
Automated tools for supporting
CC design evidence

September 2008

Ismael Kane
Common Criteria Senior Evaluator

ikane@appluscorp.com

01_ Introduction

02_ Automated tools adapted to developers
02_ 1 applicable to Security Target

02_ 2 applicable to evidence of Development Stage

02_ 3 applicable to Guidance

02_ 4 applicable to Life Cycle Support

02_ 5 applicable to Testing

02_ 6 Challenge

03_ Conclusion

Outline

The goal of Common Criteria is to get better products in terms of security.

Some developers are reluctant to use Common Criteria because the process:

01_ Introduction

National schemes and CC working groups are working to solve these issues,
creating new mandatory documents and procedures to improve
methodology.

The purpose of this presentation is to describe procedures and techniques
offered by the Lab, in order to reduce and automate some developer’s
activities and consequently, to be more proactive during CC development
stage.

Therefore, by offering solutions in advance, the Lab will be able to reduce some
typical developer's mistakes and particularly increase the security of the final
product.

Based on claimed assurance package, there are different requirements to

fulfill. Consequently, our solutions take them into account and adapt to:

02_ Automated tools adapted to developers

Identification of typical problems in Security Target

02_1 Applicable to Security Target

02_1 Applicable to Security Target

Different Solutions to minimizing ST problems: Invalid Reference

Based on different technologies, the Lab offers plug-ins and scripts which can be

included in any Edition tool, and which can avoid “mis-matched” references.

Example: Using package svninfo, every reference will be fully identified:

\documentclass{article}

\usepackage{svninfo}

\begin{document}

\svnInfo Id

\title{\svnInfoFile}

\author{\Author}

\date{\svnInfoDate}

\Version{\svnInfoRevision}

02_1 Applicable to Security Target

Private Sub DocumentVariables()

Dim doc As Document

Dim objDoc, objFile, objFSO, objWord, strFile, strSVN

Set oShell = CreateObject ("Scripting.shell")

Set strFile = doc.Variables.get(WdFileName)

Set strSVN = oshell.run "svn info "&strFile&

doc.Variables.Add(CStr(VERSIONSVN), strSVN)

End Sub

Dim version, etiqueta as string

Set oVSSDatabase = WScript.CreateObject("SourceSafe")

oVSSDatabase.Open ("C:\TOOLS\VStudio\Common\VSS\srcsafe.ini")

Set oVSSItem = oVSSDatabase.VSSItem("$/Version/fileTest")

Set oVSSItemVersion = oVSSItem.get_Version(0)

Set version = oVSSItemVersion.VersionNumber

Set etiqueta = oVSSItemVersion.Label

Example: Integration of visualbasic with Visual source-safe

Different Solutions to minimizing ST problems: Invalid Reference

Example: Using Word variable to link with

Different Solutions to minimizing ST problems: Uncorrected representation of

CC terms

Integration of cc.xml files in any Edition tool:

02_1 Applicable to Security Target

Example: Combining xml with

Xinclude

<?xml version=”1.0”>

<requisites>

<requisite id=”FCS_COP.1>

<content>

<xi:include

href=”cc.xml” xpointer=”xpointer(//

f-component[@id='FCS_COP.1'])”>

</content>

</requisite>

</requisites>

Example: Xml toolbox in Microsoft

Office

Different Solutions to minimizing ST problems: Conflict between SFR

Conflicts will be basically avoided with generic rules (created by evaluators).

Rules based on real conflicts, there are some CC Part 2 requirements that are

absolutely contradictory. Some examples are:

FDP_UNL unlinkability with FIA_USB user-subject binding

FDP_ROL rollback with FPT_RIP residual information protection

FIA_UID user identification with FRP_ANO anonymity

» FTA_TAH TOE Access history with FRP_ANO anonymity

Moreover, as everybody knows, there are some CC Part 2 requirements that have a

mandatory dependency and, to avoid it, developers must provide appropriate

justification.

02_1 Applicable to Security Target

Different Solutions to minimizing ST problems: Conflicts between SFR

Example: Detecting basic conflicts with XPath

02_1 Applicable to Security Target

<?xml version="1.0"?>

<requisites>

<requisite id='FDP_ROL.1' title='Basic Rollback'/>

<requisite id='FDP_RIP.1' title='Subset residual information protection'/>

</requisites>

<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform

">

<xsl:output method='text'/>

<xsl:template match='/sfrTSS'>

<!-- Potential Conflicts? →

<xsl:if test='count(/sfrTSS/requisites/requisite[@id='FDP_ROL.1']) != 0

and

 count(/sfrTSS/requisites/requisite[@id='FDP_RIP.1']) != 0 '>Error:

 Potential Conflict between FDP_ROL.1 and FDP_RIP.1

</xsl:if>

</xsl:template>

</xsl:stylesheet>

http://www.w3.org/1999/XSL/Transform

Different Solutions to minimizing ST problems: Unknown subject

Generating a tool which extracts any subject from ST overview, description, Security

requirements and TSS, and which verifies subjects regarding terminology or reference.

Some features of extraction tools are as follows:

Integration with ST reference chapter

Integration with CC reference chapter

Integration with Wiki or public repositories

Reporting of unknown subject

02_1 Applicable to Security Target

Different Solutions to minimizing ST problems: Cross-Section conflicts

By using leveling tags, it is possible to index different parts of security target. That

is why the Lab uses three relationship levels:

Enforcing

Supporting

Non-interfering

This solution aims to provide benefits in work which tries to analyze consistence
between different parts of ST.

Furthermore, it gives a formal representation of consistence justification.

02_1 Applicable to Security Target

Different Solutions to minimizing ST problems: Cross-Section conflicts

Example: Specification of DTD and xml's Instantation

02_1 Applicable to Security Target

<!--Definition of Statements in ST-->
<!DOCTYPE dependency [
<!ELEMENT dependency (id,statement,depen+)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT statement (#PCDATA)>
<!ELEMENT depen (type,related)>
<!ATTLIST type (enforcing|supporting|non-interfering) "enforcing" xml:lang CDATA 'en'
#REQUIRED>
<!ELEMENT related (#PCDATA)>]>

 <?xml version="1.0"?>
<dependency>

<id>13</id>
<statement> TOE will protect confidentiality of secrets with symmetric encryption</

statement>
<depen>

<type>enforcing</type>
<related>14</related>

</depen>
<depen>

<type>supporting</type>
<related>16</related>

</depen>
</dependency>

Different Solutions to minimizing ST problems: Mapping Coverage

Verification shall be based on scripting, and it:

– Can detect incorrect traceability between SFR and TSS

– Can check if every SFR has at least one TSF

– Can check that rationale for missing dependency exists.

02_1 Applicable to Security Target

Different Solutions to minimizing ST problems: Mapping Coverage

Example: Incorrect traceability between SFR and TSS

02_1 Applicable to Security Target

<?xml version="1.0" ?>

<sfrTSS>

<tssS>

<tss id='AA' title="Authentication"></tss>

<tss id='BB' title="Identification"></tss>

</tssS>

<requisites>

<requisite id='FIA_UAU' title='User authentication'>

<covers id='AA'>justificacio</covers><content></

content>

</requisite>

<requisite id='FIA_UAI' title='User identification'>

<covers id='BB'>justificacio</covers><content></

content>

</requisite>

</requisites>

</sfrTSS>

Different Solutions to minimizing ST problems: Mapping Coverage

Example: Incorrect traceability between SFR and TSS.

02_1 Applicable to Security Target

<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method='text'/>

<xsl:template match='/sfrTSS'>

<!-- Are all tss implemented as requirements? →

<xsl:for-each select='tssS/tss'>

<xsl:variable name='id' select='@id'/>

<xsl:if test='count(/sfrTSS/requisites/requisite/covers[@id=$id])=0'>Error: tss

 "<xsl:value-of select='/sfrTSS/requisites/requisite[@id=$id]/@title'/>" Not

covered!

</xsl:if>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

http://www.w3.org/1999/XSL/Transform
mailto:select='@id

02_2 Applicable to evidence of Development Stage

Based on the Lab offers a tool that can trace, verify and detect the lack of

correctness in top-down implementation:

•Extraction of derived modules or subsystems from source code and check against

developers' instantiation

• Verification, isolation and security domains by means of cross-references rules

• Visual representation of design and easily linked with other evidence through indexation

02_2 Applicable to evidence of Development Stage

<?xml version="1.0" ?>

<design>

<tssS>

<tss id='AA' title="Authentication"></tss>

<tss id='BB' title="Identification"></tss>

</tssS>

<modules>

<module id='mod1' title="Module1">

<covers id='AA' relation=enforcing>justification</covers>

<covers id='BB' relation=supporting>justification</covers>

</module>

<module id='mod2' title="Module2">

<covers id='BB' relation=enforcing>justification</covers>

</module>

</modules>

</design>

Example: generates xml files and it can be parsed and manipulated with xslt.

02_2 Applicable to evidence of Development Stage

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method='text'/>

<xsl:template match='/sfrTSS'>

<!-- Are all tss covered by modules? →

<xsl:for-each select='design/tssS/tss'>

<xsl:variable name='id' select='@id'/>

<xsl:if test='count(/design/modules/module/covers[@id=$id])=0'> "<xsl:value-

of select='/design/tssS/tss[@id=$id]/@title'/>" not covered by modules

</xsl:if>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

Example: generates xml files and it can be parsed and manipulated with

xslt.

http://www.w3.org/1999/XSL/Transform
mailto:select='@id

Example: Graphviz can generate visual linking between modules and TSS.

Consequently, derived modules can be checked and reviewed against developers’

instantiation.

An extra benefit is that if the source code is well-defined in terms of tags, the output can be

used as a proof of non-bypassing:

Example: Access control variable is managed only for module A and no other modules can

modify it. This expression is easily implemented in terms of rules.

02_2 Applicable to evidence of Development Stage

By using labeling tags it is possible to index every statement of guidance regarding ADV or

ST evidence. That is why the lab uses three relationship levels :

Enforcing

Supporting

Non-interfering

Example: Indexation between guidance statement and other CC evidence terms.

02_3 Applicable to Guidance

<!--Definition of Statements in ST-->

<!DOCTYPE dependency [

<!ELEMENT dependency (id,statement,depen+)>

<!ELEMENT id (#PCDATA)>

<!ELEMENT statement (#PCDATA)>

<!ELEMENT depen (type,related)>

<!ATTLIST type (enforcing|supporting|non-interfering) "enforcing" xml:lang CDATA 'en'

#REQUIRED>

<!ELEMENT related (#PCDATA)>

]>

ALC_DVS is a great candidate to be automated. Thereby, most findings can be achieved

and stored logically, for subsequent post-processing.

Each EAL requires a different level of protection. Our automated tool generates scripts

that can be adapted to claimed EAL.

Features of capabilities to be checked:

Confidentiality of evidence in Configuration List:

In case of local storage, it is encrypted or protected by local ACL

In case of remote storage, it is encrypted or protected by domain ACL

Communication is encrypted

Secure deletion is used

Secure backup is used

02_4 Applicability to Life Cycle support

Features of capabilities to be checked (cont):

Integrity of evidence in Configuration List:

• In case of local storage, integrity checker mechanism is used.

• In case of remote storage, integrity checker mechanism is used.

• Communication is protected against unauthorized modification.

• A secure mechanism is used to protect against unauthorized modification in

backup.

The equipment used for handling information:

• is updated

• is isolated

• allows information bridging

02_4 Applicable to Life Cycle support

By using labeling tags it is possible to index every statement of testing regarding ADV, ADG

and ASE evidence. That is why the lab uses three relationship levels:

• It is based on three levels of coverage, 1- enforcing, 2- supporting and 3- non-interfering

• It gives a template with all the requirements claimed in CC

02_5 Applicable to Testing

 <!--Definition of Statements in Test Documentation-->

<!DOCTYPE test [

<!ELEMENT test

(id,initialProcedures,procedures,expecteResults,actualResults,coverage+)>

<!ELEMENT id (#PCDATA)>

<!ELEMENT initialProcedures (#PCDATA)>

<!ELEMENT procedures (#PCDATA)>

<!ELEMENT expecteResults (#PCDATA)>

<!ELEMENT actualResults (#PCDATA)>

<!ELEMENT coverage (sfr,type)>

<!ATTLIST type (enforcing|supporting|non-interfering) "enforcing" #REQUIRED>

 <!ELEMENT sfr (#PCDATA)>

]>

Whit this template it is easy to incorporate new features that can be used for completeness

and accuracy at different levels.

– On the basis of information extracted from ADV, implicitly testing will be able to be

mapped against:

• ADV_FSP, test can be mapped to interfaces

• ADV_TDS at subsystem level

• ADV_TDS at module level

– And, by using graphviz (open-source tool), get a visual interpretation of test related to

ADV

02_5 Applicable to Testing

Based in well-correctness of test's templates and evidences for ATE, it's possible to analysis

test against ADV

02_5 Applicable to Testing

<!--Definition of Statements in coverage-->

<!DOCTYPE coverage [

<!ELEMENT coverage (test, interface, depen)+ >

<!ELEMENT test %test%.%id%>

<!ELEMENT interface %adv%.%fsp%>

<!ELEMENT depen (type,related)>

<!ATTLIST type (enforcing|supporting|non-interfering) "enforcing"

#REQUIRED>

<!ELEMENT related (#PCDATA)>

<!-- For checking correctness of interface coverage-->

<!ELEMENT correctness ()>

<!ELEMENT testcoverage (%test%.%coverage%,%adv%.%fsp%,covertype)>

<!ATTLIST covertype (Correct|nonCorrect)>

]>

This technique allows formal language for checking coverage of testing depth and scope

02_6 Challenge

“Uniquely” content validation !!!!

This technique has many advantages for evaluators and schemes because it:

Offers a common language for coverage and completeness analysis

Allows traceability between evidence of assurance classes

Is easily integrated with CC XML structure

Introduces a common language that can be used in work units

 Allows more effort in AVA analysis

Besides, it also has the following advantages for developers:

Possible identification of problems in advance

It is easily adaptable with developers’ tools

It is time and cost saving

Gives assurance of well-structured methodologies

03_ Conclusion

Ismael Kane
Common Criteria Senior Evaluator

ikane@appluscorp.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

