% Automating Software Design
AN Complexity Assurance

ot |CCC, Korea
Sept 24, 2008

Tim Huntley

Copyright @ 2007 Juniper Networks, Inc. Proprietary and Confidential

Agenda

Common Criteria complexity requirements
Why care about complexity?
Example complexity metrics
Pros and cons

Tools available

Conclusions

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 2

Common Criteria Complexity Requirements

ADV_INT.3 Minimally complex internals

ADV_INT.3.1D The developer shall design and implement the
entire TSF such that it has well-structured internals.

ADV_INT.3.2D The developer shall provide an internals
description and justification.

ADV_INT.3.1C The justification shall describe the
characteristics used to judge the meaning of “well-
structured” and “complex”.

ADV_INT.3.2C The TSF internals description shall demonstrate
that the entire TSF is well-structured and is not overly
complex.

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 3

Common Criteria Complexity Requirements

Appendix A, A.3.2: Complexity of procedural
software

“Complexity is the measure of the decision points
and logical paths of execution that code takes....

Design complexity minimization is a key
characteristic of a reference validation mechanism,
the purpose of which is to arrive at a TSF that is
easily understood so that it can be completely
analyzed.”

-- Part 3: Security assurance components, September 2007 Version 3.1
Revision 2, Appendix A, A.3.2: Complexity of procedural software.

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 4

Why care about complexity?

Complexity correlates to higher bug count
High complexity generates “emergent behavior”

More complex software is harder to:
Understand
Maintain
Test

“Complexity is the worst enemy of security; as
systems become more complex, they get less
secure.”

—Bruce Schneier, CSTO of British Telecom, author of Secrets and Lies: Digital
Security in a Networked World

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 5

Cyclomatic Complexity

Introduced in 1976 by Thomas McCabe
Expressed as single integer value

Measures number of independent paths in a
program

Most popular complexity metric

D
—p—

If-then If-then-else While/for loop

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 6

McCabe’s Cyclomatic Number

M=E-N+2
where
M = cyclomatic complexity
E = the nhumber of edges
N = the number of nodes

Node

Edge

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 7

Cyclomatic Complexity Example

void main ()
{
if (location == Cheju) {
findPool () ;
while (wallet '= empty)
orderDrink () ;

}

else {
while (eyes == open) "

readCCDocs () ;

}

return;

}

Copyright @ 2008 Juniper Networks, Inc.

CCM and structured testing

M == number of paths through a module

Each path requires one test case for complete code
coverage

Initial CCM can establish a base line for test cases
A delta in the CCM can identify the need for new
test coverage

Records of CCM can be used to justify an
assurance continuity argument

Copyright @ 2008 Juniper Networks, Inc. www. juniper.net

Risk Thresholds

Cyclomatic Complexity Risk Threshold

1-10 Simple function, low risk

1-20 More complex function, moderate
risk

21-50 Complex function, high risk

51+ Un-testable function, very high risk

Copyright @ 2008 Juniper Networks, Inc.

Source: Carnegile Mellon Software Engineering Institute

www. juniper.net

10

CCM Tools

Commercial
McCabe Software,

Freeware
CCCC: C and C++ Code Counter,

Source Monitor, multi-language analyzer,
CyVis, Java complexity analyzer,

Open source analyzer for Perl,

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 11

Cyclomatic Complexity: Pros

Simple: a single integer value is easy to interpret

Objective: allows direct comparison between
various designs

Predictable: a developer can use it as early as the
design phase

Specific: indicates lower limits on test cases
Usefulness not limited to certification

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 12

Cyclomatic Complexity: Cons

Simple: can easily mislead
Example: a switch/case statement with many simple
options generates a high complexity rating

Focused on code complexity; does not capture
data complexity

Correlation between error proneness and CCM not
strong until CCM > 25

Scope of analysis will affect results

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 13

Halstead’s complexity measures

Introduced in 1977
Focused on computational complexity

Contrast with CCM which focuses on branch
complexity

Not as popular as CCM
Lower correlation with fault proneness than CCM

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 14

Halstead’s 5 measures

Measure

Symbol

Formula

Program length N N=N1+N2
Vocabulary n n=n1+n2
Volume \ V=N *(Log2 n)
Difficulty D D =(n1/2) * (N2/n2)
Effort E E=D*V

n1 = number of distinct operators

n2 = number of distinct operands

N1 = total number of operators

N2 = total number of operands

Copyright @ 2008 Juniper Networks, Inc.

www. juniper.net

15

Halstead’s complexity measures: Pro and Con

Pro:

Captures complexity in calculational logic that is missed
by CCM

Correlates with maintenance effort
Con:
Lower correlation with fault proneness than CCM
Not easily used during the design phase
Ignores logic flow complexity

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 16

Henry and Kafura’s metric

Complexity = Length * (Fan-in * Fan-out)?
Measures coupling between modules

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 17

Henry and Kafura’s metric: Pro and Con

Pro:

Can be used during the design phase

Can be used with a large scope — multiple modules
Con

Complexity = 0 if a module has no external coupling

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 18

Potential combinations

To capture internal module complexity + external
coupling:

Complexity = CCM * (Fan-in * Fan-out)?
Carnegie Mellon SEIl Maintainability Index:

Ml =171-5.2 *In(aveV) - 0.23 *aveV(q') - 16.2 *In (aveLOC) +
50 * sin (sqrt(2.4 * perCM))
where:

aveV = average Halstead Volume (V) per module
aveV(qg') = average CCM per module

aveLOC = the average lines of code (LOC) per module
perCM = average percent lines of comments per module

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 19

Conclusions

Metrics are useful, objective tools for measuring
complexity

Intelligent interpretation is required

Reliability increases toward the extreme end of the
spectrum

No single metric captures all facets of complexity

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 20

For more information

Carnegie Mellon Software Engineer Institute,

McCabe Software,

NIST Special Pub. 5600-235, Structured Testing: A
Testing Methodology Usmg the Cyclomatic
Complexity Metric

Speakers Contact Info

Tim Huntley
- Senior Software Engineer
thuntley@juniper.net

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 22

Copyright © 2007 Juniper Networks, Inc. Proprietary and Gonfidential www juniper.net 23

