

Supporting Document

Mandatory Technical Document

USB Portable Storage Device

December 2019

Version 1.0

Introduction

Foreword

This is a supporting document, intended to complement the Common Criteria version 3 and

the associated Common Evaluation Methodology for Information Technology Security

Evaluation.

Supporting documents may be “Guidance Documents”, that highlight specific approaches and

application of the standard to areas where no mutual recognition of its application is required,

and as such, are not of normative nature, or “Mandatory Technical Documents”, whose

application is mandatory for evaluations whose scope is covered by that of the supporting

document. The usage of the latter class is not only mandatory, but certificates issued as a result

of their application are recognized under the CCRA.

This supporting document has been developed by the USB iTC and is designed to be used to

support the evaluations of products against the cPPs identified in section 1.1.

Technical Editor:

USB iTC

Document history:

V1.0, 13 December 2019 (final version)

V0.8, 11 November 2019 (made it ready for publication)

V0.7, 25 October 2018 (updating evaluation activities for crypto SFRs)

V0.5, 1 April 2016 (updating template, adding information about the AVA)

V0.4, 17 December 2015 (updating template, addressing review comments on v0.2)

V0.3, August 2015 (interim updates – not released)

V0.2, July 2015 (Initial draft for comment)

General Purpose:

USB Portable Storage Devices are ubiquitous data storage solutions used in a variety of

capacities and form factors. As portable devices, their primary functionality is to encrypt and

protect data-at-rest stored on the device.

In order to ensure comparable, transparent, and repeatable evaluation of the implemented

cryptographic mechanisms, methods have to be described that may consist of agreed evaluation

approaches, e.g. how to prove that the claimed encryption of user data is really done by the

TOE or how to prove that the user data is only stored in an encrypted form (and not additionally

in clear text), but also the definitions of possibly necessary special test tools and their manuals.

Field of special use:

USB Portable Storage Device

Acknowledgements:

This Supporting Document was developed by the USB international Technical Community

with representatives from industry, Government agencies, Common Criteria Test Laboratories.

 Introduction

Introduction

Table of Contents

1 INTRODUCTION ... 6

1.1 TECHNOLOGY AREA AND SCOPE OF SUPPORTING DOCUMENT .. 6
1.2 STRUCTURE OF THE DOCUMENT .. 6
1.3 TERMINOLOGY... 7

1.3.1 Glossary .. 7
1.3.2 Acronyms .. 8

2 EVALUATION ACTIVITIES FOR SFRS ... 10

2.1 CRYPTOGRAPHIC SUPPORT (FCS) ..11
2.1.1 Introduction ..11
2.1.2 Cryptographic Key Generation (FCS_CKM.1) ...12
2.1.3 Cryptographic Key Access (FCS_CKM.3) ...12
2.1.4 Cryptographic Key Destruction (FCS_CKM.4) ...16
2.1.5 Cryptographic Key Derivation (FCS_CKM_EXT.5) ...20
2.1.6 Cryptographic Operation (FCS_COP.1) ...24
2.1.7 Cryptographic Key Chaining (FCS_KYC_EXT.1) ...32
2.1.8 Cryptographic Salt Generation (FCS_SLT_EXT.1) ...33
2.1.9 Random Bit Generation (FCS_RBG_EXT) ..34

2.2 USER DATA PROTECTION (FDP) ...36
2.2.1 Protection of User Data on Device (FDP_UDD_EXT) ..36
2.2.2 Protection of System Data on Device (FDP_SDD_EXT)...37

2.3 IDENTIFICATION AND AUTHENTICATION (FIA)..38
2.3.1 Authentication Failures (FIA_AFL) ..38
2.3.2 Passphrase support (FIA_PPS) ..39

2.4 PROTECTION OF THE TSF (FPT) ..40
2.4.1 Fail secure (FPT_FLS) ..40
2.4.2 Protection of Keys and Keying Material (FPT_KYP_EXT) ..41
2.4.3 TSF self test (FPT_TST) ..42
2.4.4 Submask Validation (FPT_VAL_EXT) ..42

2.5 TOE ACCESS (FTA) ..43
2.5.1 TOE access authorisation (FTA_USB) ...43

2.6 SECURITY MANAGEMENT (FMT) ..44
2.6.1 Specification of Management Functions (FMT_SMF) ..44

3 EVALUATION ACTIVITIES FOR OPTIONAL REQUIREMENTS ... 46

3.1 PROTECTION OF THE TSF (FPT) ..46
3.1.1 Trusted Update (FPT_TUD_EXT) ..46
3.1.2 Trusted Update Rollback (FPT_TUR_EXT) ..48

4 EVALUATION ACTIVITIES FOR SELECTION-BASED REQUIREMENTS ... 49

4.1 CRYPTOGRAPHIC SUPPORT (FCS) ..49
4.1.1 Cryptographic Key Generation (FCS_CKM.1) ...49
4.1.2 Cryptographic Key Access (FCS_CKM.3) ...51
4.1.3 Cryptographic Key Derivation (FCS_CKM_EXT.5) ...55
4.1.4 Cryptographic operation (FCS_COP.1) ...60
4.1.5 Random Bit Generation (FCS_RBG_EXT) ..66

4.2 IDENTIFICATION AND AUTHENTICATION (FIA)..68
4.2.1 Passphrase support (FIA_PPS_EXT) ..68
4.2.2 User authentication (FIA_UAU) ..70

4.3 SECURITY MANAGEMENT (FMT) ..70
4.3.1 Specification of Management Functions (FMT_SMF) ..70

5 EVALUATION ACTIVITIES FOR SARS .. 72

5.1 ASE: SECURITY TARGET EVALUATION ..72

 Introduction

5.2 ADV: DEVELOPMENT ...72
5.2.1 Basic Functional Specification (ADV_FSP.1) ...72

5.3 AGD: GUIDANCE DOCUMENTS ..75
5.3.1 Operational User Guidance (AGD_OPE.1) ..75
5.3.2 Preparative Procedures (AGD_PRE.1) ..76

5.4 ALC: LIFE-CYCLE SUPPORT ...77
5.4.1 Labelling of the TOE (ALC_CMC.1) ...77
5.4.2 TOE CM coverage (ALC_CMS.1) ...77

5.5 ATE: TESTS...77
5.5.1 Independent Testing – Conformance (ATE_IND.1)...77

5.6 AVA: VULNERABILITY ASSESSMENT ...77
5.6.1 Vulnerability Survey (AVA_VAN.1) ...77

6 REQUIRED SUPPLEMENTARY INFORMATION .. 81

7 REFERENCES .. 82

A. VULNERABILITY ANALYSIS ... 84

A.1 SOURCES OF VULNERABILITY INFORMATION ...84
A.1.1 TYPE 1 HYPOTHESES—PUBLIC-VULNERABILITY-BASED ..84
A.1.2 TYPE 2 HYPOTHESES—ITC-SOURCED ..85
A.1.3 TYPE 3 HYPOTHESES—EVALUATION-TEAM-GENERATED ...86
A.1.4 TYPE 4 HYPOTHESES—TOOL-GENERATED ..87
A.2 PROCESS FOR EVALUATOR VULNERABILITY ANALYSIS ..87
A.3 REPORTING ...88

B. EQUIVALENCY CONSIDERATIONS ... 91

B.1 INTRODUCTION ..91
B.2 EVALUATOR GUIDANCE FOR DETERMINING EQUIVALENCE ...92
B.2.1 STRATEGY ...92
B.3 TEST PRESENTATION/TRUTH IN ADVERTISING ..92

C. PUBLIC VULNERABILITY SOURCES... 93

List of figures

NO TABLE OF FIGURES ENTRIES FOUND.

List of tables

TABLE 1: SHA PROPERTIES .. 60

TABLE 2: SIGVER2 TEST LENGTHS .. 65

TABLE 3: MAPPING OF ADV_FSP.1 CEM WORK UNITS TO EVALUATION ACTIVITIES 74

TABLE 4: MAPPING OF AVA_VAN.1 CEM WORK UNITS TO EVALUATION ACTIVITIES 80

Introduction

1 Introduction

1.1 Technology Area and Scope of Supporting Document

1 This Supporting Document (SD) is mandatory for evaluations of products that

claim conformance to any of the following cPP(s):

Collaborative Protection Profile for USB Portable Storage Devices –

Version, 1.0, December 2019.

2 The purpose of the collaborative Protection Profile (cPP) for USB Portable

Storage Devices is to provide a minimal set of security requirements that

provide protection against a set of defined threats. The specific form factor of a

USB Portable Storage Device is not defined, however devices that use a USB

interface to store data on another form of storage (such as an external optical

drive writing to a CD or DVD) or more complex device (such as a tablet or

smartphone) are outside the scope of the cPP.

3 A USB Portable Storage Device is dedicated to storing user data, and protecting

that data using specified cryptographic protocols. System data, such as device

driver software or configuration data is considered separate from user data and

may reside on the device in an unencrypted state.

4 Although Evaluation Activities (EAs) are defined mainly for the evaluators to

follow, in general they will also help developers prepare for evaluation by

identifying specific requirements for their Target of Evaluation (TOE). The

specific requirements in EAs may in some cases clarify the meaning of Security

Functional Requirements (SFRs), and may identify particular requirements for

the content of Security Targets (especially the TOE Summary Specification),

user guidance documentation, and possibly required supplementary information

(e.g. for entropy analysis or cryptographic key management architecture).

1.2 Structure of the Document

5 Evaluation Activities can be defined for both SFRs and Security Assurance

Requirements (SARs). These are defined in separate sections of this SD. The

EAs associated with the SFRs are considered to be interpretations of applying

the appropriate SAR activity. For instance, activities associated with testing are

representative of what is required by ATE_IND.1.

6 If any Evaluation Activity cannot be successfully completed in an evaluation

then the overall verdict for the evaluation is a ‘fail’. In rare cases, there may be

acceptable reasons why an Evaluation Activity may be modified or deemed not

applicable for a particular TOE, but this must be agreed with the Certification

Body for the evaluation.

7 In general, if all EAs (for both SFRs and SARs) are successfully completed in

an evaluation then it would be expected that the overall verdict for the

evaluation is a ‘pass’.

 Introduction

8 In some cases, the Common Evaluation Methodology (CEM) work units have

been interpreted to require the evaluator to perform specific EAs. In these

instances, EAs will be specified in Section 2 (Evaluation Activities for SFRs),

Section 5 (Evaluation Activities for SARs), and possibly Section 3 (Evaluation

Activities for Optional Requirements) and Section 4 (Evaluation Activities for

Selection-Based Requirements). In cases where there are no CEM

interpretations, the CEM activities are to be used to determine if SARs are

satisfied and references to the CEM work units are identified as being the sole

EAs to be performed.

9 Finally, there are cases where EAs have rephrased CEM work units to provide

clarity on what is required. The EAs are reworded for clarity and interpret the

CEM work units such that they will result in more objective and repeatable

actions by the evaluator. In these cases, the EA supplements the CEM work unit.

These EAs will be specified in Section 5 (Evaluation Activities for SARs).

1.3 Terminology

1.3.1 Glossary

10 For definitions of standard CC terminology, see [CC1].

Term Meaning

Assurance Grounds for confidence that a TOE meets the SFRs [CC1].

Data Encryption Key (DEK) A key used to encrypt data-at-rest.

Error State The device has failed a self-test and could not reset

Key Chaining The method of using multiple layers of encryption keys to protect data.
A top layer key encrypts a lower layer key which encrypts the data;

this method can have any number of layers.

Key Encryption Key (KEK) A key used to encrypt other keys, such as DEKs or storage that

contains keys.

Keying Material A data item that is used in combination with other data in order to

derive a cryptographic key (e.g. a passphrase, seed, or each of the

values used in an xor combination).

Passphrase Authorisation Factor A type of authorisation factor requiring the user to provide a secret set

of characters to gain access.

Powered-Off State The device has been shutdown.

Required Supplementary

Information

Information that is not necessarily included in the Security Target or

operational guidance, and that may not necessarily be public.

Examples of such information could be entropy analysis, or

description of a cryptographic key management architecture used in

(or in support of) the TOE. The requirement for any such

supplementary information will be identified in the relevant cPP (see

description in Section 6).

Submask A submask is a bit string that is provided as an input to a cryptographic

function or cryptographic primitive acting as one part of a chain of

cryptographic functions that calculates a cryptographic key as the end

result of the chain. Examples of submasks include: master keys,

intermediate keys, wrapping keys, secret bit strings used for

authentication or authorisation, and conditioned passphrases.

Introduction

Term Meaning

Target of Evaluation A set of software, firmware and/or hardware possibly accompanied by

guidance. [CC1]

TOE Security Functionality (TSF) A set consisting of all hardware, software, and firmware of the TOE

that must be relied upon for the correct enforcement of the SFRs.

[CC1]

TSF Data Data for the operation of the TSF upon which the enforcement of the

requirements relies.

1.3.2 Acronyms

Acronym Meaning

AES Advanced Encryption Standard

AF Authorisation factor

CA Certificate Authority

CBC Cipher Block Chaining

CCM Counter with CBC-Message Authentication Code

cPP Collaborative protection Profile

DEK Data Encryption Key

DSA Digital Signature Algorithm

ECDSA Elliptic Curve Digital Signature Algorithm

FIPS Federal Information Processing Standards

GCM Galois Counter Mode

HMAC Keyed-Hash Message Authentication Code

IEEE Institute of Electrical and Electronics Engineers

KDF Key Derivation Function

KEK Key Encryption Key

KMDSD Key Management and Data Storage Description

NIST National Institute of Standards and Technology

MBR Master Boot Record

PBKDF Passphrase-Based Key Derivation Function

PP Protection Profile

RBG Random Bit Generator

RSA Rivest Shamir Adleman Algorithm

SHA Secure Hash Algorithm

SFR Security Functional Requirement

ST Security Target

TOE Target of Evaluation

TSF TOE Security Functionality

 Introduction

Acronym Meaning

TSS TOE Summary Specification

XTS XEX (XOR Encrypt XOR) Tweakable Block Cipher with Ciphertext Stealing

Evaluation Activities for SFRs

2 Evaluation Activities for SFRs

11 The EAs presented in this section capture the actions the evaluator performs to

address technology specific aspects covering specific SARs (e.g.., ASE_TSS.1,

ADV_FSP.1, AGD_OPE.1, and ATE_IND.1) – this is in addition to the CEM

work units that are performed in Section 5 (Evaluation Activities for SARs).

12 Regarding design descriptions (designated by the subsections labelled TSS, as

well as any required supplementary material that may be treated as proprietary),

the evaluator must ensure there is specific information that satisfies the EA. For

findings regarding the TSS section, the evaluator’s verdicts will be associated

with the CEM work unit ASE_TSS.1-1. Evaluator verdicts associated with the

supplementary evidence will also be associated with ASE_TSS.1-1, since the

requirement to provide such evidence is specified in ASE in the cPP.

13 For ensuring the guidance documentation provides sufficient information for

the administrators/users as it pertains to SFRs, the evaluator’s verdicts will be

associated with CEM work units ADV_FSP.1-7, AGD_OPE.1-4, and

AGD_OPE.1-5.

14 Finally, the subsection labelled Tests is where the iTC has determined that

testing of the product in the context of the associated SFR is necessary. While

the evaluator is expected to develop tests, there may be instances where it is

more practical for the developer to construct tests, or where the developer may

have existing tests. Therefore, it is acceptable for the evaluator to witness

developer-generated tests in lieu of executing the tests. In this case, the

evaluator must ensure the developer’s tests are executing both in the manner

declared by the developer and as mandated by the EA. The CEM work units

that are associated with the EAs specified in this section are: ATE_IND.1-3,

ATE_IND.1-4, ATE_IND.1-5, ATE_IND.1-6, and ATE_IND.1-7.

 Evaluation Activities for SFRs

2.1 Cryptographic Support (FCS)

2.1.1 Introduction

15 This section defines the Evaluation Activities associated with the cryptographic

requirements included in the collaborative Protection Profile for Portable

Storage Devices. This document defines three types of Evaluation Activities

(EAs) – TOE Summary Specification (TSS), Guidance Documentation, and

Tests and is designed to be used in conjunction with the “cPP for Portable

Storage Devices Cryptographic SFR Instantiation”. The security requirement

naming convention is consistent between these documents ensuring a clear one

to one correspondence between the security requirements and evaluation

activities.

2.1.1.1 Application of the Evaluation Activity document

16 In the cryptographic SFRs, several operations need to be performed (mainly

selections and assignments). As a result, the EAs may define separate actions

for different selected or assigned values in SFRs. The evaluator shall neither

carry out EAs related to SFRs that are not claimed in the Security Target nor

EAs related to specific selected or assigned values that are not claimed in the

Security Target.

17 In addition, EAs do not necessarily have to be executed independently from

each other. A description in a guidance documentation or one test case, for

example, can cover multiple EAs at a time, no matter whether the EAs are

related to the same or different SFRs.

2.1.1.2 Evaluation Activity Notes applicable to all SFRs

18 When an SFR (the ‘dependent SFR’) identifies other cryptographic SFRs that it

depends on, then the evaluator shall confirm that the ST includes those other

SFRs, with relevant selections as appropriate for the dependent SFR, and that

the TSS identifies that those SFRs are used for the implementation of the

dependent SFR. For example, where key derivation functions in

FCS_CKM_EXT.5 include selections for pseudorandom functions using

HMAC and AES then the evaluator would check that the ST includes

FCS_COP.1 iterations for the relevant HMAC and AES operations, including

corresponding key lengths and modes. The evaluator would also check that the

TSS specifies that these FCS_COP.1 implementations are used in the

implementation of the relevant aspects of FCS_CKM_EXT.51.

1 The developer is thereby confirming the use of the evaluated cryptographic functionality for the dependent SFR.

In many cases this will be a trivial confirmation, however in some cases multiple implementations of the primitive

cryptographic operation may be available in the product and it is then important to establish that only the evaluated

primitive is used for the dependent SFR.

Evaluation Activities for SFRs

2.1.2 Cryptographic Key Generation (FCS_CKM.1)

2.1.2.1 FCS_CKM.1/DEK Cryptographic key generation (DEK)

19 The following EAs apply for Identifier: DEK1.

2.1.2.1.1 TSS

20 The evaluator shall examine the TSS to verify that it describes how the TOE

obtains a DEK through direct generation from a random bit generator as

specified in FCS_RBG_EXT.1. The evaluator shall review the TSS to verify

that it describes how the functionality described by FCS_RBG_EXT.1 is

invoked.

2.1.2.1.2 Guidance Documentation

21 The evaluator shall verify that the AGD guidance instructs the administrator

how to configure the TOE to use the selected key name(s) for all uses identified

in the ST.

2.1.2.1.3 Key Management Description (KMD)

22 The evaluator shall confirm that the KMD describes:

• The RBG interface and how it is used in the key generation

• If the TOE uses the generated key in a key chain/hierarchy then the KMD

shall describe how the key is used as part of the key chain/hierarchy.

2.1.2.1.4 Tests

23 For each selected key size, the evaluator shall configure the DEK generation

capability. The evaluator shall use the description of the RBG interface to verify

that the TOE requests and receives an amount of RBG output greater than or

equal to the requested key size.

2.1.3 Cryptographic Key Access (FCS_CKM.3)

2.1.3.1 FCS_CKM.3/DEK Cryptographic key access (Key Wrapping)

2.1.3.1.1 TSS

24 The evaluator shall check that the TSS includes a description of the key wrap

function(s) and shall check that this uses a key wrap algorithm and key sizes

according to the specification selected in the ST out of the table as provided in

the cPP table.

2.1.3.1.2 Guidance Documentation

25 The evaluator checks the AGD documents to confirm that the instructions for

establishing the evaluated configuration use only those key wrap function(s)

selected in the ST. If multiple key access modes are supported, the evaluator

 Evaluation Activities for SFRs

shall examine the guidance documentation to determine that the method of

choosing a specific mode/key size by the end user is described.

2.1.3.1.3 KMD

26 The evaluator shall examine the KMD to ensure that it describes when the key

wrapping occurs, that the KMD description is consistent with the description in

the TSS, and that for all keys that are wrapped the TOE uses a method as

described in the cPP table. No uncertainty should be left over which is the

wrapping key and the key to be wrapped and where the wrapping key potentially

comes from i.e. is derived from.

27 If “KW3: AES-GCM” or “KW4: AES-CCM” is used the evaluator shall

examine the KMD to ensure that it describes how the IV is generated and that

the same IV is never reused to encrypt different plaintext pairs under the same

key. Moreover in the case of GCM, he must ensure that, at each invocation of

GCM, the length of the plaintext is at most (2^32)-2 blocks.

2.1.3.1.4 Tests

28 The following tests are conditional based upon the selections made in the SFR.

The evaluator shall perform the following tests or witness respective tests

executed by the developer if technically possible, otherwise an analysis of the

implementation representation has to be performed.

29 Preconditions for testing:

• Specification of wrapping keys as input parameter to the function to be

tested

• Specification of further required input parameters if required

• Specification of keys to be wrapped (plaintext, as function’s argument)

• Direct access to wrapped key (ciphertext), e.g. in the non-volatile memory

30 KW2: AES-KW [SP 800-38F, sec. 6.2]

31 The tests below are derived from “The Key Wrap Validation System (KWVS),

Updated: June 20, 2014” from the National Institute of Standards and

Technology.

32 The evaluator shall test the authenticated-encryption functionality of AES-KW

for each combination of the following input parameters:

• Supported key lengths selected in the ST (e.g. 128 bits, 256 bits)

• Five plaintext lengths:

o Two lengths that are non-zero multiples of 128 bits (two

semi-block lengths)

Evaluation Activities for SFRs

o Two lengths that are odd multiples of the semi-block length

(64 bits)

o The largest supported plaintext length less than or equal to

4096 bits

33 For each set of the above parameters the evaluator shall generate a set of 100

key and plaintext pairs and obtain the ciphertext that results from AES-KW

authenticated encryption. To determine correctness, the evaluator shall compare

the results with those obtained from the AES-KW authenticated-encryption

function of a known good implementation.

34 The evaluator shall test the authenticated-decryption functionality of AES-KW

using the same test as for authenticated-encryption, replacing plaintext values

with ciphertext values and AES-KW authenticated-encryption (KW-AE) with

AES-KW authenticated-decryption (KW-AD). For the authenticated-

decryption test, 20 out of the 100 trials per plaintext length must have ciphertext

values that are not authentic; that is, they fail authentication.

35 Additionally, the evaluator shall perform the following negative test:

• Test 1 (invalid plaintext length):

Determine the valid plaintext lengths of the implementation from the TOE

specification. Verify that the implementation of KW-AE in the TOE rejects

plaintexts of invalid length by testing plaintext of the following lengths: 1)

plaintext length greater than 64 semi- blocks, 2) plaintext bit-length not

divisible by 64, 3) plaintext with length 0, and 4) plaintext with one semi-

block.

• Test 2 (invalid ciphertext length):

Determine the valid ciphertext lengths of the implementation from the TOE

specification. Verify that the implementation of KW-AD in the TOE rejects

ciphertexts of invalid length by testing ciphertext of the following lengths:

1) ciphertext with length greater than 65 semi-blocks, 2) ciphertext with bit-

length not divisible by 64, 3) ciphertext with length 0, 4) ciphertext with

length of one semi-block, and 5) ciphertext with length of two semi- blocks.

• Test 3 (invalid ICV1):

Test that the implementation detects invalid ICV1 values by encrypting any

plaintext value eight times using a different value for ICV1 each time as

follows: Start with a base ICV1 of 0xA6A6A6A6A6A6A6A6. For each of

the eight tests change a different byte to a different value, so that each of the

eight bytes is changed once. Verify that the implementation of KW-AD in

the TOE outputs FAIL for each test.

36 KW1: AES-KWP [SP 800-38F, sec. 6.3]

37 The tests below are derived from “The Key Wrap Validation System (KWVS),

Updated: June 20, 2014” from the National Institute of Standards and

Technology.

 Evaluation Activities for SFRs

38 The evaluator shall test the authenticated-encryption functionality of AES-KWP

(KWP-AE) using the same test as for AES-KW authenticated-encryption with

the following change in the file plaintext lengths:

• Four lengths that are multiples of 8 bits

• The largest supported length less than or equal to 4096 bits

39 The evaluator shall test the authenticated-decryption (KWP-AD) functionality

of AES-KWP using the same test as for AES-KWP authenticated-encryption,

replacing plaintext values with ciphertext values and AES-KWP authenticated-

encryption with AES-KWP authenticated-decryption. For the Authenticated

Decryption test, 20 out of the 100 trials per plaintext length have ciphertext

values that fail authentication.

40 Additionally, the evaluator shall perform the following negative test:

• Test 1 (invalid plaintext length):

Determine the valid plaintext lengths of the implementation from the TOE

specification. Verify that the implementation of KW-AE in the TOE rejects

plaintexts of invalid length by testing plaintext of the following lengths: 1)

plaintext with length greater than 64 semi-blocks, 2) plaintext with bit-

length not divisible by 8, and 3) plaintext with length 0.

• Test 2 (invalid ciphertext length):

Determine the valid ciphertext lengths of the implementation from the TOE

specification. Verify that the implementation of KWP-AD in the TOE

rejects ciphertexts of invalid length by testing ciphertext of the following

lengths: 1) ciphertext with length greater than 65 semi-blocks, 2) ciphertext

with bit-length not divisible by 64, 3) ciphertext with length 0, and 4)

ciphertext with length of one semi-block.

• Test 3 (invalid ICV2):

Test that the implementation detects invalid ICV2 values by encrypting any

plaintext value four times using a different value for ICV2 each time as

follows: Start with a base ICV2 of 0xA65959A6. For each of the four tests

change a different byte of ICV2 to a different value, so that each of the four

bytes is changed once. Verify that the implementation of KWP-AD in the

TOE outputs FAIL for each test.

• Test 4 (invalid padding length):

Generate one ciphertext using algorithm KWP-AE with substring

[len(P)/8]32 of S replaced by each of the following 32-bit values, where

len(P) is the length of P in bits and []32 denotes the representation of an

integer in 32 bits:

o [0]32

o [len(P)/8-8]32

o [len(P)/8-8]32

Evaluation Activities for SFRs

o [513]32

Verify that the implementation of KWP-AD in the TOE outputs FAIL on

those inputs.

• Test 5 (invalid padding bits):

If the implementation supports plaintext of length not a multiple of 64-bits,

then

for each PAD length [1..7]

for each byte in PAD

set a zero PAD value;

replace current byte by a non-zero value and use the resulting

plaintext as input to algorithm KWP-AE to generate ciphertexts;

verify that the implementation of KWP-AD in the TOE outputs

FAIL on this input.

41 KW3: AES-GCM [ISO 19772, clause 11]

42 Refer to [cPP FCS_COP.1/UDE] for the required AES-GCM testing. Each

distinct AES-GCM implementation shall be tested separately.

43 KW4: AES-CCM [ISO 19772, clause 8]

44 Refer to [cPP FCS_COP.1/UDE] for the required AES-CCM testing. Each

distinct AES-CCM implementation shall be tested separately.

2.1.4 Cryptographic Key Destruction (FCS_CKM.4)

2.1.4.1 FCS_CKM.4 Cryptographic key destruction

2.1.4.1.1 TSS

45 The evaluator examines the TSS to ensure it lists all relevant keys and keying

material (describing the source of the data, all memory types in which the data

is stored (covering storage both during and outside of a session, and both

plaintext and non-plaintext forms of the data)), all relevant destruction

situations (including the point in time at which the destruction occurs; e.g.

factory reset or device wipe function, change of authorisation data, change of

DEK, completion of use of an intermediate key) and the destruction method

used in each case. The evaluator confirms that the description of the data and

storage locations is consistent with the functions carried out by the TOE (e.g.

that all keys in the key chain are accounted for2). This evaluation activity may

2 Where keys are stored encrypted or wrapped under another key then this may need to be explained in order to

allow the evaluator to confirm the consistency of the description of keys with the TOE functions.

 Evaluation Activities for SFRs

be combined with those dealing with protection of keys and keying material in

FPT_KYP_EXT.1.

46 The evaluator shall check that the TSS identifies any configurations or

circumstances that may not conform to the key destruction requirement (see

further discussion in the Operational Guidance section below). Note that

reference may be made to the Guidance Documentation for description of the

detail of such cases where destruction may be prevented or delayed.

47 Where the ST specifies the use of “a value that does not contain any sensitive

data” to overwrite keys, the evaluator examines the TSS to ensure that it

describes how that pattern is obtained and used, and that this justifies the claim

that the pattern does not contain any sensitive data.

2.1.4.1.2 Guidance Documentation

48 The evaluator shall check that the guidance documentation for the TOE requires

users to ensure that the TOE remains under the user’s control while a session is

active.

49 A TOE may be subject to situations that could prevent or delay data destruction

in some cases. The evaluator shall check that the guidance documentation

identifies configurations or circumstances that may not strictly conform to the

key destruction requirement, and that this description is consistent with the

relevant parts of the TSS (and KMD). The evaluator shall check that the

guidance documentation provides guidance on situations where key destruction

may be delayed at the physical layer, identifying any additional mitigation

actions for the user (e.g. there might be some operation the user can invoke, or

the user might be advised to retain control of the device for some particular time

to maximise the probability that garbage collection will have occurred).

50 For example, when the TOE does not have full access to the physical memory,

it is possible that the storage may be implementing wear-levelling and garbage

collection. This may result in additional copies of the data that are logically

inaccessible but persist physically. Where available, the TOE might then

describe use of the TRIM command3 and garbage collection to destroy these

persistent copies upon their deletion (this would be explained in TSS and

guidance documentation).

2.1.4.1.3 KMD

51 The KMD identifies and describes the interface(s) that are used to service

commands to read/write memory. The evaluator examines the interface

description for each different media type to ensure that the interface supports

the selection(s) made by the ST Author.

3 Where TRIM is used then the TSS and/or guidance documentation is also expected to describe how the keys are

stored such that they are not inaccessible to TRIM (e.g. they would need not to be contained in a file less than 982

bytes which would be completely contained in the master file table).

Evaluation Activities for SFRs

52 The evaluator examines the KMD to ensure that all keys and keying material

identified in the TSS and KMD have been accounted for.

53 Note that where selections include ‘destruction of reference to the key directly

followed by a request for garbage collection’ (for volatile memory) then the

KMD is examined by the evaluator to ensure that it explains the nature of the

destruction of the reference, the request for garbage collection, and of the

garbage collection process itself.

2.1.4.1.4 Tests

54 Note: The following tests require the developer to provide access to a test

platform that provides the evaluator with interfaces that are typically not found

on factory products. The developer must describe the architecture of the test

platform and give a rationale that it accurately exposes the TOE state without

interfering with its intended operations.

55 Test 1: Applied to each key or keying material held as plaintext in volatile

memory and subject to destruction by overwrite by the TOE (whether or not the

plaintext value is subsequently encrypted for storage in volatile or non-volatile

memory).

56 The evaluator shall:

1. Record the value of the key or keying material.

2. Cause the TOE to dump the entire memory of the TOE into a binary

file.  

3. Search the content of the binary file created in Step #2 to locate all

instances of the known key value from Step #1. (Note that the

primary purpose of Step #3 is to demonstrate that appropriate search

commands are being used for Step #8 and #9)

4. Cause the TOE to perform normal cryptographic processing with the

key from Step #1.  

5. Cause the TOE to destroy the key.  

6. Cause the TOE to stop the execution but not exit.  

7. Cause the TOE to dump the entire memory of the TOE into a binary

file.  

8. Search the content of the binary file created in Step #7 for instances

of the known key value from Step #1.

9. Break the key value from Step #1 into an evaluator-chosen set of

fragments and perform a search using each fragment. (Note that the

evaluator shall first confirm with the developer how the key is

normally stored, in order to choose fragment sizes that are the same

or smaller than any fragmentation of the data that may be

implemented by the TOE. The endianness or byte-order should also

be taken into account in the search.)

 Evaluation Activities for SFRs

57 Steps #1-8 ensure that the complete key does not exist anywhere in volatile

memory. If a copy is found, then the test fails.

58 Step #9 ensures that partial key fragments do not remain in memory. If a

fragment is found, there is a chance that it is not within the context of a key

(e.g., some random bits that happen to match). If this is the case the test should

be repeated with a different key in Step #1. If a fragment is also found in this

repeated run then the test fails and the reason for the collision must be analysed

and explained by the developer.

59 Test 2: Applied to each key or keying material held in non-volatile memory and

subject to destruction by overwrite by the TOE.

60 The evaluator shall:

1. Record the value of the key or keying material.

2. Cause the TOE to perform normal cryptographic processing with the

key from Step #1.  

3. Search the non-volatile memory in which the key was stored for

instances of the known key value from Step #1. (Note that the

primary purpose of Step #3 is to demonstrate that appropriate search

commands are being used for Step #5 and #6)

4. Cause the TOE to clear the key.  

5. Search the non-volatile memory in which the key was stored for

instances of the known key value from Step #1. If a copy is found,

then the test fails.

6. Break the key value from Step #1 into an evaluator-chosen set of

fragments and perform a search using each fragment. (Note that the

evaluator shall first confirm with the developer how the key is

normally stored, in order to choose fragment sizes that are the same

or smaller than any fragmentation of the data that may be

implemented by the TOE. The endianness or byte-order should also

be taken into account in the search.)

61 Step #6 ensures that partial key fragments do not remain in non-volatile

memory. If a fragment is found, there is a chance that it is not within the context

of a key (e.g., some random bits that happen to match). If this is the case the test

should be repeated with a different key in Step #1. If a fragment is also found

in this repeated run then the test fails and the reason for the collision must be

analysed and explained by the developer.

62 Test 3: Applied to each key or keying material held in non-volatile memory and

subject to destruction by overwrite by the TOE.

1. Record the storage location (logical address) of the key or keying

material.

2. Cause the TOE to perform normal cryptographic processing with the

key from Step #1.  

Evaluation Activities for SFRs

3. Cause the TOE to clear the key. Record the value to be used for the

overwrite of the key.

4. Examine the storage location from Step #1 to ensure the appropriate

pattern (recorded in Step #3) is utilised.

63 The test succeeds if correct pattern is found in the memory location. If the

pattern is not found then the test fails.

2.1.5 Cryptographic Key Derivation (FCS_CKM_EXT.5)

2.1.5.1 FCS_CKM_EXT.5/KEK Cryptographic key derivation (Cryptographic
Authorisation Data Conditioning)

64 In order to use a NIST SP 800-108 conformant method of key derivation, the

TOE must also implement algorithms to generate the key derivation key and

KDF. The permitted methods are as follows:

• Generation of key derivation key: NIST SP 800-56A key agreement

scheme or NIST SP 800-90A DRBG

• Underlying algorithm of KDF: HMAC or CMAC

2.1.5.1.1 TSS

65 The evaluator shall check that the TSS includes a description of the key

derivation function(s) and shall check that this uses a key derivation algorithm

and key size(s) according to the specification selected in the ST out of the table

as provided in the cPP table per row.

2.1.5.1.2 Guidance Documentation

66 If a selection of key derivation functions (KDF) or parameters are supported,

the evaluator shall examine the guidance documentation to determine that the

method of choosing a specific mode/derivation function/parameter by the end

user is described.

2.1.5.1.3 KMD

67 The evaluator shall examine the KMD to ensure that:

68 The KMD describes the complete key derivation chain and the description must

be consistent with the description in the TSS. For all key derivations the TOE

must use a method as described in the cPP table. No uncertainty should be left

over about how a key is derived from another in the chain.

69 The length of the key derivation key is defined by the PRF. The evaluator should

check whether the key derivation key length is consistent with the length

provided by the selected PRF.

 Evaluation Activities for SFRs

70 If a key is used as an input to several KDFs, each invocation must use a distinct

context string. If the output of a KDF execution is used for multiple

cryptographic keys, those keys must be disjoint segments of the output.

71 If the TOE implements Password-Based Key Derivation (KeyDrv4) then the

KMD shall describe how the TOE obtains a salt from the RBG to use in the

PBKDF.

2.1.5.1.4 Tests

72 The evaluator shall perform the following tests or witness respective tests

executed by the developer if technically possible, otherwise an analysis of the

implementation representation has to be performed.

73 Preconditions for testing:

• Specification of input parameter to the key derivation function to be tested

• Specification of further required input parameters

• Access to derived key(s)

74 The below tests are derived from Key Derivation using Pseudorandom

Functions (SP 800-108) Validation System (KBKDFVS), Updated 4 January

2016, Section 6.2, from the National Institute of Standards and Technology.

75 The evaluator shall perform one or more of the following tests to verify the

correctness of the key derivation function, depending on the mode(s) that are

supported:

76 KeyDrv1: Counter Mode Tests:

77 The evaluator shall determine the following characteristics of the key derivation

function:

• One or more pseudorandom functions (PRFs) that are included in the 'key

derivation algorithm' selection in the SFR, and their output lengths in bits

(h)

• One or more of the values {8, 16, 24, 32} that equal the length of the binary

representation of the counter (r), and the location of the counter relative to

the fixed input data: before, after, or in the middle. If the counter is in the

middle then the lengths of data before and after the counter must be

determined

• The ‘key size’ selections in the SFR, i.e. the lengths (in bits) of the derived

keying material (L)

78 For each supported combination of PRF, counter location, value of r, and value

of L, the evaluator shall generate 20 pseudorandom key derivation key values

(KI).

Evaluation Activities for SFRs

79 For each value of KI, the evaluator shall supply this data to the TOE in order to

produce the keying material output KO. The evaluator shall verify that the

resulting output matches the results from submitting the same inputs to a

known-good implementation of the key derivation function, having the same

characteristics.

80 KeyDrv2: Feedback Mode Tests:

81 The evaluator shall determine the following characteristics of the key derivation

function:

• One or more pseudorandom functions (PRFs) that are included in the 'key

derivation algorithm' selection in the SFR, and their output lengths in bits

(h)

• If the implementation includes a counter then one or more of the values {8,

16, 24, 32} that equal the length of the binary representation of the counter

(r), and the location of the counter relative to the fixed input data: before,

after, or in the middle. If the counter is in the middle then the lengths of data

before and after the counter must be determined

• The ‘key size’ selections in the SFR, i.e. the lengths (in bits) of the derived

keying material (L)

• The supported IV lengths

82 For each supported combination of PRF, counter location (if a counter is used),

value of r (if a counter is used), value of L, and IV length, the evaluator shall

generate 20 pseudorandom key derivation key values (KI).

83 For each value of KI, the evaluator shall supply this data to the TOE in order to

produce the keying material output KO. The evaluator shall verify that the

resulting output matches the results from submitting the same inputs to a

known-good implementation of the key derivation function, having the same

characteristics.

84 KeyDrv3: Double Pipeline Iteration Mode Tests:

85 The evaluator shall determine the following characteristics of the key derivation

function:

• One or more pseudorandom functions (PRFs) that are included in the 'key

derivation algorithm' selection in the SFR, and their output lengths in bits

(h)

• If the implementation includes a counter then one or more of the values {8,

16, 24, 32} that equal the length of the binary representation of the counter

(r), and the location of the counter relative to the fixed input data: before,

after, or in the middle. If the counter is in the middle then the lengths of data

before and after the counter must be determined

 Evaluation Activities for SFRs

• The ‘key size’ selections in the SFR, i.e. the lengths (in bits) of the derived

keying material (L)

86 For each supported combination of PRF, counter location (if a counter is used),

value of r (if a counter is used), and value of L, the evaluator shall generate 20

pseudorandom key derivation key values (KI).

87 For each value of KI, the evaluator shall supply this data to the TOE in order to

produce the keying material output KO. The evaluator shall verify that the

resulting output matches the results from submitting the same inputs to a

known-good implementation of the key derivation function, having the same

characteristics.

88 KeyDrv4: Password-based Key Derivation

89 For each combination of algorithm and output key size the evaluator shall

supply 10 passphrases as input and obtain the 10 outputs from the PBKDF

performed by the TOE, along with the salt(s) used by the TOE. These 10

passphrases shall be different and shall be conformant to the passphrase

conditions defined in FIA_SOS.1 and FIA_PPS_EXT.1. The resulting output

shall be compared to the results from an independent implementation of the

PBKDF for the same salt and passphrase inputs.

90 KeyDrv5: Intermediate Keys Method

91 If the selected algorithm is a hash then the testing of the hash primitive is the

only required Evaluation Activity. If the selected algorithm is XOR then no

separate primitive testing is necessary (the testing is covered by Evaluation

Activities for FCS_KYC_EXT.1).

92 CMAC-AES Tests

93 These tests are intended to be equivalent to those described in the NIST

document, “The CMAC Validation System (CMACVS)”, updated 23 August

2011, found at http://csrc.nist.gov/groups/STM/cavp/documents/mac/CMACVS.pdf.

94 It is not recommended that evaluators use values obtained from static sources

such as http://csrc.nist.gov/groups/STM/cavp/documents/mac/cmactestvectors.zip or

use values not generated expressly to exercise the CMAC-AES implementation.

95 The evaluator shall test the generation-encryption and decryption-verification

functionality of CMAC-AES for the following input parameters:

• Keys: All supported and selected key sizes (e.g., 128, 256 bits).

• Message Length: Two values that are divisible by the block size of 16 bytes,

two values that are not divisible by the block size, a length of 0 (if

supported), and the maximum length supported or 2^16, whichever is

smaller.

• CMAC Length: The minimum length (1 byte), the middle length (8 bytes),

and the maximum length (16 bytes).

https://csrc.nist.gov/csrc/media/projects/cryptographic-algorithm-validation-program/documents/mac/cmacvs.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/mac/cmactestvectors.zip

Evaluation Activities for SFRs

96 The testing for CMAC consists of two tests:

97 CMAC Generation Test

98 For each supported key size, message length, and MAC length, the evaluator

shall supply eight key-message combinations to obtain the resulting MACs. The

evaluator shall compare the resulting MACs with the result of providing the

same inputs to a known-good implementation.

99 CMAC Verification Process Test

100 For each supported key size, message length, and MAC length, the evaluator

shall supply 20 key-message-MAC combinations and determine whether the

MAC passes the verification process. The evaluator shall compare the results

with the results of providing the same inputs to a known-good implementation.

2.1.6 Cryptographic Operation (FCS_COP.1)

2.1.6.1 FCS_COP.1/UDE Cryptographic operation (AES User Data
Encryption/ Decryption)

2.1.6.1.1 TSS

101 The evaluator shall check that the TSS includes a description of encryption

function(s) used for user data encryption. The evaluator should check that this

description of the selected encryption function includes the key sizes and modes

of operations as specified in the table above per row.

102 The evaluator shall check that the TSS describes the means by which the TOE

satisfies constraints on algorithm parameters included in the selections made for

‘cryptographic algorithm’ and ‘list of standard’.

2.1.6.1.2 Guidance Documentation

103 If multiple encryption modes are supported, the evaluator examines the

guidance documentation to determine that the method of choosing a specific

mode/key size by the end user is described.

2.1.6.1.3 KMD

104 The evaluator shall examine the KMD to ensure that the points at which user

data encryption and decryption occurs are described, and that the complete data

path for user data encryption is described. The evaluator checks that this

description is consistent with the relevant parts of the TSS.

105 Assessment of the complete data path for user data encryption includes

confirming that the KMD describes the data flow from the device’s host

interface to the device’s non-volatile memory storing the data, and gives

information enabling the user data datapath to be distinguished from those

situations in which data bypasses the data encryption engine (e.g. read-write

operations to an unencrypted Master Boot Record area). The documentation of

 Evaluation Activities for SFRs

the data path should be detailed enough that the evaluator will thoroughly

understand the parts of the TOE that the data passes through (e.g. different

memory types, processors and co-processors), its encryption state (i.e.

encrypted or unencrypted) in each part, and any places where the data is stored.

For example, any caching or buffering of the data should be identified and

distinguished from the final destination in non-volatile memory (the latter

represents the location from which the host will expect to retrieve the data in

future).

106 If XTS-ATE is used as the user data encryption algorithm then the evaluator

shall check that the full length keys are created by methods that ensure that the

two halves are different and independent.

2.1.6.1.4 Test

107 The following tests are conditional based upon the selections made in the SFR.

The evaluator shall perform the following test or witness respective tests

executed by the developer if technically possible, otherwise an analysis of the

implementation representation has to be performed.

108 Preconditions for testing:

• Specification of keys as input parameter to the function to be tested

• Specification of required input parameters such as modes

• Specification of user data (plaintext)

• Tapping of encrypted user data (ciphertext) directly in the non-volatile

memory

109 UDE1: AES-CBC Tests

110 For the AES-CBC tests described below, the plaintext, ciphertext, and IV values

shall consist of 128-bit blocks. To determine correctness, the evaluator shall

compare the resulting values to those obtained by submitting the same inputs to

a known-good implementation.

111 These tests are intended to be equivalent to those described in NIST's AES

Algorithm Validation Suite (AESAVS)

(http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf). It is not

recommended that evaluators use values obtained from static sources such as

the example NIST's AES Known Answer Test Values from the AESAVS

document, or use values not generated expressly to exercise the AES-CBC

implementation.

112 AES-CBC Known Answer Tests

113 KAT-1 (GFSBox): To test the encrypt functionality of AES-CBC, the evaluator

shall supply a set of five different plaintext values for each selected key size and

obtain the ciphertext value that results from AES-CBC encryption of the given

plaintext using a key value of all zeros and an IV of all zeros.

http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf

Evaluation Activities for SFRs

114 To test the decrypt functionality of AES-CBC, the evaluator shall supply a set

of five different ciphertext values for each selected key size and obtain the

plaintext value that results from AES-CBC decryption of the given ciphertext

using a key value of all zeros and an IV of all zeros.

115 KAT-2 (KeySBox): To test the encrypt functionality of AES-CBC, the

evaluator shall supply a set of five different key values for each selected key

size and obtain the ciphertext value that results from AES-CBC encryption of

an all-zeros plaintext using the given key value and an IV of all zeros.

116 To test the decrypt functionality of AES-CBC, the evaluator shall supply a set

of five different key values for each selected key size and obtain the plaintext

that results from AES-CBC decryption of an all-zeros ciphertext using the given

key and an IV of all zeros.

117 KAT-3 (Variable Key): To test the encrypt functionality of AES-CBC, the

evaluator shall supply a set of keys for each selected key size (as described

below) and obtain the ciphertext value that results from AES encryption of an

all-zeros plaintext using each key and an IV of all zeros.

118 Key i in each set shall have the leftmost i bits set to ones and the remaining bits

to zeros, for values of i from 1 to the key size. The keys and corresponding

ciphertext are listed in AESAVS, Appendix E.

119 To test the decrypt functionality of AES-CBC, the evaluator shall use the same

keys as above to decrypt the ciphertext results from above. Each decryption

should result in an all-zeros plaintext.

120 KAT-4 (Variable Text): To test the encrypt functionality of AES-CBC, for each

selected key size, the evaluator shall supply a set of 128-bit plaintext values (as

described below) and obtain the ciphertext values that result from AES-CBC

encryption of each plaintext value using a key of each size and IV consisting of

all zeros.

121 Plaintext value i shall have the leftmost i bits set to ones and the remaining bits

to zeros, for values of i from 1 to 128. The plaintext values are listed in

AESAVS, Appendix D.

122 To test the decrypt functionality of AES-CBC, for each selected key size, use

the plaintext values from above as ciphertext input, and AES-CBC decrypt each

ciphertext value using key of each size consisting of all zeros and an IV of all

zeros.

123 AES-CBC Multi-Block Message Tests

124 The evaluator shall test the encrypt functionality by encrypting nine i-block

messages for each selected key size, for 2 <= i <=10. For each test, the evaluator

shall supply a key, an IV, and a plaintext message of length i blocks, and encrypt

the message using AES-CBC. The resulting ciphertext values shall be compared

to the results of encrypting the plaintext messages using a known good

implementation.

 Evaluation Activities for SFRs

125 The evaluator shall test the decrypt functionality by decrypting nine i-block

messages for each selected key size, for 2 <= i <=10. For each test, the evaluator

shall supply a key, an IV, and a ciphertext message of length i blocks, and

decrypt the message using AES-CBC. The resulting plaintext values shall be

compared to the results of decrypting the ciphertext messages using a known

good implementation.

126 AES-CBC Monte Carlo Tests

127 The evaluator shall test the encrypt functionality for each selected key size using

100 3-tuples of pseudo-random values for plaintext, IVs, and keys.

128 The evaluator shall supply a single 3-tuple of pseudo-random values for each

selected key size. This 3-tuple of plaintext, IV, and key is provided as input to

the below algorithm to generate the remaining 99 3-tuples, and to run each 3-

tuple through 1000 iterations of AES-CBC encryption.

Input: PT, IV, Key

Key[0] = Key

IV[0] = IV

PT[0] = PT

for i = 0 to 99 {

 Output Key[i], IV[i], PT[0]

 For j = 0 to 999 {

if (j == 0) {

CT[j] = AES-CBC-Encrypt(Key[i], IV[i], PT[j])

PT[j+1] = IV[i]

} else {

CT[j] = AES-CBC-Encrypt(Key[i], PT[j])

PT[j+1] = CT[j-1]

 }

 }

 Output CT[j]

 If (KeySize == 128) Key[i+1] = Key[i] xor CT[j]

 If (KeySize == 192) Key[i+1] = Key[i] xor (last 64 bits of CT[j-1] ||

CT[j])

Evaluation Activities for SFRs

 If (KeySize == 256) Key[i+1] = Key[i] xor (CT[j-1] || CT[j])

 IV[i+1] = CT[j]

 PT[0] = CT[j-1]

 }

129 The ciphertext computed in the 1000th iteration (CT[999]) is the result for each

of the 100 3-tuples for each selected key size. This result shall be compared to

the result of running 1000 iterations with the same values using a known good

implementation.

130 The evaluator shall test the decrypt functionality using the same test as above,

exchanging CT and PT, and replacing AES-CBC-Encrypt with AES-CBC-

Decrypt.

131 UDE2: AES-CCM Tests

132 These tests are intended to be equivalent to those described in the NIST

document, “The CCM Validation System (CCMVS)”, updated 9 Jan 2012,

found at http://csrc.nist.gov/groups/STM/cavp/documents/mac/CCMVS.pdf.

133 It is not recommended that evaluators use values obtained from static sources

such as

http://csrc.nist.gov/groups/STM/cavp/documents/mac/ccmtestvectors.zip or use

values not generated expressly to exercise the AES-CCM implementation.

134 The evaluator shall test the generation-encryption and decryption-verification

functionality of AES-CCM for the following input parameter and tag lengths:

• Keys: All supported and selected key sizes (e.g., 128, 256 bits).

• Associated Data: Two or three values for associated data length: The

minimum (>=0 bytes) and maximum (<=32 bytes) supported associated data

lengths, and 2^16 (65536) bytes, if supported.

• Payload: Two values for payload length: The minimum (>=0 bytes) and

maximum (<=32 bytes) supported payload lengths.

• Nonces: All supported nonce lengths (7, 8, 9, 10, 11, 12, 13) in bytes.

• Tag: All supported tag lengths (4, 6, 8, 10, 12, 14, 16) in bytes.

135 The testing for CCM consists of five tests. To determine correctness in each of

the below tests, the evaluator shall compare the ciphertext with the result of

encryption of the same inputs with a known good implementation.

136 Variable Associated Data Test: For each supported key size and associated data

length, and any supported payload length, nonce length, and tag length, the

evaluator shall supply one key value, one nonce value, and 10 pairs of associated

data and payload values, and obtain the resulting ciphertext.

http://csrc.nist.gov/groups/STM/cavp/documents/mac/CCMVS.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/mac/ccmtestvectors.zip

 Evaluation Activities for SFRs

137

138 Variable Payload Test: For each supported key size and payload length, and any

supported associated data length, nonce length, and tag length, the evaluator

shall supply one key value, one nonce value, and 10 pairs of associated data and

payload values, and obtain the resulting ciphertext.

139 Variable Nonce Test: For each supported key size and nonce length, and any

supported associated data length, payload length, and tag length, the evaluator

shall supply one key value, one nonce value, and 10 pairs of associated data and

payload values, and obtain the resulting ciphertext.

140 Variable Tag Test: For each supported key size and tag length, and any

supported associated data length, payload length, and nonce length, the

evaluator shall supply one key value, one nonce value, and 10 pairs of associated

data and payload values, and obtain the resulting ciphertext.

141 Decryption-Verification Process Test: To test the decryption-verification

functionality of AES- CCM, for each combination of supported associated data

length, payload length, nonce length, and tag length, the evaluator shall supply

a key value and 15 sets of input plus ciphertext, and obtain the decrypted

payload. Ten of the 15 input sets supplied should fail verification and five

should pass.

142 UDE3: AES-GCM Tests

143 These tests are intended to be equivalent to those described in the NIST

document, “The Galois/Counter Mode (GCM) and GMAC Validation System

(GCMVS) with the Addition of XPN Validation Testing”, rev. 15 Jun 2016,

section 6.2, found at

http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmvs.pdf.

144 It is not recommended that evaluators use values obtained from static sources

such as

http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip, or

use values not generated expressly to exercise the AES-GCM implementation.

145 The evaluator shall test the authenticated encrypt functionality of AES-GCM by

supplying 15 sets of Key, Plaintext, AAD, IV, and Tag data for every

combination of the following parameters as selected in the ST and supported by

the implementation under test:

• Key size in bits: Each selected and supported key sizes (128, 256).

• Plaintext length in bits: Up to four values for plaintext length: Two values

that are non-zero integer multiples of 128, if supported. And two values that

are non-multiples of 128, if supported.

• AAD length in bits: Up to five values for AAD length: Zero-length, if

supported. Two values that are non-zero integer multiples of 128, if

http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmvs.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip

Evaluation Activities for SFRs

supported. And two values that are integer non-multiples of 128, if

supported.

• IV length in bits: Up to three values for IV length: 96 bits. Minimum and

maximum supported lengths, if different.

• Tag length in bits: Each supported length (128, 120, 112, 104, 96, 64, 32).

146 To determine correctness, the evaluator shall compare the resulting values to

those obtained by submitting the same inputs to a known good implementation.

147 The evaluator shall test the authenticated decrypt functionality of AES-GCM by

supplying 15 Ciphertext-Tag pairs for every combination of the above

parameters, replacing Plaintext length with Ciphertext length. For each

parameter combination the evaluator shall introduce an error into either the

Ciphertext or the Tag such that approximately half of the cases are correct and

half the cases contain errors. To determine correctness, the evaluator shall

compare the resulting pass/fail status and Plaintext values to the results obtained

by submitting the same inputs to a known-good implementation.

148 UDE4: XTS-AES Tests

149 These tests are intended to be equivalent to those described in the NIST

document, “The XTS-AES Validation System (XTSVS)”, updated 5 Sept 2013,

found at http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSVS.pdf.

150 It is not recommended that evaluators use values obtained from static sources

such as the XTS-AES test vectors at

http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSTestVectors.zip or

use values not generated expressly to exercise the XTS-AES implementation.

151 The evaluator shall generate test values as follows:

152 For each supported key size (256 bit (for AES-128) and 512 bit (for AES-256)

keys), the evaluator shall provide up to five data lengths:

• Two data lengths divisible by the 128-bit block size, if data unit lengths of

complete block sizes are supported.

• Two data lengths not divisible by the 128-bit block size, if data unit lengths

of partial block sizes are supported.

• The largest data length supported by the implementation, or 2^16 (65536),

whichever is larger.

153 The evaluator shall specify whether the implementation supports tweak values

of 128-bit hexadecimal strings or a data unit sequence number, or both.

154 For each combination of key size and data length, the evaluator shall provide

100 sets of input data and obtain the ciphertext that results from XTS-AES

encryption. If both kinds of tweak values are supported then each type of tweak

http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSVS.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSTestVectors.zip

 Evaluation Activities for SFRs

value shall be used in half of every 100 sets of input data, for all combinations

of key size and data length. The evaluator shall verify that the resulting

ciphertext matches the results from submitting the same inputs to a known-good

implementation of XTS- AES.

155 The evaluator shall test the decrypt functionality of XTS-AES using the same

test as for encrypt, replacing plaintext values with ciphertext values and XTS-

AES encrypt with XTS-AES decrypt.

156 UDE5: Camellia-CBC Tests

157 To test the encrypt and decrypt functionality of Camellia in CBC mode, the

evaluator shall perform the tests as specified in 10.2.1.2 of ISO/IEC

18367:2016.

158 UDE6: Camellia-CCM Tests

159 To test the encrypt functionality of Camellia in CCM mode, the evaluator shall

perform the tests as specified in 10.6.1.1 of ISO/IEC 18367:2016.

160 To test the decrypt functionality of Camellia in CCM mode, the evaluator shall

perform the tests as specified in 10.6.1.2 of ISO/IEC 18367:2016.

161 As a prerequisite for these tests, the evaluator shall perform the test for encrypt

functionality of Camellia in ECB mode as specified in 10.2.1.2 of ISO/IEC

18367:2016.

162 UDE7: Camellia-GCM Tests

163 To test the encrypt functionality of Camellia in GCM, the evaluator shall

perform the tests as specified in 10.6.1.1 of ISO/IEC 18367:2016.

164 To test the decrypt functionality of Camellia in GCM, the evaluator shall

perform the tests as specified in 10.6.1.2 of ISO/IEC 18367:2016.

165 As a prerequisite for these tests, the evaluator shall perform the test for encrypt

functionality of Camellia in ECB mode as specified in 10.2.1.2 of ISO/IEC

18367:2016.

166 UDE8: XTS-Camellia Tests

167 These tests are intended to be equivalent to those described in the IPA

document, ATR-01-B, “Specifications of Cryptographic Algorithm

Implementation Testing – Symmetric-Key Cryptography”, found at

https://www.ipa.go.jp/security/jcmvp/jcmvp_e/documents/atr/atr01b_en.pdf.

168 The evaluator shall generate test values as follows:

169 For each supported key size (256 bit (for Camellia-128) and 512 bit (for

Camellia-256) keys), the evaluator shall provide up to five data lengths:

https://www.ipa.go.jp/security/jcmvp/jcmvp_e/documents/atr/atr01b_en.pdf

Evaluation Activities for SFRs

• Two data lengths divisible by the 128-bit block size, if data unit lengths of

complete block sizes are supported.

• Two data lengths not divisible by the 128-bit block size, if data unit lengths

of partial block sizes are supported.

• The largest data length supported by the implementation, or 2^16 (65536),

whichever is larger.

170 The evaluator shall specify whether the implementation supports tweak values

of 128-bit hexadecimal strings or a data unit sequence number, or both.

171 For each combination of key size and data length, the evaluator shall provide

100 sets of input data and obtain the ciphertext that results from XTS-Camellia

encryption. If both kinds of tweak values are supported, 50 of each 100 sets of

input data shall use each type of tweak value. The resulting ciphertext shall be

compared to the results of a known-good implementation.

172 As a prerequisite for this test, the evaluator shall perform the test for encrypt

functionality of Camellia in ECB mode as specified in 10.2.1.2 of ISO/IEC

18367:2016.

173 The evaluator shall test the decrypt functionality of XTS-Camellia using the

same test as for encrypt, replacing plaintext values with ciphertext values and

XTS-Camellia encrypt with XTS-Camellia decrypt.

174 As a prerequisite for this test, the evaluator shall perform the test for decrypt

functionality of Camellia in ECB mode as specified in 10.2.1.2 of ISO/IEC

18367:2016.

2.1.7 Cryptographic Key Chaining (FCS_KYC_EXT.1)

2.1.7.1 FCS_KYC_EXT.1 Cryptographic key chaining

2.1.7.1.1 TSS

175 The evaluator shall check that the TSS contains a high-level description of the

chain of intermediary keys (including the type and length of each key)

originating from the authorisation data and ending with the DEK.

2.1.7.1.2 Guidance Documentation

176 None.

2.1.7.1.3 KMD

177 The evaluator shall examine the KMD to verify that it describes the chain of

intermediary keys originating from the authorisation data and ending in the

DEK using methods selected in FCS_KYC_EXT. The evaluator shall ensure

that the description of the key chain demonstrates that it maintains the chain of

keys using an authorisation data submask according to FCS_CKM_EXT.5, key

 Evaluation Activities for SFRs

wrapping according to FCS_CKM.3 and uses only other selected methods in

FCS_KYC_EXT.1 in accordance with the definition of their associated SFRs.

178 The evaluator shall examine the KMD to verify that the effective strength of the

DEK (based only on key length) is maintained throughout the key chain. The

evaluator shall examine the key hierarchy to ensure that at no point could the

chain be broken without a cryptographic exhaust or knowledge of the initial

authorisation value.

179 The evaluator shall verify the KMD includes a description of the effective

strength of keys throughout the key chain.

180 The evaluator shall examine the KMD to verify that the description of the key

chain is consistent with the information given in the TSS (e.g. by examining the

description of the key chain in both places), the Operational Guidance (e.g. by

examining the description of user inputs required, any configuration options

available, and the operations available to directly or indirectly create and use

keys4), and any observations made during evaluator testing.

2.1.7.1.4 Tests

181 There are no test evaluation activities for this SFR.

2.1.8 Cryptographic Salt Generation (FCS_SLT_EXT.1)

2.1.8.1 FCS_SLT_EXT.1 Cryptographic salt generation

2.1.8.1.1 TSS

182 The evaluator shall ensure the TSS describes how salts are generated using the

RBG.

2.1.8.1.2 Guidance Documentation

183 None.

2.1.8.1.3 Tests

184 The evaluator shall confirm by testing that the salts obtained in the

cryptographic operations that use the salts are of the length specified in

FCS_SLT_EXT.1, are obtained from the RBG, and are fresh on each

invocation.

185 Note: in general these tests may be carried out as part of the tests of the relevant

cryptographic operations.

4 For example: the relationship of authorisation data validation to the decryption of the DEK should be examined

for consistency with the key chain description to check for any possible intermediate validation operations and/or

data that are not mentioned in the key chain description.

Evaluation Activities for SFRs

2.1.9 Random Bit Generation (FCS_RBG_EXT)

2.1.9.1 FCS_RBG_EXT.1 Random Bit Generation (RBG)

2.1.9.1.1 TSS

186 For any DRBG services provided by a third party, the evaluator shall ensure the

TSS includes a statement about the expected amount of entropy received from

such a source, and a full description of the processing of the output of the third-

party source. The evaluator shall verify that this statement is consistent with the

selection made in FCS_RBG_EXT.1.2 for the seeding of the DRBG. If the ST

specifies more than one DRBG, the evaluator shall examine the TSS to verify

that it identifies the usage of each DRBG mechanism.

2.1.9.1.2 Guidance Documentation

187 The evaluator shall verify that the AGD guidance instructs the administrator

how to configure the TOE to use the selected DRBG mechanism(s), if

necessary, and provides information regarding how to instantiate/call the DRBG

for RBG services needed in this cPP.

2.1.9.1.3 Tests

188 The following test is intended to be equivalent to that defined in The NIST SP

800-90A Deterministic Random Bit Generator Validation System (DRBGVS),

Updated 29 October 2015, from the National Institute of Standards and

Technology

(http://csrc.nist.gov/groups/STM/cavp/documents/drbg/DRBGVS.pdf). It is not

recommended that evaluators use values obtained from static sources such as

the sample DRBG Test Vectors on the CAVP Test site.

189 The evaluator shall verify the implementation of the Deterministic Random Bit

Generation function by running 15 tests for each combination of the following

parameters as selected in FCS_RBG_EXT.1.1 and supported by the

implementation:

• Mechanism: Hash_DRBG, HMAC_DRBG, CTR_DRBG

• Option:

• for Hash_DRBG and HMAC_DRBG: selected hash function

and size

• for CTR_DRBG: selected block cipher and whether or not a

Derivation Function (df) is used

• Prediction Resistance enabled or disabled

• Entropy input length

• Nonce length

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/DRBGVS.pdf

 Evaluation Activities for SFRs

• Personalization String length

• Additional Input length

• Returned Bits length

190 Tests with Prediction Resistance Enabled consist of the following steps:

1. Instantiate DRBG

2. Generate a first block of random bits

3. Generate a second block of random bits

4. Uninstantiate DRBG

191 For each test, the evaluator shall provide the following randomly generated

inputs:

• Entropy, Nonce, and Personalization string for step (1)

• Additional Input and Entropy for step (2)

• Additional Input and Entropy for step (3)

192 The evaluator shall use a known-good implementation to verify that the

Returned Bits output from step (3) is the result expected.

193 Tests with Prediction Resistance Disabled consist of the following steps:

1. Instantiate DRBG

2. Reseed (if the implementation supports reseed functionality)

3. Generate a first block of random bits

4. Generate a second block of random bits

5. Uninstantiate DRBG

194 For each test, the evaluator shall provide the following randomly generated

inputs:

• Entropy, Nonce, and Personalization String for step (1)

• Additional Input and Entropy for step (2) (if reseed is supported)

• Additional Input for step (3)

• Additional Input for step (4)

195 The evaluator shall use a known-good implementation to verify that the

Returned Bits output from step (4) is the result expected.

Evaluation Activities for SFRs

196 The implementation passes the DRBG test if the Returned Bits result matches

the Returned Bits from the known-good implementation.

2.2 User Data Protection (FDP)

2.2.1 Protection of User Data on Device (FDP_UDD_EXT)

2.2.1.1 FDP_UDD_EXT.1 Protection of User Data on Device

2.2.1.1.1 TSS

197 The evaluator shall examine the TSS to ensure that it describes how user data is

written to the device’s storage medium and the point at which the encryption

function is applied. The evaluator examines the TSS to confirm its justification

of why standard methods of accessing the device via the host platform’s

operating system will always pass through these functions.

198 The evaluator shall verify that the TSS describes the initialization of the TOE

and the activities the TOE performs to ensure that it encrypts the entirety of the

user data when a user first provisions the TOE. The evaluator shall verify that

the TSS describes areas of the storage medium that it does not encrypt, and

confirms that no user data is stored in those areas.

2.2.1.1.2 KMDSD

199 The evaluator shall examine the KMDSD to verify that it includes all of the

requirements for this document in [USBcPP, D].

200 The evaluator shall examine the KMDSD to verify that it provides sufficient

description of all platforms to ensure that the product encrypts all user data

storage areas. In performing this examination the evaluator shall take into

account (at least) the description of the relevant datapaths, the situations

identified in the KMDSD in which user data may be read and stored in other

parts of the TOE (e.g. as part of a caching or look-ahead strategy), and the

KMDSD rationale for why no stored unencrypted user data can survive beyond

the session in which it is written and/or read.

201 The evaluator shall examine the KMDSD to verify that it provides information

on those conditions in which data bypasses the data encryption engine (e.g. for

system data) and shall confirm that this does not include user data.

202 The evaluator shall examine the KMDSD to verify that it provides a description

of the platform’s boot initialisation, the encryption initialisation process, and at

what point the product enables the encryption. The evaluator shall confirm that

the description shows that the product does not allow for the transfer of user

data before it fully initialises the encryption.

 Evaluation Activities for SFRs

203 The evaluator shall examine the KMDSD to ensure the consistency and

accuracy of the description as judged against the TSS, the operational guidance,

and any observations made during testing.

2.2.1.1.3 Operational Guidance

204 The evaluator shall examine the AGD guidance to determine that it describes

the initial steps needed to enable all necessary cryptographic functions. The

guidance shall provide instructions that are sufficient to ensure that all user data

stored on the device will be encrypted. The evaluator shall examine the AGD

guidance to determine that user data encryption is performed without user

intervention. The user data encryption shall occur transparently to the user and

the decision to protect the data is outside the discretion of the user.

2.2.1.1.4 Test

205 The evaluator examines the tool and its documentation to confirm that it cannot

be used to compromise instances of the TOE in a real operational environment

(i.e. that they can be used only in test/diagnostic environments).

206 The evaluator shall perform the following tests:

207 Test 1: The evaluator shall utilize developer provided tools which allow

inspection of the encrypted drive, and may allow provisioning with a known

key. The evaluator shall ensure that the TOE is initialized and that the

encryption engine is ready. The evaluator shall:

1. Determine a random character pattern of at least 64 KB;

2. Retrieve information on the TOE’s lowest and highest logical address

for which encryption is enabled;

3. Write pattern to storage device in multiple locations: randomly select

several logical address locations within the device’s lowest to highest

address range and write pattern to those addresses.

4. Verify data is encrypted: engage device’s functionality for generating a

new encryption key, thus performing an erase of the key per

FCS_CKM.4. Read from the same locations at which the data was

written; compare the retrieved data to the written data and ensure they

do not match.

2.2.2 Protection of System Data on Device (FDP_SDD_EXT)

2.2.2.1 FDP_SDD_EXT.1 Protection of System Data on Device

2.2.2.1.1 TSS

208 The evaluator shall examine the TSS to ensure that it identifies the users

authorised to write to system data, and describes how system data is written to

the device’s storage medium, including the nature of the authorisation

mechanism and the point at which it is applied. The evaluator examines the TSS

Evaluation Activities for SFRs

to confirm its justification of why standard methods of accessing the device via

the host platform’s operating system will always pass through these functions.

209 The evaluator shall examine the TSS to ensure the accuracy of the description

as judged against other parts of the ST, the KMDSD, the operational guidance,

and any observations made during testing.

210 The evaluator shall verify that the TSS describes the initialisation of the TOE

and the activities the TOE performs to ensure that it protects the system data

from unauthorised access when a user first provisions the TOE.

2.2.2.1.2 KMDSD

211 The evaluator shall examine the KMDSD to verify that it provides sufficient

description of all platforms to enable the evaluator to ensure that the product

protects against unauthorised access to all system data storage areas.

212 The evaluator shall examine the KMDSD to verify that it provides a description

of the platform’s boot initialisation, and at what point the product enables the

system data protection. The evaluator shall confirm that the description shows

that the product does not allow modification of system data before it fully

initialises the access protection.

2.2.2.1.3 Operational Guidance

213 The evaluator shall check the AGD guidance to determine that system data can

only change in ways that reflect legitimate use of the device by authorised users.

The evaluator shall verify that descriptions provided in the AGD guidance

corresponds to descriptions in the TSS and the KMDSD.

2.2.2.1.4 Test

214 The evaluator shall perform the following tests:

215 Test 1: The evaluator shall initialise the TOE and before the device fully

initialises the access protection, the evaluator shall attempt to modify system

data via the host platform’s operating system.

216 Test 2: The evaluator shall not provide any authorisation data and attempt to

modify system data via the host platform’s operating system.

2.3 Identification and Authentication (FIA)

2.3.1 Authentication Failures (FIA_AFL)

2.3.1.1 FIA_AFL.1 Authentication failure handling

2.3.1.1.1 TSS

217 The evaluator shall check that the TSS identifies the maximum number of

unsuccessful authentication attempts prior to the deletion of the DEK by the

TSF. The evaluator shall also examine the TSS to determine whether the user is

 Evaluation Activities for SFRs

able to configure the limit of unsuccessful authentication attempts and, if so,

shall verify that the TSS specifies a range of acceptable values that is consistent

with FIA_AFL.1.

2.3.1.1.2 KMDSD

218 The evaluator shall examine the KMDSD to verify that it describes the methods

the TOE employs to limit the number of consecutively failed authorisation

attempts.

2.3.1.1.3 Operational Guidance

219 The evaluator shall examine the operational guidance to ensure it describes how

to configure the TOE to ensure the limits regarding validation attempts can be

established. The operational guidance shall also list a range of acceptable

values. If this value is not configurable, the limit shall simply be stated in the

guidance.

220 The evaluator shall examine the operational guidance to ensure that it clearly

alerts the user to the fact that the DEK is deleted and that therefore the encrypted

user data will be permanently inaccessible after the defined number of

unsuccessful authorisation attempts has been met.

2.3.1.1.4 Test

221 The evaluator shall perform the following test

222 Test 1: The evaluator shall confirm that the TSF will not allow to configure a

number of unsuccessful authorisation attempts that is outside of the specified

range of acceptable values. This test case is only applicable for devices that

allow configuration of the authentication failure threshold value.

223 Test 2: The evaluator shall enter invalid authorisation data so that the

documented maximum number of unsuccessful authorisation attempts is

reached. The evaluator shall verify that the encrypted user data is no longer

available on the device.

2.3.2 Passphrase support (FIA_PPS)

2.3.2.1 FIA_PPS_EXT.1 Passphrase entry interface

2.3.2.1.1 TSS

224 The evaluator shall check that the TSS describes the method of passphrase entry

on the device.

2.3.2.1.2 Operational Guidance

225 The evaluator shall examine the operational guidance to ensure that the method

of passphrase entry on the device is described. The operational guidance shall

specify if the passphrase is entered via the host software or if the TOE includes

a passphrase-entry interface. The guidance documentation shall describe all

Evaluation Activities for SFRs

passphrase entry methods in case the device support more than one passphrase

entry method/interface.

2.4 Protection of the TSF (FPT)

2.4.1 Fail secure (FPT_FLS)

2.4.1.1 FPT_FLS.1 Failure with preservation of secure state

2.4.1.1.1 TSS

226 The evaluator shall check that the TSS describes the failure conditions that

cause the TOE to enter a mute state, and that the mute state is specified as being

irreversible.

2.4.1.1.2 KMDSD

227 The evaluator shall examine the KMDSD to verify it specifies how the TOE

ensures that all data output via the data output interface is to be inhibited during

error states or self-test conditions. The evaluator shall also verify, by inspection

of the design of the TOE, that the data output interface is, in fact, logically or

physically inhibited under these conditions.

2.4.1.1.3 Operational Guidance

228 The evaluator shall verify that the operational guidance describes the method

by which the product verifies the correct operation of the TSF. The evaluator

shall verify that the operational guidance describes security-relevant events

related to the self-testing failures, such that each user knows what events may

occur and what action (if any) he may have to take in order to maintain security.

229 The evaluator shall verify that the operational guidance specifies that all data

output via the data output interface is inhibited whenever the TOE is in an error

state. The evaluator shall verify from the operational guidance that once an error

condition is detected and the error state is entered, all data output via the data

output interface is inhibited and the device enters an irreversible mute state.

Status information to identify the type of error may be allowed from the status

output interface, as long as the evaluator can verify that no CSPs, plaintext data,

or other information that if misused could lead to a compromise.

2.4.1.1.4 Test

230 The evaluator shall perform the following tests:

231 Test 1: The evaluator shall cause self-testing errors and firmware integrity test

errors during initial start-up to verify that the device preserves a secure state i.e.

enters a mute state. This test should be repeated for all different failure

conditions. The evaluator shall:

1. cause known answer self-testing and firmware integrity tests errors.

 Evaluation Activities for SFRs

2. verify that all data output via the data output interface is inhibited and

the device enters the mute state. If status information is output from the

status output interface to identify the type of error, the evaluator shall

verify that the information output is not sensitive. The evaluator shall

verify that no plaintext data, or other information that if misused could

lead to a compromise.

2.4.2 Protection of Keys and Keying Material (FPT_KYP_EXT)

2.4.2.1 FPT_KYP_EXT.1 Protection of Keys and Keying Material

2.4.2.1.1 TSS

232 The evaluator shall check the TSS to confirm that protection of keys and keying

material is described in the TSS.

2.4.2.1.2 KMDSD

233 The evaluator shall examine the KMDSD to ensure that the methods used to

protect the keys stored in non-volatile memory are described, and that this is

consistent with the description in the TSS, the Operational Guidance, and any

observations made during evaluator testing.

234 The evaluator shall examine the KMDSD to ensure that it describes the storage

location of all keys and the protection of all keys stored in non-volatile memory,

verifying that they are wrapped as specified in FCS_CKM.3 or encrypted as

specified in FCS_COP.1/KeyEnc.

235 The evaluator is reminded that plaintext keys or keying material that are not part

of the key chain for the purposes of FCS_KYC_EXT.1, and plaintext keys or

keying material that no longer provide access to the encrypted user data after

initial provisioning, do not need to be stored encrypted or wrapped in non-

volatile memory.

2.4.2.1.3 Test

236 The evaluator shall perform the following test:

237 Test 1: The evaluator shall utilize developer provided tools which allow

inspection of the encrypted drive, and may allow provisioning with a known

key. The evaluator shall ensure that the TOE is initialized and that the

encryption engine is ready. The evaluator shall ensure that keys and keying

material are stored wrapped or encrypted, i.e. keys that are part of the key chain

are not stored in plaintext.

Evaluation Activities for SFRs

2.4.3 TSF self test (FPT_TST)

2.4.3.1 FPT_TST.1 TSF testing

2.4.3.1.1 TSS

238 The evaluator shall examine the TSS to confirm that it describes the known-

answer tests for cryptographic functions and firmware integrity tests.

239 The evaluator shall examine the TSS to confirm that it describes the method by

which the product verifies the correct operation of the TSF and the integrity of

TSF data and firmware. The evaluator shall verify that the TSS indicates these

self-tests are run at start-up automatically, and do not involve any inputs from

or actions by the user.

240 The evaluator shall check that the TSS includes a description of the irreversible

mute state that the TSF enters when self-tests fail (cf. FPT_FLS.1).

2.4.3.1.2 KMDSD

241 The evaluator shall examine the KMDSD description of the initialisation

process to ensure that it identifies the point at which the self-tests are run.

2.4.3.1.3 Operational Guidance

242 The evaluator shall examine the operational guidance to ensure that the self-

tests performed during initial start-up of the device are described.

243 The user guidance shall include a description of the irreversible mute state that

the TSF enters when self-tests fail. The user guidance shall also state that the

mute state is irreversible. The evaluator shall verify that there no conditions and

actions described in the user guidance to exit the mute state and resume normal

operation.

2.4.4 Submask Validation (FPT_VAL_EXT)

2.4.4.1 FPT_VAL_EXT.1 Validation

2.4.4.1.1 TSS

244 The evaluator shall examine the TSS to check that the TSF supports a validation

mechanism for each authorisation data submask used in the key chain.

245 The evaluator shall examine the TSS to verify that the link between individual

submask validation actions and the definition of an authorisation attempt failure

for FIA_AFL.1 is described.

2.4.4.1.2 KMDSD

246 The evaluator shall examine the KMDSD to ensure that it describes how

validation is performed, to identify the validation mechanism for each

 Evaluation Activities for SFRs

authorisation data submask involved in the key chain and to verify that each

validation is performed using a method that is specified in FPT_VAL_EXT.1.

247 The evaluator shall examine the KMDSD to verify that the validation process

does not expose any material that might compromise the authorisation data

submask(s).

2.4.4.1.3 Test

248 The evaluator shall perform the following test:

249 Test 1: The evaluator shall provide an incorrect authorisation factor and ensure

that the authorisation submask validation has failed. The evaluator shall verify

that the TOE behaves as described in the TSS. The evaluator shall ensure to test

all validation mechanisms described in the KMDSD and repeat this test for

different validation methods.

250 Test 2: The evaluator shall provide a correct authorisation factor and ensure that

the authorisation submask validation has been successful. The evaluator shall

verify that the TOE behaves as described in the TSS. The evaluator shall ensure

to test all validation mechanisms described in the KMDSD and repeat this test

for different validation methods.

2.5 TOE Access (FTA)

2.5.1 TOE access authorisation (FTA_USB)

2.5.1.1 FTA_USB_EXT.1 User Authorisation

2.5.1.1.1 TSS

251 The evaluator shall check that the TSS contains a description of user

authorisation, re-authorisation, and session termination.

2.5.1.1.2 Operational Guidance

252 The evaluator shall review the operational guidance to verify that it contains

instructions for starting a session with a valid passphrase, termination of a

session by the host, and re-authorisation being required under the following

conditions:

• connection of the TOE to a host device

• recovery of a host device from a power-down or sleep state while the TOE

is connected to it

• recovery of the TOE from its own power-down or sleep state

• any other conditions identified in the assignment in FTA_USB_EXT.1.2.

Evaluation Activities for SFRs

253 The evaluator shall also review the operational guidance to verify it contains the

description of an inactivity time limit, which terminates the session by putting

the TOE into a powered-down or sleep state if exceeded.

2.5.1.1.3 Test

254 The evaluator shall perform the following tests:

255 Test 1: The evaluator shall connect the TOE to a host device and verify that

correct authorisation is required before access to the related user data.

256 Test 3: The evaluator shall verify any previous sessions have expired when the

host device has powered-down or gone into a sleep state while the TOE was still

connected. The evaluator shall verify re-authorisation is required in order to

access user data when the host device powers-up or awakes from sleep.

257 Test 4: The evaluator shall determine the inactivity time limit from the

operational guidance and verify the TOE powers down or enters a sleep state

when the inactivity time limit is reached. The evaluator shall verify any previous

sessions have expired and user data is inaccessible when the TOE itself has

powered-down or gone into a sleep state. The evaluator shall verify re-

authorisation is required when the TOE powers-up or awakes from sleep.

258 Test 5: The evaluator shall initiate session termination from the host device

using instructions provided in the operational guidance. The evaluator shall then

verify user data is inaccessible once the session has been terminated via the host.

2.6 Security Management (FMT)

2.6.1 Specification of Management Functions (FMT_SMF)

2.6.1.1 FMT_SMF.1 Specification of Management Functions

2.6.1.1.1 TSS

259 The evaluator shall examine the TSS to confirm that the management functions

included in FMT_SMF.1 are described.

2.6.1.1.2 Operational Guidance

260 The evaluation shall review the operational guidance to ensure that it contains

instructions on how to change the value of the authorisation data.

2.6.1.1.3 Test

261 The evaluator shall perform the following tests:

262 Test 1: The evaluator shall change the value of the authorisation data following

the instructions provided in the operational guidance. The evaluator shall verify

that the TOE denies access to user’s encrypted data when the evaluator uses the

old authorisation factor values to gain access.

 Evaluation Activities for SFRs

Evaluation Activities for Optional Requirements

3 Evaluation Activities for Optional
Requirements

3.1 Protection of the TSF (FPT)

3.1.1 Trusted Update (FPT_TUD_EXT)

3.1.1.1 FPT_TUD_EXT.1 Trusted Update

3.1.1.1.1 TSS

263 The evaluator shall verify that the TSS describes all TSF software update

mechanisms for updating the system software. The evaluator shall verify that

the description includes a digital signature verification of the software before

installation and that installation fails if the verification fails. The evaluator shall

verify that the TSS describes the method by which the digital signature is

verified to include how the candidate updates are obtained, the processing

associated with verifying the digital signature of the update, and the actions that

take place for both successful and unsuccessful signature verification.

3.1.1.1.2 Guidance Documentation

264 The evaluator shall verify that the guidance documentation describes how the

verification of the authenticity of the update is performed (digital signature

verification). The description shall include the procedures for successful and

unsuccessful verification. The description shall correspond to the description in

the TSS.

3.1.1.1.3 KMD

265 The evaluator shall examine the KMD to ensure the following aspects:

• KMDSD must describe how the integrity of digital signature verification

keys in the TOE is protected. In the case of ECDSA, the EC domain

parameters have to be integrity protected as well.

• KMDSD must describe how the private key was created and how it is

integrity and confidentiality protected within the development site. The

developer must state in the KMDSD that the private key is only used to

sign the TOE firmware.

• KMDSD must describe which parts of the TOE can be updated. E.g.

firmware incl. bootloader, firmware without bootloader, single files, etc.

3.1.1.1.4 Tests

266 Test 1: The evaluator performs the version verification activity to determine the

current version of the product as well as the most recently installed version

 Evaluation Activities for Optional

Requirements

(should be the same version before updating). The evaluator obtains a legitimate

update using procedures described in the guidance documentation and verifies

that it is successfully installed on the TOE. For some TOEs loading the update

onto the TOE and activation of the update are separate steps ('activation' could

be performed e.g. by a distinct activation step or by rebooting the device). In

that case the evaluator verifies after loading the update onto the TOE but before

activation of the update that the current version of the product did not change

but the most recently installed version has changed to the new product version.

After the update, the evaluator performs the version verification activity again

to verify the version correctly corresponds to that of the update and that current

version of the product and most recently installed version match again.

267 Test 2: The evaluator performs the version verification activity to determine the

current version of the product as well as the most recently installed version

(should be the same version before updating). The evaluator obtains or produces

illegitimate update as described below, and attempts to install them on the TOE.

The evaluator verifies that the TOE rejects all of the illegitimate updates. The

evaluator performs this test using all of the following forms of illegitimate

updates:

• A modified version (e.g. using a hex editor) of a legitimately signed

update. The modification must cover all parts of the update. If e.g. the

update has the following format [Header | Firmware | Signature], then

all of the three parts have to be modified independently. One

modification must be an empty signature.

• The handling of version information of the most recently installed

version might differ between different TOEs. Depending on the point in

time when the attempted update is rejected, the most recently installed

version might or might not be updated. The evaluator shall verify that

the TOE handles the most recently installed version information for that

case as described in the guidance documentation. After the TOE has

rejected the update the evaluator shall verify, that both, current version

and most recently installed version, reflect the same version information

as prior to the update attempt.

• If there are several user roles defined for the TOE the evaluator has to

examine the user guidance to identify roles authorized to initiate an

update process. He has to test that the update process fails for

unauthorized users according the guidance.

268 Test 3: The evaluator shall test if the TOE remains in a secure state after

interrupting the update process e.g. by a power outage.

Evaluation Activities for Optional Requirements

3.1.2 Trusted Update Rollback (FPT_TUR_EXT)

3.1.2.1 FPT_TUR_EXT.1 Trusted Update Rollback

3.1.2.1.1 TSS

269 The evaluator shall check the TSS to ensure that it describes any constraints on

the ability to reverse previous successful updates, or to apply earlier updates

after later updates have already been successfully applied.

3.1.2.1.2 Operational Guidance

270 The evaluator shall examine the operational guidance to confirm that it

describes how authorised users can perform rollback of previously applied

updates. The evaluator also ensures that the operational guidance describes how

the product obtains candidate rollback updates; the processing associated with

verifying the digital signature, published hash or keyed hash of the rollback

updates; and the actions that take place for successful and unsuccessful cases.

3.1.2.1.3 Test

271 The evaluator shall perform the following test:

272 Test 1: The evaluator performs the version verification activity to determine the

current firmware version of the product. The evaluator obtains a legitimate

previous firmware update using procedures described in the operational

guidance and verifies that it an update successfully installs it on the product.

The evaluator verifies that the version correctly corresponds to that of the

update. The evaluator shall perform a subset of other assurance activity tests to

demonstrate that the update functions as expected.

 Evaluation Activities for Selection-Based

Requirements

4 Evaluation Activities for Selection-Based
Requirements

4.1 Cryptographic Support (FCS)

4.1.1 Cryptographic Key Generation (FCS_CKM.1)

4.1.1.1 FCS_CKM.1/Asymm Cryptographic key generation (Asymmetric)

273 For any Identifier (AKG1-AKG3), this applies.

4.1.1.1.1 TSS

274 The evaluator shall examine the TSS to verify that it describes how the TOE

obtains a key based on input from a random bit generator as specified in

FCS_RBG_EXT.1. The evaluator shall review the TSS to verify that it

describes how the functionality described by FCS_RBG_EXT.1 is invoked. The

evaluator shall examine the TSS to verify that it identifies the usage for each

row identifier (key name, key size, standards) selected in the ST.

4.1.1.1.2 Guidance Documentation

275 The evaluator shall verify that the AGD guidance instructs the administrator

how to configure the TOE to use the selected key name(s) for all uses identified

in the ST.

4.1.1.1.3 Key Management Description (KMD)

276 If the TOE uses the generated key in a key chain/hierarchy then the evaluator

shall confirm that the KMD describes:

• If AKG1 is selected, then the KMD describes which methods for generating

p and q are used

• How the key is used as part of the key chain/hierarchy.

4.1.1.1.4 Tests

277 The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are not found on the TOE in its

evaluated configuration.

278 AKG1: RSA Key Generation

279 The below tests are derived from The 186-4 RSA Validation System (RSA2VS),

Updated 8 July 2014, Section 6.2, from the National Institute of Standards and

Technology.

280 The evaluator shall verify the implementation of RSA Key Generation by the

TOE using the Key Generation test. This test verifies the ability of the TSF to

Evaluation Activities for Selection-Based Requirements

correctly produce values for the key components including the public

verification exponent e, the private prime factors p and q, the public modulus n

and the calculation of the private signature exponent d.

281 FIPS 186-4 Key Pair generation specifies 5 methods for generating the primes

p and q.

282 These are:

1. Random Primes:

• Provable primes

• Probable primes

2. Primes with Conditions:

• Primes p1, p2, q1, q2, p and q shall all be provable primes

• Primes p1, p2, q1 and q2 shall be provable primes and p and q shall be

probable primes

• Primes p1, p2, q1, q2, p and q shall all be probable primes

283 To test the key generation method for the Random Provable primes method and

for all the Primes with Conditions methods, the evaluator must seed the TSF

key generation routine with sufficient data to deterministically generate the

RSA key pair.

284 For each key length supported, the evaluator shall have the TSF generate 25 key

pairs. The evaluator shall verify the correctness of the TSF’s implementation by

comparing values generated by the TSF with those generated by a known good

implementation using the same input parameters.

If the TOE generates Random Probable Primes then if possible, the Random

Probable primes method should also be verified against a known good

implementation as described above. If verification against a known good

implementation is not possible, the evaluator shall have the TSF generate 25

key pairs for each supported key length nlen and verify that all of the following

are true:

• n= p*q

• p and q are probably prime according to Miller-Rabin tests with error

probability < 2^(-125)

• 2^16 < e < 2^256 and e is an odd integer

• GCD(p-1,e) = 1

 Evaluation Activities for Selection-Based

Requirements

• GCD(q-1, e) = 1

• |p-q| > 2^(nlen/2 – 100)

• p >= squareroot(2)*(2^(nlen/2-1))

• q >= squareroot(2)*(2^(nlen/2-1))

• 2^(nlen/2) < d < LCM(p-1, q-1)

• e*d = 1 mod LCM(p-1, q-1)

285 AKG2 & AKG3: ECC Key Generation

286 These tests are derived from The 186-4 Elliptic Curve Digital Signature

Algorithm Validation System (ECDSA2VS), Updated 18 Mar 2014, Section 6.

287 ECC Key Generation Test

288 For each selected curve, and for each key pair generation method as described

in FIPS 186-4, section B.4, the evaluator shall require the implementation under

test to generate 10 private/public key pairs (d, Q). The private key, d, shall be

generated using a random bit generator as specified in FCS_RBG_EXT.1. The

private key, d, is used to compute the public key, Q'. The evaluator shall confirm

that 0<d<n (where n is the order of the group), and the computed value Q' is

then compared to the generated public/private key pairs' public key, Q, to

confirm that Q is equal to Q'.

289 Public Key Validation (PKV) Test

290 For each supported curve, the evaluator shall generate 12 private/public key

pairs using the key generation function of a known good implementation and

modify six of the public key values so that they are incorrect, leaving six values

unchanged (i.e., correct). To determine correctness, the evaluator shall submit

the 12 key pairs to the public key validation (PKV) function of the TOE and

shall confirm that the results correspond as expected to the modified and

unmodified values.

4.1.2 Cryptographic Key Access (FCS_CKM.3)

4.1.2.1 FCS_CKM.3/Chain Cryptographic key access (Key Wrapping)

4.1.2.1.1 TSS

291 The evaluator shall check that the TSS includes a description of the key wrap

function(s) and shall check that this uses a key wrap algorithm and key sizes

according to the specification selected in the ST out of the table as provided in

the cPP table.

Evaluation Activities for Selection-Based Requirements

4.1.2.1.2 Guidance Documentation

292 The evaluator checks the AGD documents to confirm that the instructions for

establishing the evaluated configuration use only those key wrap function(s)

selected in the ST. If multiple key access modes are supported, the evaluator

shall examine the guidance documentation to determine that the method of

choosing a specific mode/key size by the end user is described.

4.1.2.1.3 KMD

293 The evaluator shall examine the KMD to ensure that it describes when the key

wrapping occurs, that the KMD description is consistent with the description in

the TSS, and that for all keys that are wrapped the TOE uses a method as

described in the cPP table. No uncertainty should be left over which is the

wrapping key and the key to be wrapped and where the wrapping key potentially

comes from i.e. is derived from.

294 If “KW3: AES-GCM” or “KW4: AES-CCM” is used the evaluator shall

examine the KMD to ensure that it describes how the IV is generated and that

the same IV is never reused to encrypt different plaintext pairs under the same

key. Moreover in the case of GCM, he must ensure that, at each invocation of

GCM, the length of the plaintext is at most (2^32)-2 blocks.

4.1.2.1.4 Tests

295 The following tests are conditional based upon the selections made in the SFR.

The evaluator shall perform the following tests or witness respective tests

executed by the developer if technically possible, otherwise an analysis of the

implementation representation has to be performed.

296 Preconditions for testing:

• Specification of wrapping keys as input parameter to the function to be

tested

• Specification of further required input parameters if required

• Specification of keys to be wrapped (plaintext, as function’s argument)

• Direct access to wrapped key (ciphertext), e.g. in the non-volatile memory

297 KW2: AES-KW [SP 800-38F, sec. 6.2]

298 The tests below are derived from “The Key Wrap Validation System (KWVS),

Updated: June 20, 2014” from the National Institute of Standards and

Technology.

299 The evaluator shall test the authenticated-encryption functionality of AES-KW

for each combination of the following input parameters:

• Supported key lengths selected in the ST (e.g. 128 bits, 256 bits)

 Evaluation Activities for Selection-Based

Requirements

• Five plaintext lengths:

o Two lengths that are non-zero multiples of 128 bits (two

semi-block lengths)

o Two lengths that are odd multiples of the semi-block length

(64 bits)

o The largest supported plaintext length less than or equal to

4096 bits

300 For each set of the above parameters the evaluator shall generate a set of 100

key and plaintext pairs and obtain the ciphertext that results from AES-KW

authenticated encryption. To determine correctness, the evaluator shall compare

the results with those obtained from the AES-KW authenticated-encryption

function of a known good implementation.

301 The evaluator shall test the authenticated-decryption functionality of AES-KW

using the same test as for authenticated-encryption, replacing plaintext values

with ciphertext values and AES-KW authenticated-encryption (KW-AE) with

AES-KW authenticated-decryption (KW-AD). For the authenticated-

decryption test, 20 out of the 100 trials per plaintext length must have ciphertext

values that are not authentic; that is, they fail authentication.

302 Additionally, the evaluator shall perform the following negative test:

• Test 1 (invalid plaintext length):

Determine the valid plaintext lengths of the implementation from the TOE

specification. Verify that the implementation of KW-AE in the TOE rejects

plaintexts of invalid length by testing plaintext of the following lengths: 1)

plaintext length greater than 64 semi- blocks, 2) plaintext bit-length not

divisible by 64, 3) plaintext with length 0, and 4) plaintext with one semi-

block.

• Test 2 (invalid ciphertext length):

Determine the valid ciphertext lengths of the implementation from the TOE

specification. Verify that the implementation of KW-AD in the TOE rejects

ciphertexts of invalid length by testing ciphertext of the following lengths:

1) ciphertext with length greater than 65 semi-blocks, 2) ciphertext with bit-

length not divisible by 64, 3) ciphertext with length 0, 4) ciphertext with

length of one semi-block, and 5) ciphertext with length of two semi- blocks.

• Test 3 (invalid ICV1):

Test that the implementation detects invalid ICV1 values by encrypting any

plaintext value eight times using a different value for ICV1 each time as

follows: Start with a base ICV1 of 0xA6A6A6A6A6A6A6A6. For each of

the eight tests change a different byte to a different value, so that each of the

eight bytes is changed once. Verify that the implementation of KW-AD in

the TOE outputs FAIL for each test.

Evaluation Activities for Selection-Based Requirements

303 KW1: AES-KWP [SP 800-38F, sec. 6.3]

304 The tests below are derived from “The Key Wrap Validation System (KWVS),

Updated: June 20, 2014” from the National Institute of Standards and

Technology.

305 The evaluator shall test the authenticated-encryption functionality of AES-KWP

(KWP-AE) using the same test as for AES-KW authenticated-encryption with

the following change in the file plaintext lengths:

• Four lengths that are multiples of 8 bits

• The largest supported length less than or equal to 4096 bits

306 The evaluator shall test the authenticated-decryption (KWP-AD) functionality

of AES-KWP using the same test as for AES-KWP authenticated-encryption,

replacing plaintext values with ciphertext values and AES-KWP authenticated-

encryption with AES-KWP authenticated-decryption. For the Authenticated

Decryption test, 20 out of the 100 trials per plaintext length have ciphertext

values that fail authentication.

307 Additionally, the evaluator shall perform the following negative test:

• Test 1 (invalid plaintext length):

Determine the valid plaintext lengths of the implementation from the TOE

specification. Verify that the implementation of KW-AE in the TOE rejects

plaintexts of invalid length by testing plaintext of the following lengths: 1)

plaintext with length greater than 64 semi-blocks, 2) plaintext with bit-

length not divisible by 8, and 3) plaintext with length 0.

• Test 2 (invalid ciphertext length):

Determine the valid ciphertext lengths of the implementation from the TOE

specification. Verify that the implementation of KWP-AD in the TOE

rejects ciphertexts of invalid length by testing ciphertext of the following

lengths: 1) ciphertext with length greater than 65 semi-blocks, 2) ciphertext

with bit-length not divisible by 64, 3) ciphertext with length 0, and 4)

ciphertext with length of one semi-block.

• Test 3 (invalid ICV2):

Test that the implementation detects invalid ICV2 values by encrypting any

plaintext value four times using a different value for ICV2 each time as

follows: Start with a base ICV2 of 0xA65959A6. For each of the four tests

change a different byte of ICV2 to a different value, so that each of the four

bytes is changed once. Verify that the implementation of KWP-AD in the

TOE outputs FAIL for each test.

• Test 4 (invalid padding length):

 Evaluation Activities for Selection-Based

Requirements

Generate one ciphertext using algorithm KWP-AE with substring

[len(P)/8]32 of S replaced by each of the following 32-bit values, where

len(P) is the length of P in bits and []32 denotes the representation of an

integer in 32 bits:

• [0]32

• [len(P)/8-8]32

• [len(P)/8-8]32

• [513]32

Verify that the implementation of KWP-AD in the TOE outputs FAIL on

those inputs.

• Test 5 (invalid padding bits):

If the implementation supports plaintext of length not a multiple of 64-bits,

then

for each PAD length [1..7]

for each byte in PAD

set a zero PAD value;

replace current byte by a non-zero value and use the resulting

plaintext as input to algorithm KWP-AE to generate ciphertexts;

verify that the implementation of KWP-AD in the TOE outputs

FAIL on this input.

308 KW3: AES-GCM [ISO 19772, clause 11]

309 Refer to [cPP FCS_COP.1/UDE] for the required AES-GCM testing. Each

distinct AES-GCM implementation shall be tested separately.

310 KW4: AES-CCM [ISO 19772, clause 8]

311 Refer to [cPP FCS_COP.1/UDE] for the required AES-CCM testing. Each

distinct AES-CCM implementation shall be tested separately.

4.1.3 Cryptographic Key Derivation (FCS_CKM_EXT.5)

4.1.3.1 FCS_CKM_EXT.5/Chain Cryptographic key derivation

312 In order to use a NIST SP 800-108 conformant method of key derivation, the

TOE must also implement algorithms to generate the key derivation key and

KDF. The permitted methods are as follows:

• Generation of key derivation key: NIST SP 800-56A key agreement

scheme or NIST SP 800-90A DRBG

Evaluation Activities for Selection-Based Requirements

• Underlying algorithm of KDF: HMAC or CMAC

4.1.3.1.1 TSS

313 The evaluator shall check that the TSS includes a description of the key

derivation function(s) and shall check that this uses a key derivation algorithm

and key size(s) according to the specification selected in the ST out of the table

as provided in the cPP table per row.

4.1.3.1.2 Guidance Documentation

314 If a selection of key derivation functions (KDF) or parameters are supported,

the evaluator shall examine the guidance documentation to determine that the

method of choosing a specific mode/derivation function/parameter by the end

user is described.

4.1.3.1.3 KMD

315 The evaluator shall examine the KMD to ensure that:

316 The KMD describes the complete key derivation chain and the description must

be consistent with the description in the TSS. For all key derivations the TOE

must use a method as described in the cPP table. No uncertainty should be left

over about how a key is derived from another in the chain.

317 The length of the key derivation key is defined by the PRF. The evaluator should

check whether the key derivation key length is consistent with the length

provided by the selected PRF.

318 If a key is used as an input to several KDFs, each invocation must use a distinct

context string. If the output of a KDF execution is used for multiple

cryptographic keys, those keys must be disjoint segments of the output.

319 If the TOE implements Password-Based Key Derivation (KeyDrv4) then the

KMD shall describe how the TOE obtains a salt from the RBG to use in the

PBKDF.

4.1.3.1.4 Tests

320 The evaluator shall perform the following tests or witness respective tests

executed by the developer if technically possible, otherwise an analysis of the

implementation representation has to be performed.

321 Preconditions for testing:

• Specification of input parameter to the key derivation function to be tested

• Specification of further required input parameters

• Access to derived key(s)

 Evaluation Activities for Selection-Based

Requirements

322 The below tests are derived from Key Derivation using Pseudorandom

Functions (SP 800-108) Validation System (KBKDFVS), Updated 4 January

2016, Section 6.2, from the National Institute of Standards and Technology.

323 The evaluator shall perform one or more of the following tests to verify the

correctness of the key derivation function, depending on the mode(s) that are

supported:

324 KeyDrv1: Counter Mode Tests:

325 The evaluator shall determine the following characteristics of the key derivation

function:

• One or more pseudorandom functions (PRFs) that are included in the 'key

derivation algorithm' selection in the SFR, and their output lengths in bits

(h)

• One or more of the values {8, 16, 24, 32} that equal the length of the binary

representation of the counter (r), and the location of the counter relative to

the fixed input data: before, after, or in the middle. If the counter is in the

middle then the lengths of data before and after the counter must be

determined

• The ‘key size’ selections in the SFR, i.e. the lengths (in bits) of the derived

keying material (L)

326 For each supported combination of PRF, counter location, value of r, and value

of L, the evaluator shall generate 20 pseudorandom key derivation key values

(KI).

327 For each value of KI, the evaluator shall supply this data to the TOE in order to

produce the keying material output KO. The evaluator shall verify that the

resulting output matches the results from submitting the same inputs to a

known-good implementation of the key derivation function, having the same

characteristics.

328 KeyDrv2: Feedback Mode Tests:

329 The evaluator shall determine the following characteristics of the key derivation

function:

• One or more pseudorandom functions (PRFs) that are included in the 'key

derivation algorithm' selection in the SFR, and their output lengths in bits

(h)

• If the implementation includes a counter then one or more of the values {8,

16, 24, 32} that equal the length of the binary representation of the counter

(r), and the location of the counter relative to the fixed input data: before,

after, or in the middle. If the counter is in the middle then the lengths of data

before and after the counter must be determined

Evaluation Activities for Selection-Based Requirements

• The ‘key size’ selections in the SFR, i.e. the lengths (in bits) of the derived

keying material (L)

• The supported IV lengths

330 For each supported combination of PRF, counter location (if a counter is used),

value of r (if a counter is used), value of L, and IV length, the evaluator shall

generate 20 pseudorandom key derivation key values (KI).

331 For each value of KI, the evaluator shall supply this data to the TOE in order to

produce the keying material output KO. The evaluator shall verify that the

resulting output matches the results from submitting the same inputs to a

known-good implementation of the key derivation function, having the same

characteristics.

332 KeyDrv3: Double Pipeline Iteration Mode Tests:

333 The evaluator shall determine the following characteristics of the key derivation

function:

• One or more pseudorandom functions (PRFs) that are included in the 'key

derivation algorithm' selection in the SFR, and their output lengths in bits

(h)

• If the implementation includes a counter then one or more of the values {8,

16, 24, 32} that equal the length of the binary representation of the counter

(r), and the location of the counter relative to the fixed input data: before,

after, or in the middle. If the counter is in the middle then the lengths of data

before and after the counter must be determined

• The ‘key size’ selections in the SFR, i.e. the lengths (in bits) of the derived

keying material (L)

334 For each supported combination of PRF, counter location (if a counter is used),

value of r (if a counter is used), and value of L, the evaluator shall generate 20

pseudorandom key derivation key values (KI).

335 For each value of KI, the evaluator shall supply this data to the TOE in order to

produce the keying material output KO. The evaluator shall verify that the

resulting output matches the results from submitting the same inputs to a

known-good implementation of the key derivation function, having the same

characteristics.

336 KeyDrv4: Password-based Key Derivation

337 For each combination of algorithm and output key size the evaluator shall

supply 10 passphrases as input and obtain the 10 outputs from the PBKDF

performed by the TOE, along with the salt(s) used by the TOE. These 10

passphrases shall be different and shall be conformant to the passphrase

conditions defined in FIA_SOS.1 and FIA_PPS_EXT.1. The resulting output

 Evaluation Activities for Selection-Based

Requirements

shall be compared to the results from an independent implementation of the

PBKDF for the same salt and passphrase inputs.

338 KeyDrv5: Intermediate Keys Method

339 If the selected algorithm is a hash then the testing of the hash primitive is the

only required Evaluation Activity. If the selected algorithm is XOR then no

separate primitive testing is necessary (the testing is covered by Evaluation

Activities for FCS_KYC_EXT.1).

340 CMAC-AES Tests

341 These tests are intended to be equivalent to those described in the NIST

document, “The CMAC Validation System (CMACVS)”, updated 23 August

2011, found at http://csrc.nist.gov/groups/STM/cavp/documents/mac/CMACVS.pdf.

342 It is not recommended that evaluators use values obtained from static sources

such as http://csrc.nist.gov/groups/STM/cavp/documents/mac/cmactestvectors.zip or

use values not generated expressly to exercise the CMAC-AES implementation.

343 The evaluator shall test the generation-encryption and decryption-verification

functionality of CMAC-AES for the following input parameters:

• Keys: All supported and selected key sizes (e.g., 128, 256 bits).

• Message Length: Two values that are divisible by the block size of 16 bytes,

two values that are not divisible by the block size, a length of 0 (if

supported), and the maximum length supported or 2^16, whichever is

smaller.

• CMAC Length: The minimum length (1 byte), the middle length (8 bytes),

and the maximum length (16 bytes).

344 The testing for CMAC consists of two tests:

345 CMAC Generation Test

346 For each supported key size, message length, and MAC length, the evaluator

shall supply eight key-message combinations to obtain the resulting MACs. The

evaluator shall compare the resulting MACs with the result of providing the

same inputs to a known-good implementation.

347 CMAC Verification Process Test

348 For each supported key size, message length, and MAC length, the evaluator

shall supply 20 key-message-MAC combinations and determine whether the

MAC passes the verification process. The evaluator shall compare the results

with the results of providing the same inputs to a known-good implementation.

https://csrc.nist.gov/csrc/media/projects/cryptographic-algorithm-validation-program/documents/mac/cmacvs.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/mac/cmactestvectors.zip

Evaluation Activities for Selection-Based Requirements

4.1.4 Cryptographic operation (FCS_COP.1)

4.1.4.1 FCS_COP.1/KeyEnc Cryptographic operation (Key Encryption)

4.1.4.1.1 TSS

349 The evaluator shall examine the TSS to ensure that it identifies whether the

implementation of this cryptographic operation for key encryption (including

key lengths and modes) is the same as that used for user data encryption

(FCS_COP.1/UDE) or a different implementation.

4.1.4.1.2 Guidance Documentation

350 No additional activities.

4.1.4.1.3 KMD

351 The evaluator shall examine the KMD to ensure that it confirms and is

consistent with the identification of the implementation of the key encryption

operation as the same or different compared to that used for user data encryption

(FCS_COP.1/UDE).

4.1.4.1.4 Tests

352 If the implementation of the key encryption operation is the same as for the user

data encryption (FCS_COP.1/UDE) and has been tested with the same key

lengths and modes as part of the testing for user data encryption then no further

testing is required here. If the key encryption uses a different implementation,

(where “different implementation” includes the use of different ley lengths or

modes), then the evaluator shall additionally test the key encryption

implementation using the corresponding tests specified for FCS_COP.1/UDE.

4.1.4.2 FCS_COP.1/Hash Cryptographic operation (Hash Algorithm)

353 Reference: Secure Hash Algorithm Properties

Algorithm Message Size

(bits)

Block Size

(bits)

Word Size

(bits)

Message Digest

Size (bits)

SHA-1 <2^64 512 32 160

SHA-224 <2^64 512 32 224

SHA-256 <2^64 512 32 256

SHA-384 <2^128 1024 64 384

SHA-512 <2^128 1024 64 512

SHA-512/224 <2^128 1024 64 224

SHA-512/256 <2^128 1024 64 256

Table 1: SHA Properties

 Evaluation Activities for Selection-Based

Requirements

4.1.4.2.1 TSS

354 The evaluator shall check that the association of the hash function with other

TSF cryptographic functions (for example, the digital signature verification

functions) is documented in the TSS. The evaluator shall also check that the

TSS identifies whether the implementation is bit-oriented or byte-oriented.

4.1.4.2.2 Guidance Documentation

355 The evaluator checks the AGD documents to determine that any configuration

that is required to configure the required hash sizes is present. The evaluator

also checks the AGD documents to confirm that the instructions for establishing

the evaluated configuration use only those hash algorithms selected in the ST.

4.1.4.2.3 Tests

356 The tests below are derived from “The Secure Hash Algorithm Validation

System (SHAVS), Updated: May 21, 2014” from the National Institute of

Standards and Technology.

357 The TSF hashing functions can be implemented with one of two orientations.

The first is a byte-oriented implementation: this hashes messages that are an

integral number of bytes in length (i.e., the length (in bits) of the message to be

hashed is divisible by 8). The second is a bit-oriented implementation: this

hashes messages of arbitrary length. Separate tests for each orientation are given

below.

358 The evaluator shall perform all of the following tests for each hash algorithm

and orientation implemented by the TSF and used to satisfy the requirements of

this PP. The evaluator shall compare digest values produced by a known-good

SHA implementation against those generated by running the same values

through the TSF.

359 Short Messages Test, Bit-oriented Implementation

360 The evaluators devise an input set consisting of m+1 messages, where m is the

block length of the hash algorithm in bits (see SHA Properties Table). The

length of the messages ranges sequentially from 0 to m bits. The message text

shall be pseudo-randomly generated. The evaluators compute the message

digest for each of the messages and ensure that the correct result is produced

when the messages are provided to the TSF.

361 Short Messages Test, Byte-oriented Implementation

362 The evaluators devise an input set consisting of m/8+1 messages, where m is the

block length of the hash algorithm in bits (see SHA Properties Table). The

length of the messages ranges sequentially from 0 to m/8 bytes, with each

message being an integral number of bytes. The message text shall be pseudo-

randomly generated. The evaluators compute the message digest for each of the

messages and ensure that the correct result is produced when the messages are

provided to the TSF.

Evaluation Activities for Selection-Based Requirements

363 Selected Long Messages Test, Bit-oriented Implementation

364 The evaluators devise an input set consisting of m messages, where m is the

block length of the hash algorithm in bits (see SHA Properties Table). The

length of the ith message is m + 99*i, where 1 ≤ i ≤ m. The message text shall

be pseudo-randomly generated. The evaluators compute the message digest for

each of the messages and ensure that the correct result is produced when the

messages are provided to the TSF.

365 Selected Long Messages Test, Byte-oriented Implementation

366 The evaluators devise an input set consisting of m/8 messages, where m is the

block length of the hash algorithm in bits (see SHA Properties Table). The

length of the ith message is m + 8*99*i, where 1 ≤ i ≤ m/8. The message text

shall be pseudo-randomly generated. The evaluators compute the message

digest for each of the messages and ensure that the correct result is produced

when the messages are provided to the TSF.

367 Pseudo-randomly Generated Messages Test

368 The evaluators randomly generate a seed that is n bits long, where n is the length

of the message digest produced by the hash function to be tested. The evaluators

then formulate a set of 100 messages and associated digests by following the

algorithm provided in Figure 1 of SHAVS, section 6.4. The evaluators then

ensure that the correct result is produced when the messages are provided to the

TSF.

4.1.4.3 FCS_COP.1/HMAC Cryptographic operation (Keyed Hash)

4.1.4.3.1 TSS

369 The evaluator shall examine the TSS to ensure that it specifies the following

values used by the HMAC function: output MAC length used.

4.1.4.3.2 Guidance Documentation

370 No additional activities.

4.1.4.3.3 Tests

371 This test is derived from The Keyed-Hash Message Authentication Code

Validation System (HMACVS). Updated 6 May 2016.

372 The evaluator shall provide 15 sets of messages and keys for each selected hash

algorithm and hash length/key size/MAC size combination. The evaluator shall

have the TSF generate HMAC tags for these sets of test data. The evaluator shall

verify that the resulting HMAC tags match the results from submitting the same

inputs to a known-good implementation of the HMAC function, having the

same characteristics.

 Evaluation Activities for Selection-Based

Requirements

4.1.4.4 FCS_COP.1/SigVer Cryptographic operation (Signature Verification)

4.1.4.4.1 TSS

373 The evaluator shall check the TSS to ensure that it describes the overall flow of

the signature verification. This should at least include identification of the

format and general location (e.g., "firmware on the hard drive device" rather

than “memory location 0x00007A4B") of the data to be used in verifying the

digital signature; how the data received from the operational environment are

brought onto the device; and any processing that is performed that is not part of

the digital signature algorithm (for instance, checking of certificate revocation

lists).

4.1.4.4.2 Guidance Documentation

374 No additional activities.

4.1.4.4.3 Tests

375 Each section below contains tests the evaluators must perform for each selected

digital signature scheme. Based on the assignments and selections in the

requirement, the evaluators choose the specific activities that correspond to

those selections.

376 The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are not found on the TOE in its

evaluated configuration.

377 SigVer1: RSASSA-PKCS1-v1_5 and SigVer4: RSASSA-PSS

378 These tests are derived from The 186-4 RSA Validation System (RSA2VS),

updated 8 Jul 2014, Section 6.4.

379 The FIPS 186-4 RSA Signature Verification Test tests the ability of the TSF to

recognize valid and invalid signatures. The evaluator shall provide a modulus

and three associated key pairs (d, e) for each combination of selected modulus

size and hash size. Each private key d is used to sign six pseudorandom

messages each of 1024 bits. For five of the six messages, the public key (e),

message, IR format, padding, or signature is altered so that signature

verification should fail. The test passes only if all the signatures made using

unaltered parameters result in successful signature verification, and all the

signatures made using altered parameters result in unsuccessful signature

verification.

380 SigVer5: ECDSA on NIST and Brainpool Curves

381 These tests are derived from The FIPS 186-4 Elliptic Curve Digital Signature

Algorithm Validation System (ECDSA2VS), updated 18 Mar 2014, Section 6.5.

382 The FIPS 186-4 ECC Signature Verification Test tests the ability of the TSF to

recognize valid and invalid signatures. The evaluator shall provide a modulus

and associated key pair (x, y) for each combination of selected curve, modulus

Evaluation Activities for Selection-Based Requirements

size, and hash size. Each private key (x) is used to sign 15 pseudorandom

messages of 1024 bits. For eight of the fifteen messages, the message, IR format,

padding, or signature is altered so that signature verification should fail. The

test passes only if all the signatures made using unaltered parameters result in

successful signature verification, and all the signatures made using altered

parameters result in unsuccessful signature verification.

383 SigVer2: Digital Signature Scheme 2

384 The following or equivalent steps shall be taken to test the TSF.

385 For each supported modulus size, underlying hash algorithm, and length of the

trailer field (1- or 2-byte), the evaluator shall generate NT sets or recoverable

message (M1), non-recoverable message (M2), salt, public key and Signature

().

3. NT shall be greater than or equal to 20.

4. The length of salts shall be selected from its supported length range of

salt. The typical length of salt is equal to the output block length of

underlying hash algorithm (see 9.2.2 of ISO/IEC 9796-2:2010).

5. The length of recoverable messages should be selected by considering

modulus size, output block length of underlying hash algorithm, and

length of salt (LS). As described in Annex D of ISO/IEC 9796-2:2010, it

is desirable to maximise the length of recoverable message. The

following table shows the maximum bit-length of recoverable message

which is divisible by 512, for some combinations of modulus size,

underlying hash algorithm, and length of salt.

Maximum length

of recoverable

message divisible

by 512 (bits)

Modulus size

(bits)

Underlying hash

algorithm (bits)

Length of salt LS

(bits)

1536 2048 SHA-256 128

1024 256

1024 SHA-512 128

1024 256

512 512

2560 3072 SHA-256 128

2048 256

2048 SHA-512 128

2048 256

1536 512

Note that 2-byte trailer field is assumed in calculating the maximum length of

recoverable message.

 Evaluation Activities for Selection-Based

Requirements

Table 2: SigVer2 Test Lengths

6. The length of non-recoverable messages should be selected by

considering the underlying hash algorithm and usage(s). If the TSF is

used for verifying the authenticity of software/firmware updates, the

length of non-recoverable messages should be selected greater than or

equal to 2048-bit. With this length range, it means that the underlying

hash algorithm is also tested for two or more input blocks.

7. The evaluator shall select approximately one half of NT sets and shall

alter one of the values (non-recoverable message, public key exponent

or signature) in the sets. In altering public key exponent, the evaluator

shall alter the public key exponent while keeping the exponent odd. In

altering signatures, the following ways should be considered:

i. Altering a signature just by replacing a bit in the bit-string

representation of the signature

ii. Altering a signature so that the trailer in the message

representative cannot be interpreted. This can be achieved by

following ways:

⎯ Setting the rightmost four bits of the message representative

to the values other than ‘1100’.

⎯ In the case when 1-byte trailer is used, setting the rightmost

byte of the message representative to the values other than

‘0xbc’, while keeping the rightmost four bits to ‘1100’.

⎯ In the case when 2-byte trailer is used, setting the rightmost

byte of the message representative to the values other than

‘0xcc’, while keeping the rightmost four bits to ‘1100’.

iii. In the case when 2-byte trailer is used, altering a signature so that

the hash algorithm identifier in the trailer (i.e. the left most byte

of the trailer) does not correspond to hash algorithm(s) identified

in the SFR. The hash algorithm identifiers are 0x34 for SHA-256

(see Clause 10 of ISO/IEC 10118-3:2004), and 0x35 for SHA-

512 (see Clause 11 of ISO/IEC 10118-3:2004).

iv. Let LS be the length of salt, altering a signature so that the

intermediate bit string D in the message representative is set to

all zeros except for the rightmost LS bits of D.

v. (non-conformant signature length) altering a signature so that the

length of signature is changed to modulus size and the most

significant bit of signature is set equal to ‘1’.

vi. (non-conformant signature) altering a signature so that the

integer converted from signature is greater than modulus n.

Evaluation Activities for Selection-Based Requirements

386 The evaluator shall supply the NT sets to the TSF and obtain in response a set of

NT Verification-Success or Verification-Fail values. When the Verification-

Success is obtained, the evaluator shall also obtain recovered Message (M1*).

387 The evaluator shall verify the Verification-Success results correspond to the

unaltered sets and Verification-Fail results correspond to the altered sets.

388 For each recovered message, the evaluator shall compare the recovered message

(M1*) with the corresponding recoverable message (M1) in the unaltered sets.

389 The test passes only if all the signatures made using unaltered sets result in

Verification-Success, each recovered message (M1*) is equal to corresponding

M1 in the unaltered sets, and all the signatures made using altered sets result in

Verification-Fail.

390 SigVer3: Digital Signature Scheme 3

391 The evaluator shall perform the test described in SigVer2: Digital Signature

Scheme 2 while using a fixed salt for NT sets.

4.1.5 Random Bit Generation (FCS_RBG_EXT)

4.1.5.1 FCS_RBG_EXT.2 Random Bit Generation (External Seeding)

4.1.5.1.1 TSS

392 The evaluator will verify that the TSS documents the types of noise sources

selected in FCS_RBG_EXT.2.1 and indicates the minimum amount of min-

entropy provided by these sources. If this SFR is iterated, the evaluator shall

check that the TSS indicates the purpose for each entropy source (e.g.,

initialization or reseed) and that the output from these entropy sources is not

later combined into a single seed.

4.1.5.1.2 Guidance Documentation

393 The evaluator will check that the Operational Guidance describes any settings,

operational requirements, or user input necessary for the proper function of the

noise sources.

4.1.5.1.3 Entropy Documentation and Assessment (EAR)

394 The developer shall produce documentation and the evaluator shall perform

evaluation activities in accordance with Appendix D.1: Entropy Documentation

and Assessment. When multiple noise sources are used to provide the minimum

amount of min-entropy, the Entropy Documentation must demonstrate that

entropy from each of these individual sources is generated independently.

 Evaluation Activities for Selection-Based

Requirements

4.1.5.2 FCS_RBG_EXT.3 Random Bit Generation (Internal Seeding Single
Source)

4.1.5.2.1 TSS

395 The evaluator will verify that the TSS documents the types of noise sources

selected in FCS_RBG_EXT.3.1 and indicates the minimum amount of min-

entropy provided by these sources. If this SFR is iterated, the evaluator shall

check that the TSS indicates the purpose for each entropy source (e.g.,

initialization or reseed) and that the output from these entropy sources is not

later combined into a single seed.

4.1.5.2.2 Guidance Documentation

396 The evaluator will check that the Operational Guidance describes any settings,

operational requirements, or user input necessary for the proper function of the

noise sources.

4.1.5.2.3 Entropy Documentation and Assessment (EAR)

397 The developer shall produce documentation and the evaluator shall perform

evaluation activities in accordance with Appendix D.1: Entropy Documentation

and Assessment. When multiple noise sources are used to provide the minimum

amount of min-entropy, the Entropy Documentation must demonstrate that

entropy from each of these individual sources is generated independently.

4.1.5.2.4 Entropy Documentation and Assessment (EAR)

398 The developer shall produce documentation and the evaluator shall perform

evaluation activities in accordance with Appendix XX: Entropy Documentation

and Assessment. When multiple noise sources are used to provide the minimum

amount of min-entropy, the Entropy Documentation must demonstrate that

entropy from each of these individual sources is generated independently.

4.1.5.3 FCS_RBG_EXT.4 Random Bit Generation (Internal Seeding Multiple
Sources)

4.1.5.3.1 TSS

399 The evaluator will verify that the TSS documents the types of noise sources

selected in FCS_RBG_EXT.4.1 and indicates the minimum amount of min-

entropy provided by these sources. If this SFR is iterated, the evaluator shall

check that the TSS indicates the purpose for each entropy source (e.g.,

initialization or reseed) and that the output from these entropy sources is not

later combined into a single seed.

4.1.5.3.2 Guidance Documentation

400 The evaluator will check that the Operational Guidance describes any settings,

operational requirements, or user input necessary for the proper function of the

noise sources.

Evaluation Activities for Selection-Based Requirements

4.1.5.3.3 Entropy Documentation and Assessment (EAR)

401 The developer shall produce documentation and the evaluator shall perform

evaluation activities in accordance with Appendix D.1: Entropy Documentation

and Assessment. When multiple noise sources are used to provide the minimum

amount of min-entropy, the Entropy Documentation must demonstrate that

entropy from each of these individual sources is generated independently.

4.1.5.4 FCS_RBG_EXT.5 Random Bit Generation (Combining Noise
Sources)

4.1.5.4.1 TSS

402 The evaluator will verify that the TSS documents the types of noise sources

selected in FCS_RBG_EXT.5.1 and indicates the minimum amount of min-

entropy provided by these sources. If this SFR is iterated, the evaluator shall

check that the TSS indicates the purpose for each entropy source (e.g.,

initialization or reseed) and that the output from these entropy sources is not

later combined into a single seed.

4.1.5.4.2 Guidance Documentation

403 The evaluator will check that the Operational Guidance describes any settings,

operational requirements, or user input necessary for the proper function of the

noise sources.

4.1.5.4.3 Entropy Documentation and Assessment (EAR)

404 The developer shall produce documentation and the evaluator shall perform

evaluation activities in accordance with Appendix D.1: Entropy Documentation

and Assessment. When multiple noise sources are used to provide the minimum

amount of min-entropy, the Entropy Documentation must demonstrate that

entropy from each of these individual sources is generated independently.

4.2 Identification and Authentication (FIA)

4.2.1 Passphrase support (FIA_PPS_EXT)

4.2.1.1 FIA_PPS_EXT.2/num Passphrase composition - numeric

4.2.1.1.1 TSS

405 The evaluator shall examine the TSS to ensure that it describes the manner in

which the TOE enforces the composition of passphrases, including the length,

and requirements on characters.

 Evaluation Activities for Selection-Based

Requirements

4.2.1.1.2 Operational Guidance

406 The evaluator shall examine the operational guidance to ensure it provides

guidance on the composition of passphrases, including the length, and

requirements on characters.

4.2.1.1.3 Test

407 The evaluator shall perform the following test:

408 Test 1: The evaluator shall compose two types of passphrases - those

specifically designed to meet the requirements and others designed to fail. For

each passphrase, the evaluator shall verify that the TOE mechanism rejects the

passphrase if it contains less than 8 characters. While the evaluator is not

required (nor is it feasible) to test all possible compositions of passphrases, the

evaluator shall ensure that the minimum and maximum length listed in the

requirement is supported, and justify the subset of those characters chosen for

testing.

4.2.1.2 FIA_PPS_EXT.2/alph Passphrase composition - alphanumeric

4.2.1.2.1 TSS

409 The evaluator shall examine the TSS to ensure that it describes the manner in

which the TOE enforces the composition of passphrases, including the length,

and requirements on characters.

4.2.1.2.2 Operational Guidance

410 The evaluator shall examine the operational guidance to ensure it provides

guidance on the composition of passphrases, including the length, and

requirements on characters.

4.2.1.2.3 Test

411 The evaluator shall perform the following test:

412 Test 1: The evaluator shall compose two types of passphrases - those

specifically designed to meet the requirements and others designed to fail. For

each passphrase, the evaluator shall verify that the TOE mechanism rejects the

passphrase if it contains less than 8 characters. While the evaluator is not

required (nor is it feasible) to test all possible compositions of passphrases, the

evaluator shall ensure that the minimum and maximum length listed in the

requirement is supported, and justify the subset of those characters chosen for

testing.

Evaluation Activities for Selection-Based Requirements

4.2.2 User authentication (FIA_UAU)

4.2.2.1 FIA_UAU.7 Protected authentication feedback

4.2.2.1.1 TSS

413 The evaluator shall check that the TSS describes how the TOE obscures

feedback while authorisation on the device is in progress.

4.2.2.1.2 Test

414 The evaluator shall perform the following test for each method of authorisation

allowed on the device:

415 Test 1: The evaluator shall enter authorisation data on the TOE. While making

this attempt, the evaluator shall verify that any feedback provided is obscured

while entering the authorisation data.

4.3 Security Management (FMT)

4.3.1 Specification of Management Functions (FMT_SMF)

4.3.1.1 FMT_SMF.1 Specification of Management Functions

4.3.1.1.1 TSS

416 The evaluator shall examine the TSS to determine that management functions

included in FMT_SMF are described.

4.3.1.1.2 Operational Guidance

417 The evaluation shall review the operational guidance to ensure that it contains

instructions on how the authorised user can:

• define a user configurable number of unsuccessful authentication attempts

• disable data recovery mechanism

• enable data recovery mechanism and then generate the new DEK as

specified in FCS_CKM.1

• query the current version of the TOE firmware/software

• initiate updates to the TOE firmware/software

4.3.1.1.3 Test

418 The evaluator shall perform the following tests:

419 Test 1: (optional)The evaluator shall set a valid number of unsuccessful

authentication attempts within the range of acceptable values using instruction

 Evaluation Activities for Selection-Based

Requirements

provided in the operational guidance and verify that configuration was

successful. This test is not applicable for devices that do not allow users to

configure a number of unsuccessful authentication attempts.

420 Test 2: (optional) The evaluator shall set an invalid number of unsuccessful

authentication attempts using instruction provided in the operational guidance

and verify that configuration was unsuccessful. The evaluator shall set numbers

that are greater than and less than the number in the accepted range. This test is

not applicable for devices that do not allow users to configure a number of

unsuccessful authentication attempts.

421 Test 3: (optional) The evaluator shall define a user configurable number of

unsuccessful authentication attempts within a range of acceptable values

defined in FIA_AFL.1. The evaluator shall enter invalid authorisation factor the

configured number of times to verify that the encrypted user data is no longer

accessible to the users. This test is not applicable for devices that do not allow

users to configure a number of unsuccessful authentication attempts.

422 Test 4: (optional) The evaluator shall disable the data recovery mechanism and

verify that the data on the device could not be recovered. This test is not

applicable for devices that do not provide data recovery mechanism.

423 Test 5: (optional) The evaluator shall enable data recovery mechanism. In order

to ensure that the new DEK has been generated. The evaluator shall try to access

use data that was previously stored on the device. This test is not applicable for

devices that do not provide data recovery mechanism.

Evaluation Activities for SARs

5 Evaluation Activities for SARs

424 The sections below specify EAs for the Security Assurance Requirements

(SARs) included in the related cPPs. The EAs in Section 2 (Evaluation

Activities for SFRs), Section 3 (Evaluation Activities for Optional

Requirements), and Section 4 (Evaluation Activities for Selection-Based

Requirements) are an interpretation of the more general CEM assurance

requirements as they apply to the specific technology area of the TOE.

425 In this section, each SAR that is contained in the cPP is listed, and the EAs that

are not associated with an SFR are captured here, or a reference is made to the

CEM, and the evaluator is expected to perform the CEM work units.

5.1 ASE: Security Target Evaluation

426 When evaluating a Security Target, the evaluator performs the work units as

presented in the CEM. In addition, the evaluator ensures the content of the TSS

in the ST satisfies the EAs specified in Section 2 (Evaluation Activities for

SFRs).

5.2 ADV: Development

5.2.1 Basic Functional Specification (ADV_FSP.1)

427 The EAs for this assurance component focus on understanding the interfaces

(e.g., application programming interfaces, command line interfaces, graphical

user interfaces, network interfaces) described in the AGD documentation, and

possibly identified in the TOE Summary Specification (TSS) in response to the

SFRs. Specific evaluator actions to be performed against this documentation are

identified (where relevant) for each SFR in Section 2 (Evaluation Activities for

SFRs) and in EAs for AGD, ATE and AVA SARs in other parts of Section 5.

428 The EAs presented in this section address the CEM work units ADV_FSP.1-1,

ADV_FSP.1-2, ADV_FSP.1-3, and ADV_FSP.1-5.

429 The EAs are reworded for clarity and interpret the CEM work units such that

they will result in more objective and repeatable actions by the evaluator. The

EAs in this SD are intended to ensure the evaluators are consistently performing

equivalent actions.

430 The documents to be examined for this assurance component in an evaluation

are therefore the Security Target, AGD documentation, and any required

supplementary information required by the cPP: no additional “functional

specification” documentation is necessary to satisfy the EAs. The interfaces that

need to be evaluated are also identified by reference to the EAs listed for each

SFR, and are expected to be identified in the context of the Security Target,

AGD documentation, and any required supplementary information defined in

the cPP rather than as a separate list specifically for the purposes of CC

evaluation. The direct identification of documentation requirements and their

 Evaluation Activities for SARs

assessment as part of the EAs for each SFR also means that the tracing required

in ADV_FSP.1.2D (work units ADV_FSP.1-4, ADV_FSP.1-6 and

ADV_FSP.1-7 is treated as implicit and no separate mapping information is

required for this element.

CEM ADV_FSP.1 Work Units Evaluation Activities

ADV_FSP.1-1 The evaluator shall

examine the functional

specification to determine that it

states the purpose of each SFR-

supporting and SFR-enforcing

TSFI.

5.2.1.1 Evaluation Activity: The evaluator

shall examine the interface documentation

to ensure it describes the purpose and

method of use for each TSFI that is

identified as being security relevant.

ADV_FSP.1-2 The evaluator shall

examine the functional

specification to determine that the

method of use for each SFR-

supporting and SFR-enforcing TSFI

is given.

5.2.1.2 Evaluation Activity: The evaluator

shall examine the interface documentation

to ensure it describes the purpose and

method of use for each TSFI that is

identified as being security relevant.

ADV_FSP.1-3 The evaluator shall

examine the presentation of the

TSFI to determine that it identifies

all parameters associated with each

SFR-enforcing and SFR supporting

TSFI.

5.2.1.3 Evaluation Activity: The evaluator

shall check the interface documentation to

ensure it identifies and describes the

parameters for each TSFI that is identified

as being security relevant.

ADV_FSP.1-4 The evaluator shall

examine the rationale provided by

the developer for the implicit

categorisation of interfaces as SFR-

non-interfering to determine that it

is accurate.

Paragraph 561 from the CEM: “In the case

where the developer has provided adequate

documentation to perform the analysis

called for by the rest of the work units for

this component without explicitly

identifying SFR-enforcing and SFR-

supporting interfaces, this work unit should

be considered satisfied.”

Since the rest of the ADV_FSP.1 work

units will have been satisfied upon

completion of the EAs, it follows that this

work unit is satisfied as well.

ADV_FSP.1-5 The evaluator shall

check that the tracing links the

SFRs to the corresponding TSFIs.

5.2.1.4 Evaluation Activity: The evaluator

shall examine the interface documentation

to develop a mapping of the interfaces to

SFRs.

ADV_FSP.1-6 The evaluator shall

examine the functional

specification to determine that it is

EAs that are associated with the SFRs in

Section 2, and, if applicable, Sections 3

Evaluation Activities for SARs

a complete instantiation of the

SFRs.

and 4, are performed to ensure that all the

SFRs where the security functionality is

externally visible (i.e., at the TSFI) are

covered. Therefore, the intent of this work

unit is covered.

ADV_FSP.1-7 The evaluator shall

examine the functional

specification to determine that it is

an accurate instantiation of the

SFRs.

EAs that are associated with the SFRs in

Section 2, and, if applicable, Sections 3 and

4, are performed to ensure that all the SFRs

where the security functionality is

externally visible (i.e., at the TSFI) are

addressed, and that the description of the

interfaces is accurate with respect to the

specification captured in the SFRs.

Therefore, the intent of this work unit is

covered.

Table 3: Mapping of ADV_FSP.1 CEM Work Units to Evaluation Activities

5.2.1.1 Evaluation Activity

431 The evaluator shall examine the interface documentation to ensure it describes

the purpose and method of use for each TSFI that is identified as being security

relevant.

432 In this context, TSFI are deemed security relevant if they are used by the

administrator to configure the TOE, or to perform other administrative functions

(e.g., audit review or performing updates). Additionally, those interfaces that

are identified in the ST, or guidance documentation, as adhering to the security

policies (as presented in the SFRs), are also considered security relevant. The

intent, is that these interfaces will be adequately tested, and having an

understanding of how these interfaces are used in the TOE is necessary to ensure

proper test coverage is applied.

433 The set of TSFI that are provided as evaluation evidence are contained in the

Administrative Guidance and User Guidance.

5.2.1.2 Evaluation Activity

434 The evaluator shall check the interface documentation to ensure it identifies and

describes the parameters for each TSFI that is identified as being security

relevant.

5.2.1.3 Evaluation Activity

435 The evaluator shall examine the interface documentation to develop a mapping

of the interfaces to SFRs.

436 The evaluator uses the provided documentation and first identifies, and then

examines a representative set of interfaces to perform the EAs presented in

 Evaluation Activities for SARs

Section 2 (Evaluation Activities for SFRs), including the EAs associated with

testing of the interfaces.

437 It should be noted that there may be some SFRs that do not have an interface

that is explicitly “mapped” to invoke the desired functionality. For example,

generating a random bit string, destroying a cryptographic key that is no longer

needed, or the TSF failing to a secure state, are capabilities that may be specified

in SFRs, but are not invoked by an interface.

438 However, if the evaluator is unable to perform some other required EA because

there is insufficient design and interface information, then the evaluator is

entitled to conclude that an adequate functional specification has not been

provided, and hence that the verdict for the ADV_FSP.1 assurance component

is a ‘fail’.

5.3 AGD: Guidance Documents

439 It is not necessary for a TOE to provide separate documentation to meet the

individual requirements of AGD_OPE and AGD_PRE. Although the EAs in

this section are described under the traditionally separate AGD families, the

mapping between the documentation provided by the developer and the

AGD_OPE and AGD_PRE requirements may be many-to-many, as long as all

requirements are met in documentation that is delivered to administrators and

users (as appropriate) as part of the TOE.

5.3.1 Operational User Guidance (AGD_OPE.1)

440 The evaluator performs the CEM work units associated with the AGD_OPE.1

SAR. Specific requirements and EAs on the guidance documentation are

identified (where relevant) in the individual EAs for each SFR.

441 In addition, the evaluator performs the EAs specified below.

5.3.1.1 Evaluation Activity

442 The evaluator shall ensure the Operational guidance documentation is

distributed to administrators and users (as appropriate) as part of the TOE, so

that there is a reasonable guarantee that administrators and users are aware of

the existence and role of the documentation in establishing and maintaining the

evaluated configuration.

5.3.1.2 Evaluation Activity

443 The evaluator shall ensure that the Operational guidance is provided for every

Operational Environment that the product supports as claimed in the Security

Target and shall adequately address all platforms claimed for the TOE in the

Security Target.

Evaluation Activities for SARs

5.3.1.3 Evaluation Activity

444 The evaluator shall ensure that the Operational guidance contains instructions

for configuring any cryptographic engine associated with the evaluated

configuration of the TOE. It shall provide a warning to the administrator that

use of other cryptographic engines was not evaluated nor tested during the CC

evaluation of the TOE.

5.3.1.4 Evaluation Activity

445 The evaluator shall ensure the Operational guidance makes it clear to an

administrator which security functionality and interfaces have been assessed

and tested by the EAs.

5.3.2 Preparative Procedures (AGD_PRE.1)

446 The evaluator performs the CEM work units associated with the AGD_PRE.1

SAR. Specific requirements and EAs on the preparative documentation are

identified (and where relevant are captured in the Guidance Documentation

portions of the EAs) in the individual EAs for each SFR.

447 Preparative procedures are distributed to administrators and users (as

appropriate) as part of the TOE, so that there is a reasonable guarantee that

administrators and users are aware of the existence and role of the

documentation in establishing and maintaining the evaluated configuration.

448 In addition, the evaluator performs the EAs specified below.

5.3.2.1 Evaluation Activity

449 The evaluator shall examine the Preparative procedures to ensure they include

a description of how the administrator verifies that the operational environment

can fulfil its role to support the security functionality (including the

requirements of the Security Objectives for the Operational Environment

specified in the Security Target).

450 The documentation should be in an informal style and should be written with

sufficient detail and explanation that they can be understood and used by the

target audience (which will typically include IT staff who have general IT

experience but not necessarily experience with the TOE product itself).

5.3.2.2 Evaluation Activity

451 The evaluator shall examine the Preparative procedures to ensure they are

provided for every Operational Environment that the product supports as

claimed in the Security Target and shall adequately address all platforms

claimed for the TOE in the Security Target.

 Evaluation Activities for SARs

5.3.2.3 Evaluation Activity

452 The evaluator shall examine the preparative procedures to ensure they include

instructions to successfully install the TSF in each Operational Environment.

5.3.2.4 Evaluation Activity

453 The evaluator shall examine the preparative procedures to ensure they include

instructions to manage the security of the TSF as a product and as a component

of the larger operational environment.

5.4 ALC: Life-cycle Support

5.4.1 Labelling of the TOE (ALC_CMC.1)

454 When evaluating that the TOE has been provided and is labelled with a unique

reference, the evaluator performs the work units as presented in the CEM.

5.4.2 TOE CM coverage (ALC_CMS.1)

455 When evaluating the developer’s coverage of the TOE in their CM system, the

evaluator performs the work units as presented in the CEM.

5.5 ATE: Tests

5.5.1 Independent Testing – Conformance (ATE_IND.1)

456 The focus of the testing is to confirm that the requirements specified in the SFRs

are being met. Additionally, testing is performed to confirm the functionality

described in the TSS, as well as the dependencies on the Operational guidance

documentation is accurate.

457 The evaluator performs the CEM work units associated with the ATE_IND.1

SAR. Specific testing requirements and EAs are captured for each SFR in

Section 2: Evaluation Activities for SFRs.

5.6 AVA: Vulnerability Assessment

5.6.1 Vulnerability Survey (AVA_VAN.1)

458 While vulnerability analysis is inherently a subjective activity, a minimum level

of analysis can be defined and some measure of objectivity and repeatability (or

at least comparability) can be imposed on the vulnerability analysis process. In

order to achieve such objectivity and repeatability it is important that the

evaluator follows a set of well-defined activities, and documents their findings

so others can follow their arguments and come to the same conclusions as the

evaluator. While this does not guarantee that different evaluation facilities will

identify exactly the same type of vulnerabilities or come to exactly the same

conclusions, the approach defines the minimum level of analysis and the scope

of that analysis, and provides Certification Bodies a measure of assurance that

the minimum level of analysis is being performed by the evaluation facilities.

Evaluation Activities for SARs

459 In order to meet these goals some refinement of the AVA_VAN.1 CEM work

units is needed. The following table indicates, for each work unit in

AVA_VAN.1, whether the CEM work unit is to be performed as written, or if

it has been clarified by an Evaluation Activity. If clarification has been

provided, a reference to this clarification is provided in the table.

CEM AVA_VAN.1 Work Units Evaluation Activities

AVA_VAN.1-1 The evaluator shall

examine the TOE to determine that

the test configuration is consistent

with the configuration under

evaluation as specified in the ST.

The evaluator shall perform the CEM

activity as specified.

AVA_VAN.1-2 The evaluator shall

examine the TOE to determine that

it has been installed properly and is

in a known state

The evaluator shall perform the CEM

activity as specified.

AVA_VAN.1-3 The evaluator shall

examine sources of information

publicly available to identify

potential vulnerabilities in the TOE.

Replace CEM work unit with activities

outlined in Appendix A, Section A.1

AVA_VAN.1-4 The evaluator shall

record in the ETR the identified

potential vulnerabilities that are

candidates for testing and

applicable to the TOE in its

operational environment.

Replace the CEM work unit with the

analysis activities on the list of potential

vulnerabilities in Appendix A, Section A.1,

and documentation as specified in

Appendix A, Section A.3.

AVA_VAN.1-5 The evaluator shall

devise penetration tests, based on

the independent search for potential

vulnerabilities.

Replace the CEM work unit with the

activities specified in Appendix A, Section

A.2.

AVA_VAN.1-6 The evaluator shall

produce penetration test

documentation for the tests based

on the list of potential

vulnerabilities in sufficient detail to

enable the tests to be repeatable.

The test documentation shall

include:

a) identification of the potential

vulnerability the TOE is being

tested for;

b) instructions to connect and setup

all required test equipment as

The CEM work unit is captured in

Appendix A, Section A.3; there are no

substantive differences.

 Evaluation Activities for SARs

required to conduct the penetration

test;

c) instructions to establish all

penetration test prerequisite initial

conditions;

d) instructions to stimulate the TSF;

e) instructions for observing the

behaviour of the TSF;

f) descriptions of all expected

results and the necessary analysis to

be performed on the observed

behaviour for comparison against

expected results;

g) instructions to conclude the test

and establish the necessary post-test

state for the TOE.

AVA_VAN.1-7 The evaluator shall

conduct penetration testing.

The evaluator shall perform the CEM

activity as specified. See Appendix A,

Section A.3, paragraph 508 for guidance

related to attack potential for confirmed

flaws.

AVA_VAN.1-8 The evaluator shall

record the actual results of the

penetration tests.

The evaluator shall perform the CEM

activity as specified.

AVA_VAN.1-9 The evaluator shall

report in the ETR the evaluator

penetration testing effort, outlining

the testing approach, configuration,

depth and results.

Replace the CEM work unit with the

reporting called for in Appendix A, Section

A.3.

AVA_VAN.1-10 The evaluator

shall examine the results of all

penetration testing to determine that

the TOE, in its operational

environment, is resistant to an

attacker possessing a Basic attack

potential.

This work unit is not applicable for Type 1

and Type 2 flaws (as defined in Appendix

A, Sections A.1.1 and A.1.2), as inclusion

in this Supporting Document by the iTC

makes any confirmed vulnerabilities

stemming from these flaws subject to an

attacker possessing a Basic attack potential.

This work unit is replaced for Type 3 and

Type 4 flaws by the activities defined in

Appendix A, Section A.3, paragraph 508.

AVA_VAN.1-11 The evaluator

shall report in the ETR all

exploitable vulnerabilities and

residual vulnerabilities, detailing

for each:

a) its source (e.g. CEM activity

being undertaken when it was

Replace the CEM work unit with the

reporting called for in Appendix A, Section

A.3.

Evaluation Activities for SARs

conceived, known to the evaluator,

read in a publication);

b) the SFR(s) not met;

c) a description;

d) whether it is exploitable in its

operational environment or not (i.e.

exploitable or residual).

e) the amount of time, level of

expertise, level of knowledge of the

TOE, level of opportunity and the

equipment required to perform the

identified vulnerabilities, and the

corresponding values using the

tables 3 and 4 of Annex B.4.

Table 4: Mapping of AVA_VAN.1 CEM Work Units to Evaluation Activities

460 Because of the level of detail required for the evaluation activities, the bulk of

the instructions are contained in Appendix A, while an “outline” of the

assurance activity is provided below.

5.6.1.1 Evaluation Activity (Documentation):

461 The developer shall provide documentation identifying the list of software and

hardware components that compose the TOE. Hardware components apply to

all systems claimed in the ST, and should identify at a minimum the processors

used by the TOE. Software components include any libraries used by the TOE,

such as cryptographic libraries. This additional documentation is merely a list

of the name and version number of the components, and will be used by the

evaluators in formulating hypotheses during their analysis.

462 The evaluator shall examine the documentation outlined below provided by the

vendor to confirm that it contains all required information. This documentation

is in addition to the documentation already required to be supplied in response

to the EAs listed previously.

463 In addition to the activities specified by the CEM in accordance with Table 2

above, the evaluator shall perform the following activities.

5.6.1.2 Evaluation Activity

464 The evaluator formulates hypotheses in accordance with process defined in

Appendix A.1. The evaluator documents the flaw hypotheses generated for the

TOE in the report in accordance with the guidelines in Appendix A.3. The

evaluator shall perform vulnerability analysis in accordance with Appendix A.2.

The results of the analysis shall be documented in the report according to

Appendix A.3.

 Required Supplementary Information

6 Required Supplementary Information

465 This Supporting Document refers in various places to the possibility that

‘required supplementary information’ may need to be supplied as part of the

deliverables for an evaluation. This term is intended to describe information that

is not necessarily included in the Security Target or operational guidance, and

that may not necessarily be public.

466 The USP cPP requires an entropy analysis ([USBcPP, D.1]), and a Key

Management and Data Storage Description ([USBcPP, D.2]). The evaluation

activities that the evaluator is to perform with those documents are captured

under the appropriate SFRs in sections 2-5.

References

7 References

[CC1] Common Criteria for Information Technology Security

Evaluation, Part 1: Introduction and General Model

CCMB-2017-04-001, Version 3.1 Revision 5, April 2017

[CC2] Common Criteria for Information Technology Security

Evaluation,

Part 2: Security Functional Components,

CCMB-2017-04-002, Version 3.1 Revision 5, April

2017

[CC3] Common Criteria for Information Technology Security

Evaluation,

Part 3: Security Assurance Components,

CCMB-2017-04-003, Version 3.1 Revision 5, April 2017

[CEM] Common Methodology for Information Technology

Security Evaluation, CCMB-2017-04-004, Version 3.1,

Revision 5, April 2017

[USBcPP] collaborative Protection Profile for USB Portable

Storage Devices, version 1.0, December 2019

 Appendixes

Appendixes

Vulnerability Analysis

A. Vulnerability Analysis

A.1 Sources of vulnerability information

467 CEM Work Unit AVA_VAN.1-3 has been supplemented in this Supporting

Document to provide a better-defined set of flaws to investigate and procedures

to follow based on this particular technology. Terminology used is based on the

flaw hypothesis methodology, where the evaluation team hypothesizes flaws

and then either proves or disproves those flaws (a flaw is equivalent to a

“potential vulnerability” as used in the CEM). Flaws are categorized into four

“types” depending on how they are formulated:

1. A list of flaw hypotheses applicable to the technology described by the cPP

derived from public sources as documented in Section A.1.1—this fixed set

has been agreed to by the iTC. Additionally, this will be supplemented with

entries for a set of public sources (as indicated below) that are directly

applicable to the TOE or its identified components (as defined by the

process in Section A.1.1 below); this is to ensure that the evaluators include

in their assessment applicable entries that have been discovered since the

cPP was published;

2. A list of flaw hypotheses contained in this document that are derived from

lessons learned specific to that technology and other iTC input (that might

be derived from other open sources and vulnerability databases, for

example) as documented in Section A.1.2;

3. A list of flaw hypotheses derived from information available to the

evaluators; this includes the baseline evidence provided by the vendor

described in this Supporting Document (documentation associated with

EAs, documentation described in Section 5.6.1.1, documentation described

in Section 6), as well as other information (public and/or based on evaluator

experience) as documented in Section A.1.3; and

4. A list of flaw hypotheses that are generated through the use of iTC-defined

tools (e.g., nmap, protocol testers) and their application is specified in

section A.1.4.

A.1.1 Type 1 Hypotheses—Public-Vulnerability-based

468 The following list of public sources of vulnerability information was selected

by the iTC:

469 The Common Vulnerabilities and Exposures database at

http://cve.mitre.org/cve. The same database is also available at

https://nvd.nist.gov.

470 The list of sources above was searched with the following search terms:

471 “USB”, “flash drive”, “USB drive”, “USB flash”.

472 It should be noted that any attacks on the communication between the USB

device and the host computer, or using the host computer, are out of scope since

the protected data is available as plaintext here.

http://cve.mitre.org/cve
https://nvd.nist.gov/

 Appendixes

473 In order to supplement this list, the evaluators shall also perform a search on the

sources listed above to determine a list of potential flaw hypotheses that are

more recent that the publication date of the cPP, and those that are specific to

the TOE and its components as specified by the additional documentation

mentioned above. Any duplicates – either in a specific entry, or in the flaw

hypothesis that is generated from an entry from the same or a different source –

can be noted and removed from consideration by the evaluation team.

474 As part of type 1 flaw hypothesis generation for the specific components of the

TOE, the evaluator shall also search the component manufacturer’s websites to

determine if flaw hypotheses can be generated on this basis (for instance, if

security patches have been released for the version of the component being

evaluated, the subject of those patches may form the basis for a flaw

hypothesis).

475 The Common Vulnerabilities and Exposures database at

http://cve.mitre.org/cve should be searched for occurrences of the name and

version of the USB controller and the cryptographic library used in the device.

Any vulnerabilities found, that are applicable to the implemented versions of

these components, shall be presented as flaw hypotheses.

A.1.2 Type 2 Hypotheses—iTC-Sourced

476 The following list of flaw hypothesis generated by the iTC for this technology

must be considered by the evaluation team as flaw hypotheses in performing the

vulnerability assessment.

477 Flaw hypothesis type 2 number 1

478 Hypothesis:

479 Plaintext, key material, and intermediate results from DEK decryption may be

left in persistent memory, or in powered volatile storage (if there is a power

source in the device). Both when the device is unplugged prematurely and after

the read/write operations have been completed need to be considered.

480 In combination with one of the potential flaws below, or by physically

connecting to memory circuits in the device, plaintext, key material or

intermediate DEK decryption results can be extracted.

481 Flaw hypothesis type 2 number 2

482 Hypothesis:

483 There may be a privileged interface left available, that provides easy access to

firmware, configuration parameters, key material and user data in the memory

areas in the device. Possible examples could be debug interfaces, JTAG or

similar.

484 This potential flaw could be exploited to change the configuration to allow

unlimited password attempts, which would make it feasible to stage a brute

http://cve.mitre.org/cve

Vulnerability Analysis

force attack against the password. It could also be exploited to extract encrypted

DEK and data to perform a brute force attack against the password outside the

device.

485 Flaw hypothesis type 2 number 3

486 Hypothesis:

487 It may be possible to update the firmware in the device through the USB

interface, which enables an attacker to extract the encrypted DEK and the

encrypted user data and perform an unlimited brute force attack against the

password outside the device (the updated firmware itself can also perform the

brute force attack within the device).

488 Flaw hypothesis type 2 number 4

489 Hypothesis:

490 There may exist exploitable buffer overflow vulnerabilities in the firmware, that

could provide access to firmware, configuration parameters, key material and

user data in the memory areas in the device.

491 This potential flaw could be used to change the configuration to allow unlimited

password attempts, which would make it feasible to stage a brute force attack

against the password. It could also be used to extract encrypted DEK and data

to perform a brute force attack against the password outside the device.

492 If the evaluators discover a Type 3 or Type 4 flaw that they believe should be

considered as a Type 2 flaw in future versions of this cPP, they should work

with their Certification Body to determine the appropriate means of submitting

the flaw for consideration by the iTC.

A.1.3 Type 3 Hypotheses—Evaluation-Team-Generated

493 Type 3 flaws are formulated by the evaluator based on information presented

by the product (through on-line help, product documentation and user guides,

etc.) and product behaviour during the (functional) testing activities. The

evaluator is also free to formulate flaws that are based on material that is not

part of the baseline evidence (e.g., information gleaned from an Internet mailing

list, or reading interface documentation on interfaces not included in the set

provided by the developer), although such activities have the potential to vary

significantly based upon the product and evaluation facility performing the

analysis.

494 If the evaluators discover a Type 3 flaw that they believe should be considered

as a Type 2 flaw in future versions of this cPP, they should work with their

Certification Body to determine the appropriate means of submitting the flaw

for consideration by the iTC.

 Appendixes

A.1.4 Type 4 Hypotheses—Tool-Generated

495 No need for a tool based search for vulnerabilities is foreseen by the iTC.

496 If the evaluators discover a Type 4 flaw that they believe should be considered

as a Type 2 flaw in future versions of this cPP, they should work with their

Certification Body to determine the appropriate means of submitting the flaw

for consideration by the iTC.

A.2 Process for Evaluator Vulnerability Analysis

497 As flaw hypotheses are generated from the activities described above, the

evaluation team will disposition them; that is, attempt to prove, disprove, or

determine the non-applicability of the hypotheses. This process is as follows.

498 The evaluator will refine each flaw hypothesis for the TOE and attempt to

disprove it using the information provided by the developer or through

penetration testing. During this process, the evaluator is free to interact directly

with the developer to determine if the flaw exists, including requests to the

developer for additional evidence (e.g., detailed design information,

consultation with engineering staff); however, the CB should be included in

these discussions. Should the developer object to the information being

requested as being not compatible with the overall level of the evaluation

activity/cPP and cannot provide evidence otherwise that the flaw is disproved,

the evaluator prepares an appropriate set of materials as follows:

• the source documents used in formulating the hypothesis, and why it

represents a potential compromise against a specific TOE function;

• an argument why the flaw hypothesis could not be proven or disproved by

the evidence provided so far;

• the type of information required to investigate the flaw hypothesis further.

499 The Certification Body (CB) will then either approve or disapprove the request

for additional information. If approved, the developer provides the requested

evidence to disprove the flaw hypothesis (or, of course, acknowledge the flaw).

500 For each hypothesis, the evaluator will note whether the flaw hypothesis has

been successfully disproved, successfully proven to have identified a flaw, or

requires further investigation. It is important to have the results documented as

outlined in Section A.3 below.

501 If the evaluator finds a flaw, the evaluator must report these flaws to the

developer. All reported flaws must be addressed as follows:

502 If the developer confirms that the flaw exists and that it is exploitable at Basic

Attack Potential, then a change is made by the developer, and the resulting

resolution is agreed by the evaluator and noted as part of the evaluation report.

Vulnerability Analysis

503 If the developer, the evaluator, and the CB agree that the flaw is exploitable

only above Basic Attack Potential and does not require resolution for any other

reason, then no change is made and the flaw is noted as a residual vulnerability

in the CB-internal report (ETR).

504 If the developer and evaluator agree that the flaw is exploitable only above Basic

Attack Potential, but it is deemed critical to fix because of technology-specific

or cPP-specific aspects such as typical use cases or operational environments,

then a change is made by the developer, and the resulting resolution is agreed

by the evaluator and noted as part of the evaluation report.

505 Disagreements between evaluator and vendor regarding questions of the

existence of a flaw, its attack potential, or whether it should be deemed critical

to fix are resolved by the CB.

506 Any testing performed by the evaluator shall be documented in the test report

as outlined in Section A.3 below.

507 As indicated in Section A.3, Reporting, the public statement with respect to

vulnerability analysis that is performed on TOEs conformant to the cPP is

constrained to coverage of flaws associated with Types 1 and 2 (defined in

Sections A.1.1 and A.1.2) flaw hypotheses only. The fact that the iTC generates

these candidate hypotheses indicates these must be addressed.

508 For flaws of Types 3 and 4, each CB is responsible for determining what

constitutes Basic Attack Potential for the purposes of determining whether a

flaw is exploitable in the TOE’s environment. The determination criteria shall

be documented in the CB-internal report as specified in Section A.3. As this is

a per-CB activity, no public claims are made with respect to the resistance of a

particular TOE against flaws of Types 3 and 4; rather, the claim is that the

activities outlined in this appendix were carried out, and the evaluation team

and CB agreed that any residual vulnerabilities are not exploitable by an attacker

with Basic Attack Potential.

A.3 Reporting

509 The evaluators shall produce two reports on the testing effort; one that is public-

facing (that is, included in the non-proprietary evaluation report, which is a

subset of the Evaluation Technical Report (ETR)), and the complete ETR that

is delivered to the overseeing CB.

510 The public-facing report contains:

• The flaw identifiers returned when the procedures for searching public

sources were followed according to instructions in the Supporting

Document per Section A.1.1;

• A statement that the evaluators have examined the Type 1 flaw hypotheses

specified in this Supporting Document in section A.1.1 (i.e. the flaws listed

in the previous bullet) and the Type 2 flaw hypotheses specified in this

Supporting Document by the iTC in Section A.1.2.

 Appendixes

• A statement that the evaluation team developed Types 3 and 4 flaw

hypotheses in accordance with Sections A.1.3, A.1.4, and A.2, and that no

residual vulnerabilities exist that are exploitable by attackers with Basic

Attack Potential as defined by the CB in accordance with the guidance in

the CEM. It should be noted that this is just a statement about the “fact of”

Types 3 and 4 flaw hypotheses being developed, and that no specifics about

the number of flaws, the flaws themselves, or the analysis pertaining to those

flaws will be included in the public-facing report.

511 No other information is provided in the public-facing report.

512 The internal CB report contains, in addition to the information in the public-

facing report:

• a list of all of the flaw hypotheses generated (cf. AVA_VAN.1-4);

• the evaluator penetration testing effort, outlining the testing approach,

configuration, depth and results (cf. AVA_VAN.1-9);

• all documentation used to generate the flaw hypotheses (in identifying the

documentation used in coming up with the flaw hypotheses, the evaluation

team must characterize the documentation so that a reader can determine

whether it is strictly required by this Supporting Document, and the nature

of the documentation (design information, developer engineering

notebooks, etc.));

• the evaluator shall report all exploitable vulnerabilities and residual

vulnerabilities, detailing for each:

• its source (e.g. CEM activity being undertaken when it was

conceived, known to the evaluator, read in a publication);

• the SFR(s) not met;

• a description;

• whether it is exploitable in its operational environment or not

(i.e. exploitable or residual).

• the amount of time, level of expertise, level of knowledge of the

TOE, level of opportunity and the equipment required to perform

the identified vulnerabilities (cf. AVA_VAN.1-11);

• how each flaw hypothesis was resolved (this includes whether the original

flaw hypothesis was confirmed or disproved, and any analysis relating to

whether a residual vulnerability is exploitable by an attacker with Basic

Attack Potential) (cf. AVA_VAN1-10); and

• in the case that actual testing was performed in the investigation (either as

part of flaw hypothesis generation using tools specified by the iTC in

Section A.1.4, or in proving/disproving a particular flaw) the steps followed

Vulnerability Analysis

in setting up the TOE (and any required test equipment); executing the test;

post-test procedures; and the actual results (to a level of detail that allow

repetition of the test, including the following:

• identification of the potential vulnerability the TOE is being

tested for;

• instructions to connect and setup all required test equipment as

required to conduct the penetration test;

• instructions to establish all penetration test prerequisite initial

conditions;

• instructions to stimulate the TSF;

• instructions for observing the behaviour of the TSF;

• descriptions of all expected results and the necessary analysis to

be performed on the observed behaviour for comparison against

expected results;

• instructions to conclude the test and establish the necessary post-

test state for the TOE. (cf. AVA_VAN.1-6, AVA_VAN.1-8).

 Appendixes

B. Equivalency Considerations

B.1 Introduction

513 This appendix provides a foundation for evaluators to determine whether a

vendor’s request for equivalency of products is allowed.

514 For the purpose of this evaluation, equivalency can be broken into two

categories:

• Variations in models: Separate TOE models/variations may include

differences that could necessitate separate testing across each model. If

there are no variations in any of the categories listed below, the models may

be considered equivalent.

• Variations in TOE dependencies on the environment (e.g., OS/platform

the product is tested on): The method a TOE provides functionality (or

the functionality itself) may vary depending upon the environment on which

it is installed. If there is no difference in the TOE-provided functionality or

in the manner in which the TOE provides the functionality, the models may

be considered equivalent.

515 Determination of equivalency for each of the above specified categories can

result in several different testing outcomes.

516 If a set of TOE are determined to be equivalent, testing may be performed on a

single variation of the TOE. However, if the TOE variations have security-

relevant functional differences, each of the TOE models that exhibits either

functional or structural differences must be separately tested. Generally

speaking, only the difference between each variation of TOE must be separately

tested. Other equivalent functionality may be tested on a representative model

and not across multiple platforms.

517 If it is determined that a TOE operates the same regardless of the environment,

testing may be performed on a single instance for all equivalent configurations.

However, if the TOE is determined to provide environment-specific

functionality, testing must take place in each environment for which a difference

in functionality exists. Similar to the above scenario, only the functionality

affected by environment differences must be retested.

518 If a vendor disagrees with the evaluator’s assessment of equivalency, the

Scheme arbitrates between the two parties whether equivalency exists.

Equivalency Considerations

B.2 Evaluator guidance for determining equivalence

B.2.1 Strategy

519 When performing the equivalency analysis, the evaluator should consider each

factor independently. A factor may be any number of things at various levels of

abstraction, ranging from the processor a device uses, to the underlying

operating system and hardware platform a software application relies upon.

Examples may be the various chip sets employed by the product, the type of

network interface (different device drivers), storage media (solid state drive,

spinning disk, EEPROM). It is important to consider how the difference in these

factors may influence the TOE’s ability to enforce the SFRs. Each analysis of

an individual factor will result in one of two outcomes:

• For the particular factor, all variations of the TOE on all supported

platforms are equivalent. In this case, testing may be performed on a single

model in a single test environment and cover all supported models and

environments.

• For the particular factor, a subset of the product has been identified to

require separate testing to ensure that it operates identically to all other

equivalent TOEs. The analysis would identify the specific combinations of

models/testing environments that needed to be tested.

520 Complete CC testing of the product would encompass the totality of each

individual analysis performed for each of the identified factors.

B.3 Test presentation/Truth in advertising

521 In addition to determining what to test, the evaluation results and resulting

validation report must identify the actual module and testing environment

combinations that have been tested. The analysis used to determine the testing

subset may be considered proprietary and will only optionally be publicly

included.

 Appendixes

C. Public Vulnerability Sources

522 The following sources of public vulnerabilities are sources for the iTC to

consider in both formulating the specific list of flaws to be investigated by the

evaluators, as well as to reference in directing the evaluators to perform key-

word searches during the evaluation of a specific TOE.

• Search Common Vulnerabilities and Exposures: http://cve.mitre.org/cve/

• Search Core Security Technologies: http://www.coresecurity.com

• Search eEye Digital Security:

http://blog.beyondtrust.com/zd_threat?status=zeroday

• Search Exploit / Vulnerability Search Engine: www.exploitsearch.net

• Conduct SecurITeam Exploit Search: www.securiteam.com

• Search SecurityTracker: www.securitytracker.com

• Search VUPEN Security, formerly FrSIRT: www.vupen.com

• Conduct Google search: www.google.com

• Search McAfee Threat Intelligence http://www.mcafee.com/us/mcafee-

labs/threat-intelligence.aspx

• Search Open Source Vulnerability Database http://osvdb.org/

• Search Secwatch Advisories & Exploits

https://securitynewsportal.com/index.shtml

• Search Symantec http://www.symantec.com/security_response/

• Search Tenable Network Security

http://nessus.org/plugins/index.php?view=search

• Tipping Point Zero Day Initiative

http://www.zerodayinitiative.com/advisories

• Search US-CERT http://www.kb.cert.org/vuls/html/search

• Search Vigil@nce http://vigilance.fr/

	1 Introduction
	1.1 Technology Area and Scope of Supporting Document
	1.2 Structure of the Document
	1.3 Terminology
	1.3.1 Glossary
	1.3.2 Acronyms

	2 Evaluation Activities for SFRs
	2.1 Cryptographic Support (FCS)
	2.1.1 Introduction
	2.1.1.1 Application of the Evaluation Activity document
	2.1.1.2 Evaluation Activity Notes applicable to all SFRs

	2.1.2 Cryptographic Key Generation (FCS_CKM.1)
	2.1.2.1 FCS_CKM.1/DEK Cryptographic key generation (DEK)
	2.1.2.1.1 TSS
	2.1.2.1.2 Guidance Documentation
	2.1.2.1.3 Key Management Description (KMD)
	2.1.2.1.4 Tests

	2.1.3 Cryptographic Key Access (FCS_CKM.3)
	2.1.3.1 FCS_CKM.3/DEK Cryptographic key access (Key Wrapping)
	2.1.3.1.1 TSS
	2.1.3.1.2 Guidance Documentation
	2.1.3.1.3 KMD
	2.1.3.1.4 Tests

	2.1.4 Cryptographic Key Destruction (FCS_CKM.4)
	2.1.4.1 FCS_CKM.4 Cryptographic key destruction
	2.1.4.1.1 TSS
	2.1.4.1.2 Guidance Documentation
	2.1.4.1.3 KMD
	2.1.4.1.4 Tests

	2.1.5 Cryptographic Key Derivation (FCS_CKM_EXT.5)
	2.1.5.1 FCS_CKM_EXT.5/KEK Cryptographic key derivation (Cryptographic Authorisation Data Conditioning)
	2.1.5.1.1 TSS
	2.1.5.1.2 Guidance Documentation
	2.1.5.1.3 KMD
	2.1.5.1.4 Tests

	2.1.6 Cryptographic Operation (FCS_COP.1)
	2.1.6.1 FCS_COP.1/UDE Cryptographic operation (AES User Data Encryption/ Decryption)
	2.1.6.1.1 TSS
	2.1.6.1.2 Guidance Documentation
	2.1.6.1.3 KMD
	2.1.6.1.4 Test

	2.1.7 Cryptographic Key Chaining (FCS_KYC_EXT.1)
	2.1.7.1 FCS_KYC_EXT.1 Cryptographic key chaining
	2.1.7.1.1 TSS
	2.1.7.1.2 Guidance Documentation
	2.1.7.1.3 KMD
	2.1.7.1.4 Tests

	2.1.8 Cryptographic Salt Generation (FCS_SLT_EXT.1)
	2.1.8.1 FCS_SLT_EXT.1 Cryptographic salt generation
	2.1.8.1.1 TSS
	2.1.8.1.2 Guidance Documentation
	2.1.8.1.3 Tests

	2.1.9 Random Bit Generation (FCS_RBG_EXT)
	2.1.9.1 FCS_RBG_EXT.1 Random Bit Generation (RBG)
	2.1.9.1.1 TSS
	2.1.9.1.2 Guidance Documentation
	2.1.9.1.3 Tests

	2.2 User Data Protection (FDP)
	2.2.1 Protection of User Data on Device (FDP_UDD_EXT)
	2.2.1.1 FDP_UDD_EXT.1 Protection of User Data on Device
	2.2.1.1.1 TSS
	2.2.1.1.2 KMDSD
	2.2.1.1.3 Operational Guidance
	2.2.1.1.4 Test

	2.2.2 Protection of System Data on Device (FDP_SDD_EXT)
	2.2.2.1 FDP_SDD_EXT.1 Protection of System Data on Device
	2.2.2.1.1 TSS
	2.2.2.1.2 KMDSD
	2.2.2.1.3 Operational Guidance
	2.2.2.1.4 Test

	2.3 Identification and Authentication (FIA)
	2.3.1 Authentication Failures (FIA_AFL)
	2.3.1.1 FIA_AFL.1 Authentication failure handling
	2.3.1.1.1 TSS
	2.3.1.1.2 KMDSD
	2.3.1.1.3 Operational Guidance
	2.3.1.1.4 Test

	2.3.2 Passphrase support (FIA_PPS)
	2.3.2.1 FIA_PPS_EXT.1 Passphrase entry interface
	2.3.2.1.1 TSS
	2.3.2.1.2 Operational Guidance

	2.4 Protection of the TSF (FPT)
	2.4.1 Fail secure (FPT_FLS)
	2.4.1.1 FPT_FLS.1 Failure with preservation of secure state
	2.4.1.1.1 TSS
	2.4.1.1.2 KMDSD
	2.4.1.1.3 Operational Guidance
	2.4.1.1.4 Test

	2.4.2 Protection of Keys and Keying Material (FPT_KYP_EXT)
	2.4.2.1 FPT_KYP_EXT.1 Protection of Keys and Keying Material
	2.4.2.1.1 TSS
	2.4.2.1.2 KMDSD
	2.4.2.1.3 Test

	2.4.3 TSF self test (FPT_TST)
	2.4.3.1 FPT_TST.1 TSF testing
	2.4.3.1.1 TSS
	2.4.3.1.2 KMDSD
	2.4.3.1.3 Operational Guidance

	2.4.4 Submask Validation (FPT_VAL_EXT)
	2.4.4.1 FPT_VAL_EXT.1 Validation
	2.4.4.1.1 TSS
	2.4.4.1.2 KMDSD
	2.4.4.1.3 Test

	2.5 TOE Access (FTA)
	2.5.1 TOE access authorisation (FTA_USB)
	2.5.1.1 FTA_USB_EXT.1 User Authorisation
	2.5.1.1.1 TSS
	2.5.1.1.2 Operational Guidance
	2.5.1.1.3 Test

	2.6 Security Management (FMT)
	2.6.1 Specification of Management Functions (FMT_SMF)
	2.6.1.1 FMT_SMF.1 Specification of Management Functions
	2.6.1.1.1 TSS
	2.6.1.1.2 Operational Guidance
	2.6.1.1.3 Test

	3 Evaluation Activities for Optional Requirements
	3.1 Protection of the TSF (FPT)
	3.1.1 Trusted Update (FPT_TUD_EXT)
	3.1.1.1 FPT_TUD_EXT.1 Trusted Update
	3.1.1.1.1 TSS
	3.1.1.1.2 Guidance Documentation
	3.1.1.1.3 KMD
	3.1.1.1.4 Tests

	3.1.2 Trusted Update Rollback (FPT_TUR_EXT)
	3.1.2.1 FPT_TUR_EXT.1 Trusted Update Rollback
	3.1.2.1.1 TSS
	3.1.2.1.2 Operational Guidance
	3.1.2.1.3 Test

	4 Evaluation Activities for Selection-Based Requirements
	4.1 Cryptographic Support (FCS)
	4.1.1 Cryptographic Key Generation (FCS_CKM.1)
	4.1.1.1 FCS_CKM.1/Asymm Cryptographic key generation (Asymmetric)
	4.1.1.1.1 TSS
	4.1.1.1.2 Guidance Documentation
	4.1.1.1.3 Key Management Description (KMD)
	4.1.1.1.4 Tests

	4.1.2 Cryptographic Key Access (FCS_CKM.3)
	4.1.2.1 FCS_CKM.3/Chain Cryptographic key access (Key Wrapping)
	4.1.2.1.1 TSS
	4.1.2.1.2 Guidance Documentation
	4.1.2.1.3 KMD
	4.1.2.1.4 Tests

	4.1.3 Cryptographic Key Derivation (FCS_CKM_EXT.5)
	4.1.3.1 FCS_CKM_EXT.5/Chain Cryptographic key derivation
	4.1.3.1.1 TSS
	4.1.3.1.2 Guidance Documentation
	4.1.3.1.3 KMD
	4.1.3.1.4 Tests

	4.1.4 Cryptographic operation (FCS_COP.1)
	4.1.4.1 FCS_COP.1/KeyEnc Cryptographic operation (Key Encryption)
	4.1.4.1.1 TSS
	4.1.4.1.2 Guidance Documentation
	4.1.4.1.3 KMD
	4.1.4.1.4 Tests

	4.1.4.2 FCS_COP.1/Hash Cryptographic operation (Hash Algorithm)
	4.1.4.2.1 TSS
	4.1.4.2.2 Guidance Documentation
	4.1.4.2.3 Tests

	4.1.4.3 FCS_COP.1/HMAC Cryptographic operation (Keyed Hash)
	4.1.4.3.1 TSS
	4.1.4.3.2 Guidance Documentation
	4.1.4.3.3 Tests

	4.1.4.4 FCS_COP.1/SigVer Cryptographic operation (Signature Verification)
	4.1.4.4.1 TSS
	4.1.4.4.2 Guidance Documentation
	4.1.4.4.3 Tests

	4.1.5 Random Bit Generation (FCS_RBG_EXT)
	4.1.5.1 FCS_RBG_EXT.2 Random Bit Generation (External Seeding)
	4.1.5.1.1 TSS
	4.1.5.1.2 Guidance Documentation
	4.1.5.1.3 Entropy Documentation and Assessment (EAR)

	4.1.5.2 FCS_RBG_EXT.3 Random Bit Generation (Internal Seeding Single Source)
	4.1.5.2.1 TSS
	4.1.5.2.2 Guidance Documentation
	4.1.5.2.3 Entropy Documentation and Assessment (EAR)
	4.1.5.2.4 Entropy Documentation and Assessment (EAR)

	4.1.5.3 FCS_RBG_EXT.4 Random Bit Generation (Internal Seeding Multiple Sources)
	4.1.5.3.1 TSS
	4.1.5.3.2 Guidance Documentation
	4.1.5.3.3 Entropy Documentation and Assessment (EAR)

	4.1.5.4 FCS_RBG_EXT.5 Random Bit Generation (Combining Noise Sources)
	4.1.5.4.1 TSS
	4.1.5.4.2 Guidance Documentation
	4.1.5.4.3 Entropy Documentation and Assessment (EAR)

	4.2 Identification and Authentication (FIA)
	4.2.1 Passphrase support (FIA_PPS_EXT)
	4.2.1.1 FIA_PPS_EXT.2/num Passphrase composition - numeric
	4.2.1.1.1 TSS
	4.2.1.1.2 Operational Guidance
	4.2.1.1.3 Test

	4.2.1.2 FIA_PPS_EXT.2/alph Passphrase composition - alphanumeric
	4.2.1.2.1 TSS
	4.2.1.2.2 Operational Guidance
	4.2.1.2.3 Test

	4.2.2 User authentication (FIA_UAU)
	4.2.2.1 FIA_UAU.7 Protected authentication feedback
	4.2.2.1.1 TSS
	4.2.2.1.2 Test

	4.3 Security Management (FMT)
	4.3.1 Specification of Management Functions (FMT_SMF)
	4.3.1.1 FMT_SMF.1 Specification of Management Functions
	4.3.1.1.1 TSS
	4.3.1.1.2 Operational Guidance
	4.3.1.1.3 Test

	5 Evaluation Activities for SARs
	5.1 ASE: Security Target Evaluation
	5.2 ADV: Development
	5.2.1 Basic Functional Specification (ADV_FSP.1)
	5.2.1.1 Evaluation Activity
	5.2.1.2 Evaluation Activity
	5.2.1.3 Evaluation Activity

	5.3 AGD: Guidance Documents
	5.3.1 Operational User Guidance (AGD_OPE.1)
	5.3.1.1 Evaluation Activity
	5.3.1.2 Evaluation Activity
	5.3.1.3 Evaluation Activity
	5.3.1.4 Evaluation Activity

	5.3.2 Preparative Procedures (AGD_PRE.1)
	5.3.2.1 Evaluation Activity
	5.3.2.2 Evaluation Activity
	5.3.2.3 Evaluation Activity
	5.3.2.4 Evaluation Activity

	5.4 ALC: Life-cycle Support
	5.4.1 Labelling of the TOE (ALC_CMC.1)
	5.4.2 TOE CM coverage (ALC_CMS.1)

	5.5 ATE: Tests
	5.5.1 Independent Testing – Conformance (ATE_IND.1)

	5.6 AVA: Vulnerability Assessment
	5.6.1 Vulnerability Survey (AVA_VAN.1)
	5.6.1.1 Evaluation Activity (Documentation):
	5.6.1.2 Evaluation Activity

	6 Required Supplementary Information
	7 References
	A. Vulnerability Analysis
	A.1 Sources of vulnerability information
	A.1.1 Type 1 Hypotheses—Public-Vulnerability-based
	A.1.2 Type 2 Hypotheses—iTC-Sourced
	A.1.3 Type 3 Hypotheses—Evaluation-Team-Generated
	A.1.4 Type 4 Hypotheses—Tool-Generated
	A.2 Process for Evaluator Vulnerability Analysis
	A.3 Reporting

	B. Equivalency Considerations
	B.1 Introduction
	B.2 Evaluator guidance for determining equivalence
	B.2.1 Strategy
	B.3 Test presentation/Truth in advertising

	C. Public Vulnerability Sources

