

 Java Card™ System
Protection Profile Collection

 Version 1.0b

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054

August 2003

Java CardTM System Protection Profile Collection Page 2 of 189

Version 1.0b August 2003

This document has been prepared by:

Trusted Logic SA
5, rue du Bailliage
78000 Versailles, France
http://www.trusted-logic.com

 on behalf of Sun Microsystems, Inc.

For any correspondence on this document please contact the following organisations:

• Sun Microsystems, Inc.
 4150 Network Circle

Santa Clara, CA 95054 USA
http://www.sun.com
JC_PP_feedback@sun.com

• Secrétariat Général de la Défense Nationale

Direction Centrale de la Sécurité des Systèmes d’Information (DCSSI)
51, boulevard de Latour-Maubourg
75700 Paris 07 SP, France
http://www.ssi.gouv.fr/fr/dcssi
certification.dcssi@sgdn.pm.gouv.fr

Java CardTM System Protection Profile Collection Page 3 of 189

Version 1.0b August 2003

EXECUTIVE SUMMARY

Java Card™ technology was tailored in order to enable programs written in the Java™
programming language to run on smart cards and other resource–constrained devices. Due to
these constraints, every component of the original Java™ platform was significantly reduced. On
the other hand, smart cards require specific security features beyond the scope of the standard Java
platform. For instance, even the legitimate holder of a credit card should not be able to tamper with
some of the data contained on the card (for instance, its credit value). Moreover, just like browsers
are to distrust downloaded applets to protect the local resources, the Java Card™ environment
must prevent the terminal or even the installed applets, which may come from various sources,
from accessing vendor–specific confidential data.

A security evaluation, according to a standard such as the Common Criteria scheme, is an
appropriate answer to meet this need for enhanced security. It provides assurance measures to
gauge risks and induced costs, discover weak points prior their exploitation by hostile agents, and
finally grants a level of certification according to recognized standards of industry for future
reference. It also highlights numerous points that may easily be overlooked although they are
extremely relevant to the security of a Java Card technology-based implementation.

This document presents a set of security requirements for the Java Card platform (“Java Card
System”) that should serve as a template for the evaluation of specific implementations. It
therefore almost solely looks at the Java Card System from the security angle, a viewpoint that
somewhat sets it apart from the usual functional documentation; that is, focused on what can
happen rather than what should happen. It was written with critical real–life applications in mind.
Accordingly, some aspects of the development and life–cycle of the applications are controlled,
even though they are out of the scope of the software embedded on a Java Card platform.

In order to achieve a better understanding of the security issues of the Java Card System, this
document provides a precise description of its background and possible environments, which is
the first step to risk analysis. The division of duties and assignment of responsibilities among the
several involved actors (both physical and IT components) leads to the definition of detailed
security policies. Of course, there are cases where the choice is left to implementers; in all cases,
risks and assets at stake are described to pave the way to security targets (ST).

One of the challenges of writing a Protection Profile for the Java Card technology is to address in a
single description the wide range of choices offered (logical communication channels with the card,
remote invocations of services, object deletion, among others), and the different security
architectures that have been conceived so far (closed platforms, off-card verification of applications
code, embedded verifiers, and so on). The answer to this challenge that is put forward in this
document is the definition of groups of requirements for each of the proposed features for the Java
Card platform (“Java Card features”). A particular choice of groups and a particular environment
interacting with a Java Card platform give rise to a configuration, and then to the definition of the
corresponding Protection Profile. Each of those Protection Profiles corresponds to a particular
combination of features provided by a Java Card System and the corresponding security
architecture.

Four Protection Profiles, which define four specific configurations, are presented in this document.
Two of them were chosen because they correspond to standard use-cases. The other two cover the
largest range of features proposed in the latest version of Java Card technology, the difference
being in the way verification of loaded applications is performed. The use of groups enables a
modular construction of each configuration, enhancing the possibility of re-using large parts of it
for the evaluations of other configurations, and simplifying its evolution across the future versions
of the Java Card technology. A special section with a comprehensive presentation of each
configuration is also included as part of this document.

Java CardTM System Protection Profile Collection Page 4 of 189

Version 1.0b August 2003

The emphasis is mainly laid on those issues related to the firewall mechanisms and bytecode
verification, the two cornerstones of the security architecture for the Java Card platform (“Java
Card security architecture”). The protection endorsed by the firewall to applications loaded in a
multi-application platform as the one provided by Java Card technology ultimately relies on those
applications having passed the checks performed by a bytecode verifier. Indeed, without bytecode
verification, a Java Card technology-based application (“Java Card applications”) may misbehave
as any application written in native code. The mutual support between these components also
depends on the contribution provided by other constituents of the product, such as the underlying
platform or the application installer program. The clarification of the nature of these dependencies,
which were implicit in the functional specification, is the key to achieve a safe and coherent
interaction of the components, that is, to build security interoperability on top of functional
interoperability. The already existing Protection Profiles (such as SCSUG’s “Smart Card PP” and
Eurosmart’s “Smart Card IC with Multi-Application Secure Platform”) for the underlying platform, as
well as Global Platform’s “Card Security Requirements Specification” on card management are also
considered, in anticipation of an evaluation of an integrated product.

Finally, this document proposes some additional security features to identify and deal with
security–sensitive data. That would extend specific protections that are applied to cryptographic
keys or PIN code; for instance, the integrity of the balance in an e–purse application requires
similar “strong” protection. These features should normalize the secure programming of applets
containing sensitive data (such as banking applications).

Java CardTM System Protection Profile Collection Page 5 of 189

Version 1.0b August 2003

Legal Notice
Sun, Sun Microsystems, the Sun logo, Java, Jini, Java Card, Java Card Compatible, and the Java Coffee
Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

DOCUMENTATION IS PROVIDED « AS IS » AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Sun, Sun Microsystems, le logo Sun, Java, Jini, Java Card, Java Card Compatible, et le logo Java Coffee
Cup sont des marques déposées de Sun Microsystems, Inc. aux États-Unis et dans d’autres pays.

LA DOCUMENTATION EST FOURNIE « EN L’ETAT » ET TOUTES AUTRES CONDITIONS,
DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DAN LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE
UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFACON.

Java CardTM System Protection Profile Collection Page 6 of 189

Version 1.0b August 2003

CONTENTS
1 Introduction.. 10

1.1 IDENTIFICATION... 10
1.1.1 IDENTIFICATION OF THE DOCUMENT .. 10
1.1.2 ON THE CONFORMANCE OF SECURITY TARGETS ... 10
1.1.3 IDENTIFICATION OF THE PROTECTION PROFILES... 10

1.2 REVISIONS AND COMMENTS .. 13
1.3 OVERVIEW... 14
1.4 CC CONFORMANCE ... 15
1.5 TYPOGRAPHIC CONVENTIONS .. 16
1.6 ASSOCIATED DOCUMENTS.. 16

1.6.1 REFERENCE DOCUMENTS... 16
1.6.2 RELATED DOCUMENTS.. 17

1.7 CONFIGURATIONS AND GROUPS.. 17
1.7.1 WHAT IS A GROUP?... 18
1.7.2 WHAT IS A CONFIGURATION? ... 18
1.7.3 DEFINITION AND COMPOSITION OF GROUPS .. 18

2 TOE Description.. 20
2.1 PRODUCT TYPE .. 20

2.1.1 BYTECODE VERIFICATION .. 22
2.1.2 INSTALLATION OF APPLETS ... 22
2.1.3 THE CARD MANAGER (CM)... 23
2.1.4 SMART CARD PLATFORM: OPERATING SYSTEM + CHIP + DEDICATED SOFTWARE
 23
2.1.5 NATIVE APPLICATIONS.. 23

2.2 JAVA CARD 2.2 TECHNOLOGY.. 24
2.3 FUNCTIONAL COMPONENTS AND CONFIGURATIONS ... 25

2.3.1 CONFIGURATIONS... 26
2.4 LIMITS OF THE TOE... 30

2.4.1 SCOPE OF EVALUATION .. 30
2.4.2 THE TOE IN THE LIFE CYCLE OF THE SMART CARD .. 33

2.5 TOE INTENDED USAGE ... 35
2.6 PRODUCT RATIONALE .. 37

3 TOE Security Environment ... 38
3.1 SECURITY ASPECTS... 38
3.2 ASSETS .. 44

3.2.1 USER DATA.. 44
3.2.2 TSF DATA ... 44

3.3 USERS & SUBJECTS .. 46
3.4 ASSUMPTIONS.. 47

3.4.1 ALL CONFIGURATIONS .. 47
3.4.2 MINIMAL CONFIGURATION.. 47
3.4.3 JAVA CARD SYSTEM STANDARD 2.1.1 CONFIGURATION... 47
3.4.4 JAVA CARD SYSTEM STANDARD 2.2 CONFIGURATION.. 48
3.4.5 DEFENSIVE CONFIGURATION.. 48

3.5 THREATS .. 48
3.5.1 ALL CONFIGURATIONS .. 48
3.5.2 MINIMAL CONFIGURATION.. 50
3.5.3 JAVA CARD SYSTEM STANDARD 2.1.1 CONFIGURATION... 50
3.5.4 JAVA CARD SYSTEM STANDARD 2.2 CONFIGURATION.. 51
3.5.5 DEFENSIVE CONFIGURATION.. 52

3.6 ORGANIZATIONAL SECURITY POLICIES ... 52
3.6.1 MINIMAL CONFIGURATION.. 52
3.6.2 JAVA CARD SYSTEM STANDARD 2.1.1 CONFIGURATION... 52
3.6.3 JAVA CARD SYSTEM STANDARD 2.2 CONFIGURATION.. 52

Java CardTM System Protection Profile Collection Page 7 of 189

Version 1.0b August 2003

3.6.4 DEFENSIVE CONFIGURATION.. 53
4 Security Objectives ... 54

4.1 SECURITY OBJECTIVES FOR THE TOE.. 54
4.1.1 ALL CONFIGURATIONS .. 54
4.1.2 MINIMAL CONFIGURATION.. 56
4.1.3 JAVA CARD SYSTEM STANDARD 2.1.1 CONFIGURATION... 56
4.1.4 JAVA CARD SYSTEM STANDARD 2.2 CONFIGURATION.. 56
4.1.5 DEFENSIVE CONFIGURATION.. 57

4.2 SECURITY OBJECTIVES FOR THE ENVIRONMENT... 57
4.2.1 ALL CONFIGURATIONS .. 57
4.2.2 MINIMAL CONFIGURATION.. 58
4.2.3 JAVA CARD SYSTEM STANDARD 2.1.1 CONFIGURATION... 59
4.2.4 JAVA CARD SYSTEM STANDARD 2.2 CONFIGURATION.. 59
4.2.5 DEFENSIVE CONFIGURATION.. 59

5 IT Security Requirements.. 60
5.1 TOE AND IT ENVIRONMENT SECURITY REQUIREMENTS .. 60

5.1.1 COREG SECURITY FUNCTIONAL REQUIREMENTS... 61
5.1.2 INSTG SECURITY FUNCTIONAL REQUIREMENTS... 79
5.1.3 BCVG SECURITY FUNCTIONAL REQUIREMENTS.. 83
5.1.4 ADELG SECURITY FUNCTIONAL REQUIREMENTS ... 91
5.1.5 RMIG SECURITY FUNCTIONAL REQUIREMENTS .. 96
5.1.6 LCG SECURITY FUNCTIONAL REQUIREMENTS... 102
5.1.7 ODELG SECURITY FUNCTIONAL REQUIREMENTS... 105
5.1.8 CARG SECURITY FUNCTIONAL REQUIREMENTS.. 106
5.1.9 SCPG SECURITY FUNCTIONAL REQUIREMENTS .. 111
5.1.10 CMGRG SECURITY FUNCTIONAL REQUIREMENTS.. 113

5.2 TOE SECURITY ASSURANCE REQUIREMENTS.. 115
6 Rationale ... 118

6.1 SECURITY OBJECTIVES RATIONALE.. 118
6.1.1 MINIMAL CONFIGURATION.. 118
6.1.2 JAVA CARD SYSTEM STANDARD 2.1.1 CONFIGURATION... 122
6.1.3 JAVA CARD SYSTEM STANDARD 2.2 CONFIGURATION.. 128
6.1.4 DEFENSIVE CONFIGURATION.. 134

6.2 SECURITY REQUIREMENTS RATIONALE ... 139
6.2.1 MINIMAL CONFIGURATION.. 139
6.2.2 JAVA CARD SYSTEM STANDARD 2.1.1 CONFIGURATION... 148
6.2.3 JAVA CARD SYSTEM STANDARD 2.2 CONFIGURATION.. 158
6.2.4 DEFENSIVE CONFIGURATION.. 169

7 Appendix: A Unified View of Configurations .. 181
8 Appendix: Glossary .. 186

Java CardTM System Protection Profile Collection Page 8 of 189

Version 1.0b August 2003

LIST OF FIGURES
Figure 1: Usage environment of the TOE ... 21
Figure 2: TOE Limits for Minimal configuration... 27
Figure 3: TOE Limits for Java Card System Standard 2.1.1 configuration... 28
Figure 4: TOE Limits for Java Card System Standard 2.2 configuration... 29
Figure 5: TOE Limits for Defensive configuration .. 29
Figure 6: Mandatory and optional components of the TOE.. 32
Figure 7: Smart Card Product Life Cycle .. 33

Java CardTM System Protection Profile Collection Page 9 of 189

Version 1.0b August 2003

LIST OF TABLES
Table 1: Relationship between Groups and Configurations .. 31
Table 2: Relationship between Groups and Configurations .. 60
Table 3: Minimal Configuration threats rationale... 121
Table 4: Minimal Configuration assumptions rationale .. 122
Table 5: Java Card System Standard 2.1.1 Configuration threats rationale... 126
Table 6: Java Card System Standard 2.1.1 Configuration assumptions rationale 126
Table 7: Java Card System Standard 2.2 Configuration threats rationale.. 132
Table 8: Java Card System Standard 2.2 Configuration assumptions rationale 133
Table 9: Defensive Configuration threats rationale .. 137
Table 10: Defensive Configuration assumptions rationale.. 138
Table 11: Security requirements rationale for the Minimal Configuration.. 142
Table 12: Security requirements rationale for the group SCPG ... 143
Table 13: Functional Requirement Dependencies (Minimal) ... 145
Table 15: Security requirements rationale for the Java Card System Standard 2.1.1 Configuration 151
Table 16: Security requirements rationale for the group SCPG ... 152
Table 17: Functional Requirement Dependencies (Java Card System Standard 2.1.1) 155
Table 19: Security requirements rationale for the Java Card System Standard 2.2 Configuration... 162
Table 20: Security requirements rationale for the group SCPG ... 163
Table 21: Functional Requirement Dependencies (Java Card System Standard 2.2) 166
Table 23: Security requirements rationale for the Defensive Configuration.. 174
Table 24: Security requirements rationale for the group SCPG ... 175
Table 25: Functional Requirement Dependencies (Defensive) ... 177
Table 27: Assumptions of Configurations.. 181
Table 28: Threats of Configurations .. 182
Table 29: TOE Security Objectives of Configurations .. 183
Table 30: Security objectives for the environment of Configurations ... 183
Table 31: Security Functional Requirements of Configurations... 185
Table 32: Configurations and Roles... 185

Java CardTM System Protection Profile Collection Page 10 of 189

Version 1.0b August 2003

1 INTRODUCTION

This chapter identifies the document and the references it cites, presents its general structure, and
introduces some key notions and notation conventions to be used in the following chapters. In
addition to that, this chapter also gives the precise identification of the Protection Profiles that it
embodies.

1.1 IDENTIFICATION

1.1.1 Identification of the Document

Author: Trusted Logic on behalf of Sun Microsystems, Inc.

Title: Java Card System Protection Profile Collection

Version: 1.0b, August 2003

1.1.2 On the Conformance of Security Targets

To be compliant with any of the Protection Profiles of the JCSPP Collection, a Java Card product
Security Target must include a unique identification of all the components on which it may rely (the
underlying smart card platform and the bytecode verifier) or with which it may interact (card
manager and native code).

Moreover, the product developer must provide the evidence that the assumptions and the security
requirements defined on those components are enforced. This is necessary to guarantee that the
Target of Evaluation (TOE) security architecture can rely on them. The case of the native code is
slightly different as it is not in the scope of the TOE addressed by the Protection Profiles. In the (very
typical) case that the product embodies native applications they must also be uniquely identified and
evidence must be provided that they do not violate security policies stated for the TOE. Should native
software be privileged in this respect, exceptions to the policies must include a rationale for the new
security framework they introduce.

1.1.3 Identification of the Protection Profiles

This section identifies the four Protection Profiles contained in this document. Each Protection Profile
is identified by its unique name and the sections of the document that are listed in the item PP
organization.

1.1.3.1 Minimal Configuration Protection Profile

Author: Trusted Logic on behalf of Sun Microsystems, Inc.

Title: Java Card System - Minimal Configuration Protection Profile

Java CardTM System Protection Profile Collection Page 11 of 189

Version 1.0b August 2003

Version: 1.0b, August 2003

Registration number: PP/0303

PP organization:

Section 2 provides general purpose and TOE description.

Security aspects, assets and the links between users and subjects are provided in §3.1, §3.2 and §3.3
respectively.

Assumptions are provided in §3.4.1 and §3.4.2 and the threats in §3.5.1 and §3.5.2.

The TOE security objectives are to be found in §4.1.1, and the IT environment objectives in §4.2.1 and
§4.2.2.

The TOE security requirements are those of the group CoreG (§5.1.1), and the IT environment security
requirements are the ones defined in the groups BCVG (§5.1.3), SCPG (§5.1.9) and CMGRG (§5.1.10).
The TOE security assurance requirements are to be found in §5.2.

The rationale for security objectives and threats is provided in §6.1.1.1, the relation between security
objectives and assumptions in §6.1.1.2.

The security requirements rationales are provided in §6.2.1.1 and §6.2.1.2; and the SFRs dependencies
analysis in §6.2.1.3. The rationales for strength of function level, assurance requirements and
consistency and mutual support are to be found in §6.2.1.4, §6.2.1.5 and §6.2.1.6 respectively.

Keywords: Multi-application Smart Card, Java Card Technology, Virtual Machine, Secure Runtime
Environment.

Address: Sun Microsystems, Inc.; 4150 Network Circle, Santa Clara, CA 95054 USA.

1.1.3.2 Java Card System Standard 2.1.1 Configuration Protection
Profile

Authors: Trusted Logic on behalf of Sun Microsystems, Inc.

Title: Java Card System - Standard 2.1.1 Configuration Protection Profile

Version: 1.0b, August 2003

Registration number: PP/0304

PP organization:

Section 2 provides general purpose and TOE description.

Security aspects, assets and the links between users and subjects are provided in §3.1, §3.2 and §3.3
respectively.

Assumptions are provided in §3.4.1 and §3.4.3, the threats in §3.5.1 and §3.5.3 and the organizational
security policies in §3.6.2.

The TOE security objectives are to be found in §4.1.1 and §4.1.2, and the IT environment objectives in
§4.2.1 and §4.2.3.

Java CardTM System Protection Profile Collection Page 12 of 189

Version 1.0b August 2003

The TOE security requirements are those of the group CoreG (§5.1.1), InstG (§5.1.2) and CarG (§5.1.8).
The IT environment security requirements are the ones defined in the groups BCVG (§5.1.3), SCPG
(§5.1.9) and CMGRG (§5.1.10). The TOE security assurance requirements are to be found in §5.2.

The rationale for security objectives and threats is provided in §6.1.2.1, the relation between security
objectives and assumptions in §6.1.2.2 and the rationale for the organizational security policies in
§6.1.2.3.

The security requirements rationales are provided in §6.2.2.1 and §6.2.2.2; and the SFRs dependencies
analysis in §6.2.2.3. The rationales for strength of function level, assurance requirements and
consistency and mutual support are to be found in §6.2.2.4, §6.2.2.5 and §6.2.2.6 respectively.

Keywords: Multi-application Smart Card, Java Card Technology, Virtual Machine, Secure Runtime
Environment.

Address: Sun Microsystems, Inc.; 4150 Network Circle, Santa Clara CA 95054 USA.

1.1.3.3 Java Card System Standard 2.2 Configuration Protection
Profile

Authors: Trusted Logic on behalf of Sun Microsystems, Inc.

Title: Java Card System - Standard 2.2 Configuration Protection Profile

Version: 1.0b, August 2003

Registration number: PP/0305

 PP organization:

Section 2 provides general purpose and TOE description.

Security aspects, assets and the links between users and subjects are provided in §3.1, §3.2 and §3.3
respectively.

Assumptions are provided in §3.4.1 and §3.4.4, the threats in §3.5.1, §3.5.3 and §3.5.4; and the
organizational security policies in §3.6.2.

The TOE security objectives are to be found in §4.1.1, §4.1.2 and §4.1.4, and the IT environment
objectives in §4.2.1, §4.2.3 and §4.2.4.

The TOE security requirements are those of the group CoreG (§5.1.1), InstG (§5.1.2), ADELG (§5.1.4),
RMIG (§5.1.5), LCG (§5.1.6), ODELG (§5.1.7) and CarG (§5.1.8). The IT environment security
requirements are the ones defined in the groups BCVG (§5.1.3), SCPG (§5.1.9) and CMGRG (§5.1.10).
The TOE security assurance requirements are to be found in §5.2.

The rationale for security objectives and threats is provided in §6.1.3.1, the relation between security
objectives and assumptions in §6.1.3.2 and the rationale for the organizational security policies in
§6.1.3.3.

The security requirements rationales are provided in §6.2.3.1 and §6.2.3.2; and the SFRs dependencies
analysis in §6.2.3.3. The rationales for strength of function level, assurance requirements and
consistency and mutual support are to be found in §6.2.3.4, §6.2.3.5 and §6.2.3.6 respectively.

Keywords: Multi-application Smart Card, Java Card Technology, Virtual Machine, Secure Runtime
Environment.

Java CardTM System Protection Profile Collection Page 13 of 189

Version 1.0b August 2003

Address: Sun Microsystems, Inc.; 4150 Network Circle, CA 95054 USA.

1.1.3.4 Defensive Configuration Protection Profile

Authors: Trusted Logic on behalf of Sun Microsystems, Inc.

Title: Java Card System - Defensive Configuration Protection Profile

Version: 1.0b, August 2003

Registration number: PP/0306

PP organization:

Section 2 provides general purpose and TOE description.

Security aspects, assets and the links between users and subjects are provided in §3.1, §3.2 and §3.3
respectively.

Assumptions are provided in §3.4.1 and §3.4.5, the threats in §3.5.1 and §3.5.5. There are no
organizational security policies.

The TOE security objectives are to be found in §4.1.1 and §4.1.5, and the IT environment objectives in
§4.2.1 and §4.2.5.

The TOE security requirements are those of the group CoreG (§5.1.1), InstG (§5.1.2), BCVG (§5.1.3),
ADELG (§5.1.4), RMIG (§5.1.5), LCG (§5.1.6) and ODELG (§5.1.7). The IT environment security
requirements are the ones defined in the groups SCPG (§5.1.9) and CMGRG (§5.1.10). The TOE
security assurance requirements are to be found in §5.2.

The rationale for security objectives and threats is provided in §6.1.4.1, the relation between security
objectives and assumptions in §6.1.4.2

The security requirements rationales are provided in §6.2.4.1 and §6.2.4.2; and the SFRs dependencies
analysis in §6.2.4.3. The rationales for strength of function level, assurance requirements and
consistency and mutual support are to be found in §6.2.4.4, §6.2.4.5 and §6.2.4.6 respectively.

Keywords: Multi-application Smart Card, Java Card Technology, Virtual Machine, Secure Runtime
Environment.

Address: Sun Microsystems, Inc.; 4150 Network Circle, Santa Clara, CA 95054 USA.

1.2 REVISIONS AND COMMENTS

Version Issue date Comments

1.0 July 1999 First version without sharing and post-issuance downloading. Used in
Vocable project.

1.1 July 2001 Java Card System Protection Profile. Based on Java Card System 2.1.1.
Distribution to card issuers and operators for comments.

1.2 November 2001 Integration of comments coming from card issuers and operators. Available

Java CardTM System Protection Profile Collection Page 14 of 189

Version 1.0b August 2003

Version Issue date Comments

to licensees for comments on Sun Website.

2.0 May 2002 New structure of the protection profile in terms of configurations and
groups of security requirements. Introduction of Java Card System 2.2
features (RMI, logical channels, applet deletion and object deletion).

2.1 October 2002 Integration of comments and remarks coming from Sun and from the Java
Card Forum Security Task Force. First version submitted for evaluation.

0.1 January 2003 Java Card System Protection Profile Collection. Stand-alone (per
configuration) rationales of Security Objectives and Security Functional
Requirements.

0.2 February 2003 Revised to comply with the request of the evaluator.

1.0 June 2003 Revised to comply with the request of the evaluator.

1.0b August 2003 Final version

1.3 OVERVIEW

The aim of this document is to describe a unified framework for the definition of a Protection Profile
(PP) of the Java Card System in compliance with the Sun Microsystems specification for the Java Card
platform (“Java Card specifications”), versions 2.1.1 and 2.2. An important issue addressed by this
document is the possibility of having different configurations for a Java Card platform, resulting from
the optional features of Java Card technology and the security architectures for bytecode verification
that have been conceived so far. Moreover, this document includes the definition of four PPs, one for
each of the configurations that have been considered. The PPs should provide a valuable input for the
development of Java Card platform Security Targets.

The main security goal of the Java Card platform is to counter the unauthorized disclosure or
modification of the code and data of both the applications and its own, as well as of any other data
that may be sensitive such as application software, keys, PINs, and so on.

In order to achieve these goals, the Java Card platform provides some security features. The most
important are the following mechanisms:

– Logical separation of the data used by different applications (firewall)
– Static analysis of the code before installation (bytecode verification)
– Preservation of the code integrity between static verification and installation on the card.

– Use of security services for applications such as

! Specific management of cryptographic keys and PIN

! Cryptographic authentication and ciphering mechanisms

Java CardTM System Protection Profile Collection Page 15 of 189

Version 1.0b August 2003

The structure of the document is very close to the standard one, specified in [CC1], for a PP. In
addition to the usual sections, the following special ones are also included:

• Section §1.7 explains how this document addresses the possibility of having
different configurations. It presents the general notions of group of
requirements and configuration, which constitute the basis for the definition
and evaluation of use-cases.

• After the general description of all the features offered by a Java Card
System, Section §2.3.1 introduces the ten groups of requirements induced by
those features, and the four particular configurations proposed in this
document, called Minimal, Java Card System Standard 2.1.1, Java Card
System Standard 2.2 and Defensive. When the definition of a CC component
depends on the configuration, the structure of the corresponding section
introduces a new level of sub-sections, one for each of the configurations
aforementioned. For instance, the section Security Objectives for the TOE is
divided into four sub-sections, one containing the objectives of the Minimal
configuration, one with those objectives that are specific to the Java Card
System Standard 2.1.1 configuration, one with those objectives that are
specific to the Java Card System Standard 2.2 configuration and a fourth one
with those specific to the Defensive configuration.

Two appendices are also included:

• Appendix §7 provides a unified view of the configurations defined in the
document.

• Appendix §8 contains a glossary of technical terms used in the document

1.4 CC CONFORMANCE

This document contains four Protection Profiles.

The Protection Profiles have been built with Common Criteria (CC) Version 2.1 (ISO/IEC 15408
Evaluation Criteria for Information Technology Security; Part 1: Introduction and general model, Part
2: Security functional requirements, and Part 3: Security assurance requirements) and Common
Methodology for Information Technology Security Evaluation (CEM-97/017, Part 1: Introduction and
General Model, Version 0.6, 97/01/11 and CEM-99/045, Part 2: Evaluation Methodology, Version 1.0,
August 1999).

Each Protection Profile is Part 2 and Part 3 conformant.

The assurance requirement of each Protection Profile is EAL 4 augmented. Augmentation results from
the selection of:

• AVA_VLA.3 Vulnerability Assessment - Vulnerability Analysis - Moderately resistant, and
• ADV_IMP.2 Development – Implementation Representation – Implementation of the TSF.

The minimum strength of function level of each Protection Profile is SOF-medium.

Java CardTM System Protection Profile Collection Page 16 of 189

Version 1.0b August 2003

1.5 TYPOGRAPHIC CONVENTIONS

– This typeface is used to highlight those words that appear in the glossary. Example: applet.

– This typeface is used to highlight asset names. Example: D.APP_CODE.

– THIS TYPEFACE is used for those words referring to entities within the TSC or operations of
security policies (Common Criteria terminology). Example: S.APPLET.

– This typeface is used for keywords of the JavaTM programming language, variables, method or
field names, and so on. Example: a public static field.

– THIS TYPEFACE is used for the name of threats, objectives and assumptions. Example: O.TODO.

Finally, the following format of paragraph is used to remind Common Criteria components:

CC_FUNCal_REQt The TSF shall ensure this and that.

1.6 ASSOCIATED DOCUMENTS

1.6.1 Reference Documents

[CC1] Common Criteria for Information Technology Security Evaluation, Part 1: Introduction
and general model. Version 2.1. August 1999. CCIMB-99-031.

[CC2] Common Criteria for Information Technology Security Evaluation, Part 2: Security
functional requirements. Version 2.1. August 1999. CCIMB-99-032.

[CC3] Common Criteria for Information Technology Security Evaluation, Part 3: Security
assurance requirements. Version 2.1. August 1999. CCIMB-99-033.

[CEM] Common Methodology for Information Technology Security Evaluation, Part 2:
Evaluation Methodology. Version 1.0. August 1999. CEM-99/045.

[JCVM21] Java Card 2.1.1 Virtual Machine (JCVM) Specification. Revision 1.0. May 18, 2000.
Published by Sun Microsystems, Inc.

[JCAPI21] Java Card 2.1.1 Application Programming Interface. Revision 1.0. May 18, 2000.
Published by Sun Microsystems, Inc.

[JCRE21] Java Card 2.1.1 Runtime Environment (JCRE) Specification. Revision 1.0. May 18,
2000. Published by Sun Microsystems, Inc.

[JCVM22] Java Card 2.2 Virtual Machine (JCVM) Specification. June 2002. Published by Sun
Microsystems, Inc.

Java CardTM System Protection Profile Collection Page 17 of 189

Version 1.0b August 2003

[JCAPI22] Java Card 2.2 Application Programming Interface. June 2002. Published by Sun
Microsystems, Inc.

[JCRE22] Java Card 2.2 Runtime Environment (JCRE) Specification. June 2002. Published by
Sun Microsystems, Inc.

[JCBV] Java Card 2.1.2 Off-Card Verifier. January 2001. White paper. Published by Sun
Microsystems, Inc.

[JAVASPEC] The Java Language Specification. Gosling, Joy and Steele. ISBN 0-201-63451-1.

[JVM] The Java Virtual Machine Specification. Lindholm, Yellin. ISBN 0-201-43294-3.

1.6.2 Related Documents

The following list is in no way exhaustive.

[SCSUG-3] Smart Card Protection Profile. Smart Card Security User Group. Version 3.0,
September 9, 2001. Registered and Certified by Bundesamt für Sicherheit in der
Informationstechnik (BSI) under the reference BSI-PP-000 3-2001. Registered
and Certified by the French Certification Body under the reference PP/0103.
Registered and Certified by the Canadian Certification Body.

[PP9806] Protection Profile Smart Card IC. Version 2.0, Issue November 1998. Registered
and Certified by the French Certification Body under the reference PP/9806.

[PP0010] Protection Profile Smart Card IC with Multi-Application Secure Platform. Version
2.0, Issue November 2000. Registered and Certified by the French Certification
Body under the reference PP/0010.

[SSVG-1.0] Smartcard IC Platform Protection Profile. Version 1.0, July 2001. Registered and
Certified by Bundesamt für Sicherheit in der Informationstechnik (BSI) under
the reference BSI-PP-0002.

 [GP] GlobalPlatform Card Specification, Version 2.1.1, March 2003.

[CSRS] GlobalPlatform Card Security Requirements Specification, Version 1.0, May 2003.

1.7 CONFIGURATIONS AND GROUPS

The Java Card System is a generic platform that can be used in numerous applications. Smart Card
products have different needs depending, for instance, whether it is a banking card or a pay-TV one.
To retain a high level of flexibility this document introduces the notions of group and configuration.

Java CardTM System Protection Profile Collection Page 18 of 189

Version 1.0b August 2003

1.7.1 What is a Group?

CC packages are “A reusable set of either functional or assurance components, combined together to
satisfy a set of identified security objectives” [CC1]. Practically, however, it is common for security
functions to be grouped into functional modules, a fact that is acknowledged by the CC (see for
instance the ADV_FSP and ADV_HLD assurance classes). These modules are usually associated to
specific security aspects that contribute to meet a precise requirement, which in turn induces a similar
division of the Security Functional Requirements (“SFR”). The groups put forward in this document
then are sets of identified security requirements, and they are similar to CC packages.

The association between the objectives and the SFRs, however, is looser than required by the CC
evaluation: the SFRs in a group may not be able to completely meet the objectives to which they are
associated. This is similar to the case where an objective is met by a combination of SFRs for the TOE
and SARs (Security Assurance Requirements), which apply to the environment: a group only
contributes to meet an objective, and may not be sufficient alone. For instance, an access control policy
(FDP_ACF.1) may belong to one group, while the initialization of its related security attributes
(FMT_MSA.3) belongs to another group.

Also, one can consider groups solely as a way to structure the SFRs for a better understanding.

This document introduces, among others, groups of requirements concerning bytecode verification,
installation and deletion of applications, transmission of applications to the card and isolation of
application data during execution.

1.7.2 What is a Configuration?

Configurations correspond to the use-cases to be evaluated. Such use-cases arise from the choice of the
different optional features proposed by the Java Card technology (like post-issuance application
downloading, 2.2 version features), and the different security architectures that have been conceived
so far for this technology (off-card verification or on-card verification).

Each configuration has its own security objectives, which determine the groups of requirements to be
chosen in order to meet those objectives. Moreover, even if configurations may have the same global
collection of objectives, some of them may be objectives for the TOE in one configuration and
objectives of the environment in another one. A configuration is hence described setting up the precise
limits of the TOE, a definite environment for it, and the groups of requirements to be used (notice that
groups, as packages, do not contain any environmental description). Thereby, an ad-hoc rationale has
to be developed for each configuration too.

From a different perspective, we may also see a configuration as a consistent and complete set of
groups (in an environment) that is suitable for an evaluation and certification.

This document introduces four configurations and the corresponding PPs to be evaluated. They are
defined in the next chapter.

1.7.3 Definition and Composition of Groups

This section contains some remarks regarding the composition of security requirements into groups,
as well as how those groups can be assembled together in a consistent way.

The Common Criteria scheme defines several formal operations that can be applied to a functional
component: iteration for repeated use, selection, assignment and refinement ([CC1], §2.1.4). The
classification of the SFRs considered in this document into separate groups sometimes led to
unpleasant repetitions. For instance, the FMT_SMR.1 component, which defines the known security
roles for the TOE, should essentially appear once in a security target, but the actual set of security

Java CardTM System Protection Profile Collection Page 19 of 189

Version 1.0b August 2003

roles to be considered depends on the configuration. In the same vein, the FMT_MSA.1 component is
repeated in each of the groups that introduce security attributes, although there is no obvious reason
to iterate it, as it has no applicable selection or assignment operation. On the other hand, each group
defines a role that is only meaningful when it is included in the considered configuration, so repeating
it for each group provides a more accurate definition of the group of requirements.

Whereas the choice has been made to repeat the component within each group, the reader shall not
understand such repetition as iteration in the formal CC sense, but shall consider these as a unique
instance. Thus, each configuration really contains one FMT_SMR.1 component, whose list of roles is
given by all the roles appearing in the groups of the configuration.

A similar issue is raised by the components where a security policy (for access control or information
flow) has to be assigned or selected in the component. For instance, the component FMT_MSA.1
restricts the privileges granted to a given role with regard to the security attributes of a given policy.
However, it could be the case that two security functions, one defined in a group, G1, and the other
defined in another group, G2, make both use of a security attribute that is common to two policies,
SP1 and SP2. Moreover, the possibility of modifying the shared security attribute may be restricted in
G1 to the role R1 and in G2 to another role R2. Then, in those configurations including both the groups
G1 and G2, it shall be understood that the modification of the shared attribute is actually restricted to
both R1 and R2 by the enforcement of the policies SP1 and SP2. As no such operation of component
composition is specified in the Common Criteria, and to prevent any possible misunderstanding, an
application note is added to the component of the first group (G1) notifying the ST author that the list
of roles enabled to modify the attribute actually depends on the configuration, and could be
potentially extended by the inclusion of other groups.

Finally, the security policies included in certain groups of requirements should actually be understood
as a complement to other security policies, in the sense that they extend them with new access control
or information flow rules. This is the case, for instance, of the logical channel group, which extends the
firewall access control policy with new rules concerning logical channels.

Java CardTM System Protection Profile Collection Page 20 of 189

Version 1.0b August 2003

2 TOE DESCRIPTION

This part of the document shall describe the TOE as an aid to the understanding of its security
requirements, and shall address the product type and the general IT features of the TOE.

2.1 PRODUCT TYPE

The Java Card technology combines a subset of the Java programming language with a runtime
environment optimized for smart cards and similar small-memory embedded devices [JCVM21]. The
Java Card platform is a smart card platform enabled with Java Card technology (also called a “Java
card”). This technology allows for multiple applications to run on a single card and provides facilities
for secure interoperability of applications. Applications for the Java Card platform (“Java Card
applications”) are called applets.

The version 2.1.1 of the Java Card platform is specified in [JCVM21], [JCRE21] and [JCAPI21]. It
consists of the virtual machine for the Java Card platform (“Java Card virtual machine” or “JCVM”), the
Java Card technology runtime environment (JCRE) and the Java Card Application Programming
Interface (API).

As the terminology is sometimes confusing, we introduce the term “Java Card System” to designate
the set made of the JCRE, the JCVM and the API. The Java Card System provides a layer between a
native platform and an applet space. That layer allows applications written for one smart card
platform (“SCP“) enabled with Java Card technology to run on any other such platform.

The JCVM is essentially an abstract machine that specifies the behavior of the bytecode interpreter to be
embedded in the card. The JCRE is responsible for card resource management, communication, applet
execution, and on-card system and applet security. The API provides classes and interfaces for the
core functionality of a Java Card application. It defines the calling conventions by which an applet may
access the JCRE and native services such as, I/O management functions, PIN and cryptographic
specific management and the exceptions mechanism. The Java Card API is compatible with formal
international standards, such as ISO7816, and industry specific standards, such as EMV
(Europay/Master Card/Visa).

In certain use-cases, applets can be loaded and installed on a Java Card platform after the card has
been issued. This provides, for instance, card issuers with the ability to dynamically respond to their
customer's changing needs. For example, if a customer decides to change the frequent flyer program
associated with the card, the card issuer can make this change, without having to issue a new card.
Moreover, applets from different vendors can coexist in a single card, and they can even share
information. An applet, however, is usually intended to store highly sensitive information, so the
sharing of that information must be carefully limited. In the Java Card platform applet isolation is
achieved through the applet firewall mechanism ([JCRE21][JCRE22], §6.1). That mechanism confines
an applet to its own designated memory area, thus each applet is prevented from accessing fields and
operations of objects owned by other applets, unless an interface is explicitly provided (by the applet
who owns it) for allowing access to that information. The firewall is dynamically enforced, that is, at
runtime by the JCVM. However applet isolation cannot entirely be granted by the firewall mechanism

Java CardTM System Protection Profile Collection Page 21 of 189

Version 1.0b August 2003

if certain integrity conditions are not satisfied by the applications loaded on the card. Those conditions
can be statically verified to hold by a bytecode verifier.

Figure 1 replaces the different components of the Java Card System in their environment. The
development of the application, as well as the compilation and conversion steps (see below), is not
included in the usage environment of the TOE.

Off-Card VerifierOff-Card Loader

On-Card Loader

Java Card System

On-Card Verifier

Smart Card Platform (OS, Firmware,…)

JCRE

JCVMJCAPI

Card

Manager

Installer

Loading with certification authority

Applet

Loading without certification authority

Applet

New Applet

N
ative A

pplication
s

Figure 1: Usage environment of the TOE

One of the several possible scenarios depicted by Figure 1, concerning the development, loading and
execution lifetime of an applet, is described in what follows. The chosen use-case involves almost all of
the TOE and IT environment components considered in this document:.

The development of the source code of the applet is carried on in a Java programming environment.
The compilation of that code will then produce the corresponding class file. Then, this latter file is
processed by the converter1, which, on the one hand, validates the code and generates a converted
applet (CAP) file, the equivalent of a JavaTM class file for the Java Card platform. A CAP file contains an
executable binary representation of the classes of a package. A package is a name space within the Java
programming language that may contain classes and interfaces, and in the context of Java Card
technology, it defines either a user library, or one or several applets. Then, the integrity of the CAP file
is checked by the (off-card) bytecode verifier. After the validation is carried out, the CAP file is then
loaded into the card making use of a safe loading mechanism. Once loaded into the card the file is
linked, what makes it possible in turn to install, if defined, instances of any of the applets defined in

1 The converter is defined in the specifications so as to being the off-card component of the JCVM.

Java CardTM System Protection Profile Collection Page 22 of 189

Version 1.0b August 2003

the file. During the installation process the applet is registered on the card by using an application
identifier (AID) . This AID will allow the identification of unique instances of the applet instance within
the card. In particular, the AID is used for selecting the applet instance for execution. The execution of
the applet’s code is performed by the bytecode interpreter residing on the card.

The following sections further describe some of the components involved in the environment of the
Java Card System. Although most of those components are not part of the TOE, a better understanding
of the role they play will help in understanding the importance of the assumptions that will appear
concerning the environment of the TOE.

A brief description of some of the new features introduced in the version 2.2 of the Java Card platform
is also included.

2.1.1 Bytecode Verification

The bytecode verifier is a program that performs static checks on the bytecodes of the methods of a
CAP file. Bytecode verification is a key component of security: applet isolation, for instance, depends
on the file satisfying the properties a verifier checks to hold. A method of a CAP file that has been
verified, shall not contain, for instance, an instruction that allows forging a memory address or an
instruction that makes improper use of a return address as if it were an object reference. In other
words, bytecodes are verified to hold up to the intended use to which they are defined. This document
considers static bytecode verification, it may be performed either on the host (off-card verification) or
on the card (on-card verification), but prior to the installation of the file on the card in any case.
However, part of the verifications on bytecodes might be performed totally or partially dynamically.
No standard procedure in that concern has yet been recognized. Furthermore, different approaches
have been proposed for the implementation of bytecode verifiers, most notably data flow analysis,
model checking and lightweight bytecode verification, this latter being an instance of what is known
as proof carrying code. The actual set of checks performed by the verifier is implementation-
dependent, but it is required that it should at least enforce all the “must clauses” imposed in [JCVM]
on the bytecodes and the correctness of the CAP files’ format.

2.1.2 Installation of applets

The installer is the part of the on-card component of the platform dealing with downloading, linking
and installation of new packages, as described in [JCRE21]. Once selected, it receives the CAP file,
stores the classes of the package on the card, initializes static data, if any, and installs any applets
contained in the package.

In some cases, the actual installation (and registration) of applets is postponed; in the same vein, a
package may contain several applets, and some of them might never be installed. Installation is then
usually separated from the process of loading and linking a CAP file on the card.

When post-issuance installation of applets is supported by a Java Card platform, processes that allow
to load, and also to link, a CAP file, as well as to install applet instances on the card, must also be
provided. If post-issuance installation is supported then the installer is also considered as part of the
Java Card System.

LOADING

The loading of a file into the card embodies two main steps: First an authentication step by which the
card issuer and the card recognize each other, for instance by using a type of cryptographic
certification. Once the identification step is accomplished, the CAP file is transmitted to the card by
some means, which in principle should not be assumed to be secure. Due to resource limitations,

Java CardTM System Protection Profile Collection Page 23 of 189

Version 1.0b August 2003

usually the file is split by the card issuer into a list of Application Protocol Data Units (APDUs), which
are in turn sent to the card.

LINKING

The linking process consists of a rearrangement of the information contained in the CAP file in order to
speed up the execution of the applications. There is a first step where indirect external and internal
references contained in the file are resolved, by replacing those references with direct ones. This is
what is referred to as the resolution step. In the next step, called in [JVM] the preparation step, the static
field image2 and the statically initialized arrays defined in the file are allocated. Those arrays in turn
are also initialized, thus giving rise to what shall constitute the initial state of the package for the
embedded interpreter.

2.1.3 The Card Manager (CM)

The card manager is an application with specific rights, which is responsible for the administration of
the smart card. This component will in practice be tightly connected with the JCRE (see below, §2.4.2.2).
The card manager is in charge of the life cycle of the whole card, as well as the installed applications
(applets). It may have other roles (such as the management of security domains and enforcement of the
card issuer security policies) that we do not detail here, as they are not in the scope of the TOE and are
implementation–dependent.

The card manager’s role is also to manage and control the communication between the card and the
card acceptance device (CAD). It is the controller of the card, but relies on the TOE to manage the
runtime of client applets. On the other hand, the TOE relies on the card manager for some of its
security functions (§2.4.2.2).

A candidate for this component is the Global Platform card manager ([GP]).

2.1.4 Smart Card Platform: Operating System + Chip +
Dedicated Software

The smart card platform (SCP) is composed of a micro-controller and an operating system. It provides
memory management functions (such as separate interface to RAM and NVRAM), I/O functions that
are compliant with ISO standards, transaction facilities, and secure (shielded, native) implementation
of cryptographic functions. It also contains dedicated software (DS), which provides an interface with
the integrated circuit (IC).

Finally, it is likely that the SCP has to be evaluated along with the TOE in order to claim a good level of
assurance, when needed.

2.1.5 Native Applications

Apart from Java Card applications, the final product may contain native applications as well. Native
applications are outside the scope of the TOE security functions (TSF), and they are usually written in
the assembly language of the platform, hence their name. This term also designates software libraries
providing services to other applications, including applets under the control of the TOE.

2 The memory area where the static fields of the file reside.

Java CardTM System Protection Profile Collection Page 24 of 189

Version 1.0b August 2003

It is obvious that such native code presents a threat to the security of the TOE and to user applets.
Therefore, the PPs will require for native applications to be conformant with the TOE so as to ensure
that they do not provide a means to circumvent or jeopardize the TSFs.

2.2 JAVA CARD 2.2 TECHNOLOGY

This document is also concerned with the new features included in the Java Card System 2.2 platform
specification ([JCVM22], [JCRE22], [JCAPI22]), namely, the support of logical channels, applet and
package deletion, object deletion and Java Card System Remote Method Invocation.

Any of the four components described below, when included in a configuration, is to be considered as
part of theJava Card System.

JAVA CARD REMOTE METHOD INVOCATION (JCRMI)

Java Card System Remote Method Invocation (JCRMI) provides a mechanism for a client application
running on the CAD platform to invoke a method on a remote object on the card. The CAD issues
commands to the card, which in turn dispatches them to the appropriate object. The RMI facilities are
introduced as part of an extended framework aimed at improving the productivity of application
developers for the Java Card platform, on the one hand, promoting a technology that is used today in
many client-server applications, and, on the other hand, freeing the task of Java Card application
developing of having to deal directly with the card-specific programming model. Moreover, JCRMI
enables the use of the Java technology for both the card and the terminal.

The applet owner of those objects controls the access to exported objects and the JCRE ensures
coherence and synchronization of the remote object with its on-card representative.

APPLET DELETION MANAGER (ADEL)

The applet deletion manager is the on-card component that embodies the mechanisms necessary to
delete an applet on smart cards using Java Card technology. If the implementation of the Java Card
System includes a post-issuance installer, then an applet deletion manager that supports the behavior
specified in [JCRE22],§11.3, is also required. The applet deletion manager must appear as an applet to
the CAD. Therefore, it has an AID, and it must be selected for execution. There are three categories of
applet deletion requirements in Java Card System, version 2.2 ([JCRE22],§11.3.4):

• applet instance deletion, which is the removal of the applet instance and the
objects owned by the applet instance.

• applet /library package deletion, which entails the removal of all the card
resident components of the CAP file, including code and any associated JCRE
management structures.

• deletion of an applet package and contained instances, which is the removal of the
card resident code and JCRE structures associated with the applet package, and all
the applet instances in the context of the package.

LOGICAL CHANNELS

The Java Card 2.2 technology provides support for logical channels, that is, the ability to allow a
terminal to open up to four sessions into the smart card, one session per logical channel ([JCRE22],§4).
Commands may be issued on a logical channel to instruct the card either to open or to close a logical

Java CardTM System Protection Profile Collection Page 25 of 189

Version 1.0b August 2003

channel. An applet instance that is selected to be active on a channel shall process all the commands
issued to that channel. The platform also introduces the possibility for an applet instance to be selected
on multiple logical channels at the same time, or accepting other applets belonging to the same package
to be selected simultaneously. These applets are referred to as multiselectable. A non-multiselectable
applet can be active at most on one channel. Applets within a package are either all multiselectable or all
non-multiselectable.

OBJECT DELETION

The Java Card technology, version 2.2, offers an (optional) object deletion mechanism. This
mechanism is requested by an applet instance, and the JCRE must ensure that any unreferenced object
owned by that instance is deleted and the associated space must be recovered for reuse. Applications
designed to run on a platform providing this facility can make use of it by invoking the method
requestObjectDeletion()[JCAPI22].

2.3 FUNCTIONAL COMPONENTS AND CONFIGURATIONS

In §1.7.1 the concept of group of SFRs was introduced and the role they play in the PPs is defined in
this document. The following list describes the groups of security requirements which have been used
in those PPs. The definition of each of those groups is strongly influenced by the behavior of the
functional components described in the previous section:

SCP group The SCPG contains the security requirements for the smart card
platform, that is, operating system and chip that the Java Card System is
implemented upon. It does not define requirements for the TOE but for
its IT environment.

Core group The CoreG contains the basic requirements concerning the runtime
environment of the Java Card System, such as the firewall policy and the
requirements related to the Java Card API.

Bytecode verification
group

The BCVG contains the security requirements concerning the bytecode
verification of the application code to be loaded on the card. This group
of SFRs may apply to the TOE or to its IT environment depending on the
configuration.

Installation group The InstG contains the security requirements concerning the installation
of post-issuance applications. It does not address card management
issues in the broad sense, but only those security aspects of the
installation procedure that are related to applet execution. Those aspects
are described in §11.1.5 Installer behavior of [JCRE21]

Applet deletion group The ADELG contains the security requirements for erasing installed
applets from the card, a new feature introduced in Java Card System 2.2.
It can also be used as a basis for any other application deletion
requirements.

Remote Method
Invocation (RMI) group

The RMIG contains the security requirements for the remote method
invocation features, which provides a new protocol of communication
between the terminal and the applets. This was introduced in Java Card
System 2.2.

Logical channels group The LCG contains the security requirements for the logical channels,

Java CardTM System Protection Profile Collection Page 26 of 189

Version 1.0b August 2003

which provide a runtime environment where several applets can be
simultaneously selected or a single one can be selected more than once.
This is a Java Card System 2.2 feature.

Object deletion group The ODELG contains the security requirements for the object deletion
capability. This provides a safe memory recovering mechanism. This is a
Java Card System 2.2 feature.

Secure carrier group The CarG group contains minimal requirements for secure downloading
of applications on the card. This group contains the security requirements
for preventing, in those configurations which do not support on-card
static or dynamic verification of bytecodes, the installation of a package
that has not been bytecode verified, or that has been modified after
bytecode verification.

Card manager group The CMGRG contains the minimal requirements that allow defining a
policy for controlling access to card content management operations and
for expressing card issuer security concerns.

2.3.1 Configurations

The following are the configurations, among the several ones that can be defined, which are addressed
in this document. They have been chosen either because they correspond to existing use-cases, or
because they cover the largest range of features of the Java Card platform.

Java CardTM System Protection Profile Collection Page 27 of 189

Version 1.0b August 2003

2.3.1.1 Minimal Configuration

The minimal configuration corresponds to a multi-application card where no downloading of post-
issuance applications is allowed. The TOE is the simplest Java Card runtime environment and its IT
environment is the smart card platform, the bytecode verifier and the card manager. Only the groups
SCPG, CoreG , BCVG and CMGRG are included in this configuration.

SCP=IC + OS + DS

JCRE

N
ative A

pplications

Java
Card
API

Applet 1 Applet 2

Package A

Applet 1

Package B

Minimal configuration

TOE IT
environment

TOE limits

JCVM

Card
Manager

Bytecode
Verification

Figure 2: TOE Limits for Minimal configuration

Java CardTM System Protection Profile Collection Page 28 of 189

Version 1.0b August 2003

2.3.1.2 Java Card System Standard 2.1.1 Configuration

The standard configuration corresponds to a platform that includes all the functionalities described in
Java Card System 2.1.1. It extends the Minimal configuration with the security requirements for
downloading to the card post-issuance applications3 that have been previously verified off-card by a
remote trusted IT component. The loader and the installer form part of the TOE, and therefore the
groups CarG and InstG are included. The Java Card System Standard 2.1.1 configuration however
does not provide functionalities for deletion of applets. Bytecode verification and card management
applies to the TOE IT environment.

SCP=IC + OS + DS

Card
Manager

JCRE

N
ative A

pplications

Java
Card
API

Installer

Applet 1 Applet 2

Package A

Applet 1

Package B

Java Card System Standard 2.1.1 configuration

TOE IT environment

TOE limits

Bytecode
Verification

JCVMLoader

Figure 3: TOE Limits for Java Card System Standard 2.1.1 configuration

2.3.1.3 Java Card System Standard 2.2 Configuration

This configuration extends the Java Card System Standard 2.1.1 configuration with all the features
introduced in the Java Card System 2.2 specification (RMI, logical channels, applet deletion and object
deletion). Therefore, the groups CarG, InstG, RMIG, LCG, ADELG and ODELG are included. Bytecode
verification and card management applies to the TOE IT environment.

3 The applet Installer is an optional feature of Java Card System, version 2.1.1.

Java CardTM System Protection Profile Collection Page 29 of 189

Version 1.0b August 2003

SC P=IC + O S + D S

C ard
M anager

J CR E

N
ative A

pplications

Java
C ard
A P I

Insta ller

A pp let 1 A pp let 2

P ack a ge A

A pp let 1

P ack age B

J a v a C a rd S y ste m S ta n da rd 2 .2
c o nfig u ra t io n

T O E IT e nv iro n m e nt

TO E lim its

B yte code
Ve rificat io n

J C V M

L ogi cal ch an n e l s

O b je ct de le t ion

A p ple t D e letion Man age r

R e m ote Me th od I n vocation

Figure 4: TOE Limits for Java Card System Standard 2.2 configuration

2.3.1.4 Defensive Configuration

This configuration, like the Java Card System Standard 2.2 configuration, also includes all the features
considered in version 2.2 of the Java Card System. In addition to that, bytecode verification is
performed on-card and the bytecode verifier is then a component of the TOE. The BCVG group is
therefore also included, not being the case of the group CarG since installation of malicious applets is
prevented independently from the origin of the application and the way it has been downloaded on
the card. Card management applies to the TOE IT environment.

SCP=IC + OS + DS

Card
Manager

JCRE

N
ative A

pplications

Java
Card
API

Installer

Applet 1 Applet 2

Package A

Applet 1

Package B

Defensive configuration

TOE IT environment

TOE limits

Bytecode
Verification

Applet Deletion Manager

Object deletion

Remote Method Invocation

Logical channels

JCVM

Figure 5: TOE Limits for Defensive configuration

Java CardTM System Protection Profile Collection Page 30 of 189

Version 1.0b August 2003

2.4 LIMITS OF THE TOE

2.4.1 Scope of Evaluation

The scope of the TOE is the Java Card System. The integrated circuit, the operating system and the
dedicated software of the smart card are not part of the TOE. Neither is part of the TOE any piece of
native code that does not contribute to its implementation, like a native application embedded
together with Java Card applications. However, the Java Card System is used by the applets and
interacts with the SCP, the card manager and other components of the smart card . All of them are thus
part of the TOE IT environment, and are included in the scope of evaluation of the PPs.

Regarding the code of the TOE, one may distinguish the Java Card System as a “pure software
component” from the actual product, which is the very same software running on a smart card , as a
part of an ST (see §2.4.2). While the scope of the PPs does not include the development cycle of the
smart card , the good working order of the TOE much depends on the way the TOE is handled during
the manufacturing process of the card (for instance, how it is embedded into the card). Thus the scope
of evaluation actually includes more than the TOE itself. The Common Criteria acknowledges this
situation, allowing security requirements applying to the development and construction of the TOE,
stated in several SARs (security assurance requirements), particularly those from the ADO (delivery)
and ACM (configuration) classes [CC3].

Let us also remark that the code of the applets is not part of the code of the TOE, but just data
managed by the TOE. Moreover, the scope of the PPs does not include all the stages in the
development cycle of a Java Card application described in §2.1. Applets are only considered in their
CAP format, and the process of compiling the source code of an application and converting it into the
CAP format does not regard the TOE or its environment. On the contrary, the process of verifying
applications in its CAP format and loading it on the card is a crucial part of the TOE environment and
plays an important role as a complement of the TSFs included in the configuration. The PPs assume
that the loading of applications pre-issuance is made in a secure environment. For post-issuance
phases, the card will need to protect itself so that applets can only be loaded within a secured
environment4.

Native applications (see §2.1.5) may be placed into the card not through the installer component of the
Java Card System, but by directly embedding them into the IC during the fabrication of the smart card,
along with that of the Java Card System. This is the usual way to have native methods installed, but the
process is not limited to them, and applets and API packages may also be installed at a time where the
TOE is not yet operational. This also advocates for including several security assurance requirements
on the life cycle of the smart card, since native applications are not under the control of the Java Card
System.

It is also important to notice that the actual definition of the Java Card System (and thus the limits of
the TOE) varies in accordance with the configuration under consideration. Figure 6 illustrates the
components that are always inside the perimeter of the Java Card System, and the different optional
components that may be also included.

4 This protection is likely to be on the behalf of the card manager.

Java CardTM System Protection Profile Collection Page 31 of 189

Version 1.0b August 2003

2.4.1.1 Relationship between Configurations and Groups

The following table illustrates the relationship between the chosen configurations and the groups
described in §2.3. For each configuration, if a group is included it can be either part of the TOE or part
of the IT environment. This holds, for instance, for the bytecode verification: when not performed on-
card, it is part of the IT environment.

Group (group name) Minimal Java Card
System
Standard 2.1.1

Java Card
System
Standard 2.2

Defensive

Core (CoreG) TOE TOE TOE TOE

Smart card platform (SCPG) IT IT IT IT

Installer (InstG) -- TOE TOE TOE

RMI (RMIG) -- -- TOE TOE

Logical channels (LCG) -- -- TOE TOE

Object deletion (ODELG) -- -- TOE TOE

Bytecode verification (BCVG) IT IT IT TOE

Applet deletion (ADELG) -- -- TOE TOE

Secure carrier (CarG) -- TOE TOE --

Card manager (CMGRG) IT IT IT IT

Table 1: Relationship between Groups and Configurations

Java CardTM System Protection Profile Collection Page 32 of 189

Version 1.0b August 2003

SCP=IC + OS + DS

Card
Manager

JCRE
N

ative A
pplications

Java
Card
API

Bytecode
Verification

Optional
TOE components

Applet Deletion Manager

Object deletion

JCVM

Remote Method Invocation

Applet 1 Applet 2

Package A

Applet 1

Package B

Logical channels

Loader
Installer

TOE limits

Figure 6: Mandatory and optional components of the TOE

Java CardTM System Protection Profile Collection Page 33 of 189

Version 1.0b August 2003

2.4.2 The TOE in the Life Cycle of the Smart Card

Following the CC, we separate the TOE environment into two parts: the IT environment and the non-
IT environment. As seen in the preceding sections, the TOE is intended to be part of an IT product
embedded in a smart card; due to specific development and installation processes of the smart card
industry, these (the TOE’s development and installation) are not separable from that of the other IT
components of the smart card. This development phase constitutes the main part of the non-IT
environment of the TOE.

The rest of this section is inspired by [PP0010], as we assume that JCRE is part of the embedded
software (ES), so the same development rules shall apply. Note that [SCSUG-2] also presents an
alternative (but less detailed) view of the development and production of smart card products.

The life cycle of the TOE, which is only a part of the smart card life cycle, can be reduced to the three
stages pictured in Figure 7, called Development, Production & Personalization, and Usage.

IC Development Applet
Development

TOE Development

Production &personalization

Usage

VMspec.

Applets and sensitive data

IC and dedicated
platformdesign

Platform initialization

Additional
platform software
(OS, RTE, CM

components, native
applications)

Administration

End-usage

flowof assetsIC fabrication Platform testing & production

Loading &
installation

Configuration

Testing &
Validation

Figure 7: Smart Card Product Life Cycle

Java CardTM System Protection Profile Collection Page 34 of 189

Version 1.0b August 2003

2.4.2.1 TOE Development & Production Environments

The development and production of the TOE is carried out during the first and second stages. To
ensure security, the environment in which the development takes place must be made secure with
controllable accesses and traceability. Furthermore, it is important that every authorized personnel
involved fully understands the importance and the rigid implementation of defined security
procedures.

The development begins with the TOE specification. All parties in contact with sensitive information
are required to abide by Non-Disclosure Agreements.

Development of the TOE then follows. The engineers use a secure computer system (preventing
unauthorized access) to make their specifications, design, development and generation of the product.
Storage of sensitive documents, databases on tapes, diskettes are in appropriately locked
cupboards/safe. The disposal of unwanted data (complete electronic erasures) and documents (like
shredding) is also of great importance. Testing, integration and validation of TOE components then
take place. This phase consists in the collection of all software modules and the execution/test of this
software on an emulator or on a simulator of the (DS & IC) layer.

When these are done offsite, they must be transported and worked out in a secure environment with
accountability and traceability of all components. During the electronic transfer of sensitive data,
procedures must be established to ensure that the data and programs reach the expected destination
and are not accessible at intermediate stages (stored on a buffer server where system administrators
make backup copies). Should the integration tests be successful, the ROM code is delivered to the IC
manufacturer.

During the production stage the TOE is used in the IC Packaging, smart card Finishing process and
the test environments. Everyone involved in such operations shall fully understand the importance of
security procedures. Moreover, the environment in which these operations take place must be
secured. Sensitive information (on tapes, disks or diskettes) is stored in an appropriately locked
cupboard/safe. Also of paramount importance is the disposal of unwanted data (like complete
electronic erasures) and documents (for instance, shredding). During production, the TOE is protected
just like any other component of the smart card (SCP, test samples) and the smart card itself.

Personalization then occurs that is, the embedder introduces data for configuration and initialization
of software components, namely the OS, the Java Card System, the SCP, and applications. At the end of
the second stage, the TOE is fully functional.

Adequate control procedures are necessary to account for all products at all stages. These must be
transported and manipulated in a secure environment with accountability and traceability of all (good
and bad) products.

2.4.2.2 TOE Final Environment

The third stage is the end usage time of the TOE.

Once the previous stage is over, the loading and installation of applications, and configuration
(initialization) of user data (like user PIN) is done. The card is finally issued to the end user (card
holder).

The main users of the TOE at this time are the applications, either pre-installed or loaded. The end
user environment thus covers a wide spectrum of very different functions.

Java CardTM System Protection Profile Collection Page 35 of 189

Version 1.0b August 2003

However, we can define the IT environment during this phase: first, the TOE obviously runs on top of
what we called the SCP, and is itself part of the underlying platform for the card manager5. The
underlying smart card platform has been described in §2.1.4 above. The TOE takes advantage of the
features it provides for its own management needs, such as transaction facilities, memory
management and safe cryptographic operations. At a lower level, the hardware provides physical
protection of the TOE.

On the other side, the TOE communicates with the CAD through the card manager. The triumvirate
made up of the JCRE, the installer and the CM is likely to be merged into one entity in actual
implementations. However, each one is in charge of a distinct security role on which the separation is
grounded.

During normal usage, the card is inserted in a CAD, starting up the CM and JCRE. The session is an
exchange of APDU commands between the CAD and the CM, the CM and the JCRE and, ultimately,
the JCRE and some applet.

Loading of an applet post-issuance follows the same pattern, with the exception that the JCRE hands
over the reins to the installer for the duration of the procedure. It will get the control back when the
newly loaded applet will need to be installed (that is, on the invocation of its install() method).

Finally, that loading issue leads us to another entity, which appears in Figure 1, the CAP file verifier
(also known as “bytecode verifier”, or, shortly, the BCV). The verifier can either be located off–card or
on–card without loss of generality, although this choice is not necessarily innocuous to security issues
(for instance, the integrity of the loaded file is important for off–card verification).

2.5 TOE INTENDED USAGE

Smart cards are mainly used as data carriers that are secure against forgery and tampering. More
recent uses also propose them as personal, highly reliable, small size devices capable of replacing
paper transactions by electronic data processing. Data processing is performed by a piece of software
embedded in the smart card chip, usually called an application.

The Java Card System is intended to transform a smart card into a platform capable of executing
applications written in a subset of the Java programming language. The intended use of a Java Card
platform is to provide a framework for implementing IC independent applications conceived to safely
coexist and interact with other applications into a single smart card.

Applications installed on a Java Card platform can be selected for execution when the card is inserted
into a card reader. In some configurations of the TOE, the card reader may also be used to enlarge or
restrict the set of applications that can be executed on the Java Card platform according to a well-
defined card management policy.

Notice that these applications may contain other confidentiality (or integrity) sensitive data than usual
cryptographic keys and PINs; for instance, passwords or pass-phrases are as confidential as the PIN,
and the balance of an electronic purse is highly sensitive with regard to arbitrary modification
(because it represents real money).

5 The card manager may also directly rely upon the SCP to access some of its low-level services.

Java CardTM System Protection Profile Collection Page 36 of 189

Version 1.0b August 2003

So far, the most important applications are:

– Financial applications, like Credit/Debit ones, stored value purse, or electronic
commerce, among others.

– Transport and ticketing, granting pre-paid access to a transport system like the
metro and bus lines of a city.

– Telephony, through the subscriber identification module (SIM) for digital mobile
telephones.

– Personal identification, for granting access to secured sites or providing
identification credentials to participants of an event.

– Secure information storage, like health records, or health insurance cards.
– Loyalty programs, like the “Frequent Flyer” points awarded by airlines. Points are

added and deleted from the card memory in accordance with program rules. The
total value of these points may be quite high and they must be protected against
improper alteration in the same way that currency value is protected.

The version 2.2 of the Java Card platform (“Java Card System 2.2”) introduces several novelties that
extend the domain of applications of the Java Card platform and ensures its compatibility with the
industrial state-of-art standards. One of those features is the possibility of having more than one
applet selected for execution at a time, which is intensively used in identity modules of mobile phone
applications. A Java Card platform implementing this feature is said to support “logical channels”.

Java Card System 2.2 also provides applet deletion, which enables the fine tuning of open card
management. This typically impacts the loyalty applications, which are obvious candidates for post-
issuance downloading and removal of applications.

Lastly, Java Card System 2.2 also provides support for object deletion and remote method invocation
(RMI). Such features do not target any particular kind of applications. Object deletion enables the
reallocation of memory blocks, while RMI services are intended to shrink the size of the applet code in
charge of dispatching the commands received from the card host.

Java CardTM System Protection Profile Collection Page 37 of 189

Version 1.0b August 2003

2.6 PRODUCT RATIONALE

While the Java Card virtual machine (JCVM) is responsible for ensuring language-level security, the
JCRE provides additional security features for Java Card technology-enabled devices.

The basic runtime security feature imposed by the JCRE enforces isolation of applets using an applet
firewall. It prevents objects created by one applet from being used by another applet without explicit
sharing. This prevents unauthorized access to the fields and methods of class instances, as well as the
length and contents of arrays.

The applet firewall is considered as the most important security feature. It enables complete isolation
between applets or controlled communication through additional mechanisms that allow them to
share objects when needed. The JCRE allows such sharing using the concept of “shareable interface
objects” (SIO) and static public variables. The JCVM should ensure that the only way for applets to
access any resources are either through the JCRE or through the Java Card API (or other vendor-
specific APIs). This objective can only be guaranteed if applets are correctly typed (all the “must
clauses” imposed in chapter 7 of [JCVM21] on the bytecodes and the correctness of the CAP file format
are satisfied).

Java CardTM System Protection Profile Collection Page 38 of 189

Version 1.0b August 2003

3 TOE Security Environment

This chapter describes the security aspects of the environment in which the TOE is used. The first
section describes some general security, and is intended to ease the comprehension of the security
objectives and requirements, especially the access control policies. Sections §3.2 and §3.3 introduce the
assets to be protected, the users of the TOE, and their software counterparts. Section §3.4 describes the
assumptions made on the environment. Section §3.5 describes the threats menacing the assets of the
TOE. Finally, the organizational policies that shall be imposed on the environment of the TOE are
presented in Section §3.6.

All the sections in this chapter contain specific sub-sections for each of the TOE configurations
introduced in Section §2.3.1.

3.1 SECURITY ASPECTS

Security aspects are intended to define the main security issues that are to be addressed in the PP, in a
CC-independent way. In addition to this, they also give a semi-formal framework to express the CC
security environment and objectives of the TOE. They can be instantiated as assumptions, threats,
objectives (for the TOE and the environment), or organizational security policies. For instance, we will
define hereafter the following aspect:

#.OPERATE (1) The TOE must ensure continued correct operation of its security functions. (2) The TOE must also
return to a well-defined valid state before a service request in case of failure during its operation.

The meaning of this paragraph is to state that the TSFs must be continuously active in one way or
another, and that aspect is termed “OPERATE”. Depending on the configuration, the PP may include
an assumption, termed “A.OPERATE”, stating that it is assumed that the TOE ensures continued
correct operation of its security functions, and so on. But it may also include a threat, termed
“T.OPERATE”, to be interpreted as the negation of the statement #.OPERATE. In this example, this
amounts to state that an attacker may try to circumvent some specific TSF by temporarily shutting it
down. The use of a common name intends to ease the global understanding of the document.

This section presents several security aspects that will appear below in the configurations of the PP.
Some being quite general, we give further details, which are numbered for easier cross-reference
within the document. For instance, the two parts of #.OPERATE, when instantiated with an objective
“O.OPERATE”, may be met by separate SFRs in the rationale. The numbering then adds further
details on the relationship between the objective and those SFRs.

CONFIDENTIALITY

#.CONFID-APPLI-DATA Application data must be protected against unauthorized disclosure. This
concerns logical attacks at runtime in order to gain read access to other
application’s data.

#.CONFID-JCS-CODE Java Card System code must be protected against unauthorized disclosure.
This concerns logical attacks at runtime in order to gain a read access to

Java CardTM System Protection Profile Collection Page 39 of 189

Version 1.0b August 2003

executable code, typically by executing an application that tries to read the
memory area where a piece of Java Card System code is stored.

#.CONFID-JCS-DATA Java Card System data must be protected against unauthorized disclosure.
This concerns logical attacks at runtime in order to gain a read access to
Java Card System data. Java Card System data includes the data managed
by the Java Card runtime environment, the virtual machine and the
internal data of Java Card API classes as well.

INTEGRITY

#.INTEG-APPLI-CODE Application code must be protected against unauthorized modification.
This concerns logical attacks at runtime in order to gain write access to the
memory zone where executable code is stored. If the configuration allows
post-issuance application loading, this threat also concerns the
modification of application code in transit to the card.

#.INTEG-APPLI-DATA Application data must be protected against unauthorized modification.
This concerns logical attacks at runtime in order to gain unauthorized
write access to application data. If the configuration allows post-issuance
application loading, this threat also concerns the modification of
application data contained in a package in transit to the card. For instance,
a package contains the values to be used for initializing the static fields of
the package.

#.INTEG-JCS-CODE Java Card System code must be protected against unauthorized
modification. This concerns logical attacks at runtime in order to gain write
access to executable code.

#.INTEG-JCS-DATA Java Card System data must be protected against unauthorized
modification. This concerns logical attacks at runtime in order to gain write
access to Java Card System data. Java Card System data includes the data
managed by the Java Card runtime environment, the virtual machine and
the internal data of Java Card API classes as well.

UNAUTHORIZED EXECUTIONS

#.EXE-APPLI-CODE Application (byte)code must be protected against unauthorized execution.
This concerns (1) invoking a method outside the scope of the visibility
rules provided by the public/private access modifiers of the Java
programming language ([JAVASPEC],§6.6); (2) jumping inside a method
fragment or interpreting the contents of a data memory area as if it was
executable code; (3) unauthorized execution of a remote method from the
CAD.

#.EXE-JCS-CODE Java Card System (byte)code must be protected against unauthorized
execution. Java Card System (byte)code includes any code of the JCRE or
API. This concerns (1) invoking a method outside the scope of the visibility
rules provided by the public/private access modifiers of the Java

Java CardTM System Protection Profile Collection Page 40 of 189

Version 1.0b August 2003

programming language ([JAVASPEC],§6.6); (2) jumping inside a method
fragment or interpreting the contents of a data memory area as if it was
executable code. Note that execute access to native code of the Java Card
System and applications is the concern of #.NATIVE.

#.FIREWALL The Java Card System shall ensure controlled sharing of class instances6,
and isolation of their data and code between packages (that is, controlled
execution contexts). (1) An applet shall neither read, write nor compare a
piece of data belonging to an applet that is not in the same context, nor
execute one of the methods of an applet in another context without its
authorization.

#.NATIVE Because the execution of native code is outside of the TOE Scope Control
(TSC), it must be secured so as to not provide ways to bypass the TSFs. No
untrusted native code may reside on the card. Loading of native code,
which is as well outside the TSC, is submitted to the same requirements.
Should native software be privileged in this respect, exceptions to the
policies must include a rationale for the new security framework they
introduce.

BYTECODE VERIFICATION

#.VERIFICATION All bytecode must be verified prior to being executed. Bytecode
verification includes (1) how well-formed CAP file is and the verification of
the typing constraints on the bytecode, (2) binary compatibility with
installed CAP files and the assurance that the export files used to check the
CAP file correspond to those that will be present on the card when loading
occurs.

CAP File Verification

Bytecode verification includes checking at least the following properties: (3) bytecode instructions
represent a legal set of instructions used on the Java Card platform; (4) adequacy of bytecode
operands to bytecode semantics; (5) absence of operand stack overflow/underflow; (6) control flow
confinement to the current method (that is, no control jumps to outside the method); (7) absence of
illegal data conversion and reference forging; (8) enforcement of the private/public access modifiers
for class and class members; (9) validity of any kind of reference used in the bytecodes (that is, any
pointer to a bytecode, class, method, object, local variable, etc actually points to the beginning of piece
of data of the expected kind); (10) enforcement of rules for binary compatibility (full details are given
in [JCVM], [JVM], [BCVWP]). The actual set of checks performed by the verifier is implementation-
dependent, but shall at least enforce all the “must clauses” imposed in [JCVM] on the bytecodes
and the correctness of the CAP files’ format.

As most of the actual JCVMs do not perform all the required checks at runtime, mainly because smart
cards lack memory and CPU resources, CAP file verification prior to execution is mandatory. On the
other hand, there is no requirement on the precise moment when the verification shall actually take
place, as far as it can be ensured that the verified file is not modified thereafter. Therefore, the
bytecodes can be verified either before the loading of the file on to the card or before the installation

6 This concerns in particular the arrays, which are considered as instances of the Object class in the Java programming language.

Java CardTM System Protection Profile Collection Page 41 of 189

Version 1.0b August 2003

of the file in the card or before the execution, depending on the card capabilities, in order to ensure
that each bytecode is valid at execution time.

Another important aspect to be considered about bytecode verification and application downloading
is, first, the assurance that every package required by the loaded applet is indeed on the card, in a
binary-compatible version (binary compatibility is explained in [JCVM], §4.4), second, that the export
files used to check and link the loaded applet have the corresponding correct counterpart on the card.

Integrity and Authentication

Verification off-card is useless if the application package is modified afterwards. The usage of
cryptographic certifications coupled with the verifier in a secure module is a simple means to prevent
any attempt of modification between package verification and package installation. Once a verification
authority has verified the package, it signs it and sends it to the card. Prior to the installation of the
package, the card verifies the signature of the package, which authenticates the fact that it has been
successfully verified. In addition to this, a secured communication channel is used to communicate it
to the card, ensuring that no modification has been performed on it.

Alternatively, the card itself may include a verifier and perform the checks prior to the effective
installation of the applet or provide means for the bytecodes to be verified dynamically.

Linking and Verification

Beyond functional issues, the installer ensures at least a property that matters for security: the loading
order shall guarantee that each newly loaded package references only packages that have been already
loaded on the card. The linker can ensure this property because the Java Card platform does not
support dynamic downloading of classes.

CARD MANAGEMENT

#.CARD-MANAGEMENT (1) The card manager (CM) shall control the access to card management
functions such as the installation, update or deletion of applets. (2) The
card manager shall implement the card issuer ’s policy on the card.

#.INSTALL Installation of a package or an applet is secure. (1) The TOE must be able to
return to a safe and consistent state should the installation fail or be
cancelled (whatever the reasons). (2) Installing an application must have
no effect on the code and data of already installed applets. The installation
procedure should not be used to bypass the TSFs. In short, it is a secure
atomic operation, and free of harmful effects on the state of the other
applets. (3) The procedure of loading and installing a package shall ensure
its integrity and authenticity.

#.SID (1) Users and subjects of the TOE must be identified. (2) The identity of
sensitive users and subjects associated with administrative and privileged
roles must be particularly protected; this concerns the JCRE, the applets
registered on the card, and especially the default applet and the currently
selected applet (and all other active applets in Java Card System 2.2). A
change of identity, especially standing for an administrative role (like an
applet impersonating the JCRE), is a severe violation of the TOE Security
Policy (TSP). Selection controls the access to any data exchange between
the TOE and the CAD and therefore, must be protected as well. The loading
of a package or any exchange of data through the APDU buffer (which can

Java CardTM System Protection Profile Collection Page 42 of 189

Version 1.0b August 2003

be accessed by any applet) can lead to disclosure of keys, application code
or data, and so on.

#OBJ-DELETION Deallocation of objects must be secure. (1) It should not introduce security
holes in the form of references pointing to memory zones that are not
longer in use, or have been reused for other purposes. Deletion of
collection of objects should not be maliciously used to circumvent the TSFs.
(2) Erasure, if deemed successful, shall ensure that the deleted class
instance is no longer accessible.

#DELETION Deletion of applets must be secure. (1) Deletion of installed applets (or
packages) should not introduce security holes in the form of broken
references to garbage collected code or data, nor should they alter integrity
or confidentiality of remaining applets. The deletion procedure should not
be maliciously used to bypass the TSFs. (2) Erasure, if deemed successful,
shall ensure that any data owned by the deleted applet is no longer
accessible (shared objects shall either prevent deletion or be made
inaccessible). A deleted applet cannot be selected or receive APDU
commands. Package deletion shall make the code of the package no longer
available for execution.(3) Power failure or other failures during the
process shall be taken into account in the implementation so as to preserve
the TSPs. This does not mandate, however, the process to be atomic. For
instance, an interrupted deletion may result in the loss of user data, as long
as it does not violate the TSPs.

The deletion procedure and its characteristics (whether deletion is either
physical or logical, what happens if the deleted application was the default
applet, the order to be observed on the deletion steps) are implementation-
dependent. The only commitment is that deletion shall not jeopardize the
TOE (or its assets) in case of failure (such as power shortage).

Deletion of a single applet instance and deletion of a whole package are
functionally different operations and may obey different security rules. For
instance, specific packages can be declared to be undeletable (for instance,
the Java Card API packages), or the dependency between installed packages
may forbid the deletion (like a package using super classes or super
interfaces declared in another package).

SERVICES

#.ALARM The TOE shall provide appropriate feedback upon detection of a potential
security violation. This particularly concerns the type errors detected by
the bytecode verifier, the security exceptions thrown by the JCVM, or any
other security-related event occurring during the execution of a TSF.

#.OPERATE (1) The TOE must ensure continued correct operation of its security
functions. (2)) In case of failure during its operation, the TOE must also
return to a well-defined valid state before the next service request.

 #.RESOURCES The TOE controls the availability of resources for the applications and
enforces quotas and limitations in order to prevent unauthorized denial of
service or malfunction of the TSFs. This concerns both execution (dynamic

Java CardTM System Protection Profile Collection Page 43 of 189

Version 1.0b August 2003

memory allocation) and installation (static memory allocation) of
applications and packages.

#.CIPHER The TOE shall provide a means to the applications for ciphering sensitive
data, for instance, through a programming interface to low-level, highly
secure cryptographic services. In particular, those services must support
cryptographic algorithms consistent with cryptographic usage policies and
standards.

#.KEY-MNGT The TOE shall provide a means to securely manage cryptographic keys.
This includes: (1) Keys shall be generated in accordance with specified
cryptographic key generation algorithms and specified cryptographic key
sizes, (2) Keys must be distributed in accordance with specified
cryptographic key distribution methods, (3) Keys must be initialized before
being used, (4) Keys shall be destroyed in accordance with specified
cryptographic key destruction methods.

#.PIN-MNGT The TOE shall provide a means to securely manage PIN objects. This
includes: (1) Atomic update of PIN value and try counter, (2) No rollback
on the PIN-checking function,(3) Keeping the PIN value (once initialized)
secret (for instance, no clear-PIN-reading function), (4) Enhanced
protection of PIN’s security attributes (state, try counter…) in
confidentiality and integrity.

#.SCP The smart card platform must be secure with respect to the TSP. Then:
(1) After a power loss or sudden card removal prior to completion of some
communication protocol, the SCP will allow the TOE on the next power up
to either complete the interrupted operation or revert to a secure state.
(2) It does not allow the TSFs to be bypassed or altered and does not allow
access to other low-level functions than those made available by the
packages of the API. That includes the protection of its private data and
code (against disclosure or modification) from the Java Card System. (3) It
provides secure low-level cryptographic processing to the Java Card
System. (4) It supports the needs for any update to a single persistent object
or class field to be atomic, and possibly a low-level transaction mechanism.
(5) It allows the Java Card System to store data in “persistent technology
memory” or in volatile memory, depending on its needs (for instance,
transient objects must not be stored in non-volatile memory). The memory
model is structured and allows for low–level control accesses
(segmentation fault detection). (6) It safely transmits low–level exceptions
to the TOE (arithmetic exceptions, checksum errors), when applicable. We
finally require that (7) the IC is designed in accordance with a well-defined
set of policies and standards (likely specified in another protection profile),
and will be tamper resistant to actually prevent an attacker from extracting
or altering security data (like cryptographic keys) by using commonly
employed techniques (physical probing and sophisticated analysis of the
chip). This especially matters to the management (storage and operation)
of cryptographic keys.

#.TRANSACTION The TOE must provide a means to execute a set of operations atomically.
This mechanism must not endanger the execution of the user applications.
The transaction status at the beginning of an applet session must be closed
(no pending updates).

Java CardTM System Protection Profile Collection Page 44 of 189

Version 1.0b August 2003

3.2 ASSETS

Assets are security–relevant elements to be directly protected by the TOE. Confidentiality of assets is
always intended with respect to un-trusted people or software, as various parties are involved during
the first stages; details are given in threats hereafter.

Assets may overlap, in the sense that distinct assets may refer (partially or wholly) to the same piece
of information or data. For example, “a piece of software” may be either source code (one asset) or
compiled code (another asset), and may exist in various formats (digital supports, printed paper) at
different stages of its development. This separation is motivated by the fact that a threat may concern
one form at one stage, but be meaningless for another form at another stage.

The assets to be protected by the TOE are listed below. They are grouped according to whether it is
data created by and for the user (User data) or data created by and for the TOE (TSF data). For each
asset it is specified the kind of dangers that weighs on it.

3.2.1 User data

D.APP_CODE The code of the applets and libraries loaded on the card.

To be protected from unauthorized modification.

D.APP_C_DATA Confidential sensitive data of the applications, like the data contained in an
object, a static field of a package, a local variable of the currently executed
method, or a position of the operand stack.

To be protected from unauthorized disclosure.

D.APP_I_DATA Integrity sensitive data of the applications, like the data contained in an
object, a static field of a package, a local variable of the currently executed
method, or a position of the operand stack.

To be protected from unauthorized modification.

D.PIN Any end-user’s PIN.

To be protected from unauthorized disclosure and modification.

D.APP_KEYs Cryptographic keys owned by the applets.

To be protected from unauthorized disclosure and modification.

3.2.2 TSF data

D.JCS_CODE The code of the Java Card System.

Java CardTM System Protection Profile Collection Page 45 of 189

Version 1.0b August 2003

To be protected from unauthorized disclosure and modification.

D.JCS_DATA The internal runtime data areas necessary for the execution of the JCVM,
such as, for instance, the frame stack, the program counter, the class of an
object, the length allocated for an array, any pointer used to chain data-
structures.

To be protected from monopolization and unauthorized disclosure or
modification.

D.SEC_DATA The runtime security data of the JCRE, like, for instance, the AIDs used to
identify the installed applets, the Currently selected applet, the current
context of execution and the owner of each object.

To be protected from unauthorized disclosure and modification.

D.API_DATA Private data of the API, like the contents of its private fields

To be protected from unauthorized disclosure and modification.

D.JCS_KEYs Cryptographic keys used when loading a file into the card.

To be protected from unauthorized disclosure and modification.

D.CRYPTO Cryptographic data used in runtime cryptographic computations, like a
seed used to generate a key.

To be protected from unauthorized disclosure and modification.

Java CardTM System Protection Profile Collection Page 46 of 189

Version 1.0b August 2003

3.3 USERS & SUBJECTS

Subjects are active components of the TOE that (essentially) act on the behalf of users. The users of the
TOE include people or institutions (like the applet developer, the card issuer, the verification
authority), hardware (like the CAD where the card is inserted) and software components (like the
application packages installed on the card). Some of the users may just be aliases for other users. For
instance, the verification authority in charge of the bytecode verification of the applications may be
just an alias for the card issuer .

The main subjects of the TOE considered in this document are the following ones:

• Packages used on the Java Card platform that act on behalf of the applet developer.
These subjects are involved in the FIREWALL security policy defined in §5.1.1.1 and
they should be understood as instances of the subject S.PACKAGE.

• The JCRE, which acts on behalf of the card issuer . This subject is involved in several of
the security policies defined in this document and is always represented by the subject
S.JCRE.

• The bytecode verifier (BCV), which acts on behalf of the verification authority. This
subject is involved in the PACKAGE LOADING security policy defined in §5.1.8 and
is represented by the subject S.BCV.

• The installer, which acts on behalf of the card issuer. This subject is involved in the
loading of packages and installation of applets. It could play the role of the on-card
entity in charge of package loading, which is involved in the PACKAGE LOADING
security policy defined in §5.1.8 and is represented by the subject S.CRD.

• The applet deletion manager, if the configuration contains such components, which also
acts on behalf of the card issuer. This subject is involved in the ADEL security policy
defined in §5.1.4.1 and is represented by the subject S.ADEL.

• The CAD is involved in the JCRMI security policy defined in §5.1.5.1 and is
represented by the subject S.CAD.

With the exception of packages, the other subjects have special privileges and play key roles in the
security policies of the TOE.

A special subject is involved in the PACKAGE LOADING security policy, which acts as the entity that
may potentially intercept, modify, or permute the messages exchanged between the verification
authority and the on-card entity in charge of package loading.

Java CardTM System Protection Profile Collection Page 47 of 189

Version 1.0b August 2003

3.4 ASSUMPTIONS

This section introduces the assumptions made on the environment of the TOE for each of the
configurations considered in this document.

3.4.1 All Configurations

The following is an assumption for all the configurations:

A.NATIVE Those parts of the APIs written in native code as well as any pre-issuance
native application on the card are assumed to be conformant with the TOE
so as to ensure that security policies and objectives described herein are not
violated. See #.NATIVE (p.40) for details.

3.4.2 Minimal Configuration

The assumptions of this configuration are the one defined in 3.4.1 plus the following ones:

A.NO-DELETION No deletion of installed applets (or packages) is possible.

A.NO-INSTALL There is no post-issuance installation of applets. Installation of applets is
secure and occurs only in a controlled environment in the pre-issuance
phase. See #.INSTALL (p.41) for details.

A.VERIFICATION All the bytecodes are verified at least once, before the loading, before the
installation or before the execution, depending on the card capabilities, in
order to ensure that each bytecode is valid at execution time.

3.4.3 Java Card System Standard 2.1.1 Configuration

The assumptions of the Java Card System Standard 2.1.1 configuration are the one defined in 3.4.1
plus the following ones:

A.VERIFICATION As in the Minimal configuration.

A.APPLET applets loaded post-issuance do not contain native methods. The Java Card
specification explicitly “does not include support for native methods”
([JCVM21], §3.3) outside the API.

A.DELETION Deletion of applets, if available through the card manager, is secure. Refer
to #.DELETION for details on this assumption.

Java CardTM System Protection Profile Collection Page 48 of 189

Version 1.0b August 2003

The rationale for this latter assumption is that even a Java Card System 2.1.1 TOE could be installed
on a product that includes applet deletion features. This assumes that these functions are secure with
respect to the TSPs herein.

3.4.4 Java Card System Standard 2.2 Configuration

The assumptions of this configuration are the one defined in §3.4.1 plus the following ones:

A.VERIFICATION As in the Minimal configuration.

A.APPLET As in the Java Card System Standard 2.1.1 configuration.

3.4.5 Defensive Configuration

The assumption of this configuration is the one defined in 3.4.1.

3.5 THREATS

This section introduces the threats to the assets against which specific protection within the TOE or its
environment is required. Several groups of threats are distinguished according to the configuration
chosen for the TOE and the means used in the attack. The classification is also inspired by the
components of the TOE that are supposed to counter each threat.

3.5.1 All Configurations

The following threats concern all the configurations considered in this document.

T.PHYSICAL The attacker discloses or modifies the design of the TOE, its sensitive data
or application code by physical (opposed to logical) tampering means. This
threat includes IC failure analysis, electrical probing, unexpected tearing,
and DP analysis. That also includes the modification of the runtime
execution of Java Card System or SCP software through alteration of the
intended execution order of (set of) instructions through physical
tampering techniques.

This threatens all the identified assets.

This threat refers to #.SCP.7, and all aspects related to confidentiality and
integrity of code and data.

CONFIDENTIALITY

T.CONFID-JCS-CODE The attacker executes an application without authorization to disclose the
Java Card System code. See #.CONFID-JCS-CODE (p. 38) for details.

Directly threatened asset(s): D.JCS_CODE.

Java CardTM System Protection Profile Collection Page 49 of 189

Version 1.0b August 2003

T.CONFID-APPLI-DATA The attacker executes an application without authorization to disclose data
belonging to another application. See #.CONFID-APPLI-DATA (p. 38) for
details.

Directly threatened asset(s): D.APP_C_DATA, D.PIN and D.APP_KEYs.

T.CONFID-JCS-DATA The attacker executes an application without authorization to disclose data
belonging to the Java Card System. See #.CONFID-JCS-DATA (p. 39) for
details.

Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA
D.JCS_KEYs and D.CRYPTO.

INTEGRITY

T.INTEG-APPLI-CODE The attacker executes an application to alter (part of) its own or another
application’s code. See #.INTEG-APPLI-CODE (p. 39) for details.

Directly threatened asset(s): D.APP_CODE

T.INTEG-JCS-CODE The attacker executes an application to alter (part of) the Java Card System
code. See #.INTEG-JCS-CODE (p. 39) for details.

Directly threatened asset(s): D.JCS_CODE.

T.INTEG-APPLI-DATA The attacker executes an application to alter (part of) another application’s
data. See #.INTEG-APPLI-DATA (p. 39) for details.

 Directly threatened asset(s): D.APP_I_DATA, D.PIN and D.APP_KEYs.

T.INTEG-JCS-DATA The attacker executes an application to alter (part of) Java Card System or
API data. See #.INTEG-JCS-DATA (p. 39) for details.

Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA,
D.JCS_KEYs and D.CRYPTO.

Other attacks are in general related to one of the above, and aimed at disclosing or modifying on-card
information. Nevertheless, they vary greatly on the employed means and threatened assets, and are
thus covered by quite different objectives in the sequel. That is why a more detailed list is given
hereafter.

IDENTITY USURPATION

T.SID.1 An applet impersonates another application, or even the JCRE, in order to
gain illegal access to some resources of the card or with respect to the end
user or the terminal. See #.SID (p. 41) for details.

Directly threatened asset(s): D.SEC_DATA (other assets may be
jeopardized should this attack succeed, for instance, if the identity of the
JCRE is usurped), D.PIN, D.APP_KEYs and D.JCS_KEYs

Java CardTM System Protection Profile Collection Page 50 of 189

Version 1.0b August 2003

T.SID.2 The attacker modifies the identity of the privileged roles. See #.SID (p. 41)
for further details.

Directly threatened asset(s): D.SEC_DATA (any other asset may be
jeopardized should this attack succeed, depending on whose identity was
forged).

UNAUTHORIZED EXECUTION

T.EXE-CODE.1 An applet performs an unauthorized execution of a method. See #.EXE-
JCS-CODE (p. 39) and #.EXE-APPLI-CODE (p. 39) for details.

Directly threatened asset(s): D.APP_CODE.

T.EXE-CODE.2 An applet performs an unauthorized execution of a method fragment or
arbitrary data. See #.EXE-JCS-CODE (p. 39) and #.EXE-APPLI-CODE
(p. 39) for details.

Directly threatened asset(s): D.APP_CODE.

T.NATIVE An applet executes a native method to bypass a security function such as
the firewall. See #.NATIVE (p. 40) for details.

Directly threatened asset(s): D.JCS_DATA.

DENIAL OF SERVICE

T.RESOURCES An attacker prevents correct operation of the Java Card System through
consumption of some resources of the card: RAM or NVRAM.

Directly threatened asset(s): D.JCS_DATA.

3.5.2 Minimal Configuration

The threats of this configuration are the ones defined in §3.5.1.

3.5.3 Java Card System Standard 2.1.1 Configuration

The threats of this configuration are those defined in §3.5.1 plus the following ones:

INTEGRITY

T.INTEG-APPLI-CODE.2 The attacker modifies (part of) its own or another application code when
an application package is transmitted to the card for installation. See
#.INTEG-APPLI-CODE (p. 39) for details.

Directly threatened asset(s): D.APP_CODE.

Java CardTM System Protection Profile Collection Page 51 of 189

Version 1.0b August 2003

T.INTEG-APPLI-DATA.2 The attacker modifies (part of) the initialization data contained in an
application package when the package is transmitted to the card for
installation. See #.INTEG-APPLI-DATA (p. 39) for details.

Directly threatened asset(s): D.APP_I_DATA, D_APP_KEYs and
D.JCS_KEYs.

MODIFICATIONS OF THE SET OF APPLICATIONS

T.INSTALL The attacker fraudulently installs post-issuance of an applet on the card.
This concerns either the installation of an unverified applet or an attempt
to induce a malfunction in the TOE through the installation process. See
#.INSTALL (p 41) for details.

Directly threatened asset(s): D.SEC_DATA (any other asset may be
jeopardized should this attack succeed, depending on the virulence of the
installed application).

3.5.4 Java Card System Standard 2.2 Configuration

The threats of this configuration are those defined in §3.5.1 plus the following ones:

T.INTEG-APPLI-CODE.2 As in the Java Card System Standard 2.1.1 configuration.

T.INTEG-APPLI-DATA.2 As in the Java Card System Standard 2.1.1 configuration.

 T.INSTALL As in the Java Card System Standard 2.1.1 configuration.

UNAUTHORIZED EXECUTIONS

T.EXE-CODE-REMOTE The attacker performs an unauthorized remote execution of a method
from the CAD. See #.EXE-JCS-CODE (p. 39) and #.EXE-APPLI-CODE
(p. 39) for details.

Directly threatened asset(s): D.APP_CODE.

This threat concerns version 2.2 of the Java Card System remote method invocation features, which
allow external users (that is, other than on-card applets) to trigger the execution of code belonging to
an on-card applet. On the contrary, T.EXE-CODE.1 is restricted to the applets under the TSC.

CARD MANAGEMENT

T.DELETION The attacker deletes an applet or a package already in use on the card, or
uses the deletion functions to pave the way for further attacks (putting the
TOE in an insecure state). See #.DELETION (p 42) for details).

Directly threatened asset(s): D.SEC_DATA and D.APP_CODE .

Java CardTM System Protection Profile Collection Page 52 of 189

Version 1.0b August 2003

SERVICES

T.OBJ-DELETION The attacker keeps a reference to a garbage collected object in order to
force the TOE to execute an unavailable method, to make it to crash, or to
gain access to a memory containing data that is now being used by another
application. See #.OBJ-DELETION (p. 42) for further details.

Directly threatened asset(s): D.APP_C_DATA, D.APP_I_DATA & D.APP_KEYs .

3.5.5 Defensive Configuration

The threats of this configuration are those defined in §3.5.1 plus the following ones:

T.INSTALL As in the Java Card System Standard 2.1.1 configuration.

T.EXE-CODE-REMOTE As in the Java Card System Standard 2.2 configuration.

T.DELETION As in the Java Card System Standard 2.2 configuration.

T.OBJ-DELETION As in the Java Card System Standard 2.2 configuration.

3.6 ORGANIZATIONAL SECURITY POLICIES

This section describes the organizational security policies to be enforced with respect to the TOE
environment.

3.6.1 Minimal Configuration

There is no organizational security policy for this configuration.

3.6.2 Java Card System Standard 2.1.1 Configuration

This configuration has only one organizational security policy:

OSP.VERIFICATION This policy shall ensure the adequacy between the export files used in the
verification and those used for installing the verified file. The policy must
also ensure that no modification of the file is performed in between its
verification and the signing by the verification authority. See
#.VERIFICATION (p.40) for details.

3.6.3 Java Card System Standard 2.2 Configuration

This configuration has only one organizational security policy:

Java CardTM System Protection Profile Collection Page 53 of 189

Version 1.0b August 2003

OSP.VERIFICATION As in the Java Card System Standard 2.1.1 configuration.

3.6.4 Defensive Configuration

There is no organizational security policy for this configuration.

Java CardTM System Protection Profile Collection Page 54 of 189

Version 1.0b August 2003

4 SECURITY OBJECTIVES

This section defines the security objectives to be achieved by each of the TOE configurations
considered in this document and their respective environments.

4.1 SECURITY OBJECTIVES FOR THE TOE

4.1.1 All Configurations

The following are security objectives of all the configurations considered in this document.

IDENTIFICATION

O.SID The TOE shall uniquely identify every subject (applet, or package) before
granting him access to any service.

EXECUTION

O.OPERATE The TOE must ensure continued correct operation of its security functions.
See #.OPERATE (p 42) for details.

O.RESOURCES The TOE shall control the availability of resources for the applications. See
#.RESOURCES (p 42) for details.

O.FIREWALL The TOE shall ensure controlled sharing of data containers owned by
applets of different packages, and between applets and the TSFs. See
#.FIREWALL (p 40) for details.

O.NATIVE The only means that the JCVM shall provide for an application to execute
native code is the invocation of a method of the Java Card API, or any
additional API. See #.NATIVE (p 40) for details.

O.REALLOCATION The TOE shall ensure that the re-allocation of a memory block for the
runtime areas of the JCVM does not disclose any information that was
previously stored in that block.

Application note: To be made unavailable means to be physically erased with a
default value. Except for local variables that do not correspond to method
parameters, the default values to be used are specified in [JCVM21].

Java CardTM System Protection Profile Collection Page 55 of 189

Version 1.0b August 2003

O.SHRD_VAR_CONFID The TOE shall ensure that any data container that is shared by all
applications is always cleaned after the execution of an application.
Examples of such shared containers are the APDU buffer, the byte array
used for the invocation of the process method of the selected applet, or
any public global variable exported by the API.

O.SHRD_VAR_INTEG The TOE shall ensure that only the currently selected application may
grant write access to a data memory area that is shared by all applications,
like the APDU buffer, the byte array used for the invocation of the
process method of the selected applet, or any public global variable
exported by the API. Even though the memory area is shared by all
applications, the TOE shall restrict the possibility of getting a reference to
such memory area to the application that has been selected for execution.
The selected application may decide to temporarily hand over the
reference to other applications at its own risk, but the TOE shall prevent
those applications from storing the reference as part of their persistent
states.

SERVICES

O.ALARM The TOE shall provide appropriate feedback information upon detection of
a potential security violation. See #.ALARM (p. 42) for details.

O.TRANSACTION The TOE must provide a means to execute a set of operations atomically.
See #.TRANSACTION (p. 43) for details.

O.CIPHER The TOE shall provide a means to cipher sensitive data for applications in
a secure way. In particular, the TOE must support cryptographic
algorithms consistent with cryptographic usage policies and standards. See
#.CIPHER (p. 43) for details.

O.PIN-MNGT The TOE shall provide a means to securely manage PIN objects. See #.PIN-
MNGT (p. 43) for details.

Application note: PIN objects may play key roles in the security architecture of client
applications. The way they are stored and managed in the memory of the smart card
must be carefully considered, and this applies to the whole object rather than the sole
value of the PIN. For instance, the try counter’s value is as sensitive as that of the
PIN.

O.KEY-MNGT The TOE shall provide a means to securely manage cryptographic keys.
This concerns the correct generation, distribution, access and destruction of
cryptographic keys. See #.KEY-MNGT (p. 43).

Application note: O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION and O.CIPHER
are actually provided to applets in the form of Java Card APIs. Vendor-specific
libraries can also be present on the card and made available to applets; those may be
built on top of the Java Card API or independently. Depending on whether they
contain native code or not, these proprietary libraries will need to be evaluated
together with the TOE or not (see #.NATIVE, p.40). In any case, they are not
included in the Java Card System for the purpose of the present document.

Java CardTM System Protection Profile Collection Page 56 of 189

Version 1.0b August 2003

4.1.2 Minimal Configuration

The security objectives of this configuration are the ones defined in §4.1.1.

4.1.3 Java Card System Standard 2.1.1 Configuration

The security objectives of this configuration are the ones defined in §4.1.1 plus the following ones:

APPLET MANAGEMENT

O.INSTALL The TOE shall ensure that the installation of an applet is safe. See
#.INSTALL (p 41 for details).

O.LOAD The TOE shall ensure that the loading of a package into the card is safe.

Application note: Usurpation of identity resulting from a malicious installation of an
applet on the card may also be the result of perturbing the communication channel
linking the CAD and the card. Even if the CAD is placed in a secure environment, the
attacker may try to capture, duplicate, permute or modify the packages sent to the
card. He may also try to send one of its own applications as if it came from the card
issuer . Thus, this objective is intended to ensure the integrity and authenticity of
loaded CAP files.

4.1.4 Java Card System Standard 2.2 Configuration

The security objectives of this configuration are the ones defined in §4.1.1 plus the following ones:

O.INSTALL As in the Java Card System Standard 2.1.1 configuration

O.LOAD As in the Java Card System Standard 2.1.1 configuration

APPLET MANAGEMENT

O.DELETION The TOE shall ensure that both applet and package deletion are safe. See
#.DELETION (p 42) for details.

OBJECT DELETION

O.OBJ-DELETION The TOE shall ensure the object deletion shall not break references to objects.
See #.OBJ-DELETION (p. 42) for further details.

Java CardTM System Protection Profile Collection Page 57 of 189

Version 1.0b August 2003

SERVICES

O.REMOTE The TOE shall provide a means to restrict remote access from the CAD to the
services implemented by the applets on the card. This particularly concerns
the RMI services introduced in version 2.2 of the Java Card platform.

4.1.5 Defensive Configuration

The security objectives of this configuration are the ones defined in §4.1.1 plus the following ones:

O.INSTALL As in the Java Card System Standard 2.1.1 Configuration.

O.DELETION As in the Java Card System Standard 2.2 configuration.

O.OBJ-DELETION As in the Java Card System Standard 2.2 configuration.

O.REMOTE As in the Java Card System Standard 2.2 configuration.

INTEGRITY, CONFIDENTIALITY AND CORRECT EXECUTION

O.VERIFICATION The TOE shall ensure that any bytecode is verified prior to being executed.
See #.VERIFICATION (p.40) for details.

4.2 SECURITY OBJECTIVES FOR THE ENVIRONMENT

This section introduces the security objectives to be achieved by the environment associated to each
TOE configuration.

4.2.1 All Configurations

The following objectives are common to all the configurations considered in this document.

OE.NATIVE Those parts of the APIs written in native code as well as any pre-issuance
native application on the card shall be conformant with the TOE so as to
ensure that security policies and objectives described herein are not
violated. See #.NATIVE (p.40) for details.

OE.SCP.RECOVERY If there is a loss of power, or if the smart card is withdrawn from the CAD
while an operation is in progress, the SCP must allow the TOE to
eventually complete the interrupted operation successfully, or recover to a
consistent and secure state (#.SCP.1).

OE.SCP.SUPPORT The SCP shall provide functionalities that support the well-functioning of
the TSFs of the TOE (avoiding they are bypassed or altered) and by

Java CardTM System Protection Profile Collection Page 58 of 189

Version 1.0b August 2003

controlling the access to information proper of the TSFs. In addition, the
smart card platform should also provide basic services which are required
by the runtime environmernt to implement security mechanisms such as
atomic transactions, management of persistent and transient objects and
cryptographic functions. These mechanisms are likely to be used by
security functions implementing the security requirements defined for the
TOE. See #.SCP.2-5 (p.43).

OE.SCP.IC The SCP shall possess IC security features. See #.SCP.7 (p.43).

OE.CARD-MANAGEMENT The card manager shall control the access to card management
functions such as the installation, update or deletion of applets. It shall also
implement the card issuer’s policy on the card.

As already mentioned in §2.1.3 the card manager is an application with specific rights, which is
responsible for the administration of the smart card. This component will in practice be tightly
connected with the TOE, which in turn shall very likely rely on the card manager for the effective
enforcing of some of its security functions. Typically the card manager shall be in charge of the life
cycle of the whole card, as well as that of the installed applications (applets). The card manager should
prevent that card content management (loading, installation, deletion) is carried out, for instance, at
invalid states of the card or by non-authorized actors. It shall also enforce security policies established
by the card issuer.

These environmental objectives shall be met by IT security requirements.

4.2.2 Minimal Configuration

The objectives for the environment in this configuration are those defined in §4.2.1 plus the following
ones:

OE.NO-DELETION No installed applets (or packages) shall be deleted from the card.

OE.NO-INSTALL There is no post-issuance installation of applets. Installation of applets is
secure and shall occur only in a controlled environment in the pre-issuance
phase.

The objectives OE.NO-INSTALL and OE.NO-DELETION have been included so as to describe
procedures that shall contribute to ensure that the TOE will be used in a secure manner. Moreover,
they have been defined in accordance with the environmental assumptions they uphold (actually,
they are just a reformulation of the corresponding assumptions). The NO-DELETION and NO-
INSTALL (assumptions and objectives) constitute the explicit statement that the Minimal
configuration corresponds to that of a closed card (no code can be loaded or deleted once the card has
been issued). It is not evident that these objectives should be carried out by using IT means.

OE.VERIFICATION All the bytecodes shall be verified at least once, before the loading, before
the installation or before the execution, depending on the card capabilities,
in order to ensure that each bytecode is valid at execution time. See
#.VERIFICATION (p.40) for details.

Java CardTM System Protection Profile Collection Page 59 of 189

Version 1.0b August 2003

4.2.3 Java Card System Standard 2.1.1 Configuration

The objectives for the environment in this configuration are those defined in §4.2.1 plus the following
ones:

OE.APPLET No applet loaded post-issuance shall contain native methods.

OE.VERIFICATION As in the Minimal Configuration.

4.2.4 Java Card System Standard 2.2 Configuration

The objectives for the environment in this configuration are those defined in §4.2.1 plus the following
ones:

OE.APPLET As in the Java Card System Standard 2.1.1 Configuration.

OE.VERIFICATION As in the Minimal Configuration.

4.2.5 Defensive Configuration

The objectives for the environment in this configuration are those defined in §4.2.1.

Java CardTM System Protection Profile Collection Page 60 of 189

Version 1.0b August 2003

5 IT SECURITY REQUIREMENTS

This section defines the detailed security requirements that shall be satisfied by each configuration of
the TOE and its respective IT environment. As explained in Section §1.7.1, they are arranged into
several groups, which are then composed to form the different configurations of the TOE. Depending
on the configuration, the groups of SFRs are either TOE SFRs or SFRs on the IT environment (see
Table 2 below).

The minimum strength level for the TOE security functions is SOF-medium.

5.1 TOE AND IT ENVIRONMENT SECURITY REQUIREMENTS

The following table (already presented and described in §2.4.1.1) displays the relationship between the
chosen configurations and the groups that shall be defined in the sections that follow.

Group (group name) Minimal Java Card
System
Standard 2.1.1

Java Card
System
Standard 2.2

Defensive

Core (CoreG) TOE TOE TOE TOE

Smart card platform (SCPG) IT IT IT IT

Installer (InstG) -- TOE TOE TOE

RMI (RMIG) -- -- TOE TOE

Logical channels (LCG) -- -- TOE TOE

Object deletion (ODELG) -- -- TOE TOE

Bytecode verification (BCVG) IT IT IT TOE

Applet deletion (ADELG) -- -- TOE TOE

Secure carrier (CarG) -- TOE TOE --

Card manager (CMGRG) IT IT IT IT

Table 2: Relationship between Groups and Configurations

Java CardTM System Protection Profile Collection Page 61 of 189

Version 1.0b August 2003

5.1.1 CoreG Security Functional Requirements

This group is focused on the main security policy of the Java Card System, known as the firewall. This
policy essentially concerns the security of installed applets, along with a small part that relates to the
installation procedure. The policy focuses on the execution of bytecodes.

5.1.1.1 Firewall Policy

FDP_ACC.2: COMPLETE ACCESS CONTROL

FDP_ACC.2.1 The TSF shall enforce the [assignment: access control SFP] on
[assignment: list of subjects and objects] and all operations among
subjects and objects covered by the SFP.

FDP_ACC.2.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP on S.PACKAGE,
S.JCRE, O.JAVAOBJECT and all operations among subjects and objects
covered by the SFP.

Subjects (prefixed with an “S”) and objects (prefixed with an “O”) covered
by this policy are:

Subject Description

S.PACKAGE Any package, which is the security unit of the firewall policy.

S.JCRE The JCRE. This is the process that manages applet selection and de-selection,
along with the delivery of APDUs from and to the smart card device.

This subject is unique.

O.JAVAOBJECT Any object. Note that KEYS, PIN, arrays and applet instances are specific
objects in the Java programming language.

Operations (prefixed with “OP”) of this policy are described in the
following table. Each operation has a specific number of parameters given
between brackets, among which there is the “accessed object”, the first
one, when applicable. Parameters may be seen as security attributes that
are under the control of the subject performing the operation.

Operation Description

OP.ARRAY_ACCESS(O.JAVAOBJECT, field) Read/Write an array component.

OP.INSTANCE_FIELD(O.JAVAOBJECT, field)
Read/Write a field of an instance of a
class in the Java programming
language

Java CardTM System Protection Profile Collection Page 62 of 189

Version 1.0b August 2003

Operation Description

OP.INVK_VIRTUAL(O.JAVAOBJECT, method, arg1,…) Invoke a virtual method (either on a
class instance or an array object)

OP.INVK_INTERFACE(O.JAVAOBJECT, method, arg1,…) Invoke an interface method.

OP.THROW(O.JAVAOBJECT) Throwing of an object (athrow).

OP.TYPE_ACCESS(O.JAVAOBJECT, class) Invoke checkcast or instanceof
on an object.

OP.JAVA(…)
Any access in the sense of
[JCRE21], §6.2.8. In our formalization,
this is one of the preceding operations.

OP.CREATE(Sharing, LifeTime) Creation of an object (new or
makeTransient call).

Note that accessing array’s components of a static array, and more
generally fields and methods of static objects, is an access to the
corresponding O.JAVAOBJECT.

FDP_ACC.2.2 The TSF shall ensure that all operations between any subject in the TSC
and any object within the TSC are covered by an access control SFP.

FDP_ACC.2.2/FIREWALL The TSF shall ensure that all operations between any subject in the TSC
and any object within the TSC are covered by an access control SFP.

FDP_ACF.1 SECURITY ATTRIBUTE BASED ACCESS CONTROL

See FMT_MSA.1 for more information about security attributes.

FDP_ACF.1.1 The TSF shall enforce the [assignment: access control SFP] to objects
based on [assignment: security attributes, named groups of security
attributes].

FDP_ACF.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to objects based on:
(1) the security attributes of the covered subjects and objects, (2) the currently
active context and (3) the SELECTed applet context

The following table describes which security attributes are attached to which
subject/object of our policy.

Subject/Object Attributes

S.PACKAGE Context

S.JCRE None

O.JAVAOBJECT Sharing, Context, LifeTime

Java CardTM System Protection Profile Collection Page 63 of 189

Version 1.0b August 2003

The following table describes the possible values for each security attribute.

Name Description

Context Package AID, or “JCRE”

Sharing Standard, SIO, JCRE entry point, or global array

LifeTime CLEAR_ON_DESELECT or PERSISTENT.7

SELECTed applet Context Package AID, or “None”

In the case of an array type, we state that fields are components of the
array ([JVM], §2.14, §2.7.7), as well as the length; the only methods of an
array object are those inherited from the Object class.

The Sharing attribute defines four categories of objects:
– Standard ones, whose both fields and methods are under the firewall

policy,
– Shareable interface Objects (SIO), which provide a secure mechanism for

inter-applet communication,
– JCRE entry points (Temporary or Permanent), who have freely accessible

methods but protected fields,
– Global arrays, having both unprotected fields (including components;

refer to JavaCardClass discussion above) and methods.

When a new object is created, it is associated with the currently active
context. But the object is owned by the applet instance within the currently
active context when the object is instantiated ([JCRE21], §6.1.2). An object is
owned by an applet instance, by the JCRE or by the package library where it
has been defined (these latter objects can only be arrays that initialize static
fields of packages).

Finally both “the currently active context” and “the SELECTed applet context”
are security attributes internal to the VM, that is, not attached to any specific
object or subject of the Security Policy Model (“SPM”). They are TSF data that
play a role in the SPM.

([JCRE21], Glossary) Currently selected applet. The JCRE keeps track of
the currently selected Java Card applet. Upon receiving a SELECT command
with this applet’s AID, the JCRE makes this applet the currently selected
applet. The JCRE sends all APDU commands to the currently selected applet.

7 Transient objects of type CLEAR_ON_RESET behave like persistent objects in that they can be accessed only when the currently
active context is the object’s context.

Java CardTM System Protection Profile Collection Page 64 of 189

Version 1.0b August 2003

While the expression “selected applet” refers to a specific installed applet, the
relevant aspect to the policy is the context of the selected applet; that is why the
associated security attribute is a package AID.

 ([JCRE21] §6.1.1) At any point in time, there is only one active context
within the VM (this is called the currently active context).

This should be identified in our model with the acting S.PACKAGE’s
context (see “Current context” in the glossary). This value is in one-to-one
correspondence with AIDs of packages (except for the JCRE context, of
course), which appears in the model in the “Context” attribute of both
subjects and objects of the policy. The reader should note that the
invocation of static methods (or access to a static field) is not considered
by this policy, as there are no firewall rules. They have no effect on the
active context as well and the “acting package” is not the one to which the
static method belongs in this case.

FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed: [assignment:
rules governing access among controlled subjects and controlled objects using
controlled operations on controlled objects].

FDP_ACF.1.2/FIREWALL The TSF shall enforce the following rules to determine if an operation among
controlled subjects and controlled objects is allowed by the FIREWALL SFP:

R.JAVA.1 ([JCRE21]§6.2.8) An S.PACKAGE may freely perform any of
OP.ARRAY_ACCESS,OP.INSTANCE_FIELD,
OP.INVK_VIRTUAL, OP.INVK_INTERFACE, OP.THROW or
OP.TYPE_ACCESS upon any O.JAVAOBJECT whose Sharing
attribute has value “JCRE entry point” or “global array”.

R.JAVA.2 ([JCRE21]§6.2.8) An S.PACKAGE may freely perform any of
OP.ARRAY_ACCESS,OP.INSTANCE_FIELD,
OP.INVK_VIRTUAL, OP.INVK_INTERFACE or OP.THROW
upon any O.JAVAOBJECT whose Sharing attribute has value
“Standard” and whose Lifetime attribute has value “PERSISTENT”
only if O.JAVAOBJECT’s Context attribute has the same value as the
active context.

R.JAVA.3 ([JCRE21]§6.2.8.10) An S.PACKAGE may perform
OP.TYPE_ACCESS upon an O.JAVAOBJECT whose Sharing
attribute has value “SIO” only if O.JAVAOBJECT is being cast into
(checkcast) or is being verified as being an instance of (instanceof)
an interface that extends the Shareable interface.

R.JAVA.4 ([JCRE21]§6.2.8.6) An S.PACKAGE may perform
OP.INVK_INTERFACE upon an O.JAVAOBJECT whose Sharing
attribute has the value “SIO” only if the invoked interface method
extends the Shareable interface.

R.JAVA.5 An S.PACKAGE may perform an OP.CREATE only if the
value of the Sharing parameter8 is “Standard”.

8 For this operation, there is no accessed object; the “Sharing value” thus refers to the parameter of the operation. This rule simply
enforces that shareable transient objects are not allowed. Note: parameters can be seen as security attributes whose value is under the
control of the subject. For instance, during the creation of an object, the JavaCardClass attribute’s value is chosen by the creator.

Java CardTM System Protection Profile Collection Page 65 of 189

Version 1.0b August 2003

At last, rules governing access to and creation of O.JAVAOBJECTs by
S.JCRE are essentially implementation-dependent (however, see
FDP_ACF.1.3/FIREWALL.)

FDP_ACF.1.3 The TSF shall explicitly authorize access of subjects to objects based on the
following additional rules: [assignment: rules, based on security attributes,
that explicitly authorize access of subjects to objects].

FDP_ACF.1.3/FIREWALL The TSF shall explicitly authorize access of subjects to objects based on the
following additional rule:

 The subject S.JCRE can freely perform OP.JAVA(…) and OP.CREATE,
with the exception given in FDP_ACF.1.4/FIREWALL.

FDP_ACF.1.4 The TSF shall explicitly deny access of subjects to objects based on the
[assignment: rules, based on security attributes, that explicitly deny access of
subjects to objects].

FDP_ACF.1.4/FIREWALL The TSF shall explicitly deny access of subjects to objects based on the rules:

1) Any subject with OP.JAVA upon an O.JAVAOBJECT whose LifeTime
attribute has value “CLEAR_ON_DESELECT” if O.JAVAOBJECT’s Context
attribute is not the same as the SELECTed applet Context.

2) Any subject with OP.CREATE and a “CLEAR_ON_DESELECT” LifeTime
parameter if the active context is not the same as the SELECTed applet
Context.

Application note: The deletion of applets may render some O.JAVAOBJECT
inaccessible, and the JCRE may be in charge of this aspect. This can be done, for instance,
by ensuring that references to objects belonging to a deleted application are considered as
a null reference. Such a mechanism is implementation-dependent.

FDP_IFC.1 SUBSET INFORMATION FLOW CONTROL

FDP_IFC.1.1 The TSF shall enforce the [assignment: information flow control SFP] on
[assignment: list of subjects, information, and operations that cause
controlled information to flow to and from controlled subjects covered by the
SFP].

FDP_IFC.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP on the
following subjects, information and operations.

Subjects9 (prefixed with an “S”) and information (prefixed with an “I”)
covered by this policy are:

9 Information flow policies control the flow of information between “subjects”. This is a purely terminological choice; those “subjects”
can merely be passive containers. They are not to be confused with the “active entities” of access control policies.

Java CardTM System Protection Profile Collection Page 66 of 189

Version 1.0b August 2003

Subject/Information Description

S.LOCAL
Operand stack of a JCVM frame, or local variable of a
JCVM frame containing an object or an array of
references.

S.MEMBER Any object’s field, static field or array position.

I.DATA
JCVM Reference Data: objectref addresses of
temporary JCRE Entry Point objects and
global arrays.

There is a unique operation in this policy:

Operation Description

OP.PUT(S1, S2, I) Transfer a piece of information I from S1 to S2.

Application note: References of temporary JCRE entry points, which cannot be stored in
class variables, instance variables or array components, are transferred from the internal
memory of the JCRE (TSF data) to some stack through specific APIs (JCRE owned
exceptions) or JCRE invoked methods (such as the process(APDU apdu)); these are causes of
OP.PUT(S1,S2,I) operations as well.

FDP_IFF.1 SIMPLE SECURITY ATTRIBUTES

FDP_IFF.1.1 The TSF shall enforce the [assignment: information flow control SFP]
based on the following types of subject and information security
attributes: [assignment: the minimum number and type of security
attributes].

FDP_IFF.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP based on
the following types of subject and information security attributes: (1) the
currently active context.

FDP_IFF.1.2 The TSF shall permit an information flow between a controlled subject
and controlled information through a controlled operation if the
following rules hold: [assignment: for each operation, the security
attribute-based relationship that must hold between subject and
information security attributes].

FDP_IFF.1.2/JCVM The TSF shall permit an information flow between a controlled subject and
controlled information through a controlled operation if the following rule
holds:

An operation OP.PUT(S1, S.MEMBER, I) is allowed if and only if the
active context is “JCRE”; other OP.PUT operations are allowed regardless
of the active context’s value.

FDP_IFF.1.3 The TSF shall enforce the [assignment: additional information flow
control SFP rules].

Java CardTM System Protection Profile Collection Page 67 of 189

Version 1.0b August 2003

FDP_IFF.1.3/JCVM The TSF shall enforce [assignment: additional information flow control
SFP rules].

FDP_IFF.1.4 The TSF shall provide the following [assignment: list of additional SFP
capabilities].

FDP_IFF.1.4/JCVM The TSF shall provide the following [assignment: list of additional SFP
capabilities].

FDP_IFF.1.5 The TSF shall explicitly authorize an information flow based on the
following rules: [assignment: rules, based on security attributes, that
explicitly authorize information flows].

FDP_IFF.1.5/JCVM The TSF shall explicitly authorize an information flow based on the
following rules: [assignment: rules, based on security attributes, that
explicitly authorize information flows].

FDP_IFF.1.6 The TSF shall explicitly deny an information flow based on the
following rules: [assignment: rules, based on security attributes, that
explicitly deny information flows].

FDP_IFF.1.6/JCVM The TSF shall explicitly deny an information flow based on the following
rules: [assignment: other rules, based on security attributes, that explicitly
deny information flows]

Application note: the storage of temporary JCRE-owned objects’ references is
runtime-enforced ([JCRE21], §6.2.8.1-3).

Note that this policy essentially applies to the execution of bytecode. Native methods, the JCRE itself
and possibly some API methods can be granted specific rights or limitations through the
FDP_IFF.1.3/JCVM to FDP_IFF.1.6/JCVM elements. The way the virtual machine manages the transfer
of values on the stack and local variables (returned values, uncaught exceptions) from and to internal
registers is implementation-dependent. For instance, a returned reference, depending on the
implementation of the stack frame, may transit trough an internal register prior to being pushed on
the stack of the invoker. The areturn bytecode would cause more than one OP.PUT operation under
this scheme.

FDP_RIP.1 SUBSET RESIDUAL INFORMATION PROTECTION

FDP_RIP.1.1 The TSF shall ensure that any previous information content of a resource
is made unavailable upon the [selection: allocation of the resource to, de-
allocation of the resource from] the following objects: [assignment: list of
objects].

FDP_RIP.1.1/OBJECTS The TSF shall ensure that any previous information content of a resource is
made unavailable upon the allocation of the resource to the following
objects: class instances and arrays.

Application note: The semantics of the Java programming language requires for any
object field and array position to be initialized with default values when the resource
is allocated [JVM],§2.5.1.

Java CardTM System Protection Profile Collection Page 68 of 189

Version 1.0b August 2003

FMT_MSA.1 MANAGEMENT OF SECURITY ATTRIBUTES

 (See FMT_SMR.1.1/JCRE for the roles)

FMT_MSA.1.1 The TSF shall enforce the [assignment: access control SFP, information
flow control SFP] to restrict the ability to [selection: change default,
query, modify, delete, [assignment: other operations]] the security
attributes [assignment: list of security attributes] to [assignment: the
authorized identified roles].

FMT_MSA.1.1/JCRE The TSF shall enforce the FIREWALL access control SFP and the JCVM
information flow control SFP to restrict the ability to modify the active
context and the SELECTed applet Context security attributes to the JCRE
(S.JCRE).

Application note: The modification of the active context as well as that of the
selected applet should be performed in accordance with the rules given in
[JCRE21], §4 and [JCVM21], §3.4.

FMT_MSA.2 SECURE SECURITY ATTRIBUTES

FMT_MSA.2.1 The TSF shall ensure that only secure values are accepted for security
attributes.

FMT_MSA.2.1/JCRE The TSF shall ensure that only secure values are accepted for security
attributes.

Application note: For instance, secure values conform to the following rules:

– The Context attribute of a *.JAVAOBJECT10 must correspond to that of
an installed applet or be “JCRE”.

– An O.JAVAOBJECT whose Sharing attribute is a JCRE entry point or a
global array necessarily has “JCRE” as the value for its Context security
attribute.

– An O.JAVAOBJECT whose Sharing attribute value is a global array
necessarily has “array of primitive Java Card System type” as a
JavaCardClass security attribute’s value.

– Any O.JAVAOBJECT whose Sharing attribute value is not “Standard”
has a PERSISTENT-LifeTime attribute’s value.

– Any O.JAVAOBJECT whose LifeTime attribute value is not PERSISTENT
has an array type as JavaCardClass attribute’s value.

Application note: The above rules are given as examples only. For instance, the last
two rules are motivated by the fact that the Java Card API defines only transient
arrays factory methods. Future versions may allow the creation of transient objects
belonging to arbitrary classes; such evolution will naturally change the range of
“secure values” for this component.

10 Either subject or object.

Java CardTM System Protection Profile Collection Page 69 of 189

Version 1.0b August 2003

FMT_MSA.3 STATIC ATTRIBUTE INITIALIZATION

FMT_MSA.3.1 The TSF shall enforce the [assignment: access control SFP, information
flow control SFP] to provide [selection: restrictive, permissive, other
property] default values for security attributes that are used to enforce
the SFP.

FMT_MSA.3.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP and the JCVM
information flow control SFP to provide restrictive default values for security
attributes that are used to enforce the SFP.

Application note: Objects’ security attributes of the access control policy are created
and initialized at the creation of the object or the subject. Afterwards, these attributes
are no longer mutable (FMT_MSA.1/JCRE). At the creation of an object
(OP.CREATE), the newly created object, assuming that the operation is permitted by
the SFP, gets its Lifetime and Sharing attributes from the parameters of the operation;
on the contrary, its Context attribute has a default value, which is its creator’s
Context attribute and AID respectively ([JCRE21], §6.1.2). There is one default value
for the SELECTed applet Context that is the default applet identifier’s Context, and one
default value for the active context, that is “JCRE”.

Application note: There is no security attribute attached to subjects or information for
this information flow policy. However, this is the JCRE who controls the currently
active context. Moreover, the knowledge of which reference corresponds to a
temporary entry point object or a global array and which does not is solely available
to the JCRE (and the virtual machine).

FMT_MSA.3.2 The TSF shall allow the [assignment: the authorized identified roles] to
specify alternative initial values to override the default values when an
object or information is created.

FMT_MSA.3.2/FIREWALL The TSF shall allow the following role(s) to specify alternative initial
values to override the default values when an object or information is
created: none.

Application note: The intent is that none of the identified roles has privileges with
regard to the default values of the security attributes. Notice that creation of objects is
an operation controlled by the FIREWALL SFP; the latitude on the parameters of this
operation is described there. The operation shall fail anyway if the created object
would have had security attributes whose value violates FMT_MSA.2.1/JCRE.

FMT_SMR.1 SECURITY ROLES

FMT_SMR.1.1 The TSF shall maintain the roles: [assignment: the authorized identified
roles].

FMT_SMR.1.1/JCRE The TSF shall maintain the roles: the JCRE.

Note: the actual set of roles defined in the ST depends on the configuration.

FMT_SMR.1.2 The TSF shall be able to associate users with roles.

FMT_SMR.1.2/JCRE The TSF shall be able to associate users with roles.

Java CardTM System Protection Profile Collection Page 70 of 189

Version 1.0b August 2003

FPT_SEP.1 TSF DOMAIN SEPARATION

FPT_SEP.1.1 The TSF shall maintain a security domain for its own execution that
protects it from interference and tampering by untrusted subjects.

FPT_SEP.1.1 The TSF shall maintain a security domain for its own execution that
protects it from interference and tampering by untrusted subjects.

FPT_SEP.1.2 The TSF shall enforce separation between the security domains of
subjects in the TSC.

FPT_SEP.1.2 The TSF shall enforce separation between the security domains of subjects in
the TSC.

Application note: By security domain it is intended “execution context” which
should not be confused with other meanings of “security domains”.

5.1.1.2 Application Programming Interface

The following SFRs are related to the Java Card API.

FCS_CKM.1 CRYPTOGRAPHIC KEY GENERATION

The whole set of cryptographic algorithms is generally not implemented because of limited memory
resources and/or limitations due to exportation. Therefore, the following requirement should only
apply to the implemented subset.

FCS_CKM.1.1 The TSF shall generate cryptographic KEYS in accordance with a specified
cryptographic KEY generation algorithm [assignment: cryptographic KEY
generation algorithm] and specified cryptographic KEY sizes [assignment:
cryptographic KEY sizes] that meet the following: [assignment: list of
standards].

Application note: The keys can be generated and diversified in accordance with
[JCAPI21] specification in classes KeyBuilder and KeyPair (at least Session key
generation).

Application note: This component shall be instantiated according to the version of
the Java Card API applying to the security target and the implemented algorithms
([JCAPI22] for 2.2, [JCAPI21] for 2.1).

FCS_CKM.2 CRYPTOGRAPHIC KEY DISTRIBUTION

FCS_CKM.2.1 The TSF shall distribute cryptographic KEYS in accordance with a
specified cryptographic KEY distribution method [assignment:
cryptographic KEY distribution method] that meets the following:
[assignment: list of standards].

Application note: Command SetKEY that meets [JCAPI21] standard.

Java CardTM System Protection Profile Collection Page 71 of 189

Version 1.0b August 2003

Application note: This component shall be instantiated according to the version of
the Java Card API applying to the security target and the implemented algorithms
([JCAPI22] for 2.2, [JCAPI21] for 2.1).

FCS_CKM.3 CRYPTOGRAPHIC KEY ACCESS

FCS_CKM.3.1 The TSF shall perform [assignment: type of cryptographic KEY access] in
accordance with a specified cryptographic KEY access method
[assignment: cryptographic KEY access method] that meets the following:
[assignment: list of standards].

Application note: The keys can be accessed in accordance with [JCAPI21] in class
Key.

Application note: This component shall be instantiated according to the version of
the Java Card API applying to the security target and the implemented algorithms
([JCAPI22] for 2.2, [JCAPI21] for 2.1).

FCS_CKM.4 CRYPTOGRAPHIC KEY DESTRUCTION

FCS_CKM.4.1 The TSF shall destroy cryptographic KEYS in accordance with a specified
cryptographic KEY destruction method [assignment: cryptographic KEY
destruction method] that meets the following: [assignment: list of standards].

Application note: The keys are reset in accordance with [JCAPI21] in class Key with
the method clearKey(). Any access to a cleared key attempting to use it for ciphering
or signing shall throw an exception.

Application note: This component shall be instantiated according to the version of
the Java Card API applying to the security target and the implemented algorithms
([JCAPI22] for 2.2, [JCAPI21] for 2.1).

FCS_COP.1 CRYPTOGRAPHIC OPERATION

FCS_COP.1.1 The TSF shall perform [assignment: list of cryptographic operations] in
accordance with a specified cryptographic algorithm [assignment:
cryptographic algorithm] and cryptographic KEY sizes [assignment:
cryptographic KEY sizes] that meet the following: [assignment: list of
standards].

Application note: The TOE shall provide a subset of cryptographic operations
defined in [JCAPI21] in accordance to [JCAPI21] specification (see
javacardx.crypto.Cipher and javacardx.security packages).

Application note: This component shall be instantiated according to the version of
the Java Card API applying to the security target and the implemented algorithms
([JCAPI22] for 2.2, [JCAPI21] for 2.1).

Java CardTM System Protection Profile Collection Page 72 of 189

Version 1.0b August 2003

FDP_RIP.1 SUBSET RESIDUAL INFORMATION PROTECTION

FDP_RIP.1.1/APDU The TSF shall ensure that any previous information content of a resource is
made unavailable upon the allocation of the resource to the following object:
the APDU buffer.

Application note: The allocation of a resource to the APDU buffer is typically
performed as the result of a call to the process() method of an applet.

FDP_RIP.1.1/bArray The TSF shall ensure that any previous information content of a resource is
made unavailable upon the de-allocation of the resource from the following
object: the bArray object.

Application note: A resource is allocated to the bArray object when a call to an
applet’s install() method is performed. There is no conflict with FDP_ROL.1 here
because of the bounds on the rollback mechanism (FDP_ROL.1.2/FIREWALL): the
scope of the rollback does not extend outside the execution of the install() method,
and the de-allocation occurs precisely right after the return of it.

FDP_RIP.1.1/TRANSIENT The TSF shall ensure that any previous information content of a resource
is made unavailable upon the de-allocation of the resource from the following
objects: any transient object.

Application note: The events that provoke the de-allocation of a transient object are
described in [JCRE21], §5.1.

FDP_RIP.1.1/ABORT The TSF shall ensure that any previous information content of a resource
is made unavailable upon the de-allocation of the resource from the following
objects: any reference to an object instance created during an aborted transaction.

Application note: The events that provoke the de-allocation of the previously
mentioned references are described in [JCRE21], §7.6.3.

FDP_RIP.1.1/KEYS The TSF shall ensure that any previous information content of a resource is
made unavailable upon the de-allocation of the resource from the
following objects: the cryptographic buffer (D.CRYPTO).

Application note: The javacard.security & javacardx.crypto packages do provide
secure interfaces to the cryptographic buffer in a transparent way. See
javacard.security.KeyBuilder and Key interface of [JCAPI21].

Application note: Java Card System 2.1.1 defines no explicit (or implicit) de-
allocation of objects, but those caused by the failure of installation or the abortion of a
transaction. The only related function for keys is the clearKey() method, which does
not mandate erasure of the contents of the key (see FCS_CKM.4) nor the behavior of
the transaction with respect to this “clearing”. ST authors may consider additional
security requirements on this topic.

FDP_ROL.1 BASIC ROLLBACK

FDP_ROL.1.1 The TSF shall enforce [assignment: access control SFP(s) and/or information
flow control SFP(s)] to permit the rollback of the [assignment: list of
operations] on the [assignment: list of objects].

Java CardTM System Protection Profile Collection Page 73 of 189

Version 1.0b August 2003

FDP_ROL.1.2 The TSF shall permit operations to be rolled back within the [assignment:
boundary limit to which rollback may be performed].

FDP_ROL.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP and the JCVM
information flow control SFP to permit the rollback of OP.JAVA,
OP.CREATE on O.JAVAOBJECTs.

FDP_ROL.1.2/FIREWALL The TSF shall permit operations to be rolled back within the scope of a
select(), deselect(), process() or install() call, notwithstanding the
restrictions given in [JCRE21], §7.7, within the bounds of the Commit
Capacity ([JCRE21], §7.8), and those described in [JCAPI21].

Application note: Transactions are a service offered by the APIs to applets. It is also
used by some APIs to guarantee the atomicity of some operation. This mechanism is
either implemented in Java Card platform or relies on the transaction mechanism
offered by the underlying platform. Some operations of the API are not conditionally
updated, as documented in [JCAPI21] (see for instance, PIN-blocking, PIN-
checking, update of Transient objects).

Application note: The loading and linking of applet packages (the installation or
registration is covered by FDP_ROL.1.1/FIREWALL) is subject to some kind of
rollback mechanism (see FPT_RCV.3.1/Installer), described in [JCRE21], §10.1.4, but
is implementation-dependent.

5.1.1.3 Card Security Management

The following SFRs are related to the security requirements at the level of the whole card, in contrast
to the previous ones, that are somewhat restricted to the TOE alone. For instance, a potential security
violation detected by the virtual machine may require a reaction that does not only concern the virtual
machine, such as blocking the card (or request the appropriate security module with the power to
block the card to perform the operation).

FAU_ARP.1 SECURITY ALARMS

FAU_ARP.1.1 The TSF shall take [assignment: list of the least disruptive actions] upon
detection of a potential security violation.

FAU_ARP.1.1/JCS The TSF shall throw an exception, lock the card session or reinitialize the
Java Card System and its data [assignment: other actions] upon detection
of a potential security violation.

REFINEMENT Potential security violation is refined to one of the following events:

– CAP file inconsistency
– Typing error in the operands of a bytecode
– applet life cycle inconsistency
– Card tearing (unexpected removal of the Card out of the

CAD) and power failure
– Abortion of a transaction in an unexpected context (see

(abortTransaction(), [JCAPI21] and ([JCRE21], §7.6.2)
– Violation of the Firewall or JCVM SFPs

Java CardTM System Protection Profile Collection Page 74 of 189

Version 1.0b August 2003

– Unavailability of resources
– Array overflow
– Other runtime errors related to applet’s failure (like

uncaught exceptions)

Application note: The thrown exceptions and their related events are described in
[JCRE21], [JCAPI21], and [JCVM21].

Application note: The bytecode verification defines a large set of rules used to detect
a “potential security violation”. The actual monitoring of these “events” within the
TOE only makes sense when the bytecode verification is performed on-card.

Application note: Depending on the context of use and the required security level,
there are cases where the card manager and the TOE must work in cooperation to
detect and appropriately react in case of potential security violation. This behavior
must be described in this component. It shall detail the nature of the feedback
information provided to the card manager (like the identity of the offending
application) and the conditions under which the feedback will occur (any occurrence
of the java.lang.SecurityException exception).

Application note: The “locking of the card session” may not appear in the policy of
the card manager. Such measure should only be taken in case of severe violation
detection; the same holds for the re-initialization of the Java Card System. Moreover,
the locking should occur when “clean” re-initialization seems to be impossible.

The locking may be implemented at the level of the Java Card System as a denial of service
(through some systematic “fatal error” message or return value) that lasts up to the next
“RESET” event, without affecting other components of the card (such as the card manager).

Finally, because the installation of applets is a sensitive process, security alerts in this case
should also be carefully considered herein.

FDP_SDI.2 STORED DATA INTEGRITY MONITORING AND ACTION

FDP_SDI.2.1 The TSF shall monitor user data stored within the TSC for [assignment:
integrity errors] on all objects, based on the following attributes:
[assignment: user data attributes].

FDP_SDI.2.2 Upon detection of a data integrity error, the TSF shall [assignment: action to
be taken].

Application note: Although no such requirement is mandatory in the specification, at
least an exception shall be raised upon integrity errors detection on cryptographic
keys, PIN values and their associated security attributes. Even if all the objects cannot
be monitored, cryptographic keys and PIN objects shall be considered with particular
attention by ST authors as they play a key role in the overall security.

Application note: It is also recommended to monitor integrity errors in the code of
the native applications and Java Card technology-based applications (“Java Card
applications”).

For integrity sensitive application, their data shall be monitored (D.APP_I_DATA): applications may
need to protect information against unexpected modifications, and explicitly control whether a piece
of information has been changed between two accesses. For example, maintaining the integrity of an
electronic purse’s balance is extremely important because this value represents real money. Its
modification must be controlled, for illegal ones would denote an important failure of the payment
system.

Java CardTM System Protection Profile Collection Page 75 of 189

Version 1.0b August 2003

A dedicated library could be implemented and made available to developers to achieve better security
for specific objects, following the same pattern that already exists in cryptographic APIs, for instance.

FPT_RVM.1 NON-BYPASSABILITY OF THE TSP

FPT_RVM.1.1 The TSF shall ensure that TSP enforcement functions are invoked and
succeed before each function within the TSC is allowed to proceed.

Application note: Execution of native code is not within the TSC. Nevertheless, access
to native methods from the Java Card System is subject to TSF control, as there is no
difference in the interface or the invocation mechanism between native and
interpreted methods.

FPT_TDC.1 INTER-TSF BASIC TSF DATA CONSISTENCY

FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret
[assignment: list of TSF data types] when shared between the TSF and
another trusted IT product.

FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret the CAP files
(shared between the card manager and the TOE), the bytecode and its data
arguments (shared with applets and API packages), when shared between
the TSF and another trusted IT product.

Application note: Concerning the interpretation of data between the TOE and the
underlying Java Card platform, it is assumed that the TOE is developed consistently
with the SCP functions, namely concerning memory management, I/O functions,
cryptographic functions, and so on.

FPT_TDC.1.2 The TSF shall use [assignment: list of interpretation rules to be applied
by the TSF] when interpreting the TSF data from another trusted IT
product.

FPT_TDC.1.2 The TSF shall use the following rules when interpreting the TSF data from
another trusted IT product:

– The [JCVM21] specification;
– Reference export files;
– The ISO 7816-6 rules;
– The EMV specification

FPT_FLS.1 FAILURE WITH PRESERVATION OF SECURE STATE

FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of
failures occur: [assignment: list of types of failures in the TSF].

FPT_FLS.1.1/JCS The TSF shall preserve a secure state when the following types of failures
occur: those associated to the potential security violations described in
FAU_ARP.1.

Java CardTM System Protection Profile Collection Page 76 of 189

Version 1.0b August 2003

Application note: The JCRE Context is the Current context when the VM begins
running after a card reset ([JCRE21], §6.2.3). Behavior of the TOE on power loss and
reset is described in [JCRE21], §3.5, and §7.1.

FPR_UNO.1 UNOBSERVABILITY

FPR_UNO.1.1 The TSF shall ensure that [assignment: list of users and/or subjects] are
unable to observe the operation [assignment: list of operations] on
[assignment: list of objects] by [assignment: list of protected users and/or
subjects].

Application note: Although it is not required in [JCRE21] specifications, the non-
observability of operations on sensitive information such as keys appears as
impossible to circumvent in the smart card world. The precise list of operations and
objects is left unspecified, but should at least concern secret keys and PIN codes
when they exists on the card, as well as the cryptographic operations and
comparisons performed on them.

FPT_TST.1 TSF TESTING

FPT_TST.1.1 The TSF shall run a suite of self-tests [selection: during initial start-up,
periodically during normal operation, at the request of the authorized
user, at the conditions [assignment: conditions under which self test
should occur]] to demonstrate the correct operation of the TSF.

FPT_TST.1.1 The TSF shall run a suite of self-tests during initial start-up (at each power
on) to demonstrate the correct operation of the TSF.

Application note: TSF-testing is not mandatory in [JCRE21], but appears in most of
security requirements documents for masked applications. Testing could also occur
randomly.

FPT_TST.1.2 The TSF shall provide authorized users with the capability to verify the
integrity of TSF data.

FPT_TST.1.3 The TSF shall provide authorized users with the capability to verify the
integrity of stored TSF executable code.

5.1.1.4 AID Management

FMT_MTD.1 MANAGEMENT OF TSF DATA

(See FMT_SMR.1.1/JCRE for the roles)

FMT_MTD.1.1 The TSF shall restrict the ability to [selection: change default, query,
modify, delete, clear, [assignment: other operations]] the [assignment:
list of TSF data] to [assignment: the authorized identified roles].

Java CardTM System Protection Profile Collection Page 77 of 189

Version 1.0b August 2003

FMT_MTD.1.1/JCRE The TSF shall restrict the ability to modify the list of registered applets’
AID to the JCRE [assignment: other authorized identified role].

Application note: The installer and the JCRE manage some other TSF data such as the
applet life cycle or CAP files, but this management is implementation specific.
Objects in the Java programming language may also try to query AIDs of installed
applets through the lookupAID(…) API method.

Application note: The installer, applet deletion manager or even the card manager
may be granted the right to modify the list of registered applets’ AIDs in specific
implementations (possibly needed for installation and deletion; see #.DELETION
and #.INSTALL).

FMT_MTD.3 SECURE TSF DATA

FMT_MTD.3.1 The TSF shall ensure that only secure values are accepted for TSF data.

FIA_ATD.1 USER ATTRIBUTE DEFINITION

FIA_ATD.1.1 The TSF shall maintain the following list of security attributes
belonging to individual users: [assignment: list of security attributes].

FIA_ATD.1.1/AID The TSF shall maintain the following list of security attributes belonging to
individual users: the AID and version number of each package, the AID of
each registered applet, and whether a registered applet is currently selected
for execution ([JCVM21], §6.5).

FIA_UID.2 USER IDENTIFICATION BEFORE ANY ACTION

FIA_UID.2.1/AID The TSF shall require each user to identify itself before allowing any other
TSF-mediated actions on behalf of that user.

Application note: By users here it must be understood the ones associated to the
packages (or applets) which act as subjects of policies. In the Java Card System,
every action is always performed by an identified user interpreted here as the
currently selected applet or the package that is the subject’s owner. Means of
identification are provided during the loading procedure of the package and the
registration of applet instances.

Application note: The role JCRE defined in FMT_SMR.1/JCRE is attached to an IT
security function rather than to a “user” of the CC terminology. The JCRE does not
“identify” itself with respect to the TOE, but it is a part of it.

FIA_USB.1 USER-SUBJECT BINDING

FIA_USB.1.1 The TSF shall associate the appropriate user security attributes with
subjects acting on behalf of that user.

Java CardTM System Protection Profile Collection Page 78 of 189

Version 1.0b August 2003

Application note: For S.PACKAGEs, the Context security attribute plays the role of
the appropriate user security attribute; see FMT_MSA.1.1/JCRE below.

Java CardTM System Protection Profile Collection Page 79 of 189

Version 1.0b August 2003

5.1.2 InstG Security Functional Requirements

This group bulks the SFRs related to the installation of the applets, which addresses security aspects
outside the runtime. The idea here is that installation of applets is a critical phase, which lies partially
out of the boundaries of the firewall, and therefore has to be deserved specific treatment. In the
Common Criteria model, loading a package or installing an applet was considered as being an
importation of user data (that is, user application‘s data) with its security attributes (such as the
parameters of the applet used in the firewall rules).

See also FIA_ATD.1, FIA_USB.1, FMT_MTD.1, FMT_SMR.1 for various information about applet
installation.

FDP_ITC.2 IMPORT OF USER DATA WITH SECURITY ATTRIBUTES

FDP_ITC.2.1 The TSF shall enforce the [assignment: access control SFP and/or
information flow control SFP] when importing user data, controlled
under the SFP, from outside of the TSC.

FDP_ITC.2.1/Installer The TSF shall enforce the FIREWALL access control SFP when importing
user data, controlled under the SFP, from outside of the TSC.

Application note: The most common importation of user data is package loading and
applet installation on the behalf of the installer. Security attributes consist of the
shareable flag of the class component, AID and version numbers of the package,
maximal operand stack size and number of local variables for each method, and
export and import components (visibility).

FDP_ITC.2.2/Installer The TSF shall use the security attributes associated with the imported user
data.

FDP_ITC.2.3/Installer The TSF shall ensure that the protocol used provides for the unambiguous
association between the security attributes and the user data received.

Application note: The format of the CAP file is precisely defined in Sun’s
specification ([JCVM21]); it contains the user data (like applet’s code and data) and
the security attribute altogether. Therefore there is no association to be carried out
elsewhere.

FDP_ITC.2.4/Installer The TSF shall ensure that interpretation of the security attributes of the
imported user data is as intended by the source of the user data.

Application note: Each package contains a package Version attribute, which is a pair
of major and minor version numbers ([JCVM21], §4.5). With the AID, it describes
the package defined in the CAP file. When an export file is used during preparation
of a CAP file, the versions numbers and AIDs indicated in the export file are
recorded in the CAP files ([JCVM21], §4.5.2): the dependent packages Versions and
AIDs attributes allow the retrieval of these identifications.. Implementation-
dependent checks may occur on a case-by-case basis to indicate that package files are
binary compatibles. However, package files do have “package Version Numbers”
([JCVM21]) used to indicate binary compatibility or incompatibility between

Java CardTM System Protection Profile Collection Page 80 of 189

Version 1.0b August 2003

successive implementations of a package, which obviously directly concern this
requirement.

FDP_ITC.2.5 The TSF shall enforce the following rules when importing user data
controlled under the SFP from outside the TSC: [assignment: additional
importation control rules].

FDP_ITC.2.5/Installer The TSF shall enforce the following rule when importing user data
controlled under the SFP from outside the TSC:

 A package may depend on (import or use data from) other packages
already installed. This dependency is explicitly stated in the loaded
package in the form of a list of package AIDs. The loading is allowed
only if, for each dependent package, its AID attribute is equal to a resident
package AID attribute, the major (minor) Version attribute associated to the
former is equal (less than or equal) to the major (minor) Version attribute
associated to the latter ([JCVM21],§4.5.2). The intent of this rule is to ensure
the binary compatibility of the package with those already on the card
([JCVM21], §4.4).

Application note: The installation (the invocation of an applet’s install method by

the installer) is implementation dependent ([JCRE21]§10.2).

Application note: Other rules governing the installation of an applet, that is, its

registration to make it SELECTable by giving it a unique AID, are also
implementation dependent (see, for example, [JCRE21], §10).

FMT_SMR.1 SECURITY ROLES

FMT_SMR.1.1/Installer The TSF shall maintain the roles: the installer.

Note: the actual set of roles defined in the ST depends on the configuration.

FMT_SMR.1.2/Installer The TSF shall be able to associate users with roles.

FPT_FLS.1 FAILURE WITH PRESERVATION OF SECURE STATE

FPT_FLS.1.1/Installer The TSF shall preserve a secure state when the following types of failures
occur: the installer fails to load/install a package/applet as described in
[JCRE21] §10.1.4.

Application note: The TOE may provide additional feedback information to the card
manager in case of potential security violations (see FAU_ARP.1).

Java CardTM System Protection Profile Collection Page 81 of 189

Version 1.0b August 2003

FPT_RCV.3 AUTOMATED RECOVERY WITHOUT UNDUE LOSS

FPT_RCV.3.1/Installer When automated recovery from a failure or service discontinuity is not
possible, the TSF shall enter a maintenance mode where the ability to
return the TOE to a secure state is provided.

Application note: This element is not within the scope of the Java Card specification,
which only mandates the behavior of the Java Card System in good working order.
Further details on the “maintenance mode” shall be provided in specific
implementations. The following is an excerpt from [CC1]:

In this maintenance mode normal operation might be impossible or
severely restricted, as otherwise insecure situations might occur.
Typically, only authorized users should be allowed access to this mode but
the real details of who can access this mode is a function of class FMT
Security management. If FMT does not put any controls on who can
access this mode, then it may be acceptable to allow any user to restore the
system if the TOE enters such a state. However, in practice, this is
probably not desirable as the user restoring the system has an opportunity
to configure the TOE in such a way as to violate the TSP.

FPT_RCV.3.2/Installer For [assignment: list of failures/service discontinuities], the TSF shall
ensure the return of the TOE to a secure state using automated procedures.

Application note: Should the installer fail during loading/installation of a
package/applet, it has to revert to a “consistent and secure state”. The JCRE has
some clean up duties as well; see [JCRE21], §10.1.4 for possible scenarios. Precise
behavior is left to implementers.

Application note: In the case where the configuration includes the applet deletion
manager (and the associated group, ADELG), this component shall include among
the listed failures that of the deletion of a package/applet. See ([JCRE22], 11.3.4) for
possible scenarios. Precise behavior is left to implementers.

Other events such as the unexpected tearing of the card, power loss, and so on. are partially handled
by the underlying hardware platform (see the SCPG group) and, from the TOE’s side, by events “that
clear transient objects” and transactional features. See FPT_FLS.1.1/JCS, FDP_RIP.1.1/TRANSIENT,
FDP_RIP.1.1/ABORT and FDP_ROL.1.

FPT_RCV.3.3/Installer The functions provided by the TSF to recover from failure or service
discontinuity shall ensure that the secure initial state is restored without
exceeding [assignment: quantification] for loss of TSF data or objects
within the TSC.

Application note: The quantification is implementation dependent, but some facts
can be recalled here. First, the SCP ensures the atomicity of updates for fields and
objects (see the SCPG group), and a power-failure during a transaction or the normal
runtime does not create the loss of otherwise-permanent data, in the sense that
memory on a smart card is essentially persistent with this respect (EEPROM). Data
stored on the RAM and subject to such failure is intended to have a limited lifetime
anyway (runtime data on the stack, transient objects’ contents). According to this, the
loss of data within the TSC should be limited to the same restrictions of the
transaction mechanism.

FPT_RCV.3.4/Installer The TSF shall provide the capability to determine the objects that were or
were not capable of being recovered.

Java CardTM System Protection Profile Collection Page 82 of 189

Version 1.0b August 2003

FRU_RSA.1 MAXIMUM QUOTAS

FRU_RSA.1.1 The TSF shall enforce maximum quotas of the following resources:
[assignment: controlled resources] that [selection: individual user, defined
group of users, subjects] can use [selection: simultaneously, over a
specified period of time].

FRU_RSA.1.1/Installer The TSF shall enforce maximum quotas of the following resources:
imported packages and declared classes, methods and fields that
packages can use simultaneously.

Application note: A package may import at most 128 packages and declare at most
255 classes and interfaces. A class can implement a maximum of 128 public or
protected instance methods, and a maximum of 128 instance methods with package
visibility. These limits include inherited methods. A class instance can contain a
maximum of 255 fields, where an int data type is counted as occupying two fields
([JCVM21], §2.2.4.2).

Java CardTM System Protection Profile Collection Page 83 of 189

Version 1.0b August 2003

5.1.3 BCVG Security Functional Requirements
This group of requirements concerns bytecode verification. A bytecode verifier can be understood as
a process that acts as a filter on a CAP file verifying that the bytecodes of the methods defined in the
file conform to certain well-formed requirements. As mentioned in §2.1.1, there are different
techniques that have been proposed for performing those checks. The solution described in [JCBV], for
example, is based on a data flow analysis and makes use of an abstract interpreter. The abstract
interpreter simulates execution of each instruction, using types of the data being operated on instead
of values. For each instruction, the state of the operand stack and local variables are compared to the
type(s) required during execution, and then are updated according to the operation of the instruction.
The main component of this group of functional requirements is an information flow control policy,
which describes the constraints imposed on the operations (the bytecodes) that make information flow
between the subjects (local variables, operand stack, fields).

The group is composed of three sub-groups. The first one constitutes a complete information flow
control policy with hierarchical attributes, which describes the type constraints imposed on the
bytecodes. That typing policy strongly depends on having a secure configuration of the attributes it is
based on. Such secure configurations are strongly related to the constraints imposed on the structure
of the CAP file format by Sun specifications, and constitute a second important sub-group of
requirements. Finally, the third sub-group requires bytecode verification to prevent any operand stack
overflow that could arrive during the interpretation of bytecodes.

FDP_IFC.2 COMPLETE INFORMATION FLOW CONTROL

FDP_IFC.2.1 The TSF shall enforce the [assignment: information flow control SFP] on
[assignment: list of subjects and information] and all operations that
cause that information to flow to and from subjects covered by the SFP.

FDP_IFC.2.1/BCV The TSF shall enforce the TYPING information flow control SFP on
S.LOCVAR, S.STCKPOS, S.FLD, S.MTHD and all operations that cause
that information to flow to and from subjects covered by the SFP.

Subjects11 (prefixed with an “S”) covered by this policy are:

Subject Description

S.LOCVAR Any local variable of the currently executed method.

S.STCKPOS Any operand stack position of the currently executed method.

S.FLD Any field declared in a package loaded on the card.

S.MTHD Any method declared in a package loaded on the card.

The operations (prefixed with “OP”) that make information flow between
the subjects are all bytecodes. For instance, the aload_0 bytecode causes

11Information flow policies control the flow of information between “subjects”. This is a purely terminological choice; those “subjects”
can merely be passive containers. They are not to be confused with the “active entities” of access control policies.

Java CardTM System Protection Profile Collection Page 84 of 189

Version 1.0b August 2003

information to flow from the local variable 0 to the top of the operand
stack; the bytecode putfield(x) makes information flow from the top of
the operand stack to the field x; and the return_a bytecode makes
information flow out of the currently executed method.

Operation Description

OP.BYTECODE(BYTCD) Any bytecode for the Java Card platform (“Java
Card bytecode”).

The information (prefixed with an “I”) controlled by the typing policy are
the bytes, shorts, integers, references and return addresses contained in the
different storage units of the JCVM (local variables, operand stack, static
fields, instance fields and array positions).

Information Description

I.BYTE(BY) Any piece of information that can be encoded in a byte.

I.SHORT(SH) Any piece of information that can be encoded in a short value.

I.INT(W1,W2) Any piece of information that can be encoded in an integer value, which in
turn is encoded in two words w1 and w2.

I.REFERENCE(RF) Any reference to a class instance or an array.

I.ADDRESS(ADRS) Any return address of a subroutine.

FDP_IFC.2.2 The TSF shall ensure that all operations that cause any information in
the TSC to flow to and from any subject in the TSC are covered by an
information flow control SFP.

FDP_IFC.2.2/BCV The TSF shall ensure that all operations that cause any information in the
TSC to flow to and from any subject in the TSC are covered by an
information flow control SFP.

FDP_IFF.2 HIERARCHICAL SECURITY ATTRIBUTES

See FMT_MSA.1 for more information about security attributes.

FDP_IFF.2.1 The TSF shall enforce the [assignment: information flow control SFP]
based on the following types of subject and information security
attributes: [assignment: the minimum number and type of security
attributes].

FDP_IFF.2.1/BCV The TSF shall enforce the TYPING information flow control SFP based on
the following types of subject and information security attributes: (1) type
attribute of the information, (2) type attribute of the storage units of the
JCVM, (3) class attribute of the fields and methods, (4) bounds attribute of
the methods.

The following table describes which security attributes are attached to
which subject/information of our policy.

Java CardTM System Protection Profile Collection Page 85 of 189

Version 1.0b August 2003

Subject/Information Attributes

S.LOCVAR TYPE

S.STCKPOS TYPE

S.FLD TYPE, CLASS

S.MTHD TYPE, CLASS, BOUNDS

I.BYTE(BY) TYPE

I.SHORT(SH) TYPE

I.INT(W1,W2) TYPE

I.REFERENCE(RF) TYPE

I.ADDRESS(ADRS) TYPE

The following table describes the security attributes.

Attribute Name Description

TYPE Either the type attached to the information, or the type held or declared
by the subject.

CLASS The class where a field or method is declared.

BOUNDS The start and end of the method code inside the method component of
the CAP file where it is declared.

The TYPE security attribute attached to local variables and operand stack
positions is the type of information they currently hold. The TYPE attribute
of the fields and the methods is the type declared for them by the
programmer.

The BOUNDS attribute of a method is used to prevent control flow to jump
outside the currently executed method.

The following table describes the possible values for each security
attribute.

Name Description

TYPE byte, short, int1, int2, any class name C, T[] with T any type in the Java
Card platform (“Java Card type”),

T0 (T1 x1, …. Tn xn) with T0,.. Tn any Java Card type,

RetAddrs(adrs), Top, Null, ⊥.

CLASS The name of a class, represented as a reference into the class Component
of one of the packages loaded on the card.

BOUNDS Two integers marking a rank into the method component of a package

Java CardTM System Protection Profile Collection Page 86 of 189

Version 1.0b August 2003

Name Description

loaded on the card.

Byte values have type byte and short values have type short. The first and
second halves of an integer value has respectively type int1, and int2. The
type of a reference to an instance of the class C is C itself. A reference to an
array of elements of type T has type T[]. From the previous basic types it is
possible to build the type T0 (T1 x1, …. Tn xn) of a method. A return address
adrs of a subroutine has type RetAddrss(adrs). Finally, the former Java Card
types are extended with three extra types Top, Null and ⊥, so that the
domain of types forms a complete lattice. Top is the type of any piece of
data, that is, the maximum of the lattice. Null is the type of the default
value null of all the reference types (classes and arrays). ⊥ is the type of an
element that belongs to all types (for instance the value 0, provided that
null is represented as zero).

FDP_IFF.2.2 The TSF shall permit an information flow between a controlled subject
and controlled information through a controlled operation if the
following rules, based on the ordering relationships between security
attributes hold: [assignment: for each operation, the security attribute-
based relationship that must hold between subject and information
security attributes].

FDP_IFF.2.2/BCV The TSF shall permit an information flow between a controlled subject and
controlled information through a controlled operation if the following
rules, based on the ordering relationships between security attributes,
hold:

 The following rules constitute a synthetic formulation of the information
flow control:

R.JAVA.6 If the bytecode pushes values from the operand stack, then
there are a sufficient number of values on the stack and the values
of the attribute TYPE of the top positions of the stack is
appropriate with respect to the ones expected by the bytecode.

R.JAVA.7 If the bytecode pushes values onto the operand stack, then
there is sufficient room on the operand stack for the new values.
The values, with the appropriate attribute TYPE value are added to
the top of the operand stack.

R.JAVA.8 If the bytecode modifies a local variable with a value with
attribute TYPE T, it must be recorded that the local variable now
contains a value of that type. In addition, the variable shall be
among the local variables of the method.

R.JAVA.9 If the bytecode reads a local variable, it must be ensured
that the specified local variable contains a value with the attribute
TYPE specified by the bytecode.

R.JAVA.10 If the bytecode uses a field, it must be ensured that its
value is of an appropriate type. This type is indicated by the
CLASS attribute of the field.

Java CardTM System Protection Profile Collection Page 87 of 189

Version 1.0b August 2003

R.JAVA.11 If the bytecode modifies a field, then it must be ensured
that the value to be assigned is of an appropriate type. This type is
indicated by the CLASS attribute of the field

R.JAVA.12 If the bytecode is a method invocation, it must be ensured
that it is invoked with arguments of the appropriate type. These
types are indicated by the TYPE and CLASS attributes of the
method.

R.JAVA.13 If the bytecode is a branching instruction, then the
bytecode target must be defined within the BOUNDS of the
method in which the branching instruction is defined.

Application note: The rules described above are strongly inspired in the rules
described in section 4.9 of [JVM], Second Edition. The complete set of typing rules
can be derived from the “Must” clauses from Chapter 7 of [JCVM21] as instances of
the rules defined above.

FDP_IFF.2.3 The TSF shall enforce the [assignment: additional information flow
control SFP rules].

FDP_IFF.2.3/BCV The TSF shall enforce the following additional information flow control
SFP rules: none.

FDP_IFF.2.4 The TSF shall provide the following [assignment: list of additional SFP
capabilities].

FDP_IFF.2.4/BCV The TSF shall provide the following list of additional SFP capabilities:
none.

FDP_IFF.2.5 The TSF shall explicitly authorize an information flow based on the
following rules: [assignment: rules, based on security attributes that
explicitly authorize information flows].

FDP_IFF.2.5/BCV The TSF shall explicitly authorize an information flow based on the
following rules: none.

FDP_IFF.2.6 The TSF shall explicitly deny an information flow based on the
following rules: [assignment: rules, based on security attributes that
explicitly deny information flows].

FDP_IFF.2.6/BCV The TSF shall explicitly deny an information flow based on the following
rules: none.

FDP_IFF.2.7/BCV The TSF shall enforce the following relationships for any two valid
information flow control security attributes:

a) There exists an ordering function that, given two valid security
attributes, determines if the security attributes are equal, if one
security attribute is greater than the other, or if the security
attributes are incomparable; and

b) There exists a least upper bound in the set of security attributes,
such that, given any two valid security attributes, there is a valid

Java CardTM System Protection Profile Collection Page 88 of 189

Version 1.0b August 2003

security attribute that is greater than or equal to the two valid
security attributes; and

c) There exists a greatest lower bound in the set of security attributes,
such that, given any two valid security attributes, there is a valid
security attribute that is not greater than the two valid security
attributes.

Application note: The order relationship between Java Card types is described, for
instance, in the description of the checkcast bytecode of [JCVM21]. That relation is
with the following rules:

• Top is the maximum of all types;

• Null is the minimum of all classes and array types;

• ⊥ is the minimum of all types.

These three extra types are introduced in order to satisfy the two last items in
requirement FDP_IFF.2.7.

FMT_MSA.1 MANAGEMENT OF SECURITY ATTRIBUTES

(See FMT_SMR.1.1/BCV (p. 89) for the roles)

FMT_MSA.1.1/BCV.1 The TSF shall enforce the TYPING information flow control SFP to restrict
the ability to modify the TYPE security attribute of the fields and methods
to none.

FMT_MSA.1.1/BCV.2 The TSF shall enforce the TYPING information flow control SFP to restrict
the ability to modify the TYPE security attribute of local variables and
operand stack position to the role Bytecode Verifier.

Application note: The TYPE attribute of the local variables and the operand stack
positions is identified to the attribute of the information they hold. Therefore, this
security attribute is possibly modified as information flows. For instance, the rules of
the typing function enable information to flow from a local variable lv to the operand
stack by the operation sload, provided that the value of the type attribute of lv is
short. This operation hence modifies the type attribute of the top of the stack. The
modification of the security attributes should be done according to the typing rules
derived from Chapter 7 of [JCVM21].

FMT_MSA.2 SECURE SECURITY ATTRIBUTES

FMT_MSA.2.1/BCV The TSF shall ensure that only secure values are accepted for security
attributes.

Application note: During the type verification of a method, the bytecode verifier
makes intensive use of the information provided in the CAP format like the sub-class
relationship between the classes declared in the package, the type and class declared
for each method and field, the rank of exceptions associated to each method, and so
on. All that information can be thought of as security attributes used by the bytecode
verifier, or as information relating security attributes. Moreover, the bytecode verifier
relies on several properties about the CAP format. All the properties on the CAP
format required by the bytecode verifier could, for instance, be completely described

Java CardTM System Protection Profile Collection Page 89 of 189

Version 1.0b August 2003

in the TSP model, and the bytecode verifier should ensure that they are satisfied
before starting type verifications. Examples of such properties are:

• Correspondences between the different components of the CAP file (for instance,
each class in the class component has an entry in the descriptor component).

• Pointer soundness (example: the index argument in a static method invocation
always has an entry in the constant pool);

• Absence of hanged pointers (example: each exception handler points to the
beginning of some bytecode);

• Redundant information (enabling different ways of searching for it);

• Conformance to the Java Language Specification respecting the access control
features mentioned in §2.2 of [JCVM22].

• Packages that are loaded post-issuance can not contain native code.

FMT_MSA.3 STATIC ATTRIBUTE INITIALIZATION

FMT_MSA.3.1/BCV The TSF shall enforce the TYPING information flow control SFP to
provide restrictive default values for security attributes that are used to
enforce the SFP.

Application note: The TYPE attribute of the fields and methods is fixed by the
application provider and never modified. When a method is invoked, the operand
(type) stack is empty. The initial type assigned to those local variables that
correspond to the method parameters is the type the application provider declared
for those parameters. Any other local variable used in the method is set to the default
value Top.

FMT_MSA.3.2/BCV The TSF shall allow the following role(s) to specify alternative initial values
to override the default values when an object or information is created:
none.

Application note: The intent is to have none of the identified roles to have privileges
with regards to the default values of the TYPE attributes.

FMT_SMR.1 SECURITY ROLES

FMT_SMR.1.1/BCV The TSF shall maintain the roles: Bytecode Verifier.

Note: the actual set of roles defined in the ST depends on the configuration.

FMT_SMR.1.2/BCV The TSF shall be able to associate users with roles.

Java CardTM System Protection Profile Collection Page 90 of 189

Version 1.0b August 2003

FRU_RSA.1 MAXIMUM QUOTAS

FRU_RSA.1.1/BCV The TSF shall enforce maximum quotas of the following resources: the
operand stack and the local variables that a method can use
simultaneously.

Java CardTM System Protection Profile Collection Page 91 of 189

Version 1.0b August 2003

5.1.4 ADELG Security Functional Requirements

This group bulks the SFRs related to the deletion of applets and/or packages, enforcing the applet
deletion manager (ADEL) policy on security aspects outside the runtime. The idea here is that deletion
is a critical phase and therefore requires specific treatment. This policy is better thought as a frame to
be filled by ST implementers.

5.1.4.1 Applet Deletion Manager Policy

FDP_ACC.2: COMPLETE ACCESS CONTROL

FDP_ACC.2.1/ADEL The TSF shall enforce the ADEL access control SFP on S.ADEL,
O.JAVAOBJECT, O.APPLET and O.CODE_PKG and all operations
among subjects and objects covered by the SFP.

Subjects (prefixed with an “S”) and objects (prefixed with an “O”) covered
by this policy are:

S.ADEL The applet deletion manager. It may be an
applet ([JCRE22], §11), but its role asks anyway for
a specific treatment from the security viewpoint.
This subject is unique.

O.CODE_PKG The code of a package, including all linking
information. On the Java Card platform, a
package is the installation unit.

O.APPLET Any installed applet, its code and data.

O.JAVAOBJECT Java class instance or array.

Operations (prefixed with “OP”) of this policy are described in the
following table.

Operation Description

OP.DELETE_APPLET(O.APPLET,…) Delete an installed applet and its objects,
either logically or physically.

OP.DELETE_PCKG(O.CODE_PKG,…) Delete a package, either logically or
physically

OP.DELETE_PCKG_APPLET(O.CODE_PKG,…) Delete a package and its installed applets,
either logically or physically.

Java CardTM System Protection Profile Collection Page 92 of 189

Version 1.0b August 2003

FDP_ACC.2.2/ADEL The TSF shall ensure that all operations between any subject in the TSC
and any object within the TSC are covered by an access control SFP.

FDP_ACF.1 SECURITY ATTRIBUTE BASED ACCESS CONTROL

FDP_ACF.1.1/ADEL The TSF shall enforce the ADEL access control SFP to objects based on:
(1) the security attributes of the covered subjects and objects, (2) the list of
AIDs of the applet instances registered on the card, (3) the attribute
ResidentPackages, which journals the list of AIDs of the packages already
loaded on the card, and (4) the attribute ActiveApplets, which is a list of
the active applets’ AIDs.

The following table presents some of the security attributes associated to
the subjects/objects under control of the policy. However, they are mostly
implementation independent.

Subject/Object Attributes

O.CODE_PKG package’s AID, dependent packages’ AIDs, Static References

O.APPLET Selection state

O.JAVAOBJECT Owner, Remote

The package’s AID identifies the package defined in the CAP file.

When an export file is used during preparation of a CAP file, the version
numbers and AIDs indicated in the export file are recorded in the CAP files
([JCVM21], §4.5.2): the dependent packages AIDs attribute allows the
retrieval of those identifications.

Static fields of a package may contain references to objects. The Static
References attribute records those references.

An applet instance can be in two different selection states: selected or
deselected. If the applet is selected (in some logical channel), then in turn it
could either be currently selected or just active. At any time there could be up
to four active applet instances, but only one currently selected. This latter
is the one that is processing the current command ([JCRE22], §4).

The Owner of an object is either the applet instance that created the object
or the package (library) where it has been defined (these latter objects can
only be arrays that initialize static fields of the package).

An object is said to be a Remote if it is an instance of a class that directly or
indirectly implements the interface java.rmi.Remote.

Finally, there are needed security attributes that are not attached to any
object or subject of the TSP: (1) the ResidentPackages Versions (or Resident
Image,[JCVM21],§4.5) and AIDs. They describe the packages that are
already on the card, (2) the list of registered applet instances and (3) the
ActiveApplets security attribute. They are all attributes internal to the VM,
that is, not attached to any specific object or subject of the SPM. These
attributes are TSF data that play a role in the SPM.

Java CardTM System Protection Profile Collection Page 93 of 189

Version 1.0b August 2003

FDP_ACF.1.2/ADEL The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed by the ADEL
SFP:

The subjects of this policy is S.ADEL.

Some basic common specifications are required in order to allow Java Card
applets and packages to be deleted without knowing the implementation
details of a particular deletion manager. In particular, this policy
introduces a notion of reachability, which provides a general means to
describe objects that are referenced from a certain applet instance or
package.

In the context of this policy, an object O is reachable if and only if either: (1)
the owner of O is a registered applet instance A (O is reachable from A), (2)
a static field of a loaded package P contains a reference to O (O is reachable
from P), (3) there exists a valid remote reference to O (O is remote
reachable), and (4) there exists an object O’ that is reachable according to
either (1) or (2) or (3) above and O’ contains a reference to O (the
reachability status of O is that of O’).

The following access control rules determine when an operation among
controlled subjects and objects is allowed by the policy:

R.JAVA.14 ([JCRE22], §11.3.4.1, Applet Instance Deletion). The S.ADEL
may perform OP.DELETE_APPLET upon an O.APPLET only
if, (1) S.ADEL is currently selected, (2) O.APPLET is deselected
and (3) there is no O.JAVAOBJECT owned by O.APPLET such
that either O.JAVAOBJECT is reachable from an applet instance
distinct from O.APPLET, or O.JAVAOBJECT is reachable from a
package P, or ([JCRE22], §8.5) O.JAVAOBJECT is remote
reachable.

R.JAVA.15 ([JCRE22],§11.3.4.1, Multiple Applet Instance Deletion). The
S.ADEL may perform OP.DELETE_APPLET upon several
O.APPLET only if, (1) S.ADEL is currently selected, (2) every
O.APPLET being deleted is deselected and (3) there is no
O.JAVAOBJECT owned by any of the O.APPLET being deleted
such that either O.JAVAOBJECT is reachable from an applet
instance distinct from any of those O.APPLET, or
O.JAVAOBJECT is reachable from a package P, or ([JCRE22], §8.5)
O.JAVAOBJECT is remote reachable.

R.JAVA.16 ([JCRE22], §11.3.4.2, Applet/Library Package Deletion). The
S.ADEL may perform OP.DELETE_PCKG upon an
O.CODE_PCKG only if, (1) S.ADEL is currently selected, (2) no
reachable O.JAVAOBJECT, from a package distinct from
O.CODE_PCKG that is an instance of a class that belongs to
O.CODE_PCKG exists on the card and (3) there is no package
loaded on the card that depends on O.CODE_PCKG.

R.JAVA.17 ([JCRE22], §11.3.4.3, Applet Package and Contained
Instances Deletion). The S.ADEL may perform
OP.DELETE_PCKG_APPLET upon an O.CODE_PCKG only
if, (1) S.ADEL is currently selected, (2) no reachable
O.JAVAOBJECT, from a package distinct from O.CODE_PCKG,

Java CardTM System Protection Profile Collection Page 94 of 189

Version 1.0b August 2003

which is an instance of a class that belongs to O.CODE_PCKG
exists on the card, (3) there is no package loaded on the card that
depends on O.CODE_PCKG and (4) for every O.APPLET of those
being deleted it holds that: (i) O.APPLET is deselected and (ii)
there is no O.JAVAOBJECT owned by O.APPLET such that
either O.JAVAOBJECT is reachable from an applet instance not
being deleted, or O.JAVAOBJECT is reachable from a package
not being deleted, or ([JCRE22],§8.5) O.JAVAOBJECT is remote
reachable.

FDP_ACF.1.3/ADEL The TSF shall explicitly authorize access of subjects to objects based on the
following additional rules: none.

Application note: However, the S.ADEL may be granted privileges ([JCRE22],
§11.3.5) to bypass the preceding policies. For instance, the logical deletion of an
applet renders it un-selectable; this has implications on the management of the
associated TSF data (see application note of FMT_MTD.1.1/JCRE).

FDP_ACF.1.4/ADEL The TSF shall explicitly deny access of any subject but the S.ADEL to
O.CODE_PKG or O.APPLET for the purpose of deleting it from the card.

FMT_MSA.1 MANAGEMENT OF SECURITY ATTRIBUTES

FMT_MSA.1.1/ADEL The TSF shall enforce the ADEL access control SFP to restrict the ability to
modify the ActiveApplets security attribute to the JCRE (S.JCRE).

Application note: The modification of the ActiveApplets security attribute should be
performed in accordance with the rules given in [JCRE22], §4.

FMT_MSA.3 STATIC ATTRIBUTE INITIALIZATION

FMT_MSA.3.1/ADEL The TSF shall enforce the ADEL access control SFP to provide restrictive
default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/ADEL The TSF shall allow the following role(s) to specify alternative initial values
to override the default values when an object or information is created:
none.

FMT_SMR.1 SECURITY ROLES

FMT_SMR.1.1/ADEL The TSF shall maintain the roles: the applet deletion manager.

Note: the actual set of roles defined in the ST depends on the configuration.

FMT_SMR.1.2/ADEL The TSF shall be able to associate users with roles.

Java CardTM System Protection Profile Collection Page 95 of 189

Version 1.0b August 2003

5.1.4.2 Additional Deletion Requirements

FDP_RIP.1 SUBSET RESIDUAL INFORMATION PROTECTION

FDP_RIP.1.1/ADEL The TSF shall ensure that any previous information content of a resource is
made unavailable upon the de-allocation of the resource from the
following objects: applet instances and/or packages when one of the
deletion operations in FDP_ACC.2.1/ADEL is performed on them.

Application note: Deleted freed resources (both code and data) may be reused,
depending on the way they were deleted (logically or physically). Requirements on
de-allocation during applet/package deletion are described in [JCRE22], §11.3.4.1,
§11.3.4.2 and §11.3.4.3.

Application note: There is no conflict with FDP_ROL.1 requirements appearing in
the document as of the bounds on the rollback: the deletion operation is out of the
scope of the rollback (FDP_ROL.1.1/FIREWALL, p.73).

FPT_FLS.1 FAILURE WITH PRESERVATION OF SECURE STATE

FPT_FLS.1.1/ADEL The TSF shall preserve a secure state when the following types of failures
occur: the applet deletion manager fails to delete a package/applet as described
in [JCRE22], §11.3.4.

Application note: The TOE may provide additional feedback information to the card
manager in case of a potential security violation (see FAU_ARP.1).

Java CardTM System Protection Profile Collection Page 96 of 189

Version 1.0b August 2003

5.1.5 RMIG Security Functional Requirements

This group is mainly devoted to specifying the policies that control the access to remote objects and
the flow of information that takes place when the RMI service is used. There are specific control rules
concerning the access to remote objects. The rules relate mainly to the lifetime of their corresponding
remote references. Information concerning remote object references can be sent out of the card only if
the corresponding remote object has been designated as exportable. Array parameters of remote
method invocations are required to be allocated on the card as global arrays, the storage of references
to those arrays must then be restricted as well.

5.1.5.1 JCRMI Policy

The JCRMI policy embodies both an access control and an information flow control policy.

FDP_ACC.2: COMPLETE ACCESS CONTROL

FDP_ACC.2.1/JCRMI The TSF shall enforce the JCRMI access control SFP on S.CAD, S.JCRE,
O.APPLET, O.REMOTE_OBJ, O.REMOTE_MTHD, O.ROR,
O.RMI_SERVICE and all operations among subjects and objects covered
by the SFP.

Subjects (prefixed with an “S”) and objects (prefixed with an “O”) covered
by this policy are:

S.CAD The CAD. In the scope of this policy it represents
the actor that requests, by issuing commands to
the card, for RMI services.

S.JCRE The JCRE is responsible on behalf of the card issuer
of the bytecode execution and runtime
environment functionalities. In the context of this
security policy, the JCRE is in charge of the
execution of the commands provided to (1) obtain
the initial remote reference of an applet instance
and (2) perform Remote Method Invocation.

O.APPLET Any installed applet, its code and data.

O.REMOTE_OBJ A remote object is an instance of a class that
implements one (or more) remote interfaces. A
remote interface is one that extends, directly or
indirectly, the interface java.rmi.Remote
([JCAPI22]).

O.ROR A remote object reference. It provides
information concerning: (i) the identification of a
remote object and (ii) the Implementation class
of the object or the interfaces implemented by
the class of the object. This is the object’s
information to which the CAD can access.

Java CardTM System Protection Profile Collection Page 97 of 189

Version 1.0b August 2003

O.REMOTE_MTHD A method of a remote interface.

O.RMI_SERVICE These are instances of the class
javacardx.rmi.RMIService. They are the
objects that actually process the RMI services.

Operations (prefixed with “OP”) of this policy are described in the
following table.

Operation Description

OP.GET_ROR(O.APPLET,…)

Retrieves the initial remote object reference of a
RMI based applet. This reference is the seed
which the CAD client application needs to begin
remote method invocations

OP.INVOKE(O.RMI_SERVICE,…) Requests a remote method invocation on the
remote object.

FDP_ACC.2.2/JCRMI The TSF shall ensure that all operations between any subject in the TSC
and any object within the TSC are covered by an access control SFP.

FDP_ACF.1 SECURITY ATTRIBUTE BASED ACCESS CONTROL

FDP_ACF.1.1/JCRMI The TSF shall enforce the JCRMI access control SFP to objects based on:
(1) the security attributes of the covered subjects and objects, (2) the list of
AIDs of the applet instances registered on the card and (3) the attribute
ActiveApplets, which is a list of the active applets’ AIDs.

The following table presents the security attributes associated to the objects
under control of the policy.

Object Attributes

O.APPLET Package’s AID or none

O.REMOTE_OBJ Owner, class, Identifier, Exported

O.REMOTE_MTHD Identifier

O.RMI_SERVICE Owner, Returned References

The package’s AID identifies the package defined in the CAP file.

An applet instance can be in two different selection states: selected or
deselected. If the applet is selected (in some logical channel), then in turn it
could either be currently selected or just active. At any time there could be up
to four active applet instances, but only one currently selected. This latter
is the one that is processing the current command ([JCRE22], §4).

The owner of a remote object is the applet instance that created the object.
The class attribute identifies the implementation class of the remote object.
The remote object Identifier is a number that uniquely identifies a remote
object. The attribute Exported indicates whether the remote object is
exportable or not.

Java CardTM System Protection Profile Collection Page 98 of 189

Version 1.0b August 2003

A remote method Identifier is a number that uniquely identifies a remote
method within a certain remote class.

The owner of an O.RMI_SERVICE is the applet instance that created the
object. The attribute Returned References lists the remote object references
that have been sent to the CAD during the applet selection session. This
attribute is implementation dependent.

Finally, there are some security attributes that are not attached to any
object or subject of the TSP: (1) the list of registered applet instances and (2)
the ActiveApplets security attribute. They are all attributes internal to the
VM that is, not attached to any specific object or subject of the SPM. These
attributes are TSF data that play a role in the SPM.

FDP_ACF.1.2/JCRMI The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed by the JCRMI
SFP:

R.JAVA.18 The S.CAD may perform OP.GET_ROR upon an
O.APPLET only if O.APPLET is the currently selected applet, and
there exists an O.RMI_SERVICE with a registered initial reference
to an O.REMOTE_OBJ that is owned by O.APPLET.

R.JAVA.19 The S.JCRE may perform OP.INVOKE upon
O.RMI_SERVICE, O.ROR and O.REMOTE_MTHD, only if,
O.ROR is valid (as defined in [JCRE22], §8.5) and belongs to the
value of the attribute Returned References of O.RMI_SERVICE, and
the attribute Identifier of O.REMOTE_MTHD matches one of the
remote methods in the class, indicated by the security attribute class,
of the O.REMOTE_OBJECT to which O.ROR makes reference.

Application note: The validity of a remote object reference is specified as a lifetime
characterization. The security attributes involved in the rules that determine what a
valid remote object reference is are the attribute Returned References of the
O.RMI_SERVICE and the attribute ActiveApplets (see FMT_REV.1.1/JCRMI and
FMT_REV.1.2/JCRMI).

Application note: The precise mechanism by which a remote method is invoked on a
remote object is defined in detail in ([JCRE22], §8.5.2 and [JCAPI22]).

FDP_ACF.1.3/JCRMI The TSF shall explicitly authorize access of subjects to objects based on the
following additional rules: none.

FDP_ACF.1.4/JCRMI The TSF shall explicitly deny access of any subject but S.JCRE to
O.REMOTE_OBJ and O.REMOTE_MTHD for the purpose of performing a
remote method invocation.

FDP_IFC.1 SUBSET INFORMATION FLOW CONTROL

FDP_IFC.1.1/JCRMI The TSF shall enforce the JCRMI information flow control SFP on the
following subjects, information and operations.

Java CardTM System Protection Profile Collection Page 99 of 189

Version 1.0b August 2003

Subjects12 (prefixed with an “S”) and information (prefixed with an “I”)
covered by this policy are:

Subject/Information Description

S.JCRE As in the Access control policy

S.CAD As in the Access control policy

I.RORD Remote object reference descriptors

A remote object reference descriptor provides information concerning: (i)
the identification of the remote object and (ii) the implementation class of
the object or the interfaces implemented by the class of the object. The
descriptor is the only object’s information to which the CAD can access.

Application note: Array parameters of remote method invocations must be allocated
on the card as global arrays objects. References to global arrays cannot be stored in
class variables, instance variables or array components. The control of the flow of
that kind of information has already been specified in FDP_IFC.1.1/JCVM.

There is a unique operation in this policy:

Operation Description

OP.RET_RORD(S.JCRE,S.CAD,I.RORD) Send a remote object reference
descriptor to the CAD.

A remote object reference descriptor is sent from the card to the CAD
either as the result of a successful applet selection command ([JCRE22],
§8.4.1), and in this case it describes, if any, the initial remote object
reference of the selected applet; or as the result of a remote method
invocation ([JCRE22],§8.3.5.1) .

FDP_IFF.1 SIMPLE SECURITY ATTRIBUTES

FDP_IFF.1.1/JCRMI The TSF shall enforce the JCRMI information flow control SFP based on
the following types of subject and information security attributes: the
security attribute Exported of the information.

The following table summarizes which security attribute is attributed to
which subject/information.

Subject/Information Attributes

S.JCRE None

S.CAD None

I.RORD ExportedInfo (Boolean value)

12 Information flow policies control the flow of information between “subjects”. This is a purely terminological choice; those “subjects”
can merely be passive containers. They are not to be confused with the “active entities” of access control policies.

Java CardTM System Protection Profile Collection Page 100 of 189

Version 1.0b August 2003

The ExportedInfo attribute of an I.RORD indicates whether the
O.REMOTE_OBJ which I.RORD identifies is exported or not (as
indicated by the security attribute Exported of the O.REMOTE_OBJ).

FDP_IFF.1.2/JCRMI The TSF shall permit an information flow between a controlled subject and
controlled information through a controlled operation if the following rule
holds:

An operation OP.RET_RORD(S.JCRE, S.CAD, I.RORD) is permitted
only if the attribute ExportedInfo I.RORD has the value “true” ([JCRE22],
§8.5).

FDP_IFF.1.3/JCRMI The TSF shall enforce [assignment: additional information flow control
SFP rules].

FDP_IFF.1.4/JCRMI The TSF shall provide [assignment: list of additional SFP capabilities].

FDP_IFF.1.5/JCRMI The TSF shall explicitly authorize an information flow based on the
following rules: [assignment: rules, based on security attributes that
explicitly authorize information flows].

FDP_IFF.1.6/JCRMI The TSF shall explicitly deny an information flow based on the following
rules: [assignment: rules, based on security attributes that explicitly deny
information flows].

FMT_MSA.1 MANAGEMENT OF SECURITY ATTRIBUTES

FMT_MSA.1.1/JCRMI The TSF shall enforce the FIREWALL access control SFP and the JCVM
information flow control SFP to restrict the ability to modify the
ActiveApplets security attribute to the JCRE (S.JCRE).

Application note: The modification of the ActiveApplets security attribute should be
performed in accordance with the rules given in [JCRE22], §4.

FMT_MSA.1.1/EXPORT The TSF shall enforce the JCRMI access control SFP and the JCRMI
information flow control SFP to restrict the ability to modify the security
attribute Exported of an O.REMOTE_OBJ to its owner.

Application note: The Exported status of a remote object can be modified by invoking
its methods export() and unexport(), and only the owner of the object may perform
the invocation without raising a SecurityException
(javacard.framework.service.CardRemoteObject). However, even if the owner of the
object may provoke the change of the security attribute value, the modification itself
could be performed by the JCRE.

FMT_MSA.1.1/REM_REFS The TSF shall enforce the JCRMI access control SFP and the JCRMI
information flow control SFP to restrict the ability to modify the security
attribute Returned References of an O.RMI_SERVICE to its owner.

Java CardTM System Protection Profile Collection Page 101 of 189

Version 1.0b August 2003

FMT_MSA.3 STATIC ATTRIBUTE INITIALIZATION

FMT_MSA.3.1/JCRMI The TSF shall enforce the JCRMI access control SFP and the JCRMI
information flow control SFP to provide restrictive default values for
security attributes that are used to enforce the SFP.

Application note: Remote objects’ security attributes are created and initialized at the
creation of the object, and except for the Exported attribute, the values of the
attributes are not longer modifiable. The default value of the Exported attribute is
true.

Application note: There is one default value for the SELECTed applet context that is the
default applet identifier’s context, and one default value for the active context, that is
“JCRE”.

FMT_MSA.3.2/JCRMI The TSF shall allow the following role(s) to specify alternative initial values
to override the default values when an object or information is created:
none.

Application note: The intent is to have none of the identified roles to have privileges
with regards to the default values of the security attributes. Notice that creation of
objects is an operation controlled by the FIREWALL SFP; the latitude on the
parameters of this operation is described there.

FMT_REV.1 REVOCATION

FMT_REV.1.1 The TSF shall restrict the ability to revoke security attributes associated
with the [selection: users, subjects, objects, other additional resources] to
[assignment: the authorized identified roles].

FMT_REV.1.1/JCRMI The TSF shall restrict the ability to revoke the Returned References
security attribute of an O.RMI_SERVICE to the JCRE [assignment: other
authorized identified role].

FMT_REV.1.2 The TSF shall enforce the rules [assignment: specification of revocation
rules].

FMT_REV.1.2/JCRMI The TSF shall enforce the rules that determine the lifetime of remote object
references.

Application note: The rules previously mentioned are described in [JCRE22], §8.5.

FMT_SMR.1 SECURITY ROLES

FMT_SMR.1.1/JCRMI The TSF shall maintain the roles: applet.

Application note: applets own Remote interface objects and may choose to allow or
forbid their exportation, which is managed through a security attribute.

Note: the actual set of roles defined in the ST depends on the configuration.

Java CardTM System Protection Profile Collection Page 102 of 189

Version 1.0b August 2003

FMT_SMR.1.2/JCRMI The TSF shall be able to associate users with roles.

5.1.6 LCG Security Functional Requirements

The security issues introduced by logical channels are mainly related to the access to SIO objects
owned by legacy applets as well as to the clearing of transient data which is shared by applet
instances which are concurrently active in different logical channels. Accordingly, this group
introduces a reformulation of the FIREWALL SFP specified in the group CoreG and a modification to
a component of the security requirement for residual information protection
(FDP_RIP.1.1/TRANSIENT).

5.1.6.1 Firewall Policy

Except for the requirements explicitly introduced in what follows, this policy includes unchanged the
functional requirements specified in the FIREWALL access control SFP of the group CoreG.

FDP_ACC.2: COMPLETE ACCESS CONTROL

FDP_ACC.2.1/ FIREWALL The TSF shall enforce the FIREWALL access control SFP on S.PACKAGE,
S.JCRE, O.JAVAOBJECT and all operations among subjects and objects
covered by the SFP.

 Subjects (prefixed with an “S”), objects (prefixed with an “O”) and
operations (prefixed with “OP”) are exactly the same which are covered
by the FIREWALL access control SFP.

FDP_ACF.1 SECURITY ATTRIBUTE BASED ACCESS CONTROL

See FMT_MSA.1 for more information about security attributes.

FDP_ACF.1.1/ FIREWALL The TSF shall enforce the FIREWALL access control SFP to objects based
on: (1) the security attributes of the covered subjects and objects, (2) the
currently active context, (3) the SELECTed applet Context, and (4) the
attribute ActiveApplets, which is a list of the active applets’ AIDs.

The following table describes the new security attribute attached to the
subjects S.PACKAGE

Subject Attributes

S.PACKAGE Selection Status

The following table describes the possible values for the new security
attributes.

Name Description

Selection Status Multiselectable, Non-multiselectable or “None”

Java CardTM System Protection Profile Collection Page 103 of 189

Version 1.0b August 2003

Name Description

ActiveApplets List of package’s AIDs

The Java Card platform, version 2.2, introduces the possibility for an applet
instance to be selected on multiple logical channels at the same time, or
accepting other applets belonging to the same package being selected
simultaneously. These applets are referred to as multiselectable applets.
Applets that belong to a same package are either all multiselectable or not
([JCVM22],§2.2.5). Therefore, the selection mode can be regarded as an
attribute of packages. No selection mode is defined for a library package.

Support for multiple logical channels (with multiple selected applet
instances) requires a change to the Java Card System, version 2.1.1, concept
of selected applet. Since more than one applet instance can be selected at the
same time, and one applet instance can be selected on different logical
channels simultaneously, it is necessary to differentiate the state of the
applet instances in more detail. An applet instance will be considered an
active applet instance if it is currently selected in at least one logical channel,
up to a maximum of four. An applet instance is the currently selected applet
instance only if it is processing the current command. There can only be one
currently selected applet instance at a given time. ([JCRE22],§4).

The ActiveApplets security attribute is internal to the VM, that is, not
attached to any specific object or subject of the SPM. The attribute is TSF
data that plays a role in the SPM.

FDP_ACF.1.2/ FIREWALL The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed by the
FIREWALL SFP:

 The same rules of the FIREWALL SFP defined in 5.1.1.1 except for rule
R.JAVA.4, which must be replaced by the following rule:

R.JAVA.20 ([JCRE22], §6.2.8.6,) An S.PACKAGE may perform
OP.INVK_INTERFACE upon an O.JAVAOBJECT whose Sharing
attribute has the value “SIO”, and whose Context attribute has the
value “Package AID”, only if one of the following applies:

a) The value of the attribute Selection Status of the package
whose AID is “Package AID” is “Multiselectable»,

b) The value of the attribute Selection Status of the package
whose AID is “Package AID” is “Non-multiselectable», and
either “Package AID” is the value of the currently selected
applet or otherwise “Package AID” does not occur in the
attribute ActiveApplets,

and in either of the cases above the invoked interface method
extends the Shareable interface.

Java CardTM System Protection Profile Collection Page 104 of 189

Version 1.0b August 2003

FMT_MSA.1 MANAGEMENT OF SECURITY ATTRIBUTES

FMT_MSA.1.1/JCRE The TSF shall enforce the FIREWALL access control SFP and the JCVM
information flow control SFP to restrict the ability to modify the active
context, the SELECTed applet Context and the ActiveApplets security
attributes to the JCRE (S.JCRE).

Application note: The modification of the active context, SELECTed applet Context
and ActiveApplets security attributes should be performed in accordance with the
rules given in [JCRE22], §4 and ([JCVM22], §3.4..

5.1.6.2 Additional Requirements on Logical Channels

FDP_RIP.1 SUBSET RESIDUAL INFORMATION PROTECTION

The element FDP_RIP.1.1/TRANSIENT must be substituted by the following one:

FDP_RIP.1.1/TRANSIENT The TSF shall ensure that any previous information content of a resource is
made unavailable upon the de-allocation of the resource from the following
objects: any transient object.

Application note: The events that provoke the de-allocation of any transient object
are described in [JCRE22], §5.1.

Application note: The clearing of CLEAR_ON_DESELECT objects is not necessarily
performed when the owner of the objects is deselected. In the presence of
multiselectable applet instances, CLEAR_ON_DESELECT memory segments may be
attached to applets that are active in different logical channels. Multiselectable
applet instances within a same package must share the transient memory segment if
they are concurrently active ([JCRE22], §4.2.

Java CardTM System Protection Profile Collection Page 105 of 189

Version 1.0b August 2003

5.1.7 ODELG Security Functional Requirements

The following requirements are concerned with the secure deletion of information provoked by the
object deletion mechanism. This mechanism is triggered by the applet who owns the deleted objects
by invoking a specific API method.

FDP_RIP.1 SUBSET RESIDUAL INFORMATION PROTECTION

FDP_RIP.1.1/ODEL The TSF shall ensure that any previous information content of a resource is
made unavailable upon the de-allocation of the resource from the
following objects: the objects owned by the context of an applet instance
which triggered the execution of the method
javacard.framework.JCSystem.requestObjectDeletion().

Application note: Freed data resources resulting from the invocation of the method
javacard.framework.JCSystem.requestObjectDeletion() may be reused.
Requirements on de-allocation after the invocation of the method are described in
[JCAPI22].

Application note: There is no conflict with FDP_ROL.1 here because of the bounds
on the rollback mechanism: the execution of requestObjectDeletion() is not in the
scope of the rollback because it must be performed in between APDU command
processing, and therefore no transaction can be in progress.

FPT_FLS.1 FAILURE WITH PRESERVATION OF SECURE STATE

FPT_FLS.1.1/ODEL The TSF shall preserve a secure state when the following type of failure
occurs: the object deletion functions fail to delete all the unreferenced objects
owned by the applet that requested the execution of the method

Application note: The TOE may provide additional feedback information to the card
manager in case of potential security violation (see FAU_ARP.1).

Java CardTM System Protection Profile Collection Page 106 of 189

Version 1.0b August 2003

5.1.8 CarG Security Functional Requirements

This group of requirements applies to those configurations where the bytecode verifier is not
embedded on the card. If this is the case, the TOE shall include requirements for preventing the
installation of a package that has not been bytecode verified, or that has been modified after bytecode
verification.

FCO_NRO.2 ENFORCED PROOF OF ORIGIN

FCO_NRO.2.1 The TSF shall enforce the generation of evidence of origin for transmitted
[assignment: list of information types] at all times.

FCO_NRO.2.1/CM The TSF shall enforce the generation of evidence of origin for transmitted
application packages at all times.

Application note: If this is the case and a new application package is received by the
card for installation, the card manager shall first check that it actually comes from the
verification authority . The verification authority is the entity responsible for
bytecode verification.

FCO_NRO.2.2 The TSF shall be able to relate the [assignment: list of attributes] of the
originator of the information, and the [assignment: list of information
fields] of the information to which the evidence applies.

FCO_NRO.2.2/CM The TSF shall be able to relate the identity of the originator of the information,
and the application package contained in the information to which the
evidence applies.

FCO_NRO.2.3 The TSF shall provide a capability to verify the evidence of origin of
information to [selection: originator, recipient, [assignment: list of third
parties]] given [assignment: limitations on the evidence of origin].

FCO_NRO.2.3/CM The TSF shall provide a capability to verify the evidence of origin of
information to the recipient given [assignment: limitations on the evidence
of origin].

Application note: The exact limitations on the evidence of origin are implementation
dependent. In most of the implementations, the card manager performs an
immediate verification of the origin of the package using an electronic signature
mechanism, and no evidence is kept on the card for future verifications.

FIA_UID.1 TIMING OF IDENTIFICATION

FIA_UID.1.1/CM The TSF shall allow [assignment: list of TSF-mediated actions] on behalf of
the user to be performed before the user is identified.

FIA_UID.1.2/CM The TSF shall require each user to be successfully identified before
allowing any other TSF-mediated actions on behalf of that user.

Application note: The list of TSF-mediated actions is implementation-dependent, but
package installation requires the user to be identified. Here by user is meant the

Java CardTM System Protection Profile Collection Page 107 of 189

Version 1.0b August 2003

one(s) that in the Security Target shall be associated to the role(s) defined in the
component FMT_SMR.1/CM.

FDP_IFC.2 COMPLETE INFORMATION FLOW CONTROL

FDP_IFC.2.1/CM The TSF shall enforce the PACKAGE LOADING information flow control
SFP on S.CRD, S.BCV, S.SPY and all operations that cause that information
to flow to and from subjects covered by the SFP.

Subjects (prefixed with an “S”) covered by this policy are those involved in
the reception of an application package by the card through a potentially
unsafe communication channel:

Subject Description

S.BCV The subject representing who is in charge of the bytecode verification of the packages
(also known as the verification authority).

S.CRD The on-card entity in charge of package downloading.

S.SPY Any other subject that may potentially intercept, modify, or permute the messages
exchanged between the former two subjects.

The operations (prefixed with “OP”) that make information to flow
between the subjects are those enabling to send a message through and to
receive a message from the communication channel linking the card to the
outside world. It is assumed that any message sent through the channel as
clear text can be read by the attacker. Moreover, the attacker may capture
any message sent through the communication channel and send its own
messages to the other subjects.

Operation Description

OP.SEND(M) A subject sends a message M through the communication channel.

OP.RECEIVE(M) A subject receives a message M from the communication channel.

The information (prefixed with an “I”) controlled by the typing policy is
the APDUs exchanged by the subjects through the communication channel
linking the card and the CAD. Each of those messages contain part of an
application package that is required to be loaded on the card, as well as
any control information used by the subjects (either S.BCV or S.SPY) in the
communication protocol.

Information Description

I.APDU Any APDU sent to or from the card through the communication channel.

FDP_IFC.2.2/CM The TSF shall ensure that all operations that cause any information in the TSC
to flow to and from any subject in the TSC are covered by an information flow
control SFP.

Java CardTM System Protection Profile Collection Page 108 of 189

Version 1.0b August 2003

FDP_IFF.1 SIMPLE SECURITY ATTRIBUTES

FDP_IFF.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow control
SFP based on the following types of subject and information security
attributes: [assignment: the minimum number and type of security
attributes].

Application note: The security attributes used to enforce the PACKAGE LOADING
SFP are implementation dependent. More precisely, they depend on the
communication protocol enforced between the CAD and the card. For instance, some
of the attributes that can be used are : (1) the keys used by the subjects to
encrypt/decrypt their messages; (2) the number of pieces the application package has
been split into in order to be sent to the card; (3) the ordinal of each piece in the
decomposition of the package, and so on. See for example Appendix D of [GP].

FDP_IFF.1.2/CM The TSF shall permit an information flow between a controlled subject and
controlled information through a controlled operation if the following
rules hold: [assignment: the rules describing the communication protocol
used by the CAD and the card for transmitting a new package].

Application note: The precise set of rules to be enforced by the function is
implementation dependent. The whole exchange of messages shall verify at least the
following two rules: (1) the subject S.CRD shall accept a message only if it comes
from the subject S.CAD; (2) the subject S.CRD shall accept an application package
only if it has received without modification and in the right order all the APDUs sent
by the subject S.CAD.

An example of such a communication protocol can be found in Appendix D of [GP].

FDP_IFF.1.3/CM The TSF shall enforce the [assignment: additional information flow
control SFP rules].

FDP_IFF.1.4/CM The TSF shall provide [assignment: list of additional SFP capabilities].

FDP_IFF.1.5/CM The TSF shall explicitly authorize an information flow based on the following
rules: [assignment: rules, based on security attributes that explicitly
authorize information flows].

FDP_IFF.1.6/CM The TSF shall explicitly deny an information flow based on the following
rules: [assignment: other rules, based on security attributes, that explicitly
deny information flows]

FDP_UIT.1 DATA EXCHANGE INTEGRITY

These requirements apply to those configurations where bytecode verification is not considered as
being part of the TOE. If this is the case, then the bytecode verifier can be seen as an external IT
product, and packages to be loaded on the card are user data in transit from that external product to
the Java Card System.

FDP_UIT.1.1 The TSF shall enforce the [assignment: access control SFP(s) and/or
information flow control SFP(s)] to be able to [selection: transmit,
receive] user data in a manner protected from [selection: modification,
deletion, insertion, replay] errors.

Java CardTM System Protection Profile Collection Page 109 of 189

Version 1.0b August 2003

FDP_UIT.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow control
SFP to be able to receive user data in a manner protected from
modification, deletion, insertion and replay errors.

Application note: Modification errors should be understood as modification,
substitution, unrecoverable ordering change of data and any other integrity error
that may cause the application package to be installed on the card to be different
from the one sent by the CAD.

FDP_UIT.1.2 The TSF shall be able to determine on receipt of user data, whether
[selection: modification, deletion, insertion, replay] has occurred.

FDP_UIT.1.2/CM The TSF shall be able to determine on receipt of user data, whether
modification, deletion, insertion, replay of some of the pieces of the
application sent by the CAD has occurred.

FMT_MSA.1 MANAGEMENT OF SECURITY ATTRIBUTES

FMT_MSA.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow control
SFP to restrict the ability to [selection: change default, query, modify, delete,
[assignment: other operations]] the security attributes [assignment: list of
security attributes] to [assignment: the authorized identified roles].

FMT_MSA.3 STATIC ATTRIBUTE INITIALIZATION

FMT_MSA.3.1/CM The TSF shall enforce the PACKAGE LOADING information flow control
SFP to provide restrictive default values for security attributes that are
used to enforce the SFP.

FMT_MSA.3.2/CM The TSF shall allow the following role(s) to specify alternative initial values
to override the default values when an object or information is created:
none.

FMT_SMR.1 SECURITY ROLES

FMT_SMR.1.1/CM The TSF shall maintain the roles: [assignment: the authorized identified roles].

FMT_SMR.1.2/CM The TSF shall be able to associate users with roles.

FTP_ITC.1 INTER-TSF TRUSTED CHANNEL

The following requirements apply to those configurations where bytecode verification is not
considered as being part of the TOE. If this is the case, then the CAD can be seen as a remote IT
product, and packages to be loaded on the card shall be transmitted using an inter-TSF trusted
channel to prevent them from being modified during downloading. Such trusted channel connects the
embedded Java Card System to the secured environment of the card issuer where the package has
been verified.

Java CardTM System Protection Profile Collection Page 110 of 189

Version 1.0b August 2003

FTP_ITC.1.1 The TSF shall provide a communication channel between itself and a
remote trusted IT product that is logically distinct from other
communication channels and provides assured identification of its end
points and protection of the channel data from modification or
disclosure.

FTP_ITC.1.1/CM The TSF shall provide a communication channel between itself and a
remote IT product that is logically distinct from other communication
channels and provides assured identification of its end points and
protection of the channel data from modification or disclosure.

FTP_ITC.1.2 The TSF shall permit [selection: the TSF, the remote trusted IT product] to
initiate communication via the trusted channel.

FTP_ITC.1.2/CM The TSF shall permit the CAD placed in the card issuer secured
environment to initiate communication through the trusted channel.

FTP_ITC.1.3 The TSF shall initiate communication via the trusted channel for
[assignment: list of functions for which a trusted channel is required].

FTP_ITC.1.3/CM The TSF shall initiate communication through the trusted channel for
installing a new application package on the card.

Application note: there is no dynamic package loading on the Java Card platform.
New packages can be installed on the card only on demand of the card issuer .

Java CardTM System Protection Profile Collection Page 111 of 189

Version 1.0b August 2003

5.1.9 SCPG Security Functional Requirements

This group contains the security requirements for the smart card platform, that is, operating system
and chip that the Java Card System is implemented upon. It does not define requirements for the TOE
but for its IT environment. The requirements are expressed in terms of security functional
requirements from [CC2].

UNDERLYING ABSTRACT MACHINE TEST (FPT_AMT)

FPT_AMT.1.1 The TSF shall run a suite of tests [selection: during initial start-up,
periodically during normal operation, at the request of an authorized user,
other conditions] to demonstrate the correct operation of the security
assumptions provided by the abstract machine that underlies the TSF.

FPT_AMT.1.1/SCP The TSF shall run a suite of tests during initial start-up (at each power on)
to demonstrate the correct operation of the security assumptions provided
by the abstract machine that underlies the TSF.

Application note: The abstract machine that underlies the TSF comprises the lower
levels of the SCP, that is, the OS and its dedicated native applications and/or APIs
(for instance, hardware cryptographic functions/buffers), as well as the IC. Self-test
of these components is, as an example, included in [PP0010]. These tests are initiated
by the TSF of the SCP itself.

FAIL SECURE (FPT_FLS)

FPT_FLS.1.1/SCP The TSF shall preserve a secure state when the following types of failures
occur: [assignment: list of types of failures in the TSF].

FAULT TOLERANCE (FRU_FLT)

FRU_FLT.1.1/SCP The TSF shall ensure the operation of [assignment: list of TOE capabilities]
when the following failures occur: [assignment: list of type of failures].

These components shall be used to specify the list of SCP capabilities supporting the Java Card
System/CM that will still be operational at the occurrence of the mentioned failures (EEPROM worn
out, lack of EEPROM, random generator failure).

TSF PHYSICAL PROTECTION (FPT_PHP)

FPT_PHP.3.1/SCP The TSF shall resist [assignment: physical tampering scenarios] to the
[assignment: list of TSF devices/elements] by responding automatically
such that the TSP is not violated.

Java CardTM System Protection Profile Collection Page 112 of 189

Version 1.0b August 2003

DOMAIN SEPARATION (FPT_SEP)

FPT_SEP.1.1/SCP The TSF shall maintain a security domain for its own execution that
protects it from interference and tampering by untrusted subjects.

FPT_SEP.1.2/SCP The TSF shall enforce separation between the security domain of subjects
in the TSC.

Application note: The use of “security domain” here refers to execution space, and
should not be confused with other meanings of security domains.

REFERENCE MEDIATION (FPT_RVM)

FPT_RVM.1.1/SCP The TSF shall ensure that the TOE enforcement functions (TSP) are
invoked and succeed before each function within the TSC is allowed to
proceed.

Application note: This component supports OE.SCP.SUPPORT, which in turn
contributes to the secure operation of the TOE, by ensuring that these latter and
supporting platform security mechanisms cannot be bypassed.

The TSF and TSC stated in these three components refer to that of the SCP.

TRUSTED RECOVERY (FPT_RCV)

FPT_RCV.3.1/SCP When automated recovery from a failure or service discontinuity is not
possible, the TSF shall enter a maintenance mode where the ability to
return the TOE to a secure state is provided.

FPT_RCV.3.2/SCP For [assignment: list of failures/service discontinuities], the TSF shall ensure
the return of the TOE to a secure state using automated procedures.

FPT_RCV.3.3/SCP The functions provided by the TSF to recover from failure or service
discontinuity shall ensure that the secure initial state is restored without
exceeding [assignment: quantification] for loss of TSF data or objects within
the TSC.

FPT_RCV.3.4/SCP The TSF shall provide the capability to determine the objects that were or
were not capable of being recovered.

FPT_RCV.4.1/SCP The TSF shall ensure that reading from and writing to static and objects’
fields interrupted by power loss have the property that the SF either
completes successfully, or for the indicated failure scenarios, recovers to a
consistent and secure state.

Application note: This requirement comes from the specification of the Java Card
platform but is obviously supported in the implementation by a low-level
mechanism of the SCP.

Java CardTM System Protection Profile Collection Page 113 of 189

Version 1.0b August 2003

5.1.10 CMGRG Security Functional Requirements

This group contains the security requirements for the card manager. These are requirements for the IT
environment of the TOE. They are all expressed in terms of security functional requirements from
[CC2].

The security requirements below helps define a policy for controlling access to card content
management operations and for expressing card issuer security concerns. This policy shall be highly
dependent on the particular security and card management architecture present in the card. Therefore
the policy should be accordingly refined when developing conformant Security Targets.

FDP_ACC.1 SUBSET ACCESS CONTROL

FDP_ACC.1.1 The TSF shall enforce the [assignment: access control SFP] on
[assignment: list of subjects, objects, and operations among subjects and
objects covered by the SFP].

FDP_ACC.1.1/CMGR The TSF shall enforce the CARD CONTENT MANAGEMENT access
control SFP on [assignment: list of subjects, objects, and operations among
subjects and objects covered by the SFP].

Application note: It should be noticed that TSF here refers to the security functions of
the environment, rather than security functions of the TOE.

FDP_ACF.1 SECURITY ATTRIBUTE BASED ACCESS CONTROL

FDP_ACF.1.1/CMGR The TSF shall enforce the CARD CONTENT MANAGEMENT access
control SFP to objects based on [assignment: security attributes, named
groups of security attributes].

FDP_ACF.1.2/CMGR The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed: [assignment:
rules governing access among controlled subjects and controlled objects using
controlled operations on controlled objects].

FDP_ACF.1.3/CMGR The TSF shall explicitly authorize access of subjects to objects based on the
following additional rules: [assignment: rules, based on security attributes,
that explicitly authorize access of subjects to objects].

FDP_ACF.1.4/CMGR The TSF shall explicitly deny access of subjects to objects based on the
[assignment: rules, based on security attributes, that explicitly deny access of
subjects to objects].

FMT_MSA.1 MANAGEMENT OF SECURITY ATTRIBUTES

FMT_MSA.1.1/CMGR The TSF shall enforce the CARD CONTENT MANAGEMENT access
control SFP to restrict the ability to [selection: change default, query, modify,
delete, [assignment: other operations]] the security attributes [assignment: list
of security attributes] to [assignment: the authorized identified roles].

Java CardTM System Protection Profile Collection Page 114 of 189

Version 1.0b August 2003

FMT_MSA.3 STATIC ATTRIBUTE INITIALIZATION

FMT_MSA.3.1/CMGR The TSF shall enforce the CARD CONTENT MANAGEMENT access
control SFP to provide restrictive default values for security attributes
that are used to enforce the SFP.

FMT_MSA.3.2/CMGR The TSF shall allow the [assignment: the authorized identified roles] to specify
alternative initial values to override the default values when an object or
information is created.

FMT_SMR.1 SECURITY ROLES

FMT_SMR.1.1/CMGR The TSF shall maintain the roles: [assignment: the authorized identified roles].

FMT_SMR.1.2/CMGR The TSF shall be able to associate users with roles.

FIA_UID.1 TIMING OF IDENTIFICATION

FIA_UID.1.1/CMGR The TSF shall allow [assignment: list of TSF-mediated actions] on behalf of
the user to be performed before the user is identified.

FIA_UID.1.2/CMGR The TSF shall require each user to be successfully identified before
allowing any other TSF-mediated actions on behalf of that user.

Application note: The list of TSF-mediated actions depends on the particular card
manager security architecture implemented, but typically card content modification
requires for the user attempting the modification to be identified. Here by user is
meant the one(s) that in the Security Target shall be associated to the role(s) defined
in the component FMT_SMR.1/CMGR

Java CardTM System Protection Profile Collection Page 115 of 189

Version 1.0b August 2003

5.2 TOE SECURITY ASSURANCE REQUIREMENTS

The assurance requirement of the Protection Profiles is EAL 4 augmented.

REQUIREMENT NAME TYPE

EAL 4 Methodically designed, tested,
and reviewed

Assurance level

The assurance requirements ensure, among others, the security of the TOE during its development
and production. We present here some application notes on the assurance requirements included in
the EAL of the PP. These are not to be considered as iteration or refinement of the original components.

• ACM_AUT.1 Partial Configuration Management automation

• ACM_CAP.4 Generation support and acceptance procedures

• ACM_SCP.2 Problem tracking Configuration Management coverage

These components contribute to the integrity and correctness of the TOE during its development.
Procedures dealing with physical, personnel, organizational, technical measures for the confidentiality
and integrity of Java Card System software (source code and any associated documents) shall exist and
be applied in software development.

• ADV_FSP.2 Fully defined external interfaces

• ADV_HLD.2 Security enforcing high-level design

• ADV_LLD.1 Descriptive low-level design

• ADV_RCR.1 Informal correspondence demonstration

• ADV_SPM.1 Informal TOE security policy model

These SARs ensure that the TOE will be able to meet its security requirements and fulfill its objectives.
The Java Card System shall implement the [JCAPI]. The implementation of the Java Card API shall be
designed in a secure manner, including specific techniques to render sensitive operations resistant to
state-of-art attacks.

• ADO_DEL.2 Detection of modification

This SAR ensures the integrity of the TOE and its documentation during the transfer of the TOE
between all the actors appearing in the first two stages. Procedures shall ensure protection of TOE
material/information under delivery and storage that corrective actions are taken in case of improper
operation in the delivery process and storage and that people dealing with the procedure for delivery
have the required skills.

• ADO_IGS.1 Installation, generation, and start-up procedures

• AGD_ADM.1 Administrator guidance

• AGD_USR.1 User guidance

These SARs ensure proper installation and configuration: the TOE will be correctly configured and the
TSFs will be put in good working order. The administrator is the card issuer, the platform developer,
the card embedder or any actor who participates in the fabrication of the TOE once its design and
development is complete (its source code is available and released by the TOE designer). The users are

Java CardTM System Protection Profile Collection Page 116 of 189

Version 1.0b August 2003

applet developers, the card manager developers, and possibly the final user of the TOE.

The applet and API packages programmers should have a complete understanding of the concepts
defined in [JCRE] and [JCVM]. They must delegate key management, PIN management and
cryptographic operations to dedicated APIs. They should carefully consider the effect of any possible
exception or specific event and take appropriate measures (such as catch the exception, abort the
current transaction, and so on.). They must comply with all the recommendations given in the
platform programming guide as well. Failure to do so may jeopardize parts of (or even the whole)
applet and its confidential data.

This guidance also includes the fact that sharing object(s) or data between applets (through shareable
interface mechanism, for instance) must include some kind of authentication of the involved parties,
even when no sensitive information seems at stake (so-called “defensive development”).

• ALC_DVS.1 Identification of security measures

• ALC_LCD.1 Developer defined life-cycle model

• ALC_TAT.1 Well-defined development tools

It is assumed that security procedures are used during all manufacturing and test operations through
the production phase to maintain confidentiality and integrity of the TOE and of its manufacturing
and test data (to prevent any possible copy, modification, retention, theft or unauthorized use).

• ATE_COV.2 Analysis of Coverage

• ATE_DPT.1 Testing: high-level design

• ATE_FUN.1 Functional testing

• ATE_IND.2 Independent testing - sample

The purpose of these SARs is to ensure whether the TOE behaves as specified in the design
documentation and in accordance with the TOE security functional requirements. This is
accomplished by determining that the developer has tested the security functions against its
functional specification and high level design, gaining confidence in those tests results by performing
a sample of the developer’s tests, and by independently testing a subset of the security functions.

• AVA_MSU.2 Validation of analysis

This SAR ensures that the guidance on installation, generation, and start-up procedures is not
misleading, unreasonable or conflicting, whether secure procedures for all modes of operation have
been addressed, and whether use of the guidance will facilitate prevention and detection of insecure
TOE states.

• AVA_SOF.1 Strength of TOE security function evaluation

The objectives of this SAR are to determine whether SOF claims are made in the ST for all non-
cryptographic, probabilistic or permutational mechanisms and whether the developer’s SOF claims
made in the ST are supported by an analysis that is correct.

Augmentation of level EAL4 results from the selection of the following two SARs:

• AVA_VLA.3 Moderately resistant

EAL4 requires vulnerability assessment through imposition of AVA_VLA.2. This dictates a review of
identified vulnerabilities only. The component AVA_VLA.3 requires that a systematic search for
vulnerabilities be documented and presented. This provides a significant increase in the consideration
of vulnerabilities over that provided by AVA_VLA.2.

Java CardTM System Protection Profile Collection Page 117 of 189

Version 1.0b August 2003

• ADV_IMP.2 Implementation of the TSF.

EAL4 requires through imposition of ADV_IMP.1 the description of a subset of the implementation
representation in order to capture the detailed internal working of the TSF. The component
ADV_IMP.2 requires the developer to provide the implementation representation for the entire TSF.

Java CardTM System Protection Profile Collection Page 118 of 189

Version 1.0b August 2003

6 Rationale

This chapter presents the evidence used in the evaluation of the Protection Profiles. This evidence
supports the claims that each of them is a complete and cohesive set of requirements and that a
conformant TOE would provide an effective set of IT security countermeasures within the security
environment.

6.1 SECURITY OBJECTIVES RATIONALE

This section demonstrates that the stated security objectives address the entire security environment
aspects identified. Each security objective is correlated to at least one threat, organizational security
policy or assumption.

The section is structured by configuration and then by the type of rationale.

6.1.1 Minimal Configuration

6.1.1.1 Threats Related to Security Objectives

All the security objectives fixed for the TOE and its environment contribute to counter some threat on
the assets. In order to provide evidence that all threats are actually prevented by some combination of
security objectives, the presentation is oriented by the threats.

T.PHYSICAL Covered by OE.SCP.IC. Physical protections rely on the underlying
platform and are therefore an environmental issue.

CONFIDENTIALITY & INTEGRITY

These are generic threats on code and data of Java Card System and applets: T.CONFID-JCS-CODE,
T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA, T.INTEG-APPLI-CODE, T.INTEG-JCS-CODE,
T.INTEG-APPLI-DATA, and T.INTEG-JCS-DATA.

Threats concerning the integrity and confidentiality of code are countered by the list of properties
described in the (#.VERIFICATION) security issue. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the intended scope
of visibility. As none of those instructions enables to read or modify a piece of code, no Java Card
applet can therefore be executed to disclose or modify a piece of code. Native applications are also
harmless because of the objective (O.NATIVE) and the assumption (A.NATIVE), so no application can
be run to disclose or modify a piece of code.

The (#.VERIFICATION) security issue is addressed in this configuration by the objective for the
environment OE.VERIFICATION.

Java CardTM System Protection Profile Collection Page 119 of 189

Version 1.0b August 2003

The threats concerning confidentiality and integrity of data are countered by bytecode verification and
the isolation commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its
turn on the correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically
enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.

As the firewall is a software tool automating critical controls, the objective O.ALARM asks for it to
provide clear warning and error messages, so that the appropriate counter-measure can be taken.

Concerning the confidentiality and integrity of application sensitive data, as applets may need to share
some data or communicate with the CAD, cryptographic functions are required to actually protect the
exchanged information (O.CIPHER). Remark that even if the TOE shall provide access to the
appropriate TSFs, it is still the responsibility of the applets to use them. Keys and PIN’s are particular
cases of an application’s sensitive data13 that ask for appropriate management (O.KEY-MNGT, O.PIN-
MNGT, O.TRANSACTION). If the PIN class of the Java Card API is used, the objective (O.FIREWALL)
is also concerned.

Other application data that is sent to the applet as clear text arrives to the APDU buffer, which is a
resource shared by all applications. The disclosure of such kind of data is prevented by the
(O.SHRD_VAR_CONFID) security objective. The integrity of the information stored in that buffer is
ensured by the (O.SHRD_VAR_INTEG) objective.

Finally, any attempt to read a piece of information that was previously used by an application but has
been logically deleted is countered by the O.REALLOCATION objective. That objective states that any
information that was formerly stored in a memory block shall be cleared before the block is reused.

IDENTITY USURPATION

T.SID.1 As impersonation is usually the result of successfully disclosing and
modifying some assets, this threat is mainly countered by the objectives
concerning the isolation of application data (like PINs), ensured by the
(O.FIREWALL). Uniqueness of subject-identity (O.SID) also participates to
face this threat. Note that the AIDs, which are used for applet identification,
are TSF data.

In this configuration, usurpation of identity resulting from a malicious
installation of an applet on the card is covered by the objective OE.NO-
INSTALL: applets are always installed in a secured environment that
prevents any malevolent manipulation of the applets and cards.

T.SID.2 This is covered by integrity of TSF data, subject–identification (O.SID), the
firewall (O.FIREWALL) and its good working order (O.OPERATE).

UNAUTHORIZED EXECUTIONS

T.EXE-CODE.1 Unauthorized execution of a method is prevented by the objective
OE.VERIFICATION. This threat particularly concerns the point (8) of the
security issue (access modifiers and scope of visibility for classes, fields

13 The Java Card System may possess keys as well.

Java CardTM System Protection Profile Collection Page 120 of 189

Version 1.0b August 2003

and methods). The O.FIREWALL objective is also concerned, because it
prevents the execution of non-shareable methods of a class instance by any
subject apart from the class instance owner.

T.EXE-CODE.2 Unauthorized execution of a method fragment or arbitrary data is
prevented by the objective OE.VERIFICATION. This threat particularly
concerns those points of the security issue related to control flow
confinement and the validity of the method references used in the
bytecodes.

T.NATIVE An applet tries to execute a native method to bypass some security
function such as the firewall. A Java Card technology-based applet (“Java
Card applet”) can only access native methods indirectly (O.NATIVE) that
is, through an API which is assumed to be secure (A.NATIVE). In addition
to this, the bytecode verifier also prevents the program counter of an
applet to jump into a piece of native code by confining the control flow to
the currently executed method (OE.VERIFICATION).

DENIAL OF SERVICE

T.RESOURCES An attacker prevents correct operation of the Java Card System through
consumption of some resources of the card. This is directly countered by
objectives on resource-management (O.RESOURCES) for runtime
purposes and good working order (O.OPERATE) in a general manner.

Note that, for what relates to CPU usage, the Java Card platform is single–
threaded and it is possible for an ill–formed application (either native or
not) to monopolize the CPU. However, a smart card can be physically
interrupted (card removal or hardware reset) and most CADs implement a
timeout policy that prevents them from being blocked should a card fail to
answer. That point is out of scope of this PP, though.

The objective OE.CARD-MANAGEMENT supports OE.VERIFICATION and contributes to cover all
the threats on confidentiality and integrity of code and data. The objective also contributes, by
preventing usurpation of identity resulting from a malicious installation of an applet on the card, to
counter the threat T.SID.1.

Finally, the objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE, O.ALARM and O.RESOURCES objectives of the TOE, so they are indirectly related to
the threats that these latter objectives contribute to counter.

Java CardTM System Protection Profile Collection Page 121 of 189

Version 1.0b August 2003

 O
E.

N
O

-IN
ST

A
LL

O
E.

V
ER

IF
IC

A
TI

O
N

O
E.

CA
RD

-M
A

N
A

G
EM

EN
T

O
.S

H
RD

_V
A

R_
IN

TE
G

O
.S

H
RD

_V
A

R_
CO

N
FI

D

O
.F

IR
EW

A
LL

O
.N

A
TI

V
E

O
.O

PE
RA

TE

O
.A

LA
RM

O
.R

EA
LL

O
CA

TI
O

N

O
.R

ES
O

U
RC

ES

O
.S

ID

O
E.

SC
P.

IC

O
E.

SC
P.

RE
CO

V
ER

Y

O
E.

SC
P.

SU
PP

O
RT

O

.C
IP

H
ER

O
.K

EY
-M

N
G

T

O
.P

IN
-M

N
G

T

O
.T

RA
N

SA
CT

IO
N

T.PHYSICAL X
T.CONFID-JCS-CODE

T.INTEG-APPLI-CODE
T.INTEG-JCS-CODE

 X X

T.CONFID-JCS-DATA
T.INTEG-JCS-DATA X X X X X X X X

T.CONFID-APPLI-
DATA

 X X X X X X X X X X X X X X

T.INTEG-APPLI-DATA X X X X X X X X X X X X X X
T.SID.1 X X X X
T.SID.2 X X X X X

T.EXE-CODE.1 X X
T.EXE-CODE.2 X

T.NATIVE X X
T.RESOURCES X X X X

Table 3: Minimal Configuration threats rationale

6.1.1.2 Assumptions Related to Security Objectives

This section relates the security objectives to be achieved by this configuration to the assumptions
made on the TOE and its environment.

In this configuration all the security objectives directly or indirectly depend on the behavior of the
native code embedded on the card. This trusted native code is not subject to change during the
lifetime of the card. The objective OE.NATIVE ensures that the environmental assumption A.NATIVE
is upheld. The objective OE.VERIFICATION upholds the assumption A.VERIFICATION.

The assumptions A.NO-DELETION and A.NO-INSTALL are also upheld by the environmental
objective OE.CARD-MANAGEMENT.

Table 4 provides a mapping of security objectives to the assumptions made on the environment of the
TOE.

Java CardTM System Protection Profile Collection Page 122 of 189

Version 1.0b August 2003

O
E.

CA
RD

-M
A

N
A

G
EM

EN
T

O
E.

N
A

TI
V

E

O
E.

N
O

-D
EL

ET
IO

N

O
E.

N
O

-IN
ST

A
LL

O
E.

V
ER

IF
IC

A
TI

O
N

A.NATIVE X
A.NO-DELETION X X

A.NO-INSTALL X X
A.VERIFICATION X

Table 4: Minimal Configuration assumptions rationale

The following security objectives of the TOE are related to the assumptions made for this
configuration as follows:

O.FIREWALL The controlled sharing of data owned by different applications assumes
that the code of the applications is well typed (A.VERIFICATION). Secured
installation ensures the correct initialization of TSF data such as the
identity of the applications (A.NO-INSTALL).

O.SID The correct identification of the applications depends on the assumptions
stating that pre-issuance applications have been correctly installed (A.NO-
INSTALL), and that those are exactly the applications that will be on the
card (A.NO-DELETION).

6.1.1.3 Organizational Policies Related to Security Objectives

No organizational security policy has been defined for this configuration.

6.1.2 Java Card System Standard 2.1.1 Configuration

6.1.2.1 Threats Related to Security Objectives

All the security objectives fixed for the TOE and its environment contribute to counter some threat on
the assets. In order to provide evidence that all threats are actually prevented by some combination of
security objectives, the presentation is oriented by the threats.

T.PHYSICAL Covered by OE.SCP.IC. Physical protections rely on the underlying
platform and are therefore an environmental issue.

CONFIDENTIALITY & INTEGRITY

These are generic threats on the code and the data of Java Card System and applets: T.CONFID-JCS-
CODE, T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA, T.INTEG-APPLI-CODE, T.INTEG-JCS-CODE,
T.INTEG-APPLI-DATA, and T.INTEG-JCS-DATA.

Java CardTM System Protection Profile Collection Page 123 of 189

Version 1.0b August 2003

Threats concerning the integrity and confidentiality of code are countered by the list of properties
described in the (#.VERIFICATION) security issue. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the intended scope
of visibility. As none of those instructions enables to read or modify a piece of code, no Java Card
applet can therefore be executed to disclose or modify a piece of code. Native applications are also
harmless because of the objective (O.NATIVE) and the assumption (A.NATIVE), so no application can
be run to disclose or modify a piece of code.

The (#.VERIFICATION) security issue is addressed in this configuration by the objective for the
environment OE.VERIFICATION.

The threats concerning confidentiality and integrity of data are countered by bytecode verification and
the isolation commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its
turn on the correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically
enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.

As the firewall is a software tool automating critical controls, the objective O.ALARM asks for it to
provide clear warning and error messages, so that the appropriate counter-measure can be taken.

Concerning the confidentiality and integrity of application sensitive data, as applets may need to share
some data or communicate with the CAD, cryptographic functions are required to actually protect the
exchanged information (O.CIPHER). Remark that even if the TOE shall provide access to the
appropriate TSFs, it is still the responsibility of the applets to use them. Keys and PIN’s are particular
cases of an application’s sensitive data14 that ask for appropriate management (O.KEY-MNGT, O.PIN-
MNGT, O.TRANSACTION). If the PIN class of the Java Card API is used, the objective (O.FIREWALL)
is also concerned.

Other application data that is sent to the applet as clear text arrives to the APDU buffer, which is a
resource shared by all applications. The disclosure of such kind of data is prevented by the
(O.SHRD_VAR_CONFID) security objective. The integrity of the information stored in that buffer is
ensured by the (O.SHRD_VAR_INTEG) objective.

Finally, any attempt to read a piece of information that was previously used by an application but has
been logically deleted is countered by the O.REALLOCATION objective. That objective states that any
information that was formerly stored in a memory block shall be cleared before the block is reused.

IDENTITY USURPATION

T.SID.1 As impersonation is usually the result of successfully disclosing and
modifying some assets, this threat is mainly countered by the objectives
concerning the isolation of application data (like PINs), ensured by the
(O.FIREWALL). Uniqueness of subject-identity (O.SID) also participates to
face this threat. Note that the AIDs, which are used for applet identification,
are TSF data.

In this configuration, usurpation of identity resulting from a malicious
installation of an applet on the card is covered by the objective O.INSTALL.

 The installation parameters of an applet (like its name) are loaded into a
global array that is also shared by all the applications. The disclosure of
those parameters (which could be used to impersonate the applet) is

14 The Java Card System may possess keys as well.

Java CardTM System Protection Profile Collection Page 124 of 189

Version 1.0b August 2003

countered by the objective (O.SHRD_VAR_CONFID) and
(O.SHRD_VAR_INTEG).

T.SID.2 This is covered by integrity of TSF data, subject–identification (O.SID), the
firewall (O.FIREWALL) and its good working order (O.OPERATE).

 The objective O.INSTALL contributes to counter this threat for what relates
to the critical phase of applet installation (because the installer may have
special rights).

UNAUTHORIZED EXECUTIONS

T.EXE-CODE.1 Unauthorized execution of a method is prevented by the objective
OE.VERIFICATION. This threat particularly concerns the point (8) of the
security issue (access modifiers and scope of visibility for classes, fields
and methods). The O.FIREWALL objective is also concerned, because it
prevents the execution of non-shareable methods of a class instance by any
subject apart from the class instance owner.

T.EXE-CODE.2 Unauthorized execution of a method fragment or arbitrary data is
prevented by the objective OE.VERIFICATION. This threat particularly
concerns those points of the security issue related to control flow
confinement and the validity of the method references used in the
bytecodes.

T.NATIVE An applet tries to execute a native method to bypass some security
function such as the firewall. A Java Card applet can only access native
methods indirectly (O.NATIVE) that is, through an API which is assumed
to be secure (A.NATIVE). In addition to this, the bytecode verifier also
prevents the program counter of an applet to jump into a piece of native
code by confining the control flow to the currently executed method
(OE.VERIFICATION).

 An application cannot download its own native code on the card, see the
objective OE.APPLET, which also contributes to enforce the objective
countering this threat (O.NATIVE).

DENIAL OF SERVICE

T.RESOURCES An attacker prevents correct operation of the Java Card System through
consumption of some resources of the card. This is directly countered by
objectives on resource-management (O.RESOURCES) for runtime
purposes and good working order (O.OPERATE) in a general manner.

 In this configuration, consumption of resources during installation and
other card management operations are covered, in case of failure, by
O.INSTALL.

Java CardTM System Protection Profile Collection Page 125 of 189

Version 1.0b August 2003

Note that, for what relates to CPU usage, the Java Card platform is single–
threaded and it is possible for an ill–formed application (either native or
not) to monopolize the CPU. However, a smart card can be physically
interrupted (card removal or hardware reset) and most CAD implement a
timeout policy that prevent them from being blocked should a card fails to
answer. That point is out of scope of this PP, though.

MODIFICATIONS OF THE SET OF APPLICATIONS

T.INSTALL The attacker fraudulently installs an applet on the card post issuance. This
threat is covered by the O.INSTALL and O.LOAD security objectives.

INTEGRITY AND INSTALLATION

T.INTEG-APPLI-CODE.2 The attacker modifies (part of) its own or another application code when
an application package is transmitted to the card for installation. In this
configuration the integrity of a package’s code is covered by the objective
O.LOAD.

T.INTEG-APPLI-DATA.2 The attacker modifies (part of) the initialization data contained in an
application package when the package is transmitted to the card for
installation. In this configuration the integrity of a package’s code is
covered by the objective O.LOAD.

The objective OE.CARD-MANAGEMENT supports OE.VERIFICATION and contributes to cover all
the threats on confidentiality and integrity of code and data, the T.INSTALL threat, and the T.INTEG-
APPLI-CODE.2 and T.INTEG-APPLI-DATA.2 threats. The objective also contributes, by preventing
usurpation of identity resulting from a malicious installation of an applet on the card, to counter the
threat T.SID.1.

Finally, the objectivesOE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE, O.ALARM and O.RESOURCES objectives of the TOE, so they are indirectly related to
the threats that these latter objectives contribute to counter.

 O
.IN

ST
A

LL

O
.L

O
A

D

O
E.

V
ER

IF
IC

A
TI

O
N

 O
E.

CA
RD

-M
A

N
A

G
EM

EN
T

O
E.

A
PP

LE
T

O
.S

H
RD

_V
A

R_
IN

TE
G

O

.S
H

RD
_V

A
R_

CO
N

FI
D

O

.F
IR

EW
A

LL

O
.N

A
TI

V
E

O
.O

PE
RA

TE

O
.A

LA
RM

O

.R
EA

LL
O

CA
TI

O
N

O

.R
ES

O
U

RC
ES

O

.S
ID

O

E.
SC

P.
IC

O
E.

SC
P.

RE
CO

V
ER

Y
O

E.
SC

P.
SU

PP
O

RT

O
.C

IP
H

ER

O
.K

EY
-M

N
G

T
O

.P
IN

-M
N

G
T

O
.T

RA
N

SA
CT

IO
N

T.PHYSICAL X
T.CONFID-JCS-CODE

T.INTEG-APPLI-CODE
T.INTEG-JCS-CODE

 X X

T.CONFID-JCS-DATA
T.INTEG-JCS-DATA X X X X X X X X

Java CardTM System Protection Profile Collection Page 126 of 189

Version 1.0b August 2003

T.CONFID-APPLI-DATA X X X X X X X X X X X X X X
T.INTEG-APPLI-DATA X X X X X X X X X X X X X X

T.SID.1 X X X X X X
T.SID.2 X X X X X X

T.EXE-CODE.1 X X
T.EXE-CODE.2 X

T.NATIVE X X X
T.RESOURCES X X X X X

T.INSTALL X X X
T.INTEG-APPLI-CODE.2 X X
T.INTEG-APPLI-DATA.2 X X

Table 5: Java Card System Standard 2.1.1 Configuration threats rationale

6.1.2.2 Assumptions Related to Security Objectives

This section relates the security objectives to be achieved by this configuration to the assumptions
made on the TOE and its environment.

In this configuration all the security objectives directly or indirectly depend on the behavior of the
native code embedded on the card. This trusted native code is not subject to change during the
lifetime of the card. The objective OE.NATIVE ensures that the environmental assumption A.NATIVE
is upheld. The objective OE.APPLET covers the assumption A.APPLET, and contributes to the
enforcement of the objective O.NATIVE in the presence of post-issuance downloaded applications.
The objective OE.VERIFICATION upholds the assumption A.VERIFICATION.

Table 6 provides a mapping of security objectives to the assumptions made on the environment of the
TOE.

O
E.

N
A

TI
V

E

O
E.

A
PP

LE
T

O
E.

CA
RD

-M
A

N
A

G
EM

EN
T

O
E.

V
ER

IF
IC

A
TI

O
N

A.NATIVE X
A.APPLET X

A.DELETION X
A.VERIFICATION X

Table 6: Java Card System Standard 2.1.1 Configuration assumptions rationale

The assumption A.DELETION is upheld by the environmental objective OE.CARD-MANAGEMENT.

Java CardTM System Protection Profile Collection Page 127 of 189

Version 1.0b August 2003

6.1.2.3 Organizational Policies Related to Security Objectives

Only one organizational security policy, OSP.VERIFICATION, has been defined for this configuration.
This policy is covered by the security objective of the environment OE.VERIFICATION.

Java CardTM System Protection Profile Collection Page 128 of 189

Version 1.0b August 2003

6.1.3 Java Card System Standard 2.2 Configuration

6.1.3.1 Threats Related to Security Objectives

All the security objectives fixed for the TOE and its environment contribute to counter some threat on
the assets. In order to provide evidence that all threats are actually prevented by some combination of
security objectives, the presentation is oriented by the threats.

T.PHYSICAL Covered by OE.SCP.IC. Physical protections rely on the underlying
platform and are therefore an environmental issue.

CONFIDENTIALITY & INTEGRITY

These are generic threats on code and data of Java Card System and applets: T.CONFID-JCS-CODE,
T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA, T.INTEG-APPLI-CODE, T.INTEG-JCS-CODE,
T.INTEG-APPLI-DATA, and T.INTEG-JCS-DATA.

Threats concerning the integrity and confidentiality of code are countered by the list of properties
described in the (#.VERIFICATION) security issue. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the intended scope
of visibility. As none of those instructions enables reading or modifying a piece of code, no Java Card
applet can therefore be executed to disclose or modify a piece of code. Native applications are also
harmless because of the objective (O.NATIVE) and the assumption (A.NATIVE), so no application can
be run to disclose or modify a piece of code.

The (#.VERIFICATION) security issue is addressed in this configuration by the objective for the
environment OE.VERIFICATION.

The threats concerning confidentiality and integrity of data are countered by bytecode verification and
the isolation commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its
turn on the correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically
enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.

As the firewall is a software tool automating critical controls, the objective O.ALARM asks for it to
provide clear warning and error messages, so that the appropriate counter-measure can be taken.

Concerning the confidentiality and integrity of application sensitive data, as applets may need to share
some data or communicate with the CAD, cryptographic functions are required to actually protect the
exchanged information (O.CIPHER). Remark that even if the TOE shall provide access to the
appropriate TSFs, it is still the responsibility of the applets to use them. Keys and PIN’s are particular
cases of an application’s sensitive data15 that ask for appropriate management (O.KEY-MNGT, O.PIN-
MNGT, O.TRANSACTION). If the PIN class of the Java Card API is used, the objective (O.FIREWALL)
is also concerned.

15 The Java Card System may possess keys as well.

Java CardTM System Protection Profile Collection Page 129 of 189

Version 1.0b August 2003

Other application data that is sent to the applet as clear text arrives to the APDU buffer, which is a
resource shared by all applications. The disclosure of such data is prevented by the
(O.SHRD_VAR_CONFID) security objective. The integrity of the information stored in that buffer is
ensured by the (O.SHRD_VAR_INTEG) objective.

Finally, any attempt to read a piece of information that was previously used by an application but has
been logically deleted is countered by the O.REALLOCATION objective. That objective states that any
information that was formerly stored in a memory block shall be cleared before the block is reused.

IDENTITY USURPATION

T.SID.1 As impersonation is usually the result of successfully disclosing and
modifying some assets, this threat is mainly countered by the objectives
concerning the isolation of application data (like PINs), ensured by the
(O.FIREWALL). Uniqueness of subject-identity (O.SID) also participates to
face this threat. Note that the AIDs, which are used for applet identification,
are TSF data.

In this configuration, usurpation of identity resulting from a malicious
installation of an applet on the card is covered by the objective O.INSTALL.

 The installation parameters of an applet (like its name) are loaded into a
global array that is also shared by all the applications. The disclosure of
those parameters (which could be used to impersonate the applet) is
countered by the objective (O.SHRD_VAR_CONFID) and
(O.SHRD_VAR_INTEG).

T.SID.2 This is covered by integrity of TSF data, subject–identification (O.SID), the
firewall (O.FIREWALL) and its good working order (O.OPERATE).

 The objective O.INSTALL contributes to counter this threat for what relates
to the critical phase of applet installation (because the installer may have
special rights).

UNAUTHORIZED EXECUTIONS

T.EXE-CODE.1 Unauthorized execution of a method is prevented by the objective
OE.VERIFICATION. This threat particularly concerns the point (8) of the
security issue (access modifiers and scope of visibility for classes, fields
and methods). The O.FIREWALL objective is also concerned, because it
prevents the execution of non-shareable methods of a class instance by any
subject apart from the class instance owner.

T.EXE-CODE.2 Unauthorized execution of a method fragment or arbitrary data is
prevented by the objective OE.VERIFICATION. This threat particularly
concerns those points of the security issue related to control flow
confinement and the validity of the method references used in the
bytecodes.

T.NATIVE An applet tries to execute a native method to bypass some security
function such as the firewall. A Java Card applet can only access native

Java CardTM System Protection Profile Collection Page 130 of 189

Version 1.0b August 2003

methods indirectly (O.NATIVE) that is, through an API which is assumed
to be secure (A.NATIVE). In addition to this, the bytecode verifier also
prevents the program counter of an applet to jump into a piece of native
code by confining the control flow to the currently executed method
(OE.VERIFICATION).

 An application cannot download its own native code on the card, see the
objective OE.APPLET, which also contributes to enforce the objective
countering this threat (O.NATIVE).

DENIAL OF SERVICE

T.RESOURCES An attacker prevents correct operation of the Java Card System through
consumption of some resources of the card. This is directly countered by
objectives on resource-management (O.RESOURCES) for runtime
purposes and good working order (O.OPERATE) in a general manner.

 In this configuration, consumption of resources during installation and
other card management operations are covered, in case of failure, by
O.INSTALL.

Note that, for what relates to CPU usage, the Java Card platform is single–
threaded and it is possible for an ill–formed application (either native or
not) to monopolize the CPU. However, a smart card can be physically
interrupted (card removal or hardware reset) and most CADs implement a
timeout policy that prevent them from being blocked should a card fails to
answer. That point is out of scope of this PP, though.

MODIFICATIONS OF THE SET OF APPLICATIONS

T.INSTALL The attacker fraudulently installs an applet on the card post issuance. This
threat is covered by the O.INSTALL and O.LOAD security objectives.

INTEGRITY AND INSTALLATION

T.INTEG-APPLI-CODE.2 The attacker modifies (part of) its own or another application code when
an application package is transmitted to the card for installation. In this
configuration the integrity of a package’s code is covered by the objective
O.LOAD.

T.INTEG-APPLI-DATA.2 The attacker modifies (part of) the initialization data contained in an
application package when the package is transmitted to the card for
installation. In this configuration the integrity of a package’s code is
covered by the objective O.LOAD.

Java CardTM System Protection Profile Collection Page 131 of 189

Version 1.0b August 2003

UNAUTHORIZED EXECUTIONS

T.EXE-CODE-REMOTE The O.REMOTE security objective contributes to prevent the invocation of
a method that is not supposed to be accessible from outside the card.

CARD MANAGEMENT

T.DELETION This threat is covered by the O.DELETION security objective.

OBJECT DELETION

T.OBJ-DELETION This threat is covered by the O.OBJ-DELETION security objective.

The objective OE.CARD-MANAGEMENT supports OE.VERIFICATION and contributes to cover all
the threats on confidentiality and integrity of code and data, the T.INSTALL threat, the T.DELETION
threat and the T.INTEG-APPLI-CODE.2 and T.INTEG-APPLI-DATA.2 threats. The objective also
contributes, by preventing usurpation of identity resulting from a malicious installation of an applet
on the card, to counter the threat T.SID.1.

Finally, the objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE, O.ALARM and O.RESOURCES objectives of the TOE, so they are indirectly related to
the threats that these latter objectives contribute to counter.

Java CardTM System Protection Profile Collection Page 132 of 189

Version 1.0b August 2003

 O
.IN

ST
A

LL

O
.L

O
A

D

O
E.

V
ER

IF
IC

A
TI

O
N

O
E.

CA
RD

-M
A

N
A

G
EM

EN
T

O
E.

A
PP

LE
T

O
.S

H
RD

_V
A

R_
IN

TE
G

O

.S
H

RD
_V

A
R_

CO
N

FI
D

O

.F
IR

EW
A

LL

O
.N

A
TI

V
E

O
.O

PE
RA

TE

O
.A

LA
RM

O

.R
EA

LL
O

CA
TI

O
N

O

.R
ES

O
U

RC
ES

O

.S
ID

O

E.
SC

P.
IC

O
E.

SC
P.

RE
CO

V
ER

Y
O

E.
SC

P.
SU

PP
O

RT

O
.C

IP
H

ER

O
.K

EY
-M

N
G

T
O

.P
IN

-M
N

G
T

O
.T

RA
N

SA
CT

IO
N

O

.D
EL

ET
IO

N

O
.R

EM
O

TE

O
.O

BJ
-D

EL
ET

IO
N

T.PHYSICAL X
T.CONFID-JCS-CODE

T.INTEG-APPLI-CODE
T.INTEG-JCS-CODE

 X X

T.CONFID-JCS-DATA
T.INTEG-JCS-DATA X X X X X X X X

T.CONFID-APPLI-DATA X X X X X X X X X X X X X X
T.INTEG-APPLI-DATA X X X X X X X X X X X X X X

T.SID.1 X X X X X X
T.SID.2 X X X X X X

T.EXE-CODE.1 X X
T.EXE-CODE.2 X

T.NATIVE X X X
T.RESOURCES X X X X X

T.INSTALL X X X
T.INTEG-APPLI-CODE.2 X X
T.INTEG-APPLI-DATA.2 X X

T.DELETION X X
T.EXE-CODE-REMOTE X

T.OBJ-DELETION X

Table 7: Java Card System Standard 2.2 Configuration threats rationale

6.1.3.2 Assumptions Related to Security Objectives

This section relates the security objectives to be achieved by this configuration to the assumptions
made on the TOE and its environment.

In this configuration all the security objectives directly or indirectly depend on the behavior of the
native code embedded on the card. This trusted native code is not subject to change during the
lifetime of the card. The objective OE.NATIVE ensures that the environmental assumption A.NATIVE
is upheld. The objective OE.APPLET covers the assumption A.APPLET, and contributes to the
enforcement of the objective O.NATIVE in the presence of post-issuance downloaded applications.
The objective OE.VERIFICATION upholds the assumption A.VERIFICATION.

Table 8 provides a mapping of security objectives to the assumptions made on the environment of the
TOE.

Java CardTM System Protection Profile Collection Page 133 of 189

Version 1.0b August 2003

O
E.

N
A

TI
V

E

O
E.

A
PP

LE
T

O
E.

V
ER

IF
IC

A
TI

O
N

A.NATIVE X
A.APPLET X

A.VERIFICATION X

Table 8: Java Card System Standard 2.2 Configuration assumptions rationale

6.1.3.3 Organizational Policies Related to Security Objectives

Only one organizational security policy, OSP.VERIFICATION, has been defined for this configuration.
This policy is covered by the security objective of the environment OE.VERIFICATION.

Java CardTM System Protection Profile Collection Page 134 of 189

Version 1.0b August 2003

6.1.4 Defensive Configuration

6.1.4.1 Threats Related to Security Objectives

All the security objectives fixed for the TOE and its environment contribute to counter some threat on
the assets. In order to provide evidence that all threats are actually prevented by some combination of
security objectives, the presentation is oriented by the threats.

T.PHYSICAL Covered by OE.SCP.IC. Physical protections rely on the underlying
platform and are therefore an environmental issue.

CONFIDENTIALITY & INTEGRITY

These are generic threats on code and data of Java Card System and applets: T.CONFID-JCS-CODE,
T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA, T.INTEG-APPLI-CODE, T.INTEG-JCS-CODE,
T.INTEG-APPLI-DATA, and T.INTEG-JCS-DATA.

Threats concerning the integrity and confidentiality of code are countered by the list of properties
described in the (#.VERIFICATION) security issue. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the intended scope
of visibility. As none of those instructions enables to read or modify a piece of code, no Java Card
applet can therefore be executed to disclose or modify a piece of code. Native applications are also
harmless because of the objective (O.NATIVE) and the assumption (A.NATIVE), so no application can
be run to disclose or modify a piece of code.

The (#.VERIFICATION) security issue is addressed in this configuration by the security objective
O.VERIFICATION.

The threats concerning confidentiality and integrity of data are countered by bytecode verification and
the isolation commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its
turn on the correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically
enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.

As both the bytecode verifier and the firewall are software tools automating critical controls, the
objective O.ALARM asks for them to provide clear warning and error messages, so that the
appropriate counter-measure can be taken.

Concerning the confidentiality and integrity of application sensitive data, as applets may need to share
some data or communicate with the CAD, cryptographic functions are required to actually protect the
exchanged information (O.CIPHER). Remark that even if the TOE shall provide access to the
appropriate TSFs, it is still the responsibility of the applets to use them. Keys and PIN’s are particular
cases of an application’s sensitive data16 that ask for appropriate management (O.KEY-MNGT, O.PIN-
MNGT, O.TRANSACTION). If the PIN class of the Java Card API is used, the objective (O.FIREWALL)
is also concerned.

16 The Java Card System may possess keys as well.

Java CardTM System Protection Profile Collection Page 135 of 189

Version 1.0b August 2003

Other application data that is sent to the applet as clear text arrives to the APDU buffer, which is a
resource shared by all applications. The disclosure of such kind of data is prevented by the
(O.SHRD_VAR_CONFID) security objective. The integrity of the information stored in that buffer is
ensured by the (O.SHRD_VAR_INTEG) objective.

Finally, any attempt to read a piece of information that was previously used by an application but has
been logically deleted is countered by the O.REALLOCATION objective. That objective states that any
information that was formerly stored in a memory block shall be cleared before the block is reused.

IDENTITY USURPATION

T.SID.1 As impersonation is usually the result of successfully disclosing and
modifying some assets, this threat is mainly countered by the objectives
concerning the isolation of application data (like PINs), ensured by the
(O.FIREWALL). Uniqueness of subject-identity (O.SID) also participates to
face this threat. Note that the AIDs, which are used for applet identification,
are TSF data.

In this configuration, usurpation of identity resulting from a malicious
installation of an applet on the card is covered by the objective O.INSTALL.

 The installation parameters of an applet (like its name) are loaded into a
global array that is also shared by all the applications. The disclosure of
those parameters (which could be used to impersonate the applet) is
countered by the objective (O.SHRD_VAR_CONFID) and
(O.SHRD_VAR_INTEG).

T.SID.2 This is covered by integrity of TSF data, subject–identification (O.SID), the
firewall (O.FIREWALL) and its good working order (O.OPERATE).

 The objective O.INSTALL contributes to counter this threat for what relates
to the critical phase of applet installation (because the installer may have
special rights).

UNAUTHORIZED EXECUTIONS

T.EXE-CODE.1 Unauthorized execution of a method is prevented by the objective
O.VERIFICATION. This threat particularly concerns the point (8) of the
security issue (access modifiers and scope of visibility for classes, fields
and methods). The O.FIREWALL objective is also concerned, because it
prevents the execution of non-shareable methods of a class instance by any
subject apart from the class instance owner.

T.EXE-CODE.2 Unauthorized execution of a method fragment or arbitrary data is
prevented by the objective O.VERIFICATION. This threat particularly
concerns those points of the security issue related to control flow
confinement and the validity of the method references used in the
bytecodes.

T.NATIVE An applet tries to execute a native method to bypass some security
function such as the firewall. A Java Card applet can only access native

Java CardTM System Protection Profile Collection Page 136 of 189

Version 1.0b August 2003

methods indirectly (O.NATIVE) that is, through an API which is assumed
to be secure (A.NATIVE). In addition to this, the bytecode verifier also
prevents the program counter of an applet to jump into a piece of native
code by confining the control flow to the currently executed method
(O.VERIFICATION).

 An application cannot download its own native code on the card, see the
objective OE.APPLET, which also contributes to enforce the objective
countering this threat (O.NATIVE).

DENIAL OF SERVICE

T.RESOURCES An attacker prevents correct operation of the Java Card System through
consumption of some resources of the card. This is directly countered by
objectives on resource-management (O.RESOURCES) for runtime
purposes and good working order (O.OPERATE) in a general manner.

 In this configuration, consumption of resources during installation and
other card management operations are covered, in case of failure, by
O.INSTALL.

Note that, for what relates to CPU usage, the Java Card platform is single–
threaded and it is possible for an ill–formed application (either native or
not) to monopolize the CPU. However, a smart card can be physically
interrupted (card removal or hardware reset) and most CAD implement a
timeout policy that prevent them from being blocked should a card fails to
answer. That point is out of scope of this PP, though.

MODIFICATIONS OF THE SET OF APPLICATIONS

T.INSTALL The attacker fraudulently installs an applet on the card post issuance. This
threat is covered by the O.INSTALL security objective.

UNAUTHORIZED EXECUTIONS

T.EXE-CODE-REMOTE The O.REMOTE security objective contributes to prevent the invocation of
a method that is not supposed to be accessible from outside the card.

CARD MANAGEMENT

T.DELETION This threat is covered by the O.DELETION security objective.

Java CardTM System Protection Profile Collection Page 137 of 189

Version 1.0b August 2003

OBJECT DELETION

T.OBJ-DELETION This threat is covered by the O.OBJ-DELETION security objective.

The objective OE.CARD-MANAGEMENT contributes to cover the threats T.INSTALL and
T.DELETION. The objective also contributes, by preventing usurpation of identity resulting from a
malicious installation of an applet on the card, to counter the threat T.SID.1.

Finally, the objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE, O.ALARM and O.RESOURCES objectives of the TOE, so they are indirectly related to
the threats that these latter objectives contribute to counter.

 O
.IN

ST
A

LL

O
.V

ER
IF

IC
A

TI
O

N

O
E.

CA
RD

-M
A

N
A

G
EM

EN
T

O
E.

A
PP

LE
T

O
.S

H
RD

_V
A

R_
IN

TE
G

O

.S
H

RD
_V

A
R_

CO
N

FI
D

O

.F
IR

EW
A

LL

O
.N

A
TI

V
E

O
.O

PE
RA

TE

O
.A

LA
RM

O

.R
EA

LL
O

CA
TI

O
N

O

.R
ES

O
U

RC
ES

O

.S
ID

O

E.
SC

P.
IC

O
E.

SC
P.

RE
CO

V
ER

Y
O

E.
SC

P.
SU

PP
O

RT

O
.C

IP
H

ER

O
.K

EY
-M

N
G

T
O

.P
IN

-M
N

G
T

O
.T

RA
N

SA
CT

IO
N

O

.D
EL

ET
IO

N

O
.R

EM
O

TE

O
.O

BJ
-D

EL
ET

IO
N

T.PHYSICAL X
T.CONFID-JCS-CODE

T.INTEG-APPLI-CODE
T.INTEG-JCS-CODE

 X

T.CONFID-JCS-DATA
T.INTEG-JCS-DATA X X X X X X X

T.CONFID-APPLI-DATA X X X X X X X X X X X X X
T.INTEG-APPLI-DATA X X X X X X X X X X X X X

T.SID.1 X X X X X X
T.SID.2 X X X X X X

T.EXE-CODE.1 X X
T.EXE-CODE.2 X

T.NATIVE X X X
T.RESOURCES X X X X X

T.INSTALL X X
T.DELETION X X

T.EXE-CODE-REMOTE X
T.OBJ-DELETION X

Table 9: Defensive Configuration threats rationale

6.1.4.2 Assumptions Related to Security Objectives

This section relates the security objectives to be achieved by this configuration to the assumptions
made on the TOE and its environment.

In this configuration all the security objectives directly or indirectly depend on the behavior of the
native code (A.NATIVE) embedded on the card. This trusted native code is not subject to change
during the lifetime of the card.

Java CardTM System Protection Profile Collection Page 138 of 189

Version 1.0b August 2003

Table 10 provides a mapping of security objectives to the assumptions made on the environment of
the TOE.

O
E.

N
A

TI
V

E

A.NATIVE X

Table 10: Defensive Configuration assumptions rationale

6.1.4.3 Organizational Policies Related to Security Objectives

No organizational security policy has been defined for this configuration.

Java CardTM System Protection Profile Collection Page 139 of 189

Version 1.0b August 2003

6.2 SECURITY REQUIREMENTS RATIONALE

This section is devoted to demonstrate that the set of security requirements (both on the TOE and on
the environment) is suitable to meet security objectives. The presentation follows the same structure as
§4.1, listing the requirements that are related to each objective of each configuration.

The following conventions shall are used throughout this section:

• In the text of the rationales there shall be explicit references to (access and information flow)
control policies, as contributing to meet certain security objectives. These references shall be
associated to the principal security components by means of which those policies are defined,
FDP_ACC and FDP_ACF in the case of control policies; FDP_IFC and FDP_IFF in the case of
information flow ones, as well as to all the SFRs on which the afore mentioned components
depend. The rationale tables, on the contrary, shall make it explicit which security objectives
the components involved in those policies contribute to meet.

• The name of a SFR class component shall be used to make reference to (all) the iterations of
that component which are present in a configuration. By present in a configuration it must be
understood as belonging to one of the groups included in that configuration.

• A reference to a particular iteration of a SFR component shall be denoted as
Component_Name/Label, where Label shall be the name of the TOE component.

6.2.1 Minimal Configuration

6.2.1.1 TOE Security Requirements Rationale

Unless explicitly stated, all the security functional requirements to which this section makes reference
are those specified in the group CoreG (§5.1.1).

IDENTIFICATION

O.SID Subjects’ identity is AID-based (applets, packages), and is met by
FIA_ATD.1, FMT_MSA.1, FMT_MSA.3, FMT_MTD.1, and FMT_MTD.3.
Additional support includes FPT_RVM.1 and FPT_SEP.1.

Lastly, installation procedures ensure protection against forgery (the AID of
an applet is under the control of the TSFs) or re-use of
identities (FIA_UID.2, FIA_USB.1).

EXECUTION

O.OPERATE The TOE is protected in various ways against applets’ actions (FPT_RVM.1,
FPT_SEP.1, FPT_TDC.1), the FIREWALL access control policy (FDP_ACC.2,

Java CardTM System Protection Profile Collection Page 140 of 189

Version 1.0b August 2003

FDP_ACF.1), and is able to detect and block various failures or security
violations during usual working (FPT_FLS.1, FAU_ARP.1). Startup of the
TOE is covered by FPT_TST.1, and indirectly by FPT_AMT.1 (this latter
defined in group SCPG §5.1.9).

Its security-critical parts and procedures are also protected:
communication with external users and their internal subjects is well
controlled (FIA_ATD.1, FIA_USB.1) to prevent alteration of TSF data (also
protected by components of the FPT class).

Almost every objective and/or functional requirement indirectly
contributes to this one too.

O.RESOURCES The TSFs detects stack/memory overflows during execution of
applications (FAU_ARP.1, FPT_FLS.1). Memory management is controlled
by the TSF (FMT_MTD.1, FMT_MTD.3, and FMT_SMR.1) and is only
accessible to user-applications through the API (FPT_RVM.1).

O.FIREWALL This objective is met by the FIREWALL access control policy (FDP_ACC.2,
FDP_ACF.1), the JCVM information flow control policy (FDP_IFF.1,
FDP_IFC.1) and the functional requirements FPT_RVM.1 and FPT_SEP.1.
The functional requirements of the class FMT also indirectly contribute to
meet this objective.

O.NATIVE The JCVM is the machine running the bytecode of the applets (FPT_RVM.1).
These can only be linked with API methods or other packages already on
the card. This objective mainly relies on the environmental objective
OE.NATIVE, which upholds the assumption A.NATIVE.

O.REALLOCATION The security objective is satisfied by FDP_RIP.1, which imposes that the
contents of the re-allocated block shall always be cleared before delivering
the block.

O.SHRD_VAR_CONFID Only arrays can be designated as global, and the only global arrays
required in the Java Card API are the APDU buffer and the byte array
input parameter (bArray) to an applet’s install method. The clearing
requirement of those arrays is met by FDP_RIP.1 (FDP_RIP.1.1/APDU and
FDP_RIP.1.1/bArray respectively). The JCVM information flow control policy
(FDP_IFF.1, FDP_IFC.1) prevents an application from keeping a pointer to a
shared buffer, which could be used to read its contents when the buffer is
being used by another application.

O.SHRD_VAR_INTEG This objective is met by the JCVM information flow control policy (FDP_IFF.1,
FDP_IFC.1), which prevents an application from keeping a pointer to the
input/output buffer of the card, or any other global array that is shared by
all the applications. Such a pointer could be used to access and modify it
when the buffer is being used by another application.

Java CardTM System Protection Profile Collection Page 141 of 189

Version 1.0b August 2003

SERVICES

O.ALARM This objective is met by FPT_FLS.1 and FAU_ARP.1 (see application notes).

O.TRANSACTION Directly met by FDP_ROL.1 and FDP_RIP.1 (more precisely, as specified by
FDP_RIP.1.1/ABORT).

Transactions are provided to applets as Java Card technology-based class libraries.

O.CIPHER This objective is directly related to FCS_CKM.1, FCS_CKM.2, FCS_CKM.3,
FCS_CKM.4 and FCS_COP.1. Another important SFR is FPR_UNO.1, the
observation of the cryptographic operations may be used to disclose the
keys.

The associated security functions are not described herein. They are provided to applets as Java class
libraries (see the class javacardx.crypto.Cipher and the package javacardx.security).

O.PIN-MNGT This objective is ensured by FDP_RIP.1, FPR_UNO.1, FDP_ROL.1 and
FDP_SDI.2 functional requirements. The security functions behind these
are implemented by API classes. The firewall security functions
(FDP_ACC.2, FDP_ACF.1) shall protect the access to private and internal
data of the objects.

O.KEY-MNGT This relies on the same functional requirements as O.CIPHER, plus
FDP_RIP.1 and FDP_SDI.2 as well.

Java CardTM System Protection Profile Collection Page 142 of 189

Version 1.0b August 2003

 FA
U

_A
R

P.
1

FC
S_

CK
M

.1

FC
S_

CK
M

.2

FC
S_

CK
M

.3

FC
S_

CK
M

.4

FC
S_

CO
P.

1

FD
P_

A
CC

.2

FD
P_

A
CF

.1

FD
P_

IF
C.

1

FD
P_

IF
F.

1

FD
P_

R
IP

.1

FD
P_

R
O

L.
1

FD
P_

SD
I.2

FI
A

_A
TD

.1

FI
A

_U
ID

.2

FI
A

_U
SB

.1

FM
T_

M
SA

.1

FM
T_

M
SA

.2

FM
T_

M
SA

.3

FM
T_

M
TD

.1

FM
T_

M
TD

.3

FM
T_

SM
R

.1

FP
R

_U
N

O
.1

FP
T_

FL
S.

1

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FP
T_

TD
C.

1

FP
T_

TS
T.

1

O.ALARM X X
O.CIPHER X X X X X X
O.FIREWALL X X X X X X X X X X X X
O.KEY-MNGT X X X X X X X X
O.NATIVE X
O.OPERATE X X X X X X X X X X
O.PIN-MNGT X X X X X X
O.RESOURCES X X X X X X
O.SID X X X X X X X X X
O.TRANSACTION X X
O.SHRD_VAR_CONFID X X X
O.SHRD_VAR_INTEG X X
O.REALLOCATION X

Table 11: Security requirements rationale for the Minimal Configuration

Java CardTM System Protection Profile Collection Page 143 of 189

Version 1.0b August 2003

6.2.1.2 IT Environment Security Requirements Rationale

The environmental objective OE.VERIFICATION, which is satisfied by IT procedural means, is met by
the SFRs of the group BCVG (§5.1.3).

The environmental objective OE.CARD-MANAGEMENT, which is satisfied by IT procedural means, is
met by the SFRs of the group CMGRG (§5.1.10).

All the security functional requirements to which this section makes reference from now on are those
specified in the group SCPG (§5.1.9).

The components FPT_RCV.3 and FPT_RCV.4 are used to support the objective OE.SCP.SUPPORT
and OE.SCP.RECOVERY to assist the TOE to recover in the event of a power failure. If the power fails
or the card is withdrawn prematurely from the CAD the operation of the TOE may be interrupted
leaving the TOE in an inconsistent state.

OE.SCP.RECOVERY This objective is met by the components FPT_FLS.1, FPT_RCV.3 and
FRU_FLT.1.

OE.SCP.SUPPORT This objective is met by the components FPT_SEP.1 (no bypassing TSF),
FPT_AMT.1, FPT_RCV.3, FPT_RCV.4 and FPT_RVM.1.

OE.SCP.IC This objective is met by the component FPT_PHP.3.

FP
T_

A
M

T.
1

FP
T_

FL
S.

1

FP
T_

PH
P.

3

FP
T_

R
CV

.3

FP
T_

R
CV

.4

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FR
U

_F
LT

.1

OE.SCP.RECOVERY X X X
OE.SCP.SUPPORT X X X X X

OE.SCP.IC X

Table 12: Security requirements rationale for the group SCPG

6.2.1.3 Security Functional Requirements Dependencies

The TOE assurance requirements dependencies for level EAL4 are completely fulfilled.

The functional requirements dependencies for the TOE are not completely fulfilled. The KOs in the
following table corresponds to unsatisfied dependencies that are explained and justified in the
rationale that appears right below the table.

Java CardTM System Protection Profile Collection Page 144 of 189

Version 1.0b August 2003

SFR Dependency Status
FAU_ARP.1/JCS (FAU_SAA.1) KO : FAU_SAA.1 is not

satisfied
FCS_CKM.1 (FCS_CKM.2 or FCS_COP.1)

and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.2,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.2 (FDP_ITC.1 or FCS_CKM.1)
and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.3 (FDP_ITC.1 or FCS_CKM.1)
and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.4 (FDP_ITC.1 or FCS_CKM.1)
and (FMT_MSA.2)

OK: FCS_CKM.1,
FMT_MSA.2/JCRE

FCS_COP.1 (FDP_ITC.1 or FCS_CKM.1)
and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
FMT_MSA.2/JCRE

FDP_ACC.1/CMGR (FDP_ACF.1) OK: FDP_ACF.1/CMGR
FDP_ACC.1/FIREWALL (FDP_ACF.1) OK:

FDP_ACF.1/FIREWALL
FDP_ACF.1/CMGR (FDP_ACC.1) and

(FMT_MSA.3)
OK: FDP_ACC.1/CMGR,
FMT_MSA.3/CMGR

FDP_ACF.1/FIREWALL (FDP_ACC.1) and
(FMT_MSA.3)

OK:
FDP_ACC.1/FIREWALL,
FMT_MSA.3/FIREWALL

FDP_IFC.1/JCVM (FDP_IFF.1) OK: FDP_IFF.1/JCVM
FDP_IFC.1/BCV (FDP_IFF.1) OK: FDP_IFF.2/BCV
FDP_IFF.1/JCVM (FDP_IFC.1) and

(FMT_MSA.3)
OK: FDP_IFC.1/JCVM,
FMT_MSA.3/FIREWALL

FDP_IFF.2/BCV (FDP_IFC.1) and
(FMT_MSA.3)

OK: FDP_IFC.1/BCV,
FMT_MSA.3/BCV

FDP_RIP.1 None OK
FDP_ROL.1/FIREWALL (FDP_ACC.1 or FDP_IFC.1) OK:

FDP_ACC.1/FIREWALL,
FDP_IFC.1/JCVM

FDP_SDI.2 None OK
FIA_ATD.1/AID None OK
FIA_UID.1/CMGR None OK
FIA_UID.1/AID None OK
FIA_USB.1 (FIA_ATD.1) OK: FIA_ATD.1/AID
FMT_MSA.1/BCV (FDP_ACC.1 or FDP_IFC.1)

and (FMT_SMR.1)
OK: FDP_IFC.1/BCV,
FMT_SMR.1/BCV

FMT_MSA.1/CMGR (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)

OK: FDP_ACC.1/CMGR,
FMT_SMR.1/CMGR

FMT_MSA.1/JCRE (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)

OK:
FDP_ACC.1/FIREWALL,
FDP_IFC.1/JCVM,
FMT_SMR.1/JCRE

FMT_MSA.2/JCRE (ADV_SPM.1) and
(FDP_ACC.1 or FDP_IFC.1)
and (FMT_MSA.1) and
(FMT_SMR.1)

OK:
FDP_ACC.1/FIREWALL,
FDP_IFC.1/JCVM,
FMT_MSA.1/JCRE,
FMT_SMR.1/JCRE

Java CardTM System Protection Profile Collection Page 145 of 189

Version 1.0b August 2003

SFR Dependency Status
FMT_MSA.3/BCV (FMT_MSA.1) and

(FMT_SMR.1)
OK: FMT_MSA.1/BCV,
FMT_SMR.1/BCV

FMT_MSA.3/CMGR (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/CMGR,
FMT_SMR.1/CMGR

FMT_MSA.3/FIREWALL (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/JCRE,
FMT_SMR.1/JCRE

FMT_MTD.1/JCRE (FMT_SMR.1) OK: FMT_SMR.1/JCRE
FMT_MTD.3 (ADV_SPM.1) and

(FMT_MTD.1)
 OK: FMT_MTD.1/JCRE

FMT_SMR.1/BCV (FIA_UID.1) KO: (FIA_UID.1)
FMT_SMR.1/CMGR (FIA_UID.1) OK: FIA_UID.1/CMGR
FMT_SMR.1/JCRE (FIA_UID.1) OK: FIA_UID.1/AID
FPR_UNO.1 None OK
FPT_AMT.1/SCP None OK
FPT_FLS.1/JCS (ADV_SPM.1) OK
FPT_FLS.1/SCP (ADV_SPM.1) OK
FPT.PHP.3/SCP None OK
FPT_RCV.3/SCP (FPT_TST.1) and

(AGD_ADM.1) and
(ADV_SPM.1)

OK:FPT_TST.1

FPT_RCV.4/SCP (ADV_SPM.1) OK
FPT_RVM.1 None OK
FPT_RVM.1/SCP None OK
FPT_SEP.1 None OK
FPT_SEP.1/SCP None OK
FPT_TDC.1 None OK
FPT_TST.1 (FPT_AMT.1) OK: FPT_AMT.1/SCP
FRU_RSA.1/BCV None OK
FRU_FLT.1/SCP (FPT_FLS.1) OK: FPT_FLS.1/SCP

Table 13: Functional Requirement Dependencies (Minimal)

FAU_SAA.1 Potential violation analysis is used to specify the set of auditable events
whose occurrence or accumulated occurrence held to indicate a potential
violation of the TSP, and any rules to be used to perform the violation
analysis. The dependency of FAU_ARP.1/JCS on this functional
requirement assumes that a “potential security violation” is an audit event
indicated by the FAU_SAA.1 component. The events listed in
FAU_ARP.1/JCS are, on the contrary, merely self-contained ones
(arithmetic exception, ill-formed bytecodes, access failure) and ask for a
straightforward reaction of the TSFs on their occurrence at runtime. The
JCVM or other components of the TOE detect these events during their
usual working order. Thus, in principle there would be no applicable audit
recording in this framework. Moreover, no specification of one such
recording is provided elsewhere. Therefore no set of auditable events
could possibly be defined.

FIA_UID.1 This is required by the component FMT_SMR.1 in group BCVG. However,
the role bytecode verifier defined in this component is attached to an IT
security function rather than to a “user” of the CC terminology. The
bytecode verifier does not “identify” itself with respect to the TOE,
furthermore, it is part of the IT environment. Thus, here it is claimed that
this dependency can be left out.

Java CardTM System Protection Profile Collection Page 146 of 189

Version 1.0b August 2003

6.2.1.4 Rationale for Strength of Function Medium

The minimum strength of function level required is SOF-medium.

The TOE is intended to operate in open environments, where attackers can easily exploit
vulnerabilities. According to the claimed intended usage of the TOE, it is very likely that it may
represent a significant value and then constitute an attractive target for attacks. In some malicious
usages of the TOE the statistical or probabilistic mechanisms in the TOE, for instance, may be
subjected to analysis and attack in the normal course of operation. A strength of function level
medium seems to be the reasonable minimum level for cards hosting sensitive applications. It shall
probably be the case, as it is frequent nowadays, that the required strength of function level will be
high in, for instance, banking or electronic signature applications. Considering that Java Card
technology-based products may also address other less security sensitive contexts, and furthermore,
that the resistance of the mechanisms mentioned above to attacks with high potential is hard to be
achieved and demonstrated, the choice of a high strength of function requirement is left to the card
issuer depending on the intended usage of the product. Thus, in this protection profile, a protection
against moderate attack potential has been chosen as the minimal level for those multi-applicative
cards.

The strength of function level medium is consistent with the vulnerability analysis level that has been
specified (AVA_VLA.3).

6.2.1.5 Rationale for Assurance Level EAL4 augmented

The assurance level for this protection profile is EAL4 augmented. Augmentation results from the
selection of the components AVA_VLA.3 and ADV_IMP.2.

6.2.1.5.1 Rationale for Assurance Level EAL4

EAL4 allows a developer to attain a reasonably high assurance level without the need for highly
specialized processes and practices. It corresponds to a white box analysis and it can be considered as
a reasonable level that can be applied to an existing product line without undue expense and
complexity.

6.2.1.5.2 Rationale for Augmentation

The evaluation of the TOE may be performed, for instance, because the product hosts one or several
sensitive applications, such as financial and health recording ones, which contain, represent, or
provide access to valuable assets. In addition to that the TOE may not be directly under the control of
trained and dedicated administrators.

AVA_VLA.3

As a result, it is imperative that the TOE vulnerabilities to be reviewed be drawn from a systematic
search rather than strictly a manufacturer prepared identification list. Component AVA_VLA.3
requires that such a systematic search for vulnerabilities be documented and presented. This provides
a significant increase in the consideration of vulnerabilities over that provided by AVA_VLA.2. There
might be scenarios, for example if the TOE is intended to stay in a hostile environment for long
periods of time, or if the applications are considered to be highly sensitive, that would justify a further
augmentation by requiring the component AVA_VLA.4. This latter component dictates that the TOE
must be shown to be resistant to penetration attacks performed by attackers possessing a high attack
potential. The choice of augmenting the assurance level using the component AVA_VLA.4 is left to the
card issuer.

AVA_VLA.3 has the following dependencies:

Java CardTM System Protection Profile Collection Page 147 of 189

Version 1.0b August 2003

• ADV_FSP.1 Informal functional specification

• ADV_HLD.2 Security enforcing high-level design

• ADV_IMP.1 Subset of the implementation of the TSF

• ADV_LLD.1 Descriptive low-level design

• AGD_ADM.1 Administrator guidance

• AGD_USR.1 User guidance

All of these are met or exceeded in the EAL4 assurance package.

ADV_IMP.2

The implementation representation is used to express the notion of the least abstract representation of
the TSF, specifically the one that is used to create the TSF itself without further design refinement.

The assurance component ADV_IMP.2 has been chosen because the evaluation of the TOE must
ensure that its security functional requirements are completely and accurately addressed by the
implementation representation of the TSF.

ADV_IMP.2 has the following dependencies:

• ADV_LLD.1 Descriptive low-level design

• ADV_RCR.1 Informal correspondence demonstration

• ALC_TAT.1 Well-defined development tools

 All of these are met or exceeded in the EAL4 assurance package.

6.2.1.6 Internal Consistency and Mutual Support
The purpose of this part of the rationale is to show that the security requirements are mutually
supportive and internally consistent. No detailed analysis is given to this because:

• The dependencies analysis for the additional assurance components in the previous section
has shown that the assurance requirements are mutually supportive and internally consistent
(all the dependencies are satisfied).

• The dependencies analysis for the functional requirements described in the section "Security
Functional Requirements Dependencies” demonstrates mutual support and internal
consistency between the functional requirements. That analysis also shows that the
dependencies between functional and assurance requirements are also satisfied.

Java CardTM System Protection Profile Collection Page 148 of 189

Version 1.0b August 2003

6.2.2 Java Card System Standard 2.1.1 Configuration

6.2.2.1 TOE Security Requirements Rationale

Unless explicitly stated, all the security functional requirements to which this section makes reference
are those specified in the groups CoreG (§5.1.1), InstG (§5.1.2) and CarG (§5.1.8).

Note: the differences between the Minimal and the Java Card System Standard 2.1.1 configurations
have been underlined in the following rationale.

IDENTIFICATION

O.SID Subjects’ identity is AID-based (applets, packages), and is met by FDP_ITC.2,
FIA_ATD.1, FMT_MSA.1, FMT_MSA.3, FMT_MTD.1, and FMT_MTD.3.
Additional support includes FPT_RVM.1 and FPT_SEP.1.

At last, installation procedures ensure protection against forgery (the AID
of an applet is under the control of the TSFs) or re-use of
identities (FIA_UID.2, FIA_USB.1).

APPLET MANAGEMENT

O.INSTALL This objective specifies that installation of applets must be secure. Security
attributes of installed data are under the control of the FIREWALL access
control policy (FDP_ITC.2), and the TSFs are protected against possible
failures of the installer (FPT_FLS.1/Installer, FPT_RCV.3).

O.LOAD This objective specifies that the loading of a package into the card must be
secure. Evidence of the origin of the package is enforced (FCO_NRO.2) and
the integrity of the corresponding data is under the control of the
PACKAGE LOADING information flow policy (FDP_IFC.2/CM,
FDP_IFF.1/CM) and FDP_UIT.1. Appropriate identification
(FIA_UID.1/CM) and transmission mechanisms are also enforced
(FTP_ITC.1).

EXECUTION

O.OPERATE The TOE is protected in various ways against applets’ actions (FPT_RVM.1,
FPT_SEP.1, FPT_TDC.1), the FIREWALL access control policy (FDP_ACC.2,
FDP_ACF.1), and is able to detect and block various failures or security
violations during usual working (FPT_FLS.1, FAU_ARP.1). Startup of the
TOE is covered by FPT_TST.1, and indirectly by FPT_AMT.1 (this latter
defined in group SCPG §5.1.9). .

Its security-critical parts and procedures are also protected: safe recovery
from failure is ensured (FPT_RCV.3), applets’ installation may be cleanly

Java CardTM System Protection Profile Collection Page 149 of 189

Version 1.0b August 2003

aborted (FDP_ROL.1), communication with external users and their
internal subjects is well-controlled (FDP_ITC.2, FIA_ATD.1, FIA_USB.1) to
prevent alteration of TSF data (also protected by components of the FPT
class).

Almost every objective and/or functional requirement indirectly
contributes to this one too.

O.RESOURCES The TSFs detects stack/memory overflows during execution of
applications (FAU_ARP.1, FRU_RSA.1, FPT_FLS.1). Failed installations are
not to create memory leaks (FDP_ROL.1, FPT_RCV.3) as well. Memory
management is controlled by the TSF (FMT_MTD.1, FMT_MTD.3,
FMT_SMR.1) and is only accessible to user-applications through the
API (FPT_RVM.1).

O.FIREWALL This objective is met by the FIREWALL access control policy (FDP_ACC.2,
FDP_ACF.1), the JCVM information flow control policy (FDP_IFF.1,
FDP_IFC.1) and the functional requirements FPT_RVM.1, FPT_SEP.1 and
FDP_ITC.2. The functional requirements of the class FMT also indirectly
contribute to meet this objective.

O.NATIVE The JCVM is the machine running the bytecode of the applets (FPT_RVM.1).
These can only be linked with API methods or other packages already on
the card. This objective mainly relies on the environmental objectives
OE.NATIVE and OE.APPLET, which uphold the assumptions A.NATIVE
and A.APPLET respectively.

O.REALLOCATION The security objective is satisfied by FDP_RIP.1, which imposes that the
contents of the re-allocated block shall always be cleared before delivering
the block.

O.SHRD_VAR_CONFID Only arrays can be designated as global, and the only global arrays
required in the Java Card API are the APDU buffer and the byte array
input parameter (bArray) to an applet’s install method. The clearing
requirement of those arrays is met by FDP_RIP.1 (FDP_RIP.1.1/APDU and
FDP_RIP.1.1/bArray respectively). The JCVM information flow control policy
(FDP_IFF.1, FDP_IFC.1) prevents an application from keeping a pointer to a
shared buffer, which could be used to read its contents when the buffer is
being used by another application.

O.SHRD_VAR_INTEG This objective is met by the JCVM information flow control policy (FDP_IFF.1,
FDP_IFC.1), which prevents an application from keeping a pointer to the
input/output buffer of the card, or any other global array that is shared by
all the applications. Such a pointer could be used to access and modify it
when the buffer is being used by another application.

SERVICES

O.ALARM This objective is met by FPT_FLS.1 and FAU_ARP.1 (see application notes).

O.TRANSACTION Directly met by FDP_ROL.1 and FDP_RIP.1 (more precisely, by the element
FDP_RIP.1.1/ABORT).

Java CardTM System Protection Profile Collection Page 150 of 189

Version 1.0b August 2003

Transactions are provided to applets as class libraries of the Java Card platform (“Java Card class
libraries”).

O.CIPHER This objective is directly related to FCS_CKM.1, FCS_CKM.2, FCS_CKM.3,
FCS_CKM.4 and FCS_COP.1. Another important SFR is FPR_UNO.1, the
observation of the cryptographic operations may be used to disclose the
keys.

The associated security functions are not described herein. They are provided to applets as Java Card
class libraries, (see the class javacardx.crypto.Cipher and the package javacardx.security).

O.PIN-MNGT This objective is ensured by FDP_RIP.1, FPR_UNO.1, FDP_ROL.1 and
FDP_SDI.2 functional requirements. The security functions behind these
are implemented by API classes. The firewall security functions
(FDP_ACC.2, FDP_ACF.1) shall protect the access to private and internal
data of the objects.

O.KEY-MNGT This relies on the same functional requirements as O.CIPHER, plus
FDP_RIP.1 and FDP_SDI.2 as well.

Java CardTM System Protection Profile Collection Page 151 of 189

Version 1.0b August 2003

 FA
U

_A
R

P.
1

FC
S_

CK
M

.1

FC
S_

CK
M

.2

FC
S_

CK
M

.3

FC
S_

CK
M

.4

FC
S_

CO
P.

1

FD
P_

A
CC

.2

FD
P_

A
CF

.1

FD
P_

IF
C.

1

FD
P_

IF
F.

1

FD
P_

R
IP

.1

FD
P_

R
O

L.
1

FD
P_

SD
I.2

FI
A

_A
TD

.1

FI
A

_U
ID

.2

FI
A

_U
SB

.1

FM
T_

M
SA

.1

FM
T_

M
SA

.2

FM
T_

M
SA

.3

FM
T_

M
TD

.1

FM
T_

M
TD

.3

FM
T_

SM
R

.1

FP
R

_U
N

O
.1

FP
T_

FL
S.

1

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FP
T_

TD
C.

1

FP
T_

TS
T.

1

O.ALARM X X
O.CIPHER X X X X X X
O.FIREWALL X X X X X X X X X X X X
O.KEY-MNGT X X X X X X X X
O.NATIVE X
O.OPERATE X X X X X X X X X X X
O.PIN-MNGT X X X X X X
O.RESOURCES X X X X X X X
O.SID X X X X X X X X X
O.TRANSACTION X X
O.SHRD_VAR_CONFID X X X
O.SHRD_VAR_INTEG X X
O.REALLOCATION X

FC
O

_N
R

O
.2

FD
P_

IF
C.

2

FD
P_

IF
F.

1

FD
P_

IT
C.

2

FD
P_

U
IT

.1

FI
A

_U
ID

.1

FP
T_

FL
S.

1

FP
T_

R
CV

.3

FR
U

_R
SA

.1

FT
P_

IT
C.

1

O.INSTALL X X X
O.LOAD X X X X X X

O.SID X
O.OPERATE X X

O.RESOURCES X X
O.FIREWALL X

Table 14: Security requirements rationale for the Java Card System Standard 2.1.1 Configuration

Java CardTM System Protection Profile Collection Page 152 of 189

Version 1.0b August 2003

6.2.2.2 IT Environment Security Requirements Rationale

The environmental objective OE.VERIFICATION, which is satisfied by IT procedural means, is met by
the SFRs of the group BCVG (§5.1.3).

The environmental objective OE.APPLET might be also satisfied by IT procedural means. The IT
verification that a post-issuance loaded applet contains no native code could be carried out as a part of
the verification of how well the CAP file is formed. This verification has been associated in the group
BCVG (§5.1.3) to the requirement of secure security attributes, expressed by the component
FMT_MSA.2 (see application note at pp. 88).

The environmental objective OE.CARD-MANAGEMENT, which is satisfied by IT procedural means, is
met by the SFRs of the group CMGRG (§5.1.10).

All the security functional requirements to which this section makes reference from now on are those
specified in the group SCPG (§5.1.9).

The components FPT_RCV.3 and FPT_RCV.4 are used to support the objective OE.SCP.SUPPORT
and OE.SCP.RECOVERY to assist the TOE to recover in the event of a power failure. If the power fails
or the card is withdrawn prematurely from the CAD the operation of the TOE may be interrupted
leaving the TOE in an inconsistent state.

OE.SCP.RECOVERY This objective is met by the components FPT_FLS.1, FPT_RCV.3 and
FRU_FLT.1.

OE.SCP.SUPPORT This objective is met by the components FPT_SEP.1 (no bypassing TSF),
FPT_AMT.1, FPT_RCV.3, FPT_RCV.4 and FPT_RVM.1.

OE.SCP.IC This objective is met by the component FPT_PHP.3.

FP
T_

A
M

T.
1

FP
T_

FL
S.

1

FP
T_

PH
P.

3

FP
T_

R
CV

.3

FP
T_

R
CV

.4

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FR
U

_F
LT

.1

OE.SCP.RECOVERY X X X
OE.SCP.SUPPORT X X X X X

OE.SCP.IC X

Table 15: Security requirements rationale for the group SCPG

6.2.2.3 Security Functional Requirements Dependencies

The TOE assurance requirements dependencies for level EAL4 are completely fulfilled.

Java CardTM System Protection Profile Collection Page 153 of 189

Version 1.0b August 2003

The functional requirements dependencies for the TOE are not completely fulfilled. The KOs in the
following table corresponds to unsatisfied dependencies that are explained and justified in the
rationale that appears below the table.

SFR Dependency Status
FAU_ARP.1/JCS (FAU_SAA.1) KO : FAU_SAA.1 is not

satisfied
FCO_NRO.2 (FIA_UID.1) OK: FIA_UID.1/CM
FCS_CKM.1 (FCS_CKM.2 or FCS_COP.1)

and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.2,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.2 (FDP_ITC.1 or FCS_CKM.1)
and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.3 (FDP_ITC.1 or FCS_CKM.1)
and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.4 (FDP_ITC.1 or FCS_CKM.1)
and (FMT_MSA.2)

OK: FCS_CKM.1,
FMT_MSA.2/JCRE

FCS_COP.1 (FDP_ITC.1 or FCS_CKM.1)
and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
FMT_MSA.2/JCRE

FDP_ACC.1/CMGR (FDP_ACF.1) OK: FDP_ACF.1/CMGR
FDP_ACC.1/FIREWALL (FDP_ACF.1) OK:

FDP_ACF.1/FIREWALL
FDP_ACF.1/CMGR (FDP_ACC.1) and

(FMT_MSA.3)
OK: FDP_ACC.1/CMGR,
FMT_MSA.3/CMGR

FDP_ACF.1/FIREWALL (FDP_ACC.1) and
(FMT_MSA.3)

OK:
FDP_ACC.1/FIREWALL,
FMT_MSA.3/FIREWALL

FDP_IFC.1/JCVM (FDP_IFF.1) OK: FDP_IFF.1/JCVM
FDP_IFC.1/BCV (FDP_IFF.1) OK: FDP_IFF.2/BCV
FDP_IFC.1/CM (FDP_IFF.1) OK: FDP_IFF.1/CM
FDP_IFF.1/CM (FDP_IFC.1) and

(FMT_MSA.3)
OK: FDP_IFC.1/CM,
FMT_MSA.3/CM

FDP_IFF.1/JCVM (FDP_IFC.1) and
(FMT_MSA.3)

OK: FDP_IFC.1/JCVM,
FMT_MSA.3/FIREWALL

FDP_IFF.2/BCV (FDP_IFC.1) and
(FMT_MSA.3)

OK: FDP_IFC.1/BCV,
FMT_MSA.3/BCV

FDP_ITC.2 (FDP_ACC.1 or FDP_IFC.1)
and (FTP_ITC.1 or
FTP_TRP.1) and
(FPT_TDC.1)

OK: FPT_TDC.1,
FDP_IFC.1/CM,
FTP_ITC.1/CM

FDP_RIP.1 None OK
FDP_ROL.1/FIREWALL (FDP_ACC.1 or FDP_IFC.1) OK:

FDP_ACC.1/FIREWALL,
FDP_IFC.1/JCVM

FDP_SDI.2 None OK
FDP_UIT.1/CM (FDP_ACC.1 or FDP_IFC.1)

and (FTP_ITC.1 or
FTP_TRP.1)

OK: FDP_IFC.1/CM,
FTP_ITC.1/CM

FIA_ATD.1/AID None OK
FIA_UID.1/CM None OK

Java CardTM System Protection Profile Collection Page 154 of 189

Version 1.0b August 2003

SFR Dependency Status
FIA_UID.1/CMGR None OK
FIA_UID.1/AID None OK
FIA_USB.1 (FIA_ATD.1) OK: FIA_ATD.1/AID
FMT_MSA.1/BCV (FDP_ACC.1 or FDP_IFC.1)

and (FMT_SMR.1)
OK: FDP_IFC.1/BCV,
FMT_SMR.1/BCV

FMT_MSA.1/CM (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)

OK: FDP_IFC.1/CM,
FMT_SMR.1/CM

FMT_MSA.1/CMGR (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)

OK: FDP_ACC.1/CMGR,
FMT_SMR.1/CMGR

FMT_MSA.1/JCRE (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)

OK:
FDP_ACC.1/FIREWALL,
FDP_IFC.1/JCVM,
FMT_SMR.1/JCRE

FMT_MSA.2/JCRE (ADV_SPM.1) and
(FDP_ACC.1 or FDP_IFC.1)
and (FMT_MSA.1) and
(FMT_SMR.1)

OK:
FDP_ACC.1/FIREWALL,
FDP_IFC.1/JCVM,
FMT_MSA.1/JCRE,
FMT_SMR.1/JCRE

FMT_MSA.3/BCV (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/BCV,
FMT_SMR.1/BCV

FMT_MSA.3/CM (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/CM,
FMT_SMR.1/CM

FMT_MSA.3/CMGR (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/CMGR,
FMT_SMR.1/CMGR

FMT_MSA.3/FIREWALL (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/JCRE,
FMT_SMR.1/JCRE

FMT_MTD.1/JCRE (FMT_SMR.1) OK: FMT_SMR.1/JCRE
FMT_MTD.3 (ADV_SPM.1) and

(FMT_MTD.1)
 OK: FMT_MTD.1/JCRE

FMT_SMR.1/BCV (FIA_UID.1) KO: (FIA_UID.1)
FMT_SMR.1/CM (FIA_UID.1) OK: FIA_UID.1/CM
FMT_SMR.1/CMGR (FIA_UID.1) OK: FIA_UID.1/CMGR
FMT_SMR.1/JCRE (FIA_UID.1) OK: FIA_UID.1/AID
FMT_SMR.1/Installer (FIA_UID.1) KO: FIA_UID.1
FPR_UNO.1 None OK
FPT.PHP.3/SCP None OK
FPT_AMT.1/SCP None OK
FPT_FLS.1/Installer (ADV_SPM.1) OK
FPT_FLS.1/JCS (ADV_SPM.1) OK
FPT_FLS.1/SCP (ADV_SPM.1) OK
FPT_RCV.3/Installer (FPT_TST.1) and

(AGD_ADM.1) and
(ADV_SPM.1)

OK: FPT_TST.1

FPT_RCV.3/SCP (FPT_TST.1) and
(AGD_ADM.1) and
(ADV_SPM.1)

OK: FPT_TST.1

FPT_RCV.4/SCP (ADV_SPM.1) OK
FPT_RVM.1 None OK
FPT_RVM.1/SCP None OK
FPT_SEP.1 None OK
FPT_SEP.1/SCP None OK
FPT_TDC.1 None OK

Java CardTM System Protection Profile Collection Page 155 of 189

Version 1.0b August 2003

SFR Dependency Status
FPT_TST.1 (FPT_AMT.1) OK: FPT_AMT.1/SCP
FRU_FLT.1/SCP (FPT_FLS.1) OK: FPT_FLS.1/SCP
FRU_RSA.1/Installer None OK
FRU_RSA.1/BCV None OK
FTP_ITC.1/CM None OK

Table 16: Functional Requirement Dependencies (Java Card System Standard 2.1.1)

FAU_SAA.1 Potential violation analysis is used to specify the set of auditable events
whose occurrence or accumulated occurrence held to indicate a potential
violation of the TSP, and any rules to be used to perform the violation
analysis. The dependency of FAU_ARP.1/JCS on this functional
requirement assumes that a “potential security violation” is an audit event
indicated by the FAU_SAA.1 component. The events listed in
FAU_ARP.1/JCS are, on the contrary, merely self-contained ones
(arithmetic exception, ill-formed bytecodes, access failure) and ask for a
straightforward reaction of the TSFs on their occurrence at runtime. The
JCVM or other components of the TOE detect these events during their
usual working order. Thus, in principle there would be no applicable audit
recording in this framework. Moreover, no specification of one such
recording is provided elsewhere. Therefore no set of auditable events
could possibly be defined.

FIA_UID.1 This is required by the component FMT_SMR.1 in group InstG. However,
the role installer defined in this component is attached to an IT security
function rather than to a “user” of the CC terminology. The installer does
not “identify” itself with respect to the TOE, but is a part of it. Thus, here it
is claimed that this dependency can be left out.The reader may notice that
the role is required because of the SFRs on management of TSF data and
security attributes, essentially those of the firewall policy.

 This is also required by the component FMT_SMR.1 in group BCVG.
However, the role bytecode verifier defined in this component is attached
to an IT security function rather than to a “user” of the CC terminology.
The bytecode verifier does not “identify” itself with respect to the TOE,
furthermore, it is part of the IT environment. Thus, here it is claimed that
this dependency can be left out.

6.2.2.4 Rationale for Strength of Function Medium

The minimum strength of function level required is SOF-medium.

The TOE is intended to operate in open environments, where attackers can easily exploit
vulnerabilities. According to the claimed intended usage of the TOE, it is very likely that it may
represent a significant value and then constitute an attractive target for attacks. In some malicious
usages of the TOE the statistical or probabilistic mechanisms in the TOE, for instance, may be
subjected to analysis and attack in the normal course of operation. A strength of function level
medium seems to be the reasonable minimum level for cards hosting sensitive applications. It shall
probably be the case, as it is frequent nowadays, that the required strength of function level will be
high in, for instance, banking or electronic signature applications. Considering that Java Card
technology-based products may also address other less security sensitive contexts, and furthermore,

Java CardTM System Protection Profile Collection Page 156 of 189

Version 1.0b August 2003

that the resistance of the mechanisms mentioned above to attacks with high potential is hard to be
achieved and demonstrated, the choice of a high strength of function requirement is left to the card
issuer depending on the intended usage of the product. Thus, in this protection profile, a protection
against moderate attack potential has been chosen as the minimal level for those multi-applicative
cards.

The strength of function level medium is consistent with the vulnerability analysis level that has been
specified (AVA_VLA.3).

6.2.2.5 Rationale for Assurance Level EAL4 augmented

The assurance level for this protection profile is EAL4 augmented. Augmentation results from the
selection of the components AVA_VLA.3 and ADV_IMP.2.

6.2.2.5.1 Rationale for Assurance Level EAL4

EAL4 allows a developer to attain a reasonably high assurance level without the need for highly
specialized processes and practices. It corresponds to a white box analysis and it can be considered as
a reasonable level that can be applied to an existing product line without undue expense and
complexity.

6.2.2.5.2 Rationale for Augmentation

The evaluation of the TOE may be performed, for instance, because the product hosts one or several
sensitive applications, such as financial and health recording ones, which contain, represent, or
provide access to valuable assets. In addition to that the TOE may not be directly under the control of
trained and dedicated administrators.

AVA_VLA.3

As a result, it is imperative that the TOE vulnerabilities to be reviewed be drawn from a systematic
search rather than strictly a manufacturer prepared identification list. Component AVA_VLA.3
requires that such a systematic search for vulnerabilities be documented and presented. This provides
a significant increase in the consideration of vulnerabilities over that provided by AVA_VLA.2. There
might be scenarios, for example if the TOE is intended to stay in a hostile environment for long
periods of time, or if the applications are considered to be highly sensitive, that would justify a further
augmentation by requiring the component AVA_VLA.4. This latter component dictates that the TOE
must be shown to be resistant to penetration attacks performed by attackers possessing a high attack
potential. The choice of augmenting the assurance level using the component AVA_VLA.4 is left to the
card issuer.

AVA_VLA.3 has the following dependencies:

• ADV_FSP.1 Informal functional specification

• ADV_HLD.2 Security enforcing high-level design

• ADV_IMP.1 Subset of the implementation of the TSF

• ADV_LLD.1 Descriptive low-level design

• AGD_ADM.1 Administrator guidance

• AGD_USR.1 User guidance

Java CardTM System Protection Profile Collection Page 157 of 189

Version 1.0b August 2003

All of these are met or exceeded in the EAL4 assurance package.

ADV_IMP.2

The implementation representation is used to express the notion of the least abstract representation of
the TSF, specifically the one that is used to create the TSF itself without further design refinement.

The assurance component ADV_IMP.2 has been chosen because the evaluation of the TOE must
ensure that its security functional requirements are completely and accurately addressed by the
implementation representation of the TSF.

ADV_IMP.2 has the following dependencies:

• ADV_LLD.1 Descriptive low-level design

• ADV_RCR.1 Informal correspondence demonstration

• ALC_TAT.1 Well-defined development tools

 All of these are met or exceeded in the EAL4 assurance package.

6.2.2.6 Internal Consistency and Mutual Support
The purpose of this part of the PP rationale is to show that the security requirements are mutually
supportive and internally consistent. No detailed analysis is given to this because:

• The dependencies analysis for the additional assurance components in the previous section
has shown that the assurance requirements are mutually supportive and internally consistent
(all the dependencies are satisfied).

• The dependencies analysis for the functional requirements described in the section "Security
Functional Requirements Dependencies” demonstrates mutual support and internal
consistency between the functional requirements. That analysis also shows that the
dependencies between functional and assurance requirements are also satisfied.

Java CardTM System Protection Profile Collection Page 158 of 189

Version 1.0b August 2003

6.2.3 Java Card System Standard 2.2 Configuration

6.2.3.1 TOE Security Requirements Rationale

In the context of this rationale the FIREWALL access control policy is the one specified in the group LCG
(§5.1.6). The references to the components FDP_ACC.2/FIREWALL, FDP_ACF.1/FIREWALL and
FMT_MSA.1/JCRE must be understood as denoting the definitions of those components as provided
in the group LCG.

Note: The differences between the Java Card System Standard 2.1.1 and the Java Card System
Standard 2.2 configurations have been underlined in the following rationale.

IDENTIFICATION

O.SID Subjects’ identity is AID-based (applets, packages), and is met by FDP_ITC.2,
FIA_ATD.1, FMT_MSA.1, FMT_MSA.3, FMT_MTD.1, and FMT_MTD.3.
Additional support includes FPT_RVM.1 and FPT_SEP.1.

Lastly, installation procedures ensure protection against forgery (the AID of
an applet is under the control of the TSFs) or re-use of
identities (FIA_UID.2, FIA_USB.1).

APPLET MANAGEMENT

O.INSTALL This objective specifies that installation of applets must be secure. Security
attributes of installed data are under the control of the FIREWALL access
control policy (FDP_ITC.2), and the TSFs are protected against possible
failures of the installer (FPT_FLS.1/Installer, FPT_RCV.3).

O.LOAD This objective specifies that the loading of a package into the card must be
secure. Evidence of the origin of the package is enforced (FCO_NRO.2) and
the integrity of the corresponding data is under the control of the
PACKAGE LOADING information flow policy (FDP_IFC.2/CM,
FDP_IFF.1/CM) and FDP_UIT.1. Appropriate identification
(FIA_UID.1/CM) and transmission mechanisms are also enforced
(FTP_ITC.1).

O.DELETION This objective specifies that applet and package deletion must be secure.
The non-introduction of security holes is ensured by the ADEL access
control policy (FDP_ACC.2/ADEL, FDP_ACF.1/ADEL). The integrity and
confidentiality of data that does not belong to the deleted applet or
package is a by-product of this policy as well. Non-accessibility of deleted
data is met by FDP_RIP.1/ADEL and the TSFs are protected against
possible failures of the deletion procedures (FPT_FLS.1/ADEL, FPT_RCV.3
(see application note)). The functional requirements of the class FMT
included in the group ADELG also contribute to meet this objective.

Java CardTM System Protection Profile Collection Page 159 of 189

Version 1.0b August 2003

EXECUTION

O.OPERATE The TOE is protected in various ways against applets’ actions (FPT_RVM.1,
FPT_SEP.1, FPT_TDC.1), the FIREWALL access control policy (FDP_ACC.2,
FDP_ACF.1), and is able to detect and block various failures or security
violations during usual working (FPT_FLS.1, FAU_ARP.1). Startup of the
TOE is covered by FPT_TST.1, and indirectly by FPT_AMT.1 (this latter
defined in group SCPG §5.1.9).

Its security-critical parts and procedures are also protected: safe recovery
from failure is ensured (FPT_RCV.3), applets’ installation may be cleanly
aborted (FDP_ROL.1), communication with external users and their
internal subjects is well-controlled (FDP_ITC.2, FIA_ATD.1, FIA_USB.1) to
prevent alteration of TSF data (also protected by components of the FPT
class).

 Almost every objective and/or functional requirement indirectly
contributes to this one too.

O.RESOURCES The TSFs detects stack/memory overflows during execution of
applications (FAU_ARP.1, FRU_RSA.1, FPT_FLS.1). Failed installations are
not to create memory leaks (FDP_ROL.1, FPT_RCV.3) as well. Memory
management is controlled by the TSF (FMT_MTD.1, FMT_MTD.3,
FMT_SMR.1) and is only accessible to user-applications through the
API (FPT_RVM.1).

O.FIREWALL This objective is met by the FIREWALL access control policy (FDP_ACC.2,
FDP_ACF.1), the JCVM information flow control policy (FDP_IFF.1,
FDP_IFC.1), the JCRMI access control policy (FDP_ACC.2/JCRMI,
FDP_ACF.1/JCRMI) and the functional requirements FPT_RVM.1,
FPT_SEP.1 and FDP_ITC.2. The functional requirements of the class FMT
also indirectly contribute to meet this objective.

O.NATIVE The JCVM is the machine running the bytecode of the applets (FPT_RVM.1).
These can only be linked with API methods or other packages already on
the card. This objective mainly relies on the environmental objectives
OE.NATIVE and OE.APPLET, which uphold the assumptions A.NATIVE
and A.APPLET respectively.

O.REALLOCATION The security objective is satisfied by FDP_RIP.1, which imposes that the
contents of the re-allocated block shall always be cleared before delivering
the block.

O.SHRD_VAR_CONFID Only arrays can be designated as global, and the only global arrays
required in the Java Card API are the APDU buffer and the byte array
input parameter (bArray) to an applet’s install method. The clearing
requirement of those arrays is met by FDP_RIP.1 (FDP_RIP.1.1/APDU and
FDP_RIP.1.1/bArray respectively). The JCVM information flow control policy
(FDP_IFF.1, FDP_IFC.1) prevents an application from keeping a pointer to a
shared buffer, which could be used to read its contents when the buffer is
being used by another application.

Java CardTM System Protection Profile Collection Page 160 of 189

Version 1.0b August 2003

Protection of the array parameters of remotely invoked methods, which are
global as well, is covered by the general initialization of method
parameters (FDP_RIP.1).

O.SHRD_VAR_INTEG This objective is met by the JCVM information flow control policy (FDP_IFF.1,
FDP_IFC.1), which prevents an application from keeping a pointer to the
input/output buffer of the card, or any other global array that is shared by
all the applications. Such a pointer could be used to access and modify it
when the buffer is being used by another application.

SERVICES

O.ALARM This objective is met by FPT_FLS.1 and FAU_ARP.1 (see application notes).

O.TRANSACTION Directly met by FDP_ROL.1 and FDP_RIP.1 (more precisely, by the element
FDP_RIP.1.1/ABORT).

Transactions are provided to applets as Java Card class libraries.

O.CIPHER This objective is directly related to FCS_CKM.1, FCS_CKM.2, FCS_CKM.3,
FCS_CKM.4 and FCS_COP.1. Another important SFR is FPR_UNO.1, the
observation of the cryptographic operations may be used to disclose the
keys.

The associated security functions are not described herein. They are provided to applets as Java Card
class libraries (see the class javacardx.crypto.Cipher and the package javacard.security).

O.PIN-MNGT This objective is ensured by FDP_RIP.1, FPR_UNO.1, FDP_ROL.1 and
FDP_SDI.2 functional requirements. The security functions behind these
are implemented by API classes. The firewall security functions
(FDP_ACC.2, FDP_ACF.1) shall protect the access to private and internal
data of the objects.

O.KEY-MNGT This relies on the same functional requirements as O.CIPHER, plus
FDP_RIP.1 and FDP_SDI.2 as well.

O.REMOTE The access to the TOE’s internal data and the flow of information from the
card to the CAD required by the JCRMI service is under control of the JCRMI
access control policy (FDP_ACC.2/JCRMI, FDP_ACF.1/JCRMI) and the
JCRMI information flow control policy (FDP_IFC.1/JCRMI,
FDP_IFF.1/JCRMI). The functional requirements of the class FMT included
in the group RMIG also contribute to meet this objective.

OBJECT DELETION

O.OBJ-DELETION This objective specifies that deletion of objects is secure. The objective is met
by the functional requirements FDP_RIP.1/ODEL and FPT_FLS.1/ODEL.

Java CardTM System Protection Profile Collection Page 161 of 189

Version 1.0b August 2003

 FA
U

_A
R

P.
1

FC
S_

CK
M

.1

FC
S_

CK
M

.2

FC
S_

CK
M

.3

FC
S_

CK
M

.4

FC
S_

CO
P.

1

FD
P_

A
CC

.2

FD
P_

A
CF

.1

FD
P_

IF
C.

1

FD
P_

IF
F.

1

FD
P_

R
IP

.1

FD
P_

R
O

L.
1

FD
P_

SD
I.2

FI
A

_A
TD

.1

FI
A

_U
ID

.2

FI
A

_U
SB

.1

FM
T_

M
SA

.1

FM
T_

M
SA

.2

FM
T_

M
SA

.3

FM
T_

M
TD

.1

FM
T_

M
TD

.3

FM
T_

SM
R

.1

FP
R

_U
N

O
.1

FP
T_

FL
S.

1

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FP
T_

TD
C.

1

FP
T_

TS
T.

1

O.ALARM X X
O.CIPHER X X X X X X
O.FIREWALL X X X X X X X X X X X X
O.KEY-MNGT X X X X X X X X
O.NATIVE X
O.OPERATE X X X X X X X X X X X
O.PIN-MNGT X X X X X X
O.RESOURCES X X X X X X X
O.SID X X X X X X X X X
O.TRANSACTION X X
O.SHRD_VAR_CONFID X X X
O.SHRD_VAR_INTEG X X
O.REALLOCATION X

FC
O

_N
R

O
.2

FD
P_

IF
C.

2

FD
P_

IF
F.

1

FD
P_

IT
C.

2

FD
P_

U
IT

.1

FI
A

_U
ID

.1

FP
T_

FL
S.

1

FP
T_

R
CV

.3

FR
U

_R
SA

.1

FT
P_

IT
C.

1

O.INSTALL X X X
O.LOAD X X X X X X

O.SID X
O.OPERATE X X

O.RESOURCES X X
O.FIREWALL X

Java CardTM System Protection Profile Collection Page 162 of 189

Version 1.0b August 2003

 FD
P_

A
CC

.2

FD
P_

A
CF

.1

FD
P_

IF
C.

1

FD
P_

IF
F.

1

FD
P_

R
IP

.1

FM
T_

M
SA

.1

FM
T_

M
SA

.3

FM
T_

R
EV

.1

FM
T_

SM
R

.1

FP
T_

FL
S.

1

FP
T_

R
CV

.3

O.DELETION X X X X X X X X
O.OBJ-DELETION X X

O.REMOTE X X X X X X X X
O.FIREWALL X

Table 17: Security requirements rationale for the Java Card System Standard 2.2
Configuration

6.2.3.2 IT Environment Security Requirements Rationale

The environmental objective OE.VERIFICATION, which is satisfied by IT procedural means, is met by
the SFRs of the group BCVG (§5.1.3).

The environmental objective OE.APPLET might be also satisfied by IT procedural means. The IT
verification that a post-issuance loaded applet contains no native code could be carried out as a part of
the verification of how well the CAP file is formed. This verification has been associated in the group
BCVG (§5.1.3) to the requirement of secure security attributes, expressed by the component
FMT_MSA.2 (see application note at pp. 88).

The environmental objective OE.CARD-MANAGEMENT, which is satisfied by IT procedural means, is
met by the SFRs of the group CMGRG (§5.1.10).

All the security functional requirements to which this section makes reference from now on are those
specified in the group SCPG (§5.1.9).

The components FPT_RCV.3 and FPT_RCV.4 are used to support the objective OE.SCP.SUPPORT
and OE.SCP.RECOVERY to assist the TOE to recover in the event of a power failure. If the power fails
or the card is withdrawn prematurely from the CAD the operation of the TOE may be interrupted
leaving the TOE in an inconsistent state.

OE.SCP.RECOVERY This objective is met by the components FPT_FLS.1, FPT_RCV.3 and
FRU_FLT.1.

OE.SCP.SUPPORT This objective is met by the components FPT_SEP.1 (no bypassing TSF),
FPT_AMT.1, FPT_RCV.3, FPT_RCV.4 and FPT_RVM.1.

OE.SCP.IC This objective is met by the component FPT_PHP.3.

Java CardTM System Protection Profile Collection Page 163 of 189

Version 1.0b August 2003

FP
T_

A
M

T.
1

FP
T_

FL
S.

1

FP
T_

PH
P.

3

FP
T_

R
CV

.3

FP
T_

R
CV

.4

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FR
U

_F
LT

.1

OE.SCP.RECOVERY X X X
OE.SCP.SUPPORT X X X X X

OE.SCP.IC X

Table 18: Security requirements rationale for the group SCPG

6.2.3.3 Security Functional Requirements Dependencies

The TOE assurance requirements dependencies for level EAL4 are completely fulfilled.

The functional requirements dependencies for the TOE are not completely fulfilled. The KOs in the
following table corresponds to unsatisfied dependencies that are explained and justified in the
rationale that appears below the table.

SFR Dependency Status
FAU_ARP.1/JCS (FAU_SAA.1) KO : FAU_SAA.1 is not

satisfied
FCO_NRO.2/CM (FIA_UID.1) OK: FIA_UID.1/CM
FCS_CKM.1 (FCS_CKM.2 or FCS_COP.1)

and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.2,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.2 (FDP_ITC.1 or FCS_CKM.1)
and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.3 (FDP_ITC.1 or FCS_CKM.1)
and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.4 (FDP_ITC.1 or FCS_CKM.1)
and (FMT_MSA.2)

OK: FCS_CKM.1,
FMT_MSA.2/JCRE

FCS_COP.1 (FDP_ITC.1 or FCS_CKM.1)
and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1,
FCS_CKM.4,
FMT_MSA.2/JCRE

FDP_ACC.1/CMGR (FDP_ACF.1) OK: FDP_ACF.1/CMGR
FDP_ACC.1/ADEL (FDP_ACF.1) OK:FDP_ACF.1/ADEL
FDP_ACC.1/FIREWALL (FDP_ACF.1) OK:

FDP_ACF.1/FIREWALL
FDP_ACC.1/JCRMI (FDP_ACF.1) OK: FDP_ACF.1/JCRMI
FDP_ACF.1/ADEL (FDP_ACC.1) and

(FMT_MSA.3)
OK: FDP_ACC.1/ADEL,
FMT_MSA.3/ADEL

FDP_ACF.1/CMGR (FDP_ACC.1) and
(FMT_MSA.3)

OK: FDP_ACC.1/CMGR,
FMT_MSA.3/CMGR

FDP_ACF.1/FIREWALL (FDP_ACC.1) and
(FMT_MSA.3)

OK:
FDP_ACC.1/FIREWALL,
FMT_MSA.3/FIREWALL

Java CardTM System Protection Profile Collection Page 164 of 189

Version 1.0b August 2003

SFR Dependency Status
FDP_ACF.1/JCRMI (FDP_ACC.1) and

(FMT_MSA.3)
OK FDP_ACC.1/JCRMI,
FMT_MSA.3/JCRMI

FDP_IFC.1/JCRMI (FDP_IFF.1) OK: FDP_IFF.1/JCRMI

FDP_IFC.1/JCVM (FDP_IFF.1) OK: FDP_IFF.1/JCVM
FDP_IFC.1/BCV (FDP_IFF.1) OK: FDP_IFF.2/BCV
FDP_IFC.1/CM (FDP_IFF.1) OK: FDP_IFF.1/CM
FDP_IFF.1/CM (FDP_IFC.1) and

(FMT_MSA.3)
OK: FDP_IFC.1/CM,
FMT_MSA.3/CM

FDP_IFF.1/JCRMI (FDP_IFC.1) and
(FMT_MSA.3) OK: FDP_IFC.1/JCRMI,

FMT_MSA.3/JCRMI

FDP_IFF.1/JCVM (FDP_IFC.1) and
(FMT_MSA.3)

OK: FDP_IFC.1/JCVM,
FMT_MSA.3/FIREWALL

FDP_IFF.2/BCV (FDP_IFC.1) and
(FMT_MSA.3)

OK: FDP_IFC.1/BCV,
FMT_MSA.3/BCV

FDP_ITC.2 (FDP_ACC.1 or FDP_IFC.1)
and (FTP_ITC.1 or
FTP_TRP.1) and
(FPT_TDC.1)

OK: FPT_TDC.1,
FDP_IFC.1/CM,
FTP_ITC.1/CM

FDP_RIP.1 None OK
FDP_ROL.1/FIREWALL (FDP_ACC.1 or FDP_IFC.1) OK:

FDP_ACC.1/FIREWALL,
FDP_IFC.1/JCVM

FDP_SDI.2 None OK
FDP_UIT.1/CM (FDP_ACC.1 or FDP_IFC.1)

and (FTP_ITC.1 or
FTP_TRP.1)

OK: FDP_IFC.1/CM,
FTP_ITC.1/CM

FIA_ATD.1/AID None OK
FIA_UID.1/CM None OK
FIA_UID.1/CMGR None OK
FIA_UID.1/AID None OK
FIA_USB.1 (FIA_ATD.1) OK: FIA_ATD.1/AID
FMT_MSA.1/ADEL (FDP_ACC.1 or FDP_IFC.1)

and (FMT_SMR.1)
OK: FDP_ACC.1/ADEL,
FMT_SMR.1/ADEL

FMT_MSA.1/BCV (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)

OK: FDP_IFC.1/BCV,
FMT_SMR.1/BCV

FMT_MSA.1/CM (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)

OK: FDP_IFC.1/CM,
FMT_SMR.1/CM

FMT_MSA.1/CMGR (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)

OK: FDP_ACC.1/CMGR,
FMT_SMR.1/CMGR

FMT_MSA.1/EXPORT
FMT_MSA.1/JCRMI
FMT_MSA.1/REM-REFS

(FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)

OK: FDP_IFC.1/JCRMI,
FMT_SMR.1/JCRMI

FMT_MSA.1/JCRE (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)

OK:
FDP_ACC.1/FIREWALL,
FDP_IFC.1/JCVM,
FMT_SMR.1/JCRE

FMT_MSA.2/JCRE (ADV_SPM.1) and
(FDP_ACC.1 or FDP_IFC.1)
and (FMT_MSA.1) and
(FMT_SMR.1)

OK:
FDP_ACC.1/FIREWALL,
FDP_IFC.1/JCVM,
FMT_MSA.1/JCRE,
FMT_SMR.1/JCRE

Java CardTM System Protection Profile Collection Page 165 of 189

Version 1.0b August 2003

SFR Dependency Status
FMT_MSA.2/BCV (ADV_SPM.1) and

(FDP_ACC.1 or FDP_IFC.1)
and (FMT_MSA.1) and
(FMT_SMR.1)

OK: FDP_IFC.1/BCV,
FMT_MSA.1/BCV,
FMT_SMR.1/BCV

FMT_MSA.3/ADEL (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/ADEL,
FMT_SMR.1/ADEL

FMT_MSA.3/BCV (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/BCV,
FMT_SMR.1/BCV

FMT_MSA.3/CM (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/CM,
FMT_SMR.1/CM

FMT_MSA.3/CMGR (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/CMGR,
FMT_SMR.1/CMGR

FMT_MSA.3/FIREWALL (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/JCRE,
FMT_SMR.1/JCRE

FMT_MSA.3/JCRMI (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/JCRMI,
FMT_SMR.1/JCRMI

FMT_MTD.1/JCRE (FMT_SMR.1) OK: FMT_SMR.1/JCRE
FMT_MTD.3 (ADV_SPM.1) and

(FMT_MTD.1)
OK: FMT_MTD.1/JCRE

FMT_REV.1/JCRMI (FMT_SMR.1) OK: FMT_SMR.1/JCRMI
FMT_SMR.1/ADEL (FIA_UID.1) KO: FIA_UID.1
FMT_SMR.1/BCV (FIA_UID.1) KO: (FIA_UID.1)
FMT_SMR.1/CM (FIA_UID.1) OK: FIA_UID.1/CM
FMT_SMR.1/CMGR (FIA_UID.1) OK: FIA_UID.1/CMGR
FMT_SMR.1/JCRE (FIA_UID.1) OK: FIA_UID.1/AID
FMT_SMR.1/Installer (FIA_UID.1) KO: FIA_UID.1
FMT_SMR.1/JCRMI (FIA_UID.1) OK: FIA_UID.1/AID
FPR_UNO.1 None OK
FPT.PHP.3/SCP None OK
FPT_AMT.1/SCP None OK
FPT_FLS.1/ADEL (ADV_SPM.1) OK
FPT_FLS.1/Installer (ADV_SPM.1) OK
FPT_FLS.1/JCS (ADV_SPM.1) OK
FPT_FLS.1/ODEL (ADV_SPM.1) OK
FPT_FLS.1/SCP (ADV_SPM.1) OK
FPT_RCV.3/Installer (FPT_TST.1) and

(AGD_ADM.1) and
(ADV_SPM.1)

OK: FPT_TST.1

FPT_RCV.3/SCP (FPT_TST.1) and
(AGD_ADM.1) and
(ADV_SPM.1)

OK:FPT_TST.1

FPT_RCV.4/SCP (ADV_SPM.1) OK
FPT_RVM.1 None OK
FPT_RVM.1/SCP None OK
FPT_SEP.1 None OK
FPT_SEP.1/SCP None OK
FPT_TDC.1 None OK
FPT_TST.1 (FPT_AMT.1) OK: FPT_AMT.1/SCP
FRU_FLT.1/SCP (FPT_FLS.1) OK: FPT_FLS.1/SCP
FRU_RSA.1/Installer None OK
FRU_RSA.1/BCV None OK

Java CardTM System Protection Profile Collection Page 166 of 189

Version 1.0b August 2003

SFR Dependency Status
FTP_ITC.1/CM None OK

Table 19: Functional Requirement Dependencies (Java Card System Standard 2.2)

FAU_SAA.1 Potential violation analysis is used to specify the set of auditable events
whose occurrence or accumulated occurrence held to indicate a potential
violation of the TSP, and any rules to be used to perform the violation
analysis. The dependency of FAU_ARP.1/JCS on this functional
requirement assumes that a “potential security violation” is an audit event
indicated by the FAU_SAA.1 component. The events listed in
FAU_ARP.1/JCS are, on the contrary, merely self-contained ones
(arithmetic exception, ill-formed bytecodes, access failure) and ask for a
straightforward reaction of the TSFs on their occurrence at runtime. The
JCVM or other components of the TOE detect these events during their
usual working order. Thus, in principle there would be no applicable audit
recording in this framework. Moreover, no specification of one such
recording is provided elsewhere. Therefore no set of auditable events
could possibly be defined.

FIA_UID.1 This is required by the component FMT_SMR.1 in group InstG. However,
the role installer defined in this component is attached to an IT security
function rather than to a “user” of the CC terminology. The installer does
not “identify” itself with respect to the TOE, but is a part of it. Thus, here it
is claimed that this dependency can be left out.
The reader may notice that the role is required because of the SFRs on
management of TSF data and security attributes, essentially those of the
firewall policy.

 This is also required by the component FMT_SMR.1 in group ADELG. See
the explanation in the paragraph above (the role in this case is applet
deletion manager).

 This is also required by the component FMT_SMR.1 in group BCVG.
However, the role bytecode verifier defined in this component is attached
to an IT security function rather than to a “user” of the CC terminology.
The bytecode verifier does not “identify” itself with respect to the TOE,
furthermore, it is part of the IT environment. Thus, here it is claimed that
this dependency can be left out.

6.2.3.4 Rationale for Strength of Function Medium

The minimum strength of function level required is SOF-medium.

The TOE is intended to operate in open environments, where attackers can easily exploit
vulnerabilities. According to the claimed intended usage of the TOE, it is very likely that it may
represent a significant value and then constitute an attractive target for attacks. In some malicious
usages of the TOE the statistical or probabilistic mechanisms in the TOE, for instance, may be
subjected to analysis and attack in the normal course of operation. A strength of function level
medium seems to be the reasonable minimum level for cards hosting sensitive applications. It shall
probably be the case, as it is frequent nowadays, that the required strength of function level will be
high in, for instance, banking or electronic signature applications. Considering that Java Card

Java CardTM System Protection Profile Collection Page 167 of 189

Version 1.0b August 2003

technology-based products may also address other less security sensitive contexts, and furthermore,
that the resistance of the mechanisms mentioned above to attacks with high potential is hard to be
achieved and demonstrated, the choice of a high strength of function requirement is left to the card
issuer depending on the intended usage of the product. Thus, in this protection profile it has been
chosen a protection against moderate attack potential as the minimal level for those multi-applicative
cards.

The strength of function level medium is consistent with the vulnerability analysis level that has been
specified (AVA_VLA.3).

6.2.3.5 Rationale for Assurance Level EAL4 augmented

The assurance level for this protection profile is EAL4 augmented. Augmentation results from the
selection of the components AVA_VLA.3 and ADV_IMP.2.

6.2.3.5.1 Rationale for Assurance Level EAL4

EAL4 allows a developer to attain a reasonably high assurance level without the need for highly
specialized processes and practices. It corresponds to a white box analysis and it can be considered as
a reasonable level that can be applied to an existing product line without undue expense and
complexity.

6.2.3.5.2 Rationale for Augmentation

The evaluation of the TOE may be performed, for instance, because the product hosts one or several
sensitive applications, such as financial and health recording ones, which contain, represent, or
provide access to valuable assets. In addition to that the TOE may not be directly under the control of
trained and dedicated administrators.

AVA_VLA.3

As a result, it is imperative that the TOE vulnerabilities to be reviewed be drawn from a systematic
search rather than strictly a manufacturer prepared identification list. Component AVA_VLA.3
requires that such a systematic search for vulnerabilities be documented and presented. This provides
a significant increase in the consideration of vulnerabilities over that provided by AVA_VLA.2. There
might be scenarios, for example if the TOE is intended to stay in a hostile environment for long
periods of time, or if the applications are considered to be highly sensitive, that would justify a further
augmentation by requiring the component AVA_VLA.4. This latter component dictates that the TOE
must be shown to be resistant to penetration attacks performed by attackers possessing a high attack
potential. The choice of augmenting the assurance level using the component AVA_VLA.4 is left to the
card issuer.

AVA_VLA.3 has the following dependencies:

• ADV_FSP.1 Informal functional specification

• ADV_HLD.2 Security enforcing high-level design

• ADV_IMP.1 Subset of the implementation of the TSF

• ADV_LLD.1 Descriptive low-level design

• AGD_ADM.1 Administrator guidance

Java CardTM System Protection Profile Collection Page 168 of 189

Version 1.0b August 2003

• AGD_USR.1 User guidance

All of these are met or exceeded in the EAL4 assurance package.

ADV_IMP.2

The implementation representation is used to express the notion of the least abstract representation of
the TSF, specifically the one that is used to create the TSF itself without further design refinement.

The assurance component ADV_IMP.2 has been chosen because the evaluation of the TOE must
ensure that its security functional requirements are completely and accurately addressed by the
implementation representation of the TSF.

ADV_IMP.2 has the following dependencies:

• ADV_LLD.1 Descriptive low-level design

• ADV_RCR.1 Informal correspondence demonstration

• ALC_TAT.1 Well-defined development tools

 All of these are met or exceeded in the EAL4 assurance package.

6.2.3.6 Internal Consistency and Mutual Support
The purpose of this part of the PP rationale is to show that the security requirements are mutually
supportive and internally consistent. No detailed analysis is given to this because:

• The dependencies analysis for the additional assurance components in the previous section
has shown that the assurance requirements are mutually supportive and internally consistent
(all the dependencies are satisfied).

• The dependencies analysis for the functional requirements described in the section "Security
Functional Requirements Dependencies” demonstrates mutual support and internal
consistency between the functional requirements. That analysis also shows that the
dependencies between functional and assurance requirements are also satisfied.

Java CardTM System Protection Profile Collection Page 169 of 189

Version 1.0b August 2003

6.2.4 Defensive Configuration

6.2.4.1 TOE Security Requirements Rationale

In the context of this rationale the FIREWALL access control policy is the one specified in the group LCG
(§5.1.6). The references to the components FDP_ACC.2/FIREWALL, FDP_ACF.1/FIREWALL and
FMT_MSA.1/JCRE must be understood as denoting the definitions of those components as provided
in the group LCG.

This rationale for this configuration is almost the same than the one defined for the Java Card System
Standard 2.2 configuration. There are two main differences:

1. The configuration Defensive has no security objective O.LOAD. The packages loaded post-
issuance are verified on card. Therefore there shall be no reference to the SFRs of the group
CarG (§5.1.8).

2. The configuration Defensive is the only one to have as security objective O.VERIFICATION.
Therefore there shall be references to the SFRs of the group BCVG (§5.1.3).

Note: the differences between the Defensive and the Java Card System Standard 2.2 configurations
have been underlined in the following rationale.

IDENTIFICATION

O.SID Subjects’ identity is AID-based (applets, packages), and is met by FDP_ITC.2,
FIA_ATD.1, FMT_MSA.1, FMT_MSA.3, FMT_MTD.1, and FMT_MTD.3.
Additional support includes FPT_RVM.1 and FPT_SEP.1.

 At last, installation procedures ensure protection against forgery (the AID
of an applet is under the control of the TSFs) or re-use of
identities (FIA_UID.2, FIA_USB.1).

APPLET MANAGEMENT

O.INSTALL This objective specifies that installation of applets must be secure. Security
attributes of installed data are under the control of the FIREWALL access
control policy (FDP_ITC.2), and the TSFs are protected against possible
failures of the installer (FPT_FLS.1/Installer, FPT_RCV.3).

O.DELETION This objective specifies that applet and package deletion must be secure.
The non-introduction of security holes is ensured by the ADEL access
control policy (FDP_ACC.2/ADEL, FDP_ACF.1/ADEL). The integrity and
confidentiality of data that does not belong to the deleted applet or
package is a by-product of this policy as well. Non-accessibility of deleted
data is met by FDP_RIP.1/ADEL and the TSFs are protected against
possible failures of the deletion procedures (FPT_FLS.1/ADEL, FPT_RCV.3

Java CardTM System Protection Profile Collection Page 170 of 189

Version 1.0b August 2003

(see application note)). The functional requirements of the class FMT
included in the group ADELG also contribute to meet this objective.

EXECUTION

O.OPERATE The TOE is protected in various ways against applets’ actions (FPT_RVM.1,
FPT_SEP.1, FPT_TDC.1), the FIREWALL access control policy (FDP_ACC.2,
FDP_ACF.1), and is able to detect and block various failures or security
violations during usual working (FPT_FLS.1, FAU_ARP.1). Startup of the
TOE is covered by FPT_TST.1, and indirectly by FPT_AMT.1 (the latter is
defined in group SCPG §5.1.9).

Its security-critical parts and procedures are also protected: safe recovery
from failure is ensured (FPT_RCV.3), applets’ installation may be cleanly
aborted (FDP_ROL.1), communication with external users and their
internal subjects is well-controlled (FDP_ITC.2, FIA_ATD.1, FIA_USB.1) to
prevent alteration of TSF data (also protected by components of the FPT
class).

Almost every objective and/or functional requirement indirectly
contributes to this one too.

O.RESOURCES The TSFs detects stack/memory overflows during execution of
applications (FAU_ARP.1, FRU_RSA.1, FPT_FLS.1). Failed installations are
not to create memory leaks (FDP_ROL.1, FPT_RCV.3) as well. Memory
management is controlled by the TSF (FMT_MTD.1, FMT_MTD.3,
FMT_SMR.1) and is only accessible to user-applications through the
API (FPT_RVM.1).

O.FIREWALL This objective is met by the FIREWALL access control policy (FDP_ACC.2,
FDP_ACF.1), the JCVM information flow control policy (FDP_IFF.1,
FDP_IFC.1), the JCRMI access control policy (FDP_ACC.2/JCRMI,
FDP_ACF.1/JCRMI) and the functional requirements FPT_RVM.1,
FPT_SEP.1 and FDP_ITC.2. The functional requirements of the class FMT
also indirectly contribute to meet this objective.

O.NATIVE The JCVM is the machine running the bytecode of the applets (FPT_RVM.1).
These can only be linked with API methods or other packages already on
the card. This objective mainly relies on the environmental objectives
OE.NATIVE and in the requirement of secure security attributes expressed
by the component FMT_MSA.2 of the group BCVG (§5.1.3) (see application
note at pp. 88).

O.REALLOCATION The security objective is satisfied by FDP_RIP.1, which imposes that the
contents of the re-allocated block shall always be cleared before delivering
the block. If the block is used to store the local variables of a newly
allocated frame, then the TYPING information flow control policy of the
group BCVG (FDP_IFC.2/BCV, FDP_IFF.2/BCV) also contributes to satisfy
this objective by ensuring that the local variable is never read before
being assigned with an initial value.

O.SHRD_VAR_CONFID Only arrays can be designated as global, and the only global arrays
required in the Java Card API are the APDU buffer and the byte array

Java CardTM System Protection Profile Collection Page 171 of 189

Version 1.0b August 2003

input parameter (bArray) to an applet’s install method. The clearing
requirement of those arrays is met by FDP_RIP.1 (FDP_RIP.1.1/APDU and
FDP_RIP.1.1/bArray respectively). The JCVM information flow control policy
(FDP_IFF.1, FDP_IFC.1) prevents an application from keeping a pointer to a
shared buffer, which could be used to read its contents when the buffer is
being used by another application.

Protection of the array parameters of remotely invoked methods, which are
global as well, is covered by the general initialization of method
parameters (FDP_RIP.1).

O.SHRD_VAR_INTEG This objective is met by the JCVM information flow control policy (FDP_IFF.1,
FDP_IFC.1), which prevents an application from keeping a pointer to the
input/output buffer of the card, or any other global array that is shared by
all the applications. Such a pointer could be used to access and modify it
when the buffer is being used by another application.

SERVICES

O.ALARM This objective is met by FPT_FLS.1 and FAU_ARP.1 (see application notes).

O.TRANSACTION Directly met by FDP_ROL.1 and FDP_RIP.1 (more precisely, by the element
FDP_RIP.1.1/ABORT).

Transactions are provided to applets as Java Card class libraries.

O.CIPHER This objective is directly related to FCS_CKM.1, FCS_CKM.2, FCS_CKM.3,
FCS_CKM.4 and FCS_COP.1. Another important SFR is FPR_UNO.1, the
observation of the cryptographic operations may be used to disclose the
keys.

The associated security functions are not described herein. They are provided to applets as Java Card
class libraries (see the class javacardx.crypto.Cipher and the package javacard.security).

O.PIN-MNGT This objective is ensured by FDP_RIP.1, FPR_UNO.1, FDP_ROL.1 and
FDP_SDI.2 functional requirements. The security functions behind these
are implemented by API classes. The firewall security functions
(FDP_ACC.2, FDP_ACF.1) shall protect the access to private and internal
data of the objects.

O.KEY-MNGT This relies on the same functional requirements as O.CIPHER, plus
FDP_RIP.1 and FDP_SDI.2 as well.

O.REMOTE The access to the TOE’s internal data and the flow of information from the
card to the CAD required by the JCRMI service is under control of the JCRMI
access control policy (FDP_ACC.2/JCRMI, FDP_ACF.1/JCRMI) and the
JCRMI information flow control policy (FDP_IFC.1/JCRMI,
FDP_IFF.1/JCRMI). The functional requirements of the class FMT included
in the group RMIG also contribute to meet this objective.

Java CardTM System Protection Profile Collection Page 172 of 189

Version 1.0b August 2003

OBJECT DELETION

O.OBJ-DELETION This objective specifies that deletion of objects is secure. The objective is met
by the functional requirements FDP_RIP.1/ODEL and FPT_FLS.1/ODEL.

INTEGRITY, CONFIDENTIALITY AND CORRECT EXECUTION

O.VERIFICATION This objective is directly met by the TYPING information flow control
policy (FDP_IFC.2/BCV, FDP_IFF.2/BCV) and the functional requirements
of the group BCVG (§5.1.3).

Java CardTM System Protection Profile Collection Page 173 of 189

Version 1.0b August 2003

 FA
U

_A
R

P.
1

FC
S_

CK
M

.1

FC
S_

CK
M

.2

FC
S_

CK
M

.3

FC
S_

CK
M

.4

FC
S_

CO
P.

1

FD
P_

A
CC

.2

FD
P_

A
CF

.1

FD
P_

IF
C.

1

FD
P_

IF
F.

1

FD
P_

R
IP

.1

FD
P_

R
O

L.
1

FD
P_

SD
I.2

FI
A

_A
TD

.1

FI
A

_U
ID

.2

FI
A

_U
SB

.1

FM
T_

M
SA

.1

FM
T_

M
SA

.2

FM
T_

M
SA

.3

FM
T_

M
TD

.1

FM
T_

M
TD

.3

FM
T_

SM
R

.1

FP
R

_U
N

O
.1

FP
T_

FL
S.

1

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FP
T_

TD
C.

1

FP
T_

TS
T.

1

O.ALARM X X
O.CIPHER X X X X X X
O.FIREWALL X X X X X X X X X X X X
O.KEY-MNGT X X X X X X X X
O.NATIVE X X
O.OPERATE X X X X X X X X X X X
O.PIN-MNGT X X X X X X
O.RESOURCES X X X X X X X
O.SID X X X X X X X X X
O.TRANSACTION X X
O.SHRD_VAR_CONFID X X X
O.SHRD_VAR_INTEG X X
O.REALLOCATION X

FD
P_

IT
C.

2

FP
T_

FL
S.

1

FP
T_

R
CV

.3

FR
U

_R
SA

.1

O.INSTALL X X X
O.SID X

O.OPERATE X X
O.RESOURCES X X

O.FIREWALL X

Java CardTM System Protection Profile Collection Page 174 of 189

Version 1.0b August 2003

 FD
P_

A
CC

.2

FD
P_

A
CF

.1

FD
P_

IF
C.

1

FD
P_

IF
F.

1

FD
P_

R
IP

.1

FM
T_

M
SA

.1

FM
T_

M
SA

.3

FM
T_

R
EV

.1

FM
T_

SM
R

.1

FP
T_

FL
S.

1

FP
T_

R
CV

.3

O.DELETION X X X X X X X X
O.OBJ-DELETION X X

O.REMOTE X X X X X X X X
O.FIREWALL X

 FD
P_

IF
C.

2

FD
P_

IF
F.

1

FM
T_

M
SA

.1

FM
T_

M
SA

.2

FM
T_

M
SA

.3

FM
T_

SM
R

.1

FR
U

_R
SA

.1

O.REALLOCATION X X X X
O.VERIFICATION X X X X X X X

Table 20: Security requirements rationale for the Defensive Configuration

6.2.4.2 IT Environment Security Requirements Rationale

The environmental objective OE.CARD-MANAGEMENT, which is satisfied by IT procedural means, is
met by the SFRs of the group CMGRG (§5.1.10).

All the security functional requirements to which this section makes reference from now on are those
specified in the group SCPG (§5.1.9).

The components FPT_RCV.3 and FPT_RCV.4 are used to support the objective OE.SCP.SUPPORT
and OE.SCP.RECOVERY to assist the TOE to recover in the event of a power failure. If the power fails
or the card is withdrawn prematurely from the CAD the operation of the TOE may be interrupted
leaving the TOE in an inconsistent state.

OE.SCP.RECOVERY This objective is met by the components FPT_FLS.1, FPT_RCV.3 and
FRU_FLT.1.

OE.SCP.SUPPORT This objective is met by the components FPT_SEP.1 (no bypassing TSF),
FPT_AMT.1, FPT_RCV.3, FPT_RCV.4 and FPT_RVM.1.

OE.SCP.IC This objective is met by the component FPT_PHP.3.

Java CardTM System Protection Profile Collection Page 175 of 189

Version 1.0b August 2003

FP
T_

A
M

T.
1

FP
T_

FL
S.

1

FP
T_

PH
P.

3

FP
T_

R
CV

.3

FP
T_

R
CV

.4

FP
T_

R
VM

.1

FP
T_

SE
P.

1

FR
U

_F
LT

.1

OE.SCP.RECOVERY X X X
OE.SCP.SUPPORT X X X X X

OE.SCP.IC X

Table 21: Security requirements rationale for the group SCPG

6.2.4.3 Security Functional Requirements Dependencies

The TOE assurance requirements dependencies for level EAL4 are completely fulfilled.

The functional requirements dependencies for the TOE are not completely fulfilled. The KOs in the
following table corresponds to unsatisfied dependencies that are explained and justified in the
rationale that appears below the table.

SFR Dependency Status
FAU_ARP.1/JCS (FAU_SAA.1) KO : FAU_SAA.1 is not satisfied
FCS_CKM.1 (FCS_CKM.2 or FCS_COP.1)

and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.2, FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.2 (FDP_ITC.1 or FCS_CKM.1)
and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1, FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.3 (FDP_ITC.1 or FCS_CKM.1)
and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1, FCS_CKM.4,
FMT_MSA.2/JCRE

FCS_CKM.4 (FDP_ITC.1 or FCS_CKM.1)
and (FMT_MSA.2)

OK: FCS_CKM.1,
FMT_MSA.2/JCRE

FCS_COP.1 (FDP_ITC.1 or FCS_CKM.1)
and (FCS_CKM.4) and
(FMT_MSA.2)

OK: FCS_CKM.1, FCS_CKM.4,
FMT_MSA.2/JCRE

FDP_ACC.1/CMGR (FDP_ACF.1) OK: FDP_ACF.1/CMGR
FDP_ACC.1/ADEL (FDP_ACF.1) OK:FDP_ACF.1/ADEL
FDP_ACC.1/FIREWALL (FDP_ACF.1) OK: FDP_ACF.1/FIREWALL
FDP_ACC.1/JCRMI (FDP_ACF.1) OK: FDP_ACF.1/JCRMI
FDP_ACF.1/ADEL (FDP_ACC.1) and

(FMT_MSA.3)
OK: FDP_ACC.1/ADEL,
FMT_MSA.3/ADEL

FDP_ACF.1/CMGR (FDP_ACC.1) and
(FMT_MSA.3)

OK: FDP_ACC.1/CMGR,
FMT_MSA.3/CMGR

FDP_ACF.1/FIREWALL (FDP_ACC.1) and
(FMT_MSA.3)

OK: FDP_ACC.1/FIREWALL,
FMT_MSA.3/FIREWALL

FDP_ACF.1/JCRMI (FDP_ACC.1) and
(FMT_MSA.3)

OK FDP_ACC.1/JCRMI,
FMT_MSA.3/JCRMI

FDP_IFC.1/JCRMI (FDP_IFF.1) OK: FDP_IFF.1/JCRMI

Java CardTM System Protection Profile Collection Page 176 of 189

Version 1.0b August 2003

SFR Dependency Status
FDP_IFC.1/JCVM (FDP_IFF.1) OK: FDP_IFF.1/JCVM
FDP_IFC.1/BCV (FDP_IFF.1) OK: FDP_IFF.2/BCV

FDP_IFF.1/JCRMI (FDP_IFC.1) and
(FMT_MSA.3) OK: FDP_IFC.1/JCRMI,

FMT_MSA.3/JCRMI

FDP_IFF.1/JCVM (FDP_IFC.1) and
(FMT_MSA.3)

OK: FDP_IFC.1/JCVM,
FMT_MSA.3/FIREWALL

FDP_IFF.2/BCV (FDP_IFC.1) and
(FMT_MSA.3)

OK: FDP_IFC.1/BCV,
FMT_MSA.3/BCV

FDP_ITC.2 (FDP_ACC.1 or FDP_IFC.1)
and (FTP_ITC.1 or FTP_TRP.1)
and (FPT_TDC.1)

OK: FPT_TDC.1,
FDP_IFC.1/BCV,
KO: FTP_ITC.1 or FTP_TRP.1

FDP_RIP.1 None OK
FDP_ROL.1/FIREWALL (FDP_ACC.1 or FDP_IFC.1) OK: FDP_ACC.1/FIREWALL,

FDP_IFC.1/JCVM
FDP_SDI.2 None OK
FIA_ATD.1/AID None OK
FIA_UID.1/CMGR None OK
FIA_UID.1/AID None OK
FIA_USB.1 (FIA_ATD.1) OK: FIA_ATD.1/AID
FMT_MSA.1/ADEL (FDP_ACC.1 or FDP_IFC.1)

and (FMT_SMR.1)
OK: FDP_ACC.1/ADEL,
FMT_SMR.1/ADEL

FMT_MSA.1/BCV (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)

OK: FDP_IFC.1/BCV,
FMT_SMR.1/BCV

FMT_MSA.1/CMGR (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)

OK: FDP_ACC.1/CMGR,
FMT_SMR.1/CMGR

FMT_MSA.1/EXPORT
FMT_MSA.1/JCRMI
FMT_MSA.1/REM-REFS

(FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)

OK: FDP_IFC.1/JCRMI,
FMT_SMR.1/JCRMI

FMT_MSA.1/JCRE (FDP_ACC.1 or FDP_IFC.1)
and (FMT_SMR.1)

OK: FDP_ACC.1/FIREWALL,
FDP_IFC.1/JCVM,
FMT_SMR.1/JCRE

FMT_MSA.2/JCRE (ADV_SPM.1) and
(FDP_ACC.1 or FDP_IFC.1)
and (FMT_MSA.1) and
(FMT_SMR.1)

OK: FDP_ACC.1/FIREWALL,
FDP_IFC.1/JCVM,
FMT_MSA.1/JCRE,
FMT_SMR.1/JCRE

FMT_MSA.2/BCV (ADV_SPM.1) and
(FDP_ACC.1 or FDP_IFC.1)
and (FMT_MSA.1) and
(FMT_SMR.1)

OK: FDP_IFC.1/BCV,
FMT_MSA.1/BCV,
FMT_SMR.1/BCV

FMT_MSA.3/ADEL (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/ADEL,
FMT_SMR.1/ADEL

FMT_MSA.3/BCV (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/BCV,
FMT_SMR.1/BCV

FMT_MSA.3/CMGR (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/CMGR,
FMT_SMR.1/CMGR

FMT_MSA.3/FIREWALL (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/JCRE,
FMT_SMR.1/JCRE

FMT_MSA.3/JCRMI (FMT_MSA.1) and
(FMT_SMR.1)

OK: FMT_MSA.1/JCRMI,
FMT_SMR.1/JCRMI

FMT_MTD.1/JCRE (FMT_SMR.1) OK: FMT_SMR.1/JCRE

Java CardTM System Protection Profile Collection Page 177 of 189

Version 1.0b August 2003

SFR Dependency Status
FMT_MTD.3 (ADV_SPM.1) and

(FMT_MTD.1)
OK: FMT_MTD.1/JCRE

FMT_REV.1/JCRMI (FMT_SMR.1) OK: FMT_SMR.1/JCRMI
FMT_SMR.1/ADEL (FIA_UID.1) KO: (FIA_UID.1)
FMT_SMR.1/BCV (FIA_UID.1) KO: (FIA_UID.1)
FMT_SMR.1/CMGR (FIA_UID.1) OK: FIA_UID.1/CMGR
FMT_SMR.1/JCRE (FIA_UID.1) OK: FIA_UID.1/AID
FMT_SMR.1/Installer (FIA_UID.1) KO: (FIA_UID.1)
FMT_SMR.1/JCRMI (FIA_UID.1) OK: : FIA_UID.1/AID
FPR_UNO.1 None OK
FPT.PHP.3/SCP None OK
FPT_AMT.1/SCP None OK
FPT_FLS.1/ADEL (ADV_SPM.1) OK

FPT_FLS.1/Installer (ADV_SPM.1) OK

FPT_FLS.1/JCS (ADV_SPM.1) OK

FPT_FLS.1/ODEL (ADV_SPM.1) OK

FPT_FLS.1/SCP (ADV_SPM.1) OK

FPT_RCV.3/Installer (FPT_TST.1) and
(AGD_ADM.1) and
(ADV_SPM.1)

OK: FPT_TST.1

FPT_RCV.3/SCP (FPT_TST.1) and
(AGD_ADM.1) and
(ADV_SPM.1)

OK:FPT_TST.1

FPT_RCV.4/SCP (ADV_SPM.1) OK
FPT_RVM.1 None OK
FPT_RVM.1/SCP None OK
FPT_SEP.1 None OK
FPT_SEP.1/SCP None OK
FPT_TDC.1 None OK
FPT_TST.1 (FPT_AMT.1) OK: FPT_AMT.1/SCP
FRU_FLT.1/SCP (FPT_FLS.1) OK: FPT_FLS.1/SCP
FRU_RSA.1/BCV None OK
FRU_RSA.1/Installer None OK

Table 22: Functional Requirement Dependencies (Defensive)

FAU_SAA.1 Potential violation analysis is used to specify the set of auditable events
whose occurrence or accumulated occurrence held to indicate a potential
violation of the TSP, and any rules to be used to perform the violation
analysis. The dependency of FAU_ARP.1/JCS on this functional
requirement assumes that a “potential security violation” is an audit event
indicated by the FAU_SAA.1 component. The events listed in
FAU_ARP.1/JCS are, on the contrary, merely self-contained ones
(arithmetic exception, ill-formed bytecodes, access failure) and ask for a
straightforward reaction of the TSFs on their occurrence at runtime. The
JCVM or other components of the TOE detect these events during their
usual working order. Thus, in principle there would be no applicable audit
recording in this framework. Moreover, no specification of one such

Java CardTM System Protection Profile Collection Page 178 of 189

Version 1.0b August 2003

recording is provided elsewhere. Therefore no set of auditable events
could possibly be defined.

FTP_ITC.1 or FTP_TRP.1 Import from outside TSF control defines the mechanisms for introduction
of user data into the TOE such that it has appropriate security attributes
and is appropriately protected. The dependency of FDP_ITC.2 on one of
these components is not justified in the presence of on-card bytecode
verification.

FIA_UID.1 This is required by the component FMT_SMR.1 in group InstG. However,
the role installer defined in this component is attached to an IT security
function rather than to a “user” of the CC terminology. The installer does
not “identify” itself with respect to the TOE, but is a part of it. Thus, here it
is claimed that this dependency can be left out.The reader may notice that
the role is required because of the SFRs on management of TSF data and
security attributes, essentially those of the firewall policy.

 This is also required by the component FMT_SMR.1 in groups ADELG and
BCVG. See the explanation in the paragraph above (the roles in this case
are applet deletion manager and bytecode verifier).

6.2.4.4 Rationale for Strength of Function Medium

The minimum strength of function level required is SOF-medium.

The TOE is intended to operate in open environments, where attackers can easily exploit
vulnerabilities. According to the claimed intended usage of the TOE, it is very likely that it may
represent a significant value and then constitute an attractive target for attacks. In some malicious
usages of the TOE the statistical or probabilistic mechanisms in the TOE, for instance, may be
subjected to analysis and attack in the normal course of operation. A strength of function level
medium seems to be the reasonable minimum level for cards hosting sensitive applications. It shall
probably be the case, as it is frequent nowadays, that the required strength of function level will be
high in, for instance, banking or electronic signature applications. Considering that Java Card
technology-based products may also address other less security sensitive contexts, and furthermore,
that the resistance of the mechanisms mentioned above to attacks with high potential is hard to be
achieved and demonstrated, the choice of a high strength of function requirement is left to the card
issuer depending on the intended usage of the product. Thus, in this protection profile, a protection
against moderate attack potential has been chosen as the minimal level for those multi-applicative
cards.

The strength of function level medium is consistent with the vulnerability analysis level that has been
specified (AVA_VLA.3).

6.2.4.5 Rationale for Assurance Level EAL4 augmented

The assurance level for this protection profile is EAL4 augmented. Augmentation results from the
selection of the components AVA_VLA.3 and ADV_IMP.2.

6.2.4.5.1 Rationale for Assurance Level EAL4

EAL4 allows a developer to attain a reasonably high assurance level without the need for highly
specialized processes and practices. It corresponds to a white box analysis and it can be considered as
a reasonable level that can be applied to an existing product line without undue expense and
complexity.

Java CardTM System Protection Profile Collection Page 179 of 189

Version 1.0b August 2003

6.2.4.5.2 Rationale for Augmentation

The evaluation of the TOE may be performed, for instance, because the product hosts one or several
sensitive applications, such as financial and health recording ones, which contain, represent, or
provide access to valuable assets. In addition to that the TOE may not be directly under the control of
trained and dedicated administrators.

AVA_VLA.3

As a result, it is imperative that the TOE vulnerabilities to be reviewed be drawn from a systematic
search rather than strictly a manufacturer prepared identification list. Component AVA_VLA.3
requires that such a systematic search for vulnerabilities be documented and presented. This provides
a significant increase in the consideration of vulnerabilities over that provided by AVA_VLA.2. There
might be scenarios, for example if the TOE is intended to stay in a hostile environment for long
periods of time, or if the applications are considered to be highly sensitive, that would justify a further
augmentation by requiring the component AVA_VLA.4. This latter component dictates that the TOE
must be shown to be resistant to penetration attacks performed by attackers possessing a high attack
potential. The choice of augmenting the assurance level using the component AVA_VLA.4 is left to the
card issuer.

AVA_VLA.3 has the following dependencies:

• ADV_FSP.1 Informal functional specification

• ADV_HLD.2 Security enforcing high-level design

• ADV_IMP.1 Subset of the implementation of the TSF

• ADV_LLD.1 Descriptive low-level design

• AGD_ADM.1 Administrator guidance

• AGD_USR.1 User guidance

All of these are met or exceeded in the EAL4 assurance package.

ADV_IMP.2

The implementation representation is used to express the notion of the least abstract representation of
the TSF, specifically the one that is used to create the TSF itself without further design refinement.

The assurance component ADV_IMP.2 has been chosen because the evaluation of the TOE must
ensure that its security functional requirements are completely and accurately addressed by the
implementation representation of the TSF.

ADV_IMP.2 has the following dependencies:

• ADV_LLD.1 Descriptive low-level design

• ADV_RCR.1 Informal correspondence demonstration

• ALC_TAT.1 Well-defined development tools

 All of these are met or exceeded in the EAL4 assurance package.

Java CardTM System Protection Profile Collection Page 180 of 189

Version 1.0b August 2003

6.2.4.6 Internal Consistency and Mutual Support
The purpose of this part of the PP rationale is to show that the security requirements are mutually
supportive and internally consistent. No detailed analysis is given to this because:

• The dependencies analysis for the additional assurance components in the previous section
has shown that the assurance requirements are mutually supportive and internally consistent
(all the dependencies are satisfied).

• The dependencies analysis for the functional requirements described in the section "Security
Functional Requirements Dependencies” demonstrates mutual support and internal
consistency between the functional requirements. That analysis also shows that the
dependencies between functional and assurance requirements are also satisfied.

Java CardTM System Protection Profile Collection Page 181 of 189

Version 1.0b August 2003

7 APPENDIX: A UNIFIED VIEW OF
CONFIGURATIONS

This section provides an all-embracing presentation of the security environment, security objectives
and functional requirements of the configurations defined in this document. The tables included
below not only make explicit the contents proper of each configuration but also reflects the
differences between the configurations.

Assets are common to all configurations. Those corresponding to User data are: D.APP_CODE,
D.APP_C_DATA, D.APP_I_DATA, D.PIN and D.APP_KEYs. Those corresponding to TSF data are:
D.JCS_CODE, D.JCS_DATA, D.SEC_DATA, D.API_DATA, D.CRYPTO and D.JCS_KEYs.

The configurations’ assumptions are displayed in Table 23.

Assumption Minimal Standard 2.1.1 Standard 2.2 Defensive
A.NATIVE X X X X
A.NO-INSTALL X
A.NO-DELETION X
A.DELETION X
A.APPLET X X
A.VERIFICATION X X X

Table 23: Assumptions of Configurations

The threats to the assets against which specific protection is required within the configurations or their
environments are displayed in Table 24. The post-issuance installation of applets introduces one
threat (T.INSTALL), and two more (T.INTEG-APPLI-CODE.2, T.INTEG-APPLI-DATA.2) in the case
that bytecode verification is performed off-card. Thereby the absence of the latter two threats in the
Java Card System 2.2 Defensive configuration.

Java CardTM System Protection Profile Collection Page 182 of 189

Version 1.0b August 2003

Threat Minimal Standard 2.1.1 Standard 2.2 Defensive
T.PHYSICAL X X X X
T.CONFID-JCS-CODE X X X X
T.CONFID-APPLI-DATA X X X X
T.CONFID-JCS-DATA X X X X
T.INTEG-APPLI-CODE X X X X
T.INTEG-JCS-CODE X X X X
T.INTEG-APPLI-DATA X X X X
T.INTEG-JCS-DATA X X X X
T.SID.1 X X X X
T.SID.2 X X X X
T.EXE-CODE.1 X X X X
T.EXE-CODE.2 X X X X
T.NATIVE X X X X
T.RESOURCES X X X X
T.INTEG-APPLI-CODE.2 X X
T.INTEG-APPLI-DATA.2 X X
T.INSTALL X X X
T.EXE-CODE-REMOTE X X
T.DELETION X X
T.OBJ-DELETION X X

Table 24: Threats of Configurations

There is only one organizational security policy defined in this document, OSP.VERIFICATION,
which applies for both the Java Card System Standard 2.1.1 and the Java Card System Standard 2.2
configurations.

Each configuration determines a particular TOE. Table 25 lists the security objectives addressed by
each of those TOEs. The configuration that includes an on -card bytecode verifier is the only one to
have the verification of the bytecodes of a package as a security objective. The addressing of that
objective is the difference between the Defensive and the Standard 2.2 configurations.

Java CardTM System Protection Profile Collection Page 183 of 189

Version 1.0b August 2003

TOE security objective Minimal Standard 2.1.1 Standard 2.2 Defensive
O.SID X X X X
O.OPERATE X X X X
O.RESOURCES X X X X
O.FIREWALL X X X X
O.NATIVE X X X X
O.REALLOCATION X X X X
O.SHRD_VAR_CONFID X X X X
O.SHRD_VAR_INTEG X X X X
O.ALARM X X X X
O.TRANSACTION X X X X
O.CIPHER X X X X
O.PIN-MNGT X X X X
O.KEY-MNGT X X X X
O.INSTALL X X X
O.LOAD X X
O.DELETION X X
O.OBJ-DELETION X X
O.REMOTE X X
O.VERIFICATION X

Table 25: TOE Security Objectives of Configurations

Table 26 displays the security objectives to be achieved by the environment associated to each TOE
configuration.

Environment security objective Minimal Standard 2.1.1 Standard 2.2 Defensive
OE.NATIVE X X X X
OE.SCP.RECOVERY X X X X
OE.SCP.SUPPORT X X X X
OE.SCP.IC X X X X
OE.NO-DELETION X
OE.NO-INSTALL X
OE.VERIFICATION X X X
OE.APPLET X X
OE.CARD-MANAGEMENT X X X X

Table 26: Security objectives for the environment of Configurations

Finally, Table 27 makes explicit the relation between SFRs, and the groups to which they belong, and
the several configurations defined in this document.

SFR Group Minimal Standard 2.1.1 Standard 2.2 Defensive
FAU_ARP.1/JCS CoreG X X X X
FCS_CKM.1 CoreG X X X X
FCS_CKM.2 CoreG X X X X
FCS_CKM.3 CoreG X X X X
FCS_CKM.4 CoreG X X X X
FCS_COP.1 CoreG X X X X
FDP_ACC.2/FIREWALL CoreG X X
FDP_ACF.1/FIREWALL CoreG X X
FDP_IFC.1/JCVM CoreG X X X X

Java CardTM System Protection Profile Collection Page 184 of 189

Version 1.0b August 2003

SFR Group Minimal Standard 2.1.1 Standard 2.2 Defensive
FDP_IFF.1/JCVM CoreG X X X X
FDP_RIP.1/ABORT CoreG X X X X
FDP_RIP.1/APDU CoreG X X X X
FDP_RIP.1/bArray CoreG X X X X
FDP_RIP.1/KEYS CoreG X X X X
FDP_RIP.1/OBJECTS CoreG X X X X
FDP_RIP.1/TRANSIENT CoreG X X
FDP_ROL.1/FIREWALL CoreG X X X X
FDP_SDI.2 CoreG X X X X
FIA_ATD.1/AID CoreG X X X X
FIA_UID.2/AID CoreG X X X X
FIA_USB.1 CoreG X X X X
FMT_MSA.1/JCRE CoreG X X
FMT_MSA.2/JCRE CoreG X X X X
FMT_MSA.3/FIREWALL CoreG X X X X
FMT_MTD.1/JCRE CoreG X X X X
FMT_MTD.3 CoreG X X X X
FMT_SMR.1/JCRE CoreG X X X X
FPR_UNO.1 CoreG X X X X
FPT_FLS.1/JCS CoreG X X X X
FPT_RVM.1 CoreG X X X X
FPT_SEP.1 CoreG X X X X
FPT_TDC.1 CoreG X X X X
FPT_TST.1 CoreG X X X X
FDP_ITC.2 InstG X X X
FMT_SMR.1/Installer InstG X X X
FPT_FLS.1/Installer InstG X X X
FPT_RCV.3/Installer InstG X X X
FRU_RSA.1/Installer InstG X X X
FDP_IFC.2/BCV BCVG X X X X
FDP_IFF.2/BCV BCVG X X X X
FMT_MSA.1/BCV BCVG X X X X
FMT_MSA.2/BCV BCVG X X X X
FMT_MSA.3/BCV BCVG X X X X
FMT_SMR.1/BCV BCVG X X X X
FRU_RSA.1/BCV BCVG X X X X
FDP_ACC.2/ADEL ADELG X X
FDP_ACF.1/ADEL ADELG X X
FMT_MSA.1/ADEL ADELG X X
FMT_MSA.3/ADEL ADELG X X
FMT_SMR.1/ADEL ADELG X X
FDP_RIP.1/ADEL ADELG X X
FPT_FLS.1/ADEL ADELG X X
FDP_ACC.2/JCRMI RMIG X X
FDP_ACF.1/JCRMI RMIG X X
FDP_IFC.1/JCRMI RMIG X X
FDP_IFF.1/JCRMI RMIG X X
FMT_MSA.1/JCRMI RMIG X X
FMT_MSA.3/JCRMI RMIG X X
FMT_REV.1/JCRMI RMIG X X
FMT_SMR.1/JCRMI RMIG X X

Java CardTM System Protection Profile Collection Page 185 of 189

Version 1.0b August 2003

SFR Group Minimal Standard 2.1.1 Standard 2.2 Defensive
FDP_ACC.2/FIREWALL LCG X X
FDP_ACF.1/FIREWALL LCG X X
FMT_MSA.1/JCRE LCG X X
FDP_RIP.1/TRANSIENT LCG X X
FDP_RIP.1/ODEL ODELG X X
FPT_FLS.1/ODEL ODELG X X
FCO_NRO.2/CM CarG X X
FDP_IFC.2/CM CarG X X
FDP_IFF.1/CM CarG X X
FDP_UIT.1/CM CarG X X
FMT_MSA.1/CM CarG X X
FMT_MSA.3/CM CarG X X
FMT_SMR.1/CM CarG X X
FIA_UID.1/CM CarG X X
FTP_ITC.1/CM CarG X X
FPT_PHP.3/SCP SCPG X X X X
FPT_AMT.1/SCP SCPG X X X X
FPT_FLS.1/SCP SCPG X X X X
FPT_RCV.3/SCP SCPG X X X X
FPT_RCV.4/SCP SCPG X X X X
FPT_RVM.1/SCP SCPG X X X X
FPT_SEP.1/SCP SCPG X X X X
FRU_FLT.1/SCP SCPG X X X X
FDP_ACC.1/CMGR CMGRG X X X X
FDP_ACF.1/CMGR CMGRG X X X X
FIA_UID.1/CMGR CMGRG X X X X
FMT_MSA.1/CMGR CMGRG X X X X
FMT_MSA.3/CMGR CMGRG X X X X
FMT_SMR.1/CMGR CMGRG X X X X

Table 27: Security Functional Requirements of Configurations

Finally, Table 28 summarizes the roles associated with each configuration:

Configuration Roles

Minimal JCRE, authorized role (CMGRG), Bytecode Verifier.

Java Card System Standard 2.1.1 JCRE, Installer, authorized role (CarG), authorized role
(CMGRG), Bytecode Verifier.

Java Card System Standard 2.2 JCRE, Installer, authorized role (CarG), authorized role
(CMGRG), applet deletion manager, applets (RMIG), Bytecode
Verifier.

Defensive JCRE, Installer, authorized role (CMGRG), applet deletion
manager, applets (RMIG), Bytecode Verifier.

Table 28: Configurations and Roles

Java CardTM System Protection Profile Collection Page 186 of 189

Version 1.0b August 2003

8 APPENDIX: GLOSSARY

AID Application identifier, an ISO-7816 data format used for unique
identification of Java Card applications (and certain kinds of files in card
file systems). The Java Card platform uses the AID data format to identify
applets and packages. AIDs are administered by the International Standards
Organization (ISO), so they can be used as unique identifiers.

AIDs are also used in the security policies (see “Context” below): applets’
AIDs are related to the selection mechanisms, packages’ AIDs are used in the
enforcement of the firewall. Note: although they serve different purposes,
they share the same name space.

APDU Application Protocol Data Unit, an ISO 7816-4 defined communication
format between the card and the off-card applications. Cards receive
requests for service from the CAD in the form of APDUs. These are
encapsulated in Java Card System by the javacard.framework.APDU class
([JCAPI21]).

APDUs manage both the selection-cycle of the applets (through JCRE
mediation) and the communication with the Currently selected applet.

APDU buffer The APDU buffer is the buffer where the messages sent (received) by the
card depart from (arrive to). The JCRE owns an APDU object (which is a JCRE
Entry Point and an instance of the javacard.framework.APDU class) that
encapsulates APDU messages in an internal byte array, called the APDU
buffer. This object is made accessible to the Currently selected applet when
needed, but any permanent access (out-of selection-scope) is strictly
prohibited for security reasons.

applet The name given to a Java Card technology-based user application. An
applet is the basic piece of code that can be selected for execution from
outside the card. Each applet on the card is uniquely identified by its AID.

applet deletion manager The on-card component that embodies the mechanisms necessary to delete
an applet or library and its associated data on smart cards using Java Card
technology.

BCV The bytecode verifier is the software component performing a static
analysis of the code to be loaded on the card. It checks several kinds of
properties, like the correct format of CAP files and the enforcement of the
typing rules associated to bytecodes. If the component is placed outside the
card, in a secure environment, then it is called an off-card verifier. If the
component is part of the embedded software of the card it is called an on-
card verifier.

CAD Card Acceptance Device, or card reader. The device where the card is
inserted, and which is used to communicate with the card.

Java CardTM System Protection Profile Collection Page 187 of 189

Version 1.0b August 2003

CAP file A file in the Converted applet format. A CAP file contains a binary
representation of a package of classes that can be installed on a device and
used to execute the package’s classes on a Java Card virtual machine. A
CAP file can contain a user library, or the code of one or more applets.

Class In object-oriented programming languages, a class is a prototype for an
object. A class may also be considered as a set of objects that share a
common structure and behavior. Each class declares a collection of fields
and methods associated to its instances. The contents of the fields
determine the internal state of a class instance, and the methods the
operations that can be applied to it. Classes are ordered within a class
hierarchy. A class declared as a specialization (a subclass) of another class
(its super class) inherits all the fields and methods of the latter.

 Java platform classes should not be confused with the classes of the
functional requirements (FIA) defined in the CC.

Context A context is an object-space partition associated to a package. Applets
within the same Java technology-based package belong to the same context.
The firewall is the boundary between contexts (see “Current context”).

Current context The JCRE keeps track of the current Java Card System context (also called
“the active context”). When a virtual method is invoked on an object, and a
context switch is required and permitted, the current context is changed to
correspond to the context of the applet that owns the object. When that
method returns, the previous context is restored. Invocations of static
methods have no effect on the current context. The current context and
sharing status of an object together determine if access to an object is
permissible.

Currently selected applet The applet has been selected for execution in the current session. The JCRE
keeps track of the currently selected Java Card applet. Upon receiving a
SELECT command from the CAD with this applet’s AID, the JCRE makes this
applet the currently selected applet. The JCRE sends all APDU commands to
the currently selected applet ([JCRE21] Glossary).

Default applet The applet that is selected after a card reset ([JCRE21], §4.1).

Embedded Software Pre-issuance loaded software.

Firewall The mechanism in the Java Card technology for ensuring applet isolation
and object sharing. The firewall prevents an applet in one context from
unauthorized access to objects owned by the JCRE or by an applet in
another context.

Installer The installer is the on-card application responsible for the installation of
applets on the card. It may perform (or delegate) mandatory security
checks according to the card issuer policy (for bytecode-verification, for
instance), loads and link packages (CAP file(s)) on the card to a suitable form
for the JCVM to execute the code they contain. It is a subsystem of what is
usually called “card manager”; as such, it can be seen as the portion of the
card manager that belongs to the TOE.

Java CardTM System Protection Profile Collection Page 188 of 189

Version 1.0b August 2003

The installer has an AID that uniquely identifies him, and may be
implemented as a Java Card applet. However, it is granted specific
privileges on an implementation-specific manner ([JCRE21], §10).

Interface A special kind of Java programming language class, which declares
methods, but provides no implementation for them. A class may be
declared as being the implementation of an interface, and in this case must
contain an implementation for each of the methods declared by the
interface. (see also shareable interface).

JCRE The Java Card runtime environment consists of the Java Card virtual
machine, the Java Card API, and its associated native methods. This notion
concerns all those dynamic features that are specific to the execution of a
Java program in a smart card, like applet lifetime, applet isolation and
object sharing, transient objects, the transaction mechanism, and so on.

JCRE Entry Point An object owned by the JCRE context but accessible by any application.
These methods are the gateways through which applets request privileged
JCRE system services: the instance methods associated to those objects may
be invoked from any context, and when that occurs, a context switch to the
JCRE context is performed.

There are two categories of JCRE Entry Point Objects: Temporary ones and
Permanent ones. As part of the firewall functionality, the JCRE detects and
restricts attempts to store references to these objects.

JCRMI Java Card Remote Method Invocation is the Java Card System, version 2.2,
mechanism enabling a client application running on the CAD platform to
invoke a method on a remote object on the card. Notice that in Java Card
System, version 2.1.1, the only method that may be invoked from the CAD
is the process method of the applet class.

Java Card System The Java Card System: the JCRE (JCVM +API), the installer, and the on-card
BCV (if the configuration includes one).

JCVM The embedded interpreter of bytecodes. The JCVM is the component that
enforces separation between applications (firewall) and enables secure data
sharing.

logical channel A logical link to an application on the card. A new feature of the Java Card
System, version 2.2, that enables the opening of up to four simultaneous
sessions with the card, one per logical channel. Commands issued to a
specific logical channel are forwarded to the active applet on that logical
channel.

Object deletion The Java Card System, version 2.2, mechanism ensures that any
unreferenced persistent (transient) object owned by the current context is
deleted. The associated memory space is recovered for reuse prior to the
next card reset.

Package A package is a name space within the Java programming language that
may contain classes and interfaces. A package defines either a user library,

Java CardTM System Protection Profile Collection Page 189 of 189

Version 1.0b August 2003

or one or more applet definitions. A package is divided in two sets of files:
export files (which exclusively contain the public interface information for
an entire package of classes, for external linking purposes; export files are
not used directly in a Java Card virtual machine) and CAP files.

SCP Smart Card Platform. It is comprised of the integrated circuit, the operating
system and the dedicated software of the smart card.

Shareable interface An interface declaring a collection of methods that an applet accepts to
share with other applets. These interface methods can be invoked from an
applet in a context different from the context of the object implementing the
methods, thus “traversing” the firewall.

SIO An object of a class implementing a shareable interface.

Subject An active entity within the TOE that causes information to flow among
objects or change the system’s status. It usually acts on the behalf of a user.
Objects can be active and thus are also subjects of the TOE.

Transient object An object whose contents is not preserved across CAD sessions. The
contents of these objects are cleared at the end of the current CAD session
or when a card reset is performed. Writes to the fields of a transient object
are not affected by transactions.

User Any application interpretable by the JCRE. That also covers the packages.
The associated subject(s), if applicable, is (are) an object(s) belonging to the
javacard.framework.applet class.

End of Document

	INTRODUCTION
	IDENTIFICATION
	Identification of the Document
	On the Conformance of Security Targets
	Identification of the Protection Profiles
	Minimal Configuration Protection Profile
	Java Card System Standard 2.1.1 Configuration Protection Profile
	Java Card System Standard 2.2 Configuration Protection Profile
	Defensive Configuration Protection Profile

	REVISIONS AND COMMENTS
	OVERVIEW
	CC CONFORMANCE
	TYPOGRAPHIC CONVENTIONS
	ASSOCIATED DOCUMENTS
	Reference Documents
	Related Documents

	CONFIGURATIONS AND GROUPS
	What is a Group?
	What is a Configuration?
	Definition and Composition of Groups

	TOE DESCRIPTION
	PRODUCT TYPE
	Bytecode Verification
	Installation of applets
	
	
	Loading
	Linking

	The Card Manager (CM)
	Smart Card Platform: Operating System + Chip + Dedicated Software
	Native Applications

	JAVA CARD 2.2 TECHNOLOGY
	
	
	
	Java Card Remote Method Invocation (JCRMI)
	applet Deletion Manager (ADEL)
	Logical Channels
	Object Deletion

	FUNCTIONAL COMPONENTS AND CONFIGURATIONS
	Configurations
	Minimal Configuration
	Java Card System Standard 2.1.1 Configuration
	Java Card System Standard 2.2 Configuration
	Defensive Configuration

	LIMITS OF THE TOE
	Scope of Evaluation
	Relationship between Configurations and Groups

	The TOE in the Life Cycle of the Smart Card
	TOE Development & Production Environments
	TOE Final Environment

	TOE INTENDED USAGE
	PRODUCT RATIONALE

	TOE Security Environment
	SECURITY ASPECTS
	
	
	
	Confidentiality
	Integrity
	Unauthorized Executions
	Bytecode Verification
	CAP File Verification
	Integrity and Authentication
	Linking and Verification

	Card Management
	Services

	ASSETS
	User data
	TSF data

	USERS & SUBJECTS
	ASSUMPTIONS
	All Configurations
	Minimal Configuration
	Java Card System Standard 2.1.1 Configuration
	Java Card System Standard 2.2 Configuration
	Defensive Configuration

	THREATS
	All Configurations
	
	
	Confidentiality
	Integrity
	Identity Usurpation
	Unauthorized Execution
	Denial of Service

	Minimal Configuration
	Java Card System Standard 2.1.1 Configuration
	
	
	Integrity
	Modifications of the Set of Applications

	Java Card System Standard 2.2 Configuration
	
	
	Unauthorized Executions
	Card Management
	Services

	Defensive Configuration

	ORGANIZATIONAL SECURITY POLICIES
	Minimal Configuration
	Java Card System Standard 2.1.1 Configuration
	Java Card System Standard 2.2 Configuration
	Defensive Configuration

	SECURITY OBJECTIVES
	SECURITY OBJECTIVES FOR THE TOE
	All Configurations
	
	
	Identification
	Execution
	Services

	Minimal Configuration
	Java Card System Standard 2.1.1 Configuration
	
	
	applet Management

	Java Card System Standard 2.2 Configuration
	
	
	applet Management
	Object Deletion
	Services

	Defensive Configuration
	
	
	Integrity, Confidentiality and Correct Execution

	SECURITY OBJECTIVES FOR THE ENVIRONMENT
	All Configurations
	Minimal Configuration
	Java Card System Standard 2.1.1 Configuration
	Java Card System Standard 2.2 Configuration
	Defensive Configuration

	IT SECURITY REQUIREMENTS
	TOE AND IT ENVIRONMENT SECURITY REQUIREMENTS
	CoreG Security Functional Requirements
	Firewall Policy
	
	FDP_ACC.2: Complete Access Control
	FDP_ACF.1 Security attribute based access control
	FDP_IFC.1 Subset information flow control
	FDP_IFF.1 Simple security attributes
	FDP_RIP.1 Subset residual information protection
	FMT_MSA.1 Management of security attributes
	FMT_MSA.2 Secure security attributes
	FMT_MSA.3 Static attribute initialization
	FMT_SMR.1 Security roles
	FPT_SEP.1 TSF domain separation

	Application Programming Interface
	
	FCS_CKM.1 Cryptographic KEY generation
	FCS_CKM.2 Cryptographic KEY distribution
	FCS_CKM.3 Cryptographic KEY access
	FCS_CKM.4 Cryptographic KEY destruction
	FCS_COP.1 Cryptographic operation
	FDP_RIP.1 Subset residual information protection
	FDP_ROL.1 Basic rollback

	Card Security Management
	
	FAU_ARP.1 Security alarms
	FDP_SDI.2 Stored data integrity monitoring and action
	FPT_RVM.1 Non-bypassability of the TSP
	FPT_TDC.1 Inter-TSF basic TSF data consistency
	FPT_FLS.1 Failure with preservation of secure state
	FPR_UNO.1 Unobservability
	FPT_TST.1 TSF testing

	AID Management
	
	FMT_MTD.1 Management of TSF data
	FMT_MTD.3 Secure TSF data
	FIA_ATD.1 User attribute definition
	FIA_UID.2 User identification before any action
	FIA_USB.1 User-subject binding

	InstG Security Functional Requirements
	
	
	FDP_ITC.2 Import of user data with security attributes
	FMT_SMR.1 Security roles
	FPT_FLS.1 Failure with preservation of secure state
	FPT_RCV.3 Automated recovery without undue loss
	FRU_RSA.1 Maximum quotas

	BCVG Security Functional Requirements
	
	
	FDP_IFC.2 Complete information flow control
	FDP_IFF.2 Hierarchical security attributes
	FMT_MSA.1 Management of security attributes
	FMT_MSA.2 Secure security attributes
	FMT_MSA.3 Static attribute initialization
	FMT_SMR.1 Security roles
	FRU_RSA.1 Maximum quotas

	ADELG Security Functional Requirements
	Applet Deletion Manager Policy
	
	FDP_ACC.2: Complete access control
	FDP_ACF.1 Security attribute based access control
	FMT_MSA.1 Management of security attributes
	FMT_MSA.3 Static attribute initialization
	FMT_SMR.1 Security roles

	Additional Deletion Requirements
	
	FDP_RIP.1 Subset residual information protection
	FPT_FLS.1 Failure with preservation of secure state

	RMIG Security Functional Requirements
	JCRMI Policy
	
	FDP_ACC.2: Complete access control
	FDP_ACF.1 Security attribute based access control
	FDP_IFC.1 Subset information flow control
	FDP_IFF.1 Simple security attributes
	FMT_MSA.1 Management of security attributes
	FMT_MSA.3 Static attribute initialization
	FMT_REV.1 Revocation
	FMT_SMR.1 Security roles

	LCG Security Functional Requirements
	Firewall Policy
	
	FDP_ACC.2: Complete access control
	FDP_ACF.1 Security attribute based access control
	FMT_MSA.1 Management of security attributes

	Additional Requirements on Logical Channels
	
	FDP_RIP.1 Subset residual information protection

	ODELG Security Functional Requirements
	
	
	FDP_RIP.1 Subset residual information protection
	FPT_FLS.1 Failure with preservation of secure state

	CarG Security Functional Requirements
	
	
	FCO_NRO.2 Enforced proof of origin
	FIA_UID.1 Timing of identification
	FDP_IFC.2 Complete information flow control
	FDP_IFF.1 Simple security attributes
	FDP_UIT.1 Data exchange integrity
	FMT_MSA.1 Management of security attributes
	FMT_MSA.3 Static attribute initialization
	FMT_SMR.1 Security roles
	FTP_ITC.1 Inter-TSF trusted channel

	SCPG Security Functional Requirements
	
	
	Underlying abstract machine test (FPT_AMT)
	Fail secure (FPT_FLS)
	Fault tolerance (FRU_FLT)
	TSF Physical protection (FPT_PHP)
	Domain separation (FPT_SEP)
	Reference mediation (FPT_RVM)
	Trusted recovery (FPT_RCV)

	CMGRG Security Functional Requirements
	
	
	FDP_ACC.1 Subset Access Control
	FDP_ACF.1 Security attribute based access control
	FMT_MSA.1 Management of security attributes
	FMT_MSA.3 Static attribute initialization
	FMT_SMR.1 Security roles
	FIA_UID.1 Timing of identification

	TOE SECURITY ASSURANCE REQUIREMENTS

	Rationale
	SECURITY OBJECTIVES RATIONALE
	Minimal Configuration
	Threats Related to Security Objectives
	
	Confidentiality & Integrity
	Identity Usurpation
	Unauthorized Executions
	Denial of Service

	Assumptions Related to Security Objectives
	Organizational Policies Related to Security Objectives

	Java Card System Standard 2.1.1 Configuration
	Threats Related to Security Objectives
	
	Confidentiality & Integrity
	Identity Usurpation
	Unauthorized Executions
	Denial of Service
	Modifications of the Set of Applications
	Integrity and Installation

	Assumptions Related to Security Objectives
	Organizational Policies Related to Security Objectives

	Java Card System Standard 2.2 Configuration
	Threats Related to Security Objectives
	
	Confidentiality & Integrity
	Identity Usurpation
	Unauthorized Executions
	Denial of Service
	Modifications of the Set of Applications
	Integrity and Installation
	Unauthorized Executions
	Card Management
	Object Deletion

	Assumptions Related to Security Objectives
	Organizational Policies Related to Security Objectives

	Defensive Configuration
	Threats Related to Security Objectives
	
	Confidentiality & Integrity
	Identity Usurpation
	Unauthorized Executions
	Denial of Service
	Modifications of the Set of Applications
	Unauthorized Executions
	Card Management
	Object Deletion

	Assumptions Related to Security Objectives
	Organizational Policies Related to Security Objectives

	SECURITY REQUIREMENTS RATIONALE
	Minimal Configuration
	TOE Security Requirements Rationale
	
	Identification
	Execution
	Services

	IT Environment Security Requirements Rationale
	Security Functional Requirements Dependencies
	Rationale for Strength of Function Medium
	Rationale for Assurance Level EAL4 augmented
	Rationale for Assurance Level EAL4
	Rationale for Augmentation
	AVA_VLA.3
	ADV_IMP.2

	Internal Consistency and Mutual Support

	Java Card System Standard 2.1.1 Configuration
	TOE Security Requirements Rationale
	
	Identification
	applet Management
	Execution
	Services

	IT Environment Security Requirements Rationale
	Security Functional Requirements Dependencies
	Rationale for Strength of Function Medium
	Rationale for Assurance Level EAL4 augmented
	Rationale for Assurance Level EAL4
	Rationale for Augmentation
	AVA_VLA.3
	ADV_IMP.2

	Internal Consistency and Mutual Support

	Java Card System Standard 2.2 Configuration
	TOE Security Requirements Rationale
	
	Identification
	applet Management
	Execution
	Services
	Object Deletion

	IT Environment Security Requirements Rationale
	Security Functional Requirements Dependencies
	Rationale for Strength of Function Medium
	Rationale for Assurance Level EAL4 augmented
	Rationale for Assurance Level EAL4
	Rationale for Augmentation
	AVA_VLA.3
	ADV_IMP.2

	Internal Consistency and Mutual Support

	Defensive Configuration
	TOE Security Requirements Rationale
	
	Identification
	applet Management
	Execution
	Services
	Object Deletion
	Integrity, Confidentiality and Correct Execution

	IT Environment Security Requirements Rationale
	Security Functional Requirements Dependencies
	Rationale for Strength of Function Medium
	Rationale for Assurance Level EAL4 augmented
	Rationale for Assurance Level EAL4
	Rationale for Augmentation
	AVA_VLA.3
	ADV_IMP.2

	Internal Consistency and Mutual Support

	APPENDIX: A UNIFIED VIEW OF CONFIGURATIONS
	APPENDIX: GLOSSARY

