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Common Criteria Complexity Requirements

ADV_INT.3 Minimally complex internals

ADV_INT.3.1D The developer shall design and implement the
entire TSF such that it has well-structured internals.

ADV_INT.3.2D The developer shall provide an internals
description and justification.

ADV_INT.3.1C The justification shall describe the
characteristics used to judge the meaning of “well-
structured” and “complex”.

ADV_INT.3.2C The TSF internals description shall demonstrate
that the entire TSF is well-structured and is not overly
complex.
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Common Criteria Complexity Requirements

Appendix A, A.3.2: Complexity of procedural
software

“Complexity is the measure of the decision points
and logical paths of execution that code takes....

Design complexity minimization is a key
characteristic of a reference validation mechanism,
the purpose of which is to arrive at a TSF that is
easily understood so that it can be completely
analyzed.”

-- Part 3: Security assurance components, September 2007 Version 3.1
Revision 2, Appendix A, A.3.2: Complexity of procedural software.
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Why care about complexity?

Complexity correlates to higher bug count
High complexity generates “emergent behavior”

More complex software is harder to:
Understand
Maintain
Test

“Complexity is the worst enemy of security; as
systems become more complex, they get less
secure.”

—Bruce Schneier, CSTO of British Telecom, author of Secrets and Lies: Digital
Security in a Networked World
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Cyclomatic Complexity

Introduced in 1976 by Thomas McCabe
Expressed as single integer value

Measures number of independent paths in a
program

Most popular complexity metric

D
—p—

If-then If-then-else While/for loop

Copyright © 2008 Juniper Networks, Inc. www. juniper.net 6



McCabe’s Cyclomatic Number

M=E-N+2
where
M = cyclomatic complexity
E = the nhumber of edges
N = the number of nodes

Node

Edge
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Cyclomatic Complexity Example

void main ()
{
if (location == Cheju) {
findPool () ;
while (wallet '= empty)
orderDrink () ;

}

else {
while (eyes == open) "

readCCDocs () ;

}

return;

}
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CCM and structured testing

M == number of paths through a module

Each path requires one test case for complete code
coverage

Initial CCM can establish a base line for test cases
A delta in the CCM can identify the need for new
test coverage

Records of CCM can be used to justify an
assurance continuity argument
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Risk Thresholds

Cyclomatic Complexity Risk Threshold

1-10 Simple function, low risk

1-20 More complex function, moderate
risk

21-50 Complex function, high risk

51+ Un-testable function, very high risk
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CCM Tools

Commercial
McCabe Software,

Freeware
CCCC: C and C++ Code Counter,

Source Monitor, multi-language analyzer,
CyVis, Java complexity analyzer,

Open source analyzer for Perl,
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Cyclomatic Complexity: Pros

Simple: a single integer value is easy to interpret

Objective: allows direct comparison between
various designs

Predictable: a developer can use it as early as the
design phase

Specific: indicates lower limits on test cases
Usefulness not limited to certification
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Cyclomatic Complexity: Cons

Simple: can easily mislead
Example: a switch/case statement with many simple
options generates a high complexity rating

Focused on code complexity; does not capture
data complexity

Correlation between error proneness and CCM not
strong until CCM > 25

Scope of analysis will affect results
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Halstead’s complexity measures

Introduced in 1977
Focused on computational complexity

Contrast with CCM which focuses on branch
complexity

Not as popular as CCM
Lower correlation with fault proneness than CCM
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Halstead’s 5 measures

Measure

Symbol

Formula

Program length N N=N1+N2
Vocabulary n n=n1+n2
Volume \ V=N *(Log2 n)
Difficulty D D =(n1/2) * (N2/n2)
Effort E E=D*V

n1 = number of distinct operators

n2 = number of distinct operands

N1 = total number of operators

N2 = total number of operands
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Halstead’s complexity measures: Pro and Con

Pro:

Captures complexity in calculational logic that is missed
by CCM

Correlates with maintenance effort
Con:
Lower correlation with fault proneness than CCM
Not easily used during the design phase
Ignores logic flow complexity
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Henry and Kafura’s metric

Complexity = Length * (Fan-in * Fan-out)?
Measures coupling between modules
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Henry and Kafura’s metric: Pro and Con

Pro:

Can be used during the design phase

Can be used with a large scope — multiple modules
Con

Complexity = 0 if a module has no external coupling
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Potential combinations

To capture internal module complexity + external
coupling:

Complexity = CCM * (Fan-in * Fan-out)?
Carnegie Mellon SEIl Maintainability Index:

Ml =171-5.2 *In(aveV) - 0.23 *aveV(q') - 16.2 *In (aveLOC) +
50 * sin (sqrt(2.4 * perCM))
where:

aveV = average Halstead Volume (V) per module
aveV(qg') = average CCM per module

aveLOC = the average lines of code (LOC) per module
perCM = average percent lines of comments per module
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Conclusions

Metrics are useful, objective tools for measuring
complexity

Intelligent interpretation is required

Reliability increases toward the extreme end of the
spectrum

No single metric captures all facets of complexity
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For more information

Carnegie Mellon Software Engineer Institute,

McCabe Software,

NIST Special Pub. 5600-235, Structured Testing: A
Testing Methodology Usmg the Cyclomatic
Complexity Metric
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