

Circular Reasoning: Venn Will We Agree on a Common SoF Analysis Method?

Presented by:

Nathan Lee and Amy Nicewick

Corsec Security, Inc.

The Question and the Problem

- How should labs perform SoF analysis under CC v3.1? Specifically...
 - How should the "possible password space" be calculated?
 - What should be the methodology for overall SoF analysis?
- Historically, SoF analysis under CC v2.x was inconsistent between schemes, labs within schemes, and even evaluators within labs!
 - This resulted in "re-invention" of SoF analysis by vendors for each evaluation
 - Vendors were very **frustrated** that there was no consistency

Corsec's Experience

- Corsec works with many different schemes, labs, evaluators, and vendors
- Corsec engineers had to perform SoF analyses differently for different schemes, different labs, and even different evaluators at the same lab
- Eventually, Corsec found a solution that satisfied every scheme, lab, and evaluator to which it was submitted
 - Just in time for CC 3.x! ☺

Corsec Inconsistent Requirements

- Different evaluations had different SoF Analysis requirements imposed upon them:
 - Detailed math
 - General narrative text only
 - Analysis of likelihood of a string being chosen
 - Mathematical proof of likelihood
 - Verbal assertion
- The same rationale for the same product resulted in different verdicts from different evaluators
- The biggest/most common inconsistency: Password **Space Calculation**

The Solution: Set Theory using Venn Diagrams

Definitions:

- **Set** A Set is a collection of items. The items contained within a Set are called "elements" and do not repeat.
- Intersection An intersection is the Set that contains all elements of Set A that also belong to Set B (or equivalently, all elements of Set B that also belong to Set A), but no other elements.
- Venn diagram A Venn diagram is a drawing in which overlapping areas represent groups of items sharing common properties. A Venn diagram consists of one or more shapes, each representing a specific Set. A Venn diagram shows all of the possible mathematical or logical relationships between each Set.

Venn Diagram – "Password Must Contain a Number"

© Copyright 2008, Property of Corsec Security, Inc.

Not to be distributed or re-used without express written consent.

Venn Diagram – "Password Must Contain a Number, an Upper, a Lower, and a Symbol"

© Copyright 2008, Property of Corsec Security, Inc. Not to be distributed or re-used without express written consent.

Mathematical Symbols

Example of Mathematical Symbol	Description/References	
X = {1, 13, 58, 72, 96}	A Set (called "Set X").	
X={} X = Ø	The Empty Set; the NULL Set.	
X	The size of Set X. Example: $X = \{1, 13, 58, 72, 96\}$. $ X $ is the size of Set X. Thus, $ X = 5$. Example: $X = \{\}$ Thus, $ X = \emptyset$; the Empty Set.	
Λ	The intersection of two or more Sets. Example: $A = \{1, 3, 5, 7, 9\} \text{ and } B = \{2, 3, 4, 5, 6,\}.$ $A \cap B \text{ consists of the elements in both Set A and Set B.}$ $Thus, A \cap B = \{3, 5\}.$	

© Copyright 2008, Property of Corsec Security, Inc.

Password Space Calculation

Password Space Computation			
Let:			
n	number of characters in a password	8	
PS _n	Password Space for passwords of length n		
$U = \{A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z\}$			
[U]		26	
$L = \{a, b, c, d, e, f, g, h, l, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$			
ILI		26	
N = {0,1,2,3,4,5,6,7,8,9}			
INI		10	
S = {~,`,!,@,#,\$,%,^,&,*,(,),-,_,=,+,[,{,},], ,;,;','',,,<,.,>,/,?}			
S		32	

© Copyright 2008, Property of Corsec Security, Inc.

Password Space Calculation

W = {All password possi	bilities}	
W	$ W = (U + L + N + S)^n$ $ W = (26+26+10+32)^8 = 94$ $6,095,689,385,410,82$	
G = {passwords not cont lowercase letters, numb	aining an uppercase letter} = {passwords containing ers, and/or symbols}	
G	G = (L + N + S) ⁿ G = (26+10+32) ⁸ = 68 ⁸ 457,163,239,653,37	
B = {passwords not cont uppercase letters, numb	aining a lowercase letter} = {passwords containing ers, and/or symbols}	
B	B = (U + N + S) ⁿ B = (26+10+32) ⁸ = 68 ⁸ 457,163,239,653,37	
Y = {passwords not cont letters, lowercase letters	aining a number} = {passwords containing uppercase	
Y	$ Y = (U + L + S)^n$ $ Y = (26+26+32)^8 = 84^8$ 2,478,758,911,082,50	
R = {passwords not containing a symbol} = {passwords containing uppercase letters, lowercase letters, and/or numbers}		
R	R = (U + L + N) ⁿ R = (26+26+10) ⁸ = 62 ⁸ 218,340,105,584,89	

© Copyright 2008, Property of Corsec Security, Inc.

Password Space Calculation

G ∩ B = {passwords with no uppercase I				
{passwords with numbers and/or symbol	G ∩ B = (N + S) ⁿ			
G ∩ B	G ∩ B = (10+32) ⁸ = 42 ⁸ 9,682,651,996,416			
G \cap Y = \{passwords with no uppercase letters and no numbers\} = \{passwords with lowercase letters and/or symbols\}				
G N Y	$ G \cap Y = (L + S)^n$ $ G \cap Y = (26+32)^8 = 58^8$ 128,063,081,718,016			
G∩B∩Y = {passwords with no uppercase letters, no lowercase letters, and no numbers = {passwords containing only symbols}				
 G N B N Y	G ∩ B ∩ Y = S ⁿ G ∩ B ∩ Y = 32 ⁸ 1,099,511,627,776			
•••				
The equation below gives the final comp	utation of PS _n .			
PS ₈ = W - G - B - Y - R + G				
948 - 688 - 688 - 848 - 628 + 428 + 588 + 368 + 588 + 368 + 528 - 328 - 108 - 268 - 268				
2,807,657,387,458,560				

© Copyright 2008, Property of Corsec Security, Inc.

"Time to Crack" Calculation

The tried-and-still-true formula:

- ((PS * ½) + 1) / (number of attempts per time unit)
 - (Password Space * ½) because an attacker is statistically likely to find the password within the first (50% + 1) of the password space
 - Divide by the number of attempts per time unit

Conclusion

- The biggest inconsistency across all schemes, labs, and evaluators was the password space calculation
- This solution satisfied everyone who evaluated it
- Calculation of the likelihood that particular strings will be chosen as passwords is still an outstanding issue

Our Gift to You

- Since SoF analysis is now primarily a laboratory activity, we are making our diagrams and calculation tables available for laboratory use:
 - http://www.corsec.com/9ICCC.html

Contact Information

- Nathan Lee, Lead Security Engineer
 - nlee@corsec.com
 - Phone: +1 (703) 267-6050 x112
- Amy Nicewick, Lead Security Engineer
 - anicewick@corsec.com
 - Phone: +1 (703) 267-6050 x114

http://www.corsec.com/