
A unified tool to fulfill semi formal and formal
requirements for CC evaluations

Speakers
Carolina LAVATELLI (Trusted Labs)
Jean-Pierre KRIMM (CESTI-LETI)7th ICCC

Lanzarote
September 19th-21st 2006

PLAN

Generalities of the EDEN project
– Purpose
– Partners

Developments
– Methodology
– Languages
– Tools

Formal requirements of CC v2.x fulfilled
– Formal security assurance components
– How are the formal requirements fulfilled
– What should be the evaluator work
– Extension to CC v3.1

Conclusion

Purpose

Methodology and environment for the specification,
verification and test that meet CC requirements based

on semi-formal and formal descriptions

Semi-formal and formal modelisation
Consistency and completeness verifications
Automatic test generation
Traceability and documentation
CC validation of methods and tools

Generalities

French R&D projects

Eden 1: Formal and semi-formal verification of embedded systems
components for high CC evaluation levels

– 30 months: Nov. 02 – May 05

– Methodology and faisability

– Prototypes of languages and tools

– Validation against CC v2.x

Eden 2: Tools for the security evaluation of embedded systems components
against CC v3 high evaluation levels

– 36 months: Dec. 05 – June 08

– Evolution and stabilisation of Eden 1 developments

– Methods and tools validation against CC v3

– Goal: Industrial evaluation trial

Generalities

Partners and roles
Axalto

– Needs from the industry
– Experimentation

CEA-LETI
– CC validation of methods and tools

CEA-LIST
– Test generation from formal specifications

Trusted Labs
– Semi-formal and formal specification methodology
– Experimentation

Verimag
– Formal specification methodology
– Verification of (multiple) formal specifications

Generalities

Methodology (1/2)

Developments

Seamless integration
to semi-formal descriptions

Intuitive semantics for
security/development teams

Unified approach for all
ADV representation levels

Operational descriptions
Trace semantics

Complementary to
UML-like descriptions

TSF = what is done
TSP = what is allowed

the needs

the approach

Methodology (2/2)

Developments

Operational descriptions
Trace semantics

TSF = what is done
TSP = what is allowed

Traces?

Sensitive events that
arise during execution

Exemples

ACCESS to assets
USE of sec. funct.

FLOW of information

Modularity?

Each description defines
its sensitive events

Exemples

TSF defines actual
TOE events

TSP defines abstract events

Relationships ?

Event translation
then trace inclusion

Exemples

TSF-1 doesn’t do more
than TSF-2

TSP allows all what
TSF does

TSF and TSP specification

Given observable events V raised by execution engine

Specification S(E,P)
– Observable entities E used to model/describe the system.
– Collection P of properties of sequences of events in V*(E) .

Semantics Traces(S(E,P))
– Domain values for S
– Traces in V *(E) , obtained by execution of S, that verify P
– Traces(S(E,P)) ⊆ Traces(S(E, ∅)) ⊆ V *(E)

Developments

Relationship between specifications

Given specifications S1(E1,P1) and S2(E2,P2)

Correspondence from S1 to S2
– Collection R : V*(E1) → V *(E2) of mappings v1→v2
– Translation of v1 to the alphabet of S1 yields v2

Conformance of S1 to S2 based on R
– Domain values for S1 and S2
– All execution traces of S1, translated according to each

mapping of R,, are included in the execution traces of S2.
– Traces(S1(E1, P1)) ⊆R Traces(S2(E2, P2))

Developments

Eden Specification Language (ESL)

TSP – ESLsec

Most liberal security policy : state machine
Legal (authorized) traces: additional temporal properties

TSF – ESLdev

Java-like specification: classes, variables, methods, assertions
Code instrumentation: READ, WRITE, CALL, EXIT… events

Developments

ESLsec

State machine language
– Variables: READ, WRITE events
– Commands: CALL, EXIT, PASS, FAIL, … events

Temporal properties on events
– Mandatory sequence of events (e.g.

«PASS(authentication) before PASS(transaction)»)
– Forbidden sequence of events (e.g. « Never WRITE(x,_) »)
– Chech properties (e.g. « WAIT(WRITE(y,val)); CHECK(val > 0) »)
–

TSP specification (Control and flow policies)
– Operations: commands
– Attributes: variables
– Rules: properties, commands
– Attribute Management: commands, properties

Developments

ESLsec: E-purse liberal policy and constraints

int pin;
int failure = 0;

void COMMAND_authentify(int code)
{
PASS(pin == code);{failure = 0};
FAIL(pin != code);{failure +=1};
}

void COMMAND_debit()
{
PASS(true);{};
}

void COMMAND_credit()
{
PASS(true);{};
}

String p= “PASS(authentify(_))”;
String f= “FAIL(authentify(_))”;
String d= “PASS(debit(_))”;

void PROPERTY_P0() {
WAIT(“p”);
CHECK(ON_ENTRY(failure) < 3);
}

void PROPERTY_P1() {
ORDERED(“p;NO(f) BEFORE d”);
}

Developments

E-purse liberal/authorized traces

[failure < 3 and pin = code] READ(pin); PASS(authentify(code));
PASS(debit());

[failure < 3 and pin != code] READ(pin); FAIL(authentify(code));
PASS(debit());

[failure = 3 and pin = code] READ(pin); PASS(authentify(code));

[pin != code] READ(pin); FAIL(authentify(code)); PASS(credit());

PASS(debit()); PASS(credit());

PROPERTY_P1

PROPERTY_P0

PROPERTY_P1

Developments

ESLdev

Code instrumentation, e.g.
[type x = constant] type x = constant;INIT("x",x)

[x := y] READ("y",y); WRITE("x",x)
[f(x)] READ(“x",x); CALL(f(x)); ...; EXIT(f(x))

Assertions, e.g.
REQUIRES(boolean_condition)
ENSURES (boolean_condition)

FSP specification
– declarative style (« assignment » and « if-then-else »)

HLD/LLD specification
– interacting subsystems/modules (classes)

Developments

ESLdev: E-purse example

int pin;
int limit=3;
boolean auth = false;
int balance;

public check(int code) {
auth =false;
if (limit > 0) {

limit = limit-1;
if (pin == code) {

limit = 3;
auth = true;

}
return;
}

public transaction(int x, boolean signus) {

if (signus == false) // debit

{

if (auth = true & x =< balance) {

balance -= x};

};

else // credit

{ balance += x};

};

return;

}

Developments

E-purse semantics

[counter > 0 and pin =code] CALL (check(code)); WRITE(auth,false);
READ(pin); WRITE(auth,true); EXIT(check(code))

[counter > 0 and pin != code] CALL (check(code)); WRITE(auth,false);
READ(pin); EXIT(check(code));

[counter ≤ 0] CALL(check(code)); WRITE(auth,false); EXIT(check(code));

[balance < x] CALL(check(code)); … ; WRITE(auth, true);
EXIT(check(code)); CALL(transaction(x,false)); READ(auth);
EXIT(transaction(x,false));

[x ≤ balance] CALL(check(code)); WRITE(auth,false); EXIT(check(code));
CALL(transaction(x,false)); EXIT(transaction(x,false));

[x ≤ balance] CALL(check(code)); … ; WRITE(auth, true);
EXIT(check(code)); CALL(transaction(x,false)); READ(auth);
READ(balance); WRITE(balance); EXIT(transaction(x,false));

Developments

Mappings R

--balance

authentify(code)check(code)

PASS(authentify(code))WRITE(auth,true);EXIT(check(code))

debit();transaction(_,false)

credit()transaction(_,true)

--WRITE(auth)

FAIL(authentify(code))WRITE(auth,false);EXIT(check(code))

--READ(auth)

pinpin

E-purse TSPE-purse TSF

Traces(E-purse TSF) ⊆R Traces(E-purse TSP)

Developments

Test generation

Symbolic execution of ESL associated automatas
– Test plan, test scripts, expected results

Coverage of specifications:
– All interfaces
– All instructions
– All behaviors
– « Divide and Conquer » methodology

Developments

ESL Tools

UML with constraints to ESL: TL FIT +TL FIT + [Trusted Labs]

ESL to traces : IF+IF+ [Verimag]
Trace translation and inclusion: IF+IF+ [Verimag]

ESL to tests: IF+IF+ [Verimag] Agatha+Agatha+ [CEA-LIST]

Goal: EclipseTM environment

Developments

CC v2.x formal assurance components

The scope
– Disconnected from EAL, i.e. EAL 7 implies more than formal

specifications
– Only focuses on formal assurance components (semiformal covered)

Formal assurance components
– ADV_FSP.4 Formal functional specification
– ADV_HLD.5 Formal high-level design
– ADV_LLD.3 Formal low-level design
– ADV_RCR.3 Formal correspondence demonstration
– ADV_SPM.3 Formal TOE security policy model

Assurance components which depend on ADV
– ATE_FUN, ATE_COV and ATE_DPT

CC v2.x

ADV formal requirements

Requirements on formal deliveries:
– be in a formal style (FSP, SPM, HLD, LLD)
– be internally consistent (FSP, HLD, LLD)
– where two levels of representation are formal, the proof of

correspondence between these representations shall be formal (SPM,
RCR)

– the formal proof of correspondence between the TSP model and the
functional specification shall show that all of the security functions in
the functional specification are consistent and complete with respect
to the TSP model (SPM)

– for each adjacent pair of provided TSF representations, the analysis
shall prove that all relevant security functionality of the more abstract
TSF representation is correctly and completely refined in the less
abstract TSF representation (RCR)

CC v2.x

Formal style

Definition [CC-3,§309]
“A formal specification is written in a notation based upon
well-established mathematical concepts, and is typically
accompanied by supporting explanatory (informal) prose.
These mathematical concepts are used to define the syntax
and semantics of the notation and the proof rules that support
logical reasoning. The syntactic and semantic rules supporting
a formal notation should define how to recognise constructs
unambiguously and determine their meaning.”

These requirements are fulfilled by ESL,
based on traces theory

CC v2.x

Internal Consistency

Definition [CC-3,§84]
“There are no apparent contradictions between any aspects of
an entity. In terms of documentation, this means that there can
be no statements within the documentation that can be taken
to contradict each other.”

– Consistency of a description (FSP, HLD, LLD)
Error ∉ States (Traces (APP))

– Consistency of a correspondence (RCR)
Traces (APP) ⊆ Domaine (RCR)

where RCR = {T1, …, Tn}
Domaine (RCR) = traces recognized by {T1, …, Tn}

= language recognized by (T1 | … | Tn)*
– Consistency of a SPM (not required by CC)

Traces (SPM) ≠ ∅

CC v2.x

Consistency between two models

Definition [CC-3,§76]
“The term consistent describes a relationship between two or
more entities, indicating that there are no apparent
contradictions between these entities.”

– Consistency between refinements of the product
description is explained by

LLD ⊆ LLD -> HLD HLD ⊆ HLD -> FSP FSP
– Security policy is completely implemented if

SPM ⊆ SPM -> APP APP
– An application respects a security policy if

APP ⊆ APP -> SPM SPM

CC v2.x

Tests (ATE)

Taking advantage of formal representations (traces)
An automatic tool which processes test scenarios

– Providing test plans, test procedure descriptions and expected
test results (ATE_FUN)

– Guaranteeing the coverage of all external interfaces
(ATE_COV)

– Depending on which refinement level taken as input, guarantees
that the TSF operates in accordance with this level (ATE_DPT)

– Giving all evidence elements to the evaluator

The limitation is the input

CC v2.x

What should be the evaluator work

Assumption
– EDEN methodology and tools are validated

⇒ all the formal requirements on ADV are fulfilled
⇒ confidence on the coverage and depth of tests

Verify the completeness and accuracy of the description of the
TOE for each level of refinement

Verify the completeness and accuracy of the policy

Verify the completeness and accuracy of the mappings
(RCR and SPM)

The evaluator shall acquire the knowledge of the TOE

CC v2.x

Extension to CC v3.1

Identical to v2.x
The definition of a formal specification is the same

Consistency and completeness between FSP and SPM

Correctness and completeness between TDS and FSP

Different to v2.x

No internal consistency check for FSP and TDS
SPM: For all policies that are modelled, the model shall
define security for the TOE and provide a formal proof
that the TOE cannot reach a state that is not secure.

CC v3.1

Conclusion

These formal tools have been specifically developed for CC
evaluations

Gain assurance on EDEN methodology and tools

Perform a trial evaluation encompasses formal requirements
– EAL 4 augmented
– EAL 7
– …

Contribution of the French scheme of evaluation
– Propositions made in EDEN project have to be validated by at least

one CB

Thank you for your attention

Contact
Carolina.Lavatelli@trusted-labs.fr

jean-pierre.krimm@cea.fr

