

Wouter Slegers + 31 15 269 2500 Slegers@brightsight.com www.brightsight.com

The complete(d) CC v3.1 experience on a smart card IC with cryptolibrary

Or: CC works for smartcards as good as ever

VVV	Ear	intorno	I reference.
$\Lambda\Lambda\Lambda$	LOI	miema	i reference.

Version d.d. 2008-09-01

Author and course maintainer: Wouter.

Please feed back changes to him.

Biggest changes since N/A:

New version

See notes for trainer information

Additional improvements to do:

Cost analysis (vs CAST-like evaluations)

Presentation Targets

Describe our final experiences with CCv3.1 Release 1 on a smartcard IC

- CC v3.1 evaluation of smart cards
 - ST
 - Security Architecture
- Training of CC v3.1 to evaluators
- Usefulness of CC

brightsight[®]

This was made possible by:

Developer and Sponsor:

Certification Body:

As usual, this presentation is my opinion, I do not speak for others.

Common Criteria in one slide

Security
Target
evaluation
(ASE)

Development (ADV) with FSP, TDS, IMP, ARC

Life-cycle support (ALC)

Guidance (AGD)

Impact to the paperwork

Life-cycle support (ALC)

Security
Target
evaluation
(ASE)

Development (ADV) with FSP, TDS, IMP, ARC

Guidance (AGD)

Content wise changes

Security
Target
evaluation
(ASE)

Life-cycle support (ALC)

Development (ADV) with FSP, TDS, IMP, ARC

Guidance (AGD)

brightsight[®]

Experience ST changes

- CCv2.x structure and result:
- Tracing SFRs and Security Functions
- What the TOE does
- What requirements are to be met
- CCv3.x structure and result:
- ☐ Tracing the SFRs
- Describe how the TOE is meeting the requirements

SFR-centrality is good & bad (see presentation Dirk-Jan Out)

AS E ADV AGD ATE, AVA

ADV_FSP/TDS introduces explicit labeling

Labelling:

- SFR-enforcing
 - Directly implements a SFRs
- SFR-supporting
 - If this part misbehaves, a SFR is no longer fulfilled
- SFR-non-interfering
 - If this part is hostile, it can influence a SFR.
- None of the above: TOE but not TSF (non-TSF)

brightsight*

ADV_FSP/TDS introduces explicit labeling

Labelling:

- SFR-enforcing
 - Directly implements a SFRs
- SFR-supporting
 - If this part misbehaves, a SFR is no longer fulfilled
- SFR-non-interfering
 - If this part is hostile, it can influence a SFR.
- None of the above: TOE but not TSF (non-TSF)

TOE

brightsight[®]

Label defines minimum of TSF

Labelling:

- SFR-enforcing
 - Directly implements a SFRs

TSF

- SFR-supporting
 - If this part misbehaves, a SFR is no longer fulfilled
- SFR-non-interfering
 - If this part is hostile, it can influence a SFR.
- None of the above: TOE but not TSF (non-TSF)

Critical test: can it influence a SFR?

Labelling:

- SFR-enforcing
 - Directly implements a SFRs

TSF

- SFR-supporting
 - If this part misbehaves, a SFR is no longer fulfilled
- SFR-non-interfering
 - If this part is hostile, it can influence a SFR.
- None of the above: TOE but not TSF (non-TSF)

In smartcard hardware case: TOE ~= TSF

TSF/TOE

brightsight[®]

ADV_ARC for smartcards

First confused question:

☐ How is it different from the SFRs that already describe self protection?

Answer (for smartcard ICs):

☐ It is not (really) different

brightsight®

Summary of evaluation impact

The good:

- ST evaluations have become easier.
- Design has become a bit easier
 - Only tracing of SFRs, only one way
- Lifecycle work has been collapsed to reduce duplicity
- The SFRs are central

The bad:

- Not much has changed
- No real work reduction

The ugly:

The SFRs are central (See Dirk-Jan Out's talk)

Presentation Targets

Describe our final experiences with CCv3.1 Release 1 on a smartcard IC

- CC v3.1 evaluation of smart cards
 - ST
 - Security Architecture
- ☐ Training of CC v3.1 to evaluators
- Usefulness of CC

Training of CC v3.1 to evaluators

Background:

- Brightsight had strong involvement in CC3.x
 - Quite some internal discussion
 - Internal presentations ongoing process etc.
- Many evaluators already CC2.x trained & experienced
- Internal methodology already updated to CC3.x

Still, evaluators need training:

- To perform evaluation tasks efficiently
- To perform evaluation correctly, and
- To meet formal accreditation requirements

Training of CC v3.1 to evaluators

- To perform evaluation tasks efficiently
 - This is what you do
 - And this is where you should stop.
- To perform evaluation correctly
 - Follow above methodology, and
 - This is the terminology you encounter.
- To meet formal accreditation requirements
 - The above, and
 - Remember definitions of:
 - Class/family/element/component
 - AXY_YXZ.x is hierarchical to AXY_YXZ.y iff x>y
 - Conformant/Augmented/Extended
 -

Presentation Targets

Describe our final experiences with CCv3.1 Release 1 on a smartcard IC

- CC v3.1 evaluation of smart cards
 - ST
 - Security Architecture
- Training of CC v3.1 to evaluators
- Usefulness of CC

Common Criteria in one slide

Life-cycle support (ALC)

Security
Target
evaluation
(ASE)

Development (ADV) with FSP, TDS, IMP, ARC

Guidance (AGD)

"Blackbox evaluation" in terms of CC

Life-cycle support (ALC)

Security Target evaluation (ASE) Development (ADV) with FSP, TDS, IMP, ARC

Guidance (AGD)

Extensive whitebox evaluation in CC terms

Life-cycle support (ALC)

Security Target evaluation (ASE) Development (ADV) with FSP, TDS, IMP, ARC

Guidance (AGD)

- Implicit "PP/ST"
 - Fixed functionality
 - Fixed requirements
- "Fixed" methodology
- Design review to focus penetration tests
- Fixed effort approach to penetration testing

- Implicit "PP/ST"
 - Fixed functionality
 - Fixed requirements
- "Fixed" methodology
- Design review to focus penetration tests
- ☐ Fixed effort approach to penetration testing

Attack 1, chance 30%

Attack 2, chance 50%

Attack 3, chance 01%

Attack 4, chance 60%

- Implicit "PP/ST"
 - Fixed functionality
 - Fixed requirements
- "Fixed" methodology
- Design review to focus penetration tests
- ☐ Fixed effort approach to penetration testing

Attack 1, chance 30% Attack 2, chance 50% Attack 3, chance 01% Attack 4, chance 60% Attack 4, chance 60%

Attack 2, chance 50%

Attack 1, chance 30%

Attack 3, chance 01%

- Implicit "PP/ST"
 - Fixed functionality
 - Fixed requirements
- "Fixed" methodology
- Design review to focus penetration tests
- ☐ Fixed effort approach to penetration testing

Attack 1, chance 30% Attack 2, chance 50% Attack 3, chance 01% Attack 4, chance 60% Attack 4, chance 60%

Attack 2, chance 50%

Attack 1, chance 30%

Attack 3, chance 01%

Attack 4, chance 60% Attack 2, chance 50% Attack 1, chance 30% Attack 3, chance 01%

White box versus CC (on one crowded slide)

	White box	Common Criteria
Process	None (very limited versioning)	Versioning, process, site security
Requirements	Not discussed (fixed for process)	Flexible (but mostly fixed)
Design	Review only for attack focusing	Extensive tracing, exclusion of attacks
Functional testing	Not part evaluation, additionally required	Included (typically limited)
Penetration testing	Top x attacks for project budget	Sufficient to exclude all attacks in attack potential
Paperwork "overhead"	Low (high intrinsic alignment with scheme)	Medium CC standard International alignment
Approximate page count	~200 pages	~1500 pages

White box versus CC where is the majority of the costs

	White box	Common Criteria
Process	None (very limited versioning)	Versioning, process, site security
Requirements	Not discussed (fixed for process)	Flexible (but mostly fixed)
Design	Review only for attack focusing	Extensive tracing, exclusion of attacks
Functional testing	Not part evaluation, additionally required	Included (typically limited)
Penetration testing	Top x attacks for project budget	Sufficient to exclude all attacks in attack potential
Paperwork "overhead"	Low (high intrinsic alignment with scheme)	Medium CC standard International alignment
Approximate page count	~200 pages	~1500 pages

brightsight®

White box versus CC

where is the added assurance/value (in my humble opinion)

	White box	Common Criteria
Process	None (very limited versioning)	Versioning, process, site security
Requirements	Not discussed (fixed for process)	Flexible (but mostly fixed)
Design	Review only for attack focusing	Extensive tracing, exclusion of attacks
Functional testing	Not part evaluation, additionally required	Included (typically limited)
Penetration testing	Top x attacks for project budget	Sufficient to exclude all attacks in attack potential
Paperwork "overhead"	Low (high intrinsic alignment with scheme)	Medium CC standard International alignment
Approximate page count	~200 pages	~1500 pages

The real questions: additional assurance by more coverage worthwhile?

Attack 1, chance 30% Attack 2, chance 50%

Attack 3, chance 01%

Attack 4, chance 60%

.

Attack 4, chance 60%

Attack 2, chance 50%

Attack 1, chance 30%

Attack 3, chance 01%

Attack 4, chance 60%

Attack 2, chance 50%

Attack 1, chance 30%

Attack 3, chance 01%

Is it excluding this worth all that more effort?

Is the last step worthwhile?

Yes:

- ☐ ST: holes in security concept
- ☐ FSP: dubious functionality in not directly SFR-related interfaces (i.e. non-interfering parts)
- □ TDS: construction/interaction allows new attack paths
- AGD: guidance misleading or unclear
- ALC: TOE and implementation representation are slightly different
- ☐ ALC_DVS: Site security poor
- □ AVA: reasoning why all attacks are covered has a hole -> points to less likely but not addressed attacks

No:

- In whitebox evaluations security concept typically is already examined and fixed
- > FSP/AGD: idem
- > TDS/AVA: experienced evaluators will focus on most likely points anyway
- Remaining missed vulnerabilities are also in field missed

brightsight®

The real questions: One internationally recognised certificate worthwhile?

Is the one (expensive) CC evaluation cheaper then the (less expensive but more) other evaluations?

Where good labs reduce costs

	White box	Common Criteria
Process	None (very limited versioning)	Versioning, process, site security
Requirements	Not discussed (fixed for process)	Flexible (but mostly fixed)
Design	Review only for attack focusing	Extensive tracing, exclusion of attacks
Functional testing	Not part evaluation, additionally required	Included (typically limited)
Penetration testing	Top x attacks for project budget	Sufficient to exclude all attacks in attack potential
Paperwork "overhead"	Low (high intrinsic alignment with scheme)	Medium CC standard International alignment
Approximate page count	~200 pages	~1500 pages

Presentation Targets

Describe our final experiences with CCv3.1 Release 1 on a smartcard IC

- CC v3.1 evaluation of smart cards
 - ST
 - Security Architecture
- Training of CC v3.1 to evaluators
- Usefulness of CC

brightsight®

Questions?

brightsight[®]

Contact information

Note: the name "TNO ITSEF" has changed to "Brightsight"

Brightsight BV
Delftechpark 1
2628 XJ Delft
The Netherlands

Telephone: +31-15-269 2500

FAX: +31-15-269 2555

Email: <u>info@brightsight.com</u>

Web: http://www.brightsight.com/