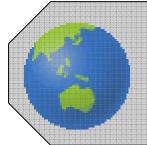


7th ICCC

Design and Development of a Knowledge-based Tool for ST Developers Based CC V3.1


Soka University JAPAN

Guillermo Horacio RAMIREZ CACERES Yoshimi TESHIGAWARA
Graduate School of Engineering, Soka University, Tokyo, Japan
E-mail:{guillerm,teshiga}@soka.ac.jp
21 September 2006

- Introduction
- Research Issues
- Fundamental Research Target
- Knowledge-base Architecture
- Conclusion
- Future Works

Introduction

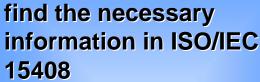
Introduction

2002 2001

2003 2005 2004

2006

Sola University


Home ISO/IEC → Projects → Membres Link

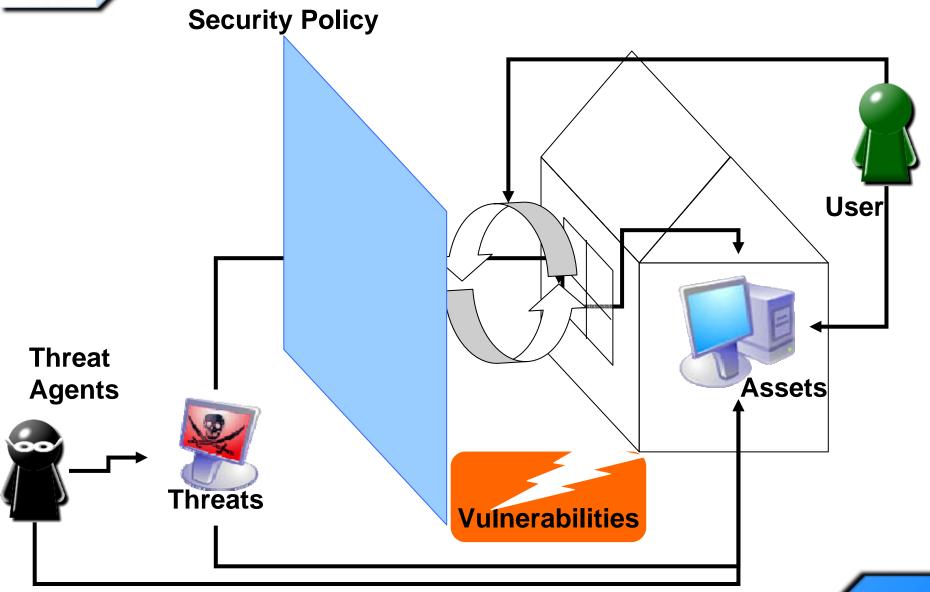
International Standard

ISO 15446

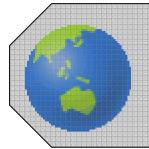
ISO 15408

ST Developer's knowledge shortage can be supplemented by using this tool to access the necessary information in international standards

The new version of Knowledge base also include a self training tool.



The technical languages used with the large number of new words



Security Concepts

Research Issues

Research Issues

Knowledge required

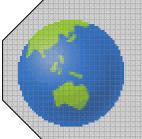
- ISO/IEC 15408 consists of approximately 700 pages.
- ISO/IEC TR 15446 consists of approximately 180 pages.
- The ST developer must read many times when trying to create a ST for evaluation.

Relevant experience

- The ST developer must write a document between 50 and 200 pages long.
- STs or PPs evaluated by CC are published on the Internet.
 and the ST developer can use this evaluated STs or PPs as references.

Example of CC Language

2.5 The PP and ST Development Process


The presentation of the requirements for PPs and STs in [15408-1] annexes B and C, and in [15408-3] clauses 3 to 5, might suggest that it is expected that PPs and STs are always developed in a logical 'top-down' manner, e.g. (in the case of a PP) that:

(47)

1.4.3 Usage of the PP and ST

A PP may be used to define a 'standard' set of security requirements with which one or more products may claim compliance, or which systems used for a particular purpose within an organisation must comply. (See [15408-1] subclause 2.3 for the definition of the terms *product* and *system*, and also [15408-1] subclause 4.1.2 for a general discussion of the distinction between the two). A PP may apply to a particular type of TOE (e.g. operating system, database management system, smartcard, firewall, and so on), or it could apply to a set of products grouped together in a *composite* TOE (system or product).

Fundamental Research Target

Knowledge-base

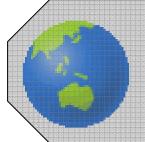
ISO/IEC 15446

ISO/IEC

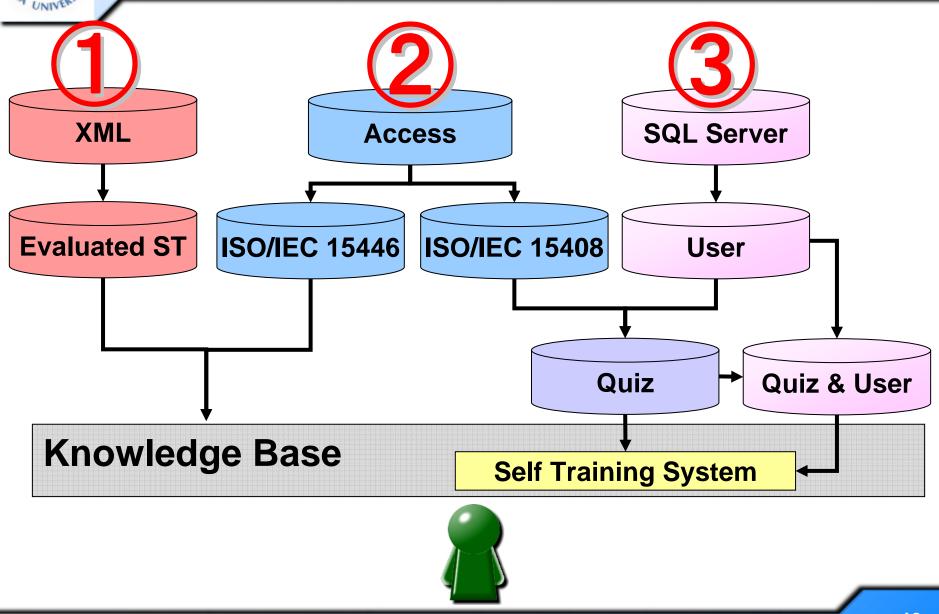
15408

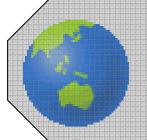
Security Target

- 1. ST Introduction
- 2. Conformance Claims
- 3. Security Problem Definition
- 4. Security Objectives
- 5. Extended Components Definition
- 6. Security Requirements
- 7. TOE Summary Specification


Knowledge

experience


Evaluated ST

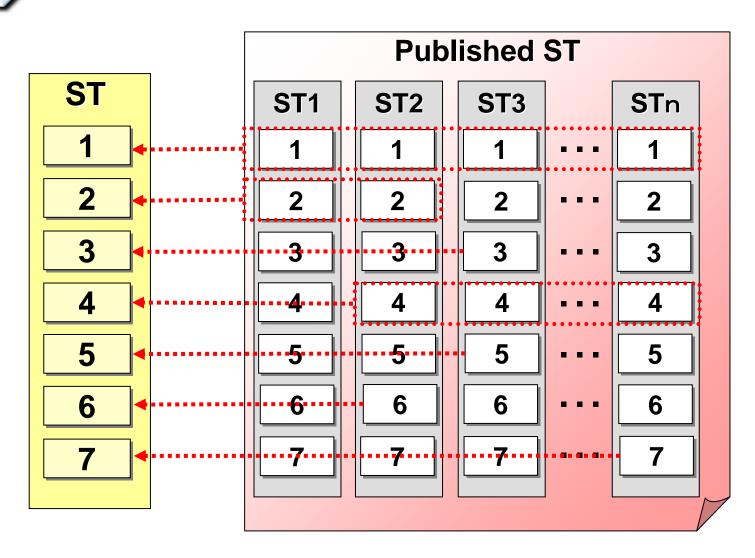


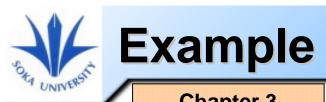
Knowledge-base Architecture

Knowledge base Architecture

Published ST Knowledge-base

Published ST Knowledge-base

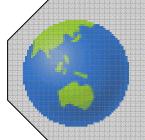



 IT products evaluated and authenticated based on CC are published on the Web Page of each country

ecurity_Target : テ				I FM OL S		LOTIDO
ST_Id ST_Tipo	Product	Manufacturer	EAL	EAL_Observation	Date Country	ST_PD
39 Firewalls	Stonesoft StoneGate Firewall V2.0.5	Stonesoft Corporation	EAL 4	, augmented ALC_FLR1	9/03 USA	
40 Firewalls	Symantec Enterprise Firewall, v8.0	Symantec Corporation	EAL 4		7/04 England	
41 Firewalls	Symantec Enterprise Firewall, v7.0.4 running		EAL 4		9/03 England	
42 Firewalls	Symantec Enterprise Firewall, v7.0	Symantec Corporation	EAL 4		5/02 England	
43 Firewalls	Symantec Enterprise Firewall on the Syman		EAL 4		3/04 England	
44 Firewalls	Symantec Gateway Security v2.0 5400 Serie		EAL 4	augmented ALC_FLR1	4/04 England	
45 Firewalls	TeleWall System, V 2.0 for NT 4.0	SecureLogix Corporation	EAL 2	Augmented ACM_CAP.3		✓
46 Firewalls	Watchguard LiveSecurity System w/Firebox	Watchguard Technologies	EAL 2		8/01 USA	V
47 Guards	DragonFly Companion, V3.02, Build 129	ITT Industries	EAL 2		0/01 USA	V
48 Guards	DragonFly Guard Model G1.2	ITT Industries	EAL 2		0/01 USA	\ \ \ \ \ \
49 Guards	Owl Computing Technologies Data Diode Vi	Owl Computing Technologies, :	EAL 2		1/02 USA	✓
50 IDS/IPS	Cisco Intrusion Detection System Appliance	Cisco Systems, Inc.	EAL 2		5/04 USA	✓
51 IDS/IPS	Cisco Intrusion Detection System Module (1	Cisco Systems, Inc.	EAL 2	Augmented ALC_FLR1	5/04 USA	~
52 IDS/IPS	Enterasys Dragon-EAL™ Intrusion Defense	Enterasys Networks	EAL 2		9/04 USA	✓
53 IDS/IPS	IntruShield Intrusion Detection System	McAfee, Inc.	EAL 3		8/04 USA	V
54 IDS/IPS	Intrusion, Inc. SecureNet Pro™ Intrusion Det	Intrusion, Inc. SecureNet Pro™	EAL 2		2/02 USA	V
55 IDS/IPS	Lancope StealthWatch and StealthWatch +	Lancope, Inc.	EAL 2	Augmented ALC FLR2	6/04 USA	~
56 IDS/IPS	Symantec CyberWolf, Version 2.0	Symantec Corporation	EAL 2		6/04 USA	V
57 IDS/IPS	Symantec Manhunt Version 2.11	Symantec Corporation	EAL 3		2/03 USA	✓
58 IDS/IPS	TippingPoint UnityOne™ Version 1.2	Tipping Point Technologies, Inc			8/03 USA	<u> </u>
59 IDS/IPS	Top Layer Networks IDS Balancer TM Vers		EAL 2		8/04 USA	<u> </u>
60 Miscellaneous	BKK SignCubes, Version 1.5 (BSI-DSZ-CC-			Augmented ADV_IMP.1 A		
61 Miscellaneous	Canon imageRUNNER 2200/2800/3300 Ser	Canon U.S.A., Inc.	EAL 3		6/04 USA	✓
62 Miscellaneous	Data-Defender V1.0	IBH-IMPEX Elektronik GmbH	EAL 1		5/02 Germany	
63 Miscellaneous	DEP/PCI Version 3.0	Banksys N.V.	EAL 3	Augmented ADV_FSP.2	8/03 Germany	
65 Miscellaneous	IBM Directory Server 5.2 (BSI-DSZ-CC-02)		EAL 3		3/04 Germany	
66 Miscellaneous	IBM LPAR for POWER 4 for the IBM pSerie		EAL 4	Augmented ALC_FLR1	1/04 Germany	
67 Miscellaneous	IBM Tivoli Access Manager for e-business		EAL 3	+	0/03 Germany	
68 Miscellaneous	Image Overwrite Security for Xerox WorkCe		EAL 2		5/04 USA	
70 Miscellaneous	Sharp Corporation Multifunction Device with		EAL 2		2/02 USA	<u> </u>

ST evaluated and certificated by CC

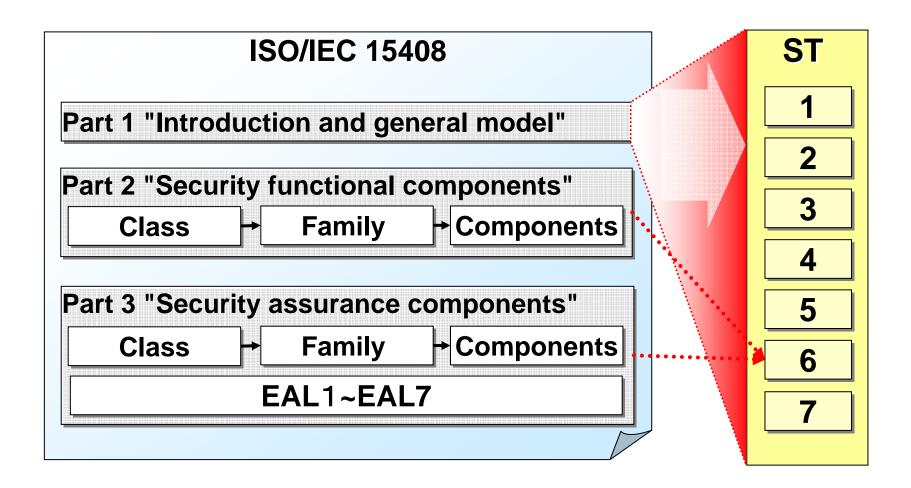
Chapter 4


Chapter 6

FIA_UID. FIA_UAU. FIA_AFL FTP_TRP FTA_TSE.

		TO	E		IT Environ			Non - IT Environ				
	O.ADMIN	O.DETECT	O.MONITOR	O.QUEUE	ACCESS	O FNV ADMIN		E	O.INSTALL	O PFRSON		RE
Assumptions												
A.LOCATE											х	
A.PROTECT									x	х	х	
A.MANAGE										х		
A.NOEVIL										х		
A.CONFIG								1	x	х		
A.IDENT					×							
A.SYSPRCT					x						х	
A.HARDWRE												х
A.SYSTIME								х				
Threats												
T ACCESS DATA					×		ж				x	
T.OVRLOAD				х								
T.UNAUTH					x		x			х	x	

														•	han S an S an S	bin One One	D:		
Objectives	FAU_ARP.1	FAU GEN.1	FAU GEN.2	FAU_SAA.1	FAU_SAR.1a	FAU SAR.1b	FAU_SAR.1c	FAU_SAR.3a	FAU_SAR.3b	FAU_SAR.3c	FDP_IFC.2	FDP_IFF.1	FMT_SMF.1	FPT RVM1			FPT_SEP.1	FPT_STM.1	
TOE																			
O.ADMIN	х	х	х	х	х	х		х	х	х			x		x	X			ĺ
O.DETECT											х	х	x		х	х	х		
O.MONITOR		х	х														х	х	
O.QUEUE											х	x		х			х		
·· PEnvironment		• • •	• • •	• • •			•	• • •	• • •	• • •		•			• • •	•••	•	•	
O AUTH ACCESS														:	X	X	•		
O.ENV_ADMIN	• • •	• • •	••	•••	• • •	• • •	x	• • •		• •	• •	• • •	• • •	•	0.0	0.0		• • •	•
O.SEP														•			х		
O.TIME																		x	



ISO/IEC 15408 ISO/IEC TR 15446

ISO/IEC TR 15446

ISO/IEC 15446

- 1. Introduction
- 2. Overview of the PP and ST
- 3. Descriptive parts of the PP and ST
- 4. The TOE security environment
- 5. The security objectives
- 6. Security requirements

i

10. Functional and assurance packages

ST

1

2

3

4

5

6

7

Security Target Contents

- 1. ST Introduction
- 2. Conformance Claims
- 3. Security Problem Definition

Threats

Organisational Security Policies

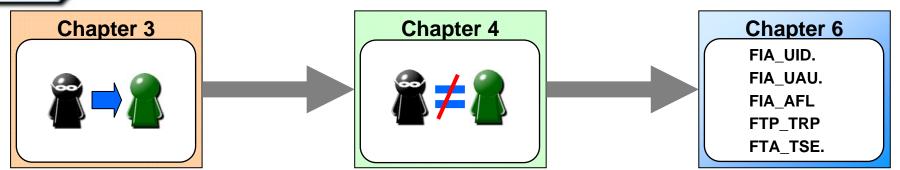
Assumptions

4. Security Objectives

Security objectives for the TOE

Security objectives for the operational environment

- 5. Extended Components Definition
- 6. Security Requirements


Security Functional Requirements

Security Assurance Requirements

7. TOE Summary Specification

Security Target Contents

3. Security Problem Definition

Threats

Organisational Security Policies

Assumptions

4. Security Objectives

Security objectives for the TOE

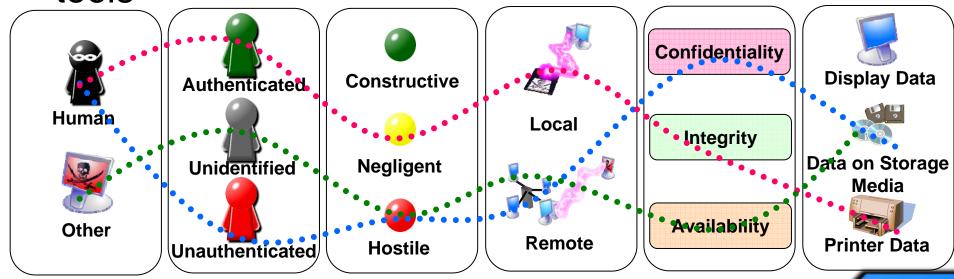
Security objectives for the operational environment

6. Security Requirements

Security Functional Requirements

Security Assurance Requirements

Section 3

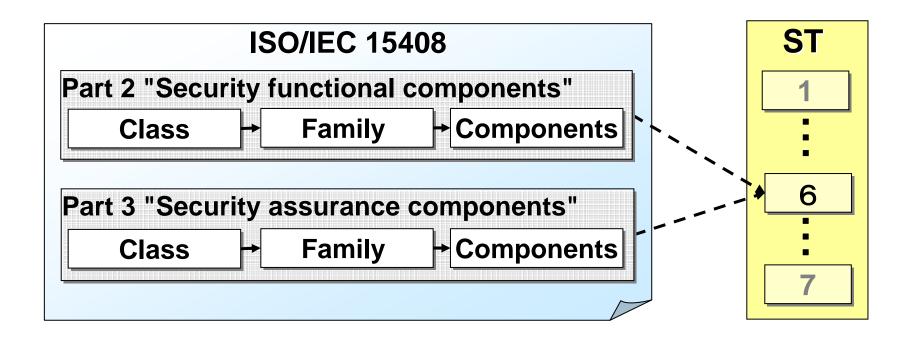

3. Security Problem Definition

Threats

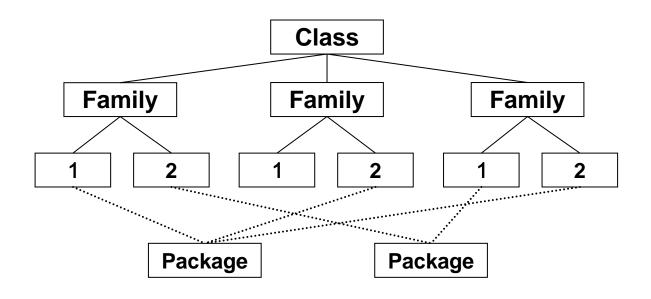
Organisational Security Policies

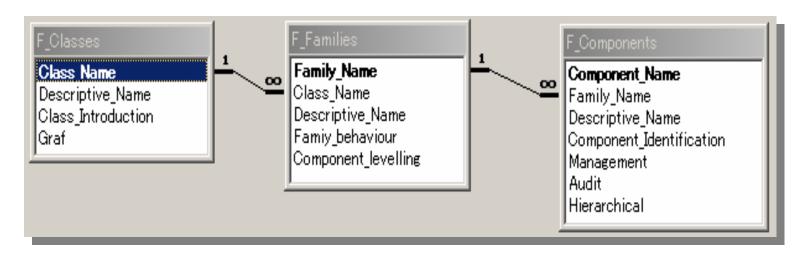
Assumptions

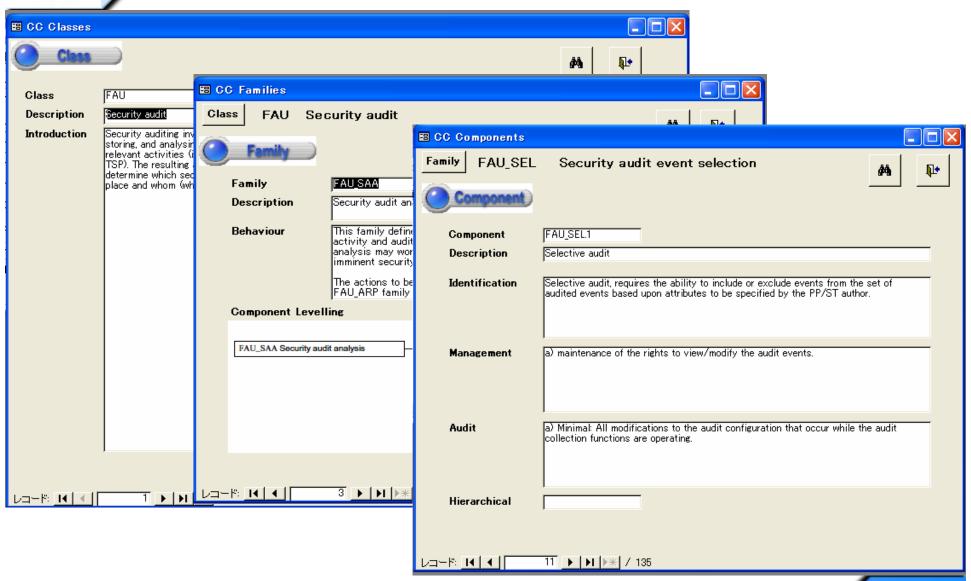
- The security problems to be addressed by the TOE
- CC does not provide a framework for risk analysis
- ST developers would be able to use a Threats Model tools



6. Security Requirements


Security Functional Requirements


Security Assurance Requirements


ISO/IEC 15408

ISO/IEC 15408 Knowledge-base

SFR: Class

IT Security: Knowledge Base

Home ISO/IEC → Projects → Membres Link

Security Functional Requirenment : Class

Class	<u>Name</u>	<u>Introduction</u>
FAU	Security audit	Security auditing involves recognising, recording, storing, and analysing information related to security relevant activities (i.e. activities controlled by the TSP). The resulting audit records can be examined to determine which security relevant activities took place and whom (which user) is responsible for them.
FCO	Communication	This class provides two families specifically concerned with assuring the identity of a party participating in a data exchange. These families are related to assuring the identity of the originator of transmitted information (proof of origin) and assuring the identity of the recipient of transmitted information (proof of receipt). These families ensure that an originator cannot deny having sent the message, nor can the recipient deny having received it.
FCS	Cryptographic support	The TSF may employ cryptographic functionality to help satisfy several high-level security objectives. These include (but are not limited to): identification and authentication, non-repudiation, trusted path, trusted channel and data separation. This class is used when the TOE implements cryptographic functions, the implementation of which could be in hardware, firmware and/or software. The FCS class is composed of two families: FCS_CKM Cryptographic key management and FCS_COP Cryptographic operation. The FCS_CKM family addresses the management aspects of cryptographic keys, while the FCS_COP family is concerned with the operational use of those cryptographic keys.
FDP	User data protection	This class contains families specifying requirements for TOE security functions and TOE security function policies related to protecting user data. FDP is split into four groups of families (listed below) that address user data within a TOE, during import, export, and storage as well as security attributes directly related to user data.

SFR: Family

Soka University - Teshigawara Laboratory IT Security: Knowledge Base

Home ISO/IEC → Projects → Membres Link

Security Functional Requirenment : Class - Family

<u>Family</u>	Class	<u>Name</u>	<u>behaviour</u>
FAU_ARP	FAU	Security audit automatic response	This family defines the response to be taken in case of detected events indicative of a potential security violation.
FAU_GEN	FAU		This family defines requirements for recording the occurrence of security relevant events that take place under TSF control. This family identifies the level of auditing, enumerates the types of events that shall be auditable by the TSF, and identifies the minimum set of audit-related information that should be provided within various audit record types.
FAU_SAA	FAU	Security audit analysis	This family defines requirements for automated means that analyse system activity and audit data looking for possible or real security violations. This analysis may work in support of intrusion detection, or automatic response to an imminent security violation. The actions to be taken based on the detection can be specified using the FAU_ARP family as desired.
FAU_SAR	FAU	Security audit review	This family defines the requirements for audit tools that should be available to authorised users to assist in the review of audit data.
FAU_SEL	FAU	Security audit event selection	This family defines requirements to select the events to be audited during TOE operation. It defines requirements to include or exclude events from the set of auditable events.
			1 <u>2 3 4 5 6 7 8 9 10</u>

SFR: Components

Security Functional Requirenment : Class - Family - Components

Component	<u>Family</u>	<u>Name</u>	<u>Identification</u>	<u>Management</u>	<u>Audit</u>	<u>Hierarchical</u>
FAU_ARP.1	FAU_ARP	Security alarms	the TSF shall take actions in case a potential security violation is detected.	a) the management (addition, removal, or modification) of actions.	Actions taken	No other components.
FAU_GEN.1	FAU_GEN	Audit data generation	Audit data generation defines the level of auditable events, and specifies the list of data that shall be recorded in each record.			
FAU_GEN.2	FAU_GEN	identity	User identity association, the TSF shall associate auditable events to individual user identities.			
FAU_SAA.1	FAU_SAA	Potential violation analysis	Potential violation analysis, basic threshold detection on the basis of a fixed rule set is required.	a) maintenance of the rules by (adding, modifying, deletion) of rules from the set of rules.	a) Minimal: Enabling and disabling of any of the analysis echanisms; b) Minimal: Automated responses performed by the tool.	

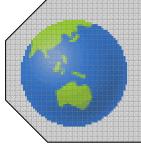
Projects: Threats Model

Soka University - Teshigawara Laboratory

IT Security: Knowledge Base

Home ISO/IEC → Projects → Membres Link

Security Guidelines for Home User


The knowledge base tool based on international standards was developed in this research. ST Developer's knowledge deficiency can be supplemented by using this tool to access the necessary information on international standards. Moreover, ST developer's experience shortage can be supplemented by referring evaluated ST information which are classified by product types and countries.

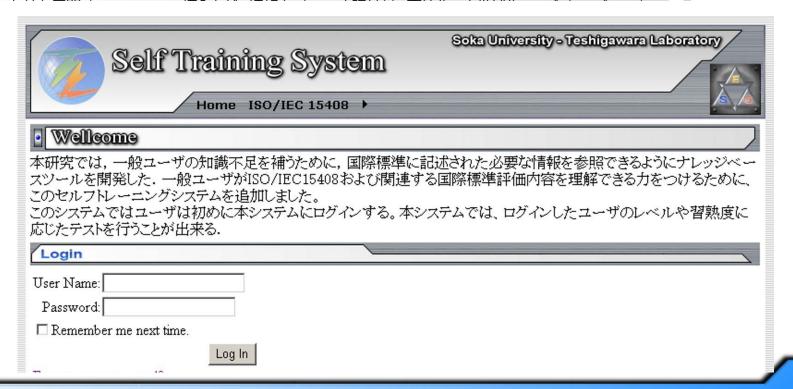
Knowledge Base for Production of ST

The ISO/IEC 15408 is a standard to be used as the basis for evaluation of security properties of IT products and systems. This Mutual Recognition Arrangement of CC (Common Criteria) is established by eight countries including the United States. The IT products evaluated based on ISO/IEC 15408 are increasing every year. However, one of the problems to make STs (Security Targets) is that sufficient knowledge and experience is critically required for ST developers. The knowledge base tool based on international standards was developed in this research. ST Developer's knowledge deficiency can be supplemented by using this tool to access the necessary information on international standards. Moreover, ST developer's experience shortage can be supplemented by referring evaluated ST information which are classified by product types and countries.

Threats Model

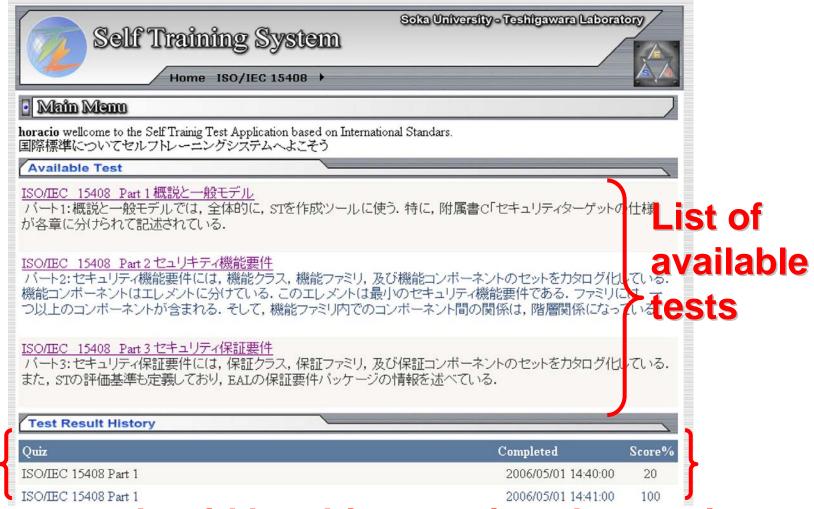
Self-Training System

Target audience of the CC

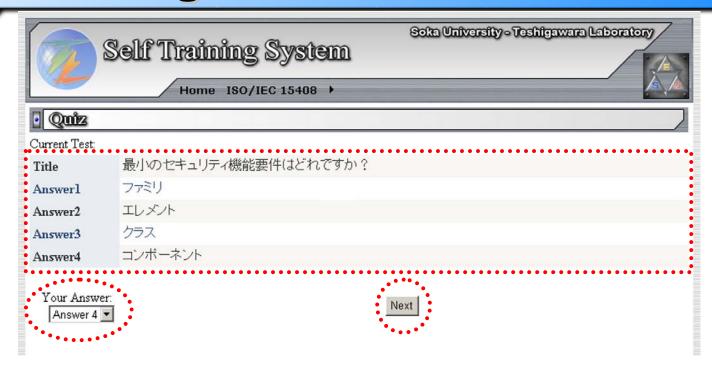


	Consumers	Developers	Evaluators
Advanced			
Intermediate			
Beginners			

Knowledge-based



Login


Main Menu

The user should be able to review the results of the tests taken in the past

Test Page

The user will see the questions and the possible answers, [1],[2],[3],[4]... they will pick one and click the next button

Results of the quiz

Results

	Question	Correct Answer	Your Answer	Result
<u>Select</u>	1	3	3	Correct
Select	2	2	2	Correct
<u>Select</u>	3	4	4	Correct
Select	4	2	4	Incorrect
Select	5	3	4	Incorrect

Review

Question No.: 5

機能ファミリ名で分類すために、何文字が必要ですか? Question:

5 Answer 1:

Answer 2:

Answer 3:

Answer 4:

Correct

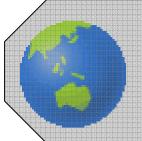
Explanation:

Answer:

ファミリ名の節は、機能ファミリを識別し分類するのに必要な分類情報と記述情報を提供する。各機能 名は一意の名前を持つ。分類情報は7文字の短い名前から構成されており、その最初の3文字はクラ スの短い名前と同じもので、その後に下線文字とファミリの短い名前が続き、XXX_YYYのような形式になる。ファミリ名の一意の短い形式は、コンポーネントの主な参照名を提供する。

Return to Main Menu

Knowledge Based Tool



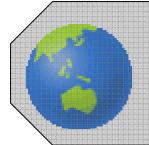
Security Functional Requirenment : Class - Family - Components

Component Family	<u>Name</u>	<u>Identification</u>	Management	<u>Audit</u>	Hie archical
FDP EIC2 FDP EIC	Export of	Export of user data with	The following	The following events	
	user data	security attributes	actions could be	shall be auditable if	
	with security	requires that the TSF	considered for the	FAU_GEN Security	
	attributes	enforce the appropriate	management	audit data generation is	
		SFPs using a function	functions in FMT	included in the PP/ST:	
		that accurately and	Management a)	A) Minimal: Successful	
		unambiguously	The additional	export of information.	
		associates security	exportation control	B) Basic: All attempts	
		attributes with the user	rules could be	to export information.	
		data that is exported.	configurable by a		
			user in a defined		
			roje		

beginners · Intermediate · Advanced

Conclusion & Future Works

Conclusion


- Design and development of a knowledge-based tool for ST developers based on CCV3.1.
- It was explained the architecture of the knowledgebased tool and showed how it can help ST developers create STs that are to be evaluated by CC.
- ST developer's knowledge deficiency can be supplemented by using this tool to access the necessary information on international standards.
- ST developer's relevant experience faced by ST developer can also be supplemented by referring to evaluated information of STs which are classified by types and countries.

Future Works

- ISO/IEC 19791 is an international standard that must be used as the basis for evaluation of operating system.
- This new standard will be included in the knowledgebased tool.

Questions & Answers

http://www.teshilab.net

Guillermo Horacio RAMIREZ CACERES Yoshimi TESHIGAWARA
Graduate School of Engineering, Soka University
Tokyo, Japan
E-mail:{guillerm,teshiga}@soka.ac.jp