

Entropy Sources – Industry Realities and Evaluation Challenges

Sonu Shankar and Ashit Vora

September 12th 2013

Agenda

- Introduction and Background
- Typical CSPRNG Implementation
- NIST SP 800-90B
- Annex-D NDPP v1.1
- Entropy Sources Design Examples
- Industry Status Quo
- Conclusions
- Looking Ahead...

Introduction and Background

Random numbers and security

- Cryptographic key generation (MACSec, IPSec, SSH, TLS ...)
- Nonces and initialization vectors (802.11i, EAP, MACSec...)
- Padding schemes, signatures (DSA, OTPs...)
- Using poor random numbers (random != unique) can have catastrophic consequences. And cause severe embarrassment!
- Repeating primes in public keys (Research by Nadia Heninger et al 2012) 59,000 duplicate keys were repeated owing to use of poor random numbers (1% of all certificates, or 2.6% of self-signed certificates)

~25,000 SSL keys were factorable by computing the GCD of all pairs of RSA moduli

• Recovery of ECDSA private key (fail0verflow hack CCC 2010)

TRNGs, PRNGs, CSPRNGs

True Random Number Generator (TRNG)

Generates unpredictable, statistically independent, irreproducible bits (wow! Ideal) Sampling/digitization of naturally occurring physical phenomena (a.k.a slow :-/)

Pseudorandom Number Generator (PRNG)

Deterministic algorithm that generates output closely resembling a TRNG Requires a *seed* to initialize underlying deterministic model (State Space >> Seed Space) Designed for simplicity/performance. Not secure(!!)

Cryptographically Secure PRNG (CSPRNG)

Computationally complex PRNG (May use cryptographic hashes, ciphers) Non-trivial, computationally infeasible to accurately infer internal state (backward/forward secrecy) But wait... still requires a seed (periodically) that possesses high "Entropy"

Entropy

- Uncertainty associated with a random variable; The expected value of information contained in a message (Claude E. Shannon 1948)
- Entropy is how we quantify unpredictability. (What space must an adversary search to determine a key?)
- · For a random variable X with n outcomes,

$$\{x_i : i = 1, 2, ..., n\}, H(X) = -\sum_{i=0}^n P(x_i) \log_2 P(x_i)$$

- More relevant parameter in practice "Minimum Entropy" $-H_{min} = log_2(P_{max})$
- Most likely output has probability 1/4 = 2 bits of min-entropy

Typical CSPRNG Implementation

© 2013 Cisco and/or its affiliates. All rights reserved

Typical CSPRNG Implementation

Entropy source

Noise source - Hardware-based, dependent on electronic noise (thermal/Johnson, shot) - Ring Oscillator jitter or electronic metastability

Conditioner (to reduce bias) - SHA-1 engine, Linear Feedback Shift Register, Yuval Peres (von-Neumann) corrector

Health tests - Continuous tests on noise source, repetition count, adaptive proportion

Software CSPRNG implementation

SP 800-90A DRBG (For example, a CTR-DRBG based on AES-256)

Seeded (and reseeded periodically) using the entropy source - 256 bits at least every 2^48 requests

Health tests - Continuous random number generator test

NIST SP 800-90B Draft August 2012

NIST SP 800-90B

© 2013 Cisco and/or its affiliates. All rights reserved.

NIST SP 800-90B

- First formal recommendation that describes required properties, design and testing for entropy sources
- Entropy Source = Noise Source + (Optional) Conditioner + Health Tests
- Statistical tests to assess min-entropy for both i.i.d and non-i.i.d sources
- Raw noise sampling necessary to perform tests
- Health tests mandatory on raw noise samples (continuously)

Annex-D NDPP v1.1

Annex-D NDPP v1.1

Design Description

Documentation that describes the design of the entropy source as a whole, interaction of all components including post-processing.

Design review is critical to ensure the source is robust enough to perform with a certain min-entropy estimate when deployed in large numbers (> ~1 million Cisco Aironet 3600 APs deployed. IP phones?)

Entropy Justification

Technical argument describing source of unpredictability and justification of probabilistic behavior. Specify expected entropy rate and process of seeding underlying CSPRNG

Operating Conditions

Information on operational ranges (temperature, operational voltage) within which normal operation can be expected

• Health Tests

Describe entropy source health tests, rate and conditions under which performed, results expected and justification for use

Entropy Sources - Design Examples

- Odd number of NOT gates connected in series with a wire inversion
- Output oscillates between two voltage levels
- Oscillations begin spontaneously above a threshold voltage

Ring Oscillators (continued)

- Property exploited for entropy Ring oscillator jitter (fluctuations in oscillator period due to electronic noise)
- Jitter causes increasing uncertainty in signal transition times

Ring Oscillator Jitter

Above is for a single-ended CMOS RO derived by Hajimiri et al. – "Jitter and Phase Noise in Ring Oscillators", IEEE J. Solid-State Circuits 34(6) (1999) 790-804. (Reference for equation and figure on prev slide)

Generic RO-based Design 'A'

© 2013 Cisco and/or its affiliates. All rights reserved.

Generic RO-based Design 'B'

Design 'C'

Design 'C'

Industry Status Quo

Industry Status Quo

- Most designs are based on Ring Oscillator jitter (Some on electronic metastability)
- Dedicated entropy sources are rare. Always part of another multi-purpose chip.
- Access to raw unconditioned noise is not always available (800-90B? Errrr...)
- When available, consecutive raw sampling of entire conditioner input is non-trivial
- Noise source health tests ("equivalent" to 800-90B recommendations) are rare in hardware
- Design/architecture details are not always made available

Conclusions

Conclusions

- Requirements applicable across a wide range of applications, deployment scenarios and computational capabilities
- Parts (and vendors), designs, quality, ability to assess vary across devices
- Certain robust, well-designed entropy sources currently don't have access to raw noise (No min-entropy assessment for you!)
- Certain vendors are uncomfortable sharing any detailed description of noise source design (some do not provide any details whatsoever). Multi-party NDAs not practical

Looking Ahead...

Looking Ahead...

- Ideally, BOTH min-entropy estimation and design review required for a thorough evaluation
- However, a deep design review as part of the evaluation will not be scalable (Minentropy estimation + noise source health test requirements should suffice)
- The burden of performing detailed design review should lie with the network device vendor to ensure robust operation in specific applications and deployments
- Need for a dialog between Industry and Government about requirements that provide security assurance while considering real world issues such as IPR, device capabilities, deployment scenarios etc

Looking Ahead... (continued)

Industry (design and policy changes)

Access to raw noise is essential for min-entropy statistical analysis as well as noise source health tests (New silicon = Adoption delays ~2-4 years)

To facilitate sound entropy analysis, vendors will need to be open to sharing (at least) high-level design descriptions enough to justify a robust, reliable, probabilistic source of noise

• Government (policy changes)

Several designs exist in the industry (Noise - Ring Oscillator jitter, RS latch metastability, Post-processing - Cryptographic hash, Von Neumann corrector, linear codes)

Concerns around level of IP required currently to pass design review

A single min-entropy estimation tool should be made publicly available

Thank you.

#