The Functional Veritication of AES
RTL Design Using H/'W Assisted

!'_ Co-Emulation

Jae-Deok Ji, KISA
Byung-Kwon Lee, KISA
Byung-kyu Noh, KISA
2008/09/25



i Agenda

. Introduction
A AES (Advanced Encryption Standard)

5. AESAVS (AES Algorithm Validation Suite)
c.  SystemC and SystemC Verification Extensions

n. H/W Assisted Co-Simulation

A Testing Environment
B. Testing Vector
c. Testing Method

m. Conclusion



i Introduction

s Advanced Encryption Standard algorithm
s Specified in 2001 by NIST
= Widely adopted for a variety of encryption need

s But, how can one confirm that a design or
IP core of AES is implemented correctly
and without security hole?

= [ he Verification of AES design is also
important

= Cryptographic Module Validation Program of
NIST specifies a test method of validation for

cryptographic modules



i Introduction

s | he validation of AES implementation

= [ he test procedures specified in AESAVS of
NIST to validate S/W or H/W implementation of
AES

= The verification procedure for H/W
implementation of AES is not simple

=« The outputs of H/W design for test vectors are
compared manually with those of reference model.

= It is slow and inefficient process to verify H/W
implementation of AES according to AESAVS



i Introduction

s Automatically Selt—checking testbench

= LOgIic Simulation
« SystemC Transaction Model

= H/W Assisted Co—Emulation
« SystemC + FPGA Board



i PRELIMINARY - AES

s AES(Advanced Encryption Algorithm)

» Symmetric Block Cipher Algorithm
» 128/196/256—bit Key Size, 128-bit input/output
= consists of 10 rounds

= Each round composed of 4 transtormations:
= Byte Substitution
= Shift Rows
= Mix Columns
= Bitwise XOR operations with round key



i PRELIMINARY - AES

Plaintext Initial round
AddRoundKey |-w m Cipher Key
A
I
SubBytes
ShiftRows
MixColumns (Final Round-1) round
| Round Key
AddRoundKey |- ® [1,---,Final
* Round-1]
I
SubBytes
ShiftRows
Final round
AddRoundKey |- @ RoEr'%a:(ey

v

Ciphertext




D

q

—LIMINA

RY = CMV

D)

= CMVP(Cryptographic Module Validation Program )
= CMVP maintained by NIST
= |t provides validation test procedures for cryptographic

modules.

= AES Algorithm Validation Suite (AESAVS)

= Especially it is designed for performing validation testing
on H/W or S/W implementation of the AES algorithm.

= 3 Type Tests are specified in AESAVS:
« the Known Answer Tests (KAT)

= the Multi-block Message Tests (MMT)
« the Monte—Carlo Test (MCT)



i PRELIMINARY - SystemC

x SystemC

= |t is consisted of a C++ library class and
Simulation Kernel.

= |t is mainly used for Modeling or Verification of
a design.
s SystemC Verification Extensions (SCV)
= SystemC + Verification Library

= |t Supports
= Bandom Number Generation API
= |ransaction API



i H/W Assisted Co-Simulation

s Environment

= AES Design
« Described using Verilog HDL
= Total 13 Cycle, Working Clock@220MHz

= Total 3497 LUTs on Virtex4-1.X60

10




i H/W Assisted Co-Simulation

s [ estBench
= Described using SystemC and SCV

s RTL Logic Simulation

= Bun on Linux Platform, Simulated using
Cadence [US56

s Emulation Board
» FPGA Board, VIRTEX 4, Dynalith

11



i H/W Assisted Co-Simulation

= H/W Assisted Co—Emulation

TestBench in high-level
language (C/C++)

HOST COMPUTER
(PC, Window XP)

- Signal-—p

Automatically
generated |-t DUT
Interface

4—USB—p

<HOST PC>

<Emulation Board>

12



i H/W Assisted Co-Simulation

<Emulation Board>

Stimulator

Port transactor

Interface
w_task if

Automatically
generated
Interface

DUT

Channel <Transactor>
[q DATA F} AES
A U Reference
[} KEY E} Reference [E— Output
Model
KICK KEY E ’_L
NN L
ID AI DONE
Checker Cuput [ Check
o ecker Cupu K ecker
N
[E DONE EE
AES CIPHER WRAPPER RTL Adaptor }—RTL Output
- - [E Output EE ¥ E ®

13



A PROPOSED TESTBENCH

m [est Vectors

s KAT vector set (ECB mode)
« GFSbox / KeySbox / Variable Key / Variable Text

1. KeySize =128
1.1 Plaintext and/or IV = 0x00000000000000000000000000000000
Key Ciphertext
0x10a58869d74be5a374cf867cfb473859  |[0x6d251e6944b051e04caabibddbl{78465
Oxcaecab5cdbb75e9169ecd22ebeb6e54675 0x6e29201190152df4ecc058139def610bb

Oxa2e¢2fa9bal7d20822¢a9105421764a41 0xc3b44b95d9d2{25670eec9alde(0991a3
Oxb6364acdeldele285eafl144a2415f7a0 0x5d9b055781c944b3cflcctfle746cd581

Ex) KeySbox Known Answer Test Values from AESAVS Appendix C

14



A PROPOSED TESTBENCH

s The KAT Flow in Test Bench

testvector.txt Stimulus
GFSbox / KeySbox 1 Read AESAVS All
VarKey / VarTxt | Read vector set Test Passed
AES RTL Block 2 Transactor 2 Ref C Model
- - Key Key B
,. - ) Make Data > Al
3 C‘ ncryptleo . Plain Text Signals Plain Text : c» ncryptao
Checker
Cipher Text -~ Cipher Text
p =%;\\ ipher Tex

15



i A PROPOSED TESTBENCH

m lest Vectors
= MCT vector set (ECB mode)

« In KAT, Fixed test vector set 1s used as specified in
AESAYVS appendix

« In MCT, only test algorithm 1s specified, not fixed
initial values for security reasons

= In our test bench model

Initial value randomly generated using SCV library API

The modified MCT used to verify the design efficiently
and effectively

16



i H/W Assisted Co-Simulation
s Moditied Test Method For MCT

Algorithm 1. Monte Carlo Algorithm
1) Key[0] = Key
2) PT[0] =PT
3)Fori=0to 99
3.1) Output Key]i]
3.2) Output PT[0]
3.3) For j = 0to 999
3.3.1) CT[j] = AES(Kev[1], PT[j] )
3.3.2) PT[j+1] = CTJj]
3.3.3) Output CTJj]
3.3.4) If{ Kevlen =128)
Kev|[j+1]=Key[i] xor CTJj]
3.3.5) If{ Kevlen =192)
Kev[j+1]=Key]i] xor
(last 64-bit ofbCT[j-1]||CT[jD
3.3.6) If{ Kevlen =256)
Kev[j+1]=Key[i] xor (CT[j-1]] CT[3])
3.3.7) PT[0] = CTJj]

Algorithm 2. Modified Monte Carlo Algorithm
1) Key[0] = Key
2)PT[0]=PT
3)Fori=010 99
3.1) Output Key[i]
3.2) Output PT[0]
3.3) For j = 0 to 999
3.3.1) CTreference= AESreference(Key]i], PT[j] )
3.3.2) CTrtl= AESrtl(Key[i], PT[j] )
3.3.3) If(CTreference = CTrtl)
simulation_stop()
3.3.4)CT[j] = CTrtl
3.3.5) PT[j+1] = CTJj]
3.3.6) Output CTJj]
3.3.7) If{ Keylen =128)
Key[j+1]=Key[i] xor CT[j]
3.3.8) If{ Keylen =192)
Key[j+1]=Key[i] xor
(last 64-bit ofbCT[j-1]||CT[j])
3.3.9) If{ Keylen =256)
Key[j+1]=Key[i] xor (CT[j-1]| CT[ 3D
3.3.10) PT[0] = CT[j]




i H/W Assisted Co-Simulation

s Modified Test Method For MCT

AES RTL Block

3. .‘;'

Stimulus

1. Make Initial
Key/Plain Text

h

AESAVS All
Test Passed

l

Fig.3) The MCT Flow in TestBench

2. Transactor 2. Ref. C Model
) Kev Kev - . i
) o Modified MCA o 3. Encens Stion
<« Plam Text implemented Plain Text , ‘ a
5.1 Iterated
Checker
Cipher Text Cipher Text

18



i Conclusion

s | he features of the proposed model

= Use AESAVS test value sets and test procedures

= One can validate the design of AES for the conformance to
FIPS—-197

= has an Automated and Self—-Checked Structure
= One can verify the AES design fast and efficiently

= has Reusability

= SystemC is based on object oriented programming
language C++

= 1his model can be easily modified to verify other
cryptographic module

= We can validate implementation of an AES RTL
design for the conformance to the FIPS—-197
effectively.

19






