Secure System Integration Methodology

Satoshi HARUYAMA,
Toshiya YOSHI MURA, Naohisa ICHI HARA
NTT DATA Corporation

Copyright © 2008 NTT DATA Corporation
1. Background
 A) Issue of security in system integration
 B) Standardization of system integration process

2. Our goal

3. Our approach for secure system integration
 A) Scope (system security and project security)
 B) Overview of system security assurance
 C) Overview of project security assurance
 D) Required security level

4. Apply the concept of CC to our standard process
 4.1 Planning Process: Definition of security requirement
 4.2 Development Process: Realization of security specification
 4.3 Operation Process: Clarification of operational condition

5. Further issue

6. Conclusion
1. Background

- Issue of security in system integration
 - Security is not treated as primal factor in the traditional software engineering because:
 - Hard to define Security as system quality as it is sometimes subjective, obscure and relates various aspects of system
 - Complicated to resolve the interference among NFRs (Security, Performance, Efficiency, Reliability, Usability, Maintainability)

- Related works
 - Researches; UML-sec, Security Patterns, Secure Tropos
 - Vendor works; Microsoft, IBM, NTTDATA, ... etc

We need effective and pragmatic methodology to assure integrate secure system
1. Background

- Standardization of system integration process
 - Defined for improving system quality as follows:
 - System life-cycle model
 - Process
 - Task
 - Standard process in system life-cycle model
 - Planning, Development, Operation process
 - Management process
 - Tailoring process
1. Background

- Standardization of system integration process

System life-cycle model (image)

Planning/Development/Operation Process

Task flow
- Task A
- Task B1
- Task B2
- Task C

Defined
- subtask
- work description
- output
- check list

Management Process
- Project Scope Mgt
- Project Time Mgt
- Quality Mgt
- Human resources
- Acquisition
- Project Integrated management
- Cost Mgt
- Risk Mgt
- Communication

monitoring/ control
1. Background

- Standardization of system integration process

Tailoring Process

- Planning Process
- Development process
- Operation process
- Management process

Tailoring Standard

Tailoring (choice/replace task)

Project Standard Process

Planning
Development
Operation

Organization Standard Process

Industry Standard
- SLCP-J CF2007
- CMMI

Management Process
Scope Time Quality Human resource
Monitoring/Control

Copyright © 2008 NTT DATA Corporation
2. Our goal

Goal:

- Establish the effective and pragmatic methodology to assure security of system.

• Point 1: Plan the security of system “as required”
 - Identify the required security and its level for the system
 - Avoid spending security cost than needed
 - Agree the required security and cost with customer

• Point 2: Develop and operate securely “as planned”
 - Realize and maintain the security correctly as planned
 - CC concept based methodology which involves;
 » “Completeness”, “Consistency” as well as “Responsibility”

• Point 3: Aim to be more “commonly used”
 - Adopted to the existing development methodology
 - Define standardized tasks to develop security for all the developers
3. Our approach for secure system integration

- **Scope**
 - We categorize two types of security related to system integration.

System security
- Security for the target system (operation phase)

Project security
- Security for the project that is developing the target system.
3. Our approach for secure system integration

- Overview of system security assurance

Agreement
- Check security policy, regulation, standard etc..
- Analysis security risk
- Agree with:
 - security scope
 - required security level
 - security requirement
 - total cost

Realization
- Implement security specification and secure operation (rule, environment, procedure)
- Verify (test) security level agreed with customer (in planning process)
- Manage project (human resources, development environment and procedure)

Maintenance
- Monitor target system operation for keeping the security level, and response security incident throughout development and operation phase
3. Our approach for secure system integration

- Overview of project security assurance
 - Manage project for keeping security (a part of management process) as follows:

 - **Development security (ALC_DVS)**
 - Development security documentation shall describe all the physical, procedural, personnel, and other security measures that are necessary to protect the confidentiality and integrity of the TOE design and implementation.

 - **CM capabilities (ALC_CMC)**
 - Development documentation management

 - **Development environment**

 - **Life-cycle model**
 - Life-cycle definition (ALC_LCD)
 - The developer shall establish a life-cycle model to be used in the development and maintenance of the TOE

Refer to ISMS(ISO/IEC27002:2005)

“ISMS Aspects in Common Criteria Certificates for Development Sites”, Bertolt Krüger, 6th ICCC 2005
3. Our approach for secure system integration

- **Required security level (1)**
 - CC assurance approach is efficient to provide system security assurance
 - However, applying CC scheme to all projects is not reasonable (project cost, time, human resource...)
 - Therefore, we apply the concept of “**Required security level**” based on simplified CC assurance scheme to our standard process

![Diagram showing planning process and required security level.

- Planning process
- Define “Required security level”
- Agreement with customer
- Standard Process
- Required security level
 - high (S)
 - low (C)

Provide simplified criteria to enable developer and customer to agree the goal of “security level” easily
3. Our approach for secure system integration

- **Required Security level (2)**
 - Define tailoring rule according to “Required security level” in our standard process
 - Tailoring rule (choice/replace of security task) realize CC SAR scale (Scope, Depth, Rigour)
 - “Required security level” correspond to “simplified EAL”

Tailoring Standard (image)

<table>
<thead>
<tr>
<th>Required Task</th>
<th>Required Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td></td>
</tr>
<tr>
<td>Lv1 (Critical subsystem)</td>
<td>S</td>
</tr>
<tr>
<td>Lv2 (All)</td>
<td>A</td>
</tr>
<tr>
<td>Depth</td>
<td></td>
</tr>
<tr>
<td>Lv1 (Requirement)</td>
<td>B</td>
</tr>
<tr>
<td>Lv2 (Design)</td>
<td></td>
</tr>
<tr>
<td>Lv3 (Implementation)</td>
<td>C</td>
</tr>
<tr>
<td>Rigour</td>
<td></td>
</tr>
<tr>
<td>Lv1 (Check and review)</td>
<td></td>
</tr>
<tr>
<td>Lv2 (Automated tool)</td>
<td></td>
</tr>
<tr>
<td>Lv3 (Diagnosis by experts)</td>
<td></td>
</tr>
</tbody>
</table>

Matrix,
to define ‘Required task’ from **Required Security Level**
4. Apply the concept of CC to system integration

- Concept of CC applied to our standard process

Completeness

Consistency

Responsibility

4.3 Clarification of operational condition

4.1 Definition of Security requirement

4.2 Realization of Security specification

Planning
- Basic Investigation
- Requirements Definition

Development
- External Design
- Internal Design
- Making (Programming)
- Test
 - Integration test
 - System test

Operation
- Operation Maintenance

- 13 - Copyright © 2008 NTT DATA Corporation
4. Apply the concept of CC to system integration

4.1 Planning Process: Definition of security requirement

- Clarify security scope (considering Responsibility), and solve all security concerns (considering Completeness) in Planning Process (BI, RD) where we applied ST concept (definition of security scope and specification) to our standard process

Security risk analysis

Responsibility: Is the scope definition of security exact (target threats, policy, assumption)?

Completeness: All threats are countered, all OSPs are enforced, and all assumptions are upheld?
4. Apply the concept of CC to system integration

4.2 Development process: Realization of Security specification

- Manage and test (verify) to realize security specification defined in Planning process (BI, RD) (considering **Completeness, Consistency**)

where we applied CC security assurance concept as follows:

- Manage the security specification with keeping traceability (ADV)
- Test (Verify) the security specification (ATE)

Completeness: manage and test the specification in correct coverage, depth, and rigour

Consistency: between documents each other and security requirement (Planning Process)
4. Apply the concept of CC to system integration

4.3 Operation Process: Clarification of operational condition

- System security requirement is satisfied by not only TOE function but “environmental condition”
- To clarify responsibility of system development (=Responsibility), provide “guidance document” that describe environmental condition where we applied CC assurance concept (guidance document: AGD class)

Responsibility of system development

Threats
Organizational Security policies
Assumption

Security objectives (TOE) → Security functional requirements → Security assurance requirements

User operation (AGD_OPE)
preparative procedure (AGD_PRE)

Guidance document

Responsibility: Identify and describe environmental condition sufficiently?
5. Conclusion

● Our goal:
 Establish the effective and pragmatic methodology to assure integrate secure system

● Apply CC concept to our system integration standard process
 - Project security
 - System security
 - Concept of “Required security level”

● CC concept:
 - Completeness
 - Consistency
 - Responsibility
6. Further issue

● NFR interference
 - Security may interfere with Performance, Usability, as well as Maintenanceability
 - When we should take into account this problem? How we could resolve or find agreeable Quality

● Cost
 - Hard to estimate necessary cost for security quality (not only buying security product, but also development costs)
 - How we could explain the security cost to be needed in the project
 - Low cost leads less security

● Optimization
 - How to divide the responsibility of security between logical layers, different developers, different players, as well as to keep balance with security, cost and other NFRs
 - Concept of “Composite Evaluation Class” (in CC v3.*) may help us in the case of a large scale IT system development, to resolve the complexity about responsibility of security
System integration process:
- CMMI for development Version1.2
- NTTDATA TERASOLUNA® Development process ver3.0

Framework related to security
- Common Criteria Ver3.1 part1,2,3
- SSE-CMM ver3.0

Security Design
- Secure Systems Development with UML, Jan Jurjens
- Trustworthy Computing Security Development Lifecycle, Microsoft
- CLASP (Comprehensive Lightweight Application Security Process), Fortify

Presentation, Paper