Cryptography and Common Criteria

Chris Brych and Ashit Vora ICCC 2013

Evolution of Cryptography

Anatomy of a good crypto system

Crypto System

Anatomy of a good crypto system

Crypto System

Algorithm Selection: Right tools for the right job

Implementing Crypto Algorithms

Key Life Cycle

- Key Generation
- Key Access Control
- Key Transport / Key Establishment
- Key Storage
- Key Destruction

Key Generation

Symmetric vs Asymmetric

- Symmetric Key Generators
 - Pseudo Random Number Generators
 - Deterministic Random Bit Generators
- Asymmetric Key Generators
 - FIPS 186-2 (ANSI X9.31)
 - FIPS 186-3 /4
- Key Strength Determined by the Generation of Entropy
 - Deterministic Entropy Sources
 - Non-Deterministic Entropy Sources

Key Access Control

How do you control access to keys?

- A. Create Multiple Roles
 - i. Admin Role
 - ii. Security Officer Role
- B. Access Permissions
 - i. Key Identity
 - ii. Key Entity
 - iii. Key Type
 - iv. Key Usage
 - v. Key Access Control Rules
 - vi. Key Validity Time Period

Key Transport / Key Establishment

Asymmetric

- RSA Key Wrap (SP 800-56B)
- Diffie-Hellman / EC Diffie-Hellman Key Exchange (SP 800-56A)
- Symmetric
 - AES Key Wrap
 - Triple-DES Key Wrap

Key Storage

- Ephemeral / Working Keys
 - Volatile RAM (plaintext)
- Secret / Private Keys
 - Non-Volatile RAM (encrypted)
- High Assurance
 - Hardware Security Module (HSM)
 - Security Processor
- Key Backup Strategies
 - Smart Cards or USB Tokens

Key Destruction

Key Destruction Mechanisms

- Overwrite key location in memory and on non-volatile storage
- Tamper Response and Zeroization Circuitry
- Factory Reset

Making Key Life Cycle Tractable

Two Suggestions

Use of secure key store

Audit all actions on keys

Secure Key Store

- Secure key store localizes keys there by making them easier to protect and manage
- All key related operations occur via a well defined API
- Access to keys can be granularly controlled
- HW as well as SW key stores exists
- HW key store is ideal but not practical for all situations

Auditing Key Access

- Audit Controls on Key / CSP Management
 - Log Creation of Keys
 - Usage of Keys
 - Tamper or Zeroization of Keys
 - Password Changes

Covered in new PPs

Algorithm Selection Algorithm Implementation Key Generation Key Transport/Establishment

Should be covered in new PPs

Key Storage Key access control Timely key destruction Audit logging of all action on keys

Cryptography has evolved significantly over the past decade

There are many cryptographic algorithms available

Implementing cryptography is easier than ever

Key Life Cycle remains a challenge especially with more complex product architectures

Common Criteria can help uplift the industry's approach to key life cycle by introducing relevant requirements

Thank You!

Questions?