
Protection Profile for General Purpose
Operating Systems

Version: 4.1
2016-03-09

National Information Assurance Partnership

Revision History

Version Date Comment

4.1 2016-03-09 Minor updates - cryptographic modes

4.0 2015-08-14 Release - significant revision

Contents

1. Introduction
1.1. Overview
1.2. Terms
1.2.1. Common Criteria Terms
1.2.2. Technology Terms
1.3. Compliant Targets of Evaluation
1.3.1. TOE Boundary
1.3.2. TOE Platform
1.4. Use Cases
2. Conformance Claims
3. Security Problem Definition
3.1. Threats
3.2. Assumptions
4. Security Objectives
4.1. Security Objectives for the TOE
4.2. Security Objectives for the Operational Environment
4.3. Security Objectives Rationale
5. Security Requirements
5.1. Security Functional Requirements
5.1.1. Cryptographic Support (FCS)
5.1.2. User Data Protection (FDP)
5.1.3. Security Management (FMT)
5.1.4. Protection of the TSF (FPT)
5.1.5. Audit Data Generation (FAU)
5.1.6. Identification and Authentication (FIA)
5.1.7. Trusted Path/Channels (FTP)
5.2. Security Assurance Requirements
5.2.1. Class ASE: Security Target
5.2.2. Class ADV: Development
5.2.3. Class AGD: Guidance Documentation
5.2.4. Class ALC: Life-cycle Support
5.2.5. Class ATE: Tests
5.2.6. Class AVA: Vulnerability Assessment
Appendix A: Optional Requirements
Appendix B: Selection-Based Requirements
Appendix C: Objective Requirements
Appendix D: Inherently Satisfied Requirements
Appendix E: Entropy Documentation and Assessment

Appendix F: References
Appendix G: Acronyms

1. Introduction

1.1 Overview

The scope of this Protection Profile (PP) is to describe the security functionality of
operating systems in terms of [CC] and to define functional and assurance requirements for
such products. An operating system is software that manages computer hardware and
software resources, and provides common services for application programs. The
hardware it manages may be physical or virtual.

1.2 Terms

The following sections provide both Common Criteria and technology terms used in this
Protection Profile.

1.2.1 Common Criteria Terms

Common Criteria
(CC)

Common Criteria for Information Technology Security Evaluation.

Common
Evaluation
Methodology
(CEM)

Common Evaluation Methodology for Information Technology
Security Evaluation.

Protection Profile
(PP)

An implementation-independent set of security requirements for a
category of products.

Security Target
(ST)

A set of implementation-dependent security requirements for a
specific product.

Target of
Evaluation (TOE)

The product under evaluation. In this case, the Operating System
as described in section TOE Boundary and its supporting
documentation.

TOE Security
Functionality
(TSF)

The security functionality of the product under evaluation.

TOE Summary
Specification
(TSS)

A description of how a TOE satisfies the SFRs in a ST.

Security
Functional
Requirement
(SFR)

A requirement for security enforcement by the TOE.

Security
Assurance
Requirement

A requirement to assure the security of the TOE.

(SAR)

1.2.2 Technology Terms

Address
Space Layout
Randomization
(ASLR)

An anti-exploitation feature which loads memory mappings into
unpredictable locations. ASLR makes it more difficult for an attacker to
redirect control to code that they have introduced into the address
space of a process.

Administrator An administrator is responsible for management activities, including
setting policies that are applied by the enterprise on the operating
system. This administrator could be acting remotely through a
management server, from which the system receives configuration
policies. An administrator can enforce settings on the system which
cannot be overridden by non-administrator users.

Application
(app)

Software that runs on a platform and performs tasks on behalf of the
user or owner of the platform, as well as its supporting documentation.

Application
Programming
Interface (API)

A specification of routines, data structures, object classes, and
variables that allows an application to make use of services provided
by another software component, such as a library. APIs are often
provided for a set of libraries included with the platform.

Credential Data that establishes the identity of a user, e.g. a cryptographic key or
password.

Critical
Security
Parameters
(CSP)

Information that is either user or system defined and is used to operate
a cryptographic module in processing encryption functions including
cryptographic keys and authentication data, such as passwords, the
disclosure or modification of which can compromise the security of a
cryptographic module or the security of the information protected by the
module.

Data At Rest
(DAR)
Protection

Countermeasures that prevent attackers, even those with physical
access, from extracting data from non-volatile storage. Common
techniques include data encryption and wiping.

Data
Execution
Prevention
(DEP)

An anti-exploitation feature of modern operating systems executing on
modern computer hardware, which enforces a non-execute permission
on pages of memory. DEP prevents pages of memory from containing
both data and instructions, which makes it more difficult for an attacker
to introduce and execute code.

Developer An entity that writes OS software. For the purposes of this document,
vendors and developers are the same.

Host-based
Firewall

A software-based firewall implementation running on the OS for
filtering inbound and outbound network traffic to and from processes
running on the OS.

Operating
System (OS)

Software that manages physical and logical resources and provides
services for applications. The terms TOE and OS are interchangeable
in this document.

Personally
Identifiable
Information
(PII)

Any information about an individual maintained by an agency,
including, but not limited to, education, financial transactions, medical
history, and criminal or employment history and information which can
be used to distinguish or trace an individual's identity, such as their
name, social security number, date and place of birth, mother’s maiden
name, biometric records, etc., including any other personal information
which is linked or linkable to an individual. [OMB]

Sensitive Data Sensitive data may include all user or enterprise data or may be
specific application data such as PII, emails, messaging, documents,
calendar items, and contacts. Sensitive data must minimally include
credentials and keys. Sensitive data shall be identified in the OS’s
TSS by the ST author.

User A user is subject to configuration policies applied to the operating
system by administrators. On some systems under certain
configurations, a normal user can temporarily elevate privileges to that
of an administrator. At that time, such a user should be considered an
administrator.

1.3 Compliant Targets of Evaluation

1.3.1 TOE Boundary
The TOE boundary encompasses the OS kernel and its drivers, shared software libraries,
and some application software included with the OS. The applications considered within
the TOE are those that provide essential security services, many of which run with elevated
privileges. Applications which are covered by more-specific Protection Profiles cannot
claim evaluation as part of the OS evaluation, even when it is necessary to evaluate some
of their functionality as it relates to their role as part of the OS.

Figure 1: General TOE

1.3.2 TOE Platform
The TOE platform, which consists of the physical or virtual hardware on which the TOE
executes, is outside the scope of evaluation. At the same time, the security of the TOE
relies upon it. Other hardware components which independently run their own software
and are relevant to overall system security are also outside the scope of evaluation.

1.4 Use Cases

Requirements in this Protection Profile are designed to address the security problems in at

least the following use cases. These use cases are intentionally very broad, as many
specific use cases exist for an operating system. These use cases may also overlap with
one another. An operating system's functionality may even be effectively extended by
privileged applications installed onto it. However, these are out of scope of this PP.

[USE CASE 1] End User Devices
The OS provides a platform to end user devices such as desktops, laptops,
convertibles, and tablets. These devices may optionally be bound to a directory
server or management server.
As this Protection Profile does not address threats against data-at-rest, enterprises
deploying operating systems in mobile scenarios should ensure that these systems
include data-at-rest protection spelled out in other Protection Profiles. Specifically,
this includes the Protection Profiles for Full Drive Encryption - Encryption Engine,
Full Drive Encryption - Authorization Acquisition, and Software File Encryption. The
Protection Profile for Mobile Device Fundamentals includes requirements for data-at-
rest protection and is appropriate for many mobile devices.

[USE CASE 2] Server Systems
The OS provides a platform for server-side services, either on physical or virtual
hardware. Many specific examples exist in which the OS acts as a platform for such
services, including file servers, mail servers, and web servers.

[USE CASE 3] Cloud Systems
The OS provides a platform for providing cloud services running on physical or virtual
hardware. An OS is typically part of offerings identified as Infrastructure as a Service
(IaaS), Software as a Service (SaaS), and Platform as a Service (PaaS).
This use case typically involves the use of virtualization technology which should be
evaluated against the Protection Profile for Server Virtualization.

2. Conformance Claims

Conformance Statement
To be conformant to this PP, a ST must demonstrate Exact Conformance, a subset of
Strict Conformance as defined in [CC] Part 1 (ASE_CCL). The ST must include all
components in this PP that are:

unconditional (which are always required)
selection-based (which are required when certain selections are chosen in the
unconditional requirements)

and may include components that are

optional or
objective.

Unconditional requirements are found in the main body of the document, while
appendices contain the selection-based, optional, and objective requirements. The
ST may iterate any of these components, but it must not include any additional
component (e.g. from CC Part 2 or 3 or a PP not conformant with this one, or
extended by the ST) not defined in this PP or a PP conformant to this one.
Some components in this Protection Profile have a dependency on other
components. In accordance with [CC] Part 1, Appendix D includes justifications for
those cases where the PP does not explicitly contain the component upon which
there is a dependency.

CC Conformance Claims
This PP is conformant to Parts 2 (extended) and 3 (extended) of Common Criteria
Version 3.1, Revision 4.[CC].

PP Claim
This PP does not claim conformance to any other Protection Profile.

Package Claim
This PP does not claim conformance to any packages.

3. Security Problem Definition

The security problem is described in terms of the threats that the OS is expected to
address, assumptions about the operational environment, and any organizational security
policies that the OS is expected to enforce.

3.1 Threats

T.NETWORK_ATTACK
An attacker is positioned on a communications channel or elsewhere on the network
infrastructure. Attackers may engage in communications with applications and
services running on or part of the OS with the intent of compromise. Engagement may
consist of altering existing legitimate communications.

T.NETWORK_EAVESDROP
An attacker is positioned on a communications channel or elsewhere on the network
infrastructure. Attackers may monitor and gain access to data exchanged between
applications and services that are running on or part of the OS.

T.LOCAL_ATTACK
An attacker may compromise applications running on the OS. The compromised
application may provide maliciously formatted input to the OS through a variety of
channels including unprivileged system calls and messaging via the file system.

T.LIMITED_PHYSICAL_ACCESS
An attacker may attempt to access data on the OS while having a limited amount of
time with the physical device.

3.2 Assumptions

A.PLATFORM
The OS relies upon a trustworthy computing platform for its execution. This
underlying platform is out of scope of this PP.

A.PROPER_USER
The user of the OS is not willfully negligent or hostile, and uses the software in
compliance with the applied enterprise security policy. At the same time, malicious
software could act as the user, so requirements which confine malicious subjects are
still in scope.

A.PROPER_ADMIN
The administrator of the OS is not careless, willfully negligent or hostile, and
administers the OS within compliance of the applied enterprise security policy.

4. Security Objectives

4.1 Security Objectives for the TOE

O.ACCOUNTABILITY
Conformant OSs ensure that information exists that allows administrators to discover
unintentional issues with the configuration and operation of the operating system and
discover its cause. Gathering event information and immediately transmitting it to
another system can also enable incident response in the event of system
compromise.
Addressed by: FAU_GEN.1

O.INTEGRITY
Conformant OSs ensure the integrity of their update packages. OSs are seldom if
ever shipped without errors, and the ability to deploy patches and updates with
integrity is critical to enterprise network security. Conformant OSs provide execution
environment-based mitigations that increase the cost to attackers by adding
complexity to the task of compromising systems.
Addressed by: FPT_SBOP_EXT.1, FPT_ASLR_EXT.1, FPT_TUD_EXT.1, FPT_TUD_EXT.2,
FCS_COP.1.1(2), FCS_COP.1.1(3), FCS_COP.1.1(4), FPT_ACF_EXT.1, FPT_SRP_EXT.1,
FIA_X509_EXT.2, FPT_TST_EXT.1, FTP_ITC_EXT.1, FPT_W^X_EXT.1.1, FIA_AFL.1,
FIA_UAU.5

O.MANAGEMENT
To facilitate management by users and the enterprise, conformant OSes provide
consistent and supported interfaces for their security-relevant configuration and
maintenance. This includes the deployment of applications and application updates
through the use of platform-supported deployment mechanisms and formats, as well
as providing mechanisms for configuration and application execution control.
Addressed by: FMT_MOF_EXT.1, FTP_TRP.1

O.PROTECTED_STORAGE
To address the issue of loss of confidentiality of credentials in the event of loss of
physical control of the storage medium, conformant OSs provide data-at-rest
protection for credentials. Conformant OSes also provide access controls which
allow users to keep their files private from other users of the same system.
Addressed by: FCS_STO_EXT.1, FCS_RBG_EXT.1, FCS_COP.1.1(1), FDP_ACF_EXT.1

O.PROTECTED_COMMS
To address both passive (eavesdropping) and active (packet modification) network
attack threats, conformant OSs provide mechanisms to create trusted channels for
CSP and sensitive data. Both CSP and sensitive data should not be exposed outside
of the platform.
Addressed by: FCS_TLSC_EXT.1, FCS_TLSC_EXT.2, FCS_TLSC_EXT.3,
FCS_TLSC_EXT.4, FCS_DTLS_EXT.1, FCS_RBG_EXT.1, FCS_CKM.1(1), FCS_CKM.2(1),
FCS_COP.1.1(1), FDP_IFC_EXT.1, FIA_X509_EXT.1, FIA_X509_EXT.2, FTP_ITC_EXT.1

4.2 Security Objectives for the Operational Environment

The following security objectives for the operational environment assist the OS in correctly
providing its security functionality. These track with the assumptions about the

environment.

OE.PLATFORM
The OS relies on being installed on trusted hardware.

OE.PROPER_USER
The user of the OS is not willfully negligent or hostile, and uses the software within
compliance of the applied enterprise security policy. Standard user accounts are
provisioned in accordance with the least privilege model. Users requiring higher
levels of access should have a separate account dedicated for that use.

OE.PROPER_ADMIN
The administrator of the OS is not careless, willfully negligent or hostile, and
administers the OS within compliance of the applied enterprise security policy.

4.3 Security Objectives Rationale

This section describes how the assumptions, threats, and organizational security policies
map to the security objectives.

Threat, Assumption, or OSP Security Objectives Rationale

T.NETWORK_ATTACK O.PROTECTED_COMMS,
O.INTEGRITY,
O.MANAGEMENT

The threat
T.NETWORK_ATTACK is
countered by
O.PROTECTED_COMMS as
this provides for integrity of
transmitted data.
The threat
T.NETWORK_ATTACK is
countered by O.INTEGRITY
as this provides for integrity
of software that is installed
onto the system from the
network.
The threat
T.NETWORK_ATTACK is
countered by
O.MANAGEMENT as this
provides for the ability to
configure the OS to defend
against network attack.

T.NETWORK_EAVESDROP O.PROTECTED_COMMS,
O.MANAGEMENT

The threat
T.NETWORK_EAVESDROP
is countered by
O.PROTECTED_COMMS as
this provides for
confidentiality of transmitted
data.
The threat
T.NETWORK_EAVESDROP
is countered by

O.MANAGEMENT as this
provides for the ability to
configure the OS to protect
the confidentiality of its
transmitted data.

T.LOCAL_ATTACK O.INTEGRITY The objective O.INTEGRITY
protects against the use of
mechanisms that weaken the
TOE with regard to attack by
other software on the
platform.

T.LIMITED_PHYSICAL_ACCESS O.PROTECTED_STORAGE The objective
O.PROTECTED_STORAGE
protects against
unauthorized attempts to
access physical storage
used by the TOE.

A.PLATFORM OE.PLATFORM The operational environment
objective OE.PLATFORM is
realized through
A.PLATFORM.

A.PROPER_USER OE.PROPER_USER The operational environment
objective
OE.PROPER_USER is
realized through
A.PROPER_USER.

A.PROPER_ADMIN OE.PROPER_ADMIN The operational environment
objective
OE.PROPER_ADMIN is
realized through
A.PROPER_ADMIN.

FCS_CKM.1.1(1)

5. Security Requirements

This chapter describes the security requirements which have to be fulfilled by the OS.
Those requirements comprise functional components from Part 2 and assurance
components from Part 3 of [CC]. The following notations are used:

Refinement operation (denoted by bold text): is used to add details to a
requirement, and thus further restricts a requirement.
Selection (denoted by italicized text): is used to select one or more options provided
by the [CC] in stating a requirement.
Assignment operation (denoted by italicized text): is used to assign a specific value
to an unspecified parameter, such as the length of a password. Showing the value in
square brackets indicates assignment.
Iteration operation: are identified with a number inside parentheses (e.g. "(1)")

5.1 Security Functional Requirements

The Security Functional Requirements included in this section are derived from Part 2 of
the Common Criteria for Information Technology Security Evaluation, Version 3.1,
Revision 4, with additional extended functional components.

5.1.1 Cryptographic Support (FCS)

FCS_CKM.1(1) Cryptographic Key Generation (Refined)

The OS shall generate asymmetric cryptographic keys in
accordance with a specified cryptographic key generation
algorithm [selection:

RSA schemes using cryptographic key sizes of 2048-bit or
greater that meet the following: [selection: FIPS PUB 186-4,
“Digital Signature Standard (DSS)”, Appendix B.3 , ANSI
X9.31-1998, Section 4.1] ,
ECC schemes using “NIST curves” P-256, P-384 and
[selection: P-521 , no other curves] that meet the following:
FIPS PUB 186-4, “Digital Signature Standard (DSS)”,
Appendix B.4 ,
FFC schemes using cryptographic key sizes of 2048-bit or
greater that meet the following: FIPS PUB 186-4, “Digital
Signature Standard (DSS)”, Appendix B.1

] and specified cryptographic key sizes [assignment: cryptographic
key sizes] that meet the following: [assignment: list of standards] .

Application Note: The ST author shall select all key generation
schemes used for key establishment and entity authentication.
When key generation is used for key establishment, the schemes
in FCS_CKM.2.1(1) and selected cryptographic protocols must
match the selection. When key generation is used for entity
authentication, the public key is expected to be associated with an
X.509v3 certificate.
If the OS acts only as a receiver in the RSA key establishment
scheme, the OS does not need to implement RSA key generation.

The ANSI X9.31-1998 option will be removed from the selection in
a future publication of this document. Presently, the selection is not
exclusively limited to the FIPS PUB 186-4 options in order to allow
industry some further time to complete the transition to the modern
FIPS PUB 186-4 standard.

Assurance Activity

The evaluator will ensure that the TSS identifies the key sizes
supported by the OS. If the ST specifies more than one
scheme, the evaluator will examine the TSS to verify that it
identifies the usage for each scheme.
The evaluator will verify that the AGD guidance instructs the
administrator how to configure the OS to use the selected key
generation scheme(s) and key size(s) for all uses defined in
this PP.
Assurance Activity Note: The following tests may require the
vendor to furnish a developer environment and developer
tools that are typically not available to end-users of the OS.
Key Generation for FIPS PUB 186-4 RSA Schemes
The evaluator will verify the implementation of RSA Key
Generation by the OS using the Key Generation test. This test
verifies the ability of the TSF to correctly produce values for
the key components including the public verification exponent
e, the private prime factors p and q, the public modulus n and
the calculation of the private signature exponent d. Key Pair
generation specifies 5 ways (or methods) to generate the
primes p and q. These include:

1. Random Primes:
Provable primes
Probable primes

2. Primes with Conditions:
Primes p1, p2, q1,q2, p and q shall all be provable
primes
Primes p1, p2, q1, and q2 shall be provable
primes and p and q shall be probable primes
Primes p1, p2, q1,q2, p and q shall all be probable
primes

To test the key generation method for the Random Provable
primes method and for all the Primes with Conditions
methods, the evaluator must seed the TSF key generation
routine with sufficient data to deterministically generate the
RSA key pair. This includes the random seed(s), the public
exponent of the RSA key, and the desired key length. For
each key length supported, the evaluator shall have the TSF
generate 25 key pairs. The evaluator will verify the
correctness of the TSF’s implementation by comparing values
generated by the TSF with those generated from a known
good implementation.
If possible, the Random Probable primes method should also

javascript:toggle('aactID-idp215232', 'link-aactID-idp215232');

be verified against a known good implementation as
described above. Otherwise, the evaluator will have the TSF
generate 10 keys pairs for each supported key length nlen
and verify:

n = p⋅q,
p and q are probably prime according to Miller-Rabin
tests,
GCD(p-1,e) = 1,
GCD(q-1,e) = 1,
2 ≤ e ≤ 2 and e is an odd integer,
|p-q| > 2 ,
p ≥ 2 ,
q ≥ 2 ,
2 < d < LCM(p-1,q-1),
e⋅d = 1 mod LCM(p-1,q-1).

Key Generation for ANSI X9.31-1998 RSA Schemes
If the TSF implements the ANSI X9.31-1998 scheme, the
evaluator will check to ensure that the TSS describes how the
key-pairs are generated. In order to show that the TSF
implementation complies with ANSI X9.31-1998, the
evaluator will ensure that the TSS contains the following
information:

The TSS shall list all sections of the standard to which
the OS complies;
For each applicable section listed in the TSS, for all
statements that are not "shall" (that is, "shall not",
"should", and "should not") , if the OS implements such
options it shall be described in the TSS. If the included
functionality is indicated as "shall not" or "should not" in
the standard, the TSS shall provide a rationale for why
this will not adversely affect the security policy
implemented by the OS;
For each applicable section of Appendix B, any
omission of functionality related to "shall" or “should”
statements shall be described.

Key Generation for Elliptic Curve Cryptography (ECC)
FIPS 186-4 ECC Key Generation Test
For each supported NIST curve, i.e., P-256, P-384 and P-521,
the evaluator will require the implementation under test (IUT)
to generate 10 private/public key pairs. The private key shall
be generated using an approved random bit generator (RBG).
To determine correctness, the evaluator will submit the
generated key pairs to the public key verification (PKV)
function of a known good implementation.
FIPS 186-4 Public Key Verification (PKV) Test
For each supported NIST curve, i.e., P-256, P-384 and P-521,
the evaluator will generate 10 private/public key pairs using
the key generation function of a known good implementation
and modify five of the public key values so that they are
incorrect, leaving five values unchanged (i.e., correct). The

16 256

nlen/2 - 100

nlen/2 -1/2

nlen/2 -1/2

(nlen/2)

FCS_CKM.2.1(1)

evaluator will obtain in response a set of 10 PASS/FAIL
values.
Key Generation for Finite-Field Cryptography (FFC)
The evaluator shall verify the implementation of the
Parameters Generation and the Key Generation for FFC by
the TOE using the Parameter Generation and Key Generation
test. This test verifies the ability of the TSF to correctly
produce values for the field prime p, the cryptographic prime q
(dividing p-1), the cryptographic group generator g, and the
calculation of the private key x and public key y.
The Parameter generation specifies 2 ways (or methods) to
generate the cryptographic prime q and the field prime p:

Cryptographic and Field Primes:
Primes q and p shall both be provable primes
Primes q and field prime p shall both be probable
primes

and two ways to generate the cryptographic group generator
g:

Cryptographic Group Generator:
Generator g constructed through a verifiable process
Generator g constructed through an unverifiable
process

The Key generation specifies 2 ways to generate the private
key x:

Private Key:
len(q) bit output of RBG where 1 ≤ x ≤ q-1
len(q) + 64 bit output of RBG, followed by a mod q-1
operation where 1 ≤ x ≤ q-1

The security strength of the RBG must be at least that of the
security offered by the FFC parameter set. To test the
cryptographic and field prime generation method for the
provable primes method and/or the group generator g for a
verifiable process, the evaluator must seed the TSF
parameter generation routine with sufficient data to
deterministically generate the parameter set. For each key
length supported, the evaluator shall have the TSF generate
25 parameter sets and key pairs. The evaluator shall verify
the correctness of the TSF’s implementation by comparing
values generated by the TSF with those generated from a
known good implementation. Verification must also confirm:

g != 0,1
q divides p-1
g mod p = 1
g mod p = y

for each FFC parameter set and key pair.

FCS_CKM.2(1) Cryptographic Key Establishment (Refined)

The OS shall implement functionality to perform cryptographic

q

x

key establishment in accordance with a specified cryptographic
key establishment method:
RSA-based key establishment schemes that meets the
following: NIST Special Publication 800-56B, “Recommendation
for Pair-Wise Key Establishment Schemes Using Integer
Factorization Cryptography”
and [selection:

Elliptic curve-based key establishment schemes that
meets the following: NIST Special Publication 800-56A,
“Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography” ,
Finite field-based key establishment schemes that meets
the following: NIST Special Publication 800-56A,
“Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography” ,
No other schemes

] that meets the following: [assignment: list of standards] .

Application Note: The ST author shall select all key
establishment schemes used for the selected cryptographic
protocols. FCS_TLSC_EXT.1 requires cipher suites that use RSA-
based key establishment schemes.
The RSA-based key establishment schemes are described in
Section 9 of NIST SP 800-56B; however, Section 9 relies on
implementation of other sections in SP 800-56B. If the OS acts as
a receiver in the RSA key establishment scheme, the OS does not
need to implement RSA key generation.
The elliptic curves used for the key establishment scheme shall
correlate with the curves specified in FCS_CKM.1.1(1). The domain
parameters used for the finite field-based key establishment
scheme are specified by the key generation according to
FCS_CKM.1.1(1).

Assurance Activity

The evaluator will ensure that the supported key
establishment schemes correspond to the key generation
schemes identified in FCS_CKM.1.1. If the ST specifies more
than one scheme, the evaluator will examine the TSS to verify
that it identifies the usage for each scheme.
The evaluator will verify that the AGD guidance instructs the
administrator how to configure the OS to use the selected key
establishment scheme(s).
Assurance Activity Note: The following tests require the
developer to provide access to a test platform that provides
the evaluator with tools that are typically not found on factory
products.
Key Establishment Schemes
The evaluator will verify the implementation of the key
establishment schemes supported by the OS using the
applicable tests below.
SP800-56A Key Establishment Schemes

javascript:toggle('aactID-idp282992', 'link-aactID-idp282992');

The evaluator will verify the OS's implementation of SP800-
56A key agreement schemes using the following Function
and Validity tests. These validation tests for each key
agreement scheme verify that the OS has implemented the
components of the key agreement scheme according to the
specifications in the Recommendation. These components
include the calculation of the discrete logarithm cryptography
(DLC) primitives (the shared secret value Z) and the
calculation of the derived keying material (DKM) via the Key
Derivation Function (KDF). If key confirmation is supported,
the evaluator will also verify that the components of key
confirmation have been implemented correctly, using the test
procedures described below. This includes the parsing of the
DKM, the generation of MAC data and the calculation of MAC
tag.

Function Test
The Function test verifies the ability of the OS to
implement the key agreement schemes correctly. To
conduct this test the evaluator shall generate or obtain
test vectors from a known good implementation of the
OS's supported schemes. For each supported key
agreement scheme-key agreement role combination,
KDF type, and, if supported, key confirmation role- key
confirmation type combination, the tester shall generate
10 sets of test vectors. The data set consists of the NIST
approved curve (ECC) per 10 sets of public keys. These
keys are static, ephemeral or both depending on the
scheme being tested.
The evaluator will obtain the DKM, the corresponding
OS's public keys (static and/or ephemeral), the MAC
tag(s), and any inputs used in the KDF, such as the Other
Information field OI and OS id fields.
If the OS does not use a KDF defined in SP 800-56A, the
evaluator will obtain only the public keys and the hashed
value of the shared secret.
The evaluator will verify the correctness of the TSF’s
implementation of a given scheme by using a known
good implementation to calculate the shared secret
value, derive the keying material DKM, and compare
hashes or MAC tags generated from these values.
If key confirmation is supported, the OS shall perform the
above for each implemented approved MAC algorithm.
Validity Test
The Validity test verifies the ability of the OS to recognize
another party’s valid and invalid key agreement results
with or without key confirmation. To conduct this test, the
evaluator will obtain a list of the supporting cryptographic
functions included in the SP800-56A key agreement
implementation to determine which errors the OS should
be able to recognize. The evaluator generates a set of 30
test vectors consisting of data sets including domain
parameter values or NIST approved curves, the

evaluator’s public keys, the OS’s public/private key pairs,
MAC tag, and any inputs used in the KDF, such as the
other info and OS id fields.
The evaluator will inject an error in some of the test
vectors to test that the OS recognizes invalid key
agreement results caused by the following fields being
incorrect: the shared secret value Z, the DKM, the other
information field OI, the data to be MAC'd, or the
generated MAC tag. If the OS contains the full or partial
(only ECC) public key validation, the evaluator will also
individually inject errors in both parties’ static public
keys, both parties’ ephemeral public keys and the OS’s
static private key to assure the OS detects errors in the
public key validation function and/or the partial key
validation function (in ECC only). At least two of the test
vectors shall remain unmodified and therefore should
result in valid key agreement results (they should pass).
The OS shall use these modified test vectors to emulate
the key agreement scheme using the corresponding
parameters. The evaluator will compare the OS’s results
with the results using a known good implementation
verifying that the OS detects these errors.

SP800-56B Key Establishment Schemes
The evaluator will verify that the TSS describes whether the
OS acts as a sender, a recipient, or both for RSA-based key
establishment schemes.
If the OS acts as a sender, the following assurance activity
shall be performed to ensure the proper operation of every OS
supported combination of RSA-based key establishment
scheme:

To conduct this test the evaluator will generate or obtain
test vectors from a known good implementation of the
OS's supported schemes. For each combination of
supported key establishment scheme and its options
(with or without key confirmation if supported, for each
supported key confirmation MAC function if key
confirmation is supported, and for each supported mask
generation function if KTS-OAEP is supported), the tester
shall generate 10 sets of test vectors. Each test vector
shall include the RSA public key, the plaintext keying
material, any additional input parameters if applicable,
the MAC key and MAC tag if key confirmation is
incorporated, and the outputted ciphertext. For each test
vector, the evaluator shall perform a key establishment
encryption operation on the OS with the same inputs (in
cases where key confirmation is incorporated, the test
shall use the MAC key from the test vector instead of the
randomly generated MAC key used in normal operation)
and ensure that the outputted ciphertext is equivalent to
the ciphertext in the test vector.

If the OS acts as a receiver, the following assurance activities

FCS_CKM_EXT.3.1

shall be performed to ensure the proper operation of every OS
supported combination of RSA-based key establishment
scheme:

To conduct this test the evaluator will generate or obtain
test vectors from a known good implementation of the
OS's supported schemes. For each combination of
supported key establishment scheme and its options
(with our without key confirmation if supported, for each
supported key confirmation MAC function if key
confirmation is supported, and for each supported mask
generation function if KTS-OAEP is supported), the tester
shall generate 10 sets of test vectors. Each test vector
shall include the RSA private key, the plaintext keying
material, any additional input parameters if applicable,
the MAC tag in cases where key confirmation is
incorporated, and the outputted ciphertext. For each test
vector, the evaluator will perform the key establishment
decryption operation on the OS and ensure that the
outputted plaintext keying material is equivalent to the
plaintext keying material in the test vector. In cases
where key confirmation is incorporated, the evaluator will
perform the key confirmation steps and ensure that the
outputted MAC tag is equivalent to the MAC tag in the
test vector.

The evaluator will ensure that the TSS describes how the OS
handles decryption errors. In accordance with NIST Special
Publication 800-56B, the OS must not reveal the particular
error that occurred, either through the contents of any
outputted or logged error message or through timing
variations. If KTS-OAEP is supported, the evaluator will
create separate contrived ciphertext values that trigger each
of the three decryption error checks described in NIST
Special Publication 800-56B section 7.2.2.3, ensure that each
decryption attempt results in an error, and ensure that any
outputted or logged error message is identical for each. If
KTS-KEM-KWS is supported, the evaluator will create
separate contrived ciphertext values that trigger each of the
three decryption error checks described in NIST Special
Publication 800-56B section 7.2.3.3, ensure that each
decryption attempt results in an error, and ensure that any
outputted or logged error message is identical for each.

FCS_CKM_EXT.3 Cryptographic Key Destruction

The OS shall destroy cryptographic keys in accordance with the
specified cryptographic key destruction methods [selection:

For volatile memory, the destruction shall be executed by a
single direct overwrite [selection: consisting of a
pseudorandom pattern using the TSF’s RBG , consisting of
zeroes] followed by a read-verify. If the read-verification of
the overwritten data fails, the process shall be repeated

again. ,
For non-volatile EEPROM, the destruction shall be executed
by a single, direct overwrite consisting of a pseudorandom
pattern using the TSF’s RBG (as specified in
FCS_RBG_EXT.1), followed by a read-verify. If the read-
verification of the overwritten data fails, the process shall be
repeated again. ,
For non-volatile flash memory, the destruction shall be
executed by [selection: a single, direct overwrite consisting
of zeroes , a block erase] followed by a read-verify. If the
read-verification of the overwritten data fails, the process
shall be repeated again. ,
For non-volatile memory other than EEPROM and flash, the
destruction shall be executed by overwriting three or more
times with a random pattern that is changed before each
write

] .

Application Note: The clearing indicated above applies to each
intermediate storage area upon the transfer of the key to another
location.

Assurance Activity

The evaluator will check to ensure the TSS lists each type of
key material and its origin and storage location. The evaluator
will verify that the TSS describes when each type of key
material is cleared. For each software key clearing situation
the evaluator will repeat the following test.

Test 1: The evaluator will utilize appropriate
combinations of specialized operational environment
and development tools (debuggers, simulators, etc.) for
the TOE and instrumented TOE builds to test that keys
are cleared correctly, including all intermediate copies
of the key that may have been created internally by the
TOE during normal cryptographic processing with that
key. Cryptographic TOE implementations in software
shall be loaded and exercised under a debugger to
perform such tests. The evaluator will perform the
following steps for each key subject to clearing,
including intermediate copies of keys that are persisted
encrypted by the TOE:

1. Load the instrumented TOE build in a debugger.
2. Record the value of the key in the TOE subject to

clearing.
3. Cause the TOE to perform a normal cryptographic

processing with the key from #1.
4. Cause the TOE to clear the key.
5. Cause the TOE to stop the execution but not exit.
6. Cause the TOE to dump the entire memory

footprint of the TOE into a binary file.
7. Search the content of the binary file created in #4

javascript:toggle('aactID-idp314400', 'link-aactID-idp314400');

FCS_COP.1.1(1)

for instances of the known key value from #1.
The test succeeds if no copies of the key from #1 are
found in step #7 above and fails otherwise.
The evaluator will perform this test on all keys, including
those persisted in encrypted form, to ensure
intermediate copies are cleared.

FCS_COP.1(1) Cryptographic Operation - Encryption/Decryption (Refined)

The OS shall perform encryption/decryption services for data in
accordance with a specified cryptographic algorithm [selection:

AES-XTS (as defined in NIST SP 800-38E),
AES-CBC (as defined in NIST SP 800-38A)

] and [selection:
AES-CCMP (as defined in FIPS PUB 197, NIST SP 800-38C
and IEEE 802.11-2012),
AES Key Wrap (KW) (as defined in NIST SP 800-38F),
AES Key Wrap with Padding (KWP) (as defined in NIST SP
800-38F),
AES-GCM (as defined in NIST SP 800-38D),
AES-CCM (as defined in NIST SP 800-38C),
AES-CCMP-256 (as defined in NIST SP800-38C and IEEE
802.11ac-2013),
AES-GCMP-256 (as defined in NIST SP800-38D and IEEE
802.11ac-2013),
no other modes

] and cryptographic key sizes [selection: 128-bit, 256-bit] that meet
the following: [assignment: list of standards] .

Application Note: AES CCMP (which uses AES in CCM as
specified in SP 800-38C) becomes mandatory and must be
selected if the ST includes the WLAN Client Extended Package.
For the second selection, the ST author should choose the mode
or modes in which AES operates. For the third selection, the ST
author should choose the key sizes that are supported by this
functionality. 128-bit key size is required in order to comply with
FCS_TLSC_EXT.1 and FCS_CKM.1(1), if those are selected.

Assurance Activity

The evaluator will verify that the AGD documents contains
instructions required to configure the OS to use the required
modes and key sizes. The evaluator will execute all
instructions as specified to configure the OS to the
appropriate state. The evaluator will perform all of the
following tests for each algorithm implemented by the OS and
used to satisfy the requirements of this PP:
AES-CBC Known Answer Tests
There are four Known Answer Tests (KATs), described
below. In all KATs, the plaintext, ciphertext, and IV values

javascript:toggle('aactID-idp334336', 'link-aactID-idp334336');

shall be 128-bit blocks. The results from each test may either
be obtained by the evaluator directly or by supplying the
inputs to the implementer and receiving the results in
response. To determine correctness, the evaluator will
compare the resulting values to those obtained by submitting
the same inputs to a known good implementation.

KAT-1. To test the encrypt functionality of AES-CBC,
the evaluator will supply a set of 10 plaintext values and
obtain the ciphertext value that results from AES-CBC
encryption of the given plaintext using a key value of all
zeros and an IV of all zeros. Five plaintext values shall
be encrypted with a 128-bit all-zeros key, and the other
five shall be encrypted with a 256-bit all- zeros key. To
test the decrypt functionality of AES-CBC, the evaluator
will perform the same test as for encrypt, using 10
ciphertext values as input and AES-CBC decryption.
KAT-2. To test the encrypt functionality of AES-CBC,
the evaluator will supply a set of 10 key values and
obtain the ciphertext value that results from AES-CBC
encryption of an all-zeros plaintext using the given key
value and an IV of all zeros. Five of the keys shall be
128-bit keys, and the other five shall be 256-bit keys. To
test the decrypt functionality of AES-CBC, the evaluator
will perform the same test as for encrypt, using an all-
zero ciphertext value as input and AES-CBC
decryption.
KAT-3. To test the encrypt functionality of AES-CBC,
the evaluator will supply the two sets of key values
described below and obtain the ciphertext value that
results from AES encryption of an all-zeros plaintext
using the given key value and an IV of all zeros. The
first set of keys shall have 128 128-bit keys, and the
second set shall have 256 256-bit keys. Key i in each
set shall have the leftmost i bits be ones and the
rightmost N-i bits be zeros, for i in [1,N]. To test the
decrypt functionality of AES-CBC, the evaluator will
supply the two sets of key and ciphertext value pairs
described below and obtain the plaintext value that
results from AES-CBC decryption of the given ciphertext
using the given key and an IV of all zeros. The first set
of key/ciphertext pairs shall have 128 128-bit
key/ciphertext pairs, and the second set of
key/ciphertext pairs shall have 256 256-bit
key/ciphertext pairs. Key i in each set shall have the
leftmost i bits be ones and the rightmost N-i bits be
zeros, for i in [1,N]. The ciphertext value in each pair
shall be the value that results in an all-zeros plaintext
when decrypted with its corresponding key.
KAT-4. To test the encrypt functionality of AES-CBC,
the evaluator will supply the set of 128 plaintext values
described below and obtain the two ciphertext values
that result from AES-CBC encryption of the given

plaintext using a 128-bit key value of all zeros with an IV
of all zeros and using a 256-bit key value of all zeros
with an IV of all zeros, respectively. Plaintext value i in
each set shall have the leftmost i bits be ones and the
rightmost 128-i bits be zeros, for i in [1,128].

To test the decrypt functionality of AES-CBC, the evaluator
will perform the same test as for encrypt, using ciphertext
values of the same form as the plaintext in the encrypt test as
input and AES-CBC decryption.
AES-CBC Multi-Block Message Test
The evaluator will test the encrypt functionality by encrypting
an i-block message where 1 < i ≤ 10. The evaluator will
choose a key, an IV and plaintext message of length i blocks
and encrypt the message, using the mode to be tested, with
the chosen key and IV. The ciphertext shall be compared to
the result of encrypting the same plaintext message with the
same key and IV using a known good implementation. The
evaluator will also test the decrypt functionality for each mode
by decrypting an i-block message where 1 < i ≤10. The
evaluator will choose a key, an IV and a ciphertext message
of length i blocks and decrypt the message, using the mode to
be tested, with the chosen key and IV. The plaintext shall be
compared to the result of decrypting the same ciphertext
message with the same key and IV using a known good
implementation.
AES-CBC Monte Carlo Tests
The evaluator will test the encrypt functionality using a set of
200 plaintext, IV, and key 3- tuples. 100 of these shall use
128 bit keys, and 100 shall use 256 bit keys. The plaintext
and IV values shall be 128-bit blocks. For each 3-tuple, 1000
iterations shall be run as follows:

 # Input: PT, IV, Key
 for i = 1 to 1000:
 if i == 1:
 CT[1] = AES-CBC-Encrypt(Key, IV, PT)
 PT = IV
 else:
 CT[i] = AES-CBC-Encrypt(Key, PT)
 PT = CT[i-1]

The ciphertext computed in the 1000th iteration (i.e.,
CT[1000]) is the result for that trial. This result shall be
compared to the result of running 1000 iterations with the
same values using a known good implementation.
The evaluator will test the decrypt functionality using the
same test as for encrypt, exchanging CT and PT and
replacing AES-CBC-Encrypt with AES-CBC-Decrypt.
AES-GCM Monte Carlo Tests
The evaluator will test the authenticated encrypt functionality
of AES-GCM for each combination of the following input
parameter lengths:

128 bit and 256 bit keys
Two plaintext lengths. One of the plaintext lengths shall

be a non-zero integer multiple of 128 bits, if supported.
The other plaintext length shall not be an integer
multiple of 128 bits, if supported.
Three AAD lengths. One AAD length shall be 0, if
supported. One AAD length shall be a non-zero integer
multiple of 128 bits, if supported. One AAD length shall
not be an integer multiple of 128 bits, if supported.
Two IV lengths. If 96 bit IV is supported, 96 bits shall be
one of the two IV lengths tested.

The evaluator will test the encrypt functionality using a set of
10 key, plaintext, AAD, and IV tuples for each combination of
parameter lengths above and obtain the ciphertext value and
tag that results from AES-GCM authenticated encrypt. Each
supported tag length shall be tested at least once per set of
10. The IV value may be supplied by the evaluator or the
implementation being tested, as long as it is known.
The evaluator will test the decrypt functionality using a set of
10 key, ciphertext, tag, AAD, and IV 5-tuples for each
combination of parameter lengths above and obtain a
Pass/Fail result on authentication and the decrypted plaintext
if Pass. The set shall include five tuples that Pass and five
that Fail.
The results from each test may either be obtained by the
evaluator directly or by supplying the inputs to the
implementer and receiving the results in response. To
determine correctness, the evaluator will compare the
resulting values to those obtained by submitting the same
inputs to a known good implementation.
AES-CCM Tests
The evaluator will test the generation-encryption and
decryption-verification functionality of AES-CCM for the
following input parameter and tag lengths:

128 bit and 256 bit keys
Two payload lengths. One payload length shall be the
shortest supported payload length, greater than or equal
to zero bytes. The other payload length shall be the
longest supported payload length, less than or equal to
32 bytes (256 bits).
Two or three associated data lengths. One associated
data length shall be 0, if supported. One associated
data length shall be the shortest supported payload
length, greater than or equal to zero bytes. One
associated data length shall be the longest supported
payload length, less than or equal to 32 bytes (256 bits).
If the implementation supports an associated data
length of 2 16 bytes, an associated data length of 216
bytes shall be tested.
Nonce lengths. All supported nonce lengths between 7
and 13 bytes, inclusive, shall be tested.
Tag lengths. All supported tag lengths of 4, 6, 8, 10, 12,
14 and 16 bytes shall be tested.

To test the generation-encryption functionality of AES-CCM,
the evaluator will perform the following four tests:

Test 1: For EACH supported key and associated data
length and ANY supported payload, nonce and tag
length, the evaluator will supply one key value, one
nonce value and 10 pairs of associated data and
payload values and obtain the resulting ciphertext.
Test 2: For EACH supported key and payload length
and ANY supported associated data, nonce and tag
length, the evaluator will supply one key value, one
nonce value and 10 pairs of associated data and
payload values and obtain the resulting ciphertext.
Test 3: For EACH supported key and nonce length and
ANY supported associated data, payload and tag
length, the evaluator will supply one key value and 10
associated data, payload and nonce value 3-tuples and
obtain the resulting ciphertext.
Test 4: For EACH supported key and tag length and
ANY supported associated data, payload and nonce
length, the evaluator will supply one key value, one
nonce value and 10 pairs of associated data and
payload values and obtain the resulting ciphertext.

To determine correctness in each of the above tests, the
evaluator will compare the ciphertext with the result of
generation-encryption of the same inputs with a known good
implementation.
To test the decryption-verification functionality of AES-CCM,
for EACH combination of supported associated data length,
payload length, nonce length and tag length, the evaluator
shall supply a key value and 15 nonce, associated data and
ciphertext 3-tuples and obtain either a FAIL result or a PASS
result with the decrypted payload. The evaluator will supply
10 tuples that should FAIL and 5 that should PASS per set of
15.
Additionally, the evaluator will use tests from the IEEE
802.11-02/362r6 document “Proposed Test vectors for IEEE
802.11 TGi”, dated September 10, 2002, Section 2.1
AESCCMP Encapsulation Example and Section 2.2
Additional AES CCMP Test Vectors to further verify the IEEE
802.11-2007 implementation of AES-CCMP.
AES-GCM Test
The evaluator will test the authenticated encrypt functionality
of AES-GCM for each combination of the following input
parameter lengths:

128 bit and 256 bit keys
Two plaintext lengths. One of the plaintext lengths shall
be a non-zero integer multiple of 128 bits, if supported.
The other plaintext length shall not be an integer
multiple of 128 bits, if supported.
Three AAD lengths. One AAD length shall be 0, if
supported. One AAD length shall be a non-zero integer
multiple of 128 bits, if supported. One AAD length shall

not be an integer multiple of 128 bits, if supported.
Two IV lengths. If 96 bit IV is supported, 96 bits shall be
one of the two IV lengths tested.

The evaluator will test the encrypt functionality using a set of
10 key, plaintext, AAD, and IV tuples for each combination of
parameter lengths above and obtain the ciphertext value and
tag that results from AES-GCM authenticated encrypt. Each
supported tag length shall be tested at least once per set of
10. The IV value may be supplied by the evaluator or the
implementation being tested, as long as it is known.
The evaluator will test the decrypt functionality using a set of
10 key, ciphertext, tag, AAD, and IV 5-tuples for each
combination of parameter lengths above and obtain a
Pass/Fail result on authentication and the decrypted plaintext
if Pass. The set shall include five tuples that Pass and five
that Fail.
The results from each test may either be obtained by the
evaluator directly or by supplying the inputs to the
implementer and receiving the results in response. To
determine correctness, the evaluator will compare the
resulting values to those obtained by submitting the same
inputs to a known good implementation.
XTS-AES Test
The evaluator will test the encrypt functionality of XTS-AES
for each combination of the following input parameter lengths:

256 bit (for AES-128) and 512 bit (for AES-256) keys
Three data unit (i.e., plaintext) lengths. One of the data
unit lengths shall be a nonzero integer multiple of 128
bits, if supported. One of the data unit lengths shall be
an integer multiple of 128 bits, if supported. The third
data unit length shall be either the longest supported
data unit length or 216 bits, whichever is smaller.

using a set of 100 (key, plaintext and 128-bit random tweak
value) 3-tuples and obtain the ciphertext that results from
XTS-AES encrypt.
The evaluator may supply a data unit sequence number
instead of the tweak value if the implementation supports it.
The data unit sequence number is a base-10 number ranging
between 0 and 255 that implementations convert to a tweak
value internally.
The evaluator will test the decrypt functionality of XTS-AES
using the same test as for encrypt, replacing plaintext values
with ciphertext values and XTS-AES encrypt with XTSAES
decrypt.
AES Key Wrap (AES-KW) and Key Wrap with Padding
(AES-KWP) Test
The evaluator will test the authenticated encryption
functionality of AES-KW for EACH combination of the
following input parameter lengths:

128 and 256 bit key encryption keys (KEKs)
Three plaintext lengths. One of the plaintext lengths

FCS_COP.1.1(2)

shall be two semi-blocks (128 bits). One of the plaintext
lengths shall be three semi-blocks (192 bits). The third
data unit length shall be the longest supported plaintext
length less than or equal to 64 semi-blocks (4096 bits).

using a set of 100 key and plaintext pairs and obtain the
ciphertext that results from AES-KW authenticated encryption.
To determine correctness, the evaluator will use the AES-KW
authenticated-encryption function of a known good
implementation.
The evaluator will test the authenticated-decryption
functionality of AES-KW using the same test as for
authenticated-encryption, replacing plaintext values with
ciphertext values and AES-KW authenticated-encryption with
AES-KW authenticated-decryption.
The evaluator will test the authenticated-encryption
functionality of AES-KWP using the same test as for AES-KW
authenticated-encryption with the following change in the
three plaintext lengths:

One plaintext length shall be one octet. One plaintext
length shall be 20 octets (160 bits).
One plaintext length shall be the longest supported
plaintext length less than or equal to 512 octets (4096
bits).

The evaluator will test the authenticated-decryption
functionality of AES-KWP using the same test as for AES-
KWP authenticated-encryption, replacing plaintext values
with ciphertext values and AES-KWP authenticated-
encryption with AES-KWP authenticated-decryption.

FCS_COP.1(2) Cryptographic Operation - Hashing (Refined)

The OS shall perform cryptographic hashing services in
accordance with a specified cryptographic algorithm SHA-1 and
[selection:

SHA-256,
SHA-384,
SHA-512,
no other algorithms

] and message digest sizes 160 bits and [selection:
256 bits,
384 bits,
512 bits,
no other sizes

] that meet the following: FIPS Pub 180-4.

Application Note: Per NIST SP 800-131A, SHA-1 for generating
digital signatures is no longer allowed, and SHA-1 for verification
of digital signatures is strongly discouraged as there may be risk in
accepting these signatures.
SHA-1 is currently required in order to comply with

FCS_TLSC_EXT.1 and, depending on selections, FCS_DTLS_EXT.1.
Vendors are strongly encouraged to implement updated protocols
that support the SHA-2 family; until updated protocols are
supported, this PP allows support for SHA-1 implementations in
compliance with SP 800-131A.
The intent of this requirement is to specify the hashing function.
The hash selection must support the message digest size
selection. The hash selection should be consistent with the overall
strength of the algorithm used.

Assurance Activity

The evaluator will check that the association of the hash
function with other application cryptographic functions (for
example, the digital signature verification function) is
documented in the TSS.
The TSF hashing functions can be implemented in one of two
modes. The first mode is the byte-oriented mode. In this mode
the TSF only hashes messages that are an integral number of
bytes in length; i.e., the length (in bits) of the message to be
hashed is divisible by 8. The second mode is the bit-oriented
mode. In this mode the TSF hashes messages of arbitrary
length. As there are different tests for each mode, an
indication is given in the following sections for the bit-oriented
vs. the byte-oriented testmacs. The evaluator will perform all
of the following tests for each hash algorithm implemented by
the TSF and used to satisfy the requirements of this PP.
The following tests require the developer to provide access to
a test application that provides the evaluator with tools that
are typically not found in the production application.

Test 1: Short Messages Test (Bit oriented Mode) - The
evaluator will generate an input set consisting of m+1
messages, where m is the block length of the hash
algorithm. The length of the messages range
sequentially from 0 to m bits. The message text shall be
pseudorandomly generated. The evaluator will compute
the message digest for each of the messages and
ensure that the correct result is produced when the
messages are provided to the TSF.
Test 2: Short Messages Test (Byte oriented Mode) -
The evaluator will generate an input set consisting of
m/8+1 messages, where m is the block length of the
hash algorithm. The length of the messages range
sequentially from 0 to m/8 bytes, with each message
being an integral number of bytes. The message text
shall be pseudorandomly generated. The evaluator will
compute the message digest for each of the messages
and ensure that the correct result is produced when the
messages are provided to the TSF.
Test 3: Selected Long Messages Test (Bit oriented
Mode) - The evaluator will generate an input set
consisting of m messages, where m is the block length

javascript:toggle('aactID-idp389648', 'link-aactID-idp389648');

FCS_COP.1.1(3)

of the hash algorithm. The length of the ith message is
512 + 99⋅i, where 1 ≤ i ≤ m. The message text shall be
pseudorandomly generated. The evaluator will compute
the message digest for each of the messages and
ensure that the correct result is produced when the
messages are provided to the TSF.
Test 4: Selected Long Messages Test (Byte oriented
Mode) - The evaluator will generate an input set
consisting of m/8 messages, where m is the block
length of the hash algorithm. The length of the ith
message is 512 + 8⋅99⋅i, where 1 ≤ i ≤ m/8. The
message text shall be pseudorandomly generated. The
evaluator will compute the message digest for each of
the messages and ensure that the correct result is
produced when the messages are provided to the TSF.
Test 5: Pseudorandomly Generated Messages Test -
This test is for byte-oriented implementations only. The
evaluator will randomly generate a seed that is n bits
long, where n is the length of the message digest
produced by the hash function to be tested. The
evaluator will then formulate a set of 100 messages and
associated digests by following the algorithm provided
in Figure 1 of [SHAVS]. The evaluator will then ensure
that the correct result is produced when the messages
are provided to the TSF.

FCS_COP.1(3) Cryptographic Operation - Signing (Refined)

The OS shall perform cryptographic signature services
(generation and verification) in accordance with a specified
cryptographic algorithm [selection:

RSA schemes using cryptographic key sizes of 2048-bit or
greater that meet the following: FIPS PUB 186-4, “Digital
Signature Standard (DSS)”, Section 4 ,
ECDSA schemes using “NIST curves” P-256, P-384 and
[selection: P-521, no other curves] that meet the following:
FIPS PUB 186-4, “Digital Signature Standard (DSS)”,
Section 5

] and cryptographic key sizes [assignment: cryptographic
algorithm] that meet the following: [assignment: list of standards]. .

Application Note: The ST Author should choose the algorithm
implemented to perform digital signatures; if more than one
algorithm is available, this requirement should be iterated to
specify the functionality. For the algorithm chosen, the ST author
should make the appropriate assignments/selections to specify the
parameters that are implemented for that algorithm. RSA signature
generation and verification is currently required in order to comply
with FCS_TLSC_EXT.1.

Assurance Activity

javascript:toggle('aactID-idp412304', 'link-aactID-idp412304');

FCS_COP.1.1(4)

The evaluator will perform the following activities based on
the selections in the ST.
The following tests require the developer to provide access to
a test application that provides the evaluator with tools that
are typically not found in the production application.
ECDSA Algorithm Tests

Test 1: ECDSA FIPS 186-4 Signature Generation Test.
For each supported NIST curve (i.e., P-256, P-384 and
P-521) and SHA function pair, the evaluator will
generate 10 1024-bit long messages and obtain for
each message a public key and the resulting signature
values R and S. To determine correctness, the
evaluator will use the signature verification function of a
known good implementation.
Test 2: ECDSA FIPS 186-4 Signature Verification Test.
For each supported NIST curve (i.e., P-256, P-384 and
P-521) and SHA function pair, the evaluator will
generate a set of 10 1024-bit message, public key and
signature tuples and modify one of the values
(message, public key or signature) in five of the 10
tuples. The evaluator will verify that 5 responses
indicate success and 5 responses indicate failure.

RSA Signature Algorithm Tests
Test 1: Signature Generation Test. The evaluator will
verify the implementation of RSA Signature Generation
by the OS using the Signature Generation Test. To
conduct this test the evaluator must generate or obtain
10 messages from a trusted reference implementation
for each modulus size/SHA combination supported by
the TSF. The evaluator will have the OS use its private
key and modulus value to sign these messages. The
evaluator will verify the correctness of the TSF’s
signature using a known good implementation and the
associated public keys to verify the signatures.
Test 2: Signature Verification Test. The evaluator will
perform the Signature Verification test to verify the
ability of the OS to recognize another party’s valid and
invalid signatures. The evaluator will inject errors into
the test vectors produced during the Signature
Verification Test by introducing errors in some of the
public keys, e, messages, IR format, and/or signatures.
The evaluator will verify that the OS returns failure when
validating each signature.

FCS_COP.1(4) Cryptographic Operation - Keyed-Hash Message
Authentication (Refined)

The OS shall perform keyed-hash message authentication
services in accordance with a specified cryptographic algorithm
[selection:

FCS_RBG_EXT.1.1

SHA-1,
SHA-256,
SHA-384,
SHA-512

] with key sizes [assignment: key size (in bits) used in HMAC] and
message digest sizes [selection: 160 bits, 256 bits, 384 bits,
512 bits] that meet the following: FIPS Pub 198-1 The Keyed-
Hash Message Authentication Code and FIPS Pub 180-4 Secure
Hash Standard.

Application Note: The intent of this requirement is to specify the
keyed-hash message authentication function used for key
establishment purposes for the various cryptographic protocols
used by the OS (e.g., trusted channel). The hash selection must
support the message digest size selection. The hash selection
should be consistent with the overall strength of the algorithm used
for FCS_COP.1(1). Though HMAC with SHA-256 (HMAC-SHA-256)
is listed as a selectable cipher suite in this requirement,
FCS_TLSC_EXT.1 effectively makes its implementation mandatory
for compliant OSs.
SHA-1 is currently required in order to comply with
FCS_TLSC_EXT.1 and, depending on selections, FCS_DTLS_EXT.1.
SHA-1 is currently required in order to comply with
FCS_TLSC_EXT.1, but has been deprecated and should not be
used for any other purpose beyond TLS and DTLS.

Assurance Activity

The evaluator will perform the following activities based on
the selections in the ST.
For each of the supported parameter sets, the evaluator will
compose 15 sets of test data. Each set shall consist of a key
and message data. The evaluator will have the OS generate
HMAC tags for these sets of test data. The resulting MAC tags
shall be compared against the result of generating HMAC
tags with the same key and IV using a known-good
implementation.

FCS_RBG_EXT.1 Random Bit Generation

The OS shall perform all deterministic random bit generation
(DRBG) services in accordance with NIST Special Publication
800-90A using [selection:

Hash_DRBG (any),
HMAC_DRBG (any),
CTR_DRBG (AES)

]

Application Note: NIST SP 800-90A contains three different
methods of generating random numbers; each of these, in turn,

javascript:toggle('aactID-idp436368', 'link-aactID-idp436368');

depends on underlying cryptographic primitives (hash
functions/ciphers). The ST author will select the function used and
include the specific underlying cryptographic primitives used in the
requirement or in the TSS. While any of the identified hash
functions (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512) are
allowed for Hash_DRBG or HMAC_DRBG, only AES-based
implementations for CTR_DRBG are allowed.

Assurance Activity

The evaluator will perform 15 trials for the RNG
implementation. If the RNG is configurable, the evaluator will
perform 15 trials for each configuration. The evaluator will
also confirm that the operational guidance contains
appropriate instructions for configuring the RNG functionality.
If the RNG has prediction resistance enabled, each trial
consists of (1) instantiate DRBG, (2) generate the first block of
random bits (3) generate a second block of random bits (4)
uninstantiate. The evaluator verifies that the second block of
random bits is the expected value. The evaluator will
generate eight input values for each trial. The first is a count
(0 – 14). The next three are entropy input, nonce, and
personalization string for the instantiate operation. The next
two are additional input and entropy input for the first call to
generate. The final two are additional input and entropy input
for the second call to generate. These values are randomly
generated. “generate one block of random bits” means to
generate random bits with number of returned bits equal to
the Output Block Length (as defined in NIST SP 800-90A).
If the RNG does not have prediction resistance, each trial
consists of (1) instantiate DRBG, (2) generate the first block of
random bits (3) reseed, (4) generate a second block of
random bits (5) uninstantiate. The evaluator verifies that the
second block of random bits is the expected value. The
evaluator will generate eight input values for each trial. The
first is a count (0 – 14). The next three are entropy input,
nonce, and personalization string for the instantiate operation.
The fifth value is additional input to the first call to generate.
The sixth and seventh are additional input and entropy input
to the call to reseed. The final value is additional input to the
second generate call.
The following values should be set/generated as described:

Entropy input: The length of the entropy input value
must equal the seed length.
Nonce: If a nonce is supported (CTR_DRBG with no
Derivation Function does not use a nonce), the nonce
bit length is one-half the seed length.
Personalization string: The length of the
personalization string must be less than or equal to
seed length. If the implementation only supports one
personalization string length, then the same length can
be used for both values. If more than one string length is

javascript:toggle('aactID-idp455568', 'link-aactID-idp455568');

FCS_RBG_EXT.1.2

FCS_STO_EXT.1.1

support, the evaluator will use personalization strings of
two different lengths. If the implementation does not use
a personalization string, no value needs to be supplied.
Additional input: The additional input bit lengths have
the same defaults and restrictions as the
personalization string lengths.

The deterministic RBG used by the OS shall be seeded by an
entropy source that accumulates entropy from a [selection:

software-based noise source,
platform-based noise source

] with a minimum of [selection:
128 bits,
256 bits

] of entropy at least equal to the greatest security strength
(according to NIST SP 800-57) of the keys and hashes that it will
generate.

Application Note: For the first selection in this requirement, the
ST author selects 'software-based noise source' if any additional
noise sources are used as input to the DRBG.
In the second selection in this requirement, the ST author selects
the appropriate number of bits of entropy that corresponds to the
greatest security strength of the algorithms included in the ST.
Security strength is defined in Tables 2 and 3 of NIST SP 800-57A.
For example, if the implementation includes 2048-bit RSA (security
strength of 112 bits), AES 128 (security strength 128 bits), and
HMAC-SHA-256 (security strength 256 bits), then the ST author
would select 256 bits.

Assurance Activity

Documentation shall be produced - and the evaluator will
perform the activities - in accordance with Appendix E and the
Clarification to the Entropy Documentation and Assessment
Annex.
In the future, specific statistical testing (in line with NIST SP
800-90B) will be required to verify the entropy estimates.

FCS_STO_EXT.1 Storage of Sensitive Data

The OS shall implement functionality to encrypt sensitive data
stored in non-volatile storage and provide interfaces to
applications to invoke this functionality.

Application Note: Sensitive data shall be identified in the TSS by
the ST author, and minimally includes credentials and keys. The
interface for invoking the functionality could take a variety of forms:
it could consist of an API, or simply well-documented conventions
for accessing credentials stored as files.

javascript:toggle('aactID-idp472592', 'link-aactID-idp472592');
https://www.niap-ccevs.org/Documents_and_Guidance/ccevs/Entropy Documentation and Assessment Clarification.pdf

FCS_TLSC_EXT.1.1

Assurance Activity

The evaluator will check the TSS to ensure that it lists all
persistent sensitive data for which the OS provides a storage
capability. For each of these items, the evaluator will confirm
that the TSS lists for what purpose it can be used, and how it
is stored. The evaluator will confirm that cryptographic
operations used to protect the data occur as specified in
FCS_COP.1(1).
The evaluator will also consult the developer documentation
to verify that an interface exists for applications to securely
store credentials.

FCS_TLSC_EXT.1 TLS Client Protocol

The OS shall implement TLS 1.2 (RFC 5246) supporting the
following cipher suites:
Mandatory cipher suites: TLS_RSA_WITH_AES_128_CBC_SHA
as defined in RFC 5246
Optional cipher suites: [selection:

TLS_DHE_RSA_WITH_AES_128_CBC_SHA as defined in
RFC 5246,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 as
defined in RFC 5246,
TLS_DHE_RSA_WITH_AES_256_CBC_SHA as defined in
RFC 5246,
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 as
defined in RFC 5246,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA as
defined in RFC 4492,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as
defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as
defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA as
defined in RFC 4492,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as
defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as
defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA as
defined in RFC 4492,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 as
defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as
defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA as
defined in RFC 4492,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 as

javascript:toggle('aactID-idp478416', 'link-aactID-idp478416');

defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as
defined in RFC 5289,
TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in
RFC 5246,
TLS_RSA_WITH_AES_256_CBC_SHA as defined in RFC
5246,
TLS_RSA_WITH_AES_256_CBC_SHA256 as defined in
RFC 5246,
no other cipher suite

] .

Application Note: The cipher suites to be tested in the evaluated
configuration are limited by this requirement. The ST author should
select the optional cipher suites that are supported; if there are no
cipher suites supported other than the mandatory suites, then “No
other cipher suite” should be selected. It is necessary to limit the
cipher suites that can be used in an evaluated configuration
administratively on the server in the test environment. The Suite B
algorithms listed above (RFC 6460) are the preferred algorithms
for implementation. TLS_RSA_WITH_AES_128_CBC_SHA is
required in order to ensure compliance with RFC 5246.
These requirements will be revisited as new TLS versions are
standardized by the IETF.
If any cipher suites are selected using ECDHE, then
FCS_TLSC_EXT.2.1 is required.

Assurance Activity

The evaluator will check the description of the implementation
of this protocol in the TSS to ensure that the cipher suites
supported are specified. The evaluator will check the TSS to
ensure that the cipher suites specified include those listed for
this component. The evaluator will also check the operational
guidance to ensure that it contains instructions on configuring
the OS so that TLS conforms to the description in the TSS.
The evaluator will also perform the following tests:

Test 1: The evaluator will establish a TLS connection
using each of the cipher suites specified by the
requirement. This connection may be established as
part of the establishment of a higher-level protocol, e.g.,
as part of an EAP session. It is sufficient to observe the
successful negotiation of a cipher suite to satisfy the
intent of the test; it is not necessary to examine the
characteristics of the encrypted traffic in an attempt to
discern the cipher suite being used (for example, that
the cryptographic algorithm is 128-bit AES and not 256-
bit AES).
Test 2: The evaluator will attempt to establish the
connection using a server with a server certificate that
contains the Server Authentication purpose in the
extendedKeyUsage field and verify that a connection is

javascript:toggle('aactID-idp499888', 'link-aactID-idp499888');

FCS_TLSC_EXT.1.2

established. The evaluator will then verify that the client
rejects an otherwise valid server certificate that lacks
the Server Authentication purpose in the
extendedKeyUsage field and a connection is not
established. Ideally, the two certificates should be
identical except for the extendedKeyUsage field.
Test 3: The evaluator will send a server certificate in the
TLS connection that does not match the server-selected
cipher suite (for example, send a ECDSA certificate
while using the
TLS_RSA_WITH_AES_128_CBC_SHA cipher suite or
send a RSA certificate while using one of the ECDSA
cipher suites.) The evaluator will verify that the OS
disconnects after receiving the server’s Certificate
handshake message.
Test 4: The evaluator will configure the server to select
the TLS_NULL_WITH_NULL_NULL cipher suite and
verify that the client denies the connection.
Test 5: The evaluator will perform the following
modifications to the traffic:

Test 5.1: Change the TLS version selected by the
server in the Server Hello to a non-supported TLS
version (for example 1.3 represented by the two
bytes 03 04) and verify that the client rejects the
connection.
Test 5.2: Modify at least one byte in the server’s
nonce in the Server Hello handshake message,
and verify that the client rejects the Server Key
Exchange handshake message (if using a DHE or
ECDHE cipher suite) or that the server denies the
client’s Finished handshake message.
Test 5.3: Modify the server’s selected cipher suite
in the Server Hello handshake message to be a
cipher suite not presented in the Client Hello
handshake message. The evaluator will verify that
the client rejects the connection after receiving the
Server Hello.
Test 5.4: Modify the signature block in the
Server’s Key Exchange handshake message, and
verify that the client rejects the connection after
receiving the Server Key Exchange message.
Test 5.5: Modify a byte in the Server Finished
handshake message, and verify that the client
sends a fatal alert upon receipt and does not send
any application data.
Test 5.6: Send a garbled message from the
Server after the Server has issued the Change
Cipher Spec message and verify that the client
denies the connection.

The OS shall verify that the presented identifier matches the

reference identifier according to RFC 6125.

Application Note: The rules for verification of identity are
described in Section 6 of RFC 6125. The reference identifier is
established by the user (e.g. entering a URL into a web browser or
clicking a link), by configuration (e.g. configuring the name of a
mail server or authentication server), or by an application (e.g. a
parameter of an API) depending on the OS service. Based on a
singular reference identifier’s source domain and application
service type (e.g. HTTP, SIP, LDAP), the client establishes all
reference identifiers which are acceptable, such as a Common
Name for the Subject Name field of the certificate and a (case-
insensitive) DNS name, URI name, and Service Name for the
Subject Alternative Name field. The client then compares this list of
all acceptable reference identifiers to the presented identifiers in
the TLS server’s certificate.
The preferred method for verification is the Subject Alternative
Name using DNS names, URI names, or Service Names.
Verification using the Common Name is required for the purposes
of backwards compatibility. Additionally, support for use of IP
addresses in the Subject Name or Subject Alternative name is
discouraged, as against best practices, but may be implemented.
Finally, the client should avoid constructing reference identifiers
using wildcards. However, if the presented identifiers include
wildcards, the client must follow the best practices regarding
matching; these best practices are captured in the assurance
activity.

Assurance Activity

The evaluator will ensure that the TSS describes the client’s
method of establishing all reference identifiers from the
application-configured reference identifier, including which
types of reference identifiers are supported (e.g. Common
Name, DNS Name, URI Name, Service Name, or other
application-specific Subject Alternative Names) and whether
IP addresses and wildcards are supported. The evaluator will
ensure that this description identifies whether and the manner
in which certificate pinning is supported or used by the OS.
The evaluator will verify that the AGD guidance includes
instructions for setting the reference identifier to be used for
the purposes of certificate validation in TLS.
The evaluator will configure the reference identifier according
to the AGD guidance and perform the following tests during a
TLS connection:

Test 1: The evaluator will present a server certificate
that does not contain an identifier in either the Subject
Alternative Name (SAN) or Common Name (CN) that
matches the reference identifier. The evaluator will
verify that the connection fails.
Test 2: The evaluator will present a server certificate
that contains a CN that matches the reference identifier,

javascript:toggle('aactID-idp522096', 'link-aactID-idp522096');

contains the SAN extension, but does not contain an
identifier in the SAN that matches the reference
identifier. The evaluator shall verify that the connection
fails. The evaluator will repeat this test for each
supported SAN type.
Test 3: The evaluator will present a server certificate
that contains a CN that matches the reference identifier
and does not contain the SAN extension. The evaluator
will verify that the connection succeeds.
Test 4: The evaluator will present a server certificate
that contains a CN that does not match the reference
identifier but does contain an identifier in the SAN that
matches. The evaluator will verify that the connection
succeeds.
Test 5: The evaluator will perform the following
wildcard tests with each supported type of reference
identifier:

Test 5.1: The evaluator will present a server
certificate containing a wildcard that is not in the
left-most label of the presented identifier (e.g.
foo.*.example.com) and verify that the connection
fails.
Test 5.2: The evaluator will present a server
certificate containing a wildcard in the left-most
label but not preceding the public suffix (e.g.
*.example.com). The evaluator will configure the
reference identifier with a single left-most label
(e.g. foo.example.com) and verify that the
connection succeeds. The evaluator will configure
the reference identifier without a left-most label as
in the certificate (e.g. example.com) and verify that
the connection fails. The evaluator will configure
the reference identifier with two left-most labels
(e.g. bar.foo.example.com) and verify that the
connection fails.
Test 5.3: The evaluator will present a server
certificate containing a wildcard in the left-most
label immediately preceding the public suffix (e.g.
*.com). The evaluator will configure the reference
identifier with a single left-most label (e.g.
foo.com) and verify that the connection fails. The
evaluator will configure the reference identifier
with two left-most labels (e.g. bar.foo.com) and
verify that the connection fails.

Test 6: [conditional] If URI or Service name reference
identifiers are supported, the evaluator will configure the
DNS name and the service identifier. The evaluator will
present a server certificate containing the correct DNS
name and service identifier in the URIName or
SRVName fields of the SAN and verify that the
connection succeeds. The evaluator will repeat this test
with the wrong service identifier (but correct DNS name)

FCS_TLSC_EXT.1.3

FDP_ACF_EXT.1.1

and verify that the connection fails.
Test 7: [conditional] If pinned certificates are supported
the evaluator will present a certificate that does not
match the pinned certificate and verify that the
connection fails.

The OS shall only establish a trusted channel if the peer
certificate is valid.

Application Note: Validity is determined by the identifier
verification, certificate path, the expiration date, and the revocation
status in accordance with RFC 5280. Certificate validity shall be
tested in accordance with testing performed for FIA_X509_EXT.1.
For TLS connections, this channel shall not be established if the
peer certificate is invalid.

Assurance Activity

The evaluator will use TLS as a function to verify that the
validation rules in FIA_X509_EXT.1.1 are adhered to and shall
perform the following additional test:

Test 1: The evaluator will demonstrate that a peer using
a certificate without a valid certification path results in
an authenticate failure. Using the administrative
guidance, the evaluator will then load the trusted CA
certificate(s) needed to validate the peer's certificate,
and demonstrate that the connection succeeds. The
evaluator then shall delete one of the CA certificates,
and show that the connection fails.
Test 2: The evaluator will demonstrate that a peer using
a certificate which has been revoked results in an
authentication failure.
Test 3: The evaluator will demonstrate that a peer using
a certificate which has passed its expiration date results
in an authentication failure.
Test 4: the evaluator will demonstrate that a peer using
a certificate which does not have a valid identifier shall
result in an authentication failure.

5.1.2 User Data Protection (FDP)

FDP_ACF_EXT.1 Access Controls for Protecting User Data

The OS shall implement access controls which can prohibit
unprivileged users from accessing files and directories owned by
other users.

Application Note: Effective protection by access controls may
also depend upon system configuration. This requirement is
designed to ensure that, for example, files and directories owned
by one user in a multi user system can be protected from access by

javascript:toggle('aactID-idp541760', 'link-aactID-idp541760');

FDP_IFC_EXT.1.1

another user in that system.

Assurance Activity

The evaluator will confirm that the TSS comprehensively
describes the access control policy enforced by the OS. The
description must include the rules by which accesses to
particular files and directories are determined for particular
users. The evaluator will inspect the TSS to ensure that it
describes the access control rules in such detail that given
any possible scenario between a user and a file governed by
the OS the access control decision is unambiguous.
The evaluator will create two new standard user accounts on
the system and conduct the following tests:

Test 1: The evaluator will authenticate to the system as
the first user and create a file within that user's home
directory. The evaluator will then log off the system and
log in as the second user. The evaluator will then
attempt to read the file created in the first user's home
directory. The evaluator will ensure that the read attempt
is denied.
Test 2: The evaluator will authenticate to the system as
the first user and create a file within that user's home
directory. The evaluator will then log off the system and
log in as the second user. The evaluator will then
attempt to modify the file created in the first user's home
directory. The evaluator will ensure that the modification
is denied.
Test 3: The evaluator will authenticate to the system as
the first user and create a file within that user's user
directory. The evaluator will then log off the system and
log in as the second user. The evaluator will then
attempt to delete the file created in the first user's home
directory. The evaluator will ensure that the deletion is
denied.
Test 4: The evaluator will authenticate to the system as
the first user. The evaluator will attempt to create a file in
the second user's home directory. The evaluator will
ensure that the creation of the file is denied.
Test 5: The evaluator will authenticate to the system as
the first user and attempt to modify the file created in the
first user's home directory. The evaluator will ensure
that the modification of the file is accepted.
Test 6: The evaluator will authenticate to the system as
the first user and attempt to delete the file created in the
first user's directory. The evaluator will ensure that the
deletion of the file is accepted.

FDP_IFC_EXT.1 Information flow control

The OS shall [selection:

javascript:toggle('aactID-idp585680', 'link-aactID-idp585680');

FMT_MOF_EXT.1.1

provide an interface which allows a VPN client to protect all
IP traffic using IPsec ,
provide a VPN client which can protects all IP traffic using
IPsec

] with the exception of IP traffic required to establish the VPN
connection.

Application Note: Typically, the traffic required to establish the
VPN connection is referred to as "Control Plane" traffic whereas
the IP traffic protected by the IPsec VPN is referred to as "Data
Plane" traffic. All "Data Plane" traffic must flow through the VPN
connection and the VPN must not split-tunnel.
If no native IPsec client is validated or third-party VPN clients may
also implement the required Information Flow Control, the first
option shall be selected. In these cases, the TOE provides an API
to third-party VPN clients that allows them to configure the TOE’s
network stack to perform the required Information Flow Control.
The ST author shall select the second option if the TSF
implements a native VPN client (IPsec is selected in
FTP_ITC_EXT.1). If the native VPN client is to be validated (IPsec
is selected in FTP_ITC_EXT.1 and the TSF is validated against the
Extended Package for IPsec Virtual Private Network (VPN)
Clients), the ST author shall also include FDP_IFC_EXT from this
package. In the future, this requirement may also make a
distinction between the current requirement (which requires that
when the IPsec trusted channel is enabled, all traffic from the TSF
is routed through that channel) and having an option to force the
establishment of an IPsec trusted channel to allow any
communication by the TSF.

Assurance Activity

The evaluator will verify that the TSS section of the ST
describes the routing of IP traffic when a VPN client is
enabled. The evaluator will ensure that the description
indicates which traffic does not go through the VPN and
which traffic does, and that a configuration exists for each in
which only the traffic identified by the ST author as necessary
for establishing the VPN connection (IKE traffic and perhaps
HTTPS or DNS traffic) is not encapsulated by the VPN
protocol (IPsec).

5.1.3 Security Management (FMT)

FMT_MOF_EXT.1 Management of security functions behavior

The OS shall be capable of performing the following
management functions, controlled by the user and overridden by
an administrator as shown:

X: Mandatory
O: Optional

javascript:toggle('aactID-idp599792', 'link-aactID-idp599792');

Management Function Administrator User

configure minimum password length O O

configure minimum number of special
characters in password

O O

configure minimum number of numeric
characters in password

O O

configure minimum number of
uppercase characters in password

O O

configure minimum number of
lowercase characters in password

O O

enable/disable screen lock O O

configure screen lock inactivity timeout O O

configure remote connection inactivity
timeout

O O

enable/disable unauthenticated logon X X

configure lockout policy for
unsuccessful authentication attempts
through [selection: timeouts between
attempts, limiting number of attempts
during a time period]

O O

configure host-based firewall O O

configure name/address of directory
server to bind with

O O

configure name/address of remote
management server from which to
receive management settings

O O

configure name/address of audit/logging
server to which to send audit/logging
records

O O

configure local audit storage capacity O O

configure audit rules O O

configure name/address of network time
server

O O

enable/disable automatic software
update

O O

configure WiFi interface O O

FPT_ACF_EXT.1.1

enable/disable Bluetooth interface O O

configure USB interfaces O O

enable/disable [assignment: list of
other external interfaces]

O O

[assignment: list of other management
functions to be provided by the TSF]

O O

Application Note: The terms "Administrator" and "User" are
defined in Section 1.2.2. The intent of this requirement is to ensure
that the ST is populated with the management functions that are
provided by the OS. This enables developers of compliance
checklists, including those provided as operational user guidance
as specified in AGD_OPE.1.3C, to leverage this table by providing
enterprise-specific values for each evaluated item.
Sophisticated account management policies, such as intricate
password complexity requirements and handling of temporary
accounts, are a function of directory servers. The OS can enroll in
such account management and enable the overall information
system to achieve such policies by binding to a directory server.
In cases where both the user and administrator can control a
particular management function, if an administrator has not set a
policy then the user may be permitted to perform that function. The
ST author should use a "-" (instead of "X") to indicate where
management is not provided.

Assurance Activity

The evaluator will verify that every management function
captured in the ST is described in the operational guidance
and that the description contains the information required to
perform the management duties associated with the
management function. The evaluator will test the operating
system's ability to provide the management functions by
configuring the operating system and testing each option
selected from above. The evaluator is expected to test these
functions in all the ways in which the ST and guidance
documentation state the configuration can be managed.

5.1.4 Protection of the TSF (FPT)

FPT_ACF_EXT.1 Access controls

The OS shall implement access controls which prohibit
unprivileged users from modifying:

Kernel and its drivers/modules
Security audit logs
Shared libraries
System executables
System configuration files
[assignment: other objects]

javascript:toggle('aactID-idp623552', 'link-aactID-idp623552');

FPT_ACF_EXT.1.2

FPT_ASLR_EXT.1.1

Assurance Activity

The evaluator will confirm that the TSS specifies the locations
of kernel drivers/modules, security audit logs, shared libraries,
system executables, and system configuration files. Every file
does not need to be individually identified, but the system's
conventions for storing and protecting such files must be
specified. The evaluator will create an unprivileged user
account. Using this account, the evaluator will ensure that the
following tests result in a negative outcome (i.e., the action
results in the OS denying the evaluator permission to
complete the action):

Test 1: The evaluator will attempt to modify all kernel
drivers and modules.
Test 2: The evaluator will attempt to modify all security
audit logs generated by the logging subsystem.
Test 3: The evaluator will attempt to modify all shared
libraries that are used throughout the system.
Test 4: The evaluator will attempt to modify all system
executables.
Test 5: The evaluator will attempt to modify all system
configuration files.
Test 6: The evaluator will attempt to modify any
additional components selected.

The OS shall implement access controls which prohibit
unprivileged users from reading:

Security audit logs
System-wide credential repositories
[assignment: list of other objects]

Assurance Activity

The evaluator will create an unprivileged user account. Using
this account, the evaluator will ensure that the following tests
result in a negative outcome (i.e., the action results in the OS
denying the evaluator permission to complete the action):

Test 1: The evaluator will attempt to read security audit
logs generated by the auditing subsystem
Test 2: The evaluator will attempt to read system-wide
credential repositories
Test 3: The evaluator will attempt to read any other
object specified in the assignment

FPT_ASLR_EXT.1 Address Space Layout Randomization

The OS shall always randomize process address space
memory locations except for [assignment: list of explicit

javascript:toggle('aactID-idp630976', 'link-aactID-idp630976');
javascript:toggle('aactID-idp638208', 'link-aactID-idp638208');

FPT_SBOP_EXT.1.1

FPT_TST_EXT.1.1

exceptions] .

Assurance Activity

The evaluator will select 3 executables included with the
TSF. These must include any web browser or mail client
included with the TSF. For each of these apps, the evaluator
will launch the same executables on two separate instances
of the OS on identical hardware and compare all memory
mapping locations. The evaluator will ensure that no memory
mappings are placed in the same location. If the rare chance
occurs that two mappings are the same for a single
executable and not the same for the other two, the evaluator
will repeat the test with that executable to verify that in the
second test the mappings are different.

FPT_SBOP_EXT.1 Stack Buffer Overflow Protection

The OS shall be compiled with stack-based buffer overflow
protections enabled.

Application Note: It is expected that most of the OS, to include the
kernel, libraries, and application software from the OS vendor be
compiled with stack-based buffer overflow protection enabled.

Assurance Activity

The evaluator will determine that the TSS contains a
description of stack-based buffer overflow protections used by
the OS. Example implementations may be activated through
compiler options such as "-fstack-protector-all", "-fstack-
protector", and "/GS" flags. These are referred to by a variety
of terms, such as stack cookie, stack guard, and stack
canaries. The TSS must include a rationale for any binaries
that are not protected in this manner.

Test 1: The evaluator will inventory the kernel, libraries,
and application binaries to determine those that do not
implement stack-based buffer overflow protections. This
list should match up with the list provided in the TSS.

FPT_TST_EXT.1 Boot Integrity

The OS shall verify the integrity of the bootchain up through the
OS kernel and [selection:

all executable code stored in mutable media,
[assignment: list of other executable code] ,
no other executable code

] prior to its execution through the use of [selection:
a digital signature using a hardware-protected asymmetric
key,

javascript:toggle('aactID-idp643568', 'link-aactID-idp643568');
javascript:toggle('aactID-idp677168', 'link-aactID-idp677168');

a hardware-protected hash
]

Application Note: The bootchain of the OS is the sequence of
software, to include the OS loader, the kernel, system drivers or
modules, and system files, which ultimately result in loading the
OS. The first part of the OS, usually referred to as the first-stage
bootloader, must be loaded by the platform. Assessing its integrity,
while critical, is the platform's responsibility; and therefore outside
the scope of this PP. All software loaded after this stage is
potentially within the control of the OS and is in scope.
The verification may be transitive in nature: a hardware-protected
public key or hash may be used to verify the mutable bootloader
code which contains a key or hash used by the bootloader to verify
the mutable OS kernel code, which contains a key or hash to verify
the next layer of executable code, and so on. However, the way in
which the hardware stores and protects these keys is out of scope.
If all executable code (including bootloader(s), kernel, device
drivers, pre-loaded applications, user-loaded applications, and
libraries) is verified, “all executable code stored in mutable media”
should be selected.

Assurance Activity

The evaluator will verify that the TSS section of the ST
includes a comprehensive description of the boot procedures,
including a description of the entire bootchain, for the TSF.
The evaluator will ensure that the OS cryptographically
verifies each piece of software it loads in the bootchain to
include bootloaders and the kernel. Software loaded for
execution directly by the platform (e.g. first-stage bootloaders)
is out of scope. For each additional category of executable
code verified before execution, the evaluator will verify that
the description in the TSS describes how that software is
cryptographically verified.
The evaluator will verify that the TSS contains a description of
the protection afforded to the mechanism performing the
cryptographic verification.
The evaluator will perform the following tests:

Test 1: The evaluator will perform actions to cause TSF
software to load and observe that the integrity
mechanism does not flag any executables as containing
integrity errors and that the OS properly boots.
Test 2: The evaluator will modify a TSF executable that
is part of the bootchain verified by the TSF (i.e. Not the
first-stage bootloader) and attempt to boot. The
evaluator will ensure that an integrity violation is
triggered and the OS does not boot (Care must be taken
so that the integrity violation is determined to be the
cause of the failure to load the module, and not the fact
that in such a way to invalidate the structure of the
module.).

javascript:toggle('aactID-idp702544', 'link-aactID-idp702544');

FPT_TUD_EXT.1.1

FPT_TUD_EXT.1.2

Test 3: If the ST author indicates that the integrity
verification is performed using a public key, the
evaluator will verify that the update mechanism includes
a certificate validation according to FIA_X509_EXT.1. The
evaluator will digitally sign the TSF executable with a
certificate that does not have the Code Signing purpose
in the extendedKeyUsage field and verify that an
integrity violation is triggered. The evaluator shall repeat
the test using a certificate that contains the Code
Signing purpose and verify that the integrity verification
succeeds. Ideally, the two certificates should be
identical except for the extendedKeyUsage field.

FPT_TUD_EXT.1 Trusted Update

The OS shall provide the ability to check for updates to the OS
software itself.

Application Note: This requirement is about the ability to check
for the availability of authentic updates, while the installation of
authentic updates is covered by FPT_TUD_EXT.1.2.

Assurance Activity

The evaluator will check for an update using procedures
described in the documentation and verify that the OS
provides a list of available updates. Testing this capability
may require installing and temporarily placing the system into
a configuration in conflict with secure configuration guidance
which specifies automatic update. (The evaluator is also to
ensure that this query occurs over a trusted channel as
described in FTP_ITC_EXT.1.)

The OS shall cryptographically verify updates to itself using a
digital signature prior to installation using schemes specified in
FCS_COP.1(3).

Assurance Activity

For the following tests, the evaluator will initiate the download
of an update and capture the update prior to installation. The
download could originate from the vendor's website, an
enterprise-hosted update repository, or another system (e.g.
network peer). All supported origins for the update must be
indicated in the TSS and evaluated.

Test 1: The evaluator will ensure that the update has a
digital signature belonging to the vendor prior to its
installation. The evaluator will modify the downloaded
update in such a way that the digital signature is no
longer valid. The evaluator will then attempt to install
the modified update. The evaluator will ensure that the

javascript:toggle('aactID-idp712528', 'link-aactID-idp712528');
javascript:toggle('aactID-idp715760', 'link-aactID-idp715760');

FPT_TUD_EXT.2.1

FPT_TUD_EXT.2.2

OS does not install the modified update.
Test 2: The evaluator will ensure that the update has a
digital signature belonging to the vendor. The evaluator
will then attempt to install the update (or permit
installation to continue). The evaluator will ensure that
the OS successfully installs the update.

FPT_TUD_EXT.2 Trusted Update for Application Software

The OS shall provide the ability to check for updates to
application software.

Application Note: This requirement is about the ability to check
for authentic updates, while the actual installation of such updates
is covered by FPT_TUD_EXT.2.2.

Assurance Activity

The evaluator will check for updates to application software
using procedures described in the documentation and verify
that the OS provides a list of available updates. Testing this
capability may require temporarily placing the system into a
configuration in conflict with secure configuration guidance
which specifies automatic update. (The evaluator is also to
ensure that this query occurs over a trusted channel as
described in FTP_ITC_EXT.1.)

The OS shall cryptographically verify the integrity of updates to
applications using a digital signature specified by FCS_COP.1(3)
prior to installation.

Assurance Activity

The evaluator will initiate an update to an application. This
may vary depending on the application, but it could be
through the application vendor's website, a commercial app
store, or another system. All origins supported by the OS must
be indicated in the TSS and evaluated. However, this only
includes those mechanisms for which the OS is providing a
trusted installation and update functionality. It does not
include user or administrator-driven download and installation
of arbitrary files.

Test 1: The evaluator will ensure that the update has a
digital signature which chains to the OS vendor or
another trusted root managed through the OS. The
evaluator will modify the downloaded update in such a
way that the digital signature is no longer valid. The
evaluator will then attempt to install the modified update.
The evaluator will ensure that the OS does not install
the modified update.
Test 2: The evaluator will ensure that the update has a

javascript:toggle('aactID-idp722640', 'link-aactID-idp722640');
javascript:toggle('aactID-idp725808', 'link-aactID-idp725808');

FAU_GEN.1.1

digital signature belonging to the OS vendor or another
trusted root managed through the OS. The evaluator will
then attempt to install the update. The evaluator will
ensure that the OS successfully installs the update.

5.1.5 Audit Data Generation (FAU)

FAU_GEN.1 Audit Data Generation

The OS shall be able to generate an audit record of the following
auditable events:

a. Start-up and shut-down of the audit functions;
b. All auditable events for the not specified level of audit; and
c.

Authentication events (Success/Failure);
Use of privileged/special rights events (Successful and
unsuccessful security, audit, and configuration
changes);
Privilege or role escalation events (Success/Failure);
[selection:

File and object events (Successful and
unsuccessful attempts to create, access, delete,
modify, modify permissions),
User and Group management events (Successful
and unsuccessful add, delete, modify, disable,
Audit and log data access events
(Success/Failure),
Cryptographic verification of software
(Success/Failure),
Program initiations (Success/Failure e.g. due to
software restriction policy) ,
System reboot, restart, and shutdown events
(Success/Failure),
Kernel module loading and unloading events
(Success/Failure),
Administrator or root-level access events
(Success/Failure),
Command line input (Success/Failure),
[assignment: other specifically defined auditable
events] .

]

Assurance Activity

The evaluator shall check the administrative guide and
ensure that it lists all of the auditable events. The evaluator
shall check to make sure that every audit event type selected
in the ST is included.

javascript:toggle('aactID-idp749328', 'link-aactID-idp749328');

FAU_GEN.1.2

FIA_AFL.1.1

The evaluator shall test the OS's ability to correctly generate
audit records by having the TOE generate audit records for
the events listed in the ST. This should include all instance
types of an event specified. When verifying the test results,
the evaluator shall ensure the audit records generated during
testing match the format specified in the administrative guide,
and that the fields in each audit record have the proper
entries.

The OS shall record within each audit record at least the following
information:

a. Date and time of the event, type of event, subject identity (if
applicable), and outcome (success or failure) of the event;
and

b. For each audit event type, based on the auditable event
definitions of the functional components included in the
PP/ST, [assignment: other audit relevant information]

.

Application Note: The term subject here is understood to be the
user that the process is acting on behalf of. If no auditable event
definitions of functional components are provided, then no
additional audit-relevant information is required.

Assurance Activity

The evaluator shall check the administrative guide and
ensure that it provides a format for audit records. Each audit
record format type must be covered, along with a brief
description of each field. The evaluator shall ensure that the
fields contains the information required.
The evaluator shall test the OS's ability to correctly generate
audit records by having the TOE generate audit records for
the events listed in the ST. The evaluator shall ensure the
audit records generated during testing match the format
specified in the administrative guide, and that the fields in
each audit record provide the required information.

5.1.6 Identification and Authentication (FIA)

FIA_AFL.1 Authentication failure handling

The OS shall detect when [selection:
[assignment: a positive integer number] ,
an administrator configurable positive integer within a
[assignment: range of acceptable values]

] unsuccessful authentication attempts for [selection:
authentication based on user name and password,
authentication based on user name and a PIN that releases

javascript:toggle('aactID-idp755392', 'link-aactID-idp755392');

FIA_AFL.1.2

an asymmetric key stored in OE-protected storage,
authentication based on X.509 certificates

] occur related to [assignment: list of authentication events] .

Assurance Activity

The evaluator will set an administrator-configurable threshold
for failed attempts, or note the ST-specified assignment. The
evaluator will then (per selection) repeatedly attempt to
authenticate with an incorrect password, PIN, or certificate
until the number of attempts reaches the threshold. Note that
the authentication attempts and lockouts must also be logged
as specified in FAU_GEN.1.

When the defined number of unsuccessful authentication attempts
for an account has been met, the OS shall: [selection: Account
Lockout, Account Disablement, Mandatory Credential Reset,
[assignment: list of actions]]

Application Note: The action to be taken shall be populated in the
assignment of the ST and defined in the administrator guidance.

Assurance Activity

Test 1: The evaluator will attempt to authenticate
repeatedly to the system with a known bad password.
Once the defined number of failed authentication
attempts has been reached the evaluator will ensure
that the account that was being used for testing has had
the actions detailed in the assignment list above applied
to it. The evaluator will ensure that an event has been
logged to the security event log detailing that the
account has had these actions applied.
Test 2: The evaluator will attempt to authenticate
repeatedly to the system with a known bad certificate.
Once the defined number of failed authentication
attempts has been reached the evaluator will ensure
that the account that was being used for testing has had
the actions detailed in the assignment list above applied
to it. The evaluator will ensure that an event has been
logged to the security event log detailing that the
account has had these actions applied.
Test 3: The evaluator will attempt to authenticate
repeatedly to the system using both a bad password
and a bad certificate. Once the defined number of failed
authentication attempts has been reached the evaluator
will ensure that the account that was being used for
testing has had the actions detailed in the assignment
list above applied to it. The evaluator will ensure that an
event has been logged to the security event log
detailing that the account has had these actions

javascript:toggle('aactID-idp764576', 'link-aactID-idp764576');
javascript:toggle('aactID-idp770160', 'link-aactID-idp770160');

FIA_UAU.5.1

applied.

FIA_UAU.5 Multiple Authentication Mechanisms

The OS shall provide the following authentication mechanisms
[selection:

authentication based on user name and password,
authentication based on user name and a PIN that releases
an asymmetric key stored in OE-protected storage,
authentication based on X.509 certificates

] to support user authentication.

Assurance Activity

If user name and password authentication is selected, the
evaluator will configure the OS with a known user name and
password and conduct the following tests:

Test 1: The evaluator will attempt to authenticate to the
OS using the known user name and password. The
evaluator will ensure that the authentication attempt is
successful.
Test 2: The evaluator will attempt to authenticate to the
OS using the known user name but an incorrect
password. The evaluator will ensure that the
authentication attempt is unsuccessful.

If user name and PIN that releases an asymmetric key is
selected, the evaluator will examine the TSS for guidance on
supported protected storage and will then configure the TOE
or OE to establish a PIN which enables release of the
asymmetric key from the protected storage (such as a TPM, a
hardware token, or isolated execution environment) with
which the OS can interface. The evaluator will then conduct
the following tests:

Test 1: The evaluator will attempt to authenticate to the
OS using the known user name and PIN. The evaluator
will ensure that the authentication attempt is successful.
Test 2: The evaluator will attempt to authenticate to the
OS using the known user name but an incorrect PIN.
The evaluator will ensure that the authentication attempt
is unsuccessful.

If X.509 certificate authentication is selected, the evaluator
will generate an X.509v3 certificate for a user with the Client
Authentication Enhanced Key Usage field set. The evaluator
will provision the OS for authentication with the X.509v3
certificate. The evaluator will ensure that the certificates are
validated by the OS as per FIA_X509_EXT.1.1 and then
conduct the following tests:

Test 1: The evaluator will attempt to authenticate to the
OS using the X.509v3 certificate. The evaluator will

javascript:toggle('aactID-idp778384', 'link-aactID-idp778384');

FIA_UAU.5.2

FIA_X509_EXT.1.1

ensure that the authentication attempt is successful.
Test 2: The evaluator will generate a second certificate
identical to the first except for the public key and any
values derived from the public key. The evaluator will
attempt to authenticate to the OS with this certificate.
The evaluator will ensure that the authentication attempt
is unsuccessful.

The OS shall authenticate any user's claimed identity according to
the [assignment: rules describing how the multiple authentication
mechanisms provide authentication] .

Assurance Activity

FIA_X509_EXT.1 X.509 Certificate Validation

The OS shall implement functionality to validate certificates in
accordance with the following rules:

RFC 5280 certificate validation and certificate path
validation.
The certificate path must terminate with a trusted CA
certificate.
The OS shall validate a certificate path by ensuring the
presence of the basicConstraints extension and that the CA
flag is set to TRUE for all CA certificates.
The OS shall validate the revocation status of the certificate
using [selection: the Online Certificate Status Protocol
(OCSP) as specified in RFC 2560, a Certificate Revocation
List (CRL) as specified in RFC 5759, an OCSP TLS Status
Request Extension (i.e., OCSP stapling) as specified in RFC
6066] .
The OS shall validate the extendedKeyUsage field according
to the following rules:

Certificates used for trusted updates and executable
code integrity verification shall have the Code Signing
purpose (id-kp 3 with OID 1.3.6.1.5.5.7.3.3) in the
extendedKeyUsage field.
Server certificates presented for TLS shall have the
Server Authentication purpose (id-kp 1 with OID
1.3.6.1.5.5.7.3.1) in the extendedKeyUsage field.
Client certificates presented for TLS shall have the
Client Authentication purpose (id-kp 2 with OID
1.3.6.1.5.5.7.3.2) in the extendedKeyUsage field.
S/MIME certificates presented for email encryption and
signature shall have the Email Protection purpose (id-
kp 4 with OID 1.3.6.1.5.5.7.3.4) in the
extendedKeyUsage field.
OCSP certificates presented for OCSP responses shall
have the OCSP Signing purpose (id-kp 9 with OID

javascript:toggle('aactID-idp787136', 'link-aactID-idp787136');

1.3.6.1.5.5.7.3.9) in the extendedKeyUsage field.
(Conditional) Server certificates presented for EST
shall have the CMC Registration Authority (RA)
purpose (id-kp-cmcRA with OID 1.3.6.1.5.5.7.3.28) in
the extendedKeyUsage field.

Application Note: FIA_X509_EXT.1.1 lists the rules for validating
certificates. The ST author shall select whether revocation status is
verified using OCSP or CRLs. FIA_X509_EXT.2 requires that
certificates are used for HTTPS, TLS and DTLS; this use requires
that the extendedKeyUsage rules are verified.

Assurance Activity

The evaluator will ensure the TSS describes where the check
of validity of the certificates takes place. The evaluator
ensures the TSS also provides a description of the certificate
path validation algorithm.
The tests described must be performed in conjunction with
the other certificate services assurance activities, including
the functions in FIA_X509_EXT.2.1. The tests for the
extendedKeyUsage rules are performed in conjunction with
the uses that require those rules. The evaluator will create a
chain of at least four certificates: the node certificate to be
tested, two Intermediate CAs, and the self-signed Root CA.

Test 1: The evaluator will demonstrate that validating a
certificate without a valid certification path results in the
function failing. The evaluator will then load a certificate
or certificates as trusted CAs needed to validate the
certificate to be used in the function, and demonstrate
that the function succeeds. The evaluator shall then
delete one of the certificates, and show that the function
fails.
Test 2: The evaluator will demonstrate that validating
an expired certificate results in the function failing.
Test 3: The evaluator will test that the OS can properly
handle revoked certificates-–conditional on whether
CRL, OCSP, or OCSP stapling is selected; if multiple
methods are selected, then a test shall be performed for
each method. The evaluator will test revocation of the
node certificate and revocation of the intermediate CA
certificate (i.e. the intermediate CA certificate should be
revoked by the root CA). The evaluator will ensure that
a valid certificate is used, and that the validation
function succeeds. The evaluator then attempts the test
with a certificate that has been revoked (for each
method chosen in the selection) to ensure when the
certificate is no longer valid that the validation function
fails.
Test 4: If either OCSP option is selected, the evaluator
will configure the OCSP server or use a man-in-the-
middle tool to present a certificate that does not have

javascript:toggle('aactID-idp802304', 'link-aactID-idp802304');

FIA_X509_EXT.1.2

the OCSP signing purpose and verify that validation of
the OCSP response fails. If CRL is selected, the
evaluator will configure the CA to sign a CRL with a
certificate that does not have the cRLsign key usage bit
set, and verify that validation of the CRL fails.
Test 5: The evaluator will modify any byte in the first
eight bytes of the certificate and demonstrate that the
certificate fails to validate. (The certificate should fail to
parse correctly.)
Test 6: The evaluator will modify any byte in the last
byte of the certificate and demonstrate that the certificate
fails to validate. (The signature on the certificate should
not validate.)
Test 7: The evaluator will modify any byte in the public
key of the certificate and demonstrate that the certificate
fails to validate. (The signature on the certificate should
not validate.)

The OS shall only treat a certificate as a CA certificate if the
basicConstraints extension is present and the CA flag is set to
TRUE.

Application Note: This requirement applies to certificates that are
used and processed by the TSF and restricts the certificates that
may be added as trusted CA certificates.

Assurance Activity

The tests described must be performed in conjunction with
the other certificate services assurance activities, including
the functions in FIA_X509_EXT.2.1. The evaluator will create a
chain of at least four certificates: the node certificate to be
tested, two Intermediate CAs, and the self-signed Root CA.

Test 1: The evaluator will construct a certificate path,
such that the certificate of the CA issuing the OS's
certificate does not contain the basicConstraints
extension. The validation of the certificate path fails.
Test 2: The evaluator will construct a certificate path,
such that the certificate of the CA issuing the OS's
certificate has the CA flag in the basicConstraints
extension not set. The validation of the certificate path
fails.
Test 3: The evaluator will construct a certificate path,
such that the certificate of the CA issuing the OS's
certificate has the CA flag in the basicConstraints
extension set to TRUE. The validation of the certificate
path succeeds.

FIA_X509_EXT.2 X.509 Certificate Authentication

javascript:toggle('aactID-idp815104', 'link-aactID-idp815104');

FIA_X509_EXT.2.1

FTP_ITC_EXT.1.1

The OS shall use X.509v3 certificates as defined by RFC 5280
to support authentication for TLS and [selection: DTLS, HTTPS,
[assignment: other protocols] , no other protocols] connections.

Assurance Activity

The evaluator will acquire or develop an application that uses
the OS TLS mechanism with an X.509v3 certificate. The
evaluator will then run the application and ensure that the
provided certificate is used to authenticate the connection.
The evaluator will repeat the activity for any other selections
listed.

5.1.7 Trusted Path/Channels (FTP)

FTP_ITC_EXT.1 Trusted channel communication

The OS shall use [selection:
TLS as conforming to FCS_TLSC_EXT.1,
DTLS as conforming to FCS_DTLS_EXT.1,
IPsec as conforming to the Extended Package for IPsec VPN
Clients,
SSH as conforming to the Extended Package for Secure
Shell

] to provide a trusted communication channel between itself and
authorized IT entities supporting the following capabilities:
[selection: audit server, authentication server, management
server, [assignment: other capabilities]] that is logically distinct
from other communication channels and provides assured
identification of its end points and protection of the channel data
from disclosure and detection of modification of the channel data.

Application Note: If the ST author selects IPsec, the TSF shall be
validated against the Extended Package for IPsec Virtual Private
Network (VPN) Clients. If the ST author selects SSH, the TSF shall
be validated against the Extended Package for Secure Shell. The
ST author must include the security functional requirements for the
trusted channel protocol selected in FTP_ITC_EXT.1 in the main
body of the ST.

Assurance Activity

The evaluator will configure the OS to communicate with
another trusted IT product as identified in the second
selection. The evaluator will monitor network traffic while the
OS performs communication with each of the servers
identified in the second selection. The evaluator will ensure
that for each session a trusted channel was established in
conformance with the protocols identified in the first selection.

javascript:toggle('aactID-idp824880', 'link-aactID-idp824880');
https://www.niap-ccevs.org/pp/
https://www.niap-ccevs.org/pp/
javascript:toggle('aactID-idp842608', 'link-aactID-idp842608');

FTP_TRP.1.1

FTP_TRP.1.2

FTP_TRP.1.3

FTP_TRP.1 Trusted Path

The OS shall provide a communication path between itself and
remote users that is logically distinct from other communication
paths and provides assured identification of its endpoints and
protection of the communicated data from modification and
disclosure.

The OS shall permit [selection: the TSF, local users, remote users]
to initiate communication via the trusted path.

The OS shall require use of the trusted path for all remote
administrative actions.

Application Note: This requirement ensures that authorized
remote administrators initiate all communication with the OS via a
trusted path, and that all communication with the OS by remote
administrators is performed over this path. The data passed in this
trusted communication channel is encrypted as defined in
FTP_ITC_EXT.1.
The assurance activities for this requirement also test requirements
FTP_TRP.1.1 and FTP_TRP.1.2.

Assurance Activity

The evaluator will examine the TSS to determine that the
methods of remote OS administration are indicated, along
with how those communications are protected. The evaluator
will also confirm that all protocols listed in the TSS in support
of OS administration are consistent with those specified in the
requirement, and are included in the requirements in the ST.
The evaluator will confirm that the operational guidance
contains instructions for establishing the remote
administrative sessions for each supported method. The
evaluator will also perform the following tests:

Test 1: The evaluator will ensure that communications
using each remote administration method is tested
during the course of the evaluation, setting up the
connections as described in the operational guidance
and ensuring that communication is successful.
Test 2: For each method of remote administration
supported, the evaluator will follow the operational
guidance to ensure that there is no available interface
that can be used by a remote user to establish a remote
administrative sessions without invoking the trusted
path.
Test 3: The evaluator will ensure, for each method of
remote administration, the channel data is not sent in
plaintext.
Test 4: The evaluator will ensure, for each method of
remote administration, modification of the channel data
is detected by the OS.

javascript:toggle('aactID-idp853088', 'link-aactID-idp853088');

ADV_FSP.1.1D

ADV_FSP.1.2D

5.2 Security Assurance Requirements

The Security Objectives in Section 4 were constructed to address threats identified in
Section 3.1. The Security Functional Requirements (SFRs) in Section 5.1 are a formal
instantiation of the Security Objectives. The PP identifies the Security Assurance
Requirements (SARs) to frame the extent to which the evaluator assesses the
documentation applicable for the evaluation and performs independent testing.
This section lists the set of SARs from CC part 3 that are required in evaluations against
this PP. Individual Assurance Activities to be performed are specified both in Section 5 as
well as in this section.
The general model for evaluation of OSs against STs written to conform to this PP is as
follows:
After the ST has been approved for evaluation, the Information Technology Security
Evaluation Facility (ITSEF) will obtain the OS, supporting environmental IT, and the
administrative/user guides for the OS. The ITSEF is expected to perform actions mandated
by the Common Evaluation Methodology (CEM) for the ASE and ALC SARs. The ITSEF
also performs the Assurance Activities contained within Section 5, which are intended to
be an interpretation of the other CEM assurance requirements as they apply to the specific
technology instantiated in the OS. The Assurance Activities that are captured in Section 5
also provide clarification as to what the developer needs to provide to demonstrate the OS
is compliant with the PP.

5.2.1 Class ASE: Security Target
As per ASE activities defined in [CEM].

5.2.2 Class ADV: Development
The information about the OS is contained in the guidance documentation available to the
end user as well as the TSS portion of the ST. The OS developer must concur with the
description of the product that is contained in the TSS as it relates to the functional
requirements. The Assurance Activities contained in Section 5.1 should provide the ST
authors with sufficient information to determine the appropriate content for the TSS section.

ADV_FSP.1 Basic Functional Specification (ADV_FSP.1)

Developer action elements:

The developer shall provide a functional specification.

The developer shall provide a tracing from the functional
specification to the SFRs.

Application Note: As indicated in the introduction to this section,
the functional specification is comprised of the information
contained in the AGD_OPE and AGD_PRE documentation. The
developer may reference a website accessible to application
developers and the evaluator. The assurance activities in the
functional requirements point to evidence that should exist in the
documentation and TSS section; since these are directly
associated with the SFRs, the tracing in element ADV_FSP.1.2D
is implicitly already done and no additional documentation is
necessary.

Content and presentation elements:

ADV_FSP.1.1C

ADV_FSP.1.2C

ADV_FSP.1.3C

ADV_FSP.1.4C

ADV_FSP.1.1E

ADV_FSP.1.2E

AGD_OPE.1.1D

The functional specification shall describe the purpose and
method of use for each SFR-enforcing and SFR-supporting TSFI.

The functional specification shall identify all parameters
associated with each SFR-enforcing and SFR-supporting TSFI.

The functional specification shall provide rationale for the implicit
categorization of interfaces as SFR-non-interfering.

The tracing shall demonstrate that the SFRs trace to TSFIs in the
functional specification.

Evaluator action elements:

The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

The evaluator shall determine that the functional specification is an
accurate and complete instantiation of the SFRs.

Assurance Activity

There are no specific assurance activities associated with
these SARs, except ensuring the information is provided. The
functional specification documentation is provided to support
the evaluation activities described in Section 5.1, and other
activities described for AGD, ATE, and AVA SARs. The
requirements on the content of the functional specification
information is implicitly assessed by virtue of the other
assurance activities being performed; if the evaluator is
unable to perform an activity because there is insufficient
interface information, then an adequate functional
specification has not been provided.

5.2.3 Class AGD: Guidance Documentation
The guidance documents will be provided with the ST. Guidance must include a
description of how the IT personnel verifies that the Operational Environment can fulfill its
role for the security functionality. The documentation should be in an informal style and
readable by the IT personnel. Guidance must be provided for every operational
environment that the product supports as claimed in the ST. This guidance includes
instructions to successfully install the TSF in that environment; and Instructions to manage
the security of the TSF as a product and as a component of the larger operational
environment. Guidance pertaining to particular security functionality is also provided;
requirements on such guidance are contained in the assurance activities specified with
each requirement.

AGD_OPE.1 Operational User Guidance (AGD_OPE.1)

Developer action elements:

The developer shall provide operational user guidance.

Application Note: The operational user guidance does not have

javascript:toggle('aactID-idp893888', 'link-aactID-idp893888');

AGD_OPE.1.1C

AGD_OPE.1.2C

AGD_OPE.1.3C

AGD_OPE.1.4C

AGD_OPE.1.5C

AGD_OPE.1.6C

AGD_OPE.1.7C

to be contained in a single document. Guidance to users,
administrators and application developers can be spread among
documents or web pages. Rather than repeat information here, the
developer should review the assurance activities for this
component to ascertain the specifics of the guidance that the
evaluator will be checking for. This will provide the necessary
information for the preparation of acceptable guidance.

Content and presentation elements:

The operational user guidance shall describe, for each user role,
the user-accessible functions and privileges that should be
controlled in a secure processing environment, including
appropriate warnings.

Application Note: User and administrator are to be considered in
the definition of user role.

The operational user guidance shall describe, for each user role,
how to use the available interfaces provided by the OS in a secure
manner.

The operational user guidance shall describe, for each user role,
the available functions and interfaces, in particular all security
parameters under the control of the user, indicating secure values
as appropriate.

Application Note: This portion of the operational user guidance
should be presented in the form of a checklist that can be quickly
executed by IT personnel (or end-users, when necessary) and
suitable for use in compliance activities. When possible, this
guidance is to be expressed in the eXtensible Configuration
Checklist Description Format (XCCDF) to support security
automation. Minimally, it should be presented in a structured format
which includes a title for each configuration item, instructions for
achieving the secure configuration, and any relevant rationale.

The operational user guidance shall, for each user role, clearly
present each type of security-relevant event relative to the user-
accessible functions that need to be performed, including changing
the security characteristics of entities under the control of the TSF.

The operational user guidance shall identify all possible modes of
operation of the OS (including operation following failure or
operational error), their consequences, and implications for
maintaining secure operation.

The operational user guidance shall, for each user role, describe
the security measures to be followed in order to fulfill the security
objectives for the operational environment as described in the ST.

The operational user guidance shall be clear and reasonable.

Evaluator action elements:

AGD_OPE.1.1E

AGD_PRE.1.1D

AGD_PRE.1.1C

AGD_PRE.1.2C

The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Assurance Activity

Some of the contents of the operational guidance are verified
by the assurance activities in Section 5.1 and evaluation of
the OS according to the [CEM]. The following additional
information is also required. If cryptographic functions are
provided by the OS, the operational guidance shall contain
instructions for configuring the cryptographic engine
associated with the evaluated configuration of the OS. It shall
provide a warning to the administrator that use of other
cryptographic engines was not evaluated nor tested during
the CC evaluation of the OS. The documentation must
describe the process for verifying updates to the OS by
verifying a digital signature – this may be done by the OS or
the underlying platform. The evaluator will verify that this
process includes the following steps: Instructions for
obtaining the update itself. This should include instructions for
making the update accessible to the OS (e.g., placement in a
specific directory). Instructions for initiating the update
process, as well as discerning whether the process was
successful or unsuccessful. This includes generation of the
hash/digital signature. The OS will likely contain security
functionality that does not fall in the scope of evaluation under
this PP. The operational guidance shall make it clear to an
administrator which security functionality is covered by the
evaluation activities.

AGD_PRE.1 Preparative Procedures (AGD_PRE.1)

Developer action elements:

The developer shall provide the OS, including its preparative
procedures.

Application Note: As with the operational guidance, the
developer should look to the assurance activities to determine the
required content with respect to preparative procedures.

Content and presentation elements:

The preparative procedures shall describe all the steps necessary
for secure acceptance of the delivered OS in accordance with the
developer's delivery procedures.

The preparative procedures shall describe all the steps necessary
for secure installation of the OS and for the secure preparation of
the operational environment in accordance with the security
objectives for the operational environment as described in the ST.

javascript:toggle('aactID-idp918736', 'link-aactID-idp918736');

AGD_PRE.1.1E

AGD_PRE.1.2E

ALC_CMC.1.1D

ALC_CMC.1.1C

ALC_CMC.1.1E

Evaluator action elements:

The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

The evaluator shall apply the preparative procedures to confirm
that the OS can be prepared securely for operation.

Assurance Activity

As indicated in the introduction above, there are significant
expectations with respect to the documentation—especially
when configuring the operational environment to support OS
functional requirements. The evaluator shall check to ensure
that the guidance provided for the OS adequately addresses
all platforms claimed for the OS in the ST.

5.2.4 Class ALC: Life-cycle Support
At the assurance level provided for OSs conformant to this PP, life-cycle support is limited
to end-user-visible aspects of the life-cycle, rather than an examination of the OS vendor’s
development and configuration management process. This is not meant to diminish the
critical role that a developer’s practices play in contributing to the overall trustworthiness of
a product; rather, it is a reflection on the information to be made available for evaluation at
this assurance level.

ALC_CMC.1 Labeling of the TOE (ALC_CMC.1)

Developer action elements:

The developer shall provide the OS and a reference for the OS.

Content and presentation elements:

The OS shall be labeled with a unique reference.

Application Note: Unique reference information includes:

OS Name
OS Version
OS Description
Software Identification (SWID) tags, if available

Evaluator action elements:

The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Assurance Activity

The evaluator will check the ST to ensure that it contains an
identifier (such as a product name/version number) that
specifically identifies the version that meets the requirements
of the ST. Further, the evaluator will check the AGD guidance

javascript:toggle('aactID-idp938432', 'link-aactID-idp938432');
javascript:toggle('aactID-idp954896', 'link-aactID-idp954896');

ALC_CMS.1.1D

ALC_CMS.1.1C

ALC_CMS.1.2C

ALC_CMS.1.1E

and OS samples received for testing to ensure that the
version number is consistent with that in the ST. If the vendor
maintains a web site advertising the OS, the evaluator will
examine the information on the web site to ensure that the
information in the ST is sufficient to distinguish the product.

ALC_CMS.1 TOE CM Coverage (ALC_CMS.1)

Developer action elements:

The developer shall provide a configuration list for the OS.

Content and presentation elements:

The configuration list shall include the following: the OS itself; and
the evaluation evidence required by the SARs.

The configuration list shall uniquely identify the configuration
items.

Evaluator action elements:

The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

Assurance Activity

The "evaluation evidence required by the SARs" in this PP is
limited to the information in the ST coupled with the guidance
provided to administrators and users under the AGD
requirements. By ensuring that the OS is specifically
identified and that this identification is consistent in the ST
and in the AGD guidance (as done in the assurance activity
for ALC_CMC.1), the evaluator implicitly confirms the
information required by this component. Life-cycle support is
targeted aspects of the developer’s life-cycle and instructions
to providers of applications for the developer’s devices, rather
than an in-depth examination of the TSF manufacturer’s
development and configuration management process. This is
not meant to diminish the critical role that a developer’s
practices play in contributing to the overall trustworthiness of
a product; rather, it’s a reflection on the information to be
made available for evaluation.
The evaluator will ensure that the developer has identified (in
guidance documentation for application developers
concerning the targeted platform) one or more development
environments appropriate for use in developing applications
for the developer’s platform. For each of these development
environments, the developer shall provide information on how
to configure the environment to ensure that buffer overflow
protection mechanisms in the environment(s) are invoked
(e.g., compiler and linker flags). The evaluator will ensure that

javascript:toggle('aactID-idp968496', 'link-aactID-idp968496');

ALC_TSU_EXT.1.1D

ALC_TSU_EXT.1.2D

ALC_TSU_EXT.1.1C

ALC_TSU_EXT.1.2C

ALC_TSU_EXT.1.1E

this documentation also includes an indication of whether
such protections are on by default, or have to be specifically
enabled. The evaluator will ensure that the TSF is uniquely
identified (with respect to other products from the TSF
vendor), and that documentation provided by the developer in
association with the requirements in the ST is associated with
the TSF using this unique identification.

ALC_TSU_EXT.1 Timely Security Updates

Developer action elements:

The developer shall provide a description in the TSS of how
timely security updates are made to the OS.

The developer shall provide a description in the TSS of how
users are notified when updates change security properties or the
configuration of the product.

Content and presentation elements:

The description shall include the process for creating and
deploying security updates for the OS software.

The description shall include the mechanisms publicly
available for reporting security issues pertaining to the OS.

Note: The reporting mechanism could include web sites, email
addresses, as well as a means to protect the sensitive nature of the
report (e.g., public keys that could be used to encrypt the details of
a proof-of-concept exploit).

Evaluator action elements:

The evaluator shall confirm that the information provided meets
all requirements for content and presentation of evidence.

Assurance Activity

The evaluator will verify that the TSS contains a description of
the timely security update process used by the developer to
create and deploy security updates. The evaluator will verify
that this description addresses the entire application. The
evaluator will also verify that, in addition to the OS
developer’s process, any third-party processes are also
addressed in the description. The evaluator will also verify
that each mechanism for deployment of security updates is
described.
The evaluator will verify that, for each deployment mechanism
described for the update process, the TSS lists a time
between public disclosure of a vulnerability and public
availability of the security update to the OS patching this
vulnerability, to include any third-party or carrier delays in

javascript:toggle('aactID-idp988224', 'link-aactID-idp988224');

ATE_IND.1.1D

ATE_IND.1.1C

ATE_IND.1.1E

ATE_IND.1.2E

deployment. The evaluator will verify that this time is
expressed in a number or range of days.
The evaluator will verify that this description includes the
publicly available mechanisms (including either an email
address or website) for reporting security issues related to the
OS. The evaluator shall verify that the description of this
mechanism includes a method for protecting the report either
using a public key for encrypting email or a trusted channel
for a website.

5.2.5 Class ATE: Tests
Testing is specified for functional aspects of the system as well as aspects that take
advantage of design or implementation weaknesses. The former is done through the
ATE_IND family, while the latter is through the AVA_VAN family. At the assurance level
specified in this PP, testing is based on advertised functionality and interfaces with
dependency on the availability of design information. One of the primary outputs of the
evaluation process is the test report as specified in the following requirements.

ATE_IND.1 Independent Testing – Conformance (ATE_IND.1)

Developer action elements:

The developer shall provide the OS for testing.

Content and presentation elements:

The OS shall be suitable for testing.

Evaluator action elements:

The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

The evaluator shall test a subset of the TSF to confirm that the TSF
operates as specified.

Application Note: The evaluator will test the OS on the most
current fully patched version of the platform.

Assurance Activity

The evaluator will prepare a test plan and report documenting
the testing aspects of the system, including any application
crashes during testing. The evaluator shall determine the root
cause of any application crashes and include that information
in the report. The test plan covers all of the testing actions
contained in the [CEM] and the body of this PP’s Assurance
Activities.
While it is not necessary to have one test case per test listed
in an Assurance Activity, the evaluator must document in the
test plan that each applicable testing requirement in the ST is
covered. The test plan identifies the platforms to be tested,
and for those platforms not included in the test plan but

javascript:toggle('aactID-idp1007088', 'link-aactID-idp1007088');

AVA_VAN.1.1D

included in the ST, the test plan provides a justification for not
testing the platforms. This justification must address the
differences between the tested platforms and the untested
platforms, and make an argument that the differences do not
affect the testing to be performed. It is not sufficient to merely
assert that the differences have no affect; rationale must be
provided. If all platforms claimed in the ST are tested, then no
rationale is necessary. The test plan describes the
composition of each platform to be tested, and any setup that
is necessary beyond what is contained in the AGD
documentation. It should be noted that the evaluator is
expected to follow the AGD documentation for installation and
setup of each platform either as part of a test or as a standard
pre-test condition. This may include special test drivers or
tools. For each driver or tool, an argument (not just an
assertion) should be provided that the driver or tool will not
adversely affect the performance of the functionality by the OS
and its platform.
This also includes the configuration of the cryptographic
engine to be used. The cryptographic algorithms
implemented by this engine are those specified by this PP
and used by the cryptographic protocols being evaluated
(IPsec, TLS). The test plan identifies high-level test objectives
as well as the test procedures to be followed to achieve those
objectives. These procedures include expected results.
The test report (which could just be an annotated version of
the test plan) details the activities that took place when the
test procedures were executed, and includes the actual
results of the tests. This shall be a cumulative account, so if
there was a test run that resulted in a failure; a fix installed;
and then a successful re-run of the test, the report would show
a “fail” and “pass” result (and the supporting details), and not
just the “pass” result.

5.2.6 Class AVA: Vulnerability Assessment
For the first generation of this protection profile, the evaluation lab is expected to survey
open sources to discover what vulnerabilities have been discovered in these types of
products. In most cases, these vulnerabilities will require sophistication beyond that of a
basic attacker. Until penetration tools are created and uniformly distributed to the
evaluation labs, the evaluator will not be expected to test for these vulnerabilities in the OS.
The labs will be expected to comment on the likelihood of these vulnerabilities given the
documentation provided by the vendor. This information will be used in the development of
penetration testing tools and for the development of future protection profiles.

AVA_VAN.1 Vulnerability Survey (AVA_VAN.1)

Developer action elements:

The developer shall provide the OS for testing.

Content and presentation elements:

AVA_VAN.1.1C

AVA_VAN.1.1E

AVA_VAN.1.2E

AVA_VAN.1.3E

The OS shall be suitable for testing.

Evaluator action elements:

The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

The evaluator shall perform a search of public domain sources to
identify potential vulnerabilities in the OS.

Application Note: Public domain sources include the Common
Vulnerabilities and Exposures (CVE) dictionary for publicly-known
vulnerabilities. Public domain sources also include sites which
provide free checking of files for viruses.

The evaluator shall conduct penetration testing, based on the
identified potential vulnerabilities, to determine that the OS is
resistant to attacks performed by an attacker possessing Basic
attack potential.

Assurance Activity

The evaluator will generate a report to document their
findings with respect to this requirement. This report could
physically be part of the overall test report mentioned in
ATE_IND, or a separate document. The evaluator performs a
search of public information to find vulnerabilities that have
been found in similar applications with a particular focus on
network protocols the application uses and document formats
it parses. The evaluator documents the sources consulted
and the vulnerabilities found in the report.
For each vulnerability found, the evaluator either provides a
rationale with respect to its non-applicability, or the evaluator
formulates a test (using the guidelines provided in ATE_IND)
to confirm the vulnerability, if suitable. Suitability is
determined by assessing the attack vector needed to take
advantage of the vulnerability. If exploiting the vulnerability
requires expert skills and an electron microscope, for
instance, then a test would not be suitable and an appropriate
justification would be formulated.

javascript:toggle('aactID-idp1028912', 'link-aactID-idp1028912');

FCS_TLSC_EXT.4.1

FTA_TAB.1.1

A. Optional Requirements

As indicated in Section 2, the baseline requirements (those that must be performed by the
OS) are contained in the body of this PP. Additionally, there are three other types of
requirements specified in Appendix A, Appendix B, and Appendix C. The first type (in this
Appendix) are requirements that can be included in the ST, but are not required in order for
a OS to claim conformance to this PP. The second type (in Appendix B) are requirements
based on selections in the body of the PP: if certain selections are made, then additional
requirements in that appendix must be included. The third type (in Appendix C are
components that are not required in order to conform to this PP, but will be included in the
baseline requirements in future versions of this PP, so adoption by vendors is encouraged.
Note that the ST author is responsible for ensuring that requirements that may be
associated with those in Appendix A, Appendix B, and Appendix C but are not listed (e.g.,
FMT-type requirements) are also included in the ST.

FCS_TLSC_EXT.4 TLS Client Protocol

The OS shall support mutual authentication using X.509v3
certificates.

Application Note: The use of X.509v3 certificates for TLS is
addressed in FIA_X509_EXT.2.1. This requirement adds that a client
must be capable of presenting a certificate to a TLS server for TLS
mutual authentication.

Assurance Activity

The evaluator will ensure that the TSS description required
per FIA_X509_EXT.2.1 includes the use of client-side
certificates for TLS mutual authentication.
The evaluator will verify that the AGD guidance required per
FIA_X509_EXT.2.1 includes instructions for configuring the
client-side certificates for TLS mutual authentication.
The evaluator will also perform the following test:
Configure the server to require mutual authentication and
then modify a byte in a CA field in the Server’s Certificate
Request handshake message. The modified CA field must
not be the CA used to sign the client’s certificate. The
evaluator will verify the connection is unsuccessful.

FTA_TAB.1 Default TOE access banners

Before establishing a user session, the OS shall display an
advisory warning message regarding unauthorized use of the OS.

Assurance Activity

The evaluator will configure the OS, per instructions in the OS
manual, to display the advisory warning message "TEST
TEST Warning Message TEST TEST". The evaluator will
then log out and confirm that the advisory message is

javascript:toggle('aactID-idp574448', 'link-aactID-idp574448');
javascript:toggle('aactID-idp829248', 'link-aactID-idp829248');

displayed before logging in can occur.

FCS_DTLS_EXT.1.1

FCS_DTLS_EXT.1.2

B. Selection-Based Requirements

As indicated in the introduction to this PP, the baseline requirements (those that must be
performed by the OS or its underlying platform) are contained in the body of this PP. There
are additional requirements based on selections in the body of the PP: if certain selections
are made, then additional requirements below will need to be included.

FCS_DTLS_EXT.1 DTLS Implementation

The OS shall implement the DTLS protocol in accordance with
[selection: DTLS 1.0 (RFC 4347), DTLS 1.2 (RFC 6347)] .

This requirement depends upon selection in
FTP_ITC_EXT.1.1.

Assurance Activity

Test 1: The evaluator will attempt to establish a
connection with a DTLS server, observe the traffic with
a packet analyzer, and verify that the connection
succeeds and that the traffic is identified as DTLS.

Other tests are performed in conjunction with the
Assurance Activity listed for FCS_TLSC_EXT.1.

The OS shall implement the requirements in TLS
(FCS_TLSC_EXT.1) for the DTLS implementation, except where
variations are allowed according to DTLS 1.2 (RFC 6347).

This requirement depends upon selection in
FTP_ITC_EXT.1.1.

Application Note: Differences between DTLS 1.2 and TLS 1.2 are
outlined in RFC 6347; otherwise the protocols are the same. In
particular, for the applicable security characteristics defined for the
TSF, the two protocols do not differ. Therefore, all application
notes and assurance activities that are listed for TLS apply to the
DTLS implementation.

Assurance Activity

The evaluator will perform the assurance activities listed for
FCS_TLSC_EXT.1.

FCS_TLSC_EXT.2 TLS Client Protocol

javascript:toggle('aactID-idp442160', 'link-aactID-idp442160');
javascript:toggle('aactID-idp448480', 'link-aactID-idp448480');

FCS_TLSC_EXT.2.1 The OS shall present the Supported Elliptic Curves Extension
in the Client Hello with the following NIST curves: [selection:
secp256r1, secp384r1, secp521r1] and no other curves.

This requirement depends upon selection in
FCS_TLSC_EXT.1.1.

Application Note: This requirement limits the elliptic curves
allowed for authentication and key agreement to the NIST curves
from FCS_COP.1(3) and FCS_CKM.1(1) and FCS_CKM.2(1). This
extension is required for clients supporting Elliptic Curve cipher
suites.

Assurance Activity

The evaluator will verify that TSS describes the supported
Elliptic Curves Extension and whether the required behavior
is performed by default or may be configured. If the TSS
indicates that the supported Elliptic Curves Extension must
be configured to meet the requirement, the evaluator will
verify that AGD guidance includes configuration of the
supported Elliptic Curves Extension.
The evaluator will also perform the following test:
The evaluator will configure the server to perform an ECDHE
key exchange message in the TLS connection using a non-
supported ECDHE curve (for example, P-192) and shall verify
that the OS disconnects after receiving the server's Key
Exchange handshake message.

javascript:toggle('aactID-idp553648', 'link-aactID-idp553648');

FCS_TLSC_EXT.3.1

FPT_SRP_EXT.1.1

C. Objective Requirements

This appendix includes requirements that specify security functionality which also
addresses threats. The requirements are not currently mandated in the body of this PP as
they describe security functionality not yet widely-available in commercial technology.
However, these requirements may be included in the ST such that the OS is still
conformant to this PP, and it is expected that they be included as soon as possible.

FCS_TLSC_EXT.3 TLS Client Protocol

The OS shall present the signature_algorithms extension in the
Client Hello with the supported_signature_algorithms value
containing the following hash algorithms: [selection: SHA256,
SHA384, SHA512] and no other hash algorithms.

Application Note: This requirement limits the hashing algorithms
supported for the purpose of digital signature verification by the
client and limits the server to the supported hashes for the purpose
of digital signature generation by the server. The
signature_algorithm extension is only supported by TLS 1.2.

Assurance Activity

The evaluator will verify that TSS describes the
signature_algorithm extension and whether the required
behavior is performed by default or may be configured. If the
TSS indicates that the signature_algorithm extension must be
configured to meet the requirement, the evaluator will verify
that AGD guidance includes configuration of the
signature_algorithm extension.
The evaluator will also perform the following test:
The evaluator will configure the server to send a certificate in
the TLS connection that is not supported according to the
Client’s HashAlgorithm enumeration within the
signature_algorithms extension (for example, send a
certificate with a SHA-1 signature). The evaluator will verify
that the OS disconnects after receiving the server’s Certificate
handshake message.

FPT_SRP_EXT.1 Software Restriction Policies

The OS shall restrict execution to only programs which match an
administrator-specified [selection:

file path,
file digital signature,
version,
hash,
[assignment: other characteristics]

]

javascript:toggle('aactID-idp563808', 'link-aactID-idp563808');

Application Note: The assignment permits implementations
which provide a low level of granularity such as a volume. The
restriction is only against direct execution of executable programs.
It does not forbid interpreters which may take data as an input,
even if this data can subsequently result in arbitrary computation.

Assurance Activity

For each selection specified in the ST, the evaluator will
ensure that the corresponding tests result in a negative
outcome (i.e., the action results in the OS denying the
evaluator permission to complete the action):

Test 1: The evaluator will configure the OS to only
allow code execution from the core OS directories. The
evaluator will then attempt to execute code from a
directory that is in the allowed list. The evaluator will
ensure that the code they attempted to execute has
been executed.
Test 2: The evaluator will configure the OS to only
allow code execution from the core OS directories. The
evaluator will then attempt to execute code from a
directory that is not in the allowed list. The evaluator will
ensure that the code they attempted to execute has not
been executed.
Test 3: The evaluator will configure the OS to only
allow code that has been signed by the OS vendor to
execute. The evaluator will then attempt to execute
code signed by the OS vendor. The evaluator will
ensure that the code they attempted to execute has
been executed.
Test 4: The evaluator will configure the OS to only
allow code that has been signed by the OS vendor to
execute. The evaluator will then attempt to execute
code signed by another digital authority. The evaluator
will ensure that the code they attempted to execute has
not been executed.
Test 5: The evaluator will configure the OS to allow
execution of a specific application based on version.
The evaluator will then attempt to execute the same
version of the application. The evaluator will ensure that
the code they attempted to execute has been executed.
Test 6: The evaluator will configure the OS to allow
execution of a specific application based on version.
The evaluator will then attempt to execute an older
version of the application. The evaluator will ensure that
the code they attempted to execute has not been
executed.
Test 7: The evaluator will configure the OS to allow
execution based on the hash of the application
executable. The evaluator will then attempt to execute
the application with the matching hash. The evaluator
will ensure that the code they attempted to execute has

javascript:toggle('aactID-idp685856', 'link-aactID-idp685856');

FPT_W^X_EXT.1.1

been executed.
Test 8: The evaluator will configure the OS to allow
execution based on the hash of the application
executable. The evaluator will modify the application in
such a way that the application hash is changed. The
evaluator will then attempt to execute the application
with the matching hash. The evaluator will ensure that
the code they attempted to execute has not been
executed.

FPT_W^X_EXT.1 Write XOR Execute Memory Pages

The OS shall prevent allocation of any memory region with both
write and execute permissions except for [assignment: list of
exceptions] .

Application Note: Requesting a memory mapping with both write
and execute permissions subverts the platform protection provided
by DEP. If the OS provides no exceptions (such as for just-in-time
compilation), then "no exceptions" should be indicated in the
assignment. Full realization of this requirement requires hardware
support, but this is commonly available.

Assurance Activity

The evaluator will inspect the vendor-provided developer
documentation and verify that no memory-mapping can be
made with write and execute permissions except for the
cases listed in the assignment.

Test 1: The evaluator will acquire or construct a test
program which attempts to allocate memory that is both
writable and executable. The evaluator will run the
program and confirm that it fails to allocate memory that
is both writable and executable.
Test 2: The evaluator will acquire or construct a test
program which allocates memory that is executable and
then subsequently requests additional write/modify
permissions on that memory. The evaluator will run the
program and confirm that at no time during the lifetime of
the process is the memory both writable and
executable.
Test 3: The evaluator will acquire or construct a test
program which allocates memory that is writable and
then subsequently requests additional execute
permissions on that memory. The evaluator will run the
program and confirm that at no time during the lifetime of
the process is the memory both writable and
executable.

javascript:toggle('aactID-idp733200', 'link-aactID-idp733200');

D. Inherently Satisfied Requirements

This appendix lists requirements that should be considered satisfied by products
successfully evaluated against this Protection Profile. However, these requirements are not
featured explicitly as SFRs and should not be included in the ST. They are not included as
standalone SFRs because it would increase the time, cost, and complexity of evaluation.
This approach is permitted by [CC] Part 1, 8.2 Dependencies between components.
This information benefits systems engineering activities which call for inclusion of
particular security controls. Evaluation against the Protection Profile provides evidence that
these controls are present and have been evaluated.

Requirement Rationale for Satisfaction

FIA_UAU.1 -
Timing of
authentication

FIA_AFL.1 implicitly requires that the OS perform all necessary actions,
including those on behalf of the user who has not been authenticated, in
order to authenticate; therefore it is duplicative to include these actions
as a separate assignment and test.

FIA_UID.1 -
Timing of
identification

FIA_AFL.1 implicitly requires that the OS perform all necessary actions,
including those on behalf of the user who has not been identified, in
order to authenticate; therefore it is duplicative to include these actions
as a separate assignment and test.

FMT_SMR.1 -
Security roles

FMT_MOF_EXT.1 specifies role-based management functions that
implicitly defines user and privileged accounts; therefore, it is
duplicative to include separate role requirements.

FPT_STM.1 -
Reliable time
stamps

FAU_GEN.1.2 explicitly requires that the OS associate timestamps with
audit records; therefore it is duplicative to include a separate timestamp
requirement.

FTA_SSL.1 -
TSF-initiated
session
locking

FMT_MOF_EXT.1 defines requirements for managing session locking;
therefore, it is duplicative to include a separate session locking
requirement.

FTA_SSL.2 -
User-initiated
locking

FMT_MOF_EXT.1 defines requirements for user-initiated session locking;
therefore, it is duplicative to include a separate session locking
requirement.

FAU_STG.1 -
Protected
audit trail
storage

FPT_ACF_EXT.1 defines a requirement to protect audit logs; therefore, it
is duplicative to include a separate protection of audit trail requirements.

FAU_GEN.2 -
User identity
association

FAU_GEN.1.2 explicitly requires that the OS record any user account
associated with each event; therefore, it is duplicative to include a
separate requirement to associate a user account with each event.

FAU_SAR.1 -
Audit review

FPT_ACF_EXT.1.2 requires that audit logs (and other objects) are
protected from reading by unprivileged users; therefore, it is duplicative
to include a separate requirement to protect only the audit information.

E. Entropy Documentation and
Assessment

This appendix describes the required supplementary information for the entropy source
used by the OS.
The documentation of the entropy source should be detailed enough that, after reading, the
evaluator will thoroughly understand the entropy source and why it can be relied upon to
provide sufficient entropy. This documentation should include multiple detailed sections:
design description, entropy justification, operating conditions, and health testing. This
documentation is not required to be part of the TSS.

E.1 Design Description

Documentation shall include the design of the entropy source as a whole, including the
interaction of all entropy source components. Any information that can be shared regarding
the design should also be included for any third-party entropy sources that are included in
the product.
The documentation will describe the operation of the entropy source to include, how
entropy is produced, and how unprocessed (raw) data can be obtained from within the
entropy source for testing purposes. The documentation should walk through the entropy
source design indicating where the entropy comes from, where the entropy output is
passed next, any post-processing of the raw outputs (hash, XOR, etc.), if/where it is stored,
and finally, how it is output from the entropy source. Any conditions placed on the process
(e.g., blocking) should also be described in the entropy source design. Diagrams and
examples are encouraged.
This design must also include a description of the content of the security boundary of the
entropy source and a description of how the security boundary ensures that an adversary
outside the boundary cannot affect the entropy rate.
If implemented, the design description shall include a description of how third-party
applications can add entropy to the RBG. A description of any RBG state saving between
power-off and power-on shall be included.

E.2 Entropy Justification

There should be a technical argument for where the unpredictability in the source comes
from and why there is confidence in the entropy source delivering sufficient entropy for the
uses made of the RBG output (by this particular OS). This argument will include a
description of the expected min-entropy rate (i.e. the minimum entropy (in bits) per bit or
byte of source data) and explain that sufficient entropy is going into the OS randomizer
seeding process. This discussion will be part of a justification for why the entropy source
can be relied upon to produce bits with entropy.
The amount of information necessary to justify the expected min-entropy rate depends on
the type of entropy source included in the product.
For developer provided entropy sources, in order to justify the min-entropy rate, it is
expected that a large number of raw source bits will be collected, statistical tests will be
performed, and the min-entropy rate determined from the statistical tests. While no
particular statistical tests are required at this time, it is expected that some testing is
necessary in order to determine the amount of min-entropy in each output.

For third-party provided entropy sources, in which the OS vendor has limited access to the
design and raw entropy data of the source, the documentation will indicate an estimate of
the amount of min-entropy obtained from this third-party source. It is acceptable for the
vendor to “assume” an amount of min-entropy, however, this assumption must be clearly
stated in the documentation provided. In particular, the min-entropy estimate must be
specified and the assumption included in the ST.
Regardless of type of entropy source, the justification will also include how the DRBG is
initialized with the entropy stated in the ST, for example by verifying that the min-entropy
rate is multiplied by the amount of source data used to seed the DRBG or that the rate of
entropy expected based on the amount of source data is explicitly stated and compared to
the statistical rate. If the amount of source data used to seed the DRBG is not clear or the
calculated rate is not explicitly related to the seed, the documentation will not be
considered complete.
The entropy justification shall not include any data added from any third-party application
or from any state saving between restarts.

E.3 Operating Conditions

The entropy rate may be affected by conditions outside the control of the entropy source
itself. For example, voltage, frequency, temperature, and elapsed time after power-on are
just a few of the factors that may affect the operation of the entropy source. As such,
documentation will also include the range of operating conditions under which the entropy
source is expected to generate random data. It will clearly describe the measures that have
been taken in the system design to ensure the entropy source continues to operate under
those conditions. Similarly, documentation shall describe the conditions under which the
entropy source is known to malfunction or become inconsistent. Methods used to detect
failure or degradation of the source shall be included.

E.4 Health Testing

More specifically, all entropy source health tests and their rationale will be documented.
This includes a description of the health tests, the rate and conditions under which each
health test is performed (e.g., at start, continuously, or on-demand), the expected results for
each health test, and rationale indicating why each test is believed to be appropriate for
detecting one or more failures in the entropy source.

F. References

Identifier Title

[CC] Common Criteria for Information Technology Security Evaluation -

Part 1: Introduction and General Model, CCMB-2012-09-001, Version
3.1 Revision 4, September 2012.
Part 2: Security Functional Components, CCMB-2012-09-002, Version
3.1 Revision 4, September 2012.
Part 3: Security Assurance Components, CCMB-2012-09-003, Version
3.1 Revision 4, September 2012.

[CEM] Common Evaluation Methodology for Information Technology Security -
Evaluation Methodology, CCMB-2012-09-004, Version 3.1, Revision 4,
September 2012.

[CESG] CESG - End User Devices Security and Configuration Guidance

[CSA] Computer Security Act of 1987, H.R. 145, June 11, 1987.

[OMB] Reporting Incidents Involving Personally Identifiable Information and
Incorporating the Cost for Security in Agency Information Technology
Investments, OMB M-06-19, July 12, 2006.

http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R4.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R4.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R4.pdf
https://www.gov.uk/government/collections/end-user-devices-security-guidance
http://csrc.nist.gov/groups/SMA/ispab/documents/csa_87.txt
http://www.whitehouse.gov/sites/default/files/omb/memoranda/fy2006/m06-19.pdf

G. Acronyms

Acronym Meaning

AES Advanced Encryption Standard

ANSI American National Standards Institute

API Application Programming Interface

ASLR Address Space Layout Randomization

CESG Communications-Electronics Security Group

CMC Certificate Management over CMS

CMS Cryptographic Message Syntax

CN Common Names

CRL Certificate Revocation List

CSA Computer Security Act

DEP Data Execution Prevention

DES Data Encryption Standard

DHE Diffie-Hellman Ephemeral

DNS Domain Name System

DRBG Deterministic Random Bit Generator

DSS Digital Signature Standard

DT Date/Time Vector

DTLS Datagram Transport Layer Security

EAP Extensible Authentication Protocol

ECDHE Elliptic Curve Diffie-Hellman Ephemeral

ECDSA Elliptic Curve Digital Signature Algorithm

EST Enrollment over Secure Transport

FIPS Federal Information Processing Standards

DSS Digital Signature Standard

HMAC Hash-based Message Authentication Code

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure
DSS Digital Signature Standard

IETF Internet Engineering Task Force

IP Internet Protocol

ISO International Organization for Standardization

IT Information Technology

ITSEF Information Technology Security Evaluation Facility

NFC Near Field Communication

NIAP National Information Assurance Partnership

NIST National Institute of Standards and Technology

OCSP Online Certificate Status Protocol

OID Object Identifier

OMB Office of Management and Budget

OS Operating System

PII Personally Identifiable Information

PKI Public Key Infrastructure

PP Protection Profile

RBG Random Bit Generator

RFC Request for Comment

RNG Random Number Generator

RNGVS Random Number Generator Validation System

SAN Subject Alternative Name

SAR Security Assurance Requirement

SFR Security Functional Requirement

SHA Secure Hash Algorithm

S/MIME Secure/Multi-purpose Internet Mail Extensions

SIP Session Initiation Protocol

SWID Software Identification

TLS Transport Layer Security

URI Uniform Resource Identifier

URL Uniform Resource Locator
USB Universal Serial Bus

XCCDF eXtensible Configuration Checklist Description Format

XOR Exclusive Or

	Protection Profile for General Purpose Operating Systems
	Revision History
	Contents

	1. Introduction
	1.1 Overview
	1.2 Terms
	1.2.1 Common Criteria Terms
	1.2.2 Technology Terms

	1.3 Compliant Targets of Evaluation
	1.3.1 TOE Boundary
	1.3.2 TOE Platform

	1.4 Use Cases

	2. Conformance Claims
	3. Security Problem Definition
	3.1 Threats
	3.2 Assumptions

	4. Security Objectives
	4.1 Security Objectives for the TOE
	4.2 Security Objectives for the Operational Environment
	4.3 Security Objectives Rationale

	5. Security Requirements
	5.1 Security Functional Requirements
	5.1.1 Cryptographic Support (FCS)
	FCS_CKM.1(1) Cryptographic Key Generation (Refined)
	FCS_CKM.2(1) Cryptographic Key Establishment (Refined)
	FCS_CKM_EXT.3 Cryptographic Key Destruction
	FCS_COP.1(1) Cryptographic Operation - Encryption/Decryption (Refined)
	FCS_COP.1(2) Cryptographic Operation - Hashing (Refined)
	FCS_COP.1(3) Cryptographic Operation - Signing (Refined)
	FCS_COP.1(4) Cryptographic Operation - Keyed-Hash Message Authentication (Refined)
	FCS_RBG_EXT.1 Random Bit Generation
	FCS_STO_EXT.1 Storage of Sensitive Data
	FCS_TLSC_EXT.1 TLS Client Protocol

	5.1.2 User Data Protection (FDP)
	FDP_ACF_EXT.1 Access Controls for Protecting User Data
	FDP_IFC_EXT.1 Information flow control

	5.1.3 Security Management (FMT)
	FMT_MOF_EXT.1 Management of security functions behavior

	5.1.4 Protection of the TSF (FPT)
	FPT_ACF_EXT.1 Access controls
	FPT_ASLR_EXT.1 Address Space Layout Randomization
	FPT_SBOP_EXT.1 Stack Buffer Overflow Protection
	FPT_TST_EXT.1 Boot Integrity
	FPT_TUD_EXT.1 Trusted Update
	FPT_TUD_EXT.2 Trusted Update for Application Software

	5.1.5 Audit Data Generation (FAU)
	FAU_GEN.1 Audit Data Generation

	5.1.6 Identification and Authentication (FIA)
	FIA_AFL.1 Authentication failure handling
	FIA_UAU.5 Multiple Authentication Mechanisms
	FIA_X509_EXT.1 X.509 Certificate Validation
	FIA_X509_EXT.2 X.509 Certificate Authentication

	5.1.7 Trusted Path/Channels (FTP)
	FTP_ITC_EXT.1 Trusted channel communication
	FTP_TRP.1 Trusted Path

	5.2 Security Assurance Requirements
	5.2.1 Class ASE: Security Target
	5.2.2 Class ADV: Development
	ADV_FSP.1 Basic Functional Specification (ADV_FSP.1)
	Developer action elements:
	Content and presentation elements:
	Evaluator action elements:

	5.2.3 Class AGD: Guidance Documentation
	AGD_OPE.1 Operational User Guidance (AGD_OPE.1)
	Developer action elements:
	Content and presentation elements:
	Evaluator action elements:
	AGD_PRE.1 Preparative Procedures (AGD_PRE.1)
	Developer action elements:
	Content and presentation elements:
	Evaluator action elements:

	5.2.4 Class ALC: Life-cycle Support
	ALC_CMC.1 Labeling of the TOE (ALC_CMC.1)
	Developer action elements:
	Content and presentation elements:
	Evaluator action elements:
	ALC_CMS.1 TOE CM Coverage (ALC_CMS.1)
	Developer action elements:
	Content and presentation elements:
	Evaluator action elements:
	ALC_TSU_EXT.1 Timely Security Updates
	Developer action elements:
	Content and presentation elements:
	Evaluator action elements:

	5.2.5 Class ATE: Tests
	ATE_IND.1 Independent Testing – Conformance (ATE_IND.1)
	Developer action elements:
	Content and presentation elements:
	Evaluator action elements:

	5.2.6 Class AVA: Vulnerability Assessment
	AVA_VAN.1 Vulnerability Survey (AVA_VAN.1)
	Developer action elements:
	Content and presentation elements:
	Evaluator action elements:

	A. Optional Requirements
	FCS_TLSC_EXT.4 TLS Client Protocol
	FTA_TAB.1 Default TOE access banners

	B. Selection-Based Requirements
	FCS_DTLS_EXT.1 DTLS Implementation
	FCS_TLSC_EXT.2 TLS Client Protocol

	C. Objective Requirements
	FCS_TLSC_EXT.3 TLS Client Protocol
	FPT_SRP_EXT.1 Software Restriction Policies
	FPT_W^X_EXT.1 Write XOR Execute Memory Pages

	D. Inherently Satisfied Requirements
	E. Entropy Documentation and Assessment
	E.1 Design Description
	E.2 Entropy Justification
	E.3 Operating Conditions
	E.4 Health Testing

	F. References
	G. Acronyms

