of TOE senses disconnection between fiscal memory and main processor. Then TOE enters into the maintenance mode and logs urgent event.

It has to be assured that fiscal memory doesn’t accept transactions with negative amounts which results in a decrease of total tax value.
It has to be assured that environment of TOE provides a mechanism that sales data in daily memory which is not reflected to the fiscal memory cannot be deleted and modified in an uncontrolled way.

It has to be assured that sales data in ERU cannot be deleted and modified.

P. Physical Tamper

It has to be assured that TOE environment and TOE provide a tamper respondent system which is formed by electromechanical seals.

It has to be assured that physical tampering protection system protects the keys (asymmetric key, symmetric key), the certificates, event data, characterization data, FCR parameters and sales data in FCR.

It has to be assured that TOE logs this type of events and enters into the maintenance mode when physical tampering protection system detect unauthorised access.

It has to be assured that authorised access such as maintenance work or service works are logged.

It has to be also assured that physical tampering protection system (mesh cover) protects fiscal memory.

P. PKI - Public key infrastructure

It has to be assured that IT environment of the TOE provides public key infrastructure for encryption, sign, key agreement and key transport.

P. Update Control

TOE is allowed to be updated by only TSM or Authorised Manufacturer User to avoid possible threats during this operation, FCR shall verify the signature of the new version of TOE to ensure that the TOE to be updated is signed by the correct organisation. Thus, the TOE to be updated is ensured to be the correct certified version because only the certified versions will be signed. In addition, FCR shall check version of TOE to ensure that it is the latest version.
3.4 Assumptions

This section describes assumptions that must be satisfied by the TOE's operational environment.

A. TrustedManufacturer

It is assumed that manufacturing is done by trusted manufacturers. They process manufacturing step in a manner which maintains IT security.

A. Control

It is assumed that PRA-IS personnel performs random controls on FCR. During these controls, PRA-IS personnel should check that tax amount and total amount printed values on receipt and sent to PRA-IS are the same. In addition to this, a similar check should be made for events as well.

A. Initialisation

It is assumed that environment of TOE provides secure initialization steps. Initialization step is consist of secure boot of operating system, and integrity check for TSF data. Moreover, if certificate is handled as soft (not in the smartcard) it is assumed that environment of TOE provides secure installation of it to the FCR in initialization phase. Before certificate installation it is assumed that asymmetric key pair generated in a manner which maintains security posture.

A. TrustedUser

User is assumed to be trusted. It is assumed that for each sale a sales receipt is provided to the buyer.

A. Activation

It is assumed that environment of TOE provides secure activation steps at the beginning of the TOE operation phase and after each maintenance process.

A. AuthorisedService

It is assumed that repairing is done by trusted authorised services. The repairing step is processed in a manner which maintains legal limits.

A. Ext_Key

It is assumed that External Device (EFT-POS/SMART PINPAD) generates strong key for communicating with TOE and stores it in a secure way.

A. Ext_Device Pairing

It is assumed that External Device and TOE are paired by AuthorisedService.
4. SECURITY OBJECTIVES

This chapter describes security objectives for the TOE and its operational environment.

4.1 Security Objectives for the TOE

This part describes security objectives provided by the TOE.

O. AccessControl

TOE must control authenticated user’s access to functions and data by using authorization mechanism.

O. Event

TOE must record important events stated as in PRA Messaging Protocol Document [6].

O. Integrity

TOE must provide integrity for sales data, event data, characterization data, authentication data, sensitive data (TRMK, TRMKD, TREK, TRAK and TDK), server certificates and FCR parameters located in the FCR and between the distributed memory units.

O. Authentication

TOE must run authentication mechanism for users and systems.

O. Function

TOE must ensure that processing of inputs to derive sales data and event data is accurate.

TOE must ensure that time information is accurate by doing anomaly detection.

TOE must enter a maintenance mode when maintenance mode events occur in section 3.1.3

O. Transfer

TOE must provide confidentiality, integrity and authenticity for information send/received during external device communication.

4.2 Security Objectives for the Operational Environment

This part describes security objectives provided by the operational environment.

OE. Manufacturing

Manufacturer should ensure that FCR is protected against physical attacks during manufacturing.
OE.Delivery
Authorised Manufacturer User must ensure that delivery and activation of the TOE done by a secure way.

OE.KeyGeneration
Asymmetric key and certificate generation mechanism shall be compatible with ITU X.509 format and accessible only by trusted persons.

OE.SecureStorage
Asymmetric private key shall be stored within smartcard or Secure-IC’s.
Sensitive Data, all certificates, event data, characterization data and sales data shall be stored within secure environment protected by electronic seal.

OE.KeyTransportation
Transportation and installation of asymmetric private key to the FCR must be done by protecting their confidentiality and integrity. In addition to this, transportation and installation of server certificates, Certification Authority root and sub-root certificates, FCR certificates and update control certificates must be done by protecting their integrity.

OE.TestEnvironment
Before FCR activation; test interfaces (functions, parameters) inserted in TOE shall be disabled or removed.

OE.StrongAlgorithm
Environment of TOE shall use asymmetric private keys for signature generation by using libraries of smartcard and Secure-IC’s. These libraries used in FCR shall be strong. They should also have protection against side channel analysis (SPA, DPA, SEMA, DEMA).

OE.UpgradeSoftware
FCR software updates should be get passed verdict from Common Criteria maintenance or reevaluation procedures (according to update type) before installed to the FCR. This will be validated by the FCR, using the cryptographic signature control methods.

OE.TrustedUser
Users shall act responsibly.

OE.Control
PRA Onsite Auditor must check FCR functionality by controlling tax amount on the receipt and tax amount sent to the PRA-IS.

OE.External Device
External Device should generate strong key for communicating with TOE and should store it in a secure way.

OE.SecureEnvironment

Fiscal memory shall not accept transactions with negative amounts which results in a decrease of total tax value.

Tampering protection system shall protect fiscal memory with mesh cover.

Environment of TOE provides secure initialization steps. Initialization step is consist of secure boot of operating system, and integrity check for TSF data.

OE.Ext_Pairing

External Device should be paired with TOE by only AuthorisedService.

4.3 Security Objective Rationale

Table 1 provides security problem definition covered by security objectives. Threats and OSPs are addressed by security objectives for the TOE and its operational environment. Assumptions are addressed by only security objectives for the operational environment.
<table>
<thead>
<tr>
<th></th>
<th>Threats</th>
<th>OSPs</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T.AccessControl</td>
<td>T.Authentication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T.MDDdata</td>
<td>T.Eavesdropping</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T.Server Counterfeiting</td>
<td>T.Counterfeit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T.Malfunction</td>
<td>T.ChangingTime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.Certificate</td>
<td>P.Certificate Installation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.SecureEnvironment</td>
<td>P.PhysicalTamper</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.PKI</td>
<td>P.InformationLeakage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.Comm_EXT</td>
<td>P.UpdateControl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.Ext_Key</td>
<td>A.TrustedManufacturer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.TrustedUser</td>
<td>A.AuthorisedService</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.Initiation</td>
<td>A.Activation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.Ext_Device Pairing</td>
<td>A.TrustedUser</td>
<td></td>
</tr>
</tbody>
</table>

<p>| O.AccessControl | X | | |
| O.Event | X X X X X X X X X | | |
| O.Integrity | X X X X X X X | X X | |
| O.Authentication | X | | |
| O.Function | X | X X | X |
| O.Transfer | X | X X | X |
| OE.External Device | | | X |
| OE.Manufacturing | | | X |
| OE.Delivery | | | X X |</p>
<table>
<thead>
<tr>
<th>OE.KeyGeneration</th>
<th>X</th>
<th></th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>OE.SecureStorage</td>
<td>X X X X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OE.KeyTransportation</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OE.TestEnvironment</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OE.StrongAlgorithm</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OE.UpgradeSoftware</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OE.TrustedUser</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OE.Control</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OE.SecureEnvironment</td>
<td>X X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OE.Ext_Pairing</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Justification about Table 2 is given below;

T.AccessControl is addressed by O.AccessControl to control user access to functions and data; O.Event to log all access attempts.

T.Authentication is addressed by O.Authentication to ensure that user is authenticated to the FCR; O.Event to log successful/unsuccessful authentication attempts.

T.MDDData is addressed by O.Integrity to ensure integrity of sales data, event data, characterization data, authentication data and FCR parameters in FCR with logical and physical security features; O.Transfer to ensure integrity, confidentiality and authenticity of sales data, event data and characterization data during transferring to PRA-IS and FCR parameters during transferring from TSM to FCR; O.Event to log unexpected behavior of these memories and unexpected behavior in transferring data; OE.SecureStorage to provide secure environment for Sensitive Data, all certificates, event data, characterization data and sales data.

T.Eavesdropping is addressed by O.Transfer to ensure confidentiality of sales data, event data and characterization data during communication with PRA-IS; O.Integrity to ensure the integrity of event data, sales data and characterization data; O.Event to log physical tamper; by OE.SecureStorage to provide secure environment for event data, characterization data and sales data.

T.Counterfeit is addressed by O.Integrity to ensure the integrity of sensitive data (TREK,TRAK,TDK); O.Event to log physical tamper; OE.SecureStorage to provide secure environment for sensitive data.

T.Server Counterfeiting is addressed by O.Integrity to ensure the integrity of server certificates (P$_{PRA}$, P$_{PRA-SIGN}$, P$_{TSM}$ and P$_{TSM-SIGN}$); O.Event to log physical tamper; OE.SecureStorage to provide secure environment for server certificates.

T.Malfunction is addressed by O.Function to ensure functions processing accurately; O.Event to log unexpected behavior of functions.

T.ChangingTime is addressed by O.Event to log unexpected changes in time information; by O.AccessControl to control user access to time information; by O.Function to ensure accuracy of time information.

P.Certificate is fulfilled by OE.KeyGeneration.
P.Certificate Installation is fulfilled OE.KeyTransportation and OE.SecureStorage.

P.SecureEnvironment is fulfilled by OE.SecureEnvironment, O.Event, O.Integrity and O.Function.

P.PhysicalTamper is fulfilled by OE.SecureEnvironment, O.AccessControl, O.Event, O.Integrity and OE.SecureStorage.

P.PKI is fulfilled by OE.KeyTransportation.

P.Information Leakage is fulfilled by OE.StrongAlgorithm to ensure that cryptographic algorithms used by FCR have side channel protection.

P.Comm_EXT is fulfilled by O.Transfer.

P. UpdateControl is upheld by OE.UpgradeSoftware and O.AccessControl.

A.Ext_Key is upheld OE.External Device.

A. TrustedManufacturer is upheld by OE.Manufacturing and OE.TestEnvironment.

A. Control is upheld by OE.Control.

A. AuthorisedService is upheld by OE.TrustedUser.

A. Initialisation is upheld by OE.KeyGeneration, OE.SecureEnvironment and OE.KeyTransportation.

A. Activation is upheld by OE.Delivery.

A. TrustedUser is upheld by OE.TrustedUser.

A. Ext_Device Pairing is upheld by OE.Ext_Pairing.
5. EXTENDED COMPONENTS DEFINITION

This protection profile does not use any components defined as extensions to CC part 2.
6. SECURITY REQUIREMENTS

This chapter describes the security functional and the assurance requirements which have to be fulfilled by the TOE. Those requirements comprise functional components from CC part 2 and the assurance components as defined for the Evaluation Assurance Level 2 from CC part 3.

The following notations are used:

Refinement operation (denoted in such a way that added words are in **bold text** and changed words are **crossed out**): is used to add details to a requirement, and thus further restricts a requirement.

Selection operation (denoted by *italicised bold text* and placed in square bracket): is used to select one or more options provided by the CC in stating a requirement.

Assignment operation (denoted by *underlined text* and placed in square bracket): is used to assign a specific value to an unspecified parameter, such as the length of a password. Showing the value in square brackets indicates assignment.

Iteration operation are identified with a slash (e.g. “/(/)”)

6.1 Security Functional Requirements for the TOE

This chapter defines the security functional requirements for the TOE according to the functional requirements components drawn from the CC part 2 version 3.1 revision 4.

6.1.1 Class FAU Security Audit

FAU_GEN Security audit data generation

FAU_GEN.1 Audit data generation

Hierarchical to: No other components.

Dependencies: FPT_STM.1 Reliable time stamps

FAU_GEN.1.1 The TSF shall be able to generate an audit record of the following auditable events:

- a) Start-up and shutdown of the audit functions;
- b) All auditable events for the [not specified] level of audit; and
- c) [the auditable security events specified in PRA Messaging Protocol Document[6]].

FAU_GEN.1.2 The TSF shall record within each audit record at least the following
a) Date and time of the event, type of event, subject identity (if applicable), and the outcome (success or failure) of the event; and

b) For each audit event type, based on the auditable event definitions of the functional components included in the PP/ST, [none].

6.1.1.2 FAU_SAR Security audit review

FAU_SAR.1 Audit review

Hierarchical to: No other components.

Dependencies: FAU_GEN.1 Audit data generation.

FAU_SAR.1.1 The TSF shall provide [Authorised Manufacturer User] with the capability to read [all event data] from the audit records.

FAU_SAR.1.2 The TSF shall provide the audit records in a manner suitable for the user to interpret the information.

6.1.1.3 FAU_STG Security audit event storage

FAU_STG.1 Protected audit trail storage

Hierarchical to: No other components.

Dependencies: FAU_GEN.1 Audit data generation

FAU_STG.1.1 The TSF shall protect the stored audit records in the audit trail from unauthorised deletion.

FAU_STG.1.2 The TSF shall be able to [prevent] unauthorised modifications to the stored audit records in the audit trail.

FAU_STG.4 Prevention of audit data loss

Hierarchical to: FAU_STG.3 Action in case of possible audit data loss

Dependencies: FAU_STG.1 Protected audit trail storage

FAU_STG.4.1 The TSF shall [overwrite the oldest stored audit records] and [none] if the audit trail is full.

6.1.2 Class FCO Communication

6.1.2.1 FCO_NRO Non-repudiation of origin

FCO_NRO.2 Enforced proof of origin

Hierarchical to: FCO_NRO.1 Selective proof of origin
Dependencies: FIA_UID.1 Timing of identification

FCO_NRO.2.1 The TSF shall enforce the generation of evidence of origin for transmitted [Sales data and event data] at all times.

FCO_NRO.2.2 The TSF shall be able to relate the [originator identity, time of origin] of the originator of the information, and the [body of the message] of the information to which the evidence applies.

FCO_NRO.2.3 The TSF shall provide a capability to verify the evidence of origin of information to [recipient] given [immediately].

6.1.3 Class FCS Cryptographic Support

6.1.3.1 FCS_CKM Cryptographic key management

FCS_CKM.1/ TRMK Cryptographic key generation
Hierarchical to: No other components.
Dependencies: [FCS_CKM.2 Cryptographic key distribution, or FCS_COP.1 Cryptographic operation]
FCS_CKM.4 Cryptographic key destruction

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm [RNG] and specified cryptographic key sizes [256 bits] that meet the following: [assignment: list of standards].

FCS_CKM.1/ TRMKD Cryptographic key generation
Hierarchical to: No other components.
Dependencies: [FCS_CKM.2 Cryptographic key distribution, or FCS_COP.1 Cryptographic operation]
FCS_CKM.4 Cryptographic key destruction

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm [RNG] and specified cryptographic key sizes [256 bits] that meet the following: [assignment: list of standards].

FCS_CKM.2 Cryptographic key distribution
Hierarchical to: No other components.
Dependencies: [FDP_ITC.1 Import of user data without security attributes, or
FDP_ITC.2 Import of user data with security attributes, or
FCS_CKM.1 Cryptographic key generation]
FCS_CKM.4 Cryptographic key destruction

FCS_CKM.2.1 The TSF shall distribute cryptographic keys in accordance with a specified cryptographic key distribution method [according to PRA Messaging Protocol Document [6]] that meets the following: [assignment: list of standards].

FCS_CKM.1/ DHE-KEY Cryptographic key generation
Hierarchical to: No other components.
Dependencies: [FCS_CKM.2 Cryptographic key distribution, or
FCS_COP.1 Cryptographic operation]
FCS_CKM.4 Cryptographic key destruction

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm [RNG] and specified cryptographic key sizes [2048 bits] that meet the following: [assignment: list of standards].

FCS_CKM.1/ EXT-DEV K_{HMAC} Cryptographic key generation
Hierarchical to: No other components.
Dependencies: [FCS_CKM.2 Cryptographic key distribution, or
FCS_COP.1 Cryptographic operation]
FCS_CKM.4 Cryptographic key destruction

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm [PRF] and specified cryptographic key sizes [256 bits] that meet the following: [RFC 5246].

FCS_CKM.1/ EXT-DEV K_{ENC} Cryptographic key generation
Hierarchical to: No other components.
Dependencies: [FCS_CKM.2 Cryptographic key distribution, or
FCS_COP.1 Cryptographic operation]
FCS_CKM.4 Cryptographic key destruction
FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm [PRF] and specified cryptographic key sizes [AES:256 bits] that meet the following: [RFC 5246].

FCS_CKM.4 Cryptographic key destruction

Hierarchical to: No other components.

Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation]

FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method [assignment: cryptographic key destruction method] that meets the following: [assignment: list of standards].

Application Note 2: Keys shall be deleted according to below Table 3.

<table>
<thead>
<tr>
<th>Keys</th>
<th>When</th>
</tr>
</thead>
</table>
| TREK | ➢ The usage number that is specified PRA Messaging Protocol Document [6] is exceeded
| | ➢ Electronic seal is opened by authorized/unauthorized user |
| TRAK | ➢ The usage number that is specified PRA Messaging Protocol Document [6] is exceeded
| | ➢ Electronic seal is opened by authorized/unauthorized user |
| TDK | ➢ The usage number that is specified PRA Messaging Protocol Document [6] is exceeded
<p>| | ➢ Electronic seal is opened by authorized/unauthorized user |
| TRMK | After key transport from PRA-IS to TOE for TREK and TRAK |
| TRMKD | After key transport from TSM to TOE for TDK |</p>
<table>
<thead>
<tr>
<th></th>
<th>➢ The usage number that is specified External Device Communication Protocol Document [7] is exceeded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The usage number that is specified External Device Communication Protocol Document [7] is exceeded</td>
</tr>
</tbody>
</table>

| DHE-KEY | After key agreement between TOE and External Device |

6.1.3.2 FCS_COP Cryptographic operation

FCS_COP.1/TREK Cryptographic operation
Hierarchical to: No other components.
Dependencies: [FDP_ITC.1 Import of user data without security attributes, or\nFDP_ITC.2 Import of user data with security attributes, or\nFCS_CKM.1 Cryptographic key generation]\nFCS_CKM.4 Cryptographic key destruction
FCS_COP.1.1 The TSF shall perform [encryption] in accordance with a specified cryptographic algorithm [AES in CBC mode] and cryptographic key sizes [AES:256 bits] that meet the following: [NIST SP800-38A (CBC.AES256)].

FCS_COP.1/TRAK Cryptographic operation
Hierarchical to: No other components.
Dependencies: [FDP_ITC.1 Import of user data without security attributes, or\nFDP_ITC.2 Import of user data with security attributes, or\nFCS_CKM.1 Cryptographic key generation]\nFCS_CKM.4 Cryptographic key destruction
FCS_COP.1.1 The TSF shall perform [encryption and decryption for integrity protection] in accordance with a specified cryptographic algorithm [AES in CBC mode] and cryptographic key sizes [AES:256 bits] that meet the following: [NIST SP800-38A (CBC.AES256)].

FCS_COP.1/TDK Cryptographic operation
Hierarchical to: No other components.
Dependencies: [FDP_ITC.1 Import of user data without security attributes, or\nFDP_ITC.2 Import of user data with security attributes, or
FCS_CKM.1 Cryptographic key generation
FCS_CKM.4 Cryptographic key destruction

FCS_COP.1.1 The TSF shall perform [encryption and decryption] in accordance with a specified cryptographic algorithm [assignment: cryptographic algorithm] and cryptographic key sizes [AES:256bits] that meet the following: [NIST SP800-38A (CBC.AES256)].

FCS_COP.1/HASHING Cryptographic operation
Hierarchical to: No other components.
Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation]
FCS_CKM.4 Cryptographic key destruction

FCS_COP.1.1 The TSF shall perform [hashing] in accordance with a specified cryptographic algorithm [SHA2] and cryptographic key sizes [none] that meet the following: [FIPS 180-2].

FCS_COP.1/TRMK-DEC Cryptographic operation
Hierarchical to: No other components.
Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation]
FCS_CKM.4 Cryptographic key destruction

FCS_COP.1.1 The TSF shall perform [decryption] in accordance with a specified cryptographic algorithm [AES in CBC mode] and cryptographic key sizes [256 bits] that meet the following: [NIST SP800-38A (CBC.AES256)].

FCS_COP.1/TRMKD-DEC Cryptographic operation
Hierarchical to: No other components.
Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation]
FCS_CKM.4 Cryptographic key destruction
FCS_COP.1.1 The TSF shall perform [decryption] in accordance with a specified cryptographic algorithm [AES in CBC mode] and cryptographic key sizes [256 bits] that meet the following: [NIST SP800-38A (CBC.AES256)].

FCS_COP.1/PUB-ENC Cryptographic operation
Hierarchical to: No other components.
Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation] FCS_CKM.4 Cryptographic key destruction

FCS_COP.1.1 The TSF shall perform [encryption] in accordance with a specified cryptographic algorithm [RSA] and cryptographic key sizes [2048 bits] that meet the following: [PKCS#1 v2.1 (RSAES-PKCS1-v1_5)].

FCS_COP.1/SIGN-VER Cryptographic operation
Hierarchical to: No other components.
Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation] FCS_CKM.4 Cryptographic key destruction

FCS_COP.1.1 The TSF shall perform [signature verification] in accordance with a specified cryptographic algorithm [RSA] and cryptographic key sizes [2048 bits] that meet the following: [PKCS#1 v1.5, SHA256 Type 2 (random padding)].

FCS_COP.1/EXT-DEV KEYEXCHANGE Cryptographic operation
Hierarchical to: No other components.
Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation] FCS_CKM.4 Cryptographic key destruction
The TSF shall perform **key agreement** in accordance with a specified cryptographic algorithm **DHE** and cryptographic key sizes **2048 bits** that meet the following: [NIST SP 800-56A].

Hierarchical to: No other components.

Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation]

The TSF shall perform **encryption and decryption** in accordance with a specified cryptographic algorithm **AES with CBC** and cryptographic key sizes **256 bits** that meet the following: [NIST SP800-38A (CBC.AES256)].

Hierarchical to: No other components.

Dependencies: [FDP_ITC.1 Import of user data without security attributes, or FDP_ITC.2 Import of user data with security attributes, or FCS_CKM.1 Cryptographic key generation]

The TSF shall perform **encryption and decryption for integrity protection** in accordance with a specified cryptographic algorithm **HMAC SHA256** and cryptographic key sizes **256 bits** that meet the following: [FIPS 198-1 and NIST FIPS PUB 180-2].

6.1.4 Class FDP User Data Protection

6.1.4.1 FDP_ACC Access control policy

Hierarchical to: No other components.

Dependencies: FDP_ACF.1 Security attribute based access control

The TSF shall enforce the [Administrative Access Control SFP] on

Subjects: FCR Authorised User and Authorized Manufacturer User

Objects: Sales and event data, exchange rates, time information,
Operations: Secure state mode and maintenance mode actions, [assignment: list of subjects, objects, and operations among subjects and objects covered by the SFP].

6.1.4.2 FDP_ACF Access control functions

FDP_ACF.1 Security attribute based access control

Hierarchical to: No other components.

Dependencies: FDP_ACC.1 Subset access control

FMT_MSA.3 Static attribute initialisation

FDP_ACF.1.1 The TSF shall enforce the [Administrative Access Control SFP] to objects based on the following [Subjects: FCR Authorised User and Authorized Manufacturer User]

Subject Attributes: Privileges

Objects: Sales and event data, exchange rates, time information,

Object Attributes: Access Control List (Secure State Mode and maintenance mode access rights)

Operations: Secure State Mode and Maintenance Mode actions described in 3.1.3, [assignment: list of subjects and objects controlled under the indicated SFP, and for each, the SFP-relevant security attributes, or named groups of SFP-relevant security attributes].

FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed: [verify the operator’s privileges].

FDP_ACF.1.3 The TSF shall explicitly authorise access of subjects to objects based on the following additional rules: [none].

FDP_ACF.1.4 The TSF shall explicitly deny access of subjects to objects based on the following additional rules: [none].

6.1.4.3 FDP_ETC Export from the TOE

FDP_ETC.2/TSM Export of user data with security attributes

Hierarchical to: No other components.

Dependencies: [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control]
FDP_ETC.2.1 The TSF shall enforce the [Information Flow Control SFP with TSM and PRA-IS] when exporting user data, controlled under the SFP(s), outside of the TOE.

FDP_ETC.2.2 The TSF shall export the user data with the user data's associated security attributes.

FDP_ETC.2.3 The TSF shall ensure that the security attributes, when exported outside the TOE, are unambiguously associated with the exported user data.

FDP_ETC.2.4 The TSF shall enforce the following rules when user data is exported from the TOE: [Communication with secure messaging according to PRA Messaging Protocol Document[6]].

Application Note 4: User data (sales data, event data and TRMK) are exported from FCR to the PRA-IS via TSM and TRMKD are exported from FCR to TSM.

FDP_ETC.2/EFTPOS/SMARTPINPAD Export of user data with security attributes

Hierarchical to: No other components.

Dependencies: [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control]

FDP_ETC.2.1 The TSF shall enforce the [Information Flow Control SFP with EFTPOS/SMART PINPAD Device] when exporting user data, controlled under the SFP(s), outside of the TOE.

FDP_ETC.2.2 The TSF shall export the user data with the user data's associated security attributes.

FDP_ETC.2.3 The TSF shall ensure that the security attributes, when exported outside the TOE, are unambiguously associated with the exported user data.

FDP_ETC.2.4 The TSF shall enforce the following rules when user data is exported from the TOE: [Communication with secure messaging according to External Device Communication Protocol Document [7]].

6.1.4.4 FDP_IFC Information flow control policy

FDP_IFC.1/TSMCOMMUNICATION Subset information flow control

Hierarchical to: No other components.

Dependencies: FDP_IFF.1 Simple security attributes
FDP_IFC.1.1 The TSF shall enforce the [Information Flow Control SFP with TSM and PRA-IS] on [subjects (TSM and PRA-IS) and objects (sales data, event data reports, FCR parameters, TREK, TRAK and TDK, TRMK and TRMKD) as specified in PRA Messaging Protocol Document [6]].

FDP_IFC.1/EFTPOS/SMARTPINPAD COMMUNICATION Subset information flow control

Hierarchical to: No other components.

Dependencies: FDP_IFF.1 Simple security attributes

FDP_IFC.1.1 The TSF shall enforce the [Information Flow Control SFP with EFT-POS/SMART_PINPAD_Device] on [subjects (EFT-POS/SMART_PINPAD) and objects (amount information in sales data and outcome of the operation) as specified in External Device Communication Protocol Document [7]].

6.1.4.5 FDP_IFF Information flow control functions

FDP_IFF.1/TSMCOMMUNICATION Simple security attributes

Hierarchical to: No other components.

Dependencies: FDP_IFC.1 Subset information flow control

FMT_MSA.3 Static attribute initialisation

FDP_IFF.1.1 The TSF shall enforce the [Information Flow Control SFP with TSM and PRA-IS] based on the following types of subject and information security attributes: [TOE has ability to send reports related to sales data, event data reports and TRMK to PRA-IS by using subject identifier (IP/Port information) and object identifier (file name); TOE has ability to receive TREK and TRAK from PRA-IS by using subject identifier (IP/Port information) and object identifier (information label) according to PRAMessagingProtocolDocument[6]; TOE has ability to receive FCR parameters and TDK from TSM by using subject identifier (IP/Port information) and object identifier (information label) according to PRA Messaging Protocol Document [6]; TOE has ability to send TRMKD to TSM by using subject identifier (IP/Port information) and object identifier (information label) according to PRA Messaging Protocol Document [6]].
FDP_IFF.1.2 The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [Communication with secure messaging according to PRA Messaging Protocol Document [6]].

FDP_IFF.1.3 The TSF shall enforce the [none].

FDP_IFF.1.4 The TSF shall explicitly authorise an information flow based on the following rules: [none].

FDP_IFF.1.5 The TSF shall explicitly deny an information flow based on the following rules: [none].

FDP_IFF.1/EFT-POS/SMART PINPAD COMMUNICATION Simple security attributes

Hierarchical to: No other components.

Dependencies: FDP_IFC.1 Subset information flow control

FMT_MSA.3 Static attribute initialisation

FDP_IFF.1.1 The TSF shall enforce the [Information Flow Control SFP with EFT-POS/SMART PINPAD Device] based on the following types of subject and information security attributes: [TOE has ability to send amount information to EFT-POS/SMART PINPAD Device by using subject identifier (EFT-POS/SMART PINPAD label and source port).TOE has ability to receive outcome of the operation conducted by the EFT-POS/SMART PINPAD Device by using subject identifier (source port)].

FDP_IFF.1.2 The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: [Communication with secure messaging according to External Device Communication Protocol Document [7]].

FDP_IFF.1.4 The TSF shall explicitly authorise an information flow based on the following rules: [none].

FDP_IFF.1.5 The TSF shall explicitly deny an information flow based on the following rules: [none].

6.1.4.6 FDP_ITC Import from the outside of the TOE

FDP_ITC.2/TSM Import of user data with security attributes

Hierarchical to: No other components.

Dependencies: [FDP_ACC.1 Subset access control, or
FDP_ITC.2.1 The TSF shall enforce the [Information Flow Control SFP with TSM and PRA-IS] when importing user data, controlled under the SFP, from outside of the TOE.

FDP_ITC.2.2 The TSF shall use the security attributes associated with the imported user data.

FDP_ITC.2.3 The TSF shall ensure that the protocol used provides for the unambiguous association between the security attributes and the user data received.

FDP_ITC.2.4 The TSF shall ensure that interpretation of the security attributes of the imported user data is as intended by the source of the user data.

FDP_ITC.2.5 The TSF shall enforce the following rules when importing user data controlled under the SFP from outside the TOE: [Communication with secure messaging according to PRA Messaging Protocol Document [6]].

Application Note 5: FCR parameters and TDK are imported from TSM to TOE. TREK and TRAK are imported from PRA-IS to TOE.
FDP_ITC.2.3 The TSF shall ensure that the protocol used provides for the unambiguous association between the security attributes and the user data received.

FDP_ITC.2.4 The TSF shall ensure that interpretation of the security attributes of the imported user data is as intended by the source of the user data.

FDP_ITC.2.5 The TSF shall enforce the following rules when importing user data controlled under the SFP from outside the TOE: [Communication with secure messaging according to External Device Communication Protocol Document [7]].

6.1.4.7 FDP_SDI Stored data integrity

FDP_SDI.2/MEMORY Stored data integrity monitoring and action

Hierarchical to: FDP_SDI.1 Stored data integrity monitoring

Dependencies: No dependencies.

FDP_SDI.2.1 The TSF shall monitor user data sales data stored in fiscal memory and ERU; event data and characterization data stored in containers controlled by the TSF for [integrity errors] on all objects, based on the following attributes: [assignment: user data attributes].

FDP_SDI.2.2 Upon detection of a data integrity error, the TSF shall [generate an audit event and then enter into the maintenance mode].

FDP_SDI.2/DAILY and PRMTR Stored data integrity monitoring and action

Hierarchical to: FDP_SDI.1 Stored data integrity monitoring

Dependencies: No dependencies.

FDP_SDI.2.1 The TSF shall monitor user data sales data stored in containers daily memory and FCR parameters stored in containers controlled by the TSF for [integrity errors] on all objects, based on the following attributes: [assignment: user data attributes].

FDP_SDI.2.2 Upon detection of a data integrity error, the TSF shall [generate an audit event and print Z report automatically].

6.1.5 Class FIA Identification and Authentication

6.1.5.1 FIA_AFL Authentication failures

FIA_AFL.1/MANUFACTURER Authentication failure handling
Hierarchical to: No other components.

Dependencies: FIA_UAU.1 Timing of authentication

FIA_AFL.1.1 The TSF shall detect when [selection: [assignment: positive integer number], an administrator configurable positive integer within[assignment: range of acceptable values]] unsuccessful authentication attempts occur related to [Authorized Manufacturer User authentication].

FIA_AFL.1.2 When the defined number of unsuccessful authentication attempts has been [met], the TSF shall [assignment: list of actions].

FIA_AFL.1/AUTHORISED Authentication failure handling

Hierarchical to: No other components.

Dependencies: FIA_UAU.1 Timing of authentication

FIA_AFL.1.1 The TSF shall detect when [selection: [assignment: positive integer number], an administrator configurable positive integer within[assignment: range of acceptable values]] unsuccessful authentication attempts occur related to [FCR Authorised User].

FIA_AFL.1.2 When the defined number of unsuccessful authentication attempts has been [met], the TSF shall [assignment: list of actions].

6.1.5.2 FIA_UAU User authentication

FIA_UAU.1 Timing of authentication

Hierarchical to: No other components.

Dependencies: FIA_UID.1 Timing of identification

FIA_UAU.1.1 The TSF shall allow [to do fiscal sales and to get FCR reports (except fiscal reports)] on behalf of the user to be performed before the user is authenticated.

FIA_UAU.1.2 The TSF shall require each user to be successfully authenticated before allowing any other TSF-mediated actions on behalf of that user.

FIA_UAU.4 Single-use authentication mechanisms

Hierarchical to: No other components.

Dependencies: No dependencies.
The TSF shall prevent reuse of authentication data related to the authentication mechanism employed to authenticate Authorized Manufacturer User.

6.1.5.3 FIA_UID User Identification

FIA_UID.1 Timing of identification
Hierarchical to: No other components.
Dependencies: No dependencies.
FIA_UID.1.1 The TSF shall allow to do fiscal sales and to get FCR reports (except fiscal reports) on behalf of the user to be performed before the user is identified.
FIA_UID.1.2 The TSF shall require each user to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

6.1.6 Class FMT Security Management

6.1.6.1 FMT_MOF Management of security functions behaviour

FMT_MOF.1 Management of security functions behaviour
Hierarchical to: No other components.
Dependencies: FMT_SMR.1 Security roles
FMT_SMF.1 Specification of Management Functions
FMT_MOF.1.1 The TSF shall restrict the ability to modify the behaviour of the functions [New Generation Cash Register Application Software normal operation functions] to assignment: the authorised identified roles [nobody].

Application Note6: No authorised user makes the changes on the behaviour of the functions. The TSF itself makes the behavioral changes according to the FCR parameters received from TSM.

Application Note7: Ability to Modification of behaviour shall be used according to PRA directives. Normal operation functions includes all FCR parameters that are sent to FCR by TSM.

6.1.6.2 FMT_MSA Management of security attributes

FMT_MSA.1/PRIVILEGES Management of security attributes
Hierarchical to: No other components.
Dependencies: [FDP_ACC.1 Subset access control, or
FDP_IFC.1 Subset information flow control]
FMT_SMR.1 Security roles
FMT_SMF.1 Specification of Management Functions

FMT_MSA.1.1 The TSF shall enforce the [Administrative Access Control SFP] to restrict the ability to \textit{modify} the security attributes [Privileges and Access Control List] to [none].

FMT_MSA.1/IP: PORTINFO Management of security attributes
Hierarchical to: No other components.
Dependencies: [FDP_ACC.1 Subset access control, or
FDP_IFC.1 Subset information flow control]
FMT_SMR.1 Security roles
FMT_SMF.1 Specification of Management Functions

FMT_MSA.1.1 The TSF shall enforce the [Information Flow Control SFP with TSM and PRA-IS] to restrict the ability to \textit{modify} the security attributes [IP:Port Information] to [Authorised Manufacturer User].

FMT_MSA.1/FILE NAME and INFO-LABEL Management of security attributes
Hierarchical to: No other components.
Dependencies: [FDP_ACC.1 Subset access control, or
FDP_IFC.1 Subset information flow control]
FMT_SMR.1 Security roles
FMT_SMF.1 Specification of Management Functions

FMT_MSA.1.1 The TSF shall enforce the [Information Flow Control SFP with TSM and PRA-IS] to restrict the ability to \textit{modify} the security attributes [file name and information label] to [none].

FMT_MSA.1/EFTPOS/SMARTPINPAD SOURCE PORT INFO Management of security attributes
Hierarchical to: No other components.
Dependencies: [FDP_ACC.1 Subset access control, or
FDP_IFC.1 Subset information flow control]
FMT_SMR.1 Security roles
FMT_SMF.1 Specification of Management Functions
FMT_MSA.1.1 The TSF shall enforce the [Information Flow Control SFP with EFT_POS/SMART_PINPAD Device] to restrict the ability to [modify] the security attributes [Source Port] to [none].

FMT_MSA.1/ EFT-POS/SMART PINPAD LABEL INFO Management of security attributes
Hierarchical to: No other components.
Dependencies: [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control]
FMT_SMR.1 Security roles
FMT_SMF.1 Specification of Management Functions

FMT_MSA.1.1 The TSF shall enforce the [Information Flow Control SFP with EFT_POS/SMART PINPAD Device] to restrict the ability to [modify] the security attributes [EFT-POS/SMART PINPAD Label] to [none].

FMT_MSA.3/USERS and SYSTEMS Static attribute initialisation
Hierarchical to: No other components.
Dependencies: FMT_MSA.1 Management of security attributes
FMT_SMR.1 Security roles

FMT_MSA.3.1 The TSF shall enforce the [Administrative Access Control SFP, Information Flow Control SFP with TSM and PRA-IS] to provide [restrictive] default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2 The TSF shall allow the [none] to specify alternative initial values to override the default values when an object or information is created.

FMT_MSA.3/EFTPOS/SMART PINPAD Static attribute initialisation
Hierarchical to: No other components.
Dependencies: FMT_MSA.1 Management of security attributes
FMT_SMR.1 Security roles

FMT_MSA.3.1 The TSF shall enforce the [Information Flow Control SFP with EFT-POS/SMART PINPAD Device] to provide [permissive] default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2 The TSF shall allow the [none] to specify alternative initial values to override the default values when an object or information is created.
6.1.6.3 FMT_MTD Management of TSF data

FMT_MTD.1/ FCR AUTHORIZED USER Management of TSF data
Hierarchical to: No other components.
 Dependencies: FMT_SMR.1 Security roles
 FMT_SMF.1 Specification of Management Functions
FMT_MTD.1.1 The TSF shall restrict the ability to [selection: change_default, query, modify, delete, clear, [assignment: other operations]] the [FCR AuthorisedUser’s authentication data] to [assignment: the authorised identified roles].

FMT_MTD.1/ AUTHORIZED MANUFACTURER USER Management of TSF data
Hierarchical to: No other components.
 Dependencies: FMT_SMR.1 Security roles
 FMT_SMF.1 Specification of Management Functions
FMT_MTD.1.1 The TSF shall restrict the ability to [create] the [Authorized Manufacturer User’s authentication data] to [assignment: the authorised identified roles] [nobody].

Application Note 8: No authorised identified roles make the changes on Authorized Manufacturer User’s authentication data but TSM creates it.

6.1.6.4 FMT_SMF Specification of Management Functions

FMT_SMF.1 Specification of Management Functions
Hierarchical to: No other components.
 Dependencies: No dependencies.
FMT_SMF.1.1 The TSF shall be capable of performing the following management functions: [Authorized Manufacturer User modifies IP: Port Information],[assignment: list of management functions to be provided by the TSF].

6.1.6.5 FMT_SMR Security management roles

FMT_SMR.2 Restrictions on security roles
Hierarchical to: FMT_SMR.1 Security roles
 Dependencies: FIA_UID.1 Timing of identification
FMT_SMR.2.1 The TSF shall maintain the roles: [FCR Authorised User, Authorised Manufacturer User].

FMT_SMR.2.2 The TSF shall be able to associate users with roles.

FMT_SMR.2.3 The TSF shall ensure that the conditions [Authorised Manufacturer User shall take action in maintenance works and FCR Authorised User take action in secure state works] are satisfied.

6.1.7 Class FPT Protection of the TSF

6.1.7.1 FPT_FLS Fail secure

FPT_FLS.1 Failure with preservation of secure state

Hierarchical to: No other components.

Dependencies: No dependencies.

FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of failures occur: [except maintenance mode events that specified in Section 3.1.3]

6.1.7.2 FPT_PHP TSF physical protection

FPT_PHP.2 Notification of physical attack

Hierarchical to: FPT_PHP.1 Passive detection of physical attack

Dependencies: FMT_MOF.1 Management of security functions behaviour

FPT_PHP.2.1 The TSF shall provide unambiguous detection of physical tampering that might compromise the TSF.

FPT_PHP.2.2 The TSF shall provide the capability to determine whether physical tampering with the TSF's devices or TSF's elements has occurred.

FPT_PHP.2.3 For [the devices/elements for which active detection is required in Technical Guidance Document [5]], the TSF shall monitor the devices and elements and notify [all users] when physical tampering with the TSF's devices or TSF's elements has occurred.

6.1.7.3 FPT_RCV Trusted recovery

FPT_RCV.1 Manual recovery

Hierarchical to: No other components.

Dependencies: AGD_OPE.1 Operational user guidance
FPT_RCV.1.1 After [maintenance mode events which expressed in section 3.1.3 occur] the TSF shall enter a maintenance mode where the ability to return to a secure state is provided.

FPT_RCV.4 Function recovery
Hierarchical to: No other components.
Dependencies: No dependencies.
FPT_RCV.4.1 The TSF shall ensure that [except maintenance mode events that specified in section 3.1.3] have the property that the function either completes successfully, or for the indicated failure scenarios, recovers to a consistent and secure state.

6.1.7.4 FPT_STM Time stamps
FPT_STM.1 Reliable time stamps
Hierarchical to: No other components.
Dependencies: No dependencies.
FPT_STM.1.1 The TSF shall be able to provide reliable time stamps.

6.1.7.5 FPT_TDC Inter-TSF TSF data consistency
FPT_TDC.1/TSM Inter-TSF basic TSF data consistency
Hierarchical to: No other components.
Dependencies: No dependencies.
FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret [Checksum] when shared between the TSF and another trusted IT product.
FPT_TDC.1.2 The TSF shall use [Communication with secure messaging according to PRA Messaging Protocol Document [6]] when interpreting the TSF data from another trusted IT product.
FPT_TDC.1/EFT-POS/SMART PINPAD Inter-TSF basic TSF data consistency
Hierarchical to: No other components.
Dependencies: No dependencies.
FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret [Checksum] when shared between the TSF and another trusted IT product.
FPT_TDC.1.2 The TSF shall use Communication with secure messaging according to External Device Communication Protocol Document[7] when interpreting the TSF data from another trusted IT product.

6.1.7.6 FPT_TEE Testing of external entities

FPT_TEE.1/EXT Testing of external entities

<table>
<thead>
<tr>
<th>Hierarchical to:</th>
<th>No other components.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependencies:</td>
<td>No dependencies.</td>
</tr>
</tbody>
</table>

FPT_TEE.1.1 The TSF shall run a suite of tests [during initial start-up and during fiscal transactions] to check the fulfillment of [proper working of external entities].

FPT_TEE.1.2 If the test fails, the TSF shall generate an audit event according to PRA Messaging Protocol Document [6].

Application Note: External entities are ERU, Fiscal Memory, Daily Memory, Mesh Cover and electronic seal.

FPT_TEE.1/TIME Testing of external entities

<table>
<thead>
<tr>
<th>Hierarchical to:</th>
<th>No other components.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependencies:</td>
<td>No dependencies.</td>
</tr>
</tbody>
</table>

FPT_TEE.1.1 The TSF shall run a suite of tests during time synchronization with NTP to check the fulfillment of accuracy of time information.

FPT_TEE.1.2 If the test fails, the TSF shall [assignment: action(s)].

6.1.8 Class FTP Trusted Patch/Channels

6.1.8.1 FTP_ITC Inter-TSF trusted channel

FTP_ITC.1/TSM Inter-TSF trusted channel

<table>
<thead>
<tr>
<th>Hierarchical to:</th>
<th>No other components.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependencies:</td>
<td>No dependencies.</td>
</tr>
</tbody>
</table>

FTP_ITC.1.1 The TSF shall provide a communication channel between itself and another trusted IT product that is logically distinct from other communication channels and provides assured identification of its endpoints and protection of the channel data from modification or disclosure.
FTP_ITC.1.2 The TSF shall permit [the TSF] to initiate communication via the trusted channel.

FTP_ITC.1.3 The TSF shall initiate communication via the trusted channel for sending user data (sales, event data, and TRMK) to PRA-IS and receiving user data (FCR parameters, exchange rates, and TDK) from TSM; receiving user data (TREK and TRAK) from PRA-IS; sending user data (TRMKD) to TSM.

FTP_ITC.1/EFT-POS/SMART PINPAD Inter-TSF trusted channel

Hierarchical to: No other components.

Dependencies: No dependencies.

FTP_ITC.1.1 The TSF shall provide a communication channel between itself and another trusted IT product that is logically distinct from other communication channels and provides assured identification of its endpoints and protection of the channel data from modification or disclosure.

FTP_ITC.1.2 The TSF shall permit [the TSF] to initiate communication via the trusted channel.

FTP_ITC.1.3 The TSF shall initiate communication via the trusted channel for sending amount information to EFT-POS/SMART PINPAD and receiving outcome of the operation from EFT-POS/SMART PINPAD.
6.2 Security Assurance Requirements for the TOE

The assurance requirements for the evaluation of the TOE and for its development and operating environment are chosen as the predefined assurance package EAL2.

6.3 Security Requirements Rationale

6.3.1 Security Functional Requirements Rationale

Table 4 provides an overview for security functional requirements coverage and also giving an evidence for sufficiency and necessity of the SFRs chosen.

<table>
<thead>
<tr>
<th>SFRs</th>
<th>O. AccessControl</th>
<th>O. Event</th>
<th>O. Integrity</th>
<th>O. Authenticatio</th>
<th>O. Function</th>
<th>O. Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU_GEN.1</td>
<td>Audit data generation</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAU_SAR.1</td>
<td>Audit review</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAU_STG.1</td>
<td>Protected audit trail storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAU_STG.4</td>
<td>Prevention of audit data loss</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FCO_NRO.2</td>
<td>Enforced proof of origin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FCS_CKM.1/TRMK</td>
<td>Cryptographic key generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FCS_CKM.1/TRMKD</td>
<td>Cryptographic key generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FCS_CKM.2</td>
<td>Cryptographic key distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FCS_CKM.1/DHE-KEY</td>
<td>Cryptographic key generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>FCS_CKM.1/EXT-DEV KENC</td>
<td>Cryptographic key generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Table 4 Coverage of security objectives by SFRs for TOE
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS_CKM.1/ EXT-DEV</td>
<td>Cryptographic key generation</td>
<td></td>
</tr>
<tr>
<td>K_HMAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_CKM.4</td>
<td>Cryptographic key destruction</td>
<td>X</td>
</tr>
<tr>
<td>FCS_COP.1/TREK</td>
<td>Cryptographic operation</td>
<td>X</td>
</tr>
<tr>
<td>FCS_COP.1/TRAK</td>
<td>Cryptographic operation</td>
<td>X</td>
</tr>
<tr>
<td>FCS_COP.1/TKD</td>
<td>Cryptographic operation</td>
<td>X</td>
</tr>
<tr>
<td>FCS_COP.1/HASHING</td>
<td>Cryptographic operation</td>
<td>X</td>
</tr>
<tr>
<td>FCS_COP.1/TRMK-DEC</td>
<td>Cryptographic operation</td>
<td>X</td>
</tr>
<tr>
<td>FCS_COP.1/TRMKD-DEC</td>
<td>Cryptographic operation</td>
<td>X</td>
</tr>
<tr>
<td>FCS_COP.1/PUB-ENC</td>
<td>Cryptographic operation</td>
<td>X</td>
</tr>
<tr>
<td>FCS_COP.1/SIGN-VER</td>
<td>Cryptographic operation</td>
<td>X</td>
</tr>
<tr>
<td>FCS_COP.1/EXT-DEV</td>
<td>Cryptographic operation</td>
<td>X</td>
</tr>
<tr>
<td>K_ENC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_COP.1/EXT-DEV</td>
<td>Cryptographic operation</td>
<td>X</td>
</tr>
<tr>
<td>K_HMAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_COP.1/KEYEXCHANGE</td>
<td>Cryptographic operation</td>
<td>X</td>
</tr>
<tr>
<td>FDP_ACC.1</td>
<td>Subset access control</td>
<td>X</td>
</tr>
<tr>
<td>FDP_ACF.1</td>
<td>Security attribute based access control</td>
<td>X</td>
</tr>
<tr>
<td>FDP_ETC.2/TSM</td>
<td>Export of user data with security attributes</td>
<td>X</td>
</tr>
<tr>
<td>FDP_ETC.2/EFTPOS/SMART PINPAD</td>
<td>Export of user data with security attributes</td>
<td>X</td>
</tr>
<tr>
<td>FDP_IFC.1/TSMCOMMUNICATION</td>
<td>Subset information flow control</td>
<td>X</td>
</tr>
<tr>
<td>FDP_IFC.1/EFTPOS/SMART RT</td>
<td>Subset information flow control</td>
<td>X</td>
</tr>
<tr>
<td>PINPADCOMMUNICATION</td>
<td>FDP_IFF.1/TSMCOMMUNICATION</td>
<td>Simple security attributes</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>FDP_IFF.1/EFT-POS/SMART PINPAD COMMUNICATION</td>
<td>Simple security attributes</td>
<td>X</td>
</tr>
<tr>
<td>FDP_ITC.2/TSM</td>
<td>Import of user data with security attributes</td>
<td>X</td>
</tr>
<tr>
<td>FDP_ITC.2/EFTP/SMART PINPAD</td>
<td>Import of user data with security attributes</td>
<td>X</td>
</tr>
<tr>
<td>FDP_SDI.2/MEMORY</td>
<td>Stored data integrity monitoring and action</td>
<td>X</td>
</tr>
<tr>
<td>FDP_SDI.2/DAILY and PRMTR</td>
<td>Stored data integrity monitoring and action</td>
<td>X</td>
</tr>
<tr>
<td>FIA_AFL.1/MANUFACTURER</td>
<td>Authentication failure handling</td>
<td>X</td>
</tr>
<tr>
<td>FIA_AFL.1/AUTHORISED</td>
<td>Authentication failure handling</td>
<td>X</td>
</tr>
<tr>
<td>FIA_UAU.1</td>
<td>Timing of authentication</td>
<td>X</td>
</tr>
<tr>
<td>FIA_UAU.4</td>
<td>Single-use authentication mechanisms</td>
<td>X</td>
</tr>
<tr>
<td>FIA_UID.1</td>
<td>Timing of identification</td>
<td>X</td>
</tr>
<tr>
<td>FMT_MOFO.1</td>
<td>Management of security functions behaviour</td>
<td>X</td>
</tr>
<tr>
<td>FMT_MSA.1/PRIVILEGES</td>
<td>Management of security attributes</td>
<td>X</td>
</tr>
<tr>
<td>FMT_MSA.1/IP:PORTINFO</td>
<td>Management of security attributes</td>
<td>X</td>
</tr>
<tr>
<td>FMT_MSA.1/FILENAME</td>
<td>Management of security</td>
<td>X</td>
</tr>
<tr>
<td>Module</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.1/EFTPOS/SMART ART PINPAD SOURCE PORT INFO</td>
<td>Management of security attributes</td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.1/EFTPOS/SMART PINPAD LABEL INFO</td>
<td>Management of security attributes</td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.3/USERS and SYSTEMS</td>
<td>Static attribute initialisation</td>
<td></td>
</tr>
<tr>
<td>FMT_MSA.3/EFTPOS/SMART ART PINPAD</td>
<td>Static attribute initialisation</td>
<td></td>
</tr>
<tr>
<td>FMT_MTD.1/FCR AUTHORISED USER</td>
<td>Management of TSF data</td>
<td></td>
</tr>
<tr>
<td>FMT_MTD.1/AUTHORIZED MANUFACTURER USER</td>
<td>Management of TSF data</td>
<td></td>
</tr>
<tr>
<td>FMT_SMF.1</td>
<td>Specification of Management Functions</td>
<td></td>
</tr>
<tr>
<td>FMT_SMR.2</td>
<td>Restrictions on security roles</td>
<td></td>
</tr>
<tr>
<td>FPT_FLS.1</td>
<td>Failure with preservation of secure state</td>
<td></td>
</tr>
<tr>
<td>FPT_PHP.2</td>
<td>Notification of physical attack</td>
<td></td>
</tr>
<tr>
<td>FPT_RCV.1</td>
<td>Manual recovery</td>
<td></td>
</tr>
<tr>
<td>FPT_RCV.4</td>
<td>Function recovery</td>
<td></td>
</tr>
<tr>
<td>FPT_STM.1</td>
<td>Reliable time stamps</td>
<td></td>
</tr>
<tr>
<td>FPT_TDC.1/TSM</td>
<td>Inter-TSF basic TSF data consistency</td>
<td></td>
</tr>
<tr>
<td>FPT_TDC.1/ EFT-</td>
<td>Inter-TSF basic TSF data</td>
<td></td>
</tr>
<tr>
<td>POS/SMART PINPAD</td>
<td>consistency</td>
<td>Testing of external entities</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>FPT_TEE.1/EXT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FPT_TEE.1/TIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTP_ITC.1/TSM</td>
<td></td>
<td>Inter-TSF trusted channel</td>
</tr>
<tr>
<td>FTP_ITC.1/EFT-POS/SMART PINPAD</td>
<td></td>
<td>Inter-TSF trusted channel</td>
</tr>
</tbody>
</table>

A detailed justification of required for suitability of the security functional requirements to achieve the security objectives is given in Table 5.
Table 5 Suitability of the SFRs

<table>
<thead>
<tr>
<th>Security Objective</th>
<th>Security Functional Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. Access Control</td>
<td>FDP_ACC.1 Provides security functional policy for functions and data</td>
</tr>
<tr>
<td></td>
<td>FDP_ACF.1 Defines security attributes for functions and data</td>
</tr>
<tr>
<td></td>
<td>FAU_SAR.1 Allows users to read audit records</td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.1/PRIVILEGES Provides the functions to restrict the ability to modify the security attributes (privileges) to nobody.</td>
</tr>
<tr>
<td></td>
<td>FMT_MSA.3/USERS and SYSTEMS Provides the functions to provide restrictive default values for security attributes that are used to enforce the SFP and allows nobody to specify alternative initial values to override the default values when an object or information is created.</td>
</tr>
<tr>
<td></td>
<td>FMT_SMF.1 Describe the specification of management functions being allowed to use in maintenance mode and secure state mode.</td>
</tr>
<tr>
<td></td>
<td>FMT_SMR.2 Maintains the roles with restrictions</td>
</tr>
<tr>
<td></td>
<td>FMT_MTD.1/ FCR AUTHORISED USER Provides authorised processing of FCR Authorised User’s authentication data</td>
</tr>
<tr>
<td></td>
<td>FMT_MTD.1/ AUTHORIZED MANUFACTURER USER Provides authorised processing of FCR Manufacturer User’s authentication data</td>
</tr>
<tr>
<td>O. Event</td>
<td>FAU_GEN.1 Generates correct audit events</td>
</tr>
<tr>
<td></td>
<td>FPT_STM.1 Provides accurate time for logging events</td>
</tr>
<tr>
<td></td>
<td>FAU_STG.1 Protects stored audit data integrity from unauthorised deletion</td>
</tr>
<tr>
<td></td>
<td>FAU_STG.4 Prevents loss of audit data loss</td>
</tr>
<tr>
<td></td>
<td>FPT_PHP.2 Generation of audit event detection of physical tampering</td>
</tr>
<tr>
<td></td>
<td>FDP_SD1.2/MEMORY Monitors user data stored for integrity errors</td>
</tr>
<tr>
<td></td>
<td>FDP_SD1.2/DAILY and PRMTR Monitors user data stored for integrity errors</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>FPT_TDC.1/TSM</td>
<td>Provides the capability to consistently interpret TSF data (checksum)</td>
</tr>
<tr>
<td>FPT_TDC.1/EFT-POS/SMART PINPAD</td>
<td>Provides the capability to consistently interpret TSF data (checksum)</td>
</tr>
<tr>
<td>FIA_AFL.1/MANUFACTURER</td>
<td>Detects and records authentication failure events for Authorised Manufacturer User</td>
</tr>
<tr>
<td>FIA_AFL.1/AUTHORISED</td>
<td>Detects and records authentication failure events for FCR Authorised User</td>
</tr>
<tr>
<td>FIA_UAU.1</td>
<td>Defines user authentication before allowing to do fiscal sales</td>
</tr>
<tr>
<td>FIA_UAU.4</td>
<td>Provides single use authentication mechanism for Authorised Manufacturer User</td>
</tr>
<tr>
<td>FIA_UID.1</td>
<td>Defines user identification before allowing to do fiscal sales</td>
</tr>
<tr>
<td>FMT_MTD.1/ FCR AUTHORISED USER</td>
<td>Provides authorised processing of FCR Authorised User’s authentication data</td>
</tr>
<tr>
<td>FMT_MOF.1</td>
<td>Restricts the ability to enable the functions to nobody and, thus, prevents an unintended access to data in the operational phase.</td>
</tr>
<tr>
<td>FPT_FLS.1</td>
<td>Failure types which makes new generation cash register fiscal application software continue working in secure state</td>
</tr>
<tr>
<td>FPT_RCV.1</td>
<td>Provides new generation cash register fiscal application software start working in maintenance mode in failure. (has ability to switch to the secure state manually)</td>
</tr>
<tr>
<td>FPT_RCV.4</td>
<td>Provides new generation cash register fiscal application software start working in maintenance mode in failure. (has ability to switch to the secure state automatically with functions)</td>
</tr>
<tr>
<td>FPT_TEE.1/EXT</td>
<td>Provides test for IT environment for</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>FPT_TEE.1/TIME</td>
<td>Provides test for time information for accuracy</td>
</tr>
<tr>
<td>FCS_CKM.1/TRMK</td>
<td>Generates session keys for communication between FCR-PRA-IS and FCR-TSM</td>
</tr>
<tr>
<td>FCS_CKM.1/TRMKD</td>
<td>Generates session keys for communication between FCR-PRA-IS and FCR-TSM</td>
</tr>
<tr>
<td>FCS_CKM.2</td>
<td>Provides cryptographic key distribution to generate keys</td>
</tr>
<tr>
<td>FMT_MSA.1/EFT-POS/SMART PINPAD LABEL INFO</td>
<td>Provides the functions to restrict the ability to modify the security attribute (EFT-POS/SMART PINPAD label) to nobody</td>
</tr>
<tr>
<td>FMT_MSA.1/FILE NAME and INFO-LABEL</td>
<td>Provides the functions to restrict the ability to modify the security attribute (file name) to nobody</td>
</tr>
<tr>
<td>FMT_MSA.1/IP:PORT INFO</td>
<td>Provides the functions to restrict the ability to modify the security attribute (IP/Port) to Authorized Manufacturer User</td>
</tr>
<tr>
<td>FMT_MSA.1/EFTPOS/SMART PINPAD SOURCE PORT INFO</td>
<td>Provides the functions to restrict the ability to modify the security attribute (EFT-POS/SMART PINPAD source port) to nobody</td>
</tr>
<tr>
<td>FMT_MSA.3/USERS and SYSTEMS</td>
<td>Provides the functions to provide restrictive default values for security attributes that are used to enforce the SFP and allows nobody to specify alternative initial values to override the default values when an object or information is created</td>
</tr>
<tr>
<td>FMT_MSA.3/EFTPOS/SMART PINPAD</td>
<td>Provides the functions to provide permissive default values for security attributes that are used to enforce the SFP and allows nobody to specify alternative initial values to override the default values when an object or information is created</td>
</tr>
<tr>
<td>Function Code</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FCS_CKM.4</td>
<td>Destroys cryptographic keys in the TOE</td>
</tr>
<tr>
<td>FCS_COP.1/TREK</td>
<td>Provides the cryptographic operation for secure communication between PRA-IS and TOE</td>
</tr>
<tr>
<td>FCS_COP.1/TRAK</td>
<td>Provides authentication and integrity protection for communication between PRA-IS and TOE</td>
</tr>
<tr>
<td>FCS_COP.1/TDK</td>
<td>Provides the cryptographic operation for secure communication between TSM and TOE</td>
</tr>
<tr>
<td>FCS_COP.1/TRMK-DEC</td>
<td>Provides the cryptographic operation for secure communication between PRA-IS and TOE</td>
</tr>
<tr>
<td>FCS_COP.1/TRMKD-DEC</td>
<td>Provides the cryptographic operation for secure communication between TSM and TOE</td>
</tr>
<tr>
<td>FCS_COP.1/PUB-ENC</td>
<td>Provides the cryptographic operation for secure communication between PRA-IS-TOE and TOE-TSM</td>
</tr>
<tr>
<td>FCS_COP.1/SIGN-VER</td>
<td>Provides non-repudiation for TREK and TRAK sharing between PRA-IS and TOE. Provides non-repudiation for FCR parameters which are transferred to the FCR from TSM</td>
</tr>
<tr>
<td>FCS_COP.1/HASHING</td>
<td>Provides the cryptographic operation for secure communication between PRA-IS-TOE and TOE-TSM</td>
</tr>
<tr>
<td>FCS_COP.1/EXT-DEV K_{ENC}</td>
<td>Provides symmetric encryption in order to establish secure communication with External Devices.</td>
</tr>
<tr>
<td>FCS_COP.1/EXT-DEV K_{HMAC}</td>
<td>Provides authentication and integrity protection for</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>FCS_CKM.1/ DHE-KEY</td>
<td>Generates private key for DHE key agreement</td>
</tr>
<tr>
<td>FCS_CKM.1/ EXT-DEV K<sub>ENC</sub></td>
<td>Generates keys for communication between TOE and External Devices</td>
</tr>
<tr>
<td>FCS_CKM.1/ EXT-DEV K<sub>HMAC</sub></td>
<td>Generates keys for communication between TOE and External Devices</td>
</tr>
<tr>
<td>FCS_COP.1/ EXT-DEV KEYEXCHANGE</td>
<td>Provides key transport operation with External Devices</td>
</tr>
<tr>
<td>FPT_PHP.2</td>
<td>Generation of audit event detection of physical tampering</td>
</tr>
<tr>
<td>FCO_NRO.2</td>
<td>Generates evidence of origin of the data to be transferred to the PRA-IS</td>
</tr>
<tr>
<td>FCS_CKM.1/EXT-DEV</td>
<td>Generates keys for communication between FCR-EFTPOS/SMART PINPAD</td>
</tr>
<tr>
<td>FCS_COP.1/ EXT-DEV KEYEXCHANGE</td>
<td>Provides asymmetric decryption for secure exchange of the symmetric key with EFT-POS/SMART PINPAD</td>
</tr>
<tr>
<td>FDP_ETC.2/TSM</td>
<td>Provides export of sales data and event data from the TOE to the PRA-IS using the information flow control SFP with TSM and PRA-IS</td>
</tr>
<tr>
<td>FDP_ETC.2/EFTPOS/SMART PINPAD</td>
<td>Provides export of amount information in sales data from the TOE to the EFT-POS/SMART PINPAD using the information flow control SFP with EFT-POS/SMART PINPAD Devices</td>
</tr>
<tr>
<td>FDP_IFC.1/TSMCOMMUNICATION</td>
<td>Provides information flow control policy for TSM and PRA-IS communication</td>
</tr>
<tr>
<td>FDP_IFC.1/EFTPOS/SMART PINPADCOMMUNICATION</td>
<td>Provides information flow control policy for EFT-POS/SMART PINPAD communication</td>
</tr>
<tr>
<td>FDP_IFF.1/TSMCOMMUNICATION</td>
<td>Provides information flow control policy rules for TSM and PRA-IS communication</td>
</tr>
<tr>
<td>FDP_IFF.1/EFTPOS/SMART PINPADCOMMUNICATION</td>
<td>Provides information flow control policy rules for EFT-POS/SMART PINPAD communication</td>
</tr>
<tr>
<td>Service Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>FDT_ITC.2/TSM</td>
<td>Provides protection of FCR Parameters confidentiality and integrity during import from TSM</td>
</tr>
<tr>
<td>FDT_ITC.2/EFTPOS/SMART PINPAD</td>
<td>Provides protection of confidentiality and integrity of outcome of the operation conducted by the EFT-POS/SMART PINPAD device and AES keys (K_{ENC} and K_{HMAC}) during import from EFT-POS/SMART PINPAD device</td>
</tr>
<tr>
<td>FTP_ITC.1/EFTPOS/SMART PINPAD</td>
<td>Provides protection of data (confidentiality+integrity) during communication with EFT-POS/SMART PINPAD by the help of secure channel</td>
</tr>
<tr>
<td>FTP_ITC.1/TSM</td>
<td>Provides protection of sales data and event data (confidentiality+integrity) during communication with PRA-IS by the help of secure channel</td>
</tr>
</tbody>
</table>
6.3.2 Rationale for Security Functional Requirements dependencies

Selected security functional requirements include related dependencies. Table 6 below provides a summary of the security functional requirements dependency analysis.

<table>
<thead>
<tr>
<th>Dependencies:</th>
<th>Included / not included</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAU_GEN.1</td>
<td>FPT_STM.1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FAU_SAR.1</td>
<td>FAU_GEN.1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FAU_STG.1</td>
<td>FAU_GEN.1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FAU_STG.4</td>
<td>FAU_STG.1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FCO_NRO.2</td>
<td>FIA_UID.1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_CKM.1/TRMK</td>
<td>FCS_CKM.2 or FCS_COP.1; FCS_CKM.4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_CKM.1/TRKMD</td>
<td>FCS_CKM.2 or FCS_COP.1; FCS_CKM.4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_CKM.2</td>
<td>[FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1; FCS_CKM.4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_CKM.1/DHE-KEY</td>
<td>FCS_CKM.2 or FCS_COP.1; FCS_CKM.4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_CKM.1/EXT-DEV K_{ENC}</td>
<td>FCS_CKM.2 or FCS_COP.1; FCS_CKM.4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FCS_CKM.1/EXT-DEV K_{HMAC}</td>
<td>FCS_CKM.2 or FCS_COP.1; FCS_CKM.4</td>
</tr>
<tr>
<td>Function</td>
<td>Dependencies</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>FCS_CKM.4</td>
<td>FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1</td>
</tr>
<tr>
<td>FCS_COP.1/TREK</td>
<td>FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1</td>
</tr>
<tr>
<td>FCS_COP.1/TRAK</td>
<td>FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1</td>
</tr>
<tr>
<td>FCS_COP.1/TDK</td>
<td>FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1</td>
</tr>
<tr>
<td>FCS_COP.1/HASHING</td>
<td>FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1</td>
</tr>
<tr>
<td>FCS_COP.1/TRMK-DEC</td>
<td>FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1</td>
</tr>
<tr>
<td>FCS_COP.1/TRMKD-DEC</td>
<td>FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1</td>
</tr>
<tr>
<td>FCS_COP.1/PUB-ENC</td>
<td>FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1</td>
</tr>
<tr>
<td>FCS_COP.1/SIGN-VER</td>
<td>FDP_ITC.1 or FDP_ITC.2 or FCS_CKM.1</td>
</tr>
</tbody>
</table>
According to PRA messaging protocol, $P_{\text{PRA-SIGN}}$ and $P_{\text{TSM-SIGN}}$ public key should not be deleted. Tamper system of the TOE protects keys from misuse, disclosure or modification.

<table>
<thead>
<tr>
<th>Key Exchange Type</th>
<th>FDP_IKE.1 or FDP_IKE.2 or FCS_CKM.1 or FCS_CKM.4</th>
<th>Included Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS_COP.1/EXT-DEV K_{ENC}</td>
<td>FDP_IKE.1 or FDP_IKE.2 or FCS_CKM.1 or FCS_CKM.4</td>
<td>FCS_CKM.1/EXT-DEV K_{ENC}; FCS_CKM.4 included</td>
</tr>
<tr>
<td>FCS_COP.1/EXT-DEV K_{HMAC}</td>
<td>FDP_IKE.1 or FDP_IKE.2 or FCS_CKM.1 or FCS_CKM.4</td>
<td>FCS_CKM.1/EXT-DEV K_{HMAC}; FCS_CKM.4 included</td>
</tr>
<tr>
<td>FCS_COP.1/EXT-DEV KEYEXCHANGE</td>
<td>FDP_IKE.1 or FDP_IKE.2 or FCS_CKM.1 or FCS_CKM.4</td>
<td>FCS_CKM.1/DHE-KEY and FCS_CKM.4 included</td>
</tr>
<tr>
<td>FDP_ACF.1</td>
<td>FDP_ACF.1</td>
<td>FDP_ACF.1; FMT_MSA.3 included</td>
</tr>
<tr>
<td>FDP_ACF.1</td>
<td>FDP_ACF.1; FMT_MSA.3</td>
<td>FDP_ACF.1; FMT_MSA.3/ USERS and SYSTEMS included</td>
</tr>
<tr>
<td>FDP_ETC.2/TSM COMMUNICATION</td>
<td>FDP_ACF.1; FDP_IFC.1</td>
<td>FDP_ACF.1; FDP_IFC.1/TSMCOMMUNICATION included</td>
</tr>
<tr>
<td>FDP_ETC.2/EFTPOS/SMART PINPAD</td>
<td>FDP_ACF.1; FDP_IFC.1</td>
<td>FDP_ACF.1; FDP_IFC.1/EFTPOS/SMART PINPADCOMMUNICATION included</td>
</tr>
<tr>
<td>FDP_ACC.1</td>
<td>FDP_ACC.1; FMT_MSA.3</td>
<td>FDP_ACC.1; FDP_IFC.1/TSMCOMMUNICATION included</td>
</tr>
<tr>
<td>FDP_IFC.1/TSMCOMMUNICATION</td>
<td>FDP_IFF.1</td>
<td>FDP_IFF.1/TSMCOMMUNICATION included</td>
</tr>
<tr>
<td>FDP_IFC.1/EFTPOS/SMART PINPAD</td>
<td>FDP_IFF.1</td>
<td>FDP_IFF.1/EFTPOS/SMART PINPADCOMMUNICATION included</td>
</tr>
<tr>
<td>FDP_IFF.1/TSMCOMMUNICATION</td>
<td>FDP_IFC.1; FMT_MSA.3</td>
<td>FDP_IFC.1/TSMCOMMUNICATION; FMT_MSA.3/ USERS and SYSTEMS included</td>
</tr>
<tr>
<td>FDP_IFF.1/EFTPOS/SMART PINPAD COMMUNICATION</td>
<td>FDP_IFF.1; FMT_MSA.3</td>
<td>FDP_IFF.1/EFTPOS/SMART PINPADCOMMUNICATION included</td>
</tr>
<tr>
<td>FDP_ITC.2/TSM</td>
<td>FDP_ACC.1 or FDP_IFC.1; FTP_ITC.1 or FTP_TRP.1; FPT_TDC.1</td>
<td>FDP_IFC.1/TSMCOMMUNICATION; FTP_ITC.1/TSM; FPT_TDC.1/TSM included</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>FDP_ITC.2/EFTPOS/SMART PINPAD</td>
<td>FDP_ACC.1 or FDP_IFC.1; FTP_ITC.1 or FTP_TRP.1; FPT_TDC.1</td>
<td>FDP_IFC.1/EFTPOS/SMART PINPADCOMMUNICATION; FTP_ITC.1/EFTPOS/SMART PINPAD; FPT_TDC.1/EFTPOS/SMART PINPAD included</td>
</tr>
<tr>
<td>FDP_SD1.2/MEMORY</td>
<td>No dependencies.</td>
<td>-</td>
</tr>
<tr>
<td>FDP_SD1.2/DAILY and PRMTR</td>
<td>No dependencies.</td>
<td>-</td>
</tr>
<tr>
<td>FIA_AFL.1/MANUFACTURER</td>
<td>FIA_UAU.1</td>
<td>included</td>
</tr>
<tr>
<td>FIA_AFL.1/AUTHORISED</td>
<td>FIA_UAU.1</td>
<td>included</td>
</tr>
<tr>
<td>FIA_UAU.1</td>
<td>FIA_UID.1</td>
<td>included</td>
</tr>
<tr>
<td>FIA_UAU.4</td>
<td>No dependencies</td>
<td>-</td>
</tr>
<tr>
<td>FIA_UID.1</td>
<td>No dependencies</td>
<td>-</td>
</tr>
<tr>
<td>FMT_MOF.1</td>
<td>FMT_SMR.1; FMT_SMF.1</td>
<td>FMT_SMR.2 is hierarchical to FMT_SMR.1; FMT_SMF.1</td>
</tr>
<tr>
<td>FMT_MSA.1/PRIVILEGES</td>
<td>FDP_ACC.1 or FDP_IFC.1</td>
<td>FDP_ACC.1 included</td>
</tr>
<tr>
<td>FMT_MSA.1/IP:PORTINFO</td>
<td>FDP_ACC.1 or FDP_IFC.1</td>
<td>FDP_IFC.1/TSMCOMMUNICATION included</td>
</tr>
<tr>
<td>FMT_MSA.1/FILENAME and INFILE-LABEL</td>
<td>FDP_ACC.1 or FDP_IFC.1</td>
<td>FDP_IFC.1/TSMCOMMUNICATION included</td>
</tr>
<tr>
<td>FMT_MSA.1/EFTPOS/SMART PINPAD SOURCE PORT INFO</td>
<td>FDP_ACC.1 or FDP_IFC.1</td>
<td>FDP_IFC.1/EFTPOS/SMART PINPADCOMMUNICATION N included</td>
</tr>
<tr>
<td>FMT_MSA.1/ EFTPOS/SMART PINPAD LABEL INFO</td>
<td>FDP_ACC.1 or FDP_IFC.1</td>
<td>FDP_IFC.1/EFTPOS/SMART PINPADCOMMUNICATION N included</td>
</tr>
<tr>
<td>FMT_MSA.3/USERS and SYSTEMS</td>
<td>FMT_MSA.1 ; FMT_SMR.1</td>
<td>FMT_MSA.1 (MT_MSA.1/PRIVILEGES, FMT_MSA.1/IP:PORTINFO and FMT_MSA.1/FILE NAME and INFO-LABEL) included ; FMT_SMR.1 is hierarchical to FMT_SMR.1 included</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>FMT_MSA.3/EFTPOS/SMART PINPAD</td>
<td>FMT_MSA.1 ; FMT_SMR.1</td>
<td>FMT_MSA.1/ EFTPOS/SMART PINPAD LABEL INFO) ; FMT_SMR.2 is hierarchical to FMT_SMR.1 included</td>
</tr>
<tr>
<td>FMT_MTD.1/ FCR AUTHORIZED USER</td>
<td>FMT_SMR.1 ; FMT_SMF.1</td>
<td>FMT_SMR.2 is hierarchical to FMT_SMR.1 ; FMT_SMF.1 included</td>
</tr>
<tr>
<td>FMT_MTD.1/ AUTHORIZED MANUFACTURER USER</td>
<td>FMT_SMR.1 ; FMT_SMF.1</td>
<td>FMT_SMR.2 is hierarchical to FMT_SMR.1 ; FMT_SMF.1 included</td>
</tr>
<tr>
<td>FMT_SMF.1</td>
<td>No dependencies.</td>
<td>-</td>
</tr>
<tr>
<td>FMT_SMR.2</td>
<td>FIA_UID.1</td>
<td>included</td>
</tr>
<tr>
<td>FPT_FLS.1</td>
<td>No dependencies</td>
<td>-</td>
</tr>
<tr>
<td>FPT_PHP.2</td>
<td>FMT_MOF.1</td>
<td>included</td>
</tr>
<tr>
<td>FPT_RCV.1</td>
<td>AGD_OPE.1</td>
<td>included (assurance component)</td>
</tr>
<tr>
<td>FPT_RCV.4</td>
<td>No dependencies</td>
<td>-</td>
</tr>
<tr>
<td>FPT_STM.1</td>
<td>No dependencies</td>
<td>-</td>
</tr>
<tr>
<td>FPT_TDC.1/TSM</td>
<td>No dependencies</td>
<td>-</td>
</tr>
<tr>
<td>FPT_TDC.1/EFTPOS/SMART PINPAD</td>
<td>No dependencies</td>
<td>-</td>
</tr>
<tr>
<td>FPT_TEE.1/EXT</td>
<td>No dependencies</td>
<td>-</td>
</tr>
<tr>
<td>FPT_TEE.1/TIME</td>
<td>No dependencies</td>
<td>-</td>
</tr>
<tr>
<td>FTP_ITC.1/TSM</td>
<td>No dependencies</td>
<td>-</td>
</tr>
<tr>
<td>FTP_ITC.1/EFTPOS/SMART PINPAD</td>
<td>No dependencies</td>
<td>-</td>
</tr>
</tbody>
</table>
6.3.3 Security Assurance Requirements Rationale

The current assurance package was chosen based on the pre-defined assurance packet EAL2. EAL2 is chosen because the threats that were chosen are consistent with an attacker of basic attack potential.

6.3.4 Security Requirements - Internal Consistency

The following part of the security requirements rationale shows that the set of security requirements for the TOE consisting of the security functional requirements (SFRs) and the security assurance requirements (SARs) together forms an internally consistent whole.

The dependency analysis in Table 6 shows that the basis for internal consistency between all defined functional requirements is satisfied.

The assurance package EAL2 is a pre-defined set of internally consistent assurance requirements. The assurance requirements are internally consistent as all (additional) dependencies are satisfied and no inconsistency appears.

Inconsistency between functional and assurance requirements could only arise, if there are functional-assurance dependencies being not met. So, there are no inconsistencies between the goals of these two groups of security requirements.
<table>
<thead>
<tr>
<th>ACRONYMS</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>Advanced Encryption Standard</td>
</tr>
<tr>
<td>CC</td>
<td>Common Criteria</td>
</tr>
<tr>
<td>CCMB</td>
<td>Common Criteria Management Board</td>
</tr>
<tr>
<td>DEMA</td>
<td>Differential Electromagnetic Analysis</td>
</tr>
<tr>
<td>DES</td>
<td>Data Encryption Standard</td>
</tr>
<tr>
<td>DFA</td>
<td>Differential Fault Analysis</td>
</tr>
<tr>
<td>DPA</td>
<td>Differential Power Analysis</td>
</tr>
<tr>
<td>EAL</td>
<td>Evaluation Assurance Level (defined in CC)</td>
</tr>
<tr>
<td>EFTPOS</td>
<td>Electronic Funds Transfer at Point of Sale</td>
</tr>
<tr>
<td>EMV</td>
<td>Europay, MasterCard and Visa</td>
</tr>
<tr>
<td>ERU</td>
<td>Electronic Recording Unit</td>
</tr>
<tr>
<td>FCR</td>
<td>Fiscal Cash Register</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Service</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union</td>
</tr>
<tr>
<td>OSP</td>
<td>Organizational Security Policy</td>
</tr>
<tr>
<td>PP</td>
<td>Protection Profile</td>
</tr>
<tr>
<td>PKI</td>
<td>Public Key Infrastructure</td>
</tr>
<tr>
<td>PRA</td>
<td>Presidency of Revenue Administration</td>
</tr>
<tr>
<td>PRA-IS</td>
<td>Presidency of Revenue Administration Information Systems</td>
</tr>
<tr>
<td>SAR</td>
<td>Security Assurance Requirements</td>
</tr>
<tr>
<td>SEMA</td>
<td>Simple Electromagnetic Analysis</td>
</tr>
<tr>
<td>SFR</td>
<td>Security Functional Requirements</td>
</tr>
<tr>
<td>SHA</td>
<td>Secure Hash Algorithm</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>SPA</td>
<td>Simple Power Analysis</td>
</tr>
<tr>
<td>TDK</td>
<td>Terminal Data Key</td>
</tr>
<tr>
<td>TOE</td>
<td>Target of Evaluation</td>
</tr>
<tr>
<td>TREK</td>
<td>Terminal Random Encryption Key</td>
</tr>
<tr>
<td>TRAK</td>
<td>Terminal Random Authentication Key</td>
</tr>
<tr>
<td>TRMK</td>
<td>Terminal Random Master Key</td>
</tr>
<tr>
<td>TRMKD</td>
<td>Terminal Random Master Key for Data</td>
</tr>
<tr>
<td>TSF</td>
<td>TOE Security Functionality (defined in CC)</td>
</tr>
<tr>
<td>TSE</td>
<td>Turkish Standards Institute</td>
</tr>
<tr>
<td>TSM</td>
<td>Trusted Service Manager</td>
</tr>
<tr>
<td>VAT</td>
<td>Value Added Tax</td>
</tr>
</tbody>
</table>
8. BIBLIOGRAPHY

Common Criteria

New Generation Cash Register Directives