Modeling Security Functional Requirements

Helmut Kurth atsec information security

Outline

- The CC paradigm an attempt of an explanation
- Putting it into context a basis for modeling SFRs
- Mapping the model to part 2
- Deficiencies of CC part 2 components and how to overcome them
- Suggestions for improvement

There is still a long way to perfection!

CC Paradigms

User:

 active entity outside of the TOE that requests services from the TOE (human user or external IT system).

Subject:

 Active entity within the TOE but outside of the TSF (such that services requested by a subject are mediated by the TSF.

User-subject binding:

 Service of the TSF that "binds" a user to a subject such that the subject may request services on behalf of the user.

Open issues:

"Trusted subjects"; subjects not operating on behalf of a user.

CC Paradigms

- Object:
 - Passive entity controlled by the TSF.
- Resource:
 - Entity managed and controlled by the TSF.
- Information:
 - Anything a user may extract from the TOE by using services.

Open issues

 Difference between "objects" and "resources"; entities that are sometimes passive (are operated upon), sometimes active; relation between information and the objects/resources they are stored in or processed by.

CC Paradigms

Security attributes

- May exists for users, subjects, information, objects, sessions, and resources.
- Are managed by the TSF and used as part of the rules defining the security policy enforced by the TSF

User data

 Data stored in resources or objects controlled by the TSF but were the TSF do not interpret the data

TSF data

- Data stored in resources or objects controlled by the TSF which is used by the TSF as part of its operation
 - Example: security attributes, TSF internal state

Problems with the Paradigm

- No guidance is provided how to define/identify subjects, objects, resources, information, security attributes.
- No mapping from the paradigms to the security functional components is provided
- No consistency check between the paradigm and the functional components has been performed

This is one reason why part 2 of the CC is so hard to apply!

New Approach

- Let's stay with the terms used in the paradigm
- Let's develop a model of what we want to have as security functions
- Only when this is done attempt to map the model to part 2 of the CC!
 - Starting with part 2 of the CC when developing your model will bring you into trouble!
- What we suggest is a step-by-step approach to develop security functional requirements based on the CC paradigm

Policy elements in context

User-subject binding

TSF data and policy elements

Additional policy elements - Communication Channels -

- Communication channels
 - Designates logical communication channels
 - May be characterized by security attributes like
 - Requires integrity protection
 - Requires confidentiality protection
 - Requires replay protection
 - Requires data authentication
 -
 - May have rules that determine initialization, management, use and termination of the channel

Additional policy elements - Event Monitoring -

- Defines events the TSF needs to react upon
 - Attempted violation of the policy
 - Detected failure of abstract machine or device
 - Reaching a specific state
 - **—**
- Defines the rules how to react to events
 - Generate audit entry
 - Send message to external user
 - Modify state and/or security attributes of policy elements
 - Go to a specific state
 - **—**

Additional policy elements - TSF architecture -

- Additional rules to achieve security objectives
 - Separation between TSF and non-TSF portion of the TOE
 - Separation of different subject
 - Non bypassability
 - TSF internal information flow control
 - Consistency of TSF data
 - Availability of services

One may well argue that they are outside of the policy, but they are still required to satisfy valid security objectives

Removed policy element - Session -

- Term used for traditional types of "terminal session"
- Can (with some interpretation) also be used for "session level protocols"
- Paradigm can be addressed by the new (broader) "channel" paradigm
 - Session establishment
 - Selection of session attributes
 - Limitation on concurrent sessions
 - Session locking
 - Session termination
 - "Access banner", "Access history"

Removed policy element - Information -

- Does not really fit with the other elements
- Paradigm section states it is required for modeling information flow control
 - This is usually modeled via object and resource security attributes and access / use of the objects and resources with rules on the automatic initialization and management of those attributes
 - Requires support by architectural aspects
 - Is therefore removed as an element of the paradigms

- Step 1 Element definition
 - Start with an initial set of users, subjects, objects, resources, channels
 - Start with an initial set of security attributes for each
 - Quite often one will identify that different "types" or "classes" of users, subjects, objects, resources and channels have different security attributes. Identify the types required
 - Define rules for creation, management and deletion of each element (if applicable)
 - Usually additional security attributes are identified by this process
 - Define rules for the initial values and the management of security attributes

- Step 2 User interaction
 - Define the rules for users to interact with the TSF
 - Credentials to present
 - Rules when credentials are required
 - User-subject binding rules (if required)
 - Channels to be used
 - Rules for channel establishment
 - Setting the channel attributes
 - Other security relevant actions performed during channel establishment (like key establishment, access banner display)

- Step 3 Object and resource usage rules
 - Define the rules for use of objects, resources by subjects and users
 - Usually different per object type and per resource type
 - Rules are usually based on security attributes of users, subjects, objects, resources, and channels used
 - Rules may also use TSF state information (like time, specific state like maintenance state, etc.)
 - Record the TSF state variables used
 - Definition of rules quite often identifies additional security attributes of the elements involved
 - Go back and define how those attributes are initialized and managed

- Step 4 Import and export of objects
 - Export means: it is transferred out of the control of the TSF without sending it to a user connected to the TSF via a defined channel
 - Import means: it is accepted from some unknown source
 - Define requirements for import and export of objects
 - When import and export is allowed
 - What is required to be with the object when imported or exported
 - For example a defined set of security attributes
 - How the object is transformed and checked when imported
 - For example decrypted, integrity check, authenticity check, etc.
 - How the object is transformed when exported
 - For example encrypted, digitally signed, etc.

- Step 5 Event definition, monitoring and management
 - Identify the events that need to be monitored
 - For each event, define the actions to be performed when an event happens, like
 - Write an audit record
 - Send a message to a user
 - Change the TSF state
 - Change security attributes of policy elements
 -

- Step 6 TSF internals
 - Identify objectives that require to addressed by TSF internals (TSF architecture)
 - Separation
 - Reference mediation
 - Availability requirements
 - Information flow control requirements
 - Privacy
 - TSF internal integrity and consistency checks
 - Automated rules for modifying security attributes and TSF state variables
 - Some of those need to be supported by the rules defining the use of resources
 - For example information flow control requirements and privacy requirements may need support from rules defining usage of objects and resources

Mapping to CC part 2

Basic question:

- Once all this defined, can it mapped to the components of part 2?
- Should be possible for the elements taken from the part 2 paradigms

Answer:

- It is only partly possible
 - Part 2 was not developed by putting the elements of the paradigm into context and consistently derive components from such a model

- Step 1 Element definition
 - Element definition
 - Assumed to exist by part 2, no formal requirement to list element types and their security attributes
 - Element creation and initialization
 - Partly covered by FMT_MSA
 - Management of security attributes
 - Partly covered by several components in the FMT family
 - Not consistently addressed (too limited in the rules one can define)

- Step 2 User interaction
 - Partly addressed by FIA
 - View of authentication is too narrow
 - Partly addressed by FTA
 - Too much related to the classical terminal session
 - Partly addressed by FTP
 - Not sufficient to model all security attributes of channels and their management

- Step 3 Object and resource usage rules
 - Partly addressed by FDP and FRU
 - FRU also contains requirements on TSF internals
 - Management aspects partly covered by FMT
 - Many components are too restrictive to be applicable to many security policies
 - For example access control is restricted to access of subjects to objects, ignoring that there may be direct access of users
 - "usage" of resources is similar to "access" to object and requires similar flexibility in the definition of the rules

- Step 4 Import and export of objects
 - Can be partly mapped to
 - FDP_ETC and FDP_ITC
 - FDP_UCT and FDP_UIT
 - FCO
 - Also here more flexibility in the definition of the rules is required

- Step 5 Event definition, monitoring and management
 - Partly covered by FAU
 - Some requirements in FAU are related to the TSF internals
 - Parts of FDP_SDI
 - FDP_IFF.6
 - FIA_AFL
 - Several components in the FPT family
 - FRU_FLT
 - Also here flexibility is missing and the aspect is not addressed consistently

- Step 6 TSF internals
 - Mainly addressed by FPT
 - Parts of FAU_STG
 - FDP_ITT
 - FDP_RIP
 - FDP_SDI
 - Parts of FPR
 - Parts of FRU
 - Many TSF internals need to be supported by usage rules and management functions!

Conclusion

- We have defined a framework for the definition of security functional requirements based on the paradigms defined in CC part 2
- We have identified that the structure of the components in part 2 do not follow a clear model
- We have identified that many components from part 2 do not present sufficient flexibility to model everything one can define with out framework
- Still most components of part 2 fit in our framework some re-arrangement would enhance the understanding of part 2

Suggested future work

- Test the framework with different types of IT products and enhance it where necessary
- Arrange the components of part 2 around the framework
- Change components where more flexibility is required
- Remove redundant components
- Add missing components

