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i Introduction

s Advanced Encryption Standard algorithm
s Specified in 2001 by NIST
= Widely adopted for a variety of encryption need

s But, how can one confirm that a design or
IP core of AES is implemented correctly
and without security hole?

= [ he Verification of AES design is also
important

= Cryptographic Module Validation Program of
NIST specifies a test method of validation for

cryptographic modules



i Introduction

s | he validation of AES implementation

= [ he test procedures specified in AESAVS of
NIST to validate S/W or H/W implementation of
AES

= The verification procedure for H/W
implementation of AES is not simple

=« The outputs of H/W design for test vectors are
compared manually with those of reference model.

= It is slow and inefficient process to verify H/W
implementation of AES according to AESAVS



i Introduction

s Automatically Selt—checking testbench

= LOgIic Simulation
« SystemC Transaction Model

= H/W Assisted Co—Emulation
« SystemC + FPGA Board



i PRELIMINARY - AES

s AES(Advanced Encryption Algorithm)

» Symmetric Block Cipher Algorithm
» 128/196/256—bit Key Size, 128-bit input/output
= consists of 10 rounds

= Each round composed of 4 transtormations:
= Byte Substitution
= Shift Rows
= Mix Columns
= Bitwise XOR operations with round key



i PRELIMINARY - AES
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= CMVP(Cryptographic Module Validation Program )
= CMVP maintained by NIST
= |t provides validation test procedures for cryptographic

modules.

= AES Algorithm Validation Suite (AESAVS)

= Especially it is designed for performing validation testing
on H/W or S/W implementation of the AES algorithm.

= 3 Type Tests are specified in AESAVS:
« the Known Answer Tests (KAT)

= the Multi-block Message Tests (MMT)
« the Monte—Carlo Test (MCT)



i PRELIMINARY - SystemC

x SystemC

= |t is consisted of a C++ library class and
Simulation Kernel.

= |t is mainly used for Modeling or Verification of
a design.
s SystemC Verification Extensions (SCV)
= SystemC + Verification Library

= |t Supports
= Bandom Number Generation API
= |ransaction API



i H/W Assisted Co-Simulation

s Environment

= AES Design
« Described using Verilog HDL
= Total 13 Cycle, Working Clock@220MHz

= Total 3497 LUTs on Virtex4-1.X60
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i H/W Assisted Co-Simulation

s [ estBench
= Described using SystemC and SCV

s RTL Logic Simulation

= Bun on Linux Platform, Simulated using
Cadence [US56

s Emulation Board
» FPGA Board, VIRTEX 4, Dynalith
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i H/W Assisted Co-Simulation

= H/W Assisted Co—Emulation

TestBench in high-level
language (C/C++)
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i H/W Assisted Co-Simulation
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A PROPOSED TESTBENCH

m [est Vectors

s KAT vector set (ECB mode)
« GFSbox / KeySbox / Variable Key / Variable Text

1. KeySize =128
1.1 Plaintext and/or IV = 0x00000000000000000000000000000000
Key Ciphertext
0x10a58869d74be5a374cf867cfb473859  |[0x6d251e6944b051e04caabibddbl{78465
Oxcaecab5cdbb75e9169ecd22ebeb6e54675 0x6e29201190152df4ecc058139def610bb

Oxa2e¢2fa9bal7d20822¢a9105421764a41 0xc3b44b95d9d2{25670eec9alde(0991a3
Oxb6364acdeldele285eafl144a2415f7a0 0x5d9b055781c944b3cflcctfle746cd581

Ex) KeySbox Known Answer Test Values from AESAVS Appendix C
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A PROPOSED TESTBENCH

s The KAT Flow in Test Bench
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i A PROPOSED TESTBENCH

m lest Vectors
= MCT vector set (ECB mode)

« In KAT, Fixed test vector set 1s used as specified in
AESAYVS appendix

« In MCT, only test algorithm 1s specified, not fixed
initial values for security reasons

= In our test bench model

Initial value randomly generated using SCV library API

The modified MCT used to verify the design efficiently
and effectively
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i H/W Assisted Co-Simulation
s Moditied Test Method For MCT

Algorithm 1. Monte Carlo Algorithm
1) Key[0] = Key
2) PT[0] =PT
3)Fori=0to 99
3.1) Output Key]i]
3.2) Output PT[0]
3.3) For j = 0to 999
3.3.1) CT[j] = AES(Kev[1], PT[j] )
3.3.2) PT[j+1] = CTJj]
3.3.3) Output CTJj]
3.3.4) If{ Kevlen =128)
Kev|[j+1]=Key[i] xor CTJj]
3.3.5) If{ Kevlen =192)
Kev[j+1]=Key]i] xor
(last 64-bit ofbCT[j-1]||CT[jD
3.3.6) If{ Kevlen =256)
Kev[j+1]=Key[i] xor (CT[j-1]] CT[3])
3.3.7) PT[0] = CTJj]

Algorithm 2. Modified Monte Carlo Algorithm
1) Key[0] = Key
2)PT[0]=PT
3)Fori=010 99
3.1) Output Key[i]
3.2) Output PT[0]
3.3) For j = 0 to 999
3.3.1) CTreference= AESreference(Key]i], PT[j] )
3.3.2) CTrtl= AESrtl(Key[i], PT[j] )
3.3.3) If(CTreference = CTrtl)
simulation_stop()
3.3.4)CT[j] = CTrtl
3.3.5) PT[j+1] = CTJj]
3.3.6) Output CTJj]
3.3.7) If{ Keylen =128)
Key[j+1]=Key[i] xor CT[j]
3.3.8) If{ Keylen =192)
Key[j+1]=Key[i] xor
(last 64-bit ofbCT[j-1]||CT[j])
3.3.9) If{ Keylen =256)
Key[j+1]=Key[i] xor (CT[j-1]| CT[ 3D
3.3.10) PT[0] = CT[j]




i H/W Assisted Co-Simulation

s Modified Test Method For MCT
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i Conclusion

s | he features of the proposed model

= Use AESAVS test value sets and test procedures

= One can validate the design of AES for the conformance to
FIPS—-197

= has an Automated and Self—-Checked Structure
= One can verify the AES design fast and efficiently

= has Reusability

= SystemC is based on object oriented programming
language C++

= 1his model can be easily modified to verify other
cryptographic module

= We can validate implementation of an AES RTL
design for the conformance to the FIPS—-197
effectively.
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