
 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 1 of 251

Microsoft Windows

Common Criteria Evaluation
Microsoft Windows 11 (versions 24H2, 23H2)

Microsoft Windows Server 2025

Microsoft Azure Local (versions 24H2, 23H2)

Security Target

Document Information

Version Number 0.02
Updated On July 2, 2025

Version History

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 2 of 251

Version Date Summary of changes

0.01 November 20, 2025 Initial draft

0.02 July 2, 2025 Updates from evaluation

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 3 of 251

This is a preliminary document and may be changed
substantially prior to final commercial release of the
software described herein.

The information contained in this document
represents the current view of Microsoft Corporation
on the issues discussed as of the date of publication.
Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft
cannot guarantee the accuracy of any information
presented after the date of publication.

This document is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the
responsibility of the user. This work is licensed under
the Creative Commons Attribution-NoDerivs-
NonCommercial License (which allows redistribution
of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd-nc/1.0/ or
send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.

Microsoft may have patents, patent applications,
trademarks, copyrights, or other intellectual property
rights covering subject matter in this document.
Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this
document does not give you any license to these
patents, trademarks, copyrights, or other intellectual
property.

The example companies, organizations, products,
people and events depicted herein are fictitious. No
association with any real company, organization,
product, person or event is intended or should be
inferred.

© 2025 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, Visual Basic, Visual
Studio, Windows, the Windows logo, Windows NT,
and Windows Server are either registered trademarks
or trademarks of Microsoft Corporation in the United
States and/or other countries.

The names of actual companies and products
mentioned herein may be the trademarks of their
respective owners.

http://creativecommons.org/licenses/by-nd-nc/1.0/

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 4 of 251

TABLE OF CONTENTS

SECURITY TARGET ...1

VERSION HISTORY ..1

TABLE OF CONTENTS ..4

LIST OF TABLES ...8

1 SECURITY TARGET INTRODUCTION .. 10

1.1 ST REFERENCE .. 10

1.2 TOE REFERENCE.. 10

1.3 TOE OVERVIEW .. 10

1.3.1 TOE TYPES ... 11

1.3.2 TOE USAGE .. 11

1.3.3 TOE SECURITY SERVICES ... 11

1.3.4 NON-TOE HARDWARE, SOFTWARE, FIRMWARE IN THE EVALUATION ... 13

1.4 TOE DESCRIPTION ... 14

1.4.1 EVALUATED CONFIGURATIONS ... 14

1.4.2 SECURITY ENVIRONMENT AND TOE BOUNDARY ... 14

1.4.2.1 Logical Boundaries .. 14

1.4.2.2 Physical Boundaries .. 15

1.5 PRODUCT DESCRIPTION .. 17

1.6 CONVENTIONS, TERMINOLOGY, ACRONYMS .. 18

1.6.1 CONVENTIONS .. 18

1.6.2 TERMINOLOGY .. 18

1.6.3 ACRONYMS... 21

1.7 ST OVERVIEW AND ORGANIZATION ... 21

2 CC CONFORMANCE CLAIMS ... 23

3 SECURITY PROBLEM DEFINITION .. 26

3.1 THREATS TO SECURITY .. 26

3.2 ORGANIZATIONAL SECURITY POLICIES ... 29

3.3 SECURE USAGE ASSUMPTIONS .. 29

4 SECURITY OBJECTIVES ... 31

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 5 of 251

4.1 TOE SECURITY OBJECTIVES .. 31

4.2 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT .. 33

5 SECURITY REQUIREMENTS ... 35

5.1 TOE SECURITY FUNCTIONAL REQUIREMENTS ... 36

5.1.1 SECURITY AUDIT (FAU) .. 39

5.1.1.1 Security Audit for GP OS PP .. 39

5.1.1.2 Security Audit for WLAN Client Module ... 39

5.1.1.3 Security Audit for VPN Client Module ... 41

5.1.1.4 Security Audit for Bluetooth Module .. 42

5.1.1.5 Security Audit for TLS Functional Package .. 43

5.1.2 CRYPTOGRAPHIC SUPPORT (FCS) ... 44

5.1.2.1 Cryptographic Support for GP OS PP .. 44

5.1.2.2 Cryptographic Support for WLAN Client Module ... 47

5.1.2.3 Cryptographic Support for VPN Client Module ... 48

5.1.2.4 Cryptographic Support for Bluetooth Module .. 50

5.1.2.5 Cryptographic Support for TLS Module .. 50

5.1.3 USER DATA PROTECTION (FDP) ... 63

5.1.3.1 User Data Protection for GP OS PP ... 63

5.1.3.2 User Data Protection for VPN Client Module ... 63

5.1.4 IDENTIFICATION AND AUTHENTICATION (FIA)... 63

5.1.4.1 Identification and Authentication for GP OS PP ... 63

5.1.4.2 Identification and Authentication for WLAN Client Module .. 65

5.1.4.3 Identification and Authentication for VPN Client Module .. 66

5.1.4.4 Identification and Authentication for Bluetooth Module ... 66

5.1.5 SECURITY MANAGEMENT (FMT) ... 67

5.1.5.1 Security Management for GP OS PP ... 67

5.1.5.2 Security Management for WLAN Client Module .. 68

5.1.5.3 Security Management for VPN Client Module .. 70

5.1.5.4 Security Management for Bluetooth Module ... 70

5.1.6 PROTECTION OF THE TSF (FPT) ... 72

5.1.6.1 Protection of the TSF for GP OS PP ... 72

5.1.6.2 Protection of the TSF for WLAN Client Module .. 73

5.1.6.3 Protection of the TSF for VPN Client Module ... 73

5.1.7 TOE ACCESS (FTA) .. 74

5.1.7.1 TOE Access for GP OS PP ... 74

5.1.7.2 TOE Access for WLAN Client Module .. 74

5.1.8 TRUSTED PATH / CHANNELS (FTP) ... 74

5.1.8.1 Trusted Path / Channels for GP OS PP .. 74

5.1.8.2 Trusted Path / Channels for WLAN Client Module ... 75

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 6 of 251

5.1.8.3 Trusted Path / Channels for VPN Client Module... 75

5.1.8.4 Trusted Path / Channels for Bluetooth Module .. 75

5.2 TOE SECURITY ASSURANCE REQUIREMENTS .. 76

5.2.1 CC PART 3 ASSURANCE REQUIREMENTS .. 76

5.2.1.1 Timely Security Updates (ALC_TSU_EXT.1) ... 77

5.2.2 GENERAL PURPOSE OS PP ASSURANCE ACTIVITIES ... 77

5.2.2.1 Security Audit (FAU) .. 77

5.2.2.2 Cryptographic Support (FCS) ... 78

5.2.2.3 User Data Protection (FDP) ... 95

5.2.2.4 Identification and Authentication (FIA) .. 97

5.2.2.5 Security Management (FMT) .. 101

5.2.2.6 Protection of the TSF (FPT) ... 102

5.2.2.7 TOE Access (FTA) ... 108

5.2.2.8 Trusted Path / Channels (FTP) ... 108

5.2.3 WLAN CLIENT MODULE ASSURANCE ACTIVITIES .. 108

5.2.3.1 Security Audit (FAU) .. 109

5.2.3.2 Cryptographic Support (FCS) ... 110

5.2.3.3 Identification and Authentication (FIA) .. 114

5.2.3.4 Security Management (FMT) .. 117

5.2.3.5 Protection of the TSF (FPT) ... 117

5.2.3.6 TOE Access (FTA) ... 118

5.2.3.7 Trusted Path / Channels (FTP) ... 118

5.2.4 VPN CLIENT MODULE ASSURANCE ACTIVITIES ... 119

5.2.4.1 Security Audit (FAU) .. 119

5.2.4.2 Cryptographic Support (FCS) ... 121

5.2.4.3 User Data Protection (FDP) ... 133

5.2.4.4 Identification & Authentication (FIA) .. 134

5.2.4.5 Security Management (FMT) .. 135

5.2.4.6 Protection of the TSF (FPT) ... 136

5.2.4.7 Trusted Path/Channels (FTP) .. 137

5.2.5 BLUETOOTH MODULE ASSURANCE ACTIVITIES .. 138

5.2.5.1 Security Audit (FAU) .. 138

5.2.5.2 Cryptographic Support (FCS) ... 138

5.2.5.3 Identification & Authentication (FIA) .. 139

5.2.5.4 Security Management (FMT) .. 142

5.2.5.5 Trusted Path/Channels (FTP) .. 144

5.2.6 TLS MODULE ASSURANCE ACTIVITIES ... 147

5.2.6.1 Cryptographic Support (FCS) ... 147

6 TOE SUMMARY SPECIFICATION (TSS) ... 181

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 7 of 251

6.1 AUDIT .. 181

6.1.1 AUDIT COLLECTION .. 181

6.1.2 SFR SUMMARY ... 183

6.2 CRYPTOGRAPHIC SUPPORT .. 184

6.2.1 CRYPTOGRAPHIC ALGORITHMS AND OPERATIONS ... 184

6.2.2 CRYPTOGRAPHIC ALGORITHM VALIDATION .. 185

6.2.3 NETWORKING ... 193

6.2.3.1 TLS, HTTPS, DTLS, EAP-TLS .. 193

6.2.3.2 Wireless Networking ... 195

6.2.3.3 IPsec .. 196

6.2.4 PROTECTING DATA WITH DPAPI .. 198

6.2.5 SFR SUMMARY ... 199

6.3 USER DATA PROTECTION ... 199

6.3.1 DISCRETIONARY ACCESS CONTROL .. 199

6.3.1.1 Subject DAC Attributes.. 200

6.3.1.2 Object DAC Attributes ... 200

6.3.1.3 DAC Enforcement Algorithm ... 202

6.3.1.4 Default DAC Protection ... 204

6.3.1.5 DAC Management ... 205

6.3.1.6 Reference Mediation .. 205

6.3.2 VPN CLIENT ... 205

6.3.3 MEMORY MANAGEMENT AND OBJECT REUSE .. 206

6.3.4 SFR SUMMARY ... 207

6.4 IDENTIFICATION AND AUTHENTICATION .. 207

6.4.1 X.509 CERTIFICATE VALIDATION AND GENERATION .. 208

6.4.2 CERTIFICATE STORAGE .. 208

6.4.3 IPSEC AND PRE-SHARED KEYS .. 208

6.4.4 SFR SUMMARY ... 209

6.5 SECURITY MANAGEMENT .. 209

6.5.1 SFR SUMMARY ... 213

6.6 PROTECTION OF THE TSF ... 213

6.6.1 SEPARATION AND DOMAIN ISOLATION .. 213

6.6.2 PROTECTION OF OS BINARIES, AUDIT AND CONFIGURATION DATA .. 214

6.6.3 PROTECTION FROM IMPLEMENTATION WEAKNESSES ... 215

6.6.4 WINDOWS PLATFORM INTEGRITY AND CODE INTEGRITY... 215

6.6.5 WINDOWS AND APPLICATION UPDATES .. 218

6.6.5.1 Windows Store Applications ... 219

6.6.5.2 Distributing updates .. 219

6.6.6 SFR SUMMARY ... 220

6.7 TOE ACCESS .. 220

6.7.1 SFR SUMMARY ... 221

6.8 TRUSTED CHANNELS ... 221

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 8 of 251

6.8.1 SFR SUMMARY ... 222

6.9 SECURITY RESPONSE PROCESS .. 222

7 PROTECTION PROFILE CONFORMANCE CLAIM .. 224

8 RATIONALE FOR MODIFICATIONS TO THE SECURITY REQUIREMENTS 238

8.1 FUNCTIONAL REQUIREMENTS ... 238

8.2 SECURITY ASSURANCE REQUIREMENTS ... 242

8.3 RATIONALE FOR THE TOE SUMMARY SPECIFICATION .. 242

9 APPENDIX A: LIST OF ABBREVIATIONS ... 246

LIST OF TABLES

Table 1 GP OS PP Threats Addressed by Windows ... 26

Table 2 WLAN Client Module Threats Addressed by Windows .. 26

Table 3 VPN Client Module Threats Addressed by Windows ... 27

Table 4 Bluetooth Module Threats Addressed by Windows .. 29

Table 5 Organizational Security Policies .. 29

Table 6 GP OS PP Secure Usage Assumptions ... 29

Table 7 WLAN Client Module Secure Usage Assumptions .. 30

Table 8 VPN Client Module Secure Usage Assumptions ... 30

Table 9 Bluetooth Module Secure Usage Assumptions .. 30

Table 10 GP OS PP Security Objectives for the TOE .. 31

Table 11 WLAN Client Module Security Objectives for the TOE ... 32

Table 12 VPN Client Module Security Objectives for the TOE .. 32

Table 13 GP OS PP Security Objectives for the Operational Environment .. 33

Table 14 WLAN Client Module Security Objectives for the Operational Environment 33

Table 15 VPN Client Module Security Objectives for the Operational Environment.............................. 34

Table 16 TOE Security Functional Requirements for GP OS PP .. 36

Table 17 TOE Security Functional Requirements for WLAN Client Module ... 36

Table 18 TOE Security Functional Requirements for VPN Client Module .. 37

Table 19 TOE Security Functional Requirements for PP-Module for Bluetooth 37

Table 20 TOE Security Functional Requirements for Functional Package for Transport Layer Security

(TLS) .. 38

Table 21 WLAN Client Module Audit Events ... 40

Table 22 VPN Client Module Audit Events .. 41

Table 23 Bluetooth Module Audit Events ... 42

Table 24 TLS Module Audit Events .. 43

Table 25 TOE Security Management Functions ... 67

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 9 of 251

Table 26 WLAN Client Module Management Functions ... 68

Table 27 Bluetooth Security Management Functions ... 70

Table 28 TOE Security Assurance Requirements ... 76

Table 29 Standard Fields in a Windows Audit Entry ... 181

Table 30 Cryptographic Algorithm Standards and Validation for Windows 11 (version 24H2) 185

Table 31 Cryptographic Algorithm Standards and Validation for Windows 11 (version 23H2) 187

Table 32 Cryptographic Algorithm Standards and Validation for Windows Server 2025 188

Table 33 Cryptographic Algorithm Standards and Validation for Azure Local (version 24H2) 189

Table 34 Cryptographic Algorithm Standards and Validation for Azure Local (version 23H2) 191

Table 35 Types of Keys Used by Windows .. 192

Table 36 TLS RFCs Implemented by Windows ... 193

Table 37 Windows Implementation of IPsec RFCs .. 197

Table 38 DAC Access Rights and Named Objects .. 201

Table 39 General Purpose OS Windows Security Management Functions .. 209

Table 40 WLAN Client Windows Security Management Functions .. 210

Table 41 IPsec VPN Client Windows Security Management Functions .. 211

Table 42 Bluetooth Windows Security Management Functions .. 212

Table 43 GP OS PP Security Objectives Rationale .. 224

Table 44 VPN Client Module Security Objectives Rationale .. 225

Table 45 PP-Module for Bluetooth Security Objectives Rationale ... 227

Table 46 GP OS PP Tracing Between SFR and TOE Security Objective .. 227

Table 47 WLAN Client Module Tracing Between SFR and TOE Security Objective 229

Table 48 Tracing Between GP OS PP Security Objective and VPN Client Module SFRs 230

Table 49 Tracing Between GP OS PP Security Objective and PP-Module for Bluetooth SFRs 232

Table 50 WLAN Client Module Consistency Rationale to the GP OS PP ... 235

Table 51 WLAN Client Module Security Objectives Consistency Rationale to the GP OS PP 236

Table 52 Rationale for Operations ... 238

Table 53 Requirement to Security Function Correspondence .. 243

Table 54 Abbreviations .. 246

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 10 of 251

1 Security Target Introduction
This section presents the following information required for a Common Criteria (CC) evaluation:

• Identifies the Security Target (ST) and the Target of Evaluation (TOE)

• Specifies the security target conventions,

• Describes the organization of the security target

1.1 ST Reference
ST Title: Microsoft Windows 11 (versions 24H2 and 23H2), Microsoft Windows Server 2025, Microsoft

Azure Local (versions 24H2, 23H2) Security Target

ST Version: version 0.02, July 2, 2025

1.2 TOE Reference
TOE Software Identification: The following Windows Operating Systems (OS):

• Microsoft Windows 11 version 24H2 Enterprise edition

• Microsoft Windows 11 version 24H2 Pro edition

• Microsoft Windows 11 version 24H2 Education edition

• Microsoft Windows 11 version 24H2 IoT Enterprise edition

• Microsoft Windows 11 version 23H2 Enterprise edition

• Microsoft Windows Server 2025 Standard edition

• Microsoft Windows Server 2025 Datacenter edition

• Microsoft Windows Server 2025 Datacenter: Azure edition

• Microsoft Azure Local version 24H2

• Microsoft Azure Local version 23H2

TOE Versions:

• Microsoft Windows 11 build 10.0.26100.1 (also known as version 24H2)

• Microsoft Windows 11 build 10.0.22631.2428 (also known as version 23H2)

• Microsoft Windows Server 2025 build 10.0.26100.1

• Microsoft Azure Local version 10.0.26100.1 (also known as version 24H2)

The following security updates must be applied for:

• Windows 11, Windows Server and Azure Local: all critical updates as of July 1, 2025.

1.3 TOE Overview
The TOE includes the Windows 11 operating system; the Windows Server 2025 operating system; Azure

Local; and those applications necessary to manage, support and configure the operating system.

Windows 11 and Windows Server can be delivered preinstalled on a new computer or downloaded from

the Microsoft website.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 11 of 251

1.3.1 TOE Types

All Windows 11, Windows Server editions, plus the Windows operating systems in Azure Local products,

collectively called “Windows”, are preemptive multitasking, multiprocessor, and multi-user operating

systems. In general, operating systems provide users with a convenient interface to manage underlying

hardware. They control the allocation and manage computing resources such as processors, memory,

and Input/Output (I/O) devices. Windows expands these basic operating system capabilities to

controlling the allocation and managing higher level IT resources such as security principals (user or

machine accounts), files, printing objects, services, window station, desktops, cryptographic keys,

network ports traffic, directory objects, and web content. Multi-user operating systems such as

Windows keep track of which user is using which resource, grant resource requests, account for

resource usage, and mediate conflicting requests from different programs and users.

1.3.2 TOE Usage

Windows 11 is suited for business desktops, notebook, and convertible computers. It is the workstation

product and while it can be used by itself, it is designed to serve as a client within Windows domains.

Built for workloads ranging from the department to the enterprise to the cloud, Windows Server

delivers intelligent file and printer sharing; secure connectivity based on Internet technologies, and

centralized desktop policy management. It provides the necessary scalable and reliable foundation to

support mission-critical solutions for databases, enterprise resource planning software, high-volume,

real-time transaction processing, server consolidation, public key infrastructure, virtualization, and

additional server roles.

The Azure Local product line extends Azure services and capabilities to a local IT environment spanning

from the datacenter to edge locations and remote offices. Azure Local is a hyperconverged solution for

scalable virtualization and storage, high-performance workloads, in modernized on-premise architecture

and remote branch offices using compute and hardware-accelerated machine learning at edge location

for Internet of Things (IoT) and artificial intelligence (AI) workloads.

Windows provides an interactive User Interface (UI), as well as a network interface. The TOE includes a

set of computer systems that can be connected via their network interfaces and organized into domains

and forests. A domain is a logical collection of Windows systems that allows the administration and

application of a common security policy and the use of a common accounts database. One or more

domains combine to comprise a forest. Windows supports single-domain and multiple-domain (i.e.,

forest) configurations as well as federation between forests and external authentication services.

Each domain must include at least one designated server known as a Domain Controller (DC) to manage

the domain. The TOE allows for multiple DCs that replicate TOE user and machine account as well as

group policy management data among themselves to provide for higher availability.

Each Windows system, whether it is a DC server, non-DC server, or workstation, provides a subset of the

TSFs. The TSF subset for Windows can consist of the security functions from a single system, for a stand-

alone system, or the collection of security functions from an entire network of systems, for a domain

configuration.

1.3.3 TOE Security Services

This section summarizes the security services provided by the TOE:

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 12 of 251

• Security Audit: Windows has the ability to collect audit data, review audit logs, protect audit

logs from overflow, and restrict access to audit logs. Audit information generated by the system

includes the date and time of the event, the user identity that caused the event to be generated,

and other event specific data. Authorized administrators can review audit logs and have the

ability to search and sort audit records. Authorized Administrators can also configure the audit

system to include or exclude potentially auditable events to be audited based on a wide range of

characteristics. In the context of this evaluation, the protection profile requirements cover

generating audit events, selecting which events should be audited, and providing secure storage

for audit event entries.

• Cryptographic Support: Windows provides FIPS 140-2 CAVP validated cryptographic functions

that support encryption/decryption, cryptographic signatures, cryptographic hashing,

cryptographic key agreement, and random number generation. The TOE additionally provides

support for public keys, credential management and certificate validation functions and

provides support for the National Security Agency’s Suite B cryptographic algorithms. Windows

also provides extensive auditing support of cryptographic operations, the ability to replace

cryptographic functions and random number generators with alternative implementations,1 and

a key isolation service designed to limit the potential exposure of secret and private keys. In

addition to using cryptography for its own security functions, Windows offers access to the

cryptographic support functions for user-mode and kernel-mode programs. Public key

certificates generated and used by Windows authenticate users and machines as well as protect

both user and system data in transit.

o TLS: Windows implements Transport Layer Security to provide protected, authenticated,

confidential, and tamper-proof networking between two peer computers.

o IPsec: Windows implements IPsec to provide protected, authenticated, confidential, and

tamper-proof networking between two peer computers.

o Wi-Fi: Windows implements IEEE 802.11 wireless networking to provide protected,

authenticated, confidential, and tamper-proof networking between Windows clients

and Wi-Fi access points.

o Bluetooth: Windows implements Bluetooth version 5.1 wireless networking protocols

to provide protected, authenticated, confidential, and tamper-proof networking

between Windows operating systems and Bluetooth peer devices.

• User Data Protection: In the context of this evaluation Windows protects user data and provides

virtual private networking capabilities.

• Identification and Authentication Each Windows user must be identified and authenticated

based on administrator-defined policy prior to performing any TSF-mediated functions. An

interactive user invokes a trusted path in order to protect his I&A information. Windows

maintains databases of accounts including their identities, authentication information, group

associations, and privilege and logon rights associations. Windows account policy functions

include the ability to define the minimum password length, the number of failed logon

1 This option is not included in the Windows Common Criteria evaluation.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 13 of 251

attempts, the duration of lockout, and password age. Windows provides the ability to use, store,

and protect X.509 certificates that are used for IPsec VPN sessions.

• Protection of the TOE Security Functions: Windows provides a number of features to ensure

the protection of TOE security functions. Windows protects against unauthorized data

disclosure and modification by using a suite of Internet standard protocols including IPsec, IKE,

and ISAKMP. Windows ensures process isolation security for all processes through private

virtual address spaces, execution context, and security context. The Windows data structures

defining process address space, execution context, memory protection, and security context are

stored in protected kernel-mode memory. Windows includes self-testing features that ensure

the integrity of executable program images and its cryptographic functions. Finally, Windows

provides a trusted update mechanism to update Windows binaries itself.

• Session Locking: Windows provides the ability for a user to lock their session either immediately

or after a defined interval. Windows constantly monitors the mouse, keyboard, and touch

display for activity and locks the computer after a set period of inactivity.

• TOE Access: Windows allows an authorized administrator to configure the system to display a

logon banner before the logon dialog.

• Trusted Path for Communications: Windows uses TLS, HTTPS, DTLS, EAP-TLS, and IPsec to

provide a trusted path for communications.

• Security Management: Windows includes several functions to manage security policies. Policy

management is controlled through a combination of access control, membership in

administrator groups, and privileges.

1.3.4 Non-TOE Hardware, Software, Firmware in the Evaluation

Non-TOE Hardware Identification: The following real and virtualized hardware platforms, corresponding

firmware, and components are included in the evaluated configuration:

• Microsoft Surface Laptop 6

• Microsoft Surface Pro 10

• Microsoft Surface Pro 11th edition (ARM)

• Microsoft Surface Laptop Go 3

• Microsoft Surface Go 4

• Microsoft Surface Laptop Studio 2

• HP EliteBook 840 14-inch G11 Notebook PCHP Elite x360 830 13-inch G11 2-in-1 Notebook PC

• Dell Precision 3490

• Dell Latitude 5550

• Dell PowerEdge R640

• Dell PowerEdge R760

• Microsoft Windows Server 2025 Hyper-V

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 14 of 251

1.4 TOE Description
The Windows TOE product series includes the Windows operating system, the Windows Server

operating system, Azure Local, supporting hardware, and those applications necessary to manage,

support and configure the operating system.

1.4.1 Evaluated Configurations

The Windows TOE is a series of products which includes:

• Four product variants for Windows 11 version 24H2 (build 10.0.26100.1):

o Microsoft Windows 11 Enterprise edition

o Microsoft Windows 11 version 24H2 Pro edition

o Microsoft Windows 11 version 24H2 Education edition

o Microsoft Windows 11 version 24H2 IoT Enterprise edition

• One product variant for Windows 11 version 23H2 (build 10.0.22631.2428):

o Microsoft Windows 11 Enterprise edition

• Three variants of Windows Server 2025 (build 10.0. 26100.1)

o Microsoft Windows Server 2025 Standard edition

o Microsoft Windows Server 2025 Datacenter edition

o Microsoft Windows Server 2025 Datacenter: Azure edition

• Two product variants for the Windows Server Azure product line:

o Microsoft Azure Local version 24H2 (build 10.0. 26100.1)

o Microsoft Azure Local version 23H2 (build 10.0.25398.469)

Within this security target, when specifically referring to a type of TSF (for example, a domain

controller), the TSF type will be explicitly stated. Otherwise, the term TSF refers to the total of all TSFs

within the TOE.

1.4.2 Security Environment and TOE Boundary

The TOE includes both physical and logical boundaries. Its operational environment is a networked

environment.

1.4.2.1 Logical Boundaries

Conceptually the Windows TOE can be thought of as a collection of the following security services which

the security target describes with increasing detail:

• Security Audit

• Cryptographic Support

• User Data Protection

• Identification and Authentication

• Security Management

• Protection of the TOE Security Functions

• Access to the TOE

• Trusted Path and Channels

These services are primarily provided by Windows components:

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 15 of 251

• The Boot Manager, which is invoked by the computer’s bootstrapping code.

• The Windows Loader which loads the operating system into the computer’s memory.

• Windows OS Resume which reloads an image of the executing operating system from a

hibernation file as part of resuming from a hibernated state.

• The Windows Kernel which contains device drivers for the Windows NT File System, full volume

encryption, the crash dump filter, and the kernel-mode cryptographic library.

• The IPv4 / IPv6 network stack in the kernel.

• The IPsec module in user-mode.

• The IKE and AuthIP Keying Modules service which hosts the IKE and Authenticated Internet

Protocol (AuthIP) keying modules. These keying modules are used for authentication and key

exchange in Internet Protocol security (IPsec).

• The Remote Access Service device driver in the kernel, which is used primarily for ad hoc or

user-defined VPN connections; known as the “RAS IPsec VPN” or “RAS VPN”.

• The IPsec Policy Agent service which enforces IPsec policies.

• The Key Isolation Service which protects secret and private keys.

• The Local Security Authority Subsystem which identifies and authenticates users prior to log on

and generates events for the security audit log.

• FIPS-Approved cryptographic algorithms to protect user and system data.

• Local and remote administrative interfaces for security management.

• Windows Explorer which can be used to manage the OS and check the integrity of Windows

files and updates.

• The Windows Trusted Installer which installs updates to the Windows operating system.

1.4.2.2 Physical Boundaries

Each instance of the general-purpose OS TOE runs on a tablet, convertible, workstation or server

computer. The TOE executes on processors from Intel (x64), AMD (x64), or Qualcomm (ARM64) along

with peripherals for input/output (keyboard, mouse, display, and network).

The TOE was tested on the following physical and virtual computer platforms:

• Microsoft Surface Laptop 6

• Microsoft Surface Pro 10

• Microsoft Surface Pro 11th edition (ARM)

• Microsoft Surface Laptop Go 3

• Microsoft Surface Go 4

• Microsoft Surface Laptop Studio 2

• HP EliteBook 840 14-inch G11 Notebook PCHP Elite x360 830 13-inch G11 2-in-1 Notebook PC

• Dell Precision 3490

• Dell Latitude 5550

• Dell PowerEdge R640

• Dell PowerEdge R760

• Microsoft Windows Server 2025 Hyper-V

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 16 of 251

The Assurance Activity Report describes the relationship between the different hardware platforms and

the operating systems examined during the evaluation.

The TOE does not include any hardware or network infrastructure components between the computers

that comprise the distributed TOE. The security target assumes that any network connections,

equipment, peripherals and cables are appropriately protected in the TOE security environment.

The Windows operating system must be pre-installed on a computer by an OEM, installed by the end-

user, by an organization’s IT administrator, or updated from a previous Windows 10 version downloaded

from Windows Update. Consumers can download Windows 11 from https://www.microsoft.com/en-

us/software-download/windows11, and IT professionals can obtain a copy of Windows Server from

https://admin.microsoft.com/adminportal/home#/subscriptions/vlnew. The obtained file is in .iso

format. Enterprises typically obtain Windows using volume licensing programs and subscriptions such as

these for Windows 11.

Windows is pre-installed on all Microsoft Surface computers.

The operating system is pre-installed on Azure Local products.

• Microsoft Windows 11 version 24H2 Enterprise edition

o Build: 10.0.26100.1

o ISO: 26100.1.240331-1435.ge_release_CLIENT_ENTERPRISE_OEM_x64FRE_en-us.iso

o ISO hash:

E8F1431C4E6289B3997C20EADBB2576670300BB6E1CF8948B5D7AF179010A962

• Microsoft Windows 11 version 24H2 Pro editions (x64) and Education editions

o Build: 10.0.26100.1

o ISO: 26100.1.240331-1435.ge_release_CLIENT_BUSINESS_VOL_x64FRE_en-us.iso

o ISO hash:

16B20ED488999032F74B23CC51360E7A7B3C55AB6910F60103193E7D190710B3

• Microsoft Windows 11 version 24H2 IoT Enterprise edition (x64) edition

o Build: 10.0. 26100.1

o ISO: 26100.1.240331-1435.ge_release_CLIENT_IOTENTERPRISES_vl_x64FRE_en-us.iso

o ISO hash:

4E43CE7CD414F0C43F4772CE2F91B0D8DD2F1A3C71833EEEA7C756053125DDA6

• Microsoft Windows 11 version 23H2 version Enterprise edition

o Build: 10.0. 22631.2428

o ISO: 22631.2428.231001-

0608.23H2_NI_RELEASE_SVC_REFRESH_CLIENTENTERPRISE_OEM_x6FRE_en-us.iso

o ISO hash:

5D9B86AD467BC89F488D1651A6C5AD3656A7EA923F9F914510657A24C501BB8

• Microsoft Windows Server 2025 Standard, Datacenter editions

o Build: 10.0. 26100.1

o ISO: 26100.1.240331-1435.ge_release_SERVER_OEMRET_x64FRE_en-us.iso

https://www.microsoft.com/en-us/software-download/windows11
https://www.microsoft.com/en-us/software-download/windows11
https://admin.microsoft.com/adminportal/home#/subscriptions/vlnew
https://www.microsoft.com/en-us/microsoft-365/windows/windows-11-enterprise

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 17 of 251

o ISO hash:

2293897341FEBDCEA599F5412300B470B5288C6FD2B89666A7B27D283E8D3CF3

• Microsoft Windows Server 2022 2025 Datacenter: Azure edition

o Build: 10.0. 26100.1

o ISO: 26100.1.240331-1435.ge_release_SERVERDCAZURE_VOL_x64FRE_en-us.iso

o ISO hash:

FF42F96D1349C3035E7724090FCFBE8417074D7F9D06E1059C89BB48ED889421

• Microsoft Azure Local version 24H2

o Build: 10.0. 26100.1

o ISO: 26100.1.240331-

1435.ge_release_SERVERAZURESTACKHCICOR_OEMRET_x64FRE_en-us.iso

o ISO hash:

B110092D8F46EEE763248BE706DCAF5B6A234E03277C388B139460DC2D641B3D

• Microsoft Azure Local version 23H2

o Build: 10.0. 25398.469

o ISO: 25398.469.231004-

1141.zn_release_svc_refresh_SERVERAZURESTACKHCICOR_OEMRET_x64FRE_en-us.iso

o ISO hash:

140D2A6BC53DADCCB9FB66B0D6D2EF61C9D23EA937F8CCC62788866D02997BCA

TOE Guidance Identification: The following administrator, user, and configuration guides were evaluated

as part of the TOE and published at Common Criteria Certifications - Windows security | Microsoft Docs:

• Microsoft Windows, Windows Server, and Azure Local GP OS Operational and Administrative

Guidance along with all the documents referenced therein.

o Document SHA2-256 hash:

o 886F346A26998E9D11F1D8F0A6B537E466C944358A51A02D9B5956BC77F0D224

The administrator and user must follow the instructions in the Microsoft Windows, Windows Server, and

Azure Local GP OS Operational and Administrative Guidance to configure and remain in the evaluated

configuration.

1.5 Product Description
In addition to core operating system capabilities described in the previous section, Windows can also be

categorized as the following types of Information Assurance (IA) or IA-enabled IT products, these

capabilities leverage functionality included in this General Purpose OS evaluation as well as capabilities

which fall outside the scope of the GP OS PP:

• Windows is a Network Management and Desktop Management product to support security

infrastructure. Group Policy and mobile device management Configuration Service Providers,

which is part of the Windows TOE, provide the centralized network management in Windows

networks and desktops.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 18 of 251

• Windows is a Single Sign-On product (using password or certificate) for Windows networks to

defend the computing environment. Windows supports single sign on to the TOE.

• Windows is a Firewall product with the capability to filter network traffic based upon source and

destination addresses, ports, applications, user or machine identity, and protocols.

1.6 Conventions, Terminology, Acronyms
This section specifies the formatting information used in the security target.

1.6.1 Conventions

The following conventions have been applied in this document:

• Security Functional Requirements (SFRs): Part 2 of the CC defines the approved set of operations

that may be applied to functional requirements: iteration, assignment, selection, and

refinement.

o Iteration: allows a component to be used more than once with varying operations.

o Assignment: allows the specification of an identified parameter.

o Selection: allows the specification of one or more elements from a list.

o Refinement: allows the addition of details.

The conventions for the assignment, selection, refinement, and iteration operations are

described in Section 5.

• Other sections of the security target use a bold font to highlight text of special interest, such as

captions.

1.6.2 Terminology

The following terminology is used in the security target:

Term Definition

Access Interaction between an entity and an object that results in the flow or
modification of data.

Access control Security service that controls the use of resources2 and the disclosure and
modification of data3.

Accountability Tracing each activity in an IT system to the entity responsible for the
activity.

Active Directory Active Directory manages enterprise identities, credentials, information
protection, system and application settings through AD Domain Services,
Federation Services, Certificate Services and Lightweight Directory
Services.

Administrator An authorized user who has been specifically granted the authority to
manage some portion or the entire TOE and thus whose actions may affect
the TOE Security Policy (TSP). Administrators may possess special
privileges that provide capabilities to override portions of the TSP.

2 Hardware and software
3 Stored or communicated

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 19 of 251

Assurance A measure of confidence that the security features of an IT system are
sufficient to enforce the IT system’s security policy.

Attack An intentional act attempting to violate the security policy of an IT system.

Authentication A security measure that verifies a claimed identity.

Authentication data The information used to verify a claimed identity.

Authorization Permission, granted by an entity authorized to do so, to perform functions
and access data.

Authorized user An authenticated user who may, in accordance with the TOE Security
Policy, perform an operation.

Availability Timely4, reliable access to IT resources.

Compromise Violation of a security policy.

Confidentiality A security policy pertaining to disclosure of data.

Critical cryptographic
security parameters

Security-related information appearing in plaintext or otherwise
unprotected form and whose disclosure or modification can compromise
the security of a cryptographic module or the security of the information
protected by the module.

Cryptographic boundary An explicitly defined contiguous perimeter that establishes the physical
bounds (for hardware) or logical bounds (for software) of a cryptographic
module.

Cryptographic key (key) A parameter used in conjunction with a cryptographic algorithm that
determines:

• the transformation of plaintext data into ciphertext data

• the transformation of ciphertext data into plaintext data

• a digital signature computed from data

• the verification of a digital signature computed from data

• a data authentication code computed from data

Cryptographic module The set of hardware, software, and/or firmware that implements approved
security functions, including cryptographic algorithms and key generation,
which is contained within the cryptographic boundary.

Cryptographic module
security policy

A precise specification of the security rules under which a cryptographic
module must operate.

Defense-in-depth A security design strategy whereby layers of protection are utilized to
establish an adequate security posture for an IT system.

Discretionary Access
Control (DAC)

A means of restricting access to objects based on the identity of subjects
and groups to which the objects belong. The controls are discretionary
meaning that a subject with a certain access permission is capable of
passing that permission (perhaps indirectly) on to any other subject.

Edition A distinct variation of a Windows OS version. Examples of editions are
Windows 11 Pro and Windows 11 Enterprise.

Enclave A collection of entities under the control of a single authority and having a
homogeneous security policy. They may be logical or based on physical
location and proximity.

Entity A subject, object, user or external IT device.

4 According to a defined metric

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 20 of 251

General-Purpose
Operating System

A general-purpose operating system is designed to meet a variety of goals,
including protection between users and applications, fast response time
for interactive applications, high throughput for server applications, and
high overall resource utilization.

Identity A means of uniquely identifying an authorized user of the TOE.

Integrated Windows
authentication

An authentication protocol formerly known as NTLM or Windows NT
Challenge/Response.

Named object • An object that exhibits all of the following characteristics:

• The object may be used to transfer information between subjects
of differing user identities within the TOE Security Function (TSF).

• Subjects in the TOE must be able to request a specific instance of
the object.

• The name used to refer to a specific instance of the object must
exist in a context that potentially allows subjects with different
user identities to request the same instance of the object.

Object An entity under the control of the TOE that contains or receives
information and upon which subjects perform operations.

Operating environment The total environment in which a TOE operates. It includes the physical
facility and any physical, procedural, administrative and personnel
controls.

Persistent storage All types of data storage media that maintain data across system boots
(e.g., hard disk, removable media).

Public object An object for which the TSF unconditionally permits all entities “read”
access under the Discretionary Access Control SFP. Only the TSF or
authorized administrators may create, delete, or modify the public objects.

Resource A fundamental element in an IT system (e.g., processing time, disk space,
and memory) that may be used to create the abstractions of subjects and
objects.

SChannel A security package (SSP) that provides network authentication between
clients and servers.

Secure State Condition in which all TOE security policies are enforced.

Security attributes TSF data associated with subjects, objects and users that is used for the
enforcement of the TSP.

Security-enforcing A term used to indicate that the entity (e.g., module, interface, subsystem)
is related to the enforcement of the TOE security policies.

Security-supporting A term used to indicate that the entity (e.g., module, interface, subsystem)
is not security-enforcing; however, the entity’s implementation must still
preserve the security of the TSF.

Security context The security attributes or rules that are currently in effect. For SSPI, a
security context is an opaque data structure that contains security data
relevant to a connection, such as a session key or an indication of the
duration of the session.

Security package The software implementation of a security protocol. Security packages are
contained in security support provider libraries or security support
provider/authentication package libraries.

Security principal An entity recognized by the security system. Principals can include human
users as well as autonomous processes.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 21 of 251

Security Support
Provider (SSP)

A dynamic-link library that implements the SSPI by making one or more
security packages available to applications. Each security package provides
mappings between an application's SSPI function calls and an actual
security model’s function. Security packages support security protocols
such as Kerberos authentication and Integrated Windows Authentication.

Security Support
Provider Interface (SSPI)

A common interface between transport-level applications. SSPI allows a
transport application to call one of several security providers to obtain an
authenticated connection. These calls do not require extensive knowledge
of the security protocol's details.

Security Target (ST) A set of security requirements and specifications to be used as the basis for
evaluation of an identified TOE.

Subject An active entity within the TOE Scope of Control (TSC) that causes
operations to be performed. Subjects can come in two forms: trusted and
untrusted. Trusted subjects are exempt from part or all of the TOE security
policies. Untrusted subjects are bound by all TOE security policies.

Target of Evaluation
(TOE)

An IT product or system and its associated administrator and user guidance
documentation that is the subject of an evaluation.

Threat Capabilities, intentions and attack methods of adversaries, or any
circumstance or event, with the potential to violate the TOE security
policy.

Unauthorized individual A type of threat agent in which individuals who have not been granted
access to the TOE attempt to gain access to information or functions
provided by the TOE.

Unauthorized user A type of threat agent in which individuals who are registered and have
been explicitly granted access to the TOE may attempt to access
information or functions that they are not permitted to access.

Universal Unique
Identifier (UUID)

UUID is an identifier that is unique across both space and time, with
respect to the space of all UUIDs. A UUID can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably
identifying very persistent objects across a network.

User Any person who interacts with the TOE.

User Principal Name
(UPN)

An identifier used by Microsoft Active Directory that provides a user name
and the Internet domain with which that username is associated in an e-
mail address format. The format is [AD username]@[associated domain];
an example would be john.smith@microsoft.com.

Uniform Resource
Locator (URL)

The address that is used to locate a Web site. URLs are text strings that
must conform to the guidelines in RFC 2396.

Version A Version refers to a release level of the Windows operating system.
Windows 7 and Windows 8 are different versions.

Vulnerability A weakness that can be exploited to violate the TOE security policy.

1.6.3 Acronyms

The acronyms used in this security target are specified in Appendix A: List of Abbreviations.

1.7 ST Overview and Organization
This security target contains the following additional sections:

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 22 of 251

• CC Conformance Claims (Section 2): Formal conformance claims which are examined during the

evaluation.

• Security Problem Definition (Section 3): Describes the threats, organizational security policies

and assumptions that pertain to the TOE.

• Security Objectives (Section 4): Identifies the security objectives that are satisfied by the TOE

and the TOE operational environment.

• Security Requirements (Section 5): Presents the security functional and assurance requirements

met by the TOE.

• TOE Summary Specification (TSS) (Section 6): Describes the security functions provided by the

TOE to satisfy the security requirements and objectives.

• Protection Profile Conformance Claim (Section 7): Presents the rationale concerning compliance

of the ST with the Protection Profile for General Purpose Operating Systems, PP-Module for

WLAN Clients, PP-Module for Virtual Private Network (VPN) Clients, PP-Module for Bluetooth,

Functional Package for Transport Layer Security (TLS) and Assurance Package for Flaw

Remediation.

• Rationale for Modifications to the Security Requirements (Section 8): Presents the rationale for

the security objectives, requirements, and TOE Summary Specification as to their consistency,

completeness and suitability.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 23 of 251

2 CC Conformance Claims
This ST and the Windows 11 editions (TOEs) are consistent with the following specifications:

• Common Criteria for Information Technology Security Evaluation Part 2: Security functional

requirements, Version 3.1, Revision 5, April 2017, extended (Part 2 extended)

• Common Criteria for Information Technology Security Evaluation Part 3: Security assurance

requirements Version 3.1, Revision 5, April 2017, (Part 3 extended)

• Protection Profile for General Purpose Operating Systems, Version 4.3, September 27, 2022 (GP

OS PP)

• PP-Module for WLAN Clients, version 1.0, March 31, 2022 (“WLAN Client Module”)

• PP-Module for Virtual Private Network (VPN) Clients, version 2.4, March 31, 2022 (“VPN Client

Module”)

• PP-Module for Bluetooth, version 1.0, April 15, 2021 (“Bluetooth Module”)

• Functional Package for Transport Layer Security (TLS), version 2.0, December 19, 2022, (“TLS

Module”)

• Assurance Package for Flaw Remediation, version 1.0, June 28, 2024, (“ALC_FLR Module”)

This ST and the Windows Server editions and Azure Local product (TOEs) are consistent with the

following specifications:

• Common Criteria for Information Technology Security Evaluation Part 2: Security functional

requirements, Version 3.1, Revision 5, April 2017, extended (Part 2 extended)

• Common Criteria for Information Technology Security Evaluation Part 3: Security assurance

requirements Version 3.1, Revision 5, April 2017, (Part 3 conformant)

• Protection Profile for General Purpose Operating Systems, Version 4.3, September 27, 2022 (GP

OS PP)

• PP-Module for Virtual Private Network (VPN) Clients, version 2.4, March 31, 2022 (VPN Client

Module)

• PP-Module for Bluetooth, version 1.0, April 15, 2021 (“Bluetooth Module”)

• Functional Package for Transport Layer Security (TLS), version 2.0, December 19, 2022, (“TLS

Module”)

• Assurance Package for Flaw Remediation, version 1.0, June 28, 2024, (“ALC_FLR Module”)

The security functional requirements and assurance activities have been modified with the following

NIAP Technical Decisions:

• NIAP Technical Decision 952 for the GP OS PP

• NIAP Technical Decision 930 for the GP OS PP

• NIAP Technical Decision 914 for the GP OS PP

• NIAP Technical Decision 912 for the TLS Module

• NIAP Technical Decision 911 for the TLS Module

https://www.niap-ccevs.org/technical-decisions/TD0952
https://www.niap-ccevs.org/technical-decisions/TD0930
https://www.niap-ccevs.org/technical-decisions/TD0912
https://www.niap-ccevs.org/technical-decisions/TD0911

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 24 of 251

• NIAP Technical Decision 906 for the GP OS PP

• NIAP Technical Decision 904 for the GP OS PP (not applicable)

• NIAP Technical Decision 873 for the GP OS PP

• NIAP Technical Decision 844 for the GP OS PP

• NIAP Technical Decision 839 for the GP OS PP

• NIAP Technical Decision 837 for the WLAN Client Module

• NIAP Technical Decision 821 for the GP OS PP

• NIAP Technical Decision 812 for the GP OS PP

• NIAP Technical Decision 809 for the GP OS PP

• NIAP Technical Decision 797 for the WLAN Client Module

• NIAP Technical Decision 793 for the TLS Module

• NIAP Technical Decision 789 for the GP OS PP

• NIAP Technical Decision 788 for VPN Client Module is not applicable to the GP OS PP

• NIAP Technical Decision 773 for the GP OS PP

• NIAP Technical Decision 772 for the TLS Module (archived)

• NIAP Technical Decision 753 for VPN Client Module is not applicable to the GP OS PP

• NIAP Technical Decision 731 for the TLS Module

• NIAP Technical Decision 729 for the TLS Module

• NIAP Technical Decision 725 for the VPN Client Module

• NIAP Technical Decision 713 for the GP OS PP

• NIAP Technical Decision 712 for the GP OS PP

• NIAP Technical Decision 710 for the WLAN Client Module

• NIAP Technical Decision 707 for the Bluetooth Module

• NIAP Technical Decision 703 for the WLAN Client Module

• NIAP Technical Decision 701 for the GP OS PP

• NIAP Technical Decision 696 for the GP OS PP

• NIAP Technical Decision 693 for the GP OS PP

• NIAP Technical Decision 691 for the GP OS PP

• NIAP Technical Decision 690 for VPN Client Module

• NIAP Technical Decision 685 for the Bluetooth module

• NIAP Technical Decision 675 for the GP OS PP

• NIAP Technical Decision 667 for the WLAN Client Module

• NIAP Technical Decision 662 for the VPN Client Module

• NIAP Technical Decision 650 for the Bluetooth module

• NIAP Technical Decision 647 for the VPN Client Module

• NIAP Technical Decision 645 for the Bluetooth module

• NIAP Technical Decision 640 for the Bluetooth module

Evaluation Assurance: As specified in section 5.2.1 and specific Assurance Activities associated with the

security functional requirements from section 5.2.2.

https://www.niap-ccevs.org/technical-decisions/TD0906
https://www.niap-ccevs.org/technical-decisions/TD0904
https://www.niap-ccevs.org/technical-decisions/TD0873
https://www.niap-ccevs.org/technical-decisions/TD0844
https://www.niap-ccevs.org/technical-decisions/TD0839
https://www.niap-ccevs.org/technical-decisions/TD0837
https://www.niap-ccevs.org/technical-decisions/TD0821
https://www.niap-ccevs.org/technical-decisions/TD0812
https://www.niap-ccevs.org/technical-decisions/TD0809
https://www.niap-ccevs.org/technical-decisions/TD0797
https://www.niap-ccevs.org/technical-decisions/TD0793
https://www.niap-ccevs.org/technical-decisions/TD0789
https://www.niap-ccevs.org/technical-decisions/TD0788
https://www.niap-ccevs.org/technical-decisions/TD0773
https://www.niap-ccevs.org/technical-decisions/TD0772
https://www.niap-ccevs.org/technical-decisions/TD0753
https://www.niap-ccevs.org/technical-decisions/TD0731
https://www.niap-ccevs.org/technical-decisions/TD0729
https://www.niap-ccevs.org/documents_and_guidance/view_td.cfm?TD=0725
https://www.niap-ccevs.org/technical-decisions/TD0713
https://www.niap-ccevs.org/technical-decisions/TD0712
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0710
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0707
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0703
https://www.niap-ccevs.org/technical-decisions/TD0701
https://www.niap-ccevs.org/technical-decisions/TD0696
https://www.niap-ccevs.org/technical-decisions/TD0693
https://www.niap-ccevs.org/technical-decisions/TD0691
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0690
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0685
https://www.niap-ccevs.org/technical-decisions/TD0675
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0667
https://www.niap-ccevs.org/documents_and_guidance/view_td.cfm?TD=0662
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0650
https://www.niap-ccevs.org/documents_and_guidance/view_td.cfm?TD=0647
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0645
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0640

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 25 of 251

CC Identification: CC for Information Technology (IT) Security Evaluation, CC:2022, Revision 1, November

2022.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 26 of 251

3 Security Problem Definition
The security problem definition consists of the threats to security, organizational security policies, and

usage assumptions as they relate to Windows. The assumptions, threats, and policies are copied from

the Protection Profile for General Purpose Operating Systems, Version 4.3, September 27, 2022 (“GP OS

PP”), the PP-Module for WLAN Clients (“WLAN Client Module”), the PP-Module for Virtual Private

Network (VPN) Clients (“VPN Client Module”), and the PP-Module for Bluetooth (“Bluetooth Module”).

3.1 Threats to Security
Table 1 presents known or presumed threats to protected resources that are addressed by Windows

based on conformance to the General Purpose Operating Systems Protection Profile.

Table 1 GP OS PP Threats Addressed by Windows

Threat Description

T.NETWORK_ATTACK An attacker is positioned on a communications channel or
elsewhere on the network infrastructure. Attackers may engage in
communications with applications and services running on or part
of the OS with the intent of compromise. Engagement may consist
of altering existing legitimate communications.

T.NETWORK_EAVESDROP An attacker is positioned on a communications channel or
elsewhere on the network infrastructure. Attackers may monitor
and gain access to data exchanged between applications and
services that are running on or part of the OS.

T.LOCAL_ATTACK An attacker may compromise applications running on the OS. The
compromised application may provide maliciously formatted
input to the OS through a variety of channels including
unprivileged system calls and messaging via the file system.

T.LIMITED_PHYSICAL_ACCESS An attacker may attempt to access data on the OS while having a
limited amount of time with the physical device.

Table 2 presents known or presumed threats to protected resources that are addressed by Windows

based on conformance to the WLAN Client Module.

Table 2 WLAN Client Module Threats Addressed by Windows

Threat Description

T.TSF_FAILURE
(TSF Failure)

Security mechanisms of the TOE generally build up from a
primitive set of mechanisms (e.g., memory management,
privileged modes of process execution) to more complex sets of
mechanisms. Failure of the primitive mechanisms could lead to a
compromise in more complex mechanisms, resulting in a
compromise of the TSF.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 27 of 251

T.UNAUTHORIZED ACCESS
(Unauthorized Access)

A user may gain unauthorized access to the TOE data and TOE
executable code. A malicious user, process, or external IT entity
may masquerade as an authorized entity in order to gain
unauthorized access to data or TOE resources. A malicious user,
process, or external IT entity may misrepresent itself as the TOE to
obtain identification and authentication data.

T.UNDETECTED_ACTIONS
(Undetected Actions)

Malicious remote users or external IT entities may take actions
that adversely affect the security of the TOE. These actions may
remain undetected and thus their effects cannot be effectively
mitigated.

The following table presents known or presumed threats to protected resources that are addressed by

Windows based on conformance to the VPN Client Module.

Table 3 VPN Client Module Threats Addressed by Windows

Threat Description

T.UNAUTHORIZED_ACCESS This PP-Module does not include requirements that can protect
against an insider threat. Authorized users are not considered
hostile or malicious and are trusted to follow appropriate
guidance. Only authorized personnel should have access to the
system or device that contains the IPsec VPN client. Therefore, the
primary threat agents are the unauthorized entities that try to
gain access to the protected network (in cases where tunnel mode
is used) or to plaintext data that traverses the public network
(regardless of whether transport mode or tunnel mode is used).
The endpoint of the network communication can be both
geographically and logically distant from the TOE, and can pass
through a variety of other systems. These intermediate systems
may be under the control of the adversary, and offer an
opportunity for communications over the network to be
compromised.

Plaintext communication over the network may allow critical data
(such as passwords, configuration settings, and user data) to be
read or manipulated directly by a malicious user or process on
intermediate systems, leading to a compromise of the TOE or to
the secured environmental systems that the TOE is being used to
facilitate communications with. IPsec can be used to provide
protection for this communication; however, there are numerous
options that can be implemented for the protocol to be compliant
to the protocol specification listed in the RFC. Some of these
options can have negative impacts on the security of the
connection. For instance, using a weak encryption algorithm (even

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 28 of 251

one that is allowed by the RFC, such as DES) can allow an
adversary to read and even manipulate the data on the encrypted
channel, thus circumventing countermeasures in place to prevent
such attacks. Further, if the protocol is implemented with little-
used or non-standard options, it may be compliant with the
protocol specification but will not be able to interact with other
diverse equipment that is typically found in large enterprises.

Even though the communication path is protected, there is a
possibility that the IPsec peer could be tricked into thinking that a
malicious third-party user or system is the TOE. For instance, a
middleman could intercept a connection request to the TOE, and
respond to the request as if it were the TOE. In a similar manner,
the TOE could also be tricked into thinking that it is establishing
communications with a legitimate IPsec peer when in fact it is not.

An attacker could also mount a malicious man-in-the-middle type
of attack, in which an intermediate system is compromised, and
the traffic is proxied, examined, and modified by this system. This
attack can even be mounted via encrypted communication
channels if appropriate countermeasures are not applied. These
attacks are, in part, enabled by a malicious attacker capturing
network traffic (for instance, an authentication session) and
“playing back” that traffic in order to fool an endpoint into
thinking it was communicating with a legitimate remote entity.

T.TSF_CONFIGURATION Configuring VPN tunnels is a complex and time-consuming
process, and prone to errors if the interface for doing so is not
well-specified or well-behaved. The inability or failure of an
ignorant or careless administrator to configure certain aspects of
the interface may also lead to the mis-specification of the desired
communications policy or use of cryptography that may be desired
or required for a particular site. This may result in unintended
weak or plaintext communications while the user thinks that their
data are being protected. Other aspects of configuring the TOE or
using its security mechanisms (for example, the update process)
may also result in a reduction in the trustworthiness of the VPN
client.

T.USER_DATA_REUSE Data traversing the TOE could inadvertently be sent to a different
user as a consequence of a poorly designed TOE; since these data
may be sensitive, this may cause a compromise that is
unacceptable. The specific threat that must be addressed
concerns user data that is retained by the TOE in the course of
processing network traffic that could be inadvertently re-used in
sending network traffic to a user other than that intended by the
sender of the original network traffic.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 29 of 251

T.TSF_FAILURE Security mechanisms of the TOE generally build up from a
primitive set of mechanisms (e.g., memory management,
privileged modes of process execution) to more complex sets of
mechanisms. Failure of the primitive mechanisms could lead to a
compromise in more complex mechanisms, resulting in a
compromise of the TSF.

Table 4 Bluetooth Module Threats Addressed by Windows

Threat Description

N.A. This PP-Module defines no additional threats beyond those
defined in GP OS PP.

3.2 Organizational Security Policies
An organizational security policy is a set of rules or procedures imposed by an organization upon its

operations to protect its sensitive data and IT assets. Table 5 describes organizational security policies

which are necessary for conformance to the protection profile.

Table 5 Organizational Security Policies

Security Policy Description

N.A. There are no Organizational Security Policies for the protection
profile or the protection profile modules.

3.3 Secure Usage Assumptions
Table 6 describes the core security aspects of the environment in which Windows is intended to be

used. It includes information about the physical, personnel, procedural, and connectivity aspects of the

environment.

The following specific conditions are assumed to exist in an environment where the TOE is employed in

order to conform to the protection profile:

Table 6 GP OS PP Secure Usage Assumptions

Assumption Description

A.PLATFORM The OS relies upon a trustworthy computing platform for its execution. This
underlying platform is out of scope of this PP.

A.PROPER_USER The user of the OS is not willfully negligent or hostile, and uses the software in
compliance with the applied enterprise security policy. At the same time,
malicious software could act as the user, so requirements which confine
malicious subjects are still in scope.

A.PROPER_ADMIN The administrator of the OS is not careless, willfully negligent or hostile, and
administers the OS within compliance of the applied enterprise security policy.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 30 of 251

Table 7 WLAN Client Module Secure Usage Assumptions

Assumption Description

A.NO_TOE_BYPASS Information cannot flow between the wireless client and the internal wired
network without passing through the TOE.

A.TRUSTED_ADMIN TOE Administrators are trusted to follow and apply all administrator guidance in a
trusted manner.

Table 8 VPN Client Module Secure Usage Assumptions

Assumption Description

A.NO_TOE_BYPASS Information cannot flow onto the network to which the VPN client's host is
connected without passing through the TOE.

A.PHYSICAL Physical security, commensurate with the value of the TOE and the data it
contains, is assumed to be provided by the environment.

A.TRUSTED_CONFIG Personnel configuring the TOE and its operational environment will follow the
applicable security configuration guidance.

Table 9 Bluetooth Module Secure Usage Assumptions

Assumption Description

N/A The Bluetooth Module does not define any additional assumptions.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 31 of 251

4 Security Objectives
This section defines the security objectives for Windows and its supporting environment. Security

objectives, categorized as either TOE security objectives or objectives by the supporting environment,

reflect the stated intent to counter identified threats, comply with any organizational security policies

identified, or address identified assumptions. All of the identified threats, organizational policies, and

assumptions are addressed under one of the categories below.

4.1 TOE Security Objectives
Table 10 describes the security objectives for Windows which are needed to comply with the GP OS PP.

Table 10 GP OS PP Security Objectives for the TOE

Security Objective Source

O.ACCOUNTABILITY Conformant OSes ensure that information exists that allows
administrators to discover unintentional issues with the
configuration and operation of the operating system and discover
its cause. Gathering event information and immediately
transmitting it to another system can also enable incident
response in the event of system compromise.

O.INTEGRITY Conformant OSes ensure the integrity of their update packages.
OSes are seldom if ever shipped without errors, and the ability to
deploy patches and updates with integrity is critical to enterprise
network security. Conformant OSes provide execution
environment-based mitigations that increase the cost to
attackers by adding complexity to the task of compromising
systems.

O.MANAGEMENT To facilitate management by users and the enterprise,
conformant OSes provide consistent and supported interfaces for
their security-relevant configuration and maintenance. This
includes the deployment of applications and application updates
through the use of platform-supported deployment mechanisms
and formats, as well as providing mechanisms for configuration
and application execution control.

O.PROTECTED_STORAGE To address the issue of loss of confidentiality of credentials in the
event of loss of physical control of the storage medium,
conformant OSes provide data-at-rest protection for credentials.
Conformant OSes also provide access controls which allow users
to keep their files private from other users of the same system.

O.PROTECTED_COMMS To address both passive (eavesdropping) and active (packet
modification) network attack threats, conformant OSes provide
mechanisms to create trusted channels for CSP and sensitive
data. Both CSP and sensitive data should not be exposed outside
of the platform.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 32 of 251

Table 11 and Table 12 describe the security objectives for Windows which are needed to comply with

the PP-Module for WLAN Clients and the PP-Module for Virtual Private Network (VPN) Clients

respectively.

Table 11 WLAN Client Module Security Objectives for the TOE

Security Objective Source

O.AUTH_COMM
(Authorized Communication)

The TOE will provide a means to ensure that it is
communicating with an authorized access point and not
some other entity pretending to be an authorized access
point, and will provide assurance to the access point of its
identity.

O.CRYPTOGRAPHIC_FUNCTIONS
(Cryptographic Functions)

The TOE will provide or use cryptographic functions (i.e.,
encryption/decryption and digital signature operations) to
maintain the confidentiality and allow for detection of
modification of data that are transmitted outside the TOE
and its host environment.

O.TSF_SELF_TEST
(TSF Self Test)

The TOE will provide the capability to test some subset of
its security functionality to ensure it is operating properly.

O.SYSTEM_MONITORING (System
Monitoring)

The TOE will provide the capability to generate audit data.

O.TOE_ADMINISTRATION
(TOE Administration)

The TOE will provide mechanisms to allow administrators
to be able to configure the TOE.

O.WIRELESS_ACCESS_POINT_CONNECTION
Wireless Access Point Connection

The TOE will provide the capability to restrict the wireless
access points to which it will connect.

Table 12 VPN Client Module Security Objectives for the TOE

Security Objective Source

O.AUTHENTICATION To address the issues associated with unauthorized
disclosure of information in transit, a compliant TOE’s
authentication ability (IPsec) will allow the TSF to
establish VPN connectivity with a remote VPN gateway or
peer and ensure that any such connection attempt is both
authenticated and authorized.

O.CRYPTOGRAPHIC_FUNCTIONS To address the issues associated with unauthorized
disclosure of information in transit, a compliant TOE
will implement cryptographic capabilities. These
capabilities are intended to maintain confidentiality and
allow for detection and modification of data that is
transmitted outside of the TOE.

O.KNOWN_STATE The TOE will provide sufficient measures to ensure it is
operating in a known state. At minimum this

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 33 of 251

includes management functionality to allow the security
functionality to be configured and self-test
functionality that allows it to assert its own integrity. It
may also include auditing functionality that can
be used to determine the operational behavior of the
TOE.

O.NONDISCLOSURE To address the issues associated with unauthorized
disclosure of information at rest, a compliant TOE
will ensure that non-persistent data is purged when no
longer needed. The TSF may also implement
measures to protect against the disclosure of stored
cryptographic keys and data through
implementation of protected storage and secure erasure
methods. The TOE may optionally also enforce
split-tunneling prevention to ensure that data in transit
cannot be disclosed inadvertently outside of the
IPsec tunnel and prohibit transmission of packets through
a connection until certain conditions are met.

The PP-Module for Bluetooth does not define any additional security objectives, instead it builds on the

security objectives from the Protection Profile for General Purpose Operating Systems.

4.2 Security Objectives for the Operational Environment
The TOE is assumed to be complete and self-contained and, as such, is not dependent upon any other

products to perform properly. However, certain objectives with respect to the general operating

environment must be met. Table 13 describes the security objectives for the operational environment

as specified in the protection profile.

Table 13 GP OS PP Security Objectives for the Operational Environment

Environment Objective Description

OE.PLATFORM The OS relies on being installed on trusted hardware.

OE.PROPER_USER The user of the OS is not willfully negligent or hostile, and uses the
software within compliance of the applied enterprise security policy.
Standard user accounts are provisioned in accordance with the least
privilege model. Users requiring higher levels of access should have a
separate account dedicated for that use.

OE.PROPER_ADMIN The administrator of the OS is not careless, willfully negligent or
hostile, and administers the OS within compliance of the applied
enterprise policy.

Table 14 WLAN Client Module Security Objectives for the Operational Environment

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 34 of 251

Environment Objective Description

OE.NO_TOE_BYPASS Information cannot flow between external and internal networks
located in different enclaves without passing through the TOE.

OE.TRUSTED_ADMIN TOE Administrators are trusted to follow and apply all administrator
guidance in a trusted manner.

Table 15 VPN Client Module Security Objectives for the Operational Environment

Environment Objective Description

OE.NO_TOE_BYPASS Information cannot flow onto the network to which the VPN client's
host is connected without passing through the TOE.

OE.PHYSICAL Physical security, commensurate with the value of the TOE and the
data it contains, is assumed to be provided by the environment.

OE.TRUSTED_CONFIG Personnel configuring the TOE and its operational environment will
follow the applicable security configuration guidance.

The PP-Module for Bluetooth does not define any additional security objectives for the operational

environment, instead it builds on the security objectives for the operational environment from the

Protection Profile for General Purpose Operating Systems.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 35 of 251

5 Security Requirements
The section defines the Security Functional Requirements (SFRs) and Security Assurance Requirements

(SARs) for the TOE. The requirements in this section have been drawn from the Protection Profile for

General Purpose Operating Systems, Version 4.3, September 27, 2022 (“GP OS PP”); the PP-Module for

WLAN Clients, version 1.0, March 31, 2022 (“WLAN Client Module”); the PP-Module for Virtual Private

Network (VPN) Clients, version 2.4, March 31, 2022, (“VPN Client Module”); the PP-Module for

Bluetooth, version 1.0, April 15, 2021, (“Bluetooth Module”); the Functional Package for Transport Layer

Security (TLS), version 2.0, December 19, 2022, (“TLS Module”); the Assurance Package for Flaw

Remediation, version 1.0, June 28, 2024, (“ALC_FLR Module”); the Common Criteria, or are defined in

the following section.

Conventions:

Where requirements are drawn from the protection profile, the requirements are copied verbatim,

except for some changes to required identifiers to match the iteration convention of this document,

from that protection profile and only operations performed in this security target are identified.

The extended requirements, extended component definitions and extended requirement conventions in

this security target are drawn from the protection profile; the security target reuses the conventions

from the protection profile which include the use of the word “Extended” and the “_EXT” identifier to

denote extended functional requirements. The security target assumes that the protection profile

correctly defines the extended components and so they are not reproduced in the security target.

Where applicable the following conventions are used to identify operations:

• Iteration: Iterated requirements (components and elements) are identified with letter following

the base component identifier. For example, iterations of FMT_MOF.1 are identified in a

manner similar to FMT_MOF.1(Audit) (for the component) and FCS_COP.1.1(Audit) (for the

elements).

• Assignment: Assignments are identified in brackets and bold (e.g., [assigned value]).

• Selection: Selections are identified in brackets, bold, and italics (e.g., [selected value]).

o Assignments within selections are identified using the previous conventions, except that

the assigned value would also be italicized and extra brackets would occur (e.g.,

[selected value [assigned value]]).

• Refinement: Refinements are identified using bold text (e.g., added text) for additions and

strike-through text (e.g., deleted text) for deletions.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 36 of 251

5.1 TOE Security Functional Requirements
This section specifies the SFRs for the TOE.

Table 16 TOE Security Functional Requirements for GP OS PP

Requirement Class Requirement Component

Security Audit (FAU) Audit Data Generation (FAU_GEN.1)

Cryptographic
Support (FCS)

Cryptographic Key Generation for (FCS_CKM.1)

Cryptographic Key Establishment (FCS_CKM.2)

Cryptographic Key Destruction (FCS_CKM_EXT.4)

Cryptographic Operation for Data Encryption/Decryption
(FCS_COP.1/ENCRYPT)

Cryptographic Operation for Hashing (FCS_COP.1/HASH)

Cryptographic Operation for Signing (FCS_COP.1/SIGN)

Cryptographic Operation for Keyed Hash Algorithms (FCS_COP.1/KEYHMAC)

Random Bit Generation (FCS_RBG_EXT.1)

Storage of Sensitive Data (FCS_STO_EXT.1)

User Data Protection
(FDP)

Access Controls for Protecting User Data (FDP_ACF_EXT.1)

Information Flow Control (FDP_IFC_EXT.1)

Identification &
Authentication (FIA)

Authorization Failure Handling (FIA_AFL.1)

Multiple Authentication Mechanisms (FIA_UAU.5)

X.509 Certification Validation (FIA_X509_EXT.1)

X.509 Certificate Authentication (FIA_X509_EXT.2)

Security
Management (FMT)

Management of Security Functions Behavior (FMT_MOF_EXT.1)

Specification of Management Functions for OS (FMT_SMF_EXT.1)

Protection of the TSF
(FPT)

Access Controls (FPT_ACF_EXT.1)

Address Space Layout Randomization (FPT_ASLR_EXT.1)

Limitation of Bluetooth Profile Support (FPT_BLT_EXT.1)

Buffer Overflow Protection (FPT_SBOP_EXT.1)

Software Restriction Policies (FPT_SRP_EXT.1)

Boot Integrity (FPT_TST_EXT.1)

Trusted Update (FPT_TUD_EXT.1)

Trusted Update for Application Software (FPT_TUD_EXT.2)

TOE Access (FTA) Default TOE Access Banners (FTA_TAB.1)

Trusted
Path/Channels (FTP)

Trusted Path (FTP_TRP.1)

Trusted Channel Communication (FTP_ITC_EXT.1)

Table 17 TOE Security Functional Requirements for WLAN Client Module

Requirement Class Requirement Component

Security Audit (FAU) Audit Data Generation for Wireless LAN (FAU_GEN.1 (WLAN))

Cryptographic
Support (FCS)

Cryptographic Key Generation for Symmetric Keys for
WPA2/WPA3Connections (FCS_CKM.1(WPA))

Cryptographic Key Distribution for Symmetric Keys for
WPA2/WPA3Connections (FCS_CKM.2(WLAN))

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 37 of 251

Extensible Authentication Protocol-Transport Layer Security
(FCS_TLSC_EXT.1(WLAN))

TLS Client Support for Supported Groups Extension (EAP-TLS for WLAN)
(FCS_TLSC_EXT.2(WLAN))

Supported WPA Versions (FCS_WPA_EXT.1)

Identification &
Authentication (FIA)

Port Access Entity Authentication (FIA_PAE_EXT.1)

X.509 Certificate Validation (FIA_X509_EXT.1(WLAN))

X.509 Certificate Authentication EAP-TLS for WLAN (FIA_X509_EXT.2(WLAN))

Certificate Storage and Management (FIA_X509_EXT.6)

Security
Management (FMT)

Specification of Management Functions for Wi-Fi (FMT_SMF.1(WLAN))

Protection of the TSF
(FPT)

TSF Cryptographic Functionality Testing (FPT_TST_EXT.3 (WLAN))

TOE Access (FTA) Wireless Network Access (FTA_WSE_EXT.1)

Trusted
Path/Channels (FTP)

Trusted Channel Communication (FTP_ITC_EXT.1 (WLAN))

Table 18 TOE Security Functional Requirements for VPN Client Module

Requirement Class Requirement Component

Security Audit (FAU) Audit Data Generation (FAU_GEN.1(VPN))

Selective Audit (FAU_SEL.1)

Cryptographic
Support (FCS)

Cryptographic Key Generation (FCS_CKM.1 (VPN))

Cryptographic Key Storage (FCS_CKM_EXT.2)

EAP-TLS (FCS_EAP_EXT.1)

IPsec (FCS_IPSEC_EXT.1)

User Data Protection
(FDP)

Split Tunnel Prevention (FDP_VPN_EXT.1)

Full Residual Information Protection (FDP_RIP.2)

Identification &
Authentication (FIA)

Pre-Shared Key Composition (FIA_PSK_EXT.1)

Generated Pre-Shared Keys (FIA_PSK_EXT.2)

X.509 Certificate Use and Management (FIA_X509_EXT.3)

Security
Management (FMT)

Specification of Management Functions for VPN (FMT_SMF.1(VPN))

Protection of the TSF
(FPT)

Self-Test for IPsec (FPT_TST_EXT.1 (VPN))

Trusted
Path/Channels (FTP)

Inter-TSF Trusted Channel (FTP_ITC.1(VPN))

Table 19 TOE Security Functional Requirements for PP-Module for Bluetooth

Requirement Class Requirement Component

Security Audit (FAU) Audit Data Generation (FAU_GEN.1(BT))

Cryptographic
Support (FCS)

Bluetooth Key Generation (FCS_CKM_EXT.8)

Identification &
Authentication (FIA)

Bluetooth User Authorization (FIA_BLT_EXT.1)

Bluetooth Mutual Authentication (FIA_BLT_EXT.2)

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 38 of 251

Rejection of Duplicate Bluetooth Connections (FIA_BLT_EXT.3)

Secure Simple Pairing (FIA_BLT_EXT.4)

 Trusted Bluetooth Device User Authorization (FIA_BLT_EXT.6)

Untrusted Bluetooth Device User Authorization (FIA_BLT_EXT.7)

Security
Management (FMT)

Management of Security Functions Behavior for Bluetooth
(FMT_MOF_EXT.1(BT))

Specification of Management Functions for VPN (FMT_SMF_EXT.1(BT))

Trusted
Path/Channels (FTP)

Bluetooth Encryption (FTP_BLT_EXT.1)

Persistence of Bluetooth Encryption (FTP_BLT_EXT.2)

Bluetooth Encryption Parameters (BR/EDR) (FTP_BLT_EXT.3(BR))

Bluetooth Encryption Parameters (LE) (FTP_BLT_EXT.3(LE))

Table 20 TOE Security Functional Requirements for Functional Package for Transport Layer Security
(TLS)

Requirement Class Requirement Component

Cryptographic
Support (FCS)

TLS Protocol (FCS_TLS_EXT.1)

TLS Client Protocol (FCS_TLSC_EXT.1)

TLS Client Support for Mutual Authentication (FCS_TLSC_EXT.2)

TLS Client Support Downgrade Protection (FCS_TLSC_EXT.3)

TLS Client Support for Renegotiation (FCS_TLSC_EXT.4)

TLS Client Support for Session Resumption (FCS_TLSC_EXT.5)

TLS Client 1.3 Resumption Refinements (FCS_TLSC_EXT.6)

TLS Server Protocol (FCS_TLSS_EXT.1)

TLS Server Support for Mutual Authentication (FCS_TLSS_EXT.2)

TLS Server Support Downgrade Protection (FCS_TLSS_EXT.3)

TLS Server Support for Session Resumption (FCS_TLSS_EXT.5)

TLS Server TLS 1.3 Resumption Refinements (FCS_TLSS_EXT.6)

DTLS Client Protocol (FCS_DTLSC_EXT.1)

DTLS Client Support for Mutual Authentication (FCS_DTLSC_EXT.2)

DTLS Client Downgrade Protection (FCS_DTLSC_EXT.3)

[D]TLS Client Support for Renegotiation (FCS_DTLSC_EXT.4)

DTLS Client Support for Session Resumption (FCS_DTLSC_EXT.5)

DTLS Server Protocol (FCS_DTLSS_EXT.1)

DTLS Server Support for Mutual Authentication (FCS_DTLSS_EXT.2)

DTLS Server Downgrade Protection (FCS_DTLSS_EXT.3)

DTLS Server Support for Session Resumption (FCS_DTLSS_EXT.5)

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 39 of 251

5.1.1 Security Audit (FAU)

5.1.1.1 Security Audit for GP OS PP

5.1.1.1.1 Audit Data Generation (FAU_GEN.1)

FAU_GEN.1.1 The OS shall be able to generate an audit record of the following auditable
events:

a. Start-up and shutdown of the audit functions;
b. All auditable events for the not specified level of audit; and
c.

o Authentication events (Success/Failure);
o Use of privileged/special rights events (Successful and

unsuccessful security, audit, and configuration changes);
o Privilege or role escalation events (Success/Failure);

[
o File and object events (Successful and

unsuccessful attempts to create, access, delete,
modify, modify permissions),

o User and Group management events (Successful and
unsuccessful add, delete, modify, disable, enable, and
credential change)

o Audit and log data access events (Success/Failure)
o Cryptographic verification of software (Success/Failure)
o Attempted application invocation with arguments

(Success/Failure e.g. due to software restriction policy)
o System reboot, restart, and shutdown events

(Success/Failure)
o Kernel module loading and unloading events

(Success/Failure)
o Administrator or root-level access events (Success/Failure)
o [Lock and unlock a user account, audit events from the WLAN

Client module listed in Error! Reference source not found.].
]

FAU_GEN.1.2 The OS shall record within each audit record at least the following
information:

a. Date and time of the event, type of event, subject identity (if
applicable), and outcome (success or failure) of the event; and

b. For each audit event type, based on the auditable event definitions of
the functional components included in the PP/ST [none].

5.1.1.2 Security Audit for WLAN Client Module

5.1.1.2.1 Audit Data Generation for Wireless LAN (FAU_GEN.1(WLAN))

Application Note: FAU_GEN.1(WLAN) corresponds to FAU_GEN.1/WLAN in the WLAN Client module.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 40 of 251

FAU_GEN.1.1(WLAN) The TSF shall [implement functionality] to generate an audit record of the
following auditable events:
a) Start-up and shutdown of the audit functions;
b) All auditable events for the not specified level of audit; and
c) all auditable events for mandatory SFRs specified in Table 20 and selected
SFRs in Table 20 5.

FAU_GEN.1.2(WLAN) The [TSF] shall record within each audit record at least the following
information:
a) Date and time of the event, type of event, subject identity, (if relevant)

the outcome (success or failure) of the event; and
b) For each audit event type, based on the auditable event definitions of

the functional components included in the PP-Module/ST Additional
Audit Record Contents as specified in Table 20 and Table 20 5.

Table 21 WLAN Client Module Audit Events

Requirement Auditable Events Additional Audit Record
Contents

FAU_GEN.1/WLAN No events specified. N/A

FCS_CKM.1/WPA No events specified N/A

FCS_CKM.2/WLAN No events specified N/A

FCS_TLSC_EXT.1/WLAN Failure to establish an EAP-TLS
session.

Establishment/termination of
an EAP-TLS session.

Reason for failure.

Non-TOE endpoint of
connection.

FCS_TLSC_EXT.2/WLAN No events specified N/A

FCS_WPA_EXT.1 No events specified N/A

FIA_PAE_EXT.1 No events specified N/A

FIA_X509_EXT.1/WLAN Failure to validate X.509v3
certificate

Reason for failure of validation.

FIA_X509_EXT.2/WLAN None.

FIA_X509_EXT.6 Attempts to load certificates.

Attempts to revoke certificates.

None.

FMT_SMF_EXT.1/WLAN No events specified N/A

FPT_TST_EXT.3/WLAN Execution of this set of TSF self-
tests.

[Detected integrity violation].

[The TSF binary file that caused
the integrity violation].

FTA_WSE_EXT.1 All attempts to connect to
access points.

For each access point record the
[Complete SSID and MAC,
Certificate Check
Message and the last [: integer
greater
than or equal to 2] octets] of
the MAC Address

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 41 of 251

Success and failures (including
reason for failure).

FTP_ITC_EXT.1/WLAN All attempts to establish a
trusted channel.

Identification of the non-TOE
endpoint of the channel.

5.1.1.3 Security Audit for VPN Client Module

5.1.1.3.1 Audit Data Generation (FAU_GEN.1(VPN))

Application Note: FAU_GEN.1(VPN) corresponds to FAU_GEN.1 in the VPN Client module.

FAU_GEN.1.1(VPN) The TSF and [no other component] shall be able to generate an audit record of
the following auditable events:
a) Start-up and shutdown of the audit functions;
b) All auditable events for the not specified level of audit; and
c) All administrative actions;
d) Specifically defined auditable events listed in Table 21 C-1.

FAU_GEN.1.2(VPN) The TSF and [no other component] shall record within each audit record at
least the following information:
c) Date and time of the event, type of event, subject identity, and the

outcome (success or failure) of the event; and
d) For each audit event type, based on the auditable event definitions of the

functional components included in the PP-Module/ST, information
specified in column three of Table 21 C-1.

Table 22 VPN Client Module Audit Events

Requirement Auditable Events Additional Audit Record
Contents

FAU_GEN.1(VPN) No events specified N/A

FAU_SEL.1 All modifications to the audit
configuration that occur while
the audit collection functions
are operating.

None.

FCS_CKM.1(VPN) No events specified. N/A

FCS_IPSEC_EXT.1 Decisions to DISCARD or BYPASS
network packets processed by
the TOE.

Presumed identity of source
subject.

The entry in the SPD that
applied to the decision.

FCS_IPSEC_EXT.1 Failure to establish an IPsec SA. Identity of destination subject.
Reason for failure.

FCS_IPSEC_EXT.1 Establishment/Termination of
an IPsec SA.

Identity of destination subject.
Transport layer protocol, if
applicable.
Source subject service
identifier, if applicable.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 42 of 251

Non-TOE endpoint of
connection (IP address) for both
successes and failures.

FDP_RIP.2 No events specified. N/A

FMT_SMF.1(VPN) Success or failure of
management function.

No additional information.

FPT_TST_EXT.1(VPN) No events specified. N/A

5.1.1.3.2 Selective Audit (FAU_SEL.1)

FAU_SEL.1.1 The [TSF] shall be able to select the set of events to be audited from the set of
all auditable events based on the following attributes:
event type, success of auditable security events, failure of auditable security
events, [subject or user identity].

5.1.1.4 Security Audit for Bluetooth Module

5.1.1.4.1 Audit Data Generation (FAU_GEN.1(BT))5

Application Note: FAU_GEN.1(BT) corresponds to FAU_GEN.1/BT in the Bluetooth Module.

FAU_GEN.1.1(BT) The TSF shall be able to generate an audit record of the following auditable
events:
a. Start-up and shutdown of the audit functions
b. All auditable events for the not selected level of audit
c. Specifically defined auditable events in the Auditable Events table.

Table 22 Auditable Events

Table 23 Bluetooth Module Audit Events

Requirement Auditable Events Additional Audit
Record Contents

FCS_CKM_EXT.8 None.

FIA_BLT_EXT.1 Failed user
authorization of
Bluetooth device.

User authorization
decision (e.g., user
rejected connection,
incorrect pin entry).

[complete] BD_ADDR
and [name of device].

Bluetooth profile.
Identity of local service
with [service ID].

Bluetooth address and
name of device.
Bluetooth profile.

Failed user
authorization for local
Bluetooth Service.

5 This PP-module requirement was replaced as part of NIAP Technical Decision 645 and 707.

https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0645
https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0707

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 43 of 251

Identity of local service
with [service ID].

FIA_BLT_EXT.2 Initiation of Bluetooth
connection.

[complete] BD_ADDR
and [name of device].

Reason for failure.

Failure of Bluetooth
connection.

FIA_BLT_EXT.3 Duplicate connection
attempt.

[complete] BD_ADDR
and [name of device].

FIA_BLT_EXT.4 None.

FIA_BLT_EXT.5 None.

FIA_BLT_EXT.6 None.

FIA_BLT_EXT.7 None.

FTP_BLT_EXT.1 None.

FTP_BLT_EXT.2 None.

FTP_BLT_EXT.3(BR) None.

FTP_BLT_EXT.3(LE) None.

FAU_GEN.1.2(BT) The TSF shall record within each audit record at least the following
information:

a. Date and time of the event
b. Type of event
c. Subject identity
d. The outcome (success or failure) of the event
e. For each audit event type, based on the auditable event definitions of

the functional components included in the PP/ST
f. Additional information in the Auditable Events table.

5.1.1.5 Security Audit for TLS Functional Package

5.1.1.5.1 Audit Data Generation for TLS Functional Package6

Table 24 TLS Module Audit Events

Requirement7 Auditable Events Additional Audit Record
Contents

FCS_TLS_EXT.1 No events specified N/A

FCS_DTLSC_EXT.1 [Establishment/termination of
a DTLS session]

[Non-TOE endpoint of
connection.]

[Failure to establish a DTLS
session]

[Reason for failure.]

[Failure to verify presented
identifier]

[Presented identifier and
reference identifier.]

FCS_DTLSC_EXT.2 No events specified N/A

FCS_DTLSC_EXT.3 No events specified N/A

6 This Functional Package requirement was replaced as part of NIAP Technical Decision 912.

https://www.niap-ccevs.org/technical-decisions/TD0912

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 44 of 251

FCS_DTLSC_EXT.4 No events specified N/A

FCS_DTLSC_EXT.5 No events specified N/A

FCS_DTLSC_EXT.6 No events specified N/A

FCS_DTLSS_EXT.1 [Failure to establish a DTLS
session]

[Reason for failure.]

FCS_DTLSS_EXT.2 No events specified N/A

FCS_DTLSS_EXT.3 No events specified N/A

FCS_DTLSS_EXT.5 No events specified N/A

FCS_DTLSS_EXT.6 No events specified N/A

FCS_TLSC_EXT.1 [Failure to establish a TLS
session]

[Reason for failure.]

[Failure to verify presented
identifier]

[Presented identifier and
reference identifier.]

[Establishment/termination of
a TLS session]

[Non-TOE endpoint of
connection.]

FCS_TLSC_EXT.2 No events specified N/A

FCS_TLSC_EXT.3 No events specified N/A

FCS_TLSC_EXT.4 No events specified N/A

FCS_TLSC_EXT.5 No events specified N/A

FCS_TLSC_EXT.6 No events specified N/A

FCS_TLSS_EXT.1 [Failure to establish a TLS
session]

[Reason for failure.]

FCS_TLSS_EXT.2 No events specified N/A

FCS_TLSS_EXT.3 No events specified N/A

FCS_TLSS_EXT.5 No events specified N/A

FCS_TLSS_EXT.6 No events specified N/A

5.1.2 Cryptographic Support (FCS)

5.1.2.1 Cryptographic Support for GP OS PP

5.1.2.1.1 Cryptographic Key Generation (FCS_CKM.1)

FCS_CKM.1.18 The OS shall generate asymmetric cryptographic keys in accordance
with a specified cryptographic key generation algorithm

[

• RSA schemes using cryptographic key sizes of 3072­bit or
greater that meet the following: FIPS PUB 186-5, “Digital Signature
Standard (DSS)”, Appendix A.1

• ECC schemes using “NIST curves” P-384 and [-521] that meet the
following: FIPS PUB 186-5, “Digital Signature Standard (DSS),
Appendix A.2

8 This protection profile requirement was modified as part of NIAP Technical Decision 712, 873 and 952.

https://www.niap-ccevs.org/technical-decisions/TD0712
https://www.niap-ccevs.org/technical-decisions/TD0873
https://www.niap-ccevs.org/technical-decisions/TD0952

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 45 of 251

• FFC schemes using [cryptographic key sizes of 3072-bit or greater
that meet the following: FIPS PUB 186-5, “Digital Signature Standard
(DSS)”, Appendix B.1, safe primes that meet the following: ‘NIST
Special Publication 800-56A Revision 3, “Recommendation for Pair-
Wise Key Establishment Schemes]

• FFC Schemes using Diffie-Hellman group 14 that meet the following:
RFC 3526

].

5.1.2.1.2 Cryptographic Key Establishment (FCS_CKM.2)

FCS_CKM.2.1 The OS shall implement functionality to perform cryptographic key
establishment in accordance with a specified cryptographic key establishment
method: [

• RSA-based key establishment schemes that meets the following:
RSAESPKCS1-v1_5 as specified in Section 7.2 of RFC 8017, “Public-Key
Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.2,

• Elliptic curve-based key establishment schemes that meets the
following: NIST Special Publication 800-56A Revision 3,
“Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography”

• Finite field-based key establishment schemes that meets the
following: NIST Special Publication 800-56A Revision 3,
“Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography”,

• Key establishment scheme using Diffie-Hellman group 14 that meets
the following: RFC 3526

].

5.1.2.1.3 Cryptographic Key Destruction (FCS_CKM_EXT.4)

FCS_CKM_EXT.4.1 The OS shall destroy cryptographic keys and key material in accordance with a
specified cryptographic key destruction method [

• For volatile memory, the destruction shall be executed by a [
o single overwrite consisting of [zeroes],

].
FCS_CKM_EXT.4.2 The OS shall destroy all keys and key material when no longer needed.

5.1.2.1.4 Cryptographic Operation for Encryption / Decryption (FCS_COP.1/ENCRYPT)

FCS_COP.1.1/ENCRY
PT9

The OS shall perform encryption/decryption services for data in accordance
with a specified cryptographic algorithm [

• AES-XTS (as defined in NIST SP 800-38E)

• AES-CBC (as defined in NIST SP 800-38A)

• AES-CTR (as defined in NIST SP 800-38A)
and [

• AES Key Wrap (KW) (as defined in NIST SP 800-38F)

9 This protection profile requirement was modified as part of NIAP Technical Decision 712.

https://www.niap-ccevs.org/technical-decisions/TD0712

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 46 of 251

• AES-CCMP-256 (as defined in NIST SP800-38C and IEEE
802.11ac2013),

• AES-GCMP-256 (as defined in NIST SP800-38D and IEEE
802.11ac2013),

• AES-CCM (as defined in NIST SP 800-38C),

• AES-GCM (as defined in NIST SP 800-38D),

• AES-CCMP (as defined in FIPS PUB 197, NIST SP 800-38C and IEEE
802.11-2012)

] and cryptographic key sizes 256-bit and [128-bit].

5.1.2.1.5 Cryptographic Operation for Hashing (FCS_COP.1/HASH)

FCS_COP.1.1/HASH The OS shall perform cryptographic hashing services in accordance with a
specified cryptographic algorithm [SHA-256, SHA-384, SHA-512] and message
digest sizes [256 bits, 384 bits, 512 bits] that meet the following: FIPS Pub 180-
4.

5.1.2.1.6 Cryptographic Operation for Signing (FCS_COP.1/SIGN)

FCS_COP.1.1/SIGN10 The OS shall perform cryptographic signature services (generation and
verification) in accordance with a specified cryptographic algorithm
[

• RSA schemes using cryptographic key sizes of [2048-bit (for secure
boot only) or greater, 3072-bit or greater] that meet the following:
FIPS PUB 186-5, “Digital Signature Standard (DSS)”, Section 4,

• ECDSA schemes using “NIST curves” P-384 and [P-521] that meet the
following: SP 800-186 Section 3

].

5.1.2.1.7 Cryptographic Operation for Keyed Hash Algorithms (FCS_COP.1/KEYHMAC)

FCS_COP.1.1/KEYHM
AC

The OS shall perform keyed-hash message authentication services in
accordance with a specified cryptographic algorithm [SHA-256, SHA-384,
SHA-512] with key sizes [256 bits] and message digest sizes [256 bits, 384
bits, 512 bits] that meet the following: [FIPS Pub 198-1 The Keyed-Hash
Message Authentication Code and FIPS Pub 180-4 Secure Hash Standard.

5.1.2.1.8 Random Bit Generation (FCS_RBG_EXT.1)

FCS_RBG_EXT.1.1 The OS shall perform all deterministic random bit generation (DRBG) services
in accordance with NIST Special Publication 800-90A using [CTR_DRBG (AES)].

FCS_RBG_EXT.1.2 The deterministic RBG used by the OS shall be seeded by an entropy source
that accumulates entropy from a [software-based noise source, platform-
based noise source] with a minimum of 256 bits of entropy at least equal to
the greatest security strength (according to NIST SP 800-57) of the keys and
hashes that it will generate.

10 This protection profile requirement was modified as part of NIAP Technical Decision 809 and 873.

https://www.niap-ccevs.org/technical-decisions/TD0809
https://www.niap-ccevs.org/technical-decisions/TD0873

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 47 of 251

5.1.2.1.9 Storage of Sensitive Data (FCS_STO_EXT.1)

FCS_STO_EXT.1.1 The OS shall implement functionality to encrypt sensitive data stored in non-
volatile storage and provide interfaces to applications to invoke this
functionality.

5.1.2.2 Cryptographic Support for WLAN Client Module

5.1.2.2.1 Cryptographic Key Generation for Symmetric Keys for WPA2/WPA3Connections

(FCS_CKM.1(WPA))

Application Note: FCS_CKM.1(WPA) corresponds to FCS_CKM.1/WPA in the WLAN Client module.

FCS_CKM.1.1(WPA) The TSF shall generate symmetric cryptographic keys in accordance with a
specified cryptographic key generation algorithm PRF-384 and [PRF-704] (as
defined in IEEE 802.11-2012) and specified key sizes 256 bits and [128 bits]]
using a Random Bit Generator as specified in FCS_RBG_EXT.1.

5.1.2.2.2 Cryptographic Key Distribution for Group Temporal Key (GTK) (FCS_CKM.2(WLAN))

Application Note: FCS_CKM.2(WLAN) corresponds to FCS_CKM.2/WLAN in the WLAN Client module.

FCS_CKM.2.1(WLAN) The TSF shall decrypt Group Temporal Key in accordance with a specified
cryptographic key distribution method AES Key Wrap in an EAPOL-Key frame
that meets the following: RFC 3394 for AES Key Wrap, 802.11-2012 for the
packet format and timing considerations and does not expose the
cryptographic keys.

5.1.2.2.3 Extensible Authentication Protocol-Transport Layer Security (FCS_TLSC_EXT.1(WLAN))

Application Note: FCS_TLCS_EXT.1(WLAN) corresponds to FCS_TLCS_EXT.1/WLAN in the WLAN Client

module.

FCS_TLSC_EXT.1.1(WLAN) The TSF shall implement TLS 1.2 (RFC 5246) and [TLS 1.1 (RFC 4346)] in
support of the EAP-TLS protocol as specified in RFC 5216 supporting the
following ciphersuites: [

• TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246,

• TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246

• TLS_RSA_WITH_AES_256_CBC_ SHA256 as defined in RFC 5246

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in
RFC 5430

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in
RFC 5289
].

FCS_TLSC_EXT.1.2(WLAN) The TSF shall generate random values used in the EAP-TLS exchange using
the RBG specified in FCS_RBG_EXT.1

FCS_TLSC_EXT.1.3(WLAN) The TSF shall use X509 v3 certificates as specified in
FIA_X509_EXT.1(WLAN).

FCS_TLSC_EXT.1.4(WLAN) The TSF shall verify that the server certificate presented includes the
Server Authentication purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in the
extendedKeyUsage field.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 48 of 251

FCS_TLSC_EXT.1.5(WLAN) The TSF shall allow an authorized administrator to configure the list of
CAs that are allowed to sign authentication server certificates that are
accepted by the TOE.

5.1.2.2.4 TLS Client Support for Supported Groups Extension (EAP-TLS for WLAN)

(FCS_TLSC_EXT.2(WLAN))

Application Note: FCS_TLCS_EXT.2(WLAN) corresponds to FCS_TLCS_EXT.2/WLAN in the WLAN Client

module.

FCS_TLSC_EXT.2.1(WLAN) The TSF shall present the Supported Groups extension in the
Client Hello with the following NIST curves: [secp256r1,
secp384r1, secp521r1].

5.1.2.2.5 Supported WPA Versions (FCS_WPA_EXT.1)

FCS_WPA_EXT.1.1 The TSF shall support WPA3 and [WPA2] security type.

5.1.2.3 Cryptographic Support for VPN Client Module

5.1.2.3.1 Cryptographic Key Generation (FCS_CKM.1 (VPN))

Application Note: FCS_CKM.1(VPN) corresponds to FCS_CKM.1/VPN in the VPN Client Module.

FCS_CKM.1.1(VPN) The TSF shall [implement functionality] to generate asymmetric cryptographic
keys used for IKE peer authentication in accordance with: [

• FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Appendix B.3 for
RSA schemes;

• FIPS PUB 186-4, “Digital Signature Standard (DSS)”, Appendix B.4 for
ECDSA schemes and implementing “NIST curves”, P-256, P-384, and
[no other curves]]

and specified cryptographic key sizes equivalent to, or greater than, a
symmetric key strength of 112 bits.

5.1.2.3.2 Cryptographic Key Storage (FCS_CKM_EXT.2)

FCS_CKM_EXT.2.1 The [OS] shall store persistent secrets and private keys when not in use in OS-
provided key storage.

5.1.2.3.3 EAP-TLS (FCS_EAP_EXT.1)

FCS_EAP_EXT.1.1 The TSF shall implement [EAP-TLS protocol as specified in RFC 5216] as
updated by RFC 8996 with TLS implemented using mutual authentication in
accordance with the TLS functional package.

FCS_ EAP_EXT.1.2 The TSF shall generate random values used in the [EAP-TLS] exchange using
the RBG specified in FCS_RBG_EXT.1.

FCS_ EAP_EXT.1.3 The TSF shall support peer authentication using certificates and [no other
authentication] as updated by RFC 8996 with TLS implemented using mutual
authentication in accordance with the TLS functional package.

FCS_ EAP _EXT.1.4 The TSF shall use the MSK from the [EAP-TLS] response as the IKEv2 shared
secret in the authentication payload.

5.1.2.3.4 IPsec (FCS_IPSEC_EXT.1)

FCS_IPSEC_EXT.1.1 The TSF shall implement the IPsec architecture as specified in RFC 4301.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 49 of 251

FCS_IPSEC_EXT.1.2 The TSF shall implement [tunnel mode, transport mode].
FCS_IPSEC_EXT.1.3 The TSF shall have a nominal, final entry in the SPD that matches anything that

is otherwise unmatched, and discards it.
FCS_IPSEC_EXT.1.4 The TSF shall implement the IPsec protocol ESP as defined by RFC 4303 using

the cryptographic algorithms AES-GCM-128, AESGCM-256 as specified in RFC
4106, [AES-CBC-128, AES-CBC-256 (both specified by RFC 3602) together with
a Secure Hash Algorithm (SHA)-based HMAC].

FCS_IPSEC_EXT.1.5 The TSF shall implement the protocol: [

• IKEv1, using Main Mode for Phase I exchanges, as defined in RFCs
2407, 2408, 2409, RFC 4109, [RFC 4304 for extended sequence
numbers], [RFC 4868 for hash functions], and [no support for
XAUTH];

• IKEv2 as defined in RFCs 7296 (with mandatory support for NAT
traversal as specified in section 2.23), RFC 8784, RFC 8247, and [RFC
4868 for hash functions]].

FCS_IPSEC_EXT.1.6 The TSF shall ensure the encrypted payload in the [IKEv1, IKEv2] protocol uses
the cryptographic algorithms AES-CBC-128, AES-CBC-256 as specified in RFC
6379 and [no other algorithm].

FCS_IPSEC_EXT.1.7 The TSF shall ensure that [

• IKEv2 SA lifetimes can be configured by [VPN Gateway] based on
[number of packets/number of bytes, length of time],

• IKEv1 SA lifetimes can be configured by an [an Administrator, VPN
Gateway] based on [number of packets/number of bytes, length of
time]

]. If length of time is used, it must include at least one option that is 24 hours
or less for Phase 1 SAs and 8 hours or less for Phase 2 SAs.

FCS_IPSEC_EXT.1.8 The TSF shall ensure that all IKE protocols implement DH groups

• 19 (256-bit Random ECP), 20 (384-bit Random ECP) according to
RFC 5114 and
[

• [14 (2048-bit MODP)] according to RFC 3526,

• [24 (2048-bit MODP with 256-bit POS] according to RFC 5114
]

FCS_IPSEC_EXT.1.9 The TSF shall generate the secret value x used in the IKE Diffie-Hellman key
exchange (“x” in gx mod p) using the random bit generator specified in
FCS_RBG_EXT.1, and having a length of at least [224, 256, 384] bits.

FCS_IPSEC_EXT.1.10 The TSF shall generate nonces used in IKE exchanges in a manner such that the
probability that a specific nonce value will be repeated during the life a
specific IPsec SA is less than 1 in 2^[256].

FCS_IPSEC_EXT.1.11 The TSF shall ensure that all IKE protocols perform peer authentication using a
[RSA, ECDSA] that use X.509v3 certificates that conform to RFC 4945 and [Pre-
shared keys, Pre-shared Keys transmitted via EAP-TLS].

FCS_IPSEC_EXT.1.12 The TSF shall not establish an SA if the [IP address, Fully Qualified Domain
Name (FQDN), Distinguished Name (DN)] and [no other reference identifier
type] contained in a certificate does not match the expected value(s) for the
entity attempting to establish a connection.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 50 of 251

FCS_IPSEC_EXT.1.13 The TSF shall not establish an SA if the presented identifier does not match the
configured reference identifier of the peer.

FCS_IPSEC_EXT.1.14 The [TSF, VPN Gateway] shall be able to ensure by default that the strength of
the symmetric algorithm (in terms of the number of bits in the key) negotiated
to protect the [IKEv1 Phase 1, IKEv2 IKE_SA] connection is greater than or
equal to the strength of the symmetric algorithm (in terms of the number of
bits in the key) negotiated to protect the [IKEv1 Phase 2, IKEv2 CHILD_SA]
connection.

5.1.2.4 Cryptographic Support for Bluetooth Module

5.1.2.4.1 Bluetooth Key Generation (FCS_CKM_EXT.8)

FCS_CKM_EXT.8.1 The TSF shall generate public/private ECDH key pairs every [new pairing].

5.1.2.5 Cryptographic Support for TLS Module

5.1.2.5.1 TLS Protocol (FCS_TLS_EXT.1)

FCS_TLS_EXT.1.1 The TSF shall implement [

• TLS as a client

• TLS as a server

• DTLS as a client

• DTLS as a server
].

5.1.2.5.2 TLS Client Protocol (FCS_TLSC_EXT.1)

FCS_TLSC_EXT.1.1 The TSF shall implement TLS 1.2 (RFC 5246) and [TLS 1.3 (RFC 8446)] as a client
that supports additional functionality for session renegotiation protection and
[

• mutual authentication

• supplemental downgrade protection

• session resumption
] and shall abort attempts by a server to negotiate all other TLS or SSL
versions.

FCS_TLSC_EXT.1.2 The TSF shall be able to support the following TLS 1.2 ciphersuites: [

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC
5289 and RFC 8422

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC
5289 and RFC 8422

• TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288

• TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288

• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC
5289

• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 as defined in RFC
5289

• TLS_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC
5289

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 51 of 251

• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC
5289

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC
5289

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC
5289

• TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246

• TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246
], the following PP-specific ciphersuites using pre-shared secrets: [

• no ciphersuites using pre-shared secrets
], and the following TLS 1.3 ciphersuites: [

• TLS_AES_256_GCM_SHA384 as defined in RFC 8446

• TLS_AES_128_GCM_SHA256 as defined in RFC 8446
] offering the supported ciphersuites in a client hello message in preference
order: [
TLS_AES_256_GCM_SHA384,
TLS_AES_128_GCM_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_256_GCM_SHA384,
TLS_RSA_WITH_AES_256_CBC_SHA256,
TLS_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_128_CBC_SHA
].

FCS_TLSC_EXT.1.3 The TSF shall not offer ciphersuites indicating the following:

• the null encryption component

• support for anonymous servers

• use of deprecated or export-grade cryptography including DES, 3DES,
RC2,

• RC4, or IDEA for encryption

• use of MD
and shall abort sessions where a server attempts to negotiate ciphersuites not
enumerated in the client hello message.

FCS_TLSC_EXT.1.4 The TSF shall be able to support the following TLS client hello message
extensions:

• signature_algorithms extension (RFC 8446) indicating support for
[

o ecdsa-secp384r1_sha384 (RFC 8446)
o rsa_pkcs1_sha384 (RFC 8446)

], and [

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 52 of 251

o rsa_pss_rsae_sha384 (RFC 8603)
o [rsae-pss/sha256, rsae-pss/sha384, rsae-pss/sha612,

rsa/sha256, rsa/sha384, rsa/sha512, ecdsa/sha256,
ecdsa/sha512]

]

• extended_master_secret extension (RFC 7627) enforcing server
support

• the following other extensions: [
o signature_algorithms_cert extension (RFC 8446) indicating

support for [
o ecdsa-secp384r1_sha384 (RFC 8446)
o rsa_pkcs1_sha384 (RFC 8446)

], and [
o rsa_pss_rsae_sha384 (RFC 8603)
o rsa_pkcs1_sha256 (RFC 8446)
o rsa_pss_rsae_sha256 (RFC 8446)
o [rsae-pss/sha256, rsae-pss/sha384, rsae-pss/sha612,

rsa/sha256, rsa/sha384, rsa/sha512, ecdsa/sha256,
ecdsa/sha512]

]
o supported_versions extension (RFC 8446) indicating support for

TLS 1.3
o supported_groups extension (RFC 7919, RFC 8446) indicating

support for [
o secp256r1
o secp384r1
o secp521r1
o]

o key_share extension (RFC 8446)
o post_handshake_auth (RFC 8446),
o pre_shared_key (RFC 8446), and
o psk_key_exchange_mode (RFC 8446) indicating DHE or ECDHE

mode
o no other extensions

] and shall not send the following extensions:
o early_data
o psk_key_exchange_mode indicating PSK only mode.

FCS_TLSC_EXT.1.5 The TSF shall be able to [

• verify that a presented identifier of name type: [
o DNS name type according to RFC 6125
o URI name type according to RFC 612511
o Common Name conversion to DNS name according to RFC

6125
o IPaddress name type according to RFC 5280

11 Windows extracts the hostname from the URI and treats it like a DNS name. Full URI matching (e.g., path, scheme)
is not performed.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 53 of 251

]

• interface with a client application requesting the TLS channel to verify
that a presented identifier

] matches a reference identifier of the requested TLS server and shall abort the
session if no match is found.

FCS_TLSC_EXT.1.6 The TSF shall not establish a trusted channel if the server certificate is invalid
[except when override is authorized in the case
where valid revocation information is not available].

5.1.2.5.3 TLS Client Support for Mutual Authentication (FCS_TLSC_EXT.2)

FCS_TLSC_EXT.2.1 The TSF shall support mutual authentication using X.509v3 certificates during
the handshake and [in support of post-handshake authentication
requests, at no other time], in accordance with [RFC 5246, section
7.4.4, RFC 8446, section 4.3.2].

5.1.2.5.4 TLS Client Support Downgrade Protection (FCS_TLSC_EXT.3)

FCS_TLSC_EXT.3.1 The TSF shall not establish a TLS channel if the server hello message includes
[TLS 1.2 downgrade indicator, TLS 1.1 or below downgrade indicator] in the
server random field.

5.1.2.5.5 TLS Client Support for Renegotiation (FCS_TLSC_EXT.4)

FCS_TLSC_EXT.4.1 The TSF shall support secure renegotiation through use of [the
“renegotiation_info” TLS extension, the
TLS_EMPTY_RENEGOTIATION_INFO_SCSV signaling ciphersuite signaling
value] in accordance with RFC 5746, and shall terminate the session if an
unexpected server hello is received or [hello request message is
received, in no other case].

5.1.2.5.6 TLS Client Support for Session Resumption (FCS_TLSC_EXT.5)

FCS_TLSC_EXT.5.1 The TSF shall support session resumption as a client via the use of [
session ID in accordance with RFC 5246, tickets in accordance with RFC 5077,
PSK and tickets in accordance with RFC 8446].

5.1.2.5.7 TLS Client 1.3 Resumption Refinements (FCS_TLSC_EXT.6)

The inclusion of this selection-based component depends upon selection in FCS_TLSC_EXT.5.1.

FCS_TLSC_EXT.6.1 The TSF shall send a psk_key_exchange_mode extension with the value
psk_dhe_ke when TLS 1.3 session resumption is offered.

FCS_TLSC_EXT.6.2 The TSF shall not send early data in TLS 1.3 sessions.

5.1.2.5.8 TLS Server Protocol (FCS_TLSS_EXT.1)

FCS_TLSS_EXT.1.1 The TSF shall implement TLS 1.2 (RFC 5246) and [TLS 1.3 (RFC 8446)] as a
server that supports additional functionality for session renegotiation
protection and [

• mutual authentication

• supplemental downgrade protection

• session resumption
] and shall reject connection attempts from clients supporting only TLS 1.1, TLS
1.0, or SSL versions.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 54 of 251

FCS_TLSS_EXT.1.2 The TSF shall be able to support the following TLS 1.2 ciphersuites: [

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC
5289 and RFC 8422

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC
5289 and RFC 8422

• TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288

• TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288

• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC
5289

• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 as defined in RFC
5289

• TLS_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC

• 5289

• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC
5289

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC
5289

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC
5289

• TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246

• TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246
], the following PP-specific ciphersuites using pre-shared secrets: [

• no ciphersuites using pre-shared secrets
], and the following TLS 1.3 ciphersuites: [

• TLS_AES_256_GCM_SHA384 as defined in RFC 8446

• TLS_AES_128_GCM_SHA256 as defined in RFC 8446
] using a preference order based on [RFC 9151 priority, client hello
ordering, [
TLS_AES_256_GCM_SHA384,
TLS_AES_128_GCM_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_256_GCM_SHA384,
TLS_RSA_WITH_AES_256_CBC_SHA256,
TLS_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_128_CBC_SHA
]].

FCS_TLSS_EXT.1.3 The TSF shall not establish a connection with a client that does not indicate
support for at least one of the supported ciphersuites.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 55 of 251

FCS_TLSS_EXT.1.4 The TSF shall be able to process the following TLS client hello message
extensions:

• signature_algorithms extension (RFC 8446) indicating support for [
o ecdsa-secp384r1_sha384 (RFC 8446)
o rsa_pkcs1_sha384 (RFC 8446)

], and [
o rsa_pss_rsae_sha384 (RFC 8603)
o [rsae-pss/sha256, rsae-pss/sha384, rsae-pss/sha612,

rsa/sha256, rsa/sha384, rsa/sha512, ecdsa/sha256,
ecdsa/sha512]

]

• extended_master_secret extension (RFC 7627) enforcing client
support

• the following other extensions: [
o signature_algorithms_cert extension (RFC 8446) indicating

support for [
▪ ecdsa-secp384r1_sha384 (RFC 8446)
▪ rsa_pkcs1_sha384 (RFC 8446)

], and [

• rsa_pss_rsae_sha384 (RFC 8603)

• rsa_pkcs1_sha256 (RFC 8446)

• rsa_pss_rsae_sha256 (RFC 8446)

• [rsae-pss/sha256, rsae-pss/sha384, rsae-pss/sha612,
rsa/sha256, rsa/sha384, rsa/sha512, ecdsa/sha256,
ecdsa/sha512]

]
o supported_versions extension (RFC 8446) indicating support for

TLS 1.3
o supported_groups extension (RFC 7919, RFC 8446) indicating

support for [

• secp256r1

• secp384r1

• secp521r1
]

o key_share extension (RFC 8446)
].

FCS_TLSS_EXT.1.5 The TSF shall perform key establishment for TLS using [

• RSA with size [2048, 3072, 4096] bits and no other sizes

• Diffie-Hellman parameters with size [2048, 3072, 4096, 6144, 8192]
bits and no other sizes

• ECDHE parameters using elliptic curves [secp256r1, secp384r1,
secp521r1] and no other curves, consistent with the client's
supported groups extension and [key share] extension and using
non-compressed formatting for points

].

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 56 of 251

5.1.2.5.9 TLS Server Support for Mutual Authentication (FCS_TLSS_EXT.2)

FCS_TLSS_EXT.2.1 The TSF shall support authentication of TLS clients using X.509v3 certificates
during the TLS handshake and [during post-handshake requests, at
no other time] using the certificate types indicated in the client’s
signature_algorithms and [signature_algorithms_cert, no other]
extension.

FCS_TLSS_EXT.2.2 The TSF shall support authentication of TLS clients using X.509v3 certificates in
accordance with FIA_X509_EXT.1.

FCS_TLSS_EXT.2.3 The TSF shall be able to reject the establishment of a trusted channel if the
requested client certificate is invalid and [

• continue establishment of a server-only authenticated TLS channel in
accordance with FCS_TLSS_EXT.1 in support of [[any TLS server
applications that choose to accept both authenticated and
unauthenticated client sessions]] when an empty certificate
message is provided by the client

• continue establishment of a mutually authenticated TLS channel
when revocation status information for the [client's leaf certificate,
[intermediate CA certificates], any non-trust store certificate in the
certificate chain] is not available in support of [[any TLS server
application that chooses not to act on the revocation information for
the TLS client]] as [a default for [TLS server applications that choose
not to act on the revocation information for the TLS client]]

].
FCS_TLSS_EXT.2.4 The TSF shall be able to [

• not establish a TLS session if an entry of the Distinguished Name or a
[dns_name, [Common Name, IP address]] in the Subject Alternate
Name extension contained in the client certificate does not match
one of the expected identifiers for the client in accordance with [RFC
6125, RFC 5280] matching rules

• pass the [validated certificate, DNS name normalized according to
RFC 6125, [IP address normalized as in RFC 5280]] to [TLS server
applications capable of making access decisions]

].

5.1.2.5.10 TLS Server Support Downgrade Protection (FCS_TLSS_EXT.3)

FCS_TLSS_EXT.3.1 The TSF shall set the server hello extension to a random value concatenated
with the TLS 1.2 downgrade indicator when negotiating TLS 1.2 as indicated in
RFC 8446 section 4.1.3.

5.1.2.5.11 TLS Server Support for Session Resumption (FCS_TLSS_EXT.5)

The inclusion of this selection-based component depends upon selection in FCS_TLSS_EXT.1.1.

FCS_TLSS_EXT.5.1 The TSF shall support session resumption as a server via the use of [
session ID in accordance with RFC 5246, tickets in accordance with RFC 5077,
PSK and tickets in accordance with RFC 8446].

5.1.2.5.12 TLS Server TLS 1.3 Resumption Requirements (FCS_TLSS_EXT.6)

The inclusion of this selection-based component depends upon selection in FCS_TLSS_EXT.5.1.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 57 of 251

FCS_TLSS_EXT.6.1 The TSF shall support TLS 1.3 resumption using PSK with
psk_key_exchange_mode extension with the value psk_dhe_ke.

FCS_TLSS_EXT.6.2 The TSF shall ignore early data received in TLS 1.3 sessions.

5.1.2.5.13 DTLS Client Protocol (FCS_DTLSC_EXT.1)

FCS_DTLSC_EXT.1.1 The TSF shall implement DTLS 1.2 (RFC 6347) and [no other TLS versions] as a
client that supports additional functionality for session renegotiation
protection and [

• mutual authentication

• supplemental downgrade protection

• session resumption
] and shall abort attempts by a server to negotiate all other DTLS versions.

FCS_DTLSC_EXT.1.2 The TSF shall be able to support the following TLS 1.2 ciphersuites: [

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC
5289 and RFC 8422

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC
5289 and RFC 8422

• TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288

• TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288

• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC
5289

• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 as defined in RFC
5289

• TLS_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC
5289

• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC
5289

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC
5289

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC
5289

• TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246

•

• TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246
], the following PP-specific ciphersuites using pre-shared secrets: [

• no ciphersuites using pre-shared secrets
], and the following TLS 1.3 ciphersuites: [

• no TLS 1.3 ciphersuites
] offering the supported ciphersuites in a client hello message in preference
order: [
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 58 of 251

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_256_GCM_SHA384,
TLS_RSA_WITH_AES_256_CBC_SHA256,
TLS_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_128_CBC_SHA
].

FCS_DTLSC_EXT.1.3 The TSF shall not offer ciphersuites indicating the following:

• the null encryption component

• support for anonymous servers

• use of deprecated or export-grade cryptography including DES, 3DES,
RC2, RC4, or IDEA for encryption

• use of MD
and shall abort sessions where a server attempts to negotiate ciphersuites not
enumerated in the client hello message.

FCS_DTLSC_EXT.1.4 The TSF shall be able to support the following TLS client hello message
extensions:

o signature_algorithms extension (RFC 8446) indicating support for [
o ecdsa-secp384r1_sha384 (RFC 8446)
o rsa_pkcs1_sha384 (RFC 8446)

], and [
o rsa_pss_rsae_sha384 (RFC 8603)

]
o extended_master_secret extension (RFC 7627) enforcing server

support
o the following other extensions: [

o signature_algorithms_cert extension (RFC 8446) indicating
support for [

o ecdsa-secp384r1_sha384 (RFC 8446)
o rsa_pkcs1_sha384 (RFC 8446)

], and [
o rsa_pss_rsae_sha384 (RFC 8603)
o rsa_pkcs1_sha256 (RFC 8446)
o rsa_pss_rsae_sha256 (RFC 8446)
o [rsae-pss/sha256, rsae-pss/sha384, rsae-pss/sha612,

rsa/sha256, rsa/sha384, rsa/sha512, ecdsa/sha256,
ecdsa/sha512]

o
]

o supported_groups extension (RFC 7919, RFC 8446) indicating
support for [

▪ secp256r1
▪ secp384r1
▪ secp521r1

]
o key_share extension (RFC 8446)
o post_handshake_auth (RFC 8446), pre_shared_key (RFC 8446), and

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 59 of 251

o psk_key_exchange_mode (RFC 8446) indicating DHE or ECDHE mode
o no other extensions

] and shall not send the following extensions:
o early_data
o psk_key_exchange_mode indicating PSK only mode.

FCS_DTLSC_EXT.1.5 The TSF shall be able to [

• verify that a presented identifier of name type: [
o DNS name type according to RFC 6125
o URI name type according to RFC 612512
o Common Name conversion to DNS name according to RFC

6125
o IPaddress name type according to RFC 5280

]

• interface with a client application requesting the DTLS channel to
verify that a presented identifier

] matches a reference identifier of the requested DTLS server and shall abort
the session if no match is found.

FCS_DTLSC_EXT.1.6 The TSF shall not establish a trusted channel if the server certificate is invalid
[except when override is authorized in the case where valid revocation
information is not available].

FCS_DTLSC_EXT.1.7 The TSF shall [terminate the DTLS session, silently discard the record] if a
message received contains an invalid MAC or if decryption fails in the case of
GCM and other AEAD ciphersuites.

5.1.2.5.14 DTLS Client Support for Mutual Authentication (FCS_DTLSC_EXT.2)

FCS_DTLSC_EXT.2.1 The TSF shall support mutual authentication using X.509v3 certificates during
the handshake and [in support of post-handshake authentication requests, at
no other time], in accordance with [RFC 5246 section 7.4.4, RFC 8446 section
4.3.2].

5.1.2.5.15 DTLS Client Downgrade Protection (FCS_DTLSC_EXT.3)

FCS_DTLSC_EXT.3.1 The TSF shall not establish a DTLS channel if the server hello message includes
a [TLS 1.2 downgrade indicator, TLS 1.1 or below downgrade indicator] in the
server random field.

5.1.2.5.16 [D]TLS Client Support for Renegotiation (FCS_DTLSC_EXT.4)

FCS_DTLSC_EXT.4.1 The TSF shall support secure renegotiation through use of [the
“renegotiation_info” TLS extension, the
TLS_EMPTY_RENEGOTIATION_INFO_SCSV signaling ciphersuite signaling
value] in accordance with RFC 5746, and shall terminate the session if an
unexpected server hello is received or [hello request message is received, in
no other case]

12 Windows extracts the hostname from the URI and treats it like a DNS name. Full URI matching (e.g., path, scheme)
is not performed.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 60 of 251

5.1.2.5.17 DTLS Client Support for Session Resumption (FCS_DTLSC_EXT.5)

FCS_DTLSC_EXT.5.1 The TSF shall support session resumption as a client via the use of [session ID
in accordance with RFC 5246, tickets in accordance with RFC 5077].

5.1.2.5.18 DTLS Server Protocol (FCS_DTLSS_EXT.1)

FCS_DTLSS_EXT.1.1 The TSF shall implement DTLS 1.2 (RFC 6347) and [no earlier DTLS versions] as
a server that supports additional functionality for session renegotiation
protection and [

• mutual authentication

• supplemental downgrade protection

• session resumption

• no optional functionality
] and shall reject connection attempts from clients supporting only DTLS 1.0.

FCS_DTLSS_EXT.1.2 The TSF shall be able to support the following TLS 1.2 ciphersuites: [

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC
5289 and RFC 8422

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC
5289 and RFC 8422

• TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288

• TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288

• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC
5289

• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 as defined in RFC
5289

• TLS_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC
5289

• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC
5289

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC
5289

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC
5289 TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246

•

• TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246
], the following PP-specific ciphersuites using pre-shared secrets: [

• no ciphersuites using pre-shared secrets
], and the following TLS 1.3 ciphersuites: [

• no TLS 1.3 ciphersuites
] using a preference order based on [RFC 9151 priority, client hello ordering, [
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 61 of 251

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_256_GCM_SHA384,
TLS_RSA_WITH_AES_256_CBC_SHA256,
TLS_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_128_CBC_SHA
]]

FCS_DTLSS_EXT.1.3 The TSF shall not establish a connection with a client that does not indicate
support for at least one of the supported ciphersuites.

FCS_DTLSS_EXT.1.4 The TSF shall be able to process the following TLS client hello message
extensions:

• signature_algorithms extension (RFC 8446) indicating support for [
o ecdsa-secp384r1_sha384 (RFC 8446)
o rsa_pkcs1_sha384 (RFC 8446)

], and [
o rsa_pss_rsae_sha384 (RFC 8603)
o [rsae-pss/sha256, rsae-pss/sha384, rsae-pss/sha612,

rsa/sha256, rsa/sha384, rsa/sha512, ecdsa/sha256,
ecdsa/sha512]

o
]

• extended_master_secret extension (RFC 7627) enforcing client
support

• the following other extensions: [
o signature_algorithms_cert extension (RFC 8446) indicating

support for [
▪ ecdsa-secp384r1_sha384 (RFC 8446)
▪ rsa_pkcs1_sha384 (RFC 8446)

], and [
▪ rsa_pss_rsae_sha384 (RFC 8603)
▪ rsa_pkcs1_sha256 (RFC 8446)
▪ rsa_pss_rsae_sha256 (RFC 8446)
▪ [rsae-pss/sha256, rsae-pss/sha384, rsae-pss/sha612,

rsa/sha256, rsa/sha384, rsa/sha512, ecdsa/sha256,
ecdsa/sha512]

]
o supported_versions extension (RFC 8446) indicating support for

TLS 1.3
o supported_groups extension (RFC 7919, RFC 8446) indicating

support for [

• secp256r1

• secp384r1

• secp521r1
]

o key_share extension (RFC 8446)
].

FCS_DTLSS_EXT.1.5 The TSF shall perform key establishment for DTLS using [

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 62 of 251

• RSA with size [2048, 3072, 4096] bits and no other sizes

• Diffie-Hellman parameters with size [2048, 3072, 4096, 6144, 8192]
bits and no other sizes

• ECDHE parameters using elliptic curves [secp256r1, secp384r1,
secp521r1] and no other curves, consistent with the client's
supported groups extension and [key share] extension and using
non-compressed formatting for points

].
FCS_DTLSS_EXT.1.6 The TSF shall not proceed with a connection handshake attempt if the DTLS

client fails validation.

5.1.2.5.19 DTLS Server Support for Mutual Authentication (FCS_DTLSS_EXT.2)

FCS_DTLSS_EXT.2.1 The TSF shall support authentication of DTLS clients using X.509v3 certificates
during the DTLS handshake and [during post-handshake requests, at no other
time] using the certificate types indicated in the client’s signature_algorithms
and [signature_algorithms_cert, no other] extension.

FCS_DTLSS_EXT.2.2 The TSF shall support authentication of DTLS clients using X.509v3 certificates
in accordance with FIA_X509_EXT.1.

FCS_DTLSS_EXT.2.3 The TSF shall be able to reject the establishment of a trusted channel if the
requested client certificate is invalid and [

• continue establishment of a server-only authenticated DTLS channel
in accordance with FCS_DTLSS_EXT.1 in support of [[any DTLS server
applications that choose to accept both authenticated and
unauthenticated client sessions]] when an empty certificate message
is provided by the client

• continue establishment of a mutually authenticated DTLS channel
when revocation status information for the [client's leaf certificate,
[intermediate CA certificates], any non-trust store certificate in the
certificate chain] is not available in support of [[DTLS server
application that chooses not to act on the revocation information for
the DTLS client]] as [a default for [DTLS server applications that
choose not to act on the revocation information for the DTLS client]]

]
FCS_DTLSS_EXT.2.4 The TSF shall be able to [

• not establish a DTLS session if an entry of the Distinguished Name or
a [dns_name, [Common Name, IP address]] in the Subject Alternate
Name extension contained in the client certificate does not match
one of the expected identifiers for the client in accordance with [RFC
6125, RFC 5280[] matching rules

• pass the [validated certificate, DNS name normalized according to
RFC 6125, [IP address normalized as in RFC 5280]]] to [DTLS server
applications capable of making access decisions]

].

5.1.2.5.20 DTLS Server Downgrade Protection (FCS_DTLSS_EXT.3)

FCS_DTLSS_EXT.3.1 The TSF shall set the server hello extension to a random value concatenated
with the TLS 1.2 downgrade indicator when negotiating DTLS 1.2 as indicated
in RFC 8446 section 4.1.3.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 63 of 251

5.1.2.5.21 DTLS Server Support for Session Resumption (FCS_DTLSS_EXT.5)

FCS_DTLSS_EXT.5.1 The TSF shall support session resumption as a server via the use of [session ID
in accordance with RFC 5246, tickets in accordance with RFC 5077].

5.1.3 User Data Protection (FDP)

5.1.3.1 User Data Protection for GP OS PP

5.1.3.1.1 Access Controls for Protecting User Data (FDP_ACF_EXT.1)

FDP_ACF_EXT.1.1 The OS shall implement access controls which can prohibit unprivileged users
from accessing files and directories owned by other users.

5.1.3.1.2 Information Flow Control (FDP_IFC_EXT.1)

FDP_IFC_EXT.1.1 The OS shall [

• Provide an interface which allows a VPN client to protect all IP traffic
using IPsec

] with the exception of IP traffic required to establish the VPN connection and
[no other traffic].

5.1.3.2 User Data Protection for VPN Client Module

5.1.3.2.1 Spit Tunnel Prevention (FDP_VPN_EXT.1)

FDP_VPN_EXT.1.1 The TSF shall ensure that all IP traffic (other than IP traffic required to
establish the VPN connection) flow through the IPsec VPN client.

5.1.3.2.2 Full Residual Information Protection (FDP_RIP.2)

FDP_RIP.2.1 The [TOE] shall enforce that any previous information content of a resource is
made unavailable upon the [allocation of the resource to] all objects.

5.1.4 Identification and Authentication (FIA)

5.1.4.1 Identification and Authentication for GP OS PP

5.1.4.1.1 Authentication Failure Handling (FIA_AFL.1)

FIA_AFL.1.1 The OS shall detect when [an administrator configurable positive integer
within a [range of 1 - 999]
] unsuccessful authentication attempts occur related to events with [

• authentication based on user name and password,

• authentication based on user name and a PIN that releases an
asymmetric key stored in OE-protected storage

• authentication based on X.509 certificates
].

FIA_AFL.1.2 When the defined number of unsuccessful authentication attempts for an
account has been met, the OS shall: [Account Lockout, Account Disablement,
Mandatory Credential Reset].

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 64 of 251

5.1.4.1.2 Multiple Authentication Mechanisms (FIA_UAU.5)

FIA_UAU.5.1 The OS shall provide the following authentication mechanisms:
[

• Authentication based on username and password,

• authentication based on user name and a PIN that releases an
asymmetric key stored in OE-protected storage13

• authentication based on X.509 certificates
] to support user authentication.

FIA_UAU.5.2 The OS shall authenticate any user’s claimed identity according to the
[authentication based on username and password is performed for TOE-
originated requests and with credentials stored by the OS for Windows
Hello, smart card, virtual smart card, and X.509 certificate].

5.1.4.1.3 X.509 Certification Validation (FIA_X509_EXT.1)

FIA_X509_EXT.1.1 The OS shall implement functionality to validate certificates in accordance
with the following rules:

• RFC 5280 certificate validation and certificate path validation

• The certificate path must terminate with a trusted CA certificate

• The OS shall validate a certificate path by ensuring the presence of the
basicConstraints extension, that the CA flag is set to TRUE for all CA
certificates, and that any path constraints are met.

• The TSF shall validate that any CA certificate includes “Certificate
Signing” as a purpose in the key usage field

• The OS shall validate the revocation status of the certificate using
[OCSP as specified in RFC 6960, CRL as specified in RFC 8603 5759, an
OCSP TLS Status Request Extension (OCSP stapling) as specified in
RFC 6066, OCSP TLS Multi-Certificate Status Request Extension (i.e.,
OCSP Multi-Stapling) as specified in RFC 6961] with [no exceptions]

• The OS shall validate the extendedKeyUsage field according to the
following rules:

o Certificates used for trusted updates and executable code
integrity verification shall have the Code Signing Purpose (id-
kp 3 with OID 1.3.6.1.5.5.7.3.3) in the extendedKeyUsage field.

o Server certificates presented for TLS shall have the Server
Authentication purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in
the extendedKeyUsage field.

o Client certificates presented for TLS shall have the Client
Authentication purpose (id-kp 2 with OID 1.3.6.1.5.5.7.3.2) in
the EKU field.

o S/MIME certificates presented for email encryption and
signature shall have the Email Protection purpose (id-kp 4 with
OID 1.3.6.1.5.5.7.3.4) in the EKU field.

13 PIN-based authentication is for Windows 11, smart card authentication is for Windows 11 and Windows Server
2025 only.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 65 of 251

o OCSP certificates presented for OCSP responses shall have the
OCSP Signing Purpose (id-kp 9 with OID 1.3.6.1.5.5.7.3.9) in
the EKU field.

o Server certificates presented for EST shall have the CMC
Registration Authority (RA) purpose (id-kp-cmcRA with OID
1.3.6.1.5.5.7.3.28) in the EKU field. (conditional)

FIA_X509_EXT.1.2 The OS shall only treat a certificate as a CA certificate if the basicConstraints
extension is present and the CA flag is set to TRUE.

5.1.4.1.4 X.509 Certificate Authentication (FIA_X509_EXT.2)

FIA_X509_EXT.2.114 The OS shall use X.509v3 certificates as defined by RFC 5280 to support
authentication for [TLS, DTLS, HTTPS, [IPsec]] connections.

5.1.4.2 Identification and Authentication for WLAN Client Module

5.1.4.2.1 Port Access Entity Authentication (FIA_PAE_EXT.1)

FIA_PAE_EXT.1.1 The TSF shall conform to IEEE Standard 802.1X for a Port Access Entity (PAE) in
the “Supplicant” role.

5.1.4.2.2 X.509 Certificate Validation (FIA_X509_EXT.1(WLAN))

Application Note: FIA_X509_EXT.1(WLAN) corresponds to FIA_X509_EXT.1/WLAN in the WLAN Client

Module.

FIA_X509_EXT.1.1(WLAN) The TSF shall validate certificates for EAP-TLS in accordance with the
following rules:

• RFC 5280 certificate validation and certificate path validation

• The certificate path must terminate with a certificate in the Trust
Anchor Database

• The TSF shall validate a certificate path by ensuring the presence
of the basicConstraints extension and that the CA flag is set to
TRUE for all CA certificates

• The TSF shall validate the extendedKeyUsage field according to
the following rules:

o Server certificates presented for TLS shall have the Server
Authentication purpose (id-kp 1 with OID
1.3.6.1.5.5.7.3.1) in the extendedKeyUsage field

o Client certificates presented for TLS shall have the Client
Authentication purpose (id-kp 2 with OID
1.3.6.1.5.5.7.3.2) in the extendedKeyUsage field.

FIA_X509_EXT.1.2(WLAN) The TSF shall only treat a certificate as a CA certificate if the
basicConstraints extension is present and the CA flag is set to TRUE.

5.1.4.2.3 X.509 Certificate Authentication EAP-TLS for WLAN (FIA_X509_EXT.2(WLAN))

Application Note: FIA_X509_EXT.2(WLAN) corresponds to FIA_X509_EXT.2/WLAN in the WLAN Client

module.

14 This protection profile requirement was replaced as part of NIAP Technical Decision 789.

https://www.niap-ccevs.org/technical-decisions/TD0789

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 66 of 251

FIA_X509_EXT.2.1(WLAN) The TSF shall use X.509v3 certificates as defined by RFC 5280 to support
authentication for EAP-TLS exchanges.

5.1.4.2.4 Certificate Storage and Management (FIA_X509_EXT.6)

FIA_X509_EXT.6.1 The TSF shall [store and protect] certificate(s) from unauthorized deletion and
modification.

FIA_X509_EXT.6.2 The TSF shall [provide the capability for authorized administrators to load
X.509v3 certificates into the TOE] for use by the TSF.

5.1.4.3 Identification and Authentication for VPN Client Module

5.1.4.3.1 Pre-Shared Key Composition (FIA_PSK_EXT.1)

FIA_PSK_EXT.1.1 The TSF shall be able to use pre-shared keys for IPsec and [no other protocols].
FIA_PSK_EXT.1.2 The TSF shall be able to accept the following as pre-shared keys: [generated

bit-based] keys.

5.1.4.3.2 Generated Pre-Shared Keys (FIA_PSK_EXT.2)

FIA_PSK_EXT.2.1 The TSF shall be able to [accept externally generated pre-shared keys].

5.1.4.3.3 X.509 Certificate Use and Management (FIA_X509_EXT.3)

FIA_X509_EXT.3.1 The TSF shall use X.509v3 certificates as defined by RFC 5280 to support
authentication for IPsec exchanges, and [digital signatures for
FPT_TUD_EXT.1, integrity checks for FPT_TST_EXT.1].

FIA_X509_EXT.3.2 When a connection to determine the validity of a certificate cannot be
established, the [OS] shall [not accept the certificate].

FIA_X509_EXT.3.3 The [VPN client] shall not establish an SA if a certificate or certificate path is
deemed invalid.

5.1.4.4 Identification and Authentication for Bluetooth Module

5.1.4.4.1 Bluetooth User Authorization (FIA_BLT_EXT.1)

FIA_BLT_EXT.1.1 The TSF shall require explicit user authorization before pairing with a remote
Bluetooth device.

5.1.4.4.2 Bluetooth Mutual Authentication (FIA_BLT_EXT.2)

FIA_BLT_EXT.2.1 The TSF shall require Bluetooth mutual authentication between devices prior
tony data transfer over the Bluetooth link.

5.1.4.4.3 Rejection of Duplicate Bluetooth Connections (FIA_BLT_EXT.3)

FIA_BLT_EXT.3.1 The TSF shall discard pairing and session initialization attempts from a
Bluetooth device address (BD_ADDR) to which an active session already exists.

5.1.4.4.4 Secure Simple Pairing (FIA_BLT_EXT.4)

FIA_BLT_EXT.4.1 The TOE shall support Bluetooth Secure Simple Pairing, both in the host and
the controller.

FIA_BLT_EXT.4.2 The TOE shall support Secure Simple Pairing during the pairing process.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 67 of 251

5.1.4.4.5 Trusted Bluetooth Device User Authorization (FIA_BLT_EXT.6)

FIA_BLT_EXT.6.1 The TSF shall require explicit user authorization before granting trusted
remote devices access to services associated with the following Bluetooth
profiles: [all Bluetooth profiles].

5.1.4.4.6 Untrusted Bluetooth Device User Authorization (FIA_BLT_EXT.7)

FIA_BLT_EXT.7.1 The TSF shall require explicit user authorization before granting untrusted
remote devices access to services associated with the following Bluetooth
profiles: [all Bluetooth profiles].

5.1.5 Security Management (FMT)

5.1.5.1 Security Management for GP OS PP

5.1.5.1.1 Management of Security Functions Behavior (FMT_MOF_EXT.1)

FMT_MOF_EXT.1.1 The OS shall restrict the ability to perform the function indicated in the
"Administrator" column in FMT_SMF_EXT.1.1 to the administrator.

5.1.5.1.2 Specification of Security Functions Behavior for OS (FMT_SMF_EXT.1)15

FMT_SMF_EXT.1.1 The OS shall be capable of performing the following management functions:
Table 25 TOE Security Management Functions

Management Function Administrator User

1. Enable/disable [screen lock, session
timeout]

M O

2. Configure [screen lock, session]
inactivity timeout

M O

3. Import keys/secrets into the secure
key storage

O O

4. Configure local audit storage capacity O O

5. Configure minimum password Length O O

6. Configure minimum number of
special characters in password

O O

7. Configure minimum number of
numeric characters in password

O O

8. Configure minimum number of
uppercase characters in password

O O

9. Configure minimum number of
lowercase characters in password

O O

10. Configure lockout policy for
unsuccessful authentication attempts
through [timeouts between
attempts, limiting number of
attempts during a time period]

O O

11. Configure host-based firewall O O

15 This security functional requirement was updated as part of NIAP Technical Decision 693.

https://www.niap-ccevs.org/technical-decisions/TD0693

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 68 of 251

12. Configure name/address of directory
server to bind with

O O

13. Configure name/address of remote
management server from which to
receive management settings

O O

14. Configure name/address of
audit/logging server to which to send
audit/logging records

O O

15. Configure audit rules O O

16. Configure name/address of network
time server

O O

17. Enable/disable automatic software
update

O O

18. Configure Wi-Fi interface O O

19. Enable/disable Bluetooth interface M O

20. Enable/disable [local area network
interface, configure USB interfaces]

O O

21. [manage Windows Diagnostics
settings, Configure remote
connection inactivity timeout]

O O

5.1.5.2 Security Management for WLAN Client Module

5.1.5.2.1 Specification of Management Functions for (WLAN Client) (FMT_SMF.1(WLAN)) 16

Application Note: FMT_SMF.1(WLAN) corresponds to FMT_SMF.1/WLAN in the WLAN Client module.

FMT_SMF.1.1(WLAN) The TSF shall be capable of performing the following management
functions:
Table 24 3: Management Functions

Status Markers:
M - Mandatory
O - Optional/Objective

Table 26 WLAN Client Module Management Functions

Management Function Impl. Admin User

WL-1 configure security
policy for each wireless
network:

• [specify the CA(s)
from which the
TSF will accept
WLAN
authentication
server

M M O

16 This protection profile module requirement was modified as part of NIAP Technical Decision 667.

https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0667

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 69 of 251

certificate(s),
specify the Fully
Qualified Domain
Names (FQDNs) of
acceptable WLAN
authentication
server
certificate(s)],

• security type,

• authentication
protocol,

• client credentials
to be used for
authentication

WL-2 specify wireless
networks (SSIDs) to
which the TSF may
connect

M M O

WL-3 enable/disable disable
wireless network
bridging capability (for
example, bridging a
connection between
the WLAN and cellular
radios to function as a
hotspot) authenticated
by [pre-shared key,
passcode, no
authentication]

M M O

WL-4 enable/disable
certificate revocation
list checking

O O O

WL-5 disable ad hoc wireless
client-to-client
connection capability

O O O

WL-6 disable roaming
capability

O O O

WL-7 enable/disable IEEE
802.1X pre-
authentication

O O O

WL-8 loading X.509
certificates into the
TOE

O O O

WL-9 revoke X.509
certificates loaded into
the TOE

O O O

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 70 of 251

WL-10 enable/disable and
configure PMK
caching:

• set the amount of
time (in minutes)
for which PMK
entries are cached,

• set the maximum
number of PMK
entries that can be
cached

O O O

WL-11 configure security
policy for each wireless
network: set wireless
frequency band to [2.4
GHz, 5 GHz, 6 GHz]

O O O

5.1.5.3 Security Management for VPN Client Module

5.1.5.3.1 Specification of Management Functions for VPN (FMT_SMF.1(VPN))

Application Note: FMT_SMF.1(VPN) corresponds to FMT_SMF.1/VPN in the VPN Client Module.

FMT_SMF.1.1(VPN) The TSF shall be capable of performing the following management
functions: [

• Specify VPN gateways to use for connections,

• Specify IPsec VPN Clients to use for connections,

• Specify IPsec-capable network devices to use for connections],

• Specify client credentials to be used for connections,

• Configure the reference identifier of the peer

• [no other actions]].

5.1.5.4 Security Management for Bluetooth Module

5.1.5.4.1 Management of Security Functions Behavior for Bluetooth (FMT_MOF_EXT.1(BT))

Application Note: FMT_MOF_EXT.1(BT) corresponds to FMT_MOF_EXT.1/BT in the Bluetooth Module.

FMT_MOF_EXT.1.1(BT) The OS shall restrict the ability to perform the function indicated in the
"Administrator" column in FMT_SMF_EXT.1.1(BT)/BT to the
administrator.

5.1.5.4.2 Specification of Management Functions for Bluetooth (FMT_SMF_EXT.1(BT))

Application Note: FMT_SMF_EXT.1(BT) corresponds to FMT_SMF_EXT.1/BT in the Bluetooth Module.

FMT_SMF_EXT.1.1(BT) The TSF shall be capable of performing the following Bluetooth
management functions:

Table 27 Bluetooth Security Management Functions

Function Administrator User

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 71 of 251

BT-1. Configure the
Bluetooth trusted
channel.

• Disable/enable
the Discoverable
(for BR/EDR) and
Advertising (for
LE) modes;

X O

BT-2. Change the
Bluetooth device
name (separately for
BR/EDR and LE);

O O

BT-3. Provide
separate controls for
turning the BR/EDR
and LE radios on and
off;

O O

BT-4. Allow/disallow
the following
additional wireless
technologies to be
used with Bluetooth:
[selection: Wi-Fi, NFC,
[assignment: other
wireless
technologies]];

O O

BT-5. Configure
allowable methods of
Out of Band pairing
(for BR/EDR and LE);

O O

BT-6. Disable/enable
the Discoverable (for
BR/EDR) and
Advertising (for LE)
modes separately;

O O

BT-7. Disable/enable
the Connectable
mode (for BR/EDR
and LE);

O O

BT-8. Disable/enable
the Bluetooth [all
Bluetooth services];

O O

BT-9. Specify
minimum level of
security for each
pairing (for BR/EDR
and LE);

O O

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 72 of 251

5.1.6 Protection of the TSF (FPT)

5.1.6.1 Protection of the TSF for GP OS PP

5.1.6.1.1 Access Controls (FPT_ACF_EXT.1)

FPT_ACF_EXT.1.1 The OS shall implement access controls which prohibit unprivileged users from
modifying:

• Kernel and its drivers/modules

• Security audit logs

• Shared libraries

• System executables

• System configuration files

• [none]
FPT_ACF_EXT.1.2 The OS shall implement access controls which prohibit unprivileged users from

reading:

• Security audit logs

• System-wide credential repositories

• [none]

5.1.6.1.2 Address Space Layout Randomization (FPT_ASLR_EXT.1)

FPT_ASLR_EXT.1.1 The OS shall always randomize process address space memory locations with
[8 bits of entropy for 32-bit applications and at least 17 bits of entropy for
64-bit applications] bits of entropy except for [none].

5.1.6.1.3 Limitation of Bluetooth Profile Support (FPT_BLT_EXT.1)

FPT_BLT_EXT.1.1 The TSF shall disable support for [all Bluetooth profiles] Bluetooth profiles
when they are not currently being used by an application on the TOE and shall
require explicit user action to enable them.

5.1.6.1.4 Buffer Overflow Protection (FPT_SBOP_EXT.1)

FPT_SBOP_EXT.1.1 The OS shall [employ stack-based buffer overflow protections, not store
parameters/variables in the same data structures as control flow values].

5.1.6.1.5 Software Restriction Policies (FPT_SRP_EXT.1)

FPT_SRP_EXT.1.1 The OS shall restrict execution to only programs which match an
administrator-specified [

• File path,

• File digital signature,

• Version,17

• Hash
].

17 Windows 11 Enterprise and Windows Server 2025 can restrict program execution based on a version using
AppLocker and Device Guard.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 73 of 251

5.1.6.1.6 Boot Integrity (FPT_TST_EXT.1)

FPT_TST_EXT.1.1 The OS shall verify the integrity of the bootchain up through the OS kernel and
[operating system executable code and application executable code] prior to
its execution through the use of [a digital signature using a hardware-
protected asymmetric key, a digital signature using an X509 certificate with
hardware-based protection, a hardware-protected hash].18,

5.1.6.1.7 Trusted Update (FPT_TUD_EXT.1)

FPT_TUD_EXT.1.1 The OS shall provide the ability to check for updates to the OS software itself
and shall use a digital signature scheme specified in FCS_COP.1/SIGN to
validate the authenticity of the response.

FPT_TUD_EXT.1.2 The OS shall [cryptographically verify] updates to itself using a digital
signature prior to installation using schemes specified in FCS_COP.1/SIGN.

5.1.6.1.8 Trusted Update for Application Software (FPT_TUD_EXT.2)

FPT_TUD_EXT.2.1 The OS shall provide the ability to check for updates to application software
and shall use a digital signature scheme specified in FCS_COP.1/SIGN to
validate the authenticity of the response.

FPT_TUD_EXT.2.2 The OS shall cryptographically verify the integrity of updates to applications
using a digital signature specified by FCS_COP.1/SIGN prior to installation.

5.1.6.2 Protection of the TSF for WLAN Client Module

5.1.6.2.1 TSF Cryptographic Functionality Testing (FPT_TST_EXT.3 (WLAN))

Application Note: FPT_TST_EXT.3(WLAN) corresponds to FPT_TST_EXT.3/WLAN in the WLAN Client

module.

FPT_TST_EXT.3.1(WLAN) The [TOE] shall run a suite of self-tests during initial start-up (on power on)
to demonstrate the correct operation of the TSF.

FPT_TST_EXT.3.2(WLAN) The [TOE] shall provide the capability to verify the integrity of stored TSF
executable code when it is loaded for execution through the use of the
TSF-provided cryptographic services.

5.1.6.3 Protection of the TSF for VPN Client Module

5.1.6.3.1 Self-Test for IPsec (FPT_TST_EXT.1 (VPN))

Application Note: FPT_TST_EXT.1(VPN) corresponds to FPT_TST_EXT.1/VPN in the VPN Client Module.

FPT_TST_EXT.1.1(VPN) The [TOE] shall run a suite of self-tests during initial start-up (on power on)
to demonstrate the correct operation of the TSF.

FPT_TST_EXT.1.2(VPN) The [TOE] shall provide the capability to verify the integrity of stored TSF
executable code when it is loaded for execution through the use of the
[FCS_COP.1(SIGN) cryptographic services provided by the operating
system].

18 Windows can also run on computers that do not have a TPM, which is the mechanism that provides the
hardware-based protection for boot integrity.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 74 of 251

5.1.7 TOE Access (FTA)

5.1.7.1 TOE Access for GP OS PP

5.1.7.1.1 Default TOE Access Banners (FTA_TAB.1)

FTA_TAB.1.1 Before establishing a user session, the OS shall display an advisory warning
message regarding unauthorized use of the OS.

5.1.7.2 TOE Access for WLAN Client Module

5.1.7.2.1 Wireless Network Access (FTA_WSE_EXT.1)

FTA_WSE_EXT.1.1 The TSF shall be able to attempt connections only to wireless networks
specified as acceptable networks as configured by the administrator in
FMT_SMF.1(WLAN).1/WLAN.

5.1.8 Trusted Path / Channels (FTP)

5.1.8.1 Trusted Path / Channels for GP OS PP

5.1.8.1.1 Trusted Path (FTP_TRP.1)

FTP_TRP.1.1 The OS shall provide a communications path between itself and [remote,
local] users that is logically distinct from other communications paths and
provides assured identification of its endpoints and protection of the
communicated data from modification and disclosure.

FTP_TRP.1.2 The OS shall permit [the TSF, local users, remote users] to initiate
communication via the trusted path.

FTP_TRP.1.319 The OS shall require use of the trusted path for [initial user authentication, all
remote administrative actions].

5.1.8.1.2 Trusted Channel Communication (FTP_ITC_EXT.1)

FTP_ITC_EXT.1.1 The OS shall use [

• TLS as conforming to Functional Package for Transport Security
(TLS), version 2.0 as a [client, server]

• DTLS as conforming to Functional Package for Transport Security
(TLS), version 2.0 as a [client, server]

• IPsec as conforming to the PP-Module for Virtual Private Network
(VPN) Clients, version 2.4

] to provide a trusted communications channel between itself and authorized
IT entities supporting the following capabilities: [authentication server,
management server, [CRL checking, web traffic]] that is logically distinct from
other communication channels and provides assured identification of its end
points and protection of the channel data from disclosure and detection of
modification of the channel data.

19 This protection profile requirement was modified as part of NIAP Technical Decision 839.

https://www.niap-ccevs.org/technical-decisions/TD0839

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 75 of 251

5.1.8.2 Trusted Path / Channels for WLAN Client Module

5.1.8.2.1 Trusted Channel Communication (FTP_ITC.1(WLAN))

Application Note: FTP_ITC.1(WLAN) corresponds to FTP_ITC.1/WLAN in the WLAN Client Module.

FTP_ITC.1.1(WLAN) The TSF shall use 802.11-2012, 802.1X, and EAP-TLS to provide a trusted
communication channel between itself and a wireless access point that is
logically distinct from other communication channels, provides assured
identification of its end points, protects channel data from disclosure, and
detects modification of the channel data.

FTP_ITC.1.2(WLAN) The TSF shall permit [the TSF] to initiate communication via the trusted
channel.

FTP_ITC.1.3(WLAN) The TSF shall initiate communication via the trusted channel for wireless
access point connections.

5.1.8.3 Trusted Path / Channels for VPN Client Module

5.1.8.3.1 Inter-TSF Trusted Channel (FTP_ITC.1(VPN))

Application Note: FTP_ITC.1(VPN) corresponds to FTP_ITC.1 in the VPN Client module.

FTP_ITC.1.1(VPN) The [VPN client, OS] shall use IPsec to provide a trusted communication
channel between itself and [

• a remote VPN gateway,

• a remote VPN client,

• a remote IPsec-capable network device
] that is logically distinct from other communication channels and provides
assured identification of its end points and protection of the channel data
from disclosure and detection of modification of the channel data.

FTP_ITC.1.2(VPN) The [OS] shall permit the TSF to initiate communication via the trusted
channel.

FTP_ITC.1.3(VPN) The [OS] shall initiate communication via the trusted channel for all traffic
traversing that connection.

5.1.8.4 Trusted Path / Channels for Bluetooth Module

5.1.8.4.1 Bluetooth Encryption (FTP_BLT_EXT.1)

FTP_BLT_EXT.1.1 The TSF shall enforce the use of encryption when transmitting data over
the Bluetooth trusted channel for BR/EDR and [LE].

FTP_BLT_EXT.1.2 The TSF shall use key pairs per FCS_CKM_EXT.8 for Bluetooth encryption.

5.1.8.4.2 Persistence of Bluetooth Encryption (FTP_BLT_EXT.2)

FTP_BLT_EXT.2.1 The TSF shall [terminate the connection] if the remote device stops
encryption while connected to the TOE.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 76 of 251

5.1.8.4.3 Bluetooth Encryption Parameters (BR/EDR) (FTP_BLT_EXT.3(BR))20

Application Note: FTP_BLT_EXT.3(BR) corresponds to FTP_BLT_EXT.3/BR in the Bluetooth Module.

FTP_BLT_EXT.3.1(BR) The TSF shall set the minimum encryption key size to [128 bits] for
[BR/EDR] and not negotiate encryption key sizes smaller than the
minimum size.

5.1.8.4.4 Bluetooth Encryption Parameters (LE) (FTP_BLT_EXT.3(LE))

Application Note: FTP_BLT_EXT.3(LE) corresponds to FTP_BLT_EXT.3/LE in the Bluetooth Module.

FTP_BLT_EXT.3.1(LE) The TSF shall set the minimum encryption key size to [128 bits] for LE and
not negotiate encryption key sizes smaller than the minimum size.

5.2 TOE Security Assurance Requirements

5.2.1 CC Part 3 Assurance Requirements

The following table is the collection of CC Part 3 assurance requirements from the Protection Profile for

General Purpose Operating Systems.

Table 28 TOE Security Assurance Requirements

Requirement Class Requirement Component

Security Target (ASE) ST Introduction (ASE_INT.1)

Conformance Claims (ASE_CCL.1)

Security Objectives (ASE_OBJ.2)

Extended Components Definition (ASE_ECD.1)

Stated Security Requirements (ASE_REQ.2)

Security Problem Definition (ASE_SPD.1)

TOE Summary Specification (ASE_TSS.1)

Design (ADV) Basic Functional Specification (ADV_FSP.1)

Guidance (AGD) Operational User Guidance (AGD_OPE.1)

Preparative Procedures (AGD_PRE.1)

Lifecycle (ALC) Labeling of the TOE (ALC_CMC.1)

TOE CM Coverage (ALC_CMS.1)

Systematic Flaw Remediation (ALC_FLR.3)

Timely Security Updates (ALC_TSU_EXT.1)

Testing (ATE) Independent Testing – Conformance (ATE_IND.1)

Vulnerability
Assessment (AVA)

Vulnerability Survey (AVA_VAN.1)

20 This PP-module requirement was replaced as part of NIAP Technical Decision 707.

https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0707

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 77 of 251

5.2.1.1 Timely Security Updates (ALC_TSU_EXT.1)

Developer action elements:

ALC-TSU_EXT.1.1D The developer shall provide a description in the TSS of how timely security
updates are made to the OS.

ALC-TSU _EXT.1.2D The developer shall provide a description in the TSS of how users are
notified when updates change security properties or the configuration of
the product.

Content and presentation elements:

ALC-TSU_EXT.1.1C The description shall include the process for creating and deploying
security updates for the OS software.

ALC-TSU _EXT.1.2C The description shall include the mechanisms publicly available for
reporting security issues pertaining to the OS.

Evaluator action elements:

ALC-TSU_EXT.1.1E The evaluator will confirm that the information provided meets all
requirements for content and presentation of evidence.

Evaluation activities:

ALC_TSU_EXT.1

The evaluator will verify that the TSS contains a description of the timely security update process used

by the developer to create and deploy security updates. The evaluator will verify that this description

addresses the entire application. The evaluator will also verify that, in addition to the OS developer's

process, any third-party processes are also addressed in the description. The evaluator will also verify

that each mechanism for deployment of security updates is described. The evaluator will verify that, for

each deployment mechanism described for the update process, the TSS lists a time between public

disclosure of a vulnerability and public availability of the security update to the OS patching this

vulnerability, to include any third-party or carrier delays in deployment. The evaluator will verify that

this time is expressed in a number or range of days. The evaluator will verify that this description

includes the publicly available mechanisms (including either an email address or website) for reporting

security issues related to the OS. The evaluator will verify that the description of this mechanism

includes a method for protecting the report either using a public key for encrypting email or a trusted

channel for a website.

5.2.2 General Purpose OS PP Assurance Activities

This section copies the assurance activities from the protection profile in order to ease reading and

comparisons between the protection profile and the security target.

5.2.2.1 Security Audit (FAU)

5.2.2.1.1 Audit Data Generation (FAU_GEN.1)

FAU_GEN.1.1

Guidance

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 78 of 251

The evaluator will check the administrative guide and ensure that it lists all of the auditable events. The

evaluator will check to make sure that every audit event type selected in the ST is included.

The evaluator will check the administrative guide and ensure that it provides a format for audit records.

Each audit record format type must be covered, along with a brief description of each field. The

evaluator will ensure that the fields contains the information required.

Tests

The evaluator will test the OS's ability to correctly generate audit records by having the TOE generate

audit records for the events listed in the ST. This should include all instance types of an event specified.

When verifying the test results, the evaluator will ensure the audit records generated during testing

match the format specified in the administrative guide, and that the fields in each audit record have the

proper entries.

The evaluator will test the OS's ability to correctly generate audit records by having the TOE generate

audit records for the events listed in the ST. The evaluator will ensure the audit records generated

during testing match the format specified in the administrative guide, and that the fields in each audit

record provide the required information.

The evaluator will check the administrative guide and ensure that it lists all of the auditable events. The

evaluator will check to make sure that every audit event type selected in the ST is included. The

evaluator will test the OS's ability to correctly generate audit records by having the TOE generate audit

records for the events listed in the ST. This should include all instance types of an event specified. When

verifying the test results, the evaluator will ensure the audit records generated during testing match the

format specified in the administrative guide, and that the fields in each audit record have the proper

entries.

FAU_GEN.1.2

The evaluator will check the administrative guide and ensure that it provides a format for audit records.

Each audit record format type must be covered, along with a brief description of each field. The

evaluator will ensure that the fields contains the information required. The evaluator shall test the OS's

ability to correctly generate audit records by having the TOE generate audit records for the events listed

in the ST. The evaluator will ensure the audit records generated during testing match the format

specified in the administrative guide, and that the fields in each audit record provide the required

information.

5.2.2.2 Cryptographic Support (FCS)

5.2.2.2.1 Cryptographic Key Generation (FCS_CKM.1) 21

Tests

The evaluator will ensure that the TSS identifies the key sizes supported by the OS. If the ST specifies

more than one scheme, the evaluator will examine the TSS to verify that it identifies the usage for each

scheme.

21 This protection profile assurance activity was replaced as part of NIAP Technical Decision 501 and 873.

https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0501
https://www.niap-ccevs.org/technical-decisions/TD0873

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 79 of 251

The evaluator will verify that the AGD guidance instructs the administrator how to configure the OS to

use the selected key generation scheme(s) and key size(s) for all uses defined in this PP.

The evaluator will verify the implementation of RSA Key Generation by the OS using the Key Generation

test. This test verifies the ability of the TSF to correctly produce values for the key components including

the public verification exponent e, the private prime factors p and q, the public modulus n and the

calculation of the private signature exponent d. Key Pair generation specifies 5 ways (or methods) to

generate the primes p and q.

These include:

1. Random Primes:

o Provable primes

o Probable primes

2. Primes with Conditions:

o Primes p1, p2, q1,q2, p and q shall all be provable primes

o Primes p1, p2, q1, and q2 shall be provable primes and p and q shall be probable primes

o Primes p1, p2, q1,q2, p and q shall all be probable primes

To test the key generation method for the Random Provable primes method and for all the Primes with

Conditions methods, the evaluator must seed the TSF key generation routine with sufficient data to

deterministically generate the RSA key pair. This includes the random seed(s), the public exponent of

the RSA key, and the desired key length. For each key length supported, the evaluator shall have the TSF

generate 25 key pairs. The evaluator will verify the correctness of the TSF's implementation by

comparing values generated by the TSF with those generated from a known good implementation.

If possible, the Random Probable primes method should also be verified against a known good

implementation as described above. Otherwise, the evaluator will have the TSF generate 10 keys pairs

for each supported key length nlen and verify:

• n = p⋅q,

• p and q are probably prime according to Miller-Rabin tests,

• GCD(p-1,e) = 1,

• GCD(q-1,e) = 1,

• 216 ≤ e ≤ 2256 and e is an odd integer,

• |p-q| > 2nlen/2 - 100,

• p ≥ 2nlen/2 -1/2,

• q ≥ 2nlen/2 -1/2,

• 2(nlen/2) < d < LCM(p-1,q-1),

• e⋅d = 1 mod LCM(p-1,q-1).

Key Generation for Elliptic Curve Cryptography (ECC)

FIPS 186-5 ECC Key Generation Test

For each supported NIST curve, i.e., P-384 and P-521, the evaluator will require the implementation

under test (IUT) to generate 10 private/public key pairs. The private key shall be generated using an

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 80 of 251

approved random bit generator (RBG). To determine correctness, the evaluator will submit the

generated key pairs to the public key verification (PKV) function of a known good implementation.

FIPS 186-5 Public Key Verification (PKV) Test

For each supported NIST curve, i.e., P-384 and P-521, the evaluator will generate 10 private/public key

pairs using the key generation function of a known good implementation and modify five of the public

key values so that they are incorrect, leaving five values unchanged (i.e., correct). The evaluator will

obtain in response a set of 10 PASS/FAIL values.

Key Generation for Finite-Field Cryptography (FFC)

 The evaluator will verify the implementation of the Parameters Generation and the Key Generation for

FFC by the TOE using the Parameter Generation and Key Generation test. This test verifies the ability of

the TSF to correctly produce values for the field prime p, the cryptographic prime q (dividing p-1), the

cryptographic group generator g, and the calculation of the private key x and public key y.

The Parameter generation specifies 2 ways (or methods) to generate the cryptographic prime q and the

field prime p:

• Cryptographic and Field Primes:

o Primes q and p shall both be provable primes

o Primes q and field prime p shall both be probable primes

and two ways to generate the cryptographic group generator g:

• Cryptographic Group Generator:

o Generator g constructed through a verifiable process

o Generator g constructed through an unverifiable process

The Key generation specifies 2 ways to generate the private key x:

• Private Key:

o len(q) bit output of RBG where 1 ≤ x ≤ q-1

o len(q) + 64 bit output of RBG, followed by a mod q-1 operation where 1 ≤ x ≤ q-1

The security strength of the RBG must be at least that of the security offered by the FFC parameter set.

To test the cryptographic and field prime generation method for the provable primes method and/or

the group generator g for a verifiable process, the evaluator must seed the TSF parameter generation

routine with sufficient data to deterministically generate the parameter set. For each key length

supported, the evaluator will have the TSF generate 25 parameter sets and key pairs. The evaluator will

verify the correctness of the TSF's implementation by comparing values generated by the TSF with those

generated from a known good implementation. Verification must also confirm:

• g != 0,1

• q divides p-1

• gq mod p = 1

• gx mod p = y

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 81 of 251

for each FFC parameter set and key pair.

Diffie-Hellman Group 14 and FFC Schemes using "safe-prime" groups

Testing for FFC Schemes using Diffie-Hellman group 14 and/or "safe-prime" groups is done as part of

testing in FCS_CKM.2.1

5.2.2.2.2 Cryptographic Key Establishment (FCS_CKM.2)22

Tests

The evaluator will ensure that the supported key establishment schemes correspond to the key

generation schemes identified in FCS_CKM.1.1. If the ST specifies more than one scheme, the evaluator

will examine the TSS to verify that it identifies the usage for each scheme.

The evaluator will verify that the AGD guidance instructs the administrator how to configure the OS to

use the selected key establishment scheme(s).

Evaluation Activity Note: The following tests require the developer to provide access to a test platform

that provides the evaluator with tools that are typically not found on factory products.

Key Establishment Schemes

The evaluator will verify the implementation of the key establishment schemes supported by the OS

using the applicable tests below.

SP800-56A Key Establishment Schemes

The evaluator will verify the OS's implementation of SP800-56A key agreement schemes using the

following Function and Validity tests. These validation tests for each key agreement scheme verify that

the OS has implemented the components of the key agreement scheme according to the specifications

in the Recommendation. These components include the calculation of the discrete logarithm

cryptography (DLC) primitives (the shared secret value Z) and the calculation of the derived keying

material (DKM) via the Key Derivation Function (KDF). If key confirmation is supported, the evaluator will

also verify that the components of key confirmation have been implemented correctly, using the test

procedures described below. This includes the parsing of the DKM, the generation of MAC data and the

calculation of MAC tag.

Function Test

The Function test verifies the ability of the OS to implement the key agreement schemes

correctly. To conduct this test the evaluator will generate or obtain test vectors from a known

good implementation of the OS's supported schemes. For each supported key agreement

scheme-key agreement role combination, KDF type, and, if supported, key confirmation role-

key confirmation type combination, the tester shall generate 10 sets of test vectors. The data

set consists of the NIST approved curve (ECC) per 10 sets of public keys. These keys are static,

ephemeral or both depending on the scheme being tested.

22 This protection profile assurance activity was modified as part of NIAP Technical Decision 501.

https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0501

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 82 of 251

The evaluator will obtain the DKM, the corresponding OS's public keys (static and/or

ephemeral), the MAC tag(s), and any inputs used in the KDF, such as the Other Information field

OI and OS id fields.

If the OS does not use a KDF defined in SP 800-56A, the evaluator will obtain only the public keys

and the hashed value of the shared secret.

The evaluator will verify the correctness of the TSF's implementation of a given scheme by using

a known good implementation to calculate the shared secret value, derive the keying material

DKM, and compare hashes or MAC tags generated from these values.

If key confirmation is supported, the OS shall perform the above for each implemented

approved MAC algorithm.

Validity Test

The Validity test verifies the ability of the OS to recognize another party's valid and invalid key

agreement results with or without key confirmation. To conduct this test, the evaluator will

obtain a list of the supporting cryptographic functions included in the SP800-56A key agreement

implementation to determine which errors the OS should be able to recognize. The evaluator

generates a set of 30 test vectors consisting of data sets including domain parameter values or

NIST approved curves, the evaluator's public keys, the OS's public/private key pairs, MAC tag,

and any inputs used in the KDF, such as the other info and OS id fields.

The evaluator will inject an error in some of the test vectors to test that the OS recognizes

invalid key agreement results caused by the following fields being incorrect: the shared secret

value Z, the DKM, the other information field OI, the data to be MAC'd, or the generated MAC

tag. If the OS contains the full or partial (only ECC) public key validation, the evaluator will also

individually inject errors in both parties' static public keys, both parties' ephemeral public keys

and the OS's static private key to assure the OS detects errors in the public key validation

function and/or the partial key validation function (in ECC only). At least two of the test vectors

shall remain unmodified and therefore should result in valid key agreement results (they should

pass).

The OS shall use these modified test vectors to emulate the key agreement scheme using the

corresponding parameters. The evaluator will compare the OS's results with the results using a

known good implementation verifying that the OS detects these errors.

RSAES-PKCS1-v1_5 Key Establishment Schemes

The evaluator shall verify the correctness of the TSF's implementation of RSAES-PKCS1-v1_5 by using a

known good implementation for each protocol selected in FTP_ITC_EXT.1 that uses RSAES-PKCS1-v1_5.

Diffie-Hellman Group 14

The evaluator shall verify the correctness of the TSF's implementation of Diffie-Hellman group 14 by

using a known good implementation for each protocol selected in FTP_ITC_EXT.1 that uses Diffie-

Hellman Group 14.

FFC Schemes using "safe-prime" groups (identified in Appendix D of SP 800-56A Revision 3)

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 83 of 251

The evaluator shall verify the correctness of the TSF's implementation of "safe-prime" groups by using a

known good implementation for each protocol selected in FTP_ITC_EXT.1 that uses "safe-prime" groups.

This test must be performed for each "safe-prime" group that each protocol uses.

5.2.2.2.3 Cryptographic Key Destruction (FCS_CKM_EXT.4)23

TSS

The evaluator examines the TSS to ensure it describes how the keys are managed in volatile memory.

This description includes details of how each identified key is introduced into volatile memory (e.g. by

derivation from user input, or by unwrapping a wrapped key stored in non-volatile memory) and how

they are overwritten.

The evaluator will check to ensure the TSS lists each type of key that is stored in in non-volatile memory,

and identifies how the TOE interacts with the underlying platform to manage keys (e.g., store, retrieve,

destroy). The description includes details on the method of how the TOE interacts with the platform,

including an identification and description of the interfaces it uses to manage keys (e.g., file system APIs,

platform key store APIs).

If the ST makes use of the open assignment and fills in the type of pattern that is used, the evaluator

examines the TSS to ensure it describes how that pattern is obtained and used. The evaluator will verify

that the pattern does not contain any CSPs.

The evaluator will check that the TSS identifies any configurations or circumstances that may not strictly

conform to the key destruction requirement.

If the selection “destruction of all key encrypting keys protecting target key according to

FCS_CKM_EXT.4.1, where none of the KEKs protecting the target key are derived” is included the

evaluator shall examine the TOE’s keychain in the TSS and identify each instance when a key is

destroyed by this method. In each instance the evaluator shall verify all keys capable of decrypting the

target key are destroyed in accordance with a specified key destruction method in FCS_CKM_EXT.4.1

The evaluator shall verify that all of the keys capable of decrypting the target key are not able to be

derived to reestabish the keychain after their destruction.

Operational Guidance

There are a variety of concerns that may prevent or delay key destruction in some cases. The evaluator

will check that the guidance documentation identifies configurations or circumstances that may not

strictly conform to the key destruction requirement, and that this description is consistent with the

relevant parts of the TSS and any other relevant Required Supplementary Information. The evaluator

will check that the guidance documentation provides guidance on situations where key destruction may

be delayed at the physical layer and how such situations can be avoided or mitigated if possible.

Some examples of what is expected to be in the documentation are provided here.

23 This protection profile assurance activity was replaced as part of NIAP Technical Decision 365.

https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?td_id=375

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 84 of 251

When the TOE does not have full access to the physical memory, it is possible that the storage may be

implementing wear-leveling and garbage collection. This may create additional copies of the key that are

logically inaccessible but persist physically. In this case, to mitigate this the drive should support the

TRIM command and implements garbage collection to destroy these persistent copies when not actively

engaged in other tasks.

Drive vendors implement garbage collection in a variety of different ways, as such there is a variable

amount of time until data is truly removed from these solutions. There is a risk that data may persist for

a longer amount of time if it is contained in a block with other data not ready for erasure. To reduce this

risk, the operating system and file system of the OE should support TRIM, instructing the non-volatile

memory to erase copies via garbage collection upon their deletion. If a RAID array is being used, only

set-ups that support TRIM are utilized. If the drive is connected via PCI-Express, the operating system

supports TRIM over that channel.

The drive should be healthy and contains minimal corrupted data and should be end-of-lifed before a

significant amount of damage to drive health occurs, this minimizes the risk that small amounts of

potentially recoverable data may remain in damaged areas of the drive.

Tests

• Test 1: Applied to each key held as in volatile memory and subject to destruction by overwrite

by the TOE (whether or not the value is subsequently encrypted for storage in volatile or non-

volatile memory). In the case where the only selection made for the destruction method key

was removal of power, then this test is unnecessary. The evaluator will:

1. Record the value of the key in the TOE subject to clearing.

2. Cause the TOE to perform a normal cryptographic processing with the key from Step #1.

3. Cause the TOE to clear the key.

4. Cause the TOE to stop the execution but not exit.

5. Cause the TOE to dump the entire memory of the TOE into a binary file.

6. Search the content of the binary file created in Step #5 for instances of the known key

value from Step #1.

Steps 1-6 ensure that the complete key does not exist anywhere in volatile memory. If a copy is

found, then the test fails.

• Test 2: Applied to each key help in non-volatile memory and subject to destruction by the TOE.

The evaluator will use special tools (as needed), provided by the TOE developer if necessary, to

ensure the tests function as intended.

1. Identify the purpose of the key and what access should fail when it is deleted. (e.g. the

data encryption key being deleted would cause data decryption to fail.)

2. Cause the TOE to clear the key.

3. Have the TOE attempt the functionality that the cleared key would be necessary for.

The test succeeds if step 3 fails.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 85 of 251

 Tests 3 and 4 do not apply for the selection instructing the underlying platform to destroy the

representation of the key, as the TOE has no visibility into the inner workings and completely relies on

the underlying platform.

• Test 3: The following tests are used to determine the TOE is able to request the platform to

overwrite the key with a TOE supplied pattern.

Applied to each key held in non-volatile memory and subject to destruction by overwrite by the TOE.

The evaluator will use a tool that provides a logical view of the media (e.g., MBR file system):

1. Record the value of the key in the TOE subject to clearing.

2. Cause the TOE to perform a normal cryptographic processing with the key from Step #1.

3. Cause the TOE to clear the key.

4. Search the logical view that the key was stored in for instances of the known key value from

Step #1. If a copy is found, then the test fails.

• Test 4: Applied to each key held as non-volatile memory and subject to destruction by overwrite

by the TOE. The evaluator will use a tool that provides a logical view of the media:

1. Record the logical storage location of the key in the TOE subject to clearing.

2. Cause the TOE to perform a normal cryptographic processing with the key from Step #1.

3. Cause the TOE to clear the key.

4. Read the logical storage location in Step #1 of non-volatile memory to ensure the

appropriate pattern is utilized.

The test succeeds if correct pattern is used to overwrite the key in the memory location. If the

pattern is not found the test fails.

5.2.2.2.4 Cryptographic Operation for Encryption / Decryption (FCS_COP.1(ENCRYPT))

Guidance

The evaluator will verify that the AGD documents contains instructions required to configure the OS to

use the required modes and key sizes.

Tests

The evaluator will execute all instructions as specified to configure the OS to the appropriate state. The

evaluator will perform all of the following tests for each algorithm implemented by the OS and used to

satisfy the requirements of this PP:

AES-CBC Known Answer Tests

There are four Known Answer Tests (KATs), described below. In all KATs, the plaintext, ciphertext, and IV

values shall be 128-bit blocks. The results from each test may either be obtained by the evaluator

directly or by supplying the inputs to the implementer and receiving the results in response. To

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 86 of 251

determine correctness, the evaluator will compare the resulting values to those obtained by submitting

the same inputs to a known good implementation.

• Test 5. To test the encrypt functionality of AES-CBC, the evaluator will supply a set of 5 plaintext

values and obtain the ciphertext value that results from AES-CBC encryption of the given

plaintext using a key value of all zeros and an IV of all zeros. Five plaintext values shall be

encrypted with a 128-bit all-zeros key, and the other five shall be encrypted with a 256-bit all-

zeros key. To test the decrypt functionality of AES-CBC, the evaluator will perform the same test

as for encrypt, using 10 ciphertext values as input and AES-CBC decryption.

• Test 6. To test the encrypt functionality of AES-CBC, the evaluator will supply a set of 5 key

values and obtain the ciphertext value that results from AES-CBC encryption of an all-zeros

plaintext using the given key value and an IV of all zeros. Five of the keys shall be 128bit keys,

and the other five shall be 256-bit keys. To test the decrypt functionality of AES-CBC, the

evaluator will perform the same test as for encrypt, using an all-zero ciphertext value as input

and AES-CBC decryption.

• Test 7. To test the encrypt functionality of AES-CBC, the evaluator will supply the a sets of key

values described below and obtain the ciphertext value that results from AES encryption of an

all-zeros plaintext using the given key value and an IV of all zeros. Key i will have the leftmost i

bits be ones and the rightmost N-i bits be zeros, for i in [1,N]. To test the decrypt functionality of

AES-CBC, the evaluator will supply the set of key and ciphertext value pairs described below and

obtain the plaintext value that results from AES-CBC decryption of the given ciphertext using the

given key and an IV of all zeros. The set of key/ciphertext pairs will have 256 256-bit

key/ciphertext pairs. Key i in each set will have the leftmost i bits be ones and the rightmost N-i

bits be zeros, for i in [1,N]. The ciphertext value in each pair will be the value that results in an

all-zeros plaintext when decrypted with its corresponding key..

• Test 8. To test the encrypt functionality of AES-CBC, the evaluator will supply the set of 256

plaintext values described below and obtain the ciphertext values that result from AES-CBC

encryption of the given plaintext using a 256-bit key value of all zeros with an IV of all zeros.

Plaintext value i in each set will have the leftmost i bits be ones and the rightmost 256-i bits be

zeros, for i in [1,256].

To test the decrypt functionality of AES-CBC, the evaluator will perform the same test as for encrypt,

using ciphertext values of the same form as the plaintext in the encrypt test as input and AES-CBC

decryption.

AES-CBC Multi-Block Message Test

The evaluator will test the encrypt functionality by encrypting an i-block message where 1 < i ≤ 10. The

evaluator will choose a key, an IV and plaintext message of length i blocks and encrypt the message,

using the mode to be tested, with the chosen key and IV. The ciphertext shall be compared to the result

of encrypting the same plaintext message with the same key and IV using a known good

implementation. The evaluator will also test the decrypt functionality for each mode by decrypting an i-

block message where 1 < i ≤10. The evaluator will choose a key, an IV and a ciphertext message of length

i blocks and decrypt the message, using the mode to be tested, with the chosen key and IV. The

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 87 of 251

plaintext shall be compared to the result of decrypting the same ciphertext message with the same key

and IV using a known good implementation.

AES-CBC Monte Carlo Tests

The evaluator will test the encrypt functionality using a set of 200 plaintext, IV, and key 3- tuples. 100 of

these shall use 128 bit keys, and 100 shall use 256 bit keys. The plaintext and IV values shall be 128-bit

blocks. For each 3-tuple, 1000 iterations shall be run as follows:

Input: PT, IV, Key

for i = 1 to 1000:

if i == 1:

CT[1] = AES-CBC-Encrypt(Key, IV, PT)

PT = IV

else:

CT[i] = AES-CBC-Encrypt(Key, PT)

PT = CT[i-1]

The ciphertext computed in the 1000th iteration (i.e., CT[1000]) is the result for that trial. This result

shall be compared to the result of running 1000 iterations with the same values using a known good

implementation. The evaluator will test the decrypt functionality using the same test as for encrypt,

exchanging CT and PT and replacing AES-CBC-Encrypt with AESCBC-Decrypt.

AES-CTR Test

Known Answer Tests (KATs) There are four Known Answer Tests (KATs) described below. For all KATs,

the plaintext, initialization vector (IV), and ciphertext values shall be 256-bit blocks. The results from

each test may either be obtained by the validator directly or by supplying the inputs to the implementer

and receiving the results in response. To determine correctness, the evaluator will compare the resulting

values to those obtained by submitting the same inputs to a known good implementation.

• Test 9: To test the encrypt functionality, the evaluator will supply 5 plaintext values and obtain

the ciphertext value that results from encryption of the given plaintext using a 256-bit key value

of all zeros and an IV of all zeros. To test the decrypt functionality, the evaluator will perform

the same test as for encrypt, using the 5 ciphertext values as input.

• Test 10: To test the encrypt functionality, the evaluator will supply 5 256-bit key values and

obtain the ciphertext value that results from encryption of an all zeros plaintext using the given

key value and an IV of all zeros. To test the decrypt functionality, the evaluator will perform the

same test as for encrypt, using an all zero ciphertext value as input.

• Test 11: To test the encrypt functionality, the evaluator will supply a set of key values described

below and obtain the ciphertext values that result from AES encryption of an all zeros plaintext

using the given key values and an IV of all zeros. The set of keys shall have shall have 256 256-bit

keys. Keyi shall have the leftmost i bits be ones and the rightmost 256-i bits be zeros, for i in [1,

N]. To test the decrypt functionality, the evaluator will supply the set of key and ciphertext value

pairs described below and obtain the plaintext value that results from decryption of the given

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 88 of 251

ciphertext using the given key values and an IV of all zeros. The set of key/ciphertext pairs shall

have 256 256-bit pairs. Keyi shall have the leftmost i bits be ones and the rightmost 256-i bits be

zeros for i in [1, N]. The ciphertext value in each pair shall be the value that results in an all zeros

plaintext when decrypted with its corresponding key.

• Test 12: To test the encrypt functionality, the evaluator will supply the set of 256 plaintext

values described below and obtain the two ciphertext values that result from encryption of the

given plaintext using a 256 bit key value of all zeros, respectively, and an IV of all zeros. Plaintext

value i in each set shall have the leftmost bits be ones and the rightmost 256-i bits be zeros, for i

in [1, 256]. To test the decrypt functionality, the evaluator will perform the same test as for

encrypt, using ciphertext values of the same form as the plaintext in the encrypt test as input

AES-GCM Monte Carlo Tests

The evaluator will test the authenticated encrypt functionality of AES-GCM for each combination of the

following input parameter lengths:

• 256 bit keys

• Two plaintext lengths. One of the plaintext lengths shall be a non-zero integer multiple of 128

bits, if supported. The other plaintext length shall not be an integer multiple of 128 bits, if

supported.

• Three AAD lengths. One AAD length shall be 0, if supported. One AAD length shall be a non-zero

integer multiple of 128 bits, if supported. One AAD length shall not be an integer multiple of 128

bits, if supported.

• Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV lengths tested.

The evaluator will test the encrypt functionality using a set of 10 key, plaintext, AAD, and IV tuples for

each combination of parameter lengths above and obtain the ciphertext value and tag that results from

AES-GCM authenticated encrypt. Each supported tag length shall be tested at least once per set of 10.

The IV value may be supplied by the evaluator or the implementation being tested, as long as it is

known.

The evaluator will test the decrypt functionality using a set of 10 key, ciphertext, tag, AAD, and IV 5-

tuples for each combination of parameter lengths above and obtain a Pass/Fail result on authentication

and the decrypted plaintext if Pass. The set shall include five tuples that Pass and five that Fail.

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to

the implementer and receiving the results in response. To determine correctness, the evaluator will

compare the resulting values to those obtained by submitting the same inputs to a known good

implementation.

AES-CCM Tests

The evaluator will test the generation-encryption and decryption-verification functionality of AES-CCM

for the following input parameter and tag lengths:

• 256 bit key

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 89 of 251

• Two payload lengths. One payload length shall be the shortest supported payload length,

greater than or equal to zero bytes. The other payload length shall be the longest supported

payload length, less than or equal to 32 bytes (256 bits).

• Two or three associated data lengths. One associated data length shall be 0, if supported. One

associated data length shall be the shortest supported payload length, greater than or equal to

zero bytes. One associated data length shall be the longest supported payload length, less than

or equal to 32 bytes (256 bits). If the implementation supports an associated data length of 2 16

bytes, an associated data length of 216 bytes shall be tested.

• Nonce lengths. All supported nonce lengths between 7 and 13 bytes, inclusive, shall be tested.

• Tag lengths. All supported tag lengths of 4, 6, 8, 10, 12, 14 and 16 bytes shall be tested.

To test the generation-encryption functionality of AES-CCM, the evaluator will perform the following

four tests:

• Test 13: For EACH supported key and associated data length and ANY supported payload, nonce

and tag length, the evaluator will supply one key value, one nonce value and 10 pairs of

associated data and payload values and obtain the resulting ciphertext.

• Test 14: For EACH supported key and payload length and ANY supported associated data, nonce

and tag length, the evaluator will supply one key value, one nonce value and 10 pairs of

associated data and payload values and obtain the resulting ciphertext.

• Test 15: For EACH supported key and nonce length and ANY supported associated data, payload

and tag length, the evaluator will supply one key value and 10 associated data, payload and

nonce value 3-tuples and obtain the resulting ciphertext.

• Test 16: For EACH supported key and tag length and ANY supported associated data, payload

and nonce length, the evaluator will supply one key value, one nonce value and 10 pairs of

associated data and payload values and obtain the resulting ciphertext.

To determine correctness in each of the above tests, the evaluator will compare the ciphertext with the

result of generation-encryption of the same inputs with a known good implementation.

To test the decryption-verification functionality of AES-CCM, for EACH combination of supported

associated data length, payload length, nonce length and tag length, the evaluator shall supply a key

value and 15 nonce, associated data and ciphertext 3-tuples and obtain either a FAIL result or a PASS

result with the decrypted payload. The evaluator will supply 10 tuples that should FAIL and 5 that should

PASS per set of 15.

Additionally, the evaluator will use tests from the IEEE 802.11-02/362r6 document "Proposed Test

vectors for IEEE 802.11 TGi", dated September 10, 2002, Section 2.1 AESCCMP Encapsulation Example

and Section 2.2 Additional AES CCMP Test Vectors to further verify the IEEE 802.11-2007

implementation of AES-CCMP.

AES-GCM Test

The evaluator will test the authenticated encrypt functionality of AES-GCM for each combination of the

following input parameter lengths:

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 90 of 251

• 128 bit and 256 bit keys

• Two plaintext lengths. One of the plaintext lengths shall be a non-zero integer multiple of 128

bits, if supported. The other plaintext length shall not be an integer multiple of 128 bits, if

supported.

• Three AAD lengths. One AAD length shall be 0, if supported. One AAD length shall be a non-zero

integer multiple of 128 bits, if supported. One AAD length shall not be an integer multiple of 128

bits, if supported.

• Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV lengths tested.

The evaluator will test the encrypt functionality using a set of 10 key, plaintext, AAD, and IV tuples for

each combination of parameter lengths above and obtain the ciphertext value and tag that results from

AES-GCM authenticated encrypt. Each supported tag length shall be tested at least once per set of 10.

The IV value may be supplied by the evaluator or the implementation being tested, as long as it is

known.

The evaluator will test the decrypt functionality using a set of 10 key, ciphertext, tag, AAD, and IV 5-

tuples for each combination of parameter lengths above and obtain a Pass/Fail result on authentication

and the decrypted plaintext if Pass. The set shall include five tuples that Pass and five that Fail.

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to

the implementer and receiving the results in response. To determine correctness, the evaluator will

compare the resulting values to those obtained by submitting the same inputs to a known good

implementation.

XTS-AES Test

The evaluator will test the encrypt functionality of XTS-AES for each combination of the following input

parameter lengths:

• 256 bit (for AES-128) and 512 bit (for AES-256) keys

• Three data unit (i.e., plaintext) lengths. One of the data unit lengths shall be a nonzero integer

multiple of 128 bits, if supported. One of the data unit lengths shall be an integer multiple of

128 bits, if supported. The third data unit length shall be either the longest supported data unit

length or 216 bits, whichever is smaller.

using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples and obtain the ciphertext

that results from XTS-AES encrypt.

The evaluator may supply a data unit sequence number instead of the tweak value if the

implementation supports it. The data unit sequence number is a base-10 number ranging between 0

and 255 that implementations convert to a tweak value internally.

The evaluator will test the decrypt functionality of XTS-AES using the same test as for encrypt, replacing

plaintext values with ciphertext values and XTS-AES encrypt with XTSAES decrypt.

AES Key Wrap (AES-KW) Test

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 91 of 251

The evaluator will test the authenticated encryption functionality of AES-KW for EACH combination of

the following input parameter lengths:

• 256 bit key encryption keys (KEKs)

• Three plaintext lengths. One of the plaintext lengths shall be two semi-blocks (128 bits). One of

the plaintext lengths shall be three semi-blocks (192 bits). The third data unit length shall be the

longest supported plaintext length less than or equal to 64 semi-blocks (4096 bits).

using a set of 100 key and plaintext pairs and obtain the ciphertext that results from AES-KW

authenticated encryption. To determine correctness, the evaluator will use the AES-KW authenticated-

encryption function of a known good implementation.

The evaluator will test the authenticated-decryption functionality of AES-KW using the same test as for

authenticated-encryption, replacing plaintext values with ciphertext values and AES-KW authenticated-

encryption with AES-KW authenticated-decryption.

The evaluator will test the authenticated-encryption functionality of AES-KWP using the same test as for

AES-KW authenticated-encryption with the following change in the three plaintext lengths: One

plaintext length shall be one octet.

• One plaintext length shall be 20 octets (160 bits).

• One plaintext length shall be the longest supported plaintext length less than or equal to 512

octets (4096 bits).

5.2.2.2.5 Cryptographic Operation for Hashing (FCS_COP.1(HASH))

Tests

The evaluator will check that the association of the hash function with other application cryptographic

functions (for example, the digital signature verification function) is documented in the TSS.

The TSF hashing functions can be implemented in one of two modes. The first mode is the byte-oriented

mode. In this mode the TSF only hashes messages that are an integral number of bytes in length; i.e.,

the length (in bits) of the message to be hashed is divisible by 8. The second mode is the bit-oriented

mode. In this mode the TSF hashes messages of arbitrary length. As there are different tests for each

mode, an indication is given in the following sections for the bit-oriented vs. the byte-oriented test

MACs. The evaluator will perform all of the following tests for each hash algorithm implemented by the

TSF and used to satisfy the requirements of this PP.

The following tests require the developer to provide access to a test application that provides the

evaluator with tools that are typically not found in the production application.

• Test 17: Short Messages Test (Bit oriented Mode) - The evaluator will generate an input set

consisting of m+1 messages, where m is the block length of the hash algorithm. The length of

the messages range sequentially from 0 to m bits. The message text shall be pseudo-randomly

generated. The evaluator will compute the message digest for each of the messages and ensure

that the correct result is produced when the messages are provided to the TSF.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 92 of 251

• Test 18: Short Messages Test (Byte oriented Mode) - The evaluator will generate an input set

consisting of m/8+1 messages, where m is the block length of the hash algorithm. The length of

the messages range sequentially from 0 to m/8 bytes, with each message being an integral

number of bytes. The message text shall be pseudo-randomly generated. The evaluator will

compute the message digest for each of the messages and ensure that the correct result is

produced when the messages are provided to the TSF.

• Test 19: Selected Long Messages Test (Bit oriented Mode) - The evaluator will generate an input

set consisting of m messages, where m is the block length of the hash algorithm. The length of

the ith message is 512 + 99⋅i, where 1 ≤ i ≤ m. The message text shall be pseudo-randomly

generated. The evaluator will compute the message digest for each of the messages and ensure

that the correct result is produced when the messages are provided to the TSF.

• Test 20: Selected Long Messages Test (Byte oriented Mode) - The evaluator will generate an

input set consisting of m/8 messages, where m is the block length of the hash algorithm. The

length of the ith message is 512 + 8⋅99⋅i, where 1 ≤ i ≤ m/8. The message text shall be pseudo-

randomly generated. The evaluator will compute the message digest for each of the messages

and ensure that the correct result is produced when the messages are provided to the TSF.

• Test 21: Pseudo-randomly Generated Messages Test - This test is for byte-oriented

implementations only. The evaluator will randomly generate a seed that is n bits long, where n

is the length of the message digest produced by the hash function to be tested. The evaluator

will then formulate a set of 100 messages and associated digests by following the algorithm

provided in Figure 1 of [SHAVS]. The evaluator will then ensure that the correct result is

produced when the messages are provided to the TSF.

5.2.2.2.6 Cryptographic Operation for Signing (FCS_COP.1(SIGN))24

Tests

The following tests require the developer to provide access to a test application that provides the

evaluator with tools that are typically not found in the production application.

ECDSA Algorithm Tests

• Test 22: ECDSA FIPS 186-5 Signature Generation Test. For each supported NIST curve (i.e., P-384

and P-521) and SHA function pair, the evaluator will generate 10 1024-bit long messages and

obtain for each message a public key and the resulting signature values R and S. To determine

correctness, the evaluator will use the signature verification function of a known good

implementation.

• Test 2: ECDSA FIPS 186-5 Signature Verification Test. For each supported NIST curve (i.e., P-384

and P-521) and SHA function pair, the evaluator will generate a set of 10 1024-bit message,

public key and signature tuples and modify one of the values (message, public key or signature)

24 These assurance activities were modified as part of NIAP Technical Decision 873.

https://www.niap-ccevs.org/technical-decisions/TD0873

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 93 of 251

in five of the 10 tuples. The evaluator will verify that 5 responses indicate success and 5

responses indicate failure.

TSS

[Conditional: if “2048-bit (for secure boot only) or greater” is selected] The evaluator shall check that the

TSS documents that 2048-bit RSA is used only for secure boot and a greater key size is used for any

other functions.

Guidance

[Conditional: if “2048-bit (for secure boot only) or greater” is selected] The evaluator shall check that the

AGD documents any configuration needed to ensure 2048-bit RSA is used only for secure boot and a

greater key size is used for any other functions.

RSA Signature Algorithm Tests

• Test 24: Signature Generation Test. The evaluator will verify the implementation of RSA

Signature Generation by the OS using the Signature Generation Test. To conduct this test the

evaluator must generate or obtain 10 messages from a trusted reference implementation for

each modulus size/SHA combination supported by the TSF. The evaluator will have the OS use

its private key and modulus value to sign these messages. The evaluator will verify the

correctness of the TSF's signature using a known good implementation and the associated public

keys to verify the signatures.

• Test 25: Signature Verification Test. The evaluator will perform the Signature Verification test to

verify the ability of the OS to recognize another party's valid and invalid signatures. The

evaluator will inject errors into the test vectors produced during the Signature Verification Test

by introducing errors in some of the public keys, e, messages, IR format, and/or signatures. The

evaluator will verify that the OS returns failure when validating each signature.

5.2.2.2.7 Cryptographic Operation for Keyed Hash Algorithms (FCS_COP.1(HMAC))

Tests

The evaluator will perform the following activities based on the selections in the ST.

For each of the supported parameter sets, the evaluator will compose 15 sets of test data. Each set shall

consist of a key and message data. The evaluator will have the OS generate HMAC tags for these sets of

test data. The resulting MAC tags shall be compared against the result of generating HMAC tags with the

same key and IV using a known-good implementation

5.2.2.2.8 Random Bit Generation (FCS_RBG_EXT.1)

FCS_RBG_EXT.1.1

Tests

The evaluator will perform the following tests:

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 94 of 251

The evaluator will perform 15 trials for the RNG implementation. If the RNG is configurable, the

evaluator will perform 15 trials for each configuration. The evaluator will also confirm that the

operational guidance contains appropriate instructions for configuring the RNG functionality.

If the RNG has prediction resistance enabled, each trial consists of (1) instantiate DRBG, (2) generate the

first block of random bits (3) generate a second block of random bits (4) un-instantiate. The evaluator

verifies that the second block of random bits is the expected value. The evaluator will generate eight

input values for each trial. The first is a count (0 – 14). The next three are entropy input, nonce, and

personalization string for the instantiate operation. The next two are additional input and entropy input

for the first call to generate. The final two are additional input and entropy input for the second call to

generate. These values are randomly generated. "generate one block of random bits" means to

generate random bits with number of returned bits equal to the Output Block Length (as defined in NIST

SP 800-90A).

If the RNG does not have prediction resistance, each trial consists of (1) instantiate DRBG, (2) generate

the first block of random bits (3) reseed, (4) generate a second block of random bits (5) un-instantiate.

The evaluator verifies that the second block of random bits is the expected value. The evaluator will

generate eight input values for each trial. The first is a count (0 – 14). The next three are entropy input,

nonce, and personalization string for the instantiate operation. The fifth value is additional input to the

first call to generate. The sixth and seventh are additional input and entropy input to the call to reseed.

The final value is additional input to the second generate call.

The following list contains more information on some of the input values to be generated/selected by

the evaluator.

• Entropy input: The length of the entropy input value must equal the seed length.

• Nonce: If a nonce is supported (CTR_DRBG with no Derivation Function does not use a nonce),

the nonce bit length is one-half the seed length.

• Personalization string: The length of the personalization string must be less than or equal to

seed length. If the implementation only supports one personalization string length, then the

same length can be used for both values. If more than one string length is support, the evaluator

will use personalization strings of two different lengths. If the implementation does not use a

personalization string, no value needs to be supplied.

• Additional input: The additional input bit lengths have the same defaults and restrictions as the

personalization string lengths.

Documentation shall be produced - and the evaluator will perform the activities - in accordance with

Appendix E – Entropy Documentation and Assessment and the Clarification to the Entropy

Documentation and Assessment Annex. In the future, specific statistical testing (in line with NIST SP 800-

90B) will be required to verify the entropy estimates.

5.2.2.2.9 Storage of Sensitive Data (FCS_STO_EXT.1)

TSS

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 95 of 251

The evaluator will check the TSS to ensure that it lists all persistent sensitive data for which the OS

provides a storage capability. For each of these items, the evaluator will confirm that the TSS lists for

what purpose it can be used, and how it is stored.

Guidance

The evaluator will confirm that cryptographic operations used to protect the data occur as specified in

FCS_COP.1(1).

The evaluator will also consult the developer documentation to verify that an interface exists for

applications to securely store credentials.

5.2.2.3 User Data Protection (FDP)

5.2.2.3.1 Access Controls for Protecting User Data (FDP_ACF_EXT.1)

TSS

The evaluator will confirm that the TSS comprehensively describes the access control policy enforced by

the OS. The description must include the rules by which accesses to particular files and directories are

determined for particular users. The evaluator will inspect the TSS to ensure that it describes the access

control rules in such detail that given any possible scenario between a user and a file governed by the

OS the access control decision is unambiguous.

Tests

The evaluator will create two new standard user accounts on the system and conduct the following

tests:

• Test 26: The evaluator will authenticate to the system as the first user and create a file within

that user's home directory. The evaluator will then log off the system and log in as the second

user. The evaluator will then attempt to read the file created in the first user's home directory.

The evaluator will ensure that the read attempt is denied.

• Test 27: The evaluator will authenticate to the system as the first user and create a file within

that user's home directory. The evaluator will then log off the system and log in as the second

user. The evaluator will then attempt to modify the file created in the first user's home

directory. The evaluator will ensure that the modification is denied.

• Test 28: The evaluator will authenticate to the system as the first user and create a file within

that user's user directory. The evaluator will then log off the system and log in as the second

user. The evaluator will then attempt to delete the file created in the first user's home directory.

The evaluator will ensure that the deletion is denied.

• Test 29: The evaluator will authenticate to the system as the first user. The evaluator will

attempt to create a file in the second user's home directory. The evaluator will ensure that the

creation of the file is denied.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 96 of 251

• Test 30: The evaluator will authenticate to the system as the first user and attempt to modify

the file created in the first user's home directory. The evaluator will ensure that the modification

of the file is accepted.

• Test 31: The evaluator will authenticate to the system as the first user and attempt to delete the

file created in the first user's directory. The evaluator will ensure that the deletion of the file is

accepted.

5.2.2.3.2 Information Flow Control (FDP_IFC_EXT.1)

TSS

The evaluator will verify that the TSS section of the ST describes the routing of IP traffic when a VPN

client is enabled. The evaluator will ensure that the description indicates which traffic does not go

through the VPN and which traffic does, and that a configuration exists for each in which only the traffic

identified by the ST author as necessary for establishing the VPN connection (IKE traffic and perhaps

HTTPS or DNS traffic) is not encapsulated by the VPN protocol (IPsec).

Tests

The evaluator will perform the following test:

• Test 94:

o Step 1: The evaluator will enable a network connection. The evaluator will sniff packets

while performing running applications that use the network such as web browsers and

email clients. The evaluator will verify that the sniffer captures the traffic generated by

these actions, turn off the sniffing tool, and save the session data.

o Step 2: The evaluator will configure an IPsec VPN client that supports the routing

specified in this requirement. The evaluator will turn on the sniffing tool, establish the

VPN connection, and perform the same actions with the device as performed in the first

step. The evaluator will verify that the sniffing tool captures traffic generated by these

actions, turn off the sniffing tool, and save the session data.

o Step 3: The evaluator will examine the traffic from both step one and step two to verify

that all non-excepted Data Plane traffic in Step 2 is encapsulated by IPsec. The evaluator

will examine the Security Parameter Index (SPI) value present in the encapsulated

packets captured in Step 2 from the TOE to the Gateway and shall verify this value is the

same for all actions used to generate traffic through the VPN. Note that it is expected

that the SPI value for packets from the Gateway to the TOE is different than the SPI

value for packets from the TOE to the Gateway.

o Step 4: The evaluator will perform a ping on the TOE host on the local network and

verify that no packets sent are captured with the sniffer. The evaluator will attempt to

send packets to the TOE outside the VPN tunnel (i.e. not through the VPN gateway),

including from the local network, and verify that the TOE discards them.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 97 of 251

5.2.2.4 Identification and Authentication (FIA)

5.2.2.4.1 Authentication Failure Handling (FIA_AFL.1)

FIA_AFL.1.1

Tests

The evaluator will set an administrator-configurable threshold for failed attempts, or note the ST-

specified assignment. The evaluator will then (per selection) repeatedly attempt to authenticate with an

incorrect password, PIN, or certificate until the number of attempts reaches the threshold. Note that the

authentication attempts and lockouts must also be logged as specified in FAU_GEN.1.

• Test 53: The evaluator will attempt to authenticate repeatedly to the system with a known bad

password. Once the defined number of failed authentication attempts has been reached the

evaluator will ensure that the account that was being used for testing has had the actions

detailed in the assignment list above applied to it. The evaluator will ensure that an event has

been logged to the security event log detailing that the account has had these actions applied.

• Test 54: The evaluator will attempt to authenticate repeatedly to the system with a known bad

certificate. Once the defined number of failed authentication attempts has been reached the

evaluator will ensure that the account that was being used for testing has had the actions

detailed in the assignment list above applied to it. The evaluator will ensure that an event has

been logged to the security event log detailing that the account has had these actions applied.

• Test 55: The evaluator will attempt to authenticate repeatedly to the system using both a bad

password and a bad certificate. Once the defined number of failed authentication attempts has

been reached the evaluator will ensure that the account that was being used for testing has had

the actions detailed in the assignment list above applied to it. The evaluator will ensure that an

event has been logged to the security event log detailing that the account has had these actions

applied.

5.2.2.4.2 Multiple Authentication Mechanisms (FIA_UAU.5)

TSS

The evaluator will ensure that the TSS describes the rules as to how each authentication mechanism

specified in FIA_UAU.5.1 is implemented and used. Example rules are how the authentication

mechanism authenticates the user (i.e. how does the TSF verify that the correct password or

authentication factor is used), the result of a successful authentication (i.e. is the user input used to

derive or unlock a key) and which authentication mechanism can be used at which authentication factor

interfaces (i.e. if there are times, for example, after a reboot, that only specific authentication

mechanisms can be used). Rules regarding how the authentication factors interact in terms of

unsuccessful authentication are covered in FIA_AFL.1.

Guidance

The evaluator will verify that configuration guidance for each authentication mechanism is addressed in

the AGD guidance.

Tests

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 98 of 251

The following content should be included if:

• authentication based on username and password is selected from FIA_UAU.5.1

o Test 56: The evaluator will attempt to authenticate to the OS using the known user

name and password. The evaluator will ensure that the authentication attempt is

successful.

o Test 57: The evaluator will attempt to authenticate to the OS using the known user

name but an incorrect password. The evaluator will ensure that the authentication

attempt is unsuccessful.

The following content should be included if:

• username and a PIN that releases an asymmetric key is selected from FIA_UAU.5.1

The evaluator will examine the TSS for guidance on supported protected storage and will then

configure the TOE or OE to establish a PIN which enables release of the asymmetric key from the

protected storage (such as a TPM, a hardware token, or isolated execution environment) with which

the OS can interface. The evaluator will then conduct the following tests:

• Test 58: The evaluator will attempt to authenticate to the OS using the known user name and

PIN. The evaluator will ensure that the authentication attempt is successful.

• Test 59: The evaluator will attempt to authenticate to the OS using the known user name but an

incorrect PIN. The evaluator will ensure that the authentication attempt is unsuccessful.

The following content should be included if:

• combination of authentication based on user name, password, and time-based one-time

password is selected from FIA_UAU.5.1

The evaluator will configure the OS to authentication to authenticate to the OS using a username,

password, and one-time password mechanism. The evaluator will then perform the following tests.

Test 60: The evaluator will attempt to authenticate using a valid username, valid password, and valid

one-time password. The evaluator will ensure that the authentication attempt is successful.

Test 61: The evaluator will attempt to authenticate using a valid username, invalid password, and

valid one-time password. The evaluator will ensure that the authentication attempt fails.

Test 62: The evaluator will attempt to authenticate using a valid username, valid password, and

invalid one-time password. The evaluator will ensure that the authentication attempt fails.

Test 63: The evaluator will attempt to authenticate using a valid username, invalid password, and

invalid one-time password. The evaluator will ensure that the authentication attempt fails.

Authentication mechanisms related to authentication based on X.509 certificates are tested under

FIA_X509_EXT.1 and SSH public key-based authentication are tested in the Functional Package for

Secure Shell (SSH), version 1.0.

For each authentication mechanism rule, the evaluator will ensure that the authentication

mechanism(s) behave as documented in the TSS.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 99 of 251

5.2.2.4.3 X.509 Certification Validation (FIA_X509_EXT.1)

TSS

The evaluator will ensure the TSS describes where the check of validity of the certificates takes place.

The evaluator ensures the TSS also provides a description of the certificate path validation algorithm.

If the OS cannot perform revocation in accordance with one of the revocation methods, the evaluator

will ensure the TSS describes each revocation checking exception use case, and for each exception, the

alternate functionality the TOE implements to determine the status of the certificate and disable

functionality dependent on the validity of the certificate.

Tests

The tests described must be performed in conjunction with the other certificate services evaluation

activities, including the functions in FIA_X509_EXT.2.1. The evaluator will create a chain of at least four

certificates: the node certificate to be tested, two Intermediate CAs, and the self-signed Root CA.

Test 64: The evaluator shall demonstrate that validating a certificate without a valid certification path

results in the function failing, for each of the following reasons, in turn:

• by establishing a certificate path in which one of the issuing certificates is not a CA certificate,

• by omitting the basicConstraints field in one of the issuing certificates,

• by setting the basicConstraints field in an issuing certificate to have CA=False,

• by omitting the CA signing bit of the key usage field in an issuing certificate, and

• by setting the path length field of a valid CA field to a value strictly less than the certificate path.

The evaluator shall then establish a valid certificate path consisting of valid CA certificates, and

demonstrate that the function succeeds. The evaluator shall then remove trust in one of the CA

certificates, and show that the function fails.

• Test 65: The evaluator will demonstrate that validating an expired certificate results in the

function failing.

• Test 66: The evaluator will test that the OS can properly handle revoked certificates - conditional

on whether CRL, OCSP, OCSP stapling, or OCSP multi-stapling is selected; if multiple methods are

selected, then a test shall be performed for each method. The evaluator will test revocation of

the node certificate and revocation of the intermediate CA certificate (i.e. the intermediate CA

certificate should be revoked by the root CA). If OCSP stapling per RFC 6066 is the only

supported revocation method, testing revocation of the intermediate CA certificate is omitted.

The evaluator will ensure that a valid certificate is used, and that the validation function

succeeds. The evaluator then attempts the test with a certificate that has been revoked (for

each method chosen in the selection) to ensure when the certificate is no longer valid that the

validation function fails.

• Test 67: If any OCSP option is selected, the evaluator shall configure the OCSP server or use a

man-in-the-middle tool to present a certificate that does not have the OCSP signing purpose and

verify that validation of the OCSP response fails. If CRL is selected, the evaluator shall configure

the CA to sign a CRL with a certificate that does not have the cRLsign key usage bit set and verify

that validation of the CRL fails.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 100 of 251

• Test 68: The evaluator shall modify any byte in the first eight bytes of the certificate and

demonstrate that the certificate fails to validate. (The certificate will fail to parse correctly.)

• Test 69: The evaluator shall modify any byte in the last byte of the certificate and demonstrate

that the certificate fails to validate. (The signature on the certificate will not validate.)

• Test 70: The evaluator shall modify any byte in the public key of the certificate and demonstrate

that the certificate fails to validate. (The signature of the certificate will not validate.)

• Test 71: [conditional, to be performed if

o ECDSA schemes is selected from FCS_COP.1.1/SIGN

o 6187 is selected from FCS_SSH_EXT.1.1 from Functional Package for Secure Shell (SSH),

version 1.0

]:

o Test 71.1 The evaluator shall establish a valid, trusted certificate chain consisting of an

EC leaf certificate, an EC Intermediate CA certificate not designated as a trust anchor,

and an EC certificate designated as a trusted anchor, where the elliptic curve

parameters are specified as a named curve. The evaluator shall confirm that the TOE

validates the certificate chain.

o Test 71.2: The evaluator shall replace the intermediate certificate in the certificate chain

for Test 71.1 with a modified certificate, where the modified intermediate CA has a

public key information field where the EC parameters uses an explicit format version of

the Elliptic Curve parameters in the public key information field of the intermediate CA

certificate from Test 71.1, and the modified Intermediate CA certificate is signed by the

trusted EC root CA, but having no other changes. The evaluator shall confirm the TOE

treats the certificate as invalid.

• Test 72 [conditional, to be performed if

o exceptions to performing revocation are selected

]: For each exceptional use case for revocation checking described in the ST, the evaluator shall

attempt to establish the conditions of the use case, designate the certificate as invalid and perform

the function relying on the certificate. The evaluator shall observe that the alternate revocation

checking mechanism successfully prevents performance of the function.

The evaluator will generate an X.509v3 certificate for a user with the Client Authentication Extended

Key Usage field set. The evaluator will provision the OS for authentication with the X.509v3

certificate. The evaluator will ensure that the certificates are validated by the OS as per

FIA_X509_EXT.1.1 and then conduct the following tests:

• Test 73: The evaluator will attempt to authenticate to the OS using the X.509v3 certificate. The

evaluator will ensure that the authentication attempt is successful.

• Test 74: The evaluator will generate a second certificate identical to the first except for the

public key and any values derived from the public key. The evaluator will attempt to

authenticate to the OS with this certificate. The evaluator will ensure that the authentication

attempt is unsuccessful.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 101 of 251

The tests described must be performed in conjunction with the other certificate services assurance

activities, including the functions in FIA_X509_EXT.2.1. The evaluator will create a chain of at least four

certificates: the node certificate to be tested, two Intermediate CAs, and the self­signed Root CA.

• Test 75: The evaluator will construct a certificate path, such that the certificate of the CA issuing

the OS's certificate does not contain the basicConstraints extension. The validation of the

certificate path fails.

• Test 76: The evaluator will construct a certificate path, such that the certificate of the CA issuing

the OS's certificate has the CA flag in the basicConstraints extension not set. The validation of

the certificate path fails.

• Test 77: The evaluator will construct a certificate path, such that the certificate of the CA issuing

the OS's certificate has the CA flag in the basicConstraints extension set to TRUE. The validation

of the certificate path succeeds.

5.2.2.4.4 X.509 Certificate Authentication (FIA_X509_EXT.2)

The evaluator will acquire or develop an application that uses the OS TLS mechanism with an X.509v3

certificate. The evaluator will then run the application and ensure that the provided certificate is used to

authenticate the connection.

The evaluator will repeat the activity for any other selections listed.

5.2.2.5 Security Management (FMT)

5.2.2.5.1 Management of Security Functions Behavior (FMT_MOF_EXT.1)

TSS

The evaluator will verify that the TSS describes those management functions that are restricted to

Administrators, including how the user is prevented from performing those functions, or not able to use

any interfaces that allow access to that function.

Tests

• Test 32: For each function that is indicated as restricted to the administrator, the evaluation

shall perform the function as an administrator, as specified in the Operational Guidance, and

determine that it has the expected effect as outlined by the Operational Guidance and the SFR.

The evaluator will then perform the function (or otherwise attempt to access the function) as a

non-administrator and observe that they are unable to invoke that functionality.

5.2.2.5.2 Specification of Management Functions (FMT_SMF_EXT.1)

Guidance

The evaluator will verify that every management function captured in the ST is described in the

operational guidance and that the description contains the information required to perform the

management duties associated with the management function.

Tests

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 102 of 251

The evaluator will test the OS's ability to provide the management functions by configuring the

operating system and testing each option selected from above. The evaluator is expected to test these

functions in all the ways in which the ST and guidance documentation state the configuration can be

managed.

5.2.2.6 Protection of the TSF (FPT)

5.2.2.6.1 Access Controls (FPT_ACF_EXT.1)

TSS

The evaluator will confirm that the TSS specifies the locations of kernel drivers/modules, security audit

logs, shared libraries, system executables, and system configuration files. Every file does not need to be

individually identified, but the system's conventions for storing and protecting such files must be

specified.

Tests

The evaluator will create an unprivileged user account. Using this account, the evaluator will ensure that

the following tests result in a negative outcome (i.e., the action results in the OS denying the evaluator

permission to complete the action):

• Test 33: The evaluator will attempt to modify all kernel drivers and modules.

• Test 34: The evaluator will attempt to modify all security audit logs generated by the logging

subsystem.

• Test 35: The evaluator will attempt to modify all shared libraries that are used throughout the

system.

• Test 36: The evaluator will attempt to modify all system executables.

• Test 37: The evaluator will attempt to modify all system configuration files.

• Test 38: The evaluator will attempt to modify any additional components selected.

The evaluator will create an unprivileged user account. Using this account, the evaluator will ensure that

the following tests result in a negative outcome (i.e., the action results in the OS denying the evaluator

permission to complete the action):

• Test 39: The evaluator will attempt to read security audit logs generated by the auditing

subsystem

• Test 40: The evaluator will attempt to read system-wide credential repositories

• Test 41: The evaluator will attempt to read any other object specified in the assignment.

5.2.2.6.2 Address Space Layout Randomization (FPT_ASLR_EXT.1)

Tests

The evaluator will select 3 executables included with the TSF. If the TSF includes a web browser it must

be selected. If the TSF includes a mail client it must be selected. For each of these apps, the evaluator

will launch the same executables on two separate instances of the OS on identical hardware and

compare all memory mapping locations. The evaluator will ensure that no memory mappings are placed

in the same location. If the rare chance occurs that two mappings are the same for a single executable

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 103 of 251

and not the same for the other two, the evaluator will repeat the test with that executable to verify that

in the second test the mappings are different. This test can also be completed on the same hardware

and rebooting between application launches.

5.2.2.6.3 Limitation of Bluetooth Profile Support (FPT_BLT_EXT.1)

TSS

The evaluator will ensure that the TSS lists all Bluetooth profiles that are disabled while not in use by an

application and which need explicit user action in order to become enabled.

Guidance

There are no guidance evaluation activities for this component.

The evaluator will perform the following tests:

• Test 82: The evaluator will perform this test with a test device that does not have a trust

relationship with the TOE. While the service is not in active use by an application on the TOE, the

evaluator will attempt to discover a service associated with a "protected" Bluetooth profile (as

specified by the requirement) on the TOE via a Service Discovery Protocol search. The evaluator

will verify that the service does not appear in the Service Discovery Protocol search results.

Next, the evaluator shall attempt to gain remote access to the service from a device that does

not currently have a trusted device relationship with the TOE. The evaluator will verify that this

attempt fails due to the unavailability of the service and profile.

• Test 83: The evaluator will repeat Test 1 with a device that currently has a trusted device

relationship with the TOE and verify that the same behavior is exhibited.

5.2.2.6.4 Stack Buffer Overflow Protection (FPT_SBOP_EXT.1)25

Tests

For stack-based OSes, the evaluator will determine that the TSS contains a description of stack-based

buffer overflow protections used by the OS. hese are referred to by a variety of terms. such as These

include, but are not limited to, ASLR, tagging, stack cookie, stack guard, and stack canaries. The TSS

must include a rationale for any binaries that are not protected in this manner. The evaluator will also

preform the following test:

• Test 42 (Conditional: stack-based overflow protection can be determined by inventorying):

The evaluator will inventory the kernel, libraries, and application binaries to determine those

that do not implement stack-based buffer overflow protections. This list should match up with

the list provided in the TSS.

For OSes that store parameters/variables separately from control flow values, the evaluator will verify

that the TSS describes what data structures control values, parameters, and variables are stored. The

evaluator will also ensure that the TSS includes a description of the safeguards that ensure parameters

and variables do not intermix with control flow values.

25 This assurance activity was modified as part of NIAP Technical Decision 906.

https://www.niap-ccevs.org/technical-decisions/TD0906

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 104 of 251

5.2.2.6.5 Software Restriction Policies (FPT_SRP_EXT.1)

TSS

The evaluator will ensure that the description of the supported characteristics in the TSS is consistent

with the SFR. The evaluator will also ensure that any characteristics specified by the ST-author are

described in sufficient detail to understand how to test those characteristics.

Guidance

The evaluator will ensure that that the characteristics are described in sufficient detail for administrators

to configure policies using them, and that the list of characteristics in the guidance is consistent with the

information in the TSS.

Tests

There are two tests for each selection above.

There are two tests for each selection above.

• Test 84[conditional, to be performed if

o file path is selected from FPT_SRP_EXT.1.1

]: The evaluator will configure the OS to only allow code execution from the core OS directories. The

evaluator will then attempt to execute code from a directory that is in the allowed list. The

evaluator will ensure that the code they attempted to execute has been executed.

• Test 85[conditional, to be performed if

o file path is selected from FPT_SRP_EXT.1.1

]: The evaluator will configure the OS to only allow code execution from the core OS directories. The

evaluator will then attempt to execute code from a directory that is not in the allowed list. The

evaluator will ensure that the code they attempted to execute has not been executed.

• Test 86[conditional, to be performed if

o file digital signature is selected from FPT_SRP_EXT.1.1

]: The evaluator will configure the OS to only allow code that has been signed by the OS vendor to

execute. The evaluator will then attempt to execute code signed by the OS vendor. The evaluator

will ensure that the code they attempted to execute has been executed.

• Test 87[conditional, to be performed if

o file digital signature is selected from FPT_SRP_EXT.1.1

]: The evaluator will configure the OS to only allow code that has been signed by the OS vendor to

execute. The evaluator will then attempt to execute code signed by another digital authority. The

evaluator will ensure that the code they attempted to execute has not been executed.

• Test 88[conditional, to be performed if

o version is selected from FPT_SRP_EXT.1.1

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 105 of 251

]: The evaluator will configure the OS to allow execution of a specific application based on version.

The evaluator will then attempt to execute the same version of the application. The evaluator will

ensure that the code they attempted to execute has been executed.

• Test 89[conditional, to be performed if

o version is selected from FPT_SRP_EXT.1.1

]: The evaluator will configure the OS to allow execution of a specific application based on version.

The evaluator will then attempt to execute an older version of the application. The evaluator will

ensure that the code they attempted to execute has not been executed.

• Test 90[conditional, to be performed if

o hash is selected from FPT_SRP_EXT.1.1

]: The evaluator will configure the OS to allow execution based on the hash of the application

executable. The evaluator will then attempt to execute the application with the matching hash. The

evaluator will ensure that the code they attempted to execute has been executed.

• Test 91[conditional, to be performed if

o hash is selected from FPT_SRP_EXT.1.1

]: The evaluator will configure the OS to allow execution based on the hash of the application

executable. The evaluator will modify the application in such a way that the application hash is

changed. The evaluator will then attempt to execute the application with the matching hash. The

evaluator will ensure that the code they attempted to execute has not been executed.

• Test 92[conditional, to be performed if

o other is selected from FPT_SRP_EXT.1.1

]: The evaluator will attempt to run an application that should be allowed based on the defined

software restriction policy and ensure that it runs.

• Test 93[conditional, to be performed if

o other is selected from FPT_SRP_EXT.1.1

]: The evaluator will then attempt to run an application that should not be allowed the defined

software restriction policy and ensure that it does not run.

• Test 8: The evaluator will configure the OS to allow execution based on the hash of the

application executable. The evaluator will modify the application in such a way that the

application hash is changed. The evaluator will then attempt to execute the application with the

matching hash. The evaluator will ensure that the code they attempted to execute has not been

executed.

5.2.2.6.6 Boot Integrity (FPT_TST_EXT.1)

TSS

The evaluator will verify that the TSS section of the ST includes a comprehensive description of the boot

procedures, including a description of the entire bootchain, for the TSF. The evaluator will ensure that

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 106 of 251

the OS cryptographically verifies each piece of software it loads in the bootchain to include bootloaders

and the kernel. Software loaded for execution directly by the platform (e.g. first-stage bootloaders) is

out of scope. For each additional category of executable code verified before execution, the evaluator

will verify that the description in the TSS describes how that software is cryptographically verified.

The evaluator will verify that the TSS contains a description of the protection afforded to the mechanism

performing the cryptographic verification.

The evaluator will perform the following tests:

• Test 43: The evaluator will perform actions to cause TSF software to load and observe that the

integrity mechanism does not flag any executables as containing integrity errors and that the OS

properly boots.

• Test 44: The evaluator will modify a TSF executable that is part of the bootchain verified by the

TSF (i.e. Not the first-stage bootloader) and attempt to boot. The evaluator will ensure that an

integrity violation is triggered and the OS does not boot (Care must be taken so that the

integrity violation is determined to be the cause of the failure to load the module, and not the

fact that in such a way to invalidate the structure of the module.).

• Test 45 [conditional, to be performed

o if a digital signature using an X509 certificate with hardware-based protection is

selected from FPT_TST_EXT.1.1]:

If the ST author indicates that the integrity verification is performed using a public key in an X509

certificate, the evaluator will verify that the update boot integrity mechanism includes a certificate

validation according to FIA_X509_EXT.1 for all certificates in the chain from the certificate used for boot

integrity to a certificate in the trust store that are not themselves in the trust store. This means that, for

each X509 certificate in this chain that is not a trust store element, the evaluator must ensure that

revocation information is available to the TOE during the bootstrap mechanism (before the TOE

becomes fully operational)26.

5.2.2.6.7 Trusted Update (FPT_TUD_EXT.1)

Tests

The evaluator will check for an update using procedures described in the documentation and verify that

the OS provides a list of available updates. Testing this capability may require installing and temporarily

placing the system into a configuration in conflict with secure configuration guidance which specifies

automatic update.

The evaluator is also to ensure that the response to this query is authentic by using a digital signature

scheme specified in FCS_COP.1/SIGN). The digital signature verification may be performed as part of a

network protocol as described in FTP_ITC_EXT.1. If the signature verification is not performed as part of

a trusted channel, the evaluator shall send a query response with a bad signature and verify that the

signature verification fails. The evaluator shall then send a query response with a good signature and

verify that the signature verification is successful.

26 This protection profile evaluation activity was replaced as part of NIAP Technical Decision 493.

https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0493

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 107 of 251

For the following tests, the evaluator will initiate the download of an update and capture the update

prior to installation. The download could originate from the vendor's website, an enterprise-hosted

update repository, or another system (e.g. network peer). All supported origins for the update must be

indicated in the TSS and evaluated.

• Test 46: The evaluator will ensure that the update has a digital signature belonging to the

vendor prior to its installation. The evaluator will modify the downloaded update in such a way

that the digital signature is no longer valid. The evaluator will then attempt to install the

modified update. The evaluator will ensure that the OS does not install the modified update.

• Test 47: The evaluator will ensure that the update has a digital signature belonging to the

vendor. The evaluator will then attempt to install the update (or permit installation to continue).

The evaluator will ensure that the OS successfully installs the update.

5.2.2.6.8 Trusted Update for Application Software (FPT_TUD_EXT.2)

Tests

The evaluator will check for updates to application software using procedures described in the

documentation and verify that the OS provides a list of available updates. Testing this capability may

require temporarily placing the system into a configuration in conflict with secure configuration

guidance which specifies automatic update.

The evaluator is also to ensure that the response to this query is authentic by using a digital signature

scheme specified in FCS_COP.1/SIGN). The digital signature verification may be performed as part of a

network protocol as described in FTP_ITC_EXT.1. If the signature verification is not performed as part of

a trusted channel, the evaluator shall send a query response with a bad signature and verify that the

signature verification fails. The evaluator shall then send a query response with a good signature and

verify that the signature verification is successful.

The evaluator will initiate an update to an application. This may vary depending on the application, but it

could be through the application vendor's website, a commercial app store, or another system. All

origins supported by the OS must be indicated in the TSS and evaluated. However, this only includes

those mechanisms for which the OS is providing a trusted installation and update functionality. It does

not include user or administrator-driven download and installation of arbitrary files.

• Test 48: The evaluator will ensure that the update has a digital signature which chains to the OS

vendor or another trusted root managed through the OS. The evaluator will modify the

downloaded update in such a way that the digital signature is no longer valid. The evaluator will

then attempt to install the modified update. The evaluator will ensure that the OS does not

install the modified update.

• Test 49: The evaluator will ensure that the update has a digital signature belonging to the OS

vendor or another trusted root managed through the OS. The evaluator will then attempt to

install the update. The evaluator will ensure that the OS successfully installs the update.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 108 of 251

5.2.2.7 TOE Access (FTA)

5.2.2.7.1 Default TOE Access Banners (FTA_TAB.1)

Tests

The evaluator will configure the OS, per instructions in the OS manual, to display the advisory warning

message "TEST TEST Warning Message TEST TEST". The evaluator will then log out and confirm that the

advisory message is displayed before logging in can occur.

5.2.2.8 Trusted Path / Channels (FTP)

5.2.2.8.1 Trusted Channel Communication (FTP_ITC_EXT.1)

Tests

The evaluator will configure the OS to communicate with another trusted IT product as identified in the

second selection. The evaluator will monitor network traffic while the OS performs communication with

each of the servers identified in the second selection. The evaluator will ensure that for each session a

trusted channel was established in conformance with the protocols identified in the first selection.

5.2.2.8.2 Trusted Path (FTP_TRP.1)

TSS

The evaluator will examine the TSS to determine that the methods of remote OS administration are

indicated, along with how those communications are protected. The evaluator will also confirm that all

protocols listed in the TSS in support of OS administration are consistent with those specified in the

requirement, and are included in the requirements in the ST.

Guidance

The evaluator will confirm that the operational guidance contains instructions for establishing the

remote administrative sessions for each supported method. The evaluator will also perform the

following tests:

• Test 78: The evaluator will ensure that communications using each remote administration

method is tested during the course of the evaluation, setting up the connections as described in

the operational guidance and ensuring that communication is successful.

• Test 79: For each method of remote administration supported, the evaluator will follow the

operational guidance to ensure that there is no available interface that can be used by a remote

user to establish a remote administrative sessions without invoking the trusted path.

• Test 80: The evaluator will ensure, for each method of remote administration, the channel data

is not sent in plaintext.

• Test 81: The evaluator will ensure, for each method of remote administration, modification of

the channel data is detected by the OS.

5.2.3 WLAN Client Module Assurance Activities

This section copies the assurance activities from the WLAN Client PP-Module in order to ease reading

and comparisons between the extended package and the security target.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 109 of 251

5.2.3.1 Security Audit (FAU)

5.2.3.1.1 Audit Data Generation for Wireless LAN (FAU_GEN.1 (WLAN))

TSS

The evaluator shall check the TSS and ensure it provides a format for audit records. Each audit record

format type must be covered, along with a brief description of each field.

If "invoke platform-provided functionality" is selected, the evaluator shall examine the TSS to verify it

describes (for each supported platform) how this functionality is invoked (it should be noted that this

may be through a mechanism that is not implemented by the WLAN Client; however, that mechanism

will be identified in the TSS as part of this evaluation activity).

Guidance

The evaluator shall check the operational guidance and ensure it lists all of the auditable events and

provides a format for audit records. Each audit record format type must be covered, along with a brief

description of each field. The evaluator shall check to make sure that every audit event type mandated

by the PP-Module is described and that the description of the fields contains the information required in

FAU_GEN.1.2/WLAN, and the additional information specified in Table 2 in the main document and

Table 5 in the main document.

The evaluator shall in particular ensure that the operational guidance is clear in relation to the contents

for failed cryptographic events. In the Auditable Events tables, information detailing the cryptographic

mode of operation and a name or identifier for the object being encrypted is required. The evaluator

shall ensure that name or identifier is sufficient to allow an administrator reviewing the audit log to

determine the context of the cryptographic operation (for example, performed during a key negotiation

exchange, performed when encrypting data for transit) as well as the non-TOE endpoint of the

connection for cryptographic failures relating to communications with other IT systems.

The evaluator shall also make a determination of the administrative actions that are relevant in the

context of this PP-Module. The TOE may contain functionality that is not evaluated in the context of this

PP-Module because the functionality is not specified in an SFR. This functionality may have

administrative aspects that are described in the operational guidance. Since such administrative actions

will not be performed in an evaluated configuration of the TOE, the evaluator shall examine the

operational guidance and make a determination of which administrative commands, including

subcommands, scripts, and configuration files, are related to the configuration (including enabling or

disabling) of the mechanisms implemented in the TOE that are necessary to enforce the requirements

specified in the PP-Module, which thus form the set of “all administrative actions”. The evaluator may

perform this activity as part of the activities associated with ensuring the AGD_OPE guidance satisfies

the requirements.

Tests

The evaluator will test the TOE’s ability to correctly generate audit records by having the TOE generate

audit records in accordance with the evaluation activities associated with the functional requirements in

this PP-Module. When verifying the test results, the evaluator will ensure the audit records generated

during testing match the format specified in the administrative guide and that the fields in each audit

record have the proper entries.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 110 of 251

Note that the testing here can be accomplished in conjunction with the testing of the security

mechanisms directly. For example, testing performed to ensure that the administrative guidance

provided is correct verifies that AGD_OPE.1 is satisfied and should address the invocation of the

administrative actions that are needed to verify the audit records are generated as expected.

5.2.3.2 Cryptographic Support (FCS)

5.2.3.2.1 Cryptographic Key Generation (Symmetric Keys for WPA2/WPA3 Connections)

(FCS_CKM.1(WPA))

TSS

The evaluator shall verify that the TSS describes how the primitives defined and implemented by this PP-

Module are used by the TOE in establishing and maintaining secure connectivity to the wireless clients.

The TSS shall also provide a description of the developer’s method(s) of assuring that their

implementation conforms to the cryptographic standards; this includes not only testing done by the

developing organization, but also any third-party testing that is performed.

Guidance

There are no guidance evaluation activities for this component.

Tests

The evaluator shall perform the following tests:

• Test 1: The evaluator shall configure the access point so the cryptoperiod of the session key is 1

hour. The evaluator shall successfully connect the TOE to the access point and maintain the

connection for a length of time that is greater than the configured cryptoperiod. The evaluator shall

use a packet capture tool to determine that after the configured cryptoperiod, a re-negotiation is

initiated to establish a new session key. Finally, the evaluator shall determine that the renegotiation

has been successful and the client continues communication with the access point.

• Test 2: The evaluator shall perform the following test using a packet sniffing tool to collect frames

between the TOE and a wireless LAN access point:

Step 1: The evaluator shall configure the access point to an unused channel and configure the WLAN

sniffer to sniff only on that channel (i.e., lock the sniffer on the selected channel). The sniffer should also

be configured to filter on the MAC address of the TOE and/or access point.

Step 2: The evaluator shall configure the TOE to communicate with a WLAN access point using IEEE

802.11-2012 and a 256-bit (64 hex values 0-f) pre-shared key. The pre-shared key is only used for

testing.

Step 3: The evaluator shall start the sniffing tool, initiate a connection between the TOE and the access

point, and allow the TOE to authenticate, associate, and successfully complete the 4-way handshake

with the client.

Step 4: The evaluator shall set a timer for 1 minute, at the end of which the evaluator shall disconnect

the TOE from the wireless network and stop the sniffer.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 111 of 251

Step 5: The evaluator shall identify the 4-way handshake frames (denoted EAPOL-key in Wireshark

captures) and derive the PTK from the 4-way handshake frames and pre-shared key as specified in IEEE

802.11-2012.

Step 6: The evaluator shall select the first data frame from the captured packets that was sent between

the TOE and access point after the 4-way handshake successfully completed, and without the frame

control value 0x4208 (the first 2 bytes are 08 42). The evaluator shall use the PTK to decrypt the data

portion of the packet as specified in IEEE 802.11-2012, and shall verify that the decrypted data contains

ASCII-readable text.

Step 7: The evaluator shall repeat Step 6 for the next 2 data frames between the TOE and access point

and without frame control value 0x4208.

5.2.3.2.2 Cryptographic Key Distribution for Group Temporal Key (GTK) (FCS_CKM.2(WLAN))

Application Note: FCS_CKM.2(WLAN) corresponds to FCS_CKM.2/WLAN in the WLAN Client module.

TSS

The evaluator shall check the TSS to ensure that it describes how the GTK is unwrapped prior to being

installed for use on the TOE using the AES implementation specified in this PP-Module.

Guidance

There are no guidance evaluation activities for this component.

Tests

The evaluator shall perform the following test using a packet sniffing tool to collect frames between the

TOE and a wireless access point (which may be performed in conjunction with the assurance activity for

FCS_CKM.1.1/WLAN).

Step 1: The evaluator shall configure the access point to an unused channel and configure the WLAN

sniffer to sniff only on that channel (i.e., lock the sniffer on the selected channel). The sniffer should also

be configured to filter on the MAC address of the TOE and/or access point.

Step 2: The evaluator shall configure the TOE to communicate with the access point using IEEE 802.11-

2012 and a 256-bit (64 hex values 0-f) pre-shared key, setting up the connections as described in the

operational guidance. The pre-shared key is only used for testing.

Step 3: The evaluator shall start the sniffing tool, initiate a connection between the TOE and access

point, and allow the TOE to authenticate, associate, and successfully complete the 4-way handshake

with the TOE.

Step 4: The evaluator shall set a timer for 1 minute, at the end of which the evaluator shall disconnect

the TOE from the access point and stop the sniffer.

Step 5: The evaluator shall identify the 4-way handshake frames (denoted EAPOL-key in Wireshark

captures) and derive the PTK and GTK from the 4-way handshake frames and pre-shared key as specified

in IEEE 802.11-2012.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 112 of 251

Step 6: The evaluator shall select the first data frame from the captured packets that was sent between

the TOE and access point after the 4-way handshake successfully completed, and with the frame control

value 0x4208 (the first 2 bytes are 08 42). The evaluator shall use the GTK to decrypt the data portion of

the selected packet as specified in IEEE 802.11-2012, and shall verify that the decrypted data contains

ASCIIreadable text.

Step 7: The evaluator shall repeat Step 6 for the next 2 data frames with frame control value 0x4208.

To fully test the broadcast and multicast functionality, these steps will be performed as the evaluator

connects multiple clients to the TOE. The evaluator will ensure that GTKs established are sent to the

appropriate participating clients.

5.2.3.2.3 Extended: Extensible Authentication Protocol-Transport Layer Security

(FCS_TLSC_EXT.1(WLAN))

Application Note: FCS_TLSC_EXT.1(WLAN) corresponds to FCS_TLSC _EXT.1/WLAN in the WLAN CLIENT

EP.

TSS

The evaluator shall check the description of the implementation of this protocol in the TSS to ensure

that the ciphersuites supported are specified. The evaluator shall check the TSS to ensure that the

ciphersuites specified include those listed for this component.

Guidance

The evaluator shall also check the operational guidance to ensure that it contains instructions on

configuring the TOE so that TLS conforms to the description in the TSS (for instance, the set of

ciphersuites advertised by the TOE may have to be restricted to meet the requirements).

 The evaluator shall check that the guidance contains instructions for the administrator to configure the

list of Certificate Authorities that are allowed to sign certificates used by the authentication server that

will be accepted by the TOE in the EAP-TLS exchange, and instructions on how to specify the algorithm

suites that will be proposed and accepted by the TOE during the EAP-TLS exchange.

Tests

The evaluator shall write, or the TOE developer shall provide, an application for the purposes of testing

TLS.

 The evaluator shall also perform the following tests:

• Test 1: The evaluator shall establish a TLS connection using each of the cipher suites specified by

the requirement. This connection may be established as part of the establishment of a higher-

level protocol, e.g., as part of an EAP session. It is sufficient to observe the successful

negotiation of a cipher suite to satisfy the intent of the test; it is not necessary to examine the

characteristics of the encrypted traffic in an attempt to discern the cipher suite being used (for

example, that the cryptographic algorithm is 128- bit AES and not 256-bit AES).

• Test 2: The evaluator shall attempt to establish the connection using a server with a server

certificate that contains the Server Authentication purpose in the extendedKeyUsage field and

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 113 of 251

verify that a connection is established. The evaluator will then verify that the client rejects an

otherwise valid server certificate that lacks the Server Authentication purpose in the

extendedKeyUsage field and a connection is not established. Ideally, the two certificates should

be identical except for the extendedKeyUsage field.

• Test 3: The evaluator shall send a server certificate in the TLS connection that does not match

the server-selected cipher suite. For example, send a ECDSA certificate while using the

TLS_RSA_WITH_AES_128_CBC_SHA cipher suite or send a RSA certificate while using one of the

ECDSA cipher suites. The evaluator shall verify that the TOE disconnects after receiving the

server’s Certificate handshake message.

• Test 4: The evaluator shall configure the server to select the TLS_NULL_WITH_NULL_NULL

cipher suite and verify that the client denies the connection.

• Test 5: The evaluator shall perform the following modifications to the traffic:

o Change the TLS version selected by the server in the Server Hello to a unsupported TLS

version (for example 1.5 represented by the two bytes 03 06) and verify that the client

rejects the connection.

o Modify at least one byte in the server’s nonce in the Server Hello handshake message,

and verify that the client rejects the Server Key Exchange handshake message (if using a

DHE or ECDHE cipher suite) or that the server denies the client’s Finished handshake

message.

o Modify the server’s selected cipher suite in the Server Hello handshake message to be a

cipher suite not presented in the Client Hello handshake message. The evaluator shall

verify that the client rejects the connection after receiving the Server Hello.

o [conditional: if the TOE supports at least one cipher suite that uses DHE or ECDHE for

key exchange] Modify the signature block in the Server’s Key Exchange handshake

message, and verify that the client rejects the connection after receiving the Server Key

Exchange message. This test does not apply to cipher suites using RSA key exchange.

o Modify a byte in the Server Finished handshake message, and verify that the client

sends an Encrypted Message followed by a FIN and ACK message. This is sufficient to

deduce that the TOE responded with a Fatal Alert and no further data would be sent.

o Send a garbled message from the server after the server has issued the

ChangeCipherSpec message and verify that the client denies the connection..

5.2.3.2.4 TLS Client Support for Supported Groups Extension (EAP-TLS for WLAN)

(FCS_TLSC_EXT.1(WLAN))

TSS

The evaluator shall verify that the TSS describes the Supported Groups extension and whether the

required behavior is performed by default or may be configured.

Guidance

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 114 of 251

If the TSS indicates that the Supported Groups extension must be configured to meet the requirement,

the evaluator shall verify that the operational guidance includes instructions for configuration of this

extension.

Tests

The evaluator shall perform the following test:

• Test 1: The evaluator shall configure a server to perform ECDHE key exchange using each of the

TOE’s supported curves and shall verify that the TOE successfully connects to the server.

5.2.3.2.5 Supported WPA Versions (FCS_WPA_EXT.1) 27

TSS

There are no TSS evaluation activities for this component.

Guidance

The evaluator shall ensure that the AGD contains guidance on how to configure the WLAN client to

connect to networks supporting WPA3 and, if selected, WPA2.

Tests

The evaluator shall configure a Wi-Fi network that utilizes WPA3 and verify that the client can connect.

The same test shall be repeated for WPA2 if it is selected.

5.2.3.3 Identification and Authentication (FIA)

5.2.3.3.1 Extended: Port Access Entity Authentication (FIA_PAE_EXT.1)

TSS

There are no TSS evaluation activities for this component.

Guidance

There are no guidance evaluation activities for this component.

Tests

The evaluator shall perform the following tests:

• Test 1: The evaluator shall demonstrate that the TOE has no access to the test network. After

successfully authenticating with an authentication server through a wireless access system, the

evaluator shall demonstrate that the TOE does have access to the test network.

• Test 2: The evaluator shall demonstrate that the TOE has no access to the test network. The

evaluator shall attempt to authenticate using an invalid client certificate, such that the EAP-TLS

negotiation fails. This should result in the TOE still being unable to access the test network.

27 This protection profile assurance activity was modified as part of NIAP Technical Decision 710.

https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0710

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 115 of 251

• Test 3: The evaluator shall demonstrate that the TOE has no access to the test network. The

evaluator shall attempt to authenticate using an invalid authentication server certificate, such

that the EAP-TLS negotiation fails. This should result in the TOE still being unable to access the

test network.

5.2.3.3.2 X.509 Certificate Validation (FIA_X509_EXT.1(WLAN))

Application Note: FIA_X509_EXT.1(WLAN) corresponds to FIA_X509_EXT.1/WLAN in the WLAN Client

module.

TSS

The evaluator shall ensure the TSS describes where the check of validity of the EAP-TLS certificates takes

place. The evaluator ensures the TSS also provides a description of the certificate path validation

algorithm.

Guidance

There are no guidance evaluation activities for this component.

Tests

The tests described must be performed in conjunction with the other Certificate Services assurance

activities. The tests for the extendedKeyUsage rules are performed in conjunction with the uses that

require those rules. The evaluator shall create a chain of at least four certificates: the node certificate to

be tested, two Intermediate CAs, and the self-signed Root CA.

• Test 1: The evaluator shall then load a certificate or certificates to the Trust Anchor Database

needed to validate the certificate to be used in the function (e.g. application validation), and

demonstrate that the function succeeds. The evaluator then shall delete one of the certificates,

and show that the function fails.

• Test 2: The evaluator shall demonstrate that validating an expired certificate results in the

function failing.

• Test 3: The evaluator shall construct a certificate path, such that the certificate of the CA issuing

the TOE’s certificate does not contain the basicConstraints extension. The validation of the

certificate path fails.

• Test 4: The evaluator shall construct a certificate path, such that the certificate of the CA issuing

the TOE’s certificate has the cA flag in the basicConstraints extension not set. The validation of

the certificate path fails.

• Test 5: The evaluator shall modify any byte in the first eight bytes of the certificate and

demonstrate that the certificate fails to validate (the certificate will fail to parse correctly).

• Test 6: The evaluator shall modify any bit in the last byte of the signature algorithm of the

certificate and demonstrate that the certificate fails to validate (the signature on the certificate

will not validate).

• Test 7: The evaluator shall modify any byte in the public key of the certificate and demonstrate

that the certificate fails to validate (the signature on the certificate will not validate).

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 116 of 251

5.2.3.3.3 X.509 Certificate Authentication EAP-TLS for WLAN (FIA_X509_EXT.2(WLAN))28

Application Note: FIA_X509_EXT.2(WLAN) corresponds to FIA_X509_EXT.2/WLAN in the WLAN Client

module.

TSS

The evaluator shall check the TSS to ensure that it describes how the TOE chooses which certificates to

use, and any necessary instructions in the administrative guidance for configuring the operating

environment so that the TOE can use the certificates.

Guidance

If not already present in the TSS, the evaluator shall check the administrative guidance to ensure that it

describes how the TOE chooses which certificates to use, and any necessary instructions for configuring

the operating environment so that the TOE can use the certificates.

Tests

The evaluator shall perform the following test:

• Test 1: The evaluator shall demonstrate using a valid certificate that requires certificate

validation checking to be performed in at least some part by communicating with a non-TOE IT

entity. The evaluator shall then manipulate the environment so that the TOE is unable to verify

the validity of the certificate, and observe that the action selected in FIA_X509_EXT.2.2 is

performed. If the selected action is administrator-configurable, then the evaluator shall follow

the operational guidance to determine that all supported administrator-configurable options

behave in their documented manner.

5.2.3.3.4 Certificate Storage and Management (FIA_X509_EXT.4)

TSS

The evaluator shall examine the TSS to determine that it describes all certificate stores implemented

that contain certificates used to meet the requirements of this PP-Module. This description shall contain

information pertaining to how certificates are loaded into the store, and how the store is protected from

unauthorized access.

Guidance

The evaluator shall check the administrative guidance to ensure that it describes how to load X.509

certificates into the TOE's certificate store, regardless of whether the TSF provides this mechanism itself

or the TOE relies on a platform-provided mechanism for this.

Tests

The evaluator shall perform the following test for each TOE function that requires the use of certificates:

• Test 1: The evaluator shall demonstrate that using a certificate without a valid certification path

results in the function failing. The evaluator shall then load any certificates needed to validate

28 This protection profile assurance activity was modified as part of NIAP Technical Decision 703.

https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0703

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 117 of 251

the certificate to be used in the function and demonstrate that the function succeeds. The

evaluator shall then delete one of these dependent certificates and show that the function fails.

• Test 2: The evaluator shall demonstrate that the mechanism used to load or configure X.509

certificates cannot be accessed without appropriate authorization.

5.2.3.4 Security Management (FMT)

5.2.3.4.1 Specification of Management Functions for Wi-Fi (FMT_SMF.1(WLAN))

Application Note: FMT_SMF.1(WLAN) corresponds to FMT_SMF.1/WLAN in the WLAN Client module.

TSS

There are no TSS assurance activities for this SFR.

Guidance

The evaluator shall check to verifythat every management function claimed by the TOE is described

there. The evaluator shall also verify that these descriptions include the information required to perform

the management duties associated with the function.

Tests

The evaluator shall test the TOE’s ability to provide the management functions by configuring the TOE

and performing the management activities associated with each function claimed in the SFR.

Note that this may be accomplished in conjunction with the testing of other requirements, such as

FCS_TLSC_EXT.1/WLAN and FTA_WSE_EXT.1.

5.2.3.5 Protection of the TSF (FPT)

5.2.3.5.1 TSF Cryptographic Functionality Testing (FPT_TST_EXT.3 (WLAN))

Application Note: FPT_TST_EXT.3(WLAN) corresponds to FPT_TST_EXT.3/WLAN in the WLAN Client

module.

TSS

The evaluator shall examine the TSS to ensure that it details the self tests that are run by the TSF on

start-up; this description should include an outline of what the tests are actually doing (e.g., rather than

saying "memory is tested", a description similar to "memory is tested by writing a value to each memory

location and reading it back to ensure it is identical to what was written" shall be used). The evaluator

shall ensure that the TSS makes an argument that the tests are sufficient to demonstrate that the TSF is

operating correctly.

 The evaluator shall examine the TSS to ensure that it describes how to verify the integrity of stored TSF

executable code when it is loaded for execution. The evaluator shall ensure that the TSS makes an

argument that the tests are sufficient to demonstrate that the integrity of stored TSF executable code

has not been compromised. The evaluator also ensures that the TSS (or the operational guidance)

describes the actions that take place for successful (e.g. hash verified) and unsuccessful (e.g., hash not

verified) cases.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 118 of 251

Guidance

The evaluator shall ensure that the operational guidance describes the actions that take place for

successful (e.g. hash verified) and unsuccessful (e.g., hash not verified) cases.

Tests

The evaluator shall perform the following tests:

• Test 1: The evaluator performs the integrity check on a known good TSF executable and verifies

that the check is successful.

• Test 2: The evaluator modifies the TSF executable, performs the integrity check on the modified

TSF executable and verifies that the check fails.

5.2.3.6 TOE Access (FTA)

5.2.3.6.1 Wireless Network Access (FTA_WSE_EXT.1)

TSS

The evaluator shall examine the TSS to determine that it defines SSIDs as the attribute to specify

acceptable networks.

Guidance

The evaluator shall examine the operational guidance to determine that it contains guidance for

configuring the list of SSID that the WLAN Client is able to connect to.

Tests

The evaluator shall also perform the following tests for each attribute:

• Test 1: The evaluator configures the TOE to allow a connection to a wireless network with a

specific SSID. The evaluator also configures the test environment such that the allowed SSID and

an SSID that is not allowed are both “visible” to the TOE. The evaluator shall demonstrate that

they can successfully establish a session with the allowed SSID. The evaluator will then attempt

to establish a session with the disallowed SSID and observe that the attempt fails.

5.2.3.7 Trusted Path / Channels (FTP)

5.2.3.7.1 Trusted Channel Communication (FTP_ITC.1 (WLAN))

Application Note: FTP_ITC_EXT.1(WLAN) corresponds to FTP_ITC _EXT.1/WLAN in the WLAN Client

module.

TSS

The evaluator shall examine the TSS to determine that it describes the details of the TOE connecting to

an access point in terms of the cryptographic protocols specified in the requirement, along with TOE-

specific options or procedures that might not be reflected in the specification. The evaluator shall also

confirm that all protocols listed in the TSS are specified and included in the requirements in the ST.

Guidance

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 119 of 251

The evaluator shall confirm that the operational guidance contains instructions for establishing the

connection to the access point and that it contains recovery instructions should a connection be

unintentionally broken.

Tests

The evaluator shall perform the following tests:

• Test 1: The evaluators shall ensure that the TOE is able to initiate communications with an

access point using the protocols specified in the requirement by setting up the connections as

described in the operational guidance and ensuring that communication is successful.

• Test 2: The evaluator shall ensure, for each communication channel with an authorized IT entity,

the channel data is not sent in plaintext.

• Test 3: The evaluator shall ensure, for each communication channel with an authorized IT entity,

modification of the channel data is detected by the TOE.

• Test 4: The evaluators shall physically interrupt the connection from the TOE to the access point

(e.g., moving the TOE host out of range of the access point, turning the access point off). The

evaluators shall ensure that subsequent communications are appropriately protected, at a

minimum in the case of any attempts to automatically resume the connection or connect to a

new access point.

 Further assurance activities are associated with the specific protocols.

5.2.4 VPN Client Module Assurance Activities

This section copies the assurance activities from the VPN Client PP-Module in order to ease reading and

comparisons between the extended package and the security target.

5.2.4.1 Security Audit (FAU)

5.2.4.1.1 Audit Data Generation (FAU_GEN.1(VPN))

Application Note: FAU_GEN.1(VPN) corresponds to FAU_GEN.1 in the IPsec extended package.

TSS

The evaluator shall examine the TSS to determine that it describes the auditable events and the

component that is responsible for each type of auditable event.

Guidance

The evaluator shall check the operational guidance and ensure that it lists all of the auditable events and

provides a format for audit records. Each audit record format type must be covered, along with a brief

description of each field. The evaluator shall check to make sure that every audit event type mandated

by the PP-Module is described and that the description of the fields contains the information required in

FAU_GEN.1.2, and the additional information specified in Table C-1 of the PP-Module.

In particular, the evaluator shall ensure that the operational guidance is clear in relation to the contents

for failed cryptographic events. In the Auditable Events table of the VPN Client PP-Module, information

detailing the cryptographic mode of operation and a name or identifier for the object being encrypted is

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 120 of 251

required. The evaluator shall ensure that name or identifier is sufficient to allow an administrator

reviewing the audit log to determine the context of the cryptographic operation (for example,

performed during a key negotiation exchange, performed when encrypting data for transit) as well as

the non-TOE endpoint of the connection for cryptographic failures relating to communications with

other IT systems.

The evaluator shall also make a determination of the administrative actions that are relevant in the

context of the VPN Client PP-Module. The TOE may contain functionality that is not evaluated in the

context of the VPN Client PP-Module because the functionality is not specified in an SFR. This

functionality may have administrative aspects that are described in the operational guidance. Since such

administrative actions will not be performed in an evaluated configuration of the TOE, the evaluator

shall examine the operational guidance and make a determination of which administrative commands,

including subcommands, scripts, and configuration files, are related to the configuration (including

enabling or disabling) of the mechanisms implemented in the TOE that are necessary to enforce the

requirements specified in the VPN Client PP- Module, which thus form the set of “all administrative

actions”. The evaluator may perform this activity as part of the activities associated with ensuring the

AGD_OPE guidance satisfies the requirements.

For each required auditable event, the evaluator shall examine the operational guidance to determine

that it is clear to the reader where each event is generated (e.g. the TSF may generate its own audit logs

in one location while the platform-provided auditable events are generated elsewhere).

Tests

The evaluator shall test the TOE’s ability to correctly generate audit records by having the TOE generate

audit records in accordance with the Assurance Activities associated with the functional requirements in

this PP-Module. Additionally, the evaluator shall test that each administrative action applicable in the

context of this PP-Module is auditable. When verifying the test results, the evaluator shall ensure the

audit records generated during testing match the format specified in the administrative guide, and that

the fields in each audit record have the proper entries.

Note that the testing here can be accomplished in conjunction with the testing of the security

mechanisms directly. For example, testing performed to ensure that the administrative guidance

provided is correct verifies that AGD_OPE.1 is satisfied and should address the invocation of the

administrative actions that are needed to verify the audit records are generated as expected.

5.2.4.1.2 Selective Audit (FAU_SEL.1)

TSS

There are no TSS Assurance Activities for this SFR.

Guidance

The evaluator shall review the administrative guidance to ensure that the guidance itemizes all event

types, as well as describes all attributes that are to be selectable in accordance with the requirement, to

include those attributes listed in the assignment. The administrative guidance shall also contain

instructions on how to set the pre-selection, or how the VPN gateway will configure the client, as well as

explain the syntax (if present) for multi-value pre-selection. The administrative guidance shall also

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 121 of 251

identify those audit records that are always recorded, regardless of the selection criteria currently being

enforced.

Tests

The evaluator shall perform the following tests:

• Test 1: For each attribute listed in the requirement, the evaluator shall devise a test to show

that selecting the attribute causes only audit events with that attribute (or those that are always

recorded, as identified in the administrative guidance) to be recorded.

• Test 2: [conditional] If the TSF supports specification of more complex audit pre-selection

criteria (e.g., multiple attributes, logical expressions using attributes) then the evaluator shall

devise tests showing that this capability is correctly implemented. The evaluator shall also, in

the test plan, provide a short narrative justifying the set of tests as representative and sufficient

to exercise the capability.

5.2.4.2 Cryptographic Support (FCS)

5.2.4.2.1 Cryptographic Key Generation (FCS_CKM.1 (VPN))

Application Note: FCS_CKM.1(VPN) corresponds to FCS_CKM.1/VPN in the IPsec extended package.

TSS

The evaluator shall examine the TSS to verify that it describes how the key generation functionality is

invoked.

Guidance

There are no AGD Assurance Activities for this requirement.

Tests

If this functionality is implemented by the TSF, refer to the following EAs, depending on the TOE’s

claimed Base-PP:

• GPOS PP: FCS_CKM.1

5.2.4.2.2 Cryptographic Key Storage (FCS_CKM_EXT.2)

TSS

Regardless of whether this requirement is met by the VPN client or the OS, the evaluator will check the

TSS to ensure that it lists each persistent secret (credential, secret key) and private key needed to meet

the requirements in the ST. For each of these items, the evaluator will confirm that the TSS lists for what

purpose it is used, and how it is stored.

The evaluator shall review the TSS for to determine that it makes a case that, for each item listed as

being manipulated by the VPN client, it is not written unencrypted to persistent memory, and that the

item is stored by the OS.

Guidance

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 122 of 251

There are no AGD Assurance Activities for this requirement.

Tests

There are no test Assurance Activities for this requirement.

5.2.4.2.3 EAP-TLS (FCS_EAP_EXT.1)

TSS

The evaluator shall verify that the TS describes the use of EAP options for each of the selected peer

authentication mechanisms, that TLS with mutual authentication is used, that the random values are

from an appropriate source, and that the EAP MSK is derived from the TLS master key and is used as the

IKEv2 shared key.

Guidance

The evaluator shall verify that the guidance documents describe any configurable features of the EAP or

TLS functionality, including instructions for configuration of the authenticators and registration

processes for clients.

Tests

Testing for TLS functionality is in accordance with the TLS package. For each supported EAP method

claimed in FCS_EAP_TLS_EXT.1.1 and for each authentication method claimed in FCS_EAP_TLS_EXT.1.3,

the evaluator shall perform the following tests:

• Test 1: The evaluator shall follow AGD guidance to configure the TSF to use the EAP method

claimed. The evaluator shall follow AGD guidance to configure the TSF to use the authentication

method claimed and, for EAP-TTLS, register a client with the appropriate key material required

for the authentication method. The evaluator shall establish an VPN session using a test client

with a valid certificate and, for EAP-TTLS, configured to provide a correct value for the

configured authenticator. The evaluator shall observe the the VPN session is successful.

• Test 2: (conditional for EAP-TTLS support): The evaluator shall cause the test client with a valid

certificate to send an invalid authenticator for the claimed authentication method: For HOTP,

replay the HOTP value sent previously, For TOTP or PSK, modify a byte of the properly

constructed value,and observe that the TSF aborts the session.

• Test 3: The evaluator shall establish a new, valid certificate for a test client using an identifier

not corresponding to a registered user. For EAP-TTLS, the evaluator shall cause the test client

using this certificate to send a correct authenticator value for the registered user. The evaluator

shall initiate a VPN session from the test client to the TSF and observe that the TSF aborts the

session.

• Test 4: The evaluator shall follow AGD guidance to configure the TSF to use a supported EAP

method and register the user with the key material required for a supported authentication

method. The evaluator shall configure a test client to respond to an IKEv2 exchange with EAP-

request, providing valid phase 1 handshake and valid TLS handshake, but computing the phase 2

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 123 of 251

shared key using standard (nonEAP) methods. The evaluator shall initiate a VPN session

between the test client and the TSF, and observe that the TSF aborts the session.

5.2.4.2.4 IPsec (FCS_IPSEC_EXT.1)

FCS_IPSEC_EXT.1.1

TSS

The evaluator shall examine the TSS and determine that it describes how the IPsec capabilities are

implemented.

If the TOE is a standalone software application, the evaluator shall ensure that the TSS asserts that all

IPsec functionality is implemented by the TSF. The evaluator shall also ensure that the TSS identifies

what platform functionality the TSF relies upon to support its IPsec implementation, if any (e.g. does it

invoke cryptographic primitive functions from the platform’s cryptographic library, enforcement of

packet routing decisions by low-level network drivers).

If the TOE is part of a general-purpose desktop or mobile OS, the evaluator shall ensure that the TSS

describes at a high level the architectural relationship between the VPN client portion of the TOE and

the rest of the TOE (e.g. is the VPN client an integrated part of the OS or is it a standalone executable

that is bundled into the OS package). If the SPD is implemented by the underlying platform in this case,

then the TSS describes how the client interacts with the platform to establish and populate the SPD,

including the identification of the platform's interfaces that are used by the client.

In all cases, the evaluator shall also ensure that the TSS describes how the client interacts with the

network stack of the platforms on which it can run (e.g., does the client insert itself within the stack via

kernel mods, does the client simply invoke APIs to gain access to network services).

The evaluator shall ensure that the TSS describes how the SPD is implemented and the rules for

processing both inbound and outbound packets in terms of the IPsec policy. The TSS describes the rules

that are available and the resulting actions available after matching a rule.

The TSS describes how the available rules and actions form the SPD using terms defined in RFC 4301

such as BYPASS (e.g., no encryption), DISCARD (e.g., drop the packet), and PROTECT (e.g., encrypt the

packet) actions defined in RFC 4301. As noted in section 4.4.1 of RFC 4301, the processing of entries in

the SPD is non-trivial and the evaluator shall determine that the description in the TSS is sufficient to

determine which rules will be applied given the rule structure implemented by the TOE. For example, if

the TOE allows specification of ranges, conditional rules, etc., the evaluator shall determine that the

description of rule processing (for both inbound and outbound packets) is sufficient to determine the

action that will be applied, especially in the case where two different rules may apply. This description

shall cover both the initial packets (that is, no SA is established on the interface or for that particular

packet) as well as packets that are part of an established SA.

Guidance

The evaluator shall examine the operational guidance to verify it describes how the SPD is created and

configured. If there is an administrative interface to the client, then the guidance describes how the

administrator specifies rules for processing a packet. The description includes all three cases - a rule that

ensures packets are encrypted/decrypted, dropped, and allowing a packet to flow in plaintext. The

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 124 of 251

evaluator shall determine that the description in the operational guidance is consistent with the

description in the TSS, and that the level of detail in the operational guidance is sufficient to allow the

administrator to set up the SPD in an unambiguous fashion. This includes a discussion of how ordering of

rules impacts the processing of an IP packet.

If the client is configured by an external application, such as the VPN gateway, then the operational

guidance should indicate this and provide a description of how the client is configured by the external

applicationThe description should contain information as to how the SPD is established and set up in an

unambiguous fashion. The description should also include what is configurable via the external

application, how ordering of entries may be expressed, as well as the impacts that ordering of entries

may have on the packet processing.

In either case, the evaluator ensures the description provided In the TSS is consistent with the

capabilities and description provided in the operational guidance.

Tests

Depending on the implementation, the evaluator may be required to use a VPN gateway or some form

of application to configure the client and platform. For Test 2, the evaluator is required to choose an

application that allows for the configuration of the full set of capabilities of the VPN client (in

conjunction with the platform). For example, if the client provides a robust interface that allows for

specification of wildcards, subnets, etc., it is unacceptable for the evaluator to choose a VPN Gateway

that only allows for specifying a single fully qualified IP addresses in the rule.

The evaluator shall perform the following tests:

• Test 1: The evaluator shall configure an SPD on the client that is capable of the following:

dropping a packet, encrypting a packet, and allowing a packet to flow in plaintext. The selectors

used in the construction of the rule shall be different such that the evaluator can generate a

packet and send packets to the client with the appropriate fields (fields that are used by the rule

- e.g., the IP addresses, TCP/UDP ports) in the packet header. The evaluator performs both

positive and negative test cases for each type of rule. The evaluator observes via the audit trail,

and packet captures that the TOE exhibited the expected behavior: appropriate packets were

dropped, allowed through without modification, was encrypted by the IPsec implementation.

• Test 2: The evaluator shall devise several tests that cover a variety of scenarios for packet

processing. These scenarios must exercise the range of possibilities for SPD entries and

processing modes as outlined in the TSS and operational guidance. Potential areas to cover

include rules with overlapping ranges and conflicting entries, inbound and outbound packets,

and packets that establish SAs as well as packets that belong to established SAs. The evaluator

shall verify, via the audit trail and packet captures, for each scenario that the expected behavior

is exhibited, and is consistent with both the TSS and the operational guidance..

FCS_IPSEC_EXT.1.2

TSS

The evaluator shall check the TSS to ensure it states that the VPN can be established to operate in

tunnel mode and/or transport mode (as selected).

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 125 of 251

Guidance

The evaluator shall confirm that the operational guidance contains instructions on how to configure the

connection in each mode selected.

If both transport mode and tunnel mode are implemented, the evaluator shall review the operational

guidance to determine how the use of a given mode is specified.

Tests

The evaluator shall perform the following test(s) based on the selections chosen:

• Test 1: [conditional] If tunnel mode is selected, the evaluator uses the operational guidance to

configure the TOE to operate in tunnel mode and also configures a VPN gateway to operate in

tunnel mode. The evaluator configures the TOE and the VPN gateway to use any of the

allowable cryptographic algorithms, authentication methods, etc. to ensure an allowable SA can

be negotiated. The evaluator shall then initiate a connection from the client to connect to the

VPN GW peer. The evaluator observes (for example, in the audit trail and the captured packets)

that a successful connection was established using the tunnel mode.

• Test 2: [conditional] : If transport mode is selected, the evaluator uses the operational guidance

to configure the TOE to operate in transport mode and also configures an IPsec peer to accept

IPsec connections using transport mode. The evaluator configures the TOE and the endpoint

device to use any of the allowed cryptographic algorithms, authentication methods, etc. to

ensure an allowable SA can be negotiated. The evaluator then initiates a connection from the

TOE to connect to the remote endpoint. The evaluator observes (for example, in the audit trail

and the captured packets) that a successful connection was established using the transport

mode.

• Test 3: [conditional] If both tunnel mode and transport mode are selected, the evaluator shall

perform both Test 1 and Test 2 above, demonstrating that the TOE can be configured to support

both modes.

• Test 4: [conditional] If both tunnel mode and transport mode are selected, the evaluator shall

modify the testing for FCS_IPSEC_EXT.1 to include the supported mode for SPD PROTECT entries

to show that they only apply to traffic that is transmitted or received using the indicated mode.

FCS_IPSEC_EXT.1.3

TSS

The evaluator shall examine the TSS to verify that the TSS provides a description of how a packet is

processed against the SPD and that if no “rules” are found to match, that a final rule exists, either

implicitly or explicitly, that causes the network packet to be discarded.

Guidance

The evaluator checks that the operational guidance provides instructions on how to construct or acquire

the SPD and uses the guidance to configure the TOE/platform for the following test.

Tests

The evaluator shall perform the following test:

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 126 of 251

• Test 1: The evaluator shall configure the SPD such that it has entries that contain operations

that DISCARD, PROTECT, and (if applicable) BYPASS network packets. The evaluator may use the

SPD that was created for verification of FCS_IPSEC_EXT.1.1. The evaluator shall construct a

network packet that matches a BYPASS entry and send that packet. The evaluator should

observe that the network packet is passed to the proper destination interface with no

modification. The evaluator shall then modify a field in the packet header; such that it no longer

matches the evaluator-created entries (there may be a “TOE/platform created” final entry that

discards packets that do not match any previous entries). The evaluator sends the packet, and

observes that the packet was not permitted to flow to any of the TOE’s interfaces.

FCS_IPSEC_EXT.1.4

TSS

The evaluator shall examine the TSS to verify that the algorithms AES-GCM-128 and AES-GCM-256 are

implemented. If the ST author has selected either AES-CBC-128 or AES-CBC-256 in the requirement, then

the evaluator verifies the TSS describes these as well. In addition, the evaluator ensures that the SHA-

based HMAC algorithm conforms to the algorithms specified in the relevant iteration of FCS_COP.1 from

the Base-PP that applies to keyed-hash message authentication.

Guidance

The evaluator checks the operational guidance to ensure it provides instructions on how the TOE is

configured to use the algorithms selected in this component and whether this is performed through

direct configuration, defined during initial installation, or defined by acquiring configuration settings

from an environmental component.

Tests

• Test 1: The evaluator shall configure the TOE/platform as indicated in the operational guidance

configuring the TOE/platform to using each of the AES-GCM-128, and AES-GCM-256 algorithms,

and attempt to establish a connection using ESP. If the ST Author has selected either AES-CBC-

128 or AES-CBC-256, the TOE/platform is configured to use those algorithms and the evaluator

attempts to establish a connection using ESP for those algorithms selected.

FCS_IPSEC_EXT.1.529

TSS

The evaluator shall examine the TSS to verify that IKEv1 and/or IKEv2 are implemented. If IKEv1 is

implemented, the evaluator shall verify that the TSS indicates whether or not XAUTH is supported, and

that aggressive mode is not used for IKEv1 Phase 1 exchanges (i.e. only main mode is used). It may be

that these are configurable options.

Guidance

The evaluator shall check the operational guidance to ensure it instructs the administrator how to

configure the TOE/platform to use IKEv1 and/or IKEv2 (as selected), and uses the guidance to configure

29 This protection profile assurance activity was modified as part of NIAP Technical Decision 662.

https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0662

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 127 of 251

the TOE/platform to perform NAT traversal for the test below. If XAUTH is implemented, the evaluator

shall verify that the operational guidance provides instructions on how it is enabled or disabled.

If the TOE supports IKEv1, the evaluator shall verify that the operational guidance either asserts that

only main mode is used for Phase 1 exchanges, or provides instructions for disabling aggressive mode.

Tests

• Test 1: The evaluator shall configure the TOE/platform so that it will perform NAT traversal

processing as described in the TSS and RFC 7296, section 2.23. The evaluator shall initiate an

IPsec connection and determine that the NAT is successfully traversed. If the TOE/platform

supports IKEv1 with or without XAUTH, the evaluator shall verify that this test can be

successfully repeated with XAUTH enabled and disabled in the manner specified by the

operational guidance. If the TOE/platform only supports IKEv1 with XAUTH, the evaluator shall

verify that connections not using XAUTH are unsuccessful. If the TOE/platform only supports

IKEv1 without XAUTH, the evaluator shall verify that connections using XAUTH are unsuccessful.

In the case that the VPN gateway enforces the TOE's configuration, the following steps shall be

performed to meet the objective of Test 1:

1. Configure the TOE client and VPN gateway to have XAUTH enabled.

2. Attempt the connection and observe that the connection succeeds and that XAUTH is

used.

3. Configure the TOE and gateway to have XAUTH disabled.

4. Attempt the connection and observe that the connection succeeds and that XAUTH is

not present.

5. Attempt to configure a mismatch between the TOE and gateway (i.e. modify a local

configuration setting on the client system)

6. Verify that no IPsec connection is attempted until the gateway corrects the

configuration settings

• Test 2: [conditional] If the TOE supports IKEv1, the evaluator shall perform any applicable

operational guidance steps to disable the use of aggressive mode and then attempt to establish

a connection using an IKEv1 Phase 1 connection in aggressive mode. This attempt should fail.

The evaluator shall show that the TOE/platform will reject a VPN gateway from initiating an

IKEv1 Phase 1 connection in aggressive mode. The evaluator should then show that main mode

exchanges are supported.

In the case that the VPN gateway enforces the TOE's configuration, the following steps should

be performed to meet the objective of Test 2:

1. Configure the gateway and TOE client in the appropriate manner per the guidance

documentation. (Gateway rejects Aggressive mode, Client rejects aggressive mode)

2. Connect the TOE client to the gateway to obtain the configuration settings.

3. Observe the main mode connection is successful.

4. Disconnect the TOE from the gateway.

5. Attempt to modify the setting for main mode locally on the TOE to force the client to

attempt to use aggressive mode.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 128 of 251

6. Observe that when the initial connection attempt to the gateway is made, the gateway

detects the configuration difference and reapplies the main mode setting before the

TOE can attempt an IPsec connection.

7. Configure a peer to have equivalent settings to the VPN gateway (Same

ciphers/Authentication/Hash/KEX settings)

8. Tell the TOE that there is a VPN gateway at the location of the peer.

9. Observe that the TOE cannot establish a connection with the peer.

FCS_IPSEC_EXT.1.6

TSS

The evaluator shall ensure the TSS identifies the algorithms used for encrypting the IKEv1 and/or IKEv2

payload, and that the algorithms AES-CBC-128, AES-CBC-256 are specified, and if others are chosen in

the selection of the requirement, those are included in the TSS discussion.

Guidance

The evaluator checks the operational guidance to ensure it provides instructions on how the TOE is

configured to use the algorithms selected in this component and whether this is performed through

direct configuration, defined during initial installation, or defined by acquiring configuration settings

from an environmental component.

Test

The evaluator shall use the operational guidance to configure the TOE/platform (or to configure the

Operational Environment to have the TOE receive configuration) to perform the following test for each

ciphersuite selected:

• Test 1: The evaluator shall configure the TOE/platform to use the ciphersuite under test to

encrypt the IKEv1 and/or IKEv2 payload and establish a connection with a peer device, which is

configured to only accept the payload encrypted using the indicated ciphersuite. The evaluator

will confirm the algorithm was that used in the negotiation. The evaluator will confirm that the

connection is successful by confirming that data can be passed through the connection once it is

established. For example, the evaluator may connect to a webpage on the remote network and

verify that it can be reached.

FCS_IPSEC_EXT.1.7

TSS

There are no TSS EAs for this requirement.

Guidance

The evaluator shall check the operational guidance to ensure it provides instructions on how the TOE

configures the values for SA lifetimes. In addition, the evaluator shall check that the guidance has the

option for either the Administrator or VPN Gateway to configure Phase 1 SAs if time-based limits are

supported. Currently there are no values mandated for the number of packets or number of bytes, the

evaluator shall simply check the operational guidance to ensure that this can be configured if selected in

the requirement.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 129 of 251

Tests

When testing this functionality, the evaluator needs to ensure that both sides are configured

appropriately. From the RFC “A difference between IKEv1 and IKEv2 is that in IKEv1 SA lifetimes were

negotiated. In IKEv2, each end of the SA is responsible for enforcing its own lifetime policy on the SA and

rekeying the SA when necessary. If the two ends have different lifetime policies, the end with the

shorter lifetime will end up always being the one to request the rekeying. If the two ends have the same

lifetime policies, it is possible that both will initiate a rekeying at the same time (which will result in

redundant SAs). To reduce the probability of this happening, the timing of rekeying requests SHOULD be

jittered.”

Each of the following tests shall be performed for each version of IKE selected in the FCS_IPSEC_EXT.1.5

protocol selection:

• Test 1: [conditional] The evaluator shall configure a maximum lifetime in terms of the # of

packets (or bytes) allowed following the operational guidance. The evaluator shall establish an

SA and determine that once the allowed # of packets (or bytes) through this SA is exceeded, the

connection is closed.

• Test 2: [conditional] The evaluator shall construct a test where a Phase 1 SA is established and

attempted to be maintained for more than 24 hours before it is renegotiated. The evaluator

shall observe that this SA is closed or renegotiated in 24 hours or less. If such an action requires

that the TOE be configured in a specific way, the evaluator shall implement tests demonstrating

that the configuration capability of the TOE works as documented in the operational guidance.

• Test 3: [conditional] The evaluator shall perform a test similar to Test 2 for Phase 2 SAs, except

that the lifetime will be 8 hours or less instead of 24 hours or less.

• Test 4: [conditional] If a fixed limit for IKEv1 SAs is supported, the evaluator shall establish an SA

and observe that the connection is closed after the fixed traffic and/or time value is reached.

FCS_IPSEC_EXT.1.8

TSS

The evaluator shall check to ensure that the DH groups specified in the requirement are listed as being

supported in the TSS. If there is more than one DH group supported, the evaluator checks to ensure the

TSS describes how a particular DH group is specified/negotiated with a peer.

Guidance

There are no guidance EAs for this requirement.

Tests

The evaluator shall perform the following test:

• Test 1: For each supported DH group, the evaluator shall test to ensure that all supported IKE

protocols can be successfully completed using that particular DH group.

FCS_IPSEC_EXT.1.9

TSS

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 130 of 251

The evaluator shall check to ensure that, for each DH group supported, the TSS describes the process for

generating "x" (as defined in FCS_IPSEC_EXT.1.9) and each nonce. The evaluator shall verify that the TSS

indicates that the random number generated that meets the requirements in this EP is used, and that

the length of "x" and the nonces meet the stipulations in the requirement.

Guidance

There are no guidance EAs for this requirement.

Test

There are no test EAs for this requirement.

FCS_IPSEC_EXT.1.10

EAs for this element are tested through EAs for FCS_IPSEC_EXT.1.9.

 FCS_IPSEC_EXT.1.11

TSS

The evaluator shall ensures that the TSS whether peer authentication is performed using RSA, ECDSA, or

both.

If any selection with pre-shared keys is chosen in the selection, the evaluator shall check to ensure that

the TSS describes how those selections work in conjunction with authentication of IPsec connections.

The evaluator shall ensure that the TSS describes how the TOE compares the peer’s presented identifier

to the reference identifier. This description shall include whether the certificate presented identifier is

compared to the ID payload presented identifier, which fields of the certificate are used as the

presented identifier (DN, Common Name, or SAN) and, if multiple fields are supported, the logical order

comparison. If the ST author assigned an additional identifier type, the TSS description shall also include

a description of that type and the method by which that type is compared to the peer’s presented

certificate.

Guidance

If any selection with “Pre-shared Keys” is selected, the evaluator shall check that the operational

guidance describes any configuration necessary to enable any selected authentication mechanisms.

If any method other than no other method is selected, the evaluator shall check that the operational

guidance describes any configuration necessary to enable any selected authentication mechanisms.

The evaluator ensures the operational guidance describes how to set up the TOE to use the

cryptographic algorithms RSA, ECDSA, or either, depending which is claimed in the ST.

In order to construct the environment and configure the TOE for the following tests, the evaluator will

ensure that the operational guidance also describes how to configure the TOE to connect to a trusted

CA, and ensure a valid certificate for that CA is loaded into the TOE as a trusted CA.

The evaluator shall also ensure that the operational guidance includes the configuration of the reference

identifiers for the peer.

Tests

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 131 of 251

For efficiency’s sake, the testing that is performed here has been combined with the testing for

FIA_X509_EXT.2 and FIA_X509_EXT.3 (for IPsec connections and depending on the Base-PP),

FCS_IPSEC_EXT.1.12, and FCS_IPSEC_EXT.1.13. The following tests shall be repeated for each peer

authentication protocol selected in the FCS_IPSEC_EXT.1.11 selection above:

• Test 1: The evaluator shall have the TOE generate a public-private key pair, and submit a CSR

(Certificate Signing Request) to a CA (trusted by both the TOE and the peer VPN used to

establish a connection) for its signature. The values for the DN (Common Name, Organization,

Organizational Unit, and Country) will also be passed in the request. Alternatively, the evaluator

may import to the TOE a previously generated private key and corresponding certificate.

• Test 2: The evaluator shall configure the TOE to use a private key and associated certificate

signed by a trusted CA and shall establish an IPsec connection with the peer.

• Test 3: The evaluator shall test that the TOE can properly handle revoked certificates –

conditional on whether CRL or OCSP is selected; if both are selected, and then a test is

performed for each method. For this current version of the PP-Module, the evaluator has to

only test one up in the trust chain (future drafts may require to ensure the validation is done up

the entire chain). The evaluator shall ensure that a valid certificate is used, and that the SA is

established. The evaluator then attempts the test with a certificate that will be revoked (for

each method chosen in the selection) to ensure when the certificate is no longer valid that the

TOE will not establish an SA..

• Test 4: [conditional]: For each selection made, the evaluator shall verify factors are required, as

indicated in the operational guidance, to establish an IPsec connection with the server. For each

supported identifier type (excluding DNs), the evaluator shall repeat the following tests:

• Test 5: For each field of the certificate supported for comparison, the evaluator shall configure

the peer’s reference identifier on the TOE (per the administrative guidance) to match the field in

the peer’s presented certificate and shall verify that the IKE authentication succeeds.

• Test 6: For each field of the certificate support for comparison, the evaluator shall configure the

peer’s reference identifier on the TOE (per the administrative guidance) to not match the field in

the peer’s presented certificate and shall verify that the IKE authentication fails.

The following tests are conditional:

• Test 7: [conditional]: If, according to the TSS, the TOE supports both Common Name and SAN

certificate fields and uses the preferred logic outlined in the Application Note, the tests above

with the Common Name field shall be performed using peer certificates with no SAN extension.

Additionally, the evaluator shall configure the peer’s reference identifier on the TOE to not

match the SAN in the peer’s presented certificate but to match the Common Name in the peer’s

presented certificate, and verify that the IKE authentication fails.

• Test 8: [conditional]: If the TOE supports DN identifier types, the evaluator shall configure the

peer's reference identifier on the TOE (per the administrative guidance) to match the subject DN

in the peer's presented certificate and shall verify that the IKE authentication succeeds. To

demonstrate a bit-wise comparison of the DN, the evaluator shall change a single bit in the DN

(preferably, in an Object Identifier (OID) in the DN) and verify that the IKE authentication fails.

To demonstrate a comparison of DN values, the evaluator shall change any one of the four DN

values and verify that the IKE authentication fails.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 132 of 251

• Test 9: [conditional]: If the TOE supports both IPv4 and IPv6 and supports IP address identifier

types, the evaluator must repeat test 1 and 2 with both IPv4 address identifiers and IPv6

identifiers. Additionally, the evaluator shall verify that the TOE verifies that the IP header

matches the identifiers by setting the presented identifiers and the reference identifier with the

same IP address that differs from the actual IP address of the peer in the IP headers and

verifying that the IKE authentication fails.

• Test 10: [conditional]: If, according to the TSS, the TOE performs comparisons between the

peer’s ID payload and the peer’s certificate, the evaluator shall repeat the following test for

each combination of supported identifier types and supported certificate fields (as above). The

evaluator shall configure the peer to present a different ID payload than the field in the peer’s

presented certificate and verify that the TOE fails to authenticate the IKE peer.

FCS_IPSEC_EXT.1.12

EAs for this element are tested through EAs for FCS_IPSEC_EXT.1.11.

 FCS_IPSEC_EXT.1.13

EAs for this element are tested through EAs for FCS_IPSEC_EXT.1.11.

FCS_IPSEC_EXT.1.14

TSS

The evaluator shall check that the TSS describes the potential strengths (in terms of the number of bits

in the symmetric key) of the algorithms that are allowed for the IKE and ESP exchanges. The TSS shall

also describe the checks that are done when negotiating IKEv1 Phase 2 and/or IKEv2 CHILD_SA suites to

ensure that the strength (in terms of the number of bits of key in the symmetric algorithm) of the

negotiated algorithm is less than or equal to that of the IKE SA this is protecting the negotiation.

Guidance

There are no guidance EAs for this requirement.

Tests

The evaluator follows the guidance to configure the TOE/platform to perform the following tests.

• Test 1: This test shall be performed for each version of IKE supported. The evaluator shall

successfully negotiate an IPsec connection using each of the supported algorithms and hash

functions identified in the requirements.

• Test 2: [conditional] This test shall be performed for each version of IKE supported. The

evaluator shall attempt to establish an SA for ESP that selects an encryption algorithm with

more strength than that being used for the IKE SA (i.e., symmetric algorithm with a key size

larger than that being used for the IKE SA). Such attempts should fail.

• Test 3: This test shall be performed for each version of IKE supported. The evaluator shall

attempt to establish an IKE SA using an algorithm that is not one of the supported algorithms

and hash functions identified in the requirements. Such an attempt should fail.

• Test 4: This test shall be performed for each version of IKE supported. The evaluator shall

attempt to establish an SA for ESP (assumes the proper parameters where used to establish the

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 133 of 251

IKE SA) that selects an encryption algorithm that is not identified in FCS_IPSEC_EXT.1.4. Such an

attempt should fail.

5.2.4.3 User Data Protection (FDP)

5.2.4.3.1 Spit Tunnel Prevention (FDP_VPN_EXT.1)30

TSS

The evaluator shall verify that the TSS section of the ST describes the routing of IP traffic through

processes on the TSF when a VPN client is enabled. The evaluator shall ensure that the description

indicates which traffic does not go through the VPN and which traffic does and that a configuration

exists for each baseband protocol in which only the traffic identified by the ST author is necessary for

establishing the VPN connection (IKE traffic and perhaps HTTPS or DNS traffic) is not encapsulated by

the VPN protocol (IPsec). The ST author shall also identify in the TSS section any differences in the

routing of IP traffic when using any supported baseband protocols (e.g. Wi-Fi or LTE).

Operational Guidance

The evaluator shall verify that the following is addressed by the documentation:

• The description above indicates that if a VPN client is enabled, all configurations route all IP

traffic (other than IP traffic required to establish the VPN connection) through the VPN client.

• The AGD guidance describes how the user and/or administrator can configure the TSF to meet

this requirement.

Test

The evaluator shall perform the following test:

Step 1 - The evaluator shall use the platform to enable a network connection without using IPsec. The

evaluator shall use a packet sniffing tool between the platform and an Internet-connected network. The

evaluator shall turn on the sniffing tool and perform actions with the device such as navigating to

websites, using provided applications, accessing other Internet resources (Use Case 1), accessing

another VPN client (Use Case 2), or accessing an IPsec-capable network device (Use Case 3). The

evaluator shall verify that the sniffing tool captures the traffic generated by these actions, turn off the

sniffing tool, and save the session data.

Step 2 - The evaluator shall configure an IPsec VPN client that supports the routing specified in this

requirement, and if necessary, configure the device to perform the routing specified as described in the

AGD guidance. The evaluator shall turn on the sniffing tool, establish the VPN connection, and perform

the same actions with the device as performed in the first step. The evaluator shall verify that the

sniffing tool captures traffic generated by these actions, turn off the sniffing tool, and save the session

data.

30 This protection profile assurance activity was added as part of NIAP Technical Decision 690.

https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0690

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 134 of 251

Step 3 - The evaluator shall examine the traffic from both step one and step two to verify that all IP

traffic, aside from and after traffic necessary for establishing the VPN (such as IKE, DNS, and possibly

HTTPS), is encapsulated by IPsec.

Step 4 - The evaluator shall attempt to send packets to the TOE outside the VPN connection and shall

verify that the TOE discards them.

5.2.4.3.2 Full Residual Information Protection (FDP_RIP.2)

TSS

Requirement met by the platform

The evaluator shall examine the TSS to verify that it describes (for each supported platform) the extent

to which the client processes network packets and addresses the FDP_RIP.2 requirement.

Requirement met by the TOE

“Resources” in the context of this requirement are network packets being sent through (as opposed to

“to”, as is the case when a security administrator connects to the TOE) the TOE. The concern is that once

a network packet is sent, the buffer or memory area used by the packet still contains data from that

packet, and that if that buffer is re-used, those data might remain and make their way into a new

packet. The evaluator shall check to ensure that the TSS describes packet processing to the extent that

they can determine that no data will be reused when processing network packets. The evaluator shall

ensure that this description at a minimum describes how the previous data are zeroized/overwritten,

and at what point in the buffer processing this occurs.

Guidance

There are no AGD Assurance Activities for this requirement.

Tests

There are no test EAs for this requirement.

5.2.4.4 Identification & Authentication (FIA)

5.2.4.4.1 Pre-Shared Key Composition (FIA_PSK_EXT.1)

TSS

The evaluator shall examine the TSS to ensure that it identifies all protocols that allow pre-shared keys.

For each protocol identified by the requirement, the evaluator shall confirm that the TSS states which

pre-shared key selections are supported.

Guidance

The evaluator shall examine the operational guidance to determine that it provides guidance to

administrators on how to configure all selected pre-shared key options if any configuration is required.

Tests

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 135 of 251

The evaluator shall also perform the following tests for each protocol (or instantiation of a protocol, if

performed by a different implementation on the TOE).

• Test 1: For each mechanism selected in FIA_PSK_EXT.1.2, the evaluator shall attempt to

establish a connection and confirm that the connection requires the selected factors in the PSK

to establish the connection.

5.2.4.4.2 X.509 Certificate Use and Management (FIA_X509_EXT.3)

TSS

The evaluator shall check the TSS to ensure that it describes whether the VPN client or the OS

implements the certificate validation functionality, how the VPN client/OS chooses which certificates to

use, and any necessary instructions in the administrative guidance for configuring the OS so that desired

certificates can be used.

The evaluator shall examine the TSS to confirm that it describes the behavior of the client/OS when a

connection cannot be established during the validity check of a certificate used in establishing a trusted

channel.

Guidance

If the requirement indicates that the administrator is able to specify the default action, then the

evaluator shall ensure that the operational guidance contains instructions on how this configuration

action is performed.

Tests

The evaluator shall perform the following test regardless of whether the certificate validation

functionality is implemented by the VPN client or by the OS:

Test 1: The evaluator shall demonstrate that using a valid certificate that requires certificate validation

checking to be performed in at least some part by communicating with a non-TOE IT entity. The

evaluator shall then manipulate the environment so that the TOE is unable to verify the validity of the

certificate, and observe that the action selected in FIA_X509_EXT.3.2 is performed. If the selected action

is administrator-configurable, then the evaluator shall follow the operational guidance to determine

that all supported administrator-configurable options behave in their documented manner.

5.2.4.5 Security Management (FMT)

5.2.4.5.1 Specification of Management Functions (VPN) (FMT_SMF.1(VPN))

Application Note: FMT_SMF.1(VPN) corresponds to FMT_SMF.1/VPN in the VPN Client Module.

TSS

The evaluator shall check to ensure the TSS describes the client credentials and how they are used by

the TOE.

Guidance

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 136 of 251

The evaluator shall check to make sure that every management function mandated in the ST for this

requirement is described in the operational guidance and that the description contains the information

required to perform the management duties associated with each management function.

Tests

The evaluator shall test the TOE’s ability to provide the management functions by configuring the TOE

according to the operational guidance and testing each management activity listed in the ST.

The evaluator shall ensure that all management functions claimed in the ST can be performed by

completing activities described in the AGD. Note that this may be performed in the course of completing

other testing.

5.2.4.6 Protection of the TSF (FPT)

5.2.4.6.1 Self-Test (FPT_TST_EXT.1 (VPN))

Application Note: FPT_TST_EXT.1(VPN) corresponds to FPT_TST_EXT.1 in the VPN Client Module.

Except for where it is explicitly noted, the evaluator is expected to check the following information

regardless of whether the functionality is implemented by the TOE or by the TOE platform.

TSS

The evaluator shall examine the TSS to ensure that it details the self-tests that are run by the TSF on

start-up; this description should include an outline of what the tests are actually doing (e.g., rather than

saying "memory is tested", a description similar to "memory is tested by writing a value to each memory

location and reading it back to ensure it is identical to what was written" shall be used). The evaluator

shall ensure that the TSS makes an argument that the tests are sufficient to demonstrate that the TSF is

operating correctly. If some of the tests are performed by the TOE platform, the evaluator shall check

the TSS to ensure that those tests are identified, and that the ST for each platform contains a description

of those tests. Note that the tests that are required by this component are those that support security

functionality in this PP-Module, which may not correspond to the set of all self-tests contained in the

platform STs.

The evaluator shall examine the TSS to ensure that it describes how the integrity of stored TSF

executable code is cryptographically verified when it is loaded for execution. The evaluator shall ensure

that the TSS makes an argument that the tests are sufficient to demonstrate that the integrity of stored

TSF executable code has not been compromised. The evaluator shall check to ensure that the

cryptographic requirements listed are consistent with the description of the integrity verification

process.

The evaluator also ensures that the TSS (or the operational guidance) describes the actions that take

place for successful (e.g. hash verified) and unsuccessful (e.g., hash not verified) cases. For checks

implemented entirely by the platform, the evaluator ensures that the operational guidance for the TOE

references or includes the platform-specific guidance for each platform listed in the ST.

Guidance

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 137 of 251

If not present in the TSS, the evaluator ensures that the operational guidance describes the actions that

take place for successful (e.g. hash verified) and unsuccessful (e.g., hash not verified) cases. For checks

implemented entirely by the platform, the evaluator ensures that the operational guidance for the TOE

references or includes the platform-specific guidance for each platform listed in the ST.

Tests

The evaluator shall perform the following tests:

• Test 1: The evaluator performs the integrity check on a known good TSF executable and verifies

that the check is successful.

• Test 2: The evaluator modifies the TSF executable, performs the integrity check on the modified

TSF executable and verifies that the check fails.

5.2.4.7 Trusted Path/Channels (FTP)

5.2.4.7.1 Inter-TSF Trusted Channel (FTP_ITC.1(VPN))

Application Note: FTP_ITC.1(VPN) corresponds to FTP_ITC.1 in the VPN Client Module.

TSS

The evaluator shall examine the TSS to determine that it describes the details of the TOE connecting to a

VPN gateway, VPN client, or IPsec-capable network device in terms of the cryptographic protocols

specified in the requirement, along with TOE-specific options or procedures that might not be reflected

in the specification. evaluator shall also confirm that all protocols listed in the TSS are specified and

included in the requirements in the ST.

Guidance

The evaluator shall confirm that the operational guidance contains instructions for establishing the

connection to a VPN gateway, VPN client, or IPsec-capable network device, and that it contains recovery

instructions should a connection be unintentionally broken.

Tests

The evaluator shall perform the following tests:

• Test 1: The evaluator shall ensure that the TOE is able to initiate communications with a VPN

gateway, VPN client, IPsec-capable network device using the protocols specified in the

requirement, setting up the connections as described in the operational guidance and ensuring

that communication is successful.

• Test 2: The evaluator shall ensure, for each communication channel with an IPsec peer, the

channel data is not sent in plaintext.

• Test 3: The evaluator shall ensure, for each communication channel with an IPsec peer,

modification of the channel data is detected by the TOE.

• Test 4: The evaluator shall physically interrupt the connection from the TOE to the IPsec peer.

The evaluators shall ensure that subsequent communications are appropriately protected, at a

minimum in the case of any attempts to automatically resume the connection or connect to a

new access point.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 138 of 251

Further EAs are associated with requirements for FCS_IPSEC_EXT.1.

5.2.5 Bluetooth Module Assurance Activities

This section copies the assurance activities from the Bluetooth PP-Module in order to ease reading and

comparisons between the extended package and the security.

5.2.5.1 Security Audit (FAU)

5.2.5.1.1 Audit Data Generation (FAU_GEN.1(BT))

TSS

There are additional auditable events that serve to extend the FAU_GEN.1 SFR found in each Base-PP.

This SFR is evaluated in the same manner as defined by the Evaluation Activities for the claimed Base-PP.

The only difference is that the evaluator shall also assess the auditable events required for this PP-

Module in addition to those defined in the claimed Base-PP.

5.2.5.2 Cryptographic Support (FCS)

5.2.5.2.1 Bluetooth Key Generation (FCS_CKM_EXT.8)

TSS

The evaluator shall ensure that the TSS describes the criteria used to determine the frequency of

generating new ECDH public/private key pairs. In particular, the evaluator shall ensure that the

implementation does not permit the use of static ECDH key pairs.

Guidance

There are no guidance evaluation activities for this component.

Tests

The evaluator shall perform the following steps:

Step 1: Pair the TOE to a remote Bluetooth device and record the public key currently in use by the TOE.

(This public key can be obtained using a Bluetooth protocol analyzer to inspect packets exchanged

during pairing.)

Step 2: Perform necessary actions to generate new ECDH public/private key pairs. (Note that this test

step depends on how the TSS describes the criteria used to determine the frequency of generating new

ECDH public/private key pairs.)

Step 3: Pair the TOE to a remote Bluetooth device and again record the public key currently in use by the

TOE.

Step 4: Verify that the public key in Step 1 differs from the public key in Step 3.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 139 of 251

5.2.5.3 Identification & Authentication (FIA)

5.2.5.3.1 Bluetooth User Authorization (FIA_BLT_EXT.1)

TSS

The evaluator shall examine the TSS to ensure that it contains a description of when user permission is

required for Bluetooth pairing; and that this description mandates explicit user authorization via manual

input for all Bluetooth pairing; including application use of the Bluetooth trusted channel and situations

where temporary (non-bonded) connections are formed.

Guidance

The evaluator shall examine the API documentation provided as a means of satisfying the requirements

for the ADV assurance class (see section 5.2.2 in the MDF PP and GPOS PP) and verify that this API

documentation does not include any API for programmatic entering of pairing information (e.g. PINs;

numeric codes; or "yes/no" responses) intended to bypass manual user input during pairing.

The evaluator shall examine the guidance to verify that these user authorization screens are clearly

identified and instructions are given for authorizing Bluetooth pairings.

Tests

The evaluator shall perform the following steps:

Step 1: Initiate pairing with the TOE from a remote Bluetooth device that requests no man-in-the-middle

protection; no bonding; and claims to have NoInput/NoOutput (IO) capability. Such a device will attempt

to evoke behavior from the TOE that represents the minimal level of user interaction that the TOE

supports during pairing.

Step 2: Verify that the TOE does not permit any Bluetooth pairing without explicit authorization from

the user (e.g. the user must have to minimally answer "yes" or "allow" in a prompt).

5.2.5.3.2 Bluetooth Mutual Authentication (FIA_BLT_EXT.2)

TSS

The evaluator shall ensure that the TSS describes how data transfer of any type is prevented before the

Bluetooth pairing is completed. The TSS shall specifically call out any supported RFCOMM and L2CAP

data transfer mechanisms. The evaluator shall ensure that the data transfers are only completed after

the Bluetooth devices are paired and mutually authenticated.

Guidance

There are no guidance evaluation activities for this component.

Tests

The evaluator shall use a Bluetooth tool to attempt to access TOE files using the OBEX Object Push

service (OBEX Push) and verify that pairing and mutual authentication are required by the TOE before

allowing access. If the OBEX Object Push service is unsupported on the TOE; a different service that

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 140 of 251

transfers data over Bluetooth L2CAP and/or RFCOMM may be used in this test.

5.2.5.3.3 Rejection of Duplicate Bluetooth Connections (FIA_BLT_EXT.3)

TSS

The evaluator shall ensure that the TSS describes how Bluetooth sessions are maintained such that at

least two devices with the same Bluetooth device address are not simultaneously connected and such

that the initial session is not superseded by any following session initialization attempts.

Guidance

There are no guidance evaluation activities for this component.

Tests

The evaluator shall perform the following steps:

Step 1: Pair the TOE with a remote Bluetooth device (DEV1) with a known address BD_ADDR. Establish

an active session between the TOE and DEV1 with the known address BD_ADDR.

Step 2: Attempt to pair a second remote Bluetooth device (DEV2) claiming to have a Bluetooth device

address matching DEV1 BD_ADDR to the TOE. Using a Bluetooth protocol analyzer, verify that the

pairing attempt by DEV2 is not completed by the TOE and that the active session to DEV1 is unaffected.

Step 3: Attempt to initialize a session to the TOE from DEV2 containing address DEV1 BD_ADDR. Using a

Bluetooth protocol analyzer, verify that the session initialization attempt by DEV2 is ignored by the TOE

and that the initial session to DEV1 is unaffected.

5.2.5.3.4 Secure Simple Pairing (FIA_BLT_EXT.4)

TSS

The evaluator shall verify that the TSS describes the secure simple pairing process.

Guidance

There are no guidance evaluation activities for this component.

Tests

The evaluator shall perform the following steps:

Step 1: Initiate pairing with the TOE from a remote Bluetooth device that supports Secure Simple

Pairing.

Step 2: During the pairing process; observe the packets in a Bluetooth protocol analyzer and verify that

the TOE claims support for both "Secure Simple Pairing (Host Support)" and "Secure Simple Pairing

(Controller Support)" during the LMP Features Exchange.

Step 3: Verify that Secure Simple Pairing is used during the pairing process.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 141 of 251

5.2.5.3.5 Trusted Bluetooth Device User Authorization (FIA_BLT_EXT.6)

TSS

The evaluator shall verify that the TSS describes all Bluetooth profiles and associated services for which

explicit user authorization is required before a remote device can gain access. The evaluator shall also

verify that the TSS describes any difference in behavior based on whether or not the device has a

trusted relationship with the TOE for that service (i.e. whether there are any services that require

explicit user authorization for untrusted devices that do not require such authorization for trusted

devices). The evaluator shall also verify that the TSS describes the method by which a device can

become 'trusted'.

Guidance

There are no guidance evaluation activities for this component.

Tests

The evaluator shall perform the following tests:

• Test 1: While the service is in active use by an application on the TOE, the evaluator shall

attempt to gain access to a "protected" Bluetooth service (as specified in the assignment in

FIA_BLT_EXT.6.1) from a "trusted" remote device. The evaluator shall verify that the user is

explicitly asked for authorization by the TOE to allow access to the service for the particular

remote device. The evaluator shall deny the authorization on the TOE and verify that the remote

attempt to access the service fails due to lack of authorization.

• Test 2: The evaluator shall repeat Test 1, this time allowing the authorization and verifying that

the remote device successfully accesses the service.

5.2.5.3.6 Untrusted Bluetooth Device User Authorization (FIA_BLT_EXT.7)

TSS

The TSS evaluation activities for this component are addressed by FIA_BLT_EXT.6.

Guidance

There are no guidance evaluation activities for this component.

Tests

The evaluator shall perform the following tests if the TSF differentiates between "trusted" and

"untrusted" devices for the purpose of granting access to services. If it does not, then the test evaluation

activities for FIA_BLT_EXT.6 are sufficient to satisfy this component.

• Test 1: While the service is in active use by an application on the TOE, the evaluator shall

attempt to gain access to a "protected" Bluetooth service (as specified in the assignment in

FIA_BLT_EXT.7.1) from an "untrusted" remote device. The evaluator shall verify that the user is

explicitly asked for authorization by the TOE to allow access to the service for the particular

remote device. The evaluator shall deny the authorization on the TOE and verify that the remote

attempt to access the service fails due to lack of authorization.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 142 of 251

• Test 2: The evaluator shall repeat Test 1, this time allowing the authorization and verifying that

the remote device successfully accesses the service.

• Test 3: (conditional): If there exist any services that require explicit user authorization for access

by untrusted devices but not by trusted devices (i.e. a service that is listed in FIA_BLT_EXT.7.1

but not FIA_BLT_EXT.6.1), the evaluator shall repeat Test 1 for these services and observe that

the results are identical. That is, the evaluator shall use these results to verify that explicit user

approval is required for an untrusted device to access these services, and failure to grant this

approval will result in the device being unable to access them.

• Test 4: (conditional): If test 3 applies, the evaluator shall repeat Test 2 using any services chosen

in Test 3 and observe that the results are identical. That is, the evaluator shall use these results

to verify that explicit user approval is required for an untrusted device to access these services,

and granting this approval will result in the device being able to access them.

• Test 5: (conditional): If test 3 applies, the evaluator shall repeat Test 3 except this time

designating the device as "trusted" prior to attempting to access the service. The evaluator shall

verify that access to the service is granted without explicit user authorization (because the

device is now trusted and therefore FIA_BLT_EXT.7.1 no longer applies to it). That is, the

evaluator shall use these results to demonstrate that the TSF will grant a device access to

different services depending on whether or not the device is trusted.

5.2.5.4 Security Management (FMT)

5.2.5.4.1 Management of Security Functions Behavior for Bluetooth (FMT_MOF_EXT.1(BT))

TSS

The evaluator shall examine the TSS to ensure that it identifies the Bluetooth-related management

functions that are supported by the TOE and the roles that are authorized to perform each function.

Guidance

The evaluator shall examine the operational guidance to ensure that it provides sufficient guidance on

each supported Bluetooth management function to describe how the function is performed and any

role restrictions on the subjects that are authorized to perform the function.

Tests

For each function that is indicated as restricted to the administrator, the evaluation shall perform the

function as an administrator, as specified in the Operational Guidance, and determine that it has the

expected effect as outlined by the Operational Guidance and the SFR. The evaluator will then perform

the function (or otherwise attempt to access the function) as a non-administrator and observe that they

are unable to invoke that functionality.

5.2.5.4.2 Specification of Management Functions for VPN (FMT_SMF_EXT.1(BT))

TSS

The evaluator shall ensure that the TSS includes a description of the Bluetooth profiles and services

supported and the Bluetooth security modes and levels supported by the TOE.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 143 of 251

If function BT-4, "Allow/disallow additional wireless technologies to be used with Bluetooth," is selected,

the evaluator shall verify that the TSS describes any additional wireless technologies that may be used

with Bluetooth, which may include Wi-Fi with Bluetooth High Speed and/or NFC as an Out of Band

pairing mechanism.

If function BT-5, "Configure allowable methods of Out of Band pairing (for BR/EDR and LE)," is selected,

the evaluator shall verify that the TSS describes when Out of Band pairing methods are allowed and

which ones are configurable.

If function BT-8, "Disable/enable the Bluetooth services and/or profiles available on the OS (for BR/EDR

and LE)," is selected, the evaluator shall verify that all supported Bluetooth services are listed in the TSS

as manageable and, if the TOE allows disabling by application rather than by service name, that a list of

services for each application is also listed.

If function BT-9, "Specify minimum level of security for each pairing (for BR/EDR and LE)," is selected,

the evaluator shall verify that the TSS describes the method by which the level of security for pairings

are managed, including whether the setting is performed for each pairing or is a global setting.

Guidance

The evaluator shall ensure that the management functions defined in the PP-Module are described in

the guidance to the same extent required for the Base-PP management functions.

Tests

The evaluator shall use a Bluetooth-specific protocol analyzer to perform the following tests:

• Test 1: The evaluator shall disable the Discoverable mode and shall verify that other Bluetooth

BR/EDR devices cannot detect the TOE. The evaluator shall use the protocol analyzer to verify

that the TOE does not respond to inquiries from other devices searching for Bluetooth devices.

The evaluator shall enable Discoverable mode and verify that other devices can detect the TOE

and that the TOE sends response packets to inquiries from searching devices.

The following tests are conditional on if the corresponding function is included in the ST:

• Test 2: (conditional): The evaluator shall examine Bluetooth traffic from the TOE to determine

the current Bluetooth device name, change the Bluetooth device name, and verify that the

Bluetooth traffic from the TOE lists the new name. The evaluator shall examine Bluetooth traffic

from the TOE to determine the current Bluetooth device name for BR/EDR and LE. The evaluator

shall change the Bluetooth device name for LE independently of the device name for BR/EDR.

The evaluator shall verify that the Bluetooth traffic from the TOE lists the new name.

• Test 3: (conditional): The evaluator shall disable Bluetooth BR/EDR and enable Bluetooth LE. The

evaluator shall examine Bluetooth traffic from the TOE to confirm that only Bluetooth LE traffic

is present. The evaluator shall repeat the test with Bluetooth BR/EDR enabled and Bluetooth LE

disabled, confirming that only Bluetooth BR/EDR is present.

• Test 4: (conditional): For each additional wireless technology that can be used with Bluetooth as

claimed in the ST, the evaluator shall revoke Bluetooth permissions from that technology. If the

set of supported wireless technologies includes Wi-Fi, the evaluator shall verify that Bluetooth

High Speed is not able to send Bluetooth traffic over Wi-Fi when disabled. If the set of supported

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 144 of 251

wireless technologies includes NFC, the evaluator shall verify that NFC cannot be used for

pairing when disabled. For any other supported wireless technology, the evaluator shall verify

that it cannot be used with Bluetooth in the specified manner when disabled. The evaluator

shall then re-enable all supported wireless technologies and verify that all functionality that was

previously unavailable has been restored.

• Test 5: (conditional): The evaluator shall attempt to pair using each of the Out of Band pairing

methods, verify that the pairing method works, iteratively disable each pairing method, and

verify that the pairing method fails.

• Test 6: (conditional): The evaluator shall enable Advertising for Bluetooth LE, verify that the

advertisements are captured by the protocol analyzer, disable Advertising, and verify that no

advertisements from the device are captured by the protocol analyzer

• Test 7: (conditional): The evaluator shall enable Connectable mode and verify that other

Bluetooth devices may pair with the TOE and (if the devices were bonded) re-connect after

pairing and disconnection. For BR/EDR devices: The evaluator shall use the protocol analyzer to

verify that the TOE responds to pages from the other devices and permits pairing and re-

connection. The evaluator shall disable Connectable mode and verify that the TOE does not

respond to pages from remote Bluetooth devices, thereby not permitting pairing or re-

connection. For LE: The evaluator shall use the protocol analyzer to verify that the TOE sends

connectable advertising events and responds to connection requests. The evaluator shall disable

Connectable mode and verify that the TOE stops sending connectable advertising events and

stops responding to connection requests from remote Bluetooth devices.

• Test 8: (conditional): For each supported Bluetooth service and/or profile listed in the TSS, the

evaluator shall verify that the service or profile is manageable. If this is configurable by

application rather than by service and/or profile name, the evaluator shall verify that a list of

services and/or profiles for each application is also listed.

• Test 9: (conditional): The evaluator shall allow low security modes/levels on the TOE and shall

initiate pairing with the TOE from a remote device that allows only something other than

Security Mode 4/Level 3 or Security Mode 4/Level 4 (for BR/EDR), or Security Mode 1/Level 3

(for LE). (For example, a remote BR/EDR device may claim Input/Output capability

"NoInputNoOutput" and state that man-in-the-middle (MiTM) protection is not required. A

remote LE device may not support encryption.) The evaluator shall verify that this pairing

attempt succeeds due to the TOE falling back to the low security mode/level. The evaluator shall

then remove the pairing of the two devices, prohibit the use of low security modes/levels on the

TOE, then attempt the connection again. The evaluator shall verify that the pairing attempt fails.

With the low security modes/levels disabled, the evaluator shall initiate pairing from the TOE to

a remote device that supports Security Mode 4/Level 3 or Security Mode 4/Level 4 (for BR/EDR)

or Security Mode 1/Level 3 (for LE). The evaluator shall verify that this pairing is successful and

uses the high security mode/level.

5.2.5.5 Trusted Path/Channels (FTP)

5.2.5.5.1 Bluetooth Encryption (FTP_BLT_EXT.1)

TSS

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 145 of 251

The evaluator shall verify that the TSS describes the use of encryption, the specific Bluetooth protocol(s)

it applies to, and whether it is enabled by default.

The evaluator shall verify that the TSS includes the protocol used for encryption of the transmitted data

and the key generation mechanism used.

Guidance

The evaluator shall verify that the operational guidance includes instructions on how to configure the

TOE to require the use of encryption during data transmission (unless this behavior is enforced by

default).

Tests

There are no test EAs for this component. Testing for this SFR is addressed through the evaluation of

FTP_BLT_EXT.3/BR and, if claimed, FTP_BLT_EXT.3/LE.

5.2.5.5.2 Persistence of Bluetooth Encryption (FTP_BLT_EXT.2)

TSS

The evaluator shall verify that the TSS describes the TSF's behavior if a remote device stops encryption

while connected to the TOE.

Guidance

The evaluator shall verify that the operational guidance describes how to enable/disable encryption (if

configurable).

Tests

The evaluator shall perform the following steps using a Bluetooth protocol analyzer to observe packets

pertaining to the encryption key size:

Step 1: Initiate pairing with the TOE from a remote Bluetooth device that has been configured to have a

minimum encryption key size that is equal to or greater than that of the TOE.

Step 2: After pairing has successfully finished and while a connection exists between the TOE and the

remote device; turn off encryption on the remote device. This can be done using commercially-available

tools.

Step 3: Verify that the TOE either restarts encryption with the remote device or terminates the

connection with the remote device.

5.2.5.5.3 Bluetooth Encryption Parameters (BR/EDR) (FTP_BLT_EXT.3(BR))

TSS

The evaluator shall examine the TSS and verify that it specifies the minimum key size for BR/EDR

encryption, whether this value is configurable, and the mechanism by which the TOE will not negotiate

keys sizes smaller than the minimum.

Guidance

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 146 of 251

The evaluator shall verify that the guidance includes instructions on how to configure the minimum

encryption key size for BR/EDR encryption, if configurable.

Tests

The evaluator shall perform the following tests:

• Test 1: The evaluator shall perform the following steps using a Bluetooth protocol analyzer to

observe packets pertaining to the encryption key size:

Step 1: Initiate BR/EDR pairing with the TOE from a remote Bluetooth device that has been

configured to have a minimum encryption key size that is equal to or greater than that of the

TOE. This can be done using certain commercially-available tools that can send the appropriate

command to certain commercially-available Bluetooth controllers.

Step 2: Use a Bluetooth packet sniffer to verify that the encryption key size negotiated for the

connection is at least as large as the minimum encryption key size defined for the TOE.

• Test 2: (conditional): If the encryption key size is configurable, configure the TOE to support a

different minimum key size, then repeat Test 1 and verify that the negotiated key size is at least

as large as the new minimum value

• Test 3: The evaluator shall perform the following steps using a Bluetooth protocol analyzer to

observe packets pertaining to the encryption key size:

Step 1: Initiate BR/EDR pairing with the TOE from a remote Bluetooth device that has been

configured to have a maximum encryption key size of 1 byte. This can be done using certain

commercially-available tools that can send the appropriate command to certain commercially-

available Bluetooth controllers.

Step 2: Verify that the encryption key size suggested by the remote device is not accepted by

the TOE and that the connection is not completed.

5.2.5.5.4 Bluetooth Encryption Parameters (LE) (FTP_BLT_EXT.3(LE))

TSS

The evaluator shall examine the TSS and verify that it specifies the minimum key size for LE encryption,

whether this value is configurable, and the mechanism by which the TOE will not negotiate keys sizes

smaller than the minimum.

Guidance

The evaluator shall verify that the guidance includes instructions on how to configure the minimum

encryption key size for LE encryption, if configurable.

Tests

The evaluator shall perform the following tests:

• Test 1: The evaluator shall perform the following steps using a Bluetooth protocol analyzer to

observe packets pertaining to the encryption key size:

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 147 of 251

Step 1: Initiate LE pairing with the TOE from a remote Bluetooth device that has been configured

to have a minimum encryption key size that is equal to or greater than that of the TOE. This can

be done using certain commercially-available tools that can send the appropriate command to

certain commercially-available Bluetooth controllers.

Step 2: Use a Bluetooth packet sniffer to verify that the encryption key size negotiated for the

connection is at least as large as the minimum encryption key size defined for the TOE.

• Test 2: (conditional): If the encryption key size is configurable, configure the TOE to support a

different minimum key size, then repeat Test 1 and verify that the negotiated key size is at least

as large as the new minimum value.

• Test 3: The evaluator shall perform the following steps using a Bluetooth protocol analyzer to

observe packets pertaining to the encryption key size:

Step 1: Initiate LE pairing with the TOE from a remote Bluetooth device that has been configured

to have a maximum encryption key size of 1 byte. This can be done using certain commercially-

available tools that can send the appropriate command to certain commercially-available

Bluetooth controllers.

Step 2: Verify that the encryption key size suggested by the remote device is not accepted by

the TOE and that the connection is not completed.

5.2.6 TLS Module Assurance Activities

This section copies the assurance activities from the TLS Module in order to ease reading and

comparisons between the extended package and the security target.

5.2.6.1 Cryptographic Support (FCS)

5.2.6.1.1 TLS Protocol (FCS_TLS_EXT.1)

TSS

The evaluator shall examine the TSS to verify that the TLS and DTLS claims are consistent with those

selected in the SFR.

Guidance

The evaluator shall ensure that the selections indicated in the ST are consistent with selections in the

dependent components.

Tests

There are no test activities for this SFR; the following information is provided as an overview of the

expected functionality and test environment for all subsequent SFRs.

5.2.6.1.2 TLS Client Protocol (FCS_TLSC_EXT.1)

TSS

The evaluator shall check the description of the implementation of this protocol in the TSS to ensure the

supported TLS versions, features, ciphersuites, and extensions are specified in accordance with RFC 5246

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 148 of 251

(TLS 1.2) and RFC 8446 (TLS 1.3 and updates to TLS 1.2) and as refined in FCS_TLSC_EXT.1 as

appropriate.

The evaluator shall verify that ciphersuites indicated in FCS_TLSC_EXT.1.2 are included in the

description, and that none of the following ciphersuites are supported: ciphersuites indicating 'NULL,'

'RC2,' 'RC4,' 'DES,' 'IDEA,' or 'TDES' in the encryption algorithm component, indicating 'anon,' or

indicating MD5 or SHA in the message digest algorithm component.

The evaluator shall verify that the TLS implementation description includes the extensions as required in

FCS_TLSC_EXT.1.4.

The evaluator shall verify that the ST describes applications that use the TLS functions and how they

establish reference identifiers. The evaluator shall verify that the ST includes a description of matching

methods used for each supported name type to the supported application defined reference identifiers.

The evaluator shall verify that the ST includes a description of wildcards recognized for each name type

claimed in FCS_TLSC_EXT.1.5 and shall verify that the matching rules meet or exceed best practices. In

particular, the evaluator shall ensure that the matching rules are as restrictive as, or more restrictive

than the following:

• DNS names: The ‘*’ character used in the complete leftmost label of a DNS name represents any

valid name that has the same number of labels, and that matches all remaining labels. The ‘*’

character must only be used in the leftmost complete label of a properly formatted DNS name.

The ‘*’ must not be used to represent a public suffix, or in the leftmost label immediately

following a public suffix.

• URI or SRV names: The ‘*’ character can only occur in the domain name portion of the name

represented as a DNS name. All restrictions for wildcards in DNS names apply to the DNS portion

of the name. URI host names presented as an IP address are matched according to IP address

matching rules – see best practices for IP addresses below. In accordance with RFC 6125, it is

preferred that such URIs are presented a matching name of type IP address in the SAN.

• IP addresses: RFC 5280 does not support IP address ranges as presented names, but indicates

that presented names may be compared to IP address ranges present in name constraints. If the

TSF supports IP address ranges as reference identifiers, the reference identifier matches if the

presented name is in the range. IP ranges in name constraints (including reference identifiers)

should be presented in CIDR format. RFC 2822 names: RFC 5280 and updates RFC 8398 and RFC

8399 do not support special indicators representing more than a single mailbox as a presented

name, but indicates that presented names may be compared to a single mailbox, ‘any’ email

address at a host, or ‘any’ email address on a domain (e.g., “example.com” matches any email

address on the host example.com and “.example.com” matches any email address in the

domain example.com, but does not match email addresses at the host “example.com”). Such

matching is prohibited for internationalized RFC 2822 names.

• Embedded CN name types: The CN relative distinguished name of a DNS name type included in

the subject field is not strongly typed. Attempts to match both the name type and wildcard

specifications can result in matches not intended, and therefore, not authoritatively asserted by

a certification authority. It is preferred that no matching of CN embedded names be supported,

but if necessary for backward compatibility, the description should clearly indicate how different

name types are interpreted in the matching algorithm. In particular, the ‘*’ character in a CN is

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 149 of 251

not to be interpreted as representing more than a single entity unless the entirety of the RDN is

properly formatted as a DNS, URI, or SVR name, and represents a wildcard meeting best

practices as described above.

Guidance

The evaluator shall check the operational guidance to ensure that it contains instructions on configuring

the product so that TLS conforms to the description in the TSS and that it includes any instructions on

configuring the version, ciphersuites, or optional extensions that are supported. The evaluator shall

verify that all configurable features for matching identifiers in certificates presented in the TLS

handshake to application specific reference identifiers are described.

Tests

The evaluator shall perform the following tests:

• Test 3: (supported configurations) For each supported version, and for each supported

ciphersuite associated with the version:

The evaluator shall establish a TLS connection between the TOE and a test TLS server that is

configured to negotiate the tested version and ciphersuite in accordance with the RFC for the

version.

The evaluator shall observe that the TSF presents a client hello with the highest version of TLS

1.2 or the legacy version (value '03 03') and shall observe that the supported version extension

is not included for TLS 1.2, and, if TLS 1.3 is supported, is present and contains the value '03 04'

for TLS 1.3.

The evaluator shall observe that the client hello indicates the supported ciphersuites in the

order indicated, and that it includes only the extensions supported, with appropriate values, for

that version in accordance with the requirement.

The evaluator shall observe that the TOE successfully completes the TLS handshake.

Note: TOEs supporting TLS 1.3, but allowing a server to negotiate TLS 1.2, should include all

ciphersuites and all extensions as required for either version. If such a TOE is configurable to

support only TLS 1.2, only TLS 1.3, or both TLS 1.2 and TLS 1.3, Test 3 should be performed in

each configuration – with advertised ciphersuites appropriate for the configuration.

The connection in Test 3 may be established as part of the establishment of a higher-level

protocol, e.g., as part of an EAP session.

It is sufficient to observe the successful negotiation of a ciphersuite to satisfy the intent of the

test; it is not necessary to examine the characteristics of the encrypted traffic in an attempt to

discern the ciphersuite being used (for example, that the cryptographic algorithm is 128-bit AES

and not 256-bit AES).

• Test 4: (obsolete versions) The evaluator shall perform the following tests:

o Test 4.1: For each of SSL version 2, SSL version 3, TLS version 1.0, and TLS version 1.1,

the evaluator shall initiate a TLS connection from the TOE to a test TLS server that is

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 150 of 251

configured to negotiate the obsolete version and observe that the TSF terminates the

connection.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., protocol

version, insufficient security) in response to this, but it is acceptable that the TSF

terminates the connection silently (i.e., without sending a fatal error alert).

o Test 4.2: The evaluator shall attempt to establish a connection with a test TLS server

that is configured to send a server hello message indicating the selected version

(referred to as the legacy version in RFC 8446) with a value corresponding to an

undefined TLS (legacy) version (e.g., '03 04') and observe that the TSF terminates the

connection.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., protocol

version) in response to this, but it is acceptable that the TSF terminates the connection

silently (i.e., without sending a fatal error alert).

Test 4.2 is intended to test the TSF response to non-standard versions, including early

proposals for ‘beta TLS 1.3’ versions. RFC 8446 requires the legacy version to have the

value '03 03' and specifies TLS 1.3 in the supported versions extension with the value '03

04'. While not a preferred approach, if continued support for a beta TLS 1.3 version is

desired and the TSF cannot be configured to reject such versions, another value (e.g.,

'03 05') can be used in Test 4.2. Implementations of non-standard versions are not

tested.

o Test 5: (ciphersuites) The evaluator shall perform the following tests on handling

unexpected ciphersuites using a test TLS server sending handshake messages compliant

with the negotiated version except as indicated in the test:

o Test 5.1: (ciphersuite not offered) For each supported version, the evaluator

shall attempt to establish a connection with a test TLS server configured to

negotiate the supported version and a ciphersuite not included in the client

hello and observe that the TOE rejects the connection.

Note: It is preferred that the TSF sends a fatal error alert message (e.g.,

handshake failure) in response to this, but it is acceptable that the TSF

terminates the connection silently (i.e., without sending a fatal error alert).

This test is intended to test the TSF’s generic ability to recognize non-offered

ciphersuites. If the ciphersuites in the client hello are configurable, the

evaluator shall configure the TSF to offer a ciphersuite outside those that are

supported and use that ciphersuite in the test. If the TSF ciphersuite list is not

configurable, it is acceptable to use a named ciphersuite from the IANA TLS

protocols associated with the tested version. Additional special cases of this test

for special ciphersuites are performed separately.

o Test 5.2: (version confusion) For each supported version, the evaluator shall

attempt to establish a connection with a test TLS server that is configured to

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 151 of 251

negotiate the supported version and a ciphersuite that is not associated with

that version and observe that the TOE rejects the connection.

Note: It is preferred that the TSF sends a fatal error alert message (e.g.,

handshake failure) in response to this, but it is acceptable that the TSF

terminates the connection silently (i.e., without sending a fatal error alert).

It is intended that Test 5.2 use TLS 1.3 ciphersuites for a server negotiating TLS

1.2. If TLS 1.3 is supported, the test server negotiating TLS 1.3 should select a

TLS 1.2 ciphersuite supported by the TOE for TLS 1.2 and matching the client’s

supported groups and signature algorithm indicated by extensions in the TLS 1.3

client hello. If the TOE is configurable to allow both TLS 1.2 and TLS 1.3 servers,

the test server should use ciphersuites offered by the TSF in its client hello

message.

o Test 5.3: (null ciphersuite) For each supported version, the evaluator shall

attempt to establish a connection with a test TLS server configured to negotiate

the null ciphersuite (TLS_NULL_WITH_NULL_NULL) and observe that the TOE

rejects the connection.

Note: It is preferred that the TSF sends a fatal error alert message (e.g.,

handshake failure, insufficient security) in response to this, but it is acceptable

that the TSF terminates the connection silently (i.e., without sending a fatal

error alert).

o Test 5.4: (anon ciphersuite) The evaluator shall attempt to establish a TLS 1.2

connection with a test TLS server configured to negotiate a ciphersuite using the

anonymous server authentication method and observe that the TOE rejects the

connection.

Note: It is preferred that the TSF sends a fatal error alert message (e.g.,

handshake failure, insufficient security) in response to this, but it is acceptable

that the TSF terminates the connection silently (i.e., without sending a fatal

error alert).

See IANA TLS parameters for available ciphersuites to be selected by the test

TLS server. The test ciphersuite should use supported cryptographic algorithms

for as many of the other components as possible. For example, if the TSF only

supports the ciphersuite TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,

the test server could select TLS_DH_ANON_WITH_AES_256_GCM_SHA_384.

Test 5.5: (deprecated encryption algorithm) For each deprecated encryption

algorithm (NULL, RC2, RC4, DES, IDEA, and TDES), the evaluator shall attempt to

establish a TLS 1.2 connection with a test TLS server configured to negotiate a

ciphersuite using the deprecated encryption algorithm and observe that the TOE

rejects the connection. Note: It is preferred that the TSF sends a fatal error alert

message (e.g., handshake failure, insufficient security) in response to this, but it

is acceptable that the TSF terminates the connection silently (i.e., without

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 152 of 251

sending a fatal error alert). See IANA TLS parameters for available ciphersuites

to be tested. The test ciphersuite should use supported cryptographic

algorithms for as many of the other components as possible. For example, if the

TSF only supports TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, the test

server could select TLS_ECDHE_PSK_WITH_NULL_SHA_384,

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5,

TLS_ECDHE_RSA_WITH_RC4_128_SHA, TLS_DHE_DSS_WITH_DES_CBC_SHA,

TLS_RSA_WITH_IDEA_CBC_SHA, and

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA.

▪ Test 5.5: (deprecated encryption algorithm) For each deprecated encryption

algorithm (NULL, RC2, RC4, DES, IDEA, and TDES), the evaluator shall attempt to

establish a TLS 1.2 connection with a test TLS server configured to negotiate a

ciphersuite using the deprecated encryption algorithm and observe that the TOE

rejects the connection.

Note: It is preferred that the TSF sends a fatal error alert message (e.g.,

handshake failure, insufficient security) in response to this, but it is acceptable

that the TSF terminates the connection silently (i.e., without sending a fatal

error alert).

See IANA TLS parameters for available ciphersuites to be tested. The test

ciphersuite should use supported cryptographic algorithms for as many of the

other components as possible. For example, if the TSF only supports

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, the test server could select

TLS_ECDHE_PSK_WITH_NULL_SHA_384,

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5,

TLS_ECDHE_RSA_WITH_RC4_128_SHA, TLS_DHE_DSS_WITH_DES_CBC_SHA,

TLS_RSA_WITH_IDEA_CBC_SHA, and

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA.

• Test 6: (extensions) For each supported version indicated in the following tests, the evaluator

shall establish a connection from the TOE with a test server negotiating the tested version and

providing server handshake messages as indicated when performing the following tests for

validating proper extension handling:

o Test 6.1: (signature_algorithms) [conditional] If the TSF supports certificate-based server

authentication, the evaluator shall perform the following tests:

▪ Test 6.1.1: For each supported version, the evaluator shall initiate a TLS session

with a TLS test server and observe that the TSF’s client hello includes the

signature_algorithms extension with values in conformance with the ST.

▪ Test 6.1.2: (TLS 1.2 only) [conditional] If the TSF supports an ECDHE or DHE

ciphersuite, the evaluator shall ensure the test TLS server sends a compliant

server hello message selecting TLS 1.2 and one of the supported ECDHE or DHE

ciphersuites, a compliant server certificate message, and a key exchange

message signed using a signature algorithm and hash combination not included

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 153 of 251

in the client’s hello message (e.g., RSA with SHA-1). The evaluator shall observe

that the TSF terminates the handshake.

Note: It is preferred that the TSF sends a fatal error alert message (e.g.,

handshake failure, illegal parameter, decryption error) in response to this, but it

is acceptable that the TSF terminates the connection silently (i.e., without

sending a fatal error alert).

▪ Test 6.1.3: [conditional] If TLS 1.3 is supported, the evaluator shall configure the

test TLS server to respond to the TOE with a compliant server hello message

selecting TLS 1.3 and a server certificate message, but then also sends a

certificate verification message that uses a signature algorithm method not

included in the signature_algorithms extension. The evaluator shall observe that

the TSF terminates the TLS handshake.

▪ Note: It is preferred that the TSF sends a fatal error alert message (e.g.,

handshake failure, illegal parameter, bad certificate, decryption error) in

response to this, but it is acceptable that the TSF terminates the connection

silently (i.e., without sending a fatal error alert).

▪ Test 6.1.4: [conditional] For all supported versions for which

signature_algorithms_cert is not supported, the evaluator shall ensure the test

TLS server sends a compliant server hello message for the tested version and a

server certificate message containing a valid certificate that represents the test

TLS server, but which is signed using a signature and hash combination not

included in the TSF’s signature_algorithms extension (e.g., a certificate signed

using RSA and SHA-1). The evaluator shall observe that the TSF terminates the

TLS session.

Note: It is preferred that the TSF sends a fatal error alert message (e.g.,

unsupported certificate, bad certificate, decryption error, handshake failure) in

response to this, but it is acceptable that the TSF terminates the connection

silently (i.e., without sending a fatal error alert).

Certificate-based server authentication is required unless the TSF only supports

TLS with shared PSK. For TLS 1.2, this is the case if only

TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384 as defined in RFC 8442,

TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 as defined in RFC 5487,

TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256 as defined in RFC 8442, or

TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 as defined in RFC 5487, are

supported. For TLS 1.3, this is the case if only PSK handshakes are supported.

o Test 6.2: (signature_algorithms_cert) [conditional] If signature_algorithms_cert is

supported, then for each version that uses the signature_algorithms_cert extension, the

evaluator shall ensure that the test TLS server sends a compliant server hello message

selecting the tested version and indicating certificate-based server authentication.

The evaluator shall ensure that the test TLS server forwards a certificate message containing

a valid certificate that represents the test TLS server, but which is signed by a valid

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 154 of 251

Certification Authority using a signature and hash combination not included in the TSF’s

signature_algorithms_cert extension (e.g., a certificate signed using RSA and SHA-1). The

evaluator shall confirm the TSF terminates the session.

Note: Support for certificate-based authentication is assumed if the

signature_algorithms_cert is supported. For TLS 1.2, a non-PSK ciphersuite, or one of

TLS_RSA_PSK_WITH_AES_256_GCM_SHA384 or

TLS_RSA_PSK_WITH_AES_128_GCM_SHA256 as defined in RFC 5487 is used to indicate

certificate-based server authentication. For TLS 1.3, the test server completes a full

handshake, even if a PSK is offered to indicate certificate-based server authentication. If the

TSF only supports shared PSK authentication, Test 6.2 is not performed.

For TLS 1.3, the server certificate message is encrypted. The evaluator will configure the test

TLS server with the indicated certificate and ensure that the certificate is indeed sent by

observing the buffer of messages to be encrypted, or by inspecting one or both sets of logs

from the TSF and test TLS server.

It is preferred that the TSF sends a fatal error alert message (e.g., unsupported certificate,

bad certificate, decryption error, handshake failure) in response to this, but it is acceptable

that the TSF terminates the connection silently (i.e., without sending a fatal error alert).

o Test 6.3: (extended_master_secret) (TLS 1.2 only) The evaluator shall initiate a TLS 1.2

session with a test TLS server configured to compute a master secret according to RFC 5246,

section 8.

The evaluator shall observe that the TSF’s client hello includes the extended master secret

extension in accordance with RFC 7627, and ensures that the test TLS server does not

include the extended master secret extension in its server hello. The evaluator shall observe

that the TSF terminates the session.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., handshake failure)

in response to this, but it is acceptable that the TSF terminates the connection silently (i.e.,

without sending a fatal error alert).

o Test 6.4: (supported_groups) (TLS 1.2 only – for TLS 1.3, testing is combined with testing of

the keyshare extension)

▪ Test 6.4.1: For each supported group, the evaluator shall initiate a TLS session

with a compliant test TLS 1.2 server supporting RFC 7919. The evaluator shall

ensure that the test TLS server is configured to select TLS 1.2 and a ciphersuite

using the supported group. The evaluator shall observe that the TSF’s client

hello lists the supported groups as indicated in the ST, and that the TSF

successfully establishes the TLS session.

▪ Test 6.4.2: [conditional on TLS 1.2 support for ECDHE ciphersuites] The

evaluator shall initiate a TLS session with a test TLS server that is configured to

use an explicit version of a named EC group supported by the client. The

evaluator shall ensure that the test TLS server key exchange message includes

the explicit formulation of the group in its key exchange message as indicated in

RFC 4492 section 5.4. The evaluator shall confirm that the TSF terminates the

session.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 155 of 251

Note: It is preferred that the TSF sends a fatal error alert message (e.g., illegal

parameter) in response to this, but it is acceptable that the TSF terminates the

connection silently (i.e., without sending a fatal error alert).

• Test 7: (TLS 1.3 extensions) [conditional] If the TSF supports TLS 1.3, the evaluator shall perform

the following tests. For each test, the evaluator shall observe that the TSF’s client hello includes

the supported versions extension with the value '03 04' indicating TLS 1.3:

o Test 7.1: (supported versions) The evaluator shall initiate TLS 1.3 sessions in turn from

the TOE to a test TLS server configured as indicated in the sub-tests below:

▪ Test 7.1.1: The evaluator shall configure the test TLS server to include the

supported versions extension in the server hello containing the value '03 03.'

The evaluator shall observe that the TSF terminates the TLS session.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., illegal

parameter, handshake failure, protocol version) in response to this, but it is

acceptable that the TSF terminates the connection silently (i.e., without sending

a fatal error alert).

▪ Test 7.1.2: The evaluator shall configure the test TLS server to include the

supported versions extension in the server hello containing the value '03 04' and

complete a compliant TLS 1.3 handshake. The evaluator shall observe that the

TSF completes the TLS 1.3 handshake successfully.

▪ Test 7.1.3: [conditional] If the TSF is configurable to support both TLS 1.2 and

TLS 1.3, the evaluator shall follow operational guidance to configure this

behavior. The evaluator shall ensure that the test TLS server sends a TLS 1.2

compliant server handshake and observe that the server random does not

incidentally include any downgrade messaging. The evaluator shall observe that

the TSF completes the TLS 1.2 handshake successfully.

Note: Enhanced downgrade protection defined in RFC 8446 is optional, and if

supported, is tested separately. The evaluator may configure the test server’s

random, or may repeat the test until the server’s random does not match a

downgrade indicator.

o Test 7.2: (supported groups, key shares) The evaluator shall initiate TLS 1.3 sessions in

turn with a test TLS server configured as indicated in the following sub-tests:

▪ Test 7.2.1: For each supported group, the evaluator shall configure the

compliant test TLS 1.3 server to select a ciphersuite using the group. The

evaluator shall observe that the TSF sends an element of the group in its client

hello key shares extension (after a hello retry message from the test server, if

the key share for the group is not included in the initial client hello). The

evaluator shall ensure the test TLS server sends an element of the group in its

server hello and observes that the TSF completes the TLS handshake

successfully.

▪ Test 7.2.2: For each supported group, the evaluator shall modify the server hello

sent by the test TLS server to include an invalid key share value claiming to be

an element the group indicated in the supported groups extension. The

evaluator shall observe that the TSF terminates the TLS session.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 156 of 251

Note: It is preferred that the TSF sends a fatal error alert message (e.g., illegal

parameter) in response to this, but it is acceptable that the TSF terminates the

connection silently (i.e., without sending a fatal error alert).

For DHE ciphersuites, a zero value, or a value greater or equal to the modulus is

not a valid element. For ECDHE groups, an invalid point contains x and y

coordinates of the correct size, but represents a point not on the curve. The

evaluator can construct such an invalid point by modifying a byte in the y

coordinate of a valid point and verify that the coordinates do not satisfy the

curve equation.

o Test 7.3: (PSK support) [conditional] If the TSF supports pre-shared keys, the evaluator

shall follow the operational guidance to use pre-shared keys, shall establish a pre-shared

key between the TSF and the test TLS server, and initiate TLS 1.3 sessions in turn

between the TSF and the test TLS server configured as indicated in the following sub-

tests:

▪ Test 7.3.1: The evaluator shall configure the TSF to use the pre-shared key and

ensure that the test TLS server functions as a compliant TLS 1.3 server. The

evaluator shall observe that the TSF’s client hello includes the pre_shared_key

extension with the valid PSK indicator shared with the test server. The evaluator

shall also observe that the TSF’s client hello also includes the

psk_key_exchange_mode and the post_handshake_auth extensions and that

the psk_key_exchange_mode indicates one or more of DHE or ECDHE modes

but does not include the PSK-only mode. The evaluator shall observe that the

TSF completes the TLS 1.3 handshake successfully in accordance with RFC 8446,

to include the TSF sending appropriate key shares for one or more of the

supported groups.

Once the handshake is successful, the evaluator shall cause the test TLS server

to send a certificate request and observe that the TSF provides a certificate

message and certificate verify message.

Note: It may be necessary to complete a standard handshake and send a new

ticket message from the test TLS server to establish a pre-shared key, or it might

be possible to configure the pre-shared key manually via out-of-band

mechanisms. This can be performed in conjunction with other testing that is not

tested as part of this SFR. It is not required at this time to support emerging

standards on establishing PSK, but as such standards are finalized, this FP may

be updated to require such support.

TLS messages after the handshake are encrypted so it may not be possible to

observe the certificate and certificate verify messages sent by the TSF directly.

The evaluator may need to configure the test TLS server to use an application

that requires post-handshake client authentication and terminates the session

or otherwise has an observable effect if the certificate is not provided.

▪ Test 7.3.2: The evaluator shall attempt to configure the TSF to send early data. If

there is no indication from the TSF that this is blocked, the evaluator shall

repeat test 5.3.1 with the TSF so configured and observe that the TSF does not

send application data prior to receiving the server hello.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 157 of 251

Note: Early data will be encrypted under the PSK and received by the test TLS

server prior to it sending a server hello message.

• Test 8: (corrupt finished message) For each supported version, the evaluator shall initiate a TLS

session from the TOE to a test TLS server that sends a compliant set of server handshake

messages, except for sending a modified finished message (modify a byte of the finished

message that would have been sent by a compliant server). The evaluator shall observe that the

TSF terminates the session and does not complete the handshake by observing that the TSF

does not send application data provided to the TLS channel.

• Test 9: (missing finished message) For each supported version, the evaluator shall initiate a

session from the TOE to a test TLS server providing a compliant handshake, except for sending a

random TLS message (the five byte header indicates a correct TLS message for the negotiated

version, but not indicating a finished message) as the final message. The evaluator shall observe

that the TSF terminates the session and does not send application data.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., decryption error) in

response to this, but it is acceptable that the TSF terminates the connection silently (i.e.,

without sending a fatal error alert).

For TLS 1.2, the modified message is sent after the change_cipher_spec message. For TLS 1.3,

the modified message is sent as the last message of the server’s second flight of messages.

• Test 10: (unexpected/corrupt signatures within handshake) The evaluator shall perform the

following tests, according to the versions supported.

o Test 10.1: (TLS 1.2 only) [conditional] If the ST indicates support for ECDSA or DSA

ciphersuites, the evaluator shall initiate a TLS session with a compliant test TLS server

and modify the signature in the server key exchange. The evaluator shall observe that

the TSF terminates the session with a fatal alert message (e.g., decrypt error, handshake

error).

o Test 10.2: [conditional] If the ST indicates support for TLS 1.3, the evaluator shall initiate

a TLS session between the TOE and a test TLS server that is configured to send a

compliant server hello message, encrypted extension message, and certificate message,

but will send a certificate verify message with an invalid signature (e.g., by modifying a

byte from a valid signature). The evaluator shall confirm that the TSF terminates the

session with a fatal error alert message (e.g., bad certificate, decrypt error, handshake

error).

o Test 10.3: (TLS 1.2 only) [conditional] If the ST indicates support for both RSA and ECDSA

methods in the signature_algorithm (or, if supported, the signature_algorithms_cert)

extension, and if the ST indicates one or more TLS 1.2 ciphersuites indicating each of the

RSA and ECDSA methods in its signature components, the evaluator shall choose two

ciphersuites: one indicating an RSA signature (cipher 1) and one indictaing an ECDSA

signature (cipher 2). The evalutor shall then establish two certificates that are trusted by

the TOE: one representing the test TLS 1.2 server using an RSA signature (cert 1) and

one representing the test TLS 1.2 server using an ECDSA signature (cert 2). The evaluator

shall initiate a TLS session between the TOE and the test TLS 1.2 server that is

configured to select cipher 1 and to send cert 2. The evaluator shall verify that the TSF

terminates this TLS session. The evaluator shall then initiate a TLS session between the

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 158 of 251

TOE and the test TLS 1.2 server that is configured to select cipher 2 and to send cert 1.

The evaluator shall verify that the TSF also terminates this TLS session.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., bad certificate,

decryption error, handshake failure) in response to this, but it is acceptable that the TSF

terminates the connection silently (i.e., without sending a fatal error alert).

• Test 11: [conditional] If the TSF supports certificate-based server authentication, then for each

supported version, the evaluator will initiate a TLS session from the TOE to the compliant test

TLS server configured to negotiate the tested version, and to authenticate using a certificate

trusted by the TSF as specified in the following:

o Test 11.1: (certificate extended key usage purpose) The evaluator shall send a server

certificate that contains the Server Authentication purpose in the ExtendedKeyUsage

extension and verify that a connection is established. The evaluator shall repeat this test

using a different certificate that is otherwise valid and trusted but lacks the Server

Authentication purpose in the ExtendedKeyUsage extension and observe the TSF

terminates the session.

Note: This test may be performed as part of certificate validation testing

(FIA_X509_EXT.1).

It is preferred that the TSF sends a fatal error alert message (e.g., bad certificate,

decryption error, handshake failure) in response to this, but it is acceptable that the TSF

terminates the connection silently (i.e., without sending a fatal error alert).

Ideally, the two certificates should be similar in regards to structure, the types of

identifiers used, and the chain of trust.

o Test 11.2: (certificate identifiers) For each supported method of matching presented

identifiers, and for each name type for which the TSF parses the presented identifiers

from the server certificate for the method, the evaluator shall establish a valid

certificate trusted by the TSF to represent the test server using only the tested name

type. The evaluator shall perform the following sub-tests:

▪ Test 11.2.1: The evaluator shall prepare the TSF as necessary to use the

matching method and establish reference identifiers for the test server for the

tested name type. The evaluator shall ensure the test TLS server sends a

certificate with a matching name of the tested name type and observe that the

TSF completes the connection.

▪ Test 11.2.2: The evaluator shall prepare the TSF as necessary to use the

matching method and establish reference identifiers that do not match the

name representing the test server. The evaluator shall ensure the test TLS

server sends a certificate with a name of the type tested, and observe the TSF

terminates the session.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., bad

certificate, unknown certificate) in response to this, but it is acceptable that the

TSF terminates the connection silently (i.e., without sending a fatal error alert).

▪ Test 11.2.3: [conditional] If the TSF supports wildcards for a DNS, URI, or SVR

name type, the evaluator shall prepare the TSF as necessary to use the matching

method for the name type, and establish a reference identifier. The evaluator

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 159 of 251

shall establish a certificate for the test server that includes a wildcard name for

the DNS portion of the appropriate name type which matches the reference

identifier. The evaluator shall ensure the TLS server sends the certificate

containing the wildcard name of the type tested, and observe that the TSF

completes the connection.

▪ Test 11.2.4: [conditional] If the TSF supports a DNS, URI, or SVR name type, but

does not support wildcards (in general, or specifically for internationalized

names of the specified type), the evaluator shall prepare the TSF as necessary to

use the matching method and establish a reference identifier that matches a

wildcard name for the DNS portion of the appropriate name type, in accordance

with the appropriate RFC, in a certificate representing the server. The evaluator

shall ensure the TLS server sends the certificate containing the wildcard name of

the type tested, and observe that the TSF terminates the connection.

Note: If the TSF's ability to support wildcard certificates is configurable, both

Test 11.2.3 and Test 11.2.4 are performed under the appropriate configuration.

This test is required if the TSF supports internationalized names of the specified

type – in this case, the reference identifier only includes an internationalized

encoding in the leftmost label. The certificate used is intended to match the

certificate as if wildcards were supported and if the wildcard extended to

internationalized names.

▪ Test 11.2.5: [conditional] If the TSF supports wildcards for a DNS, URI, or SVR

name type, the evaluator shall prepare the TSF as necessary to use the matching

method. The evaluator shall establish a reference identifier and a certificate for

the server as indicated in each of the subtests described below. The evaluator

shall in turn, ensure the TLS server sends the certificate associated with the

reference identifier and observe that the TSF terminates the session.

• Test 11.2.5.1: The reference identifier contains a DNS portion with two

labels, and the certificate includes a name whose DNS portion includes a

matching rightmost label and a wildcard in the leftmost label.

• Test 11.2.5.2: The reference identifier contains a DNS portion with four

labels, and the certificate includes a name whose DNS portion includes

two rightmost labels matching the reference identifier, and a wildcard in

the third (leftmost) label.

• Test 11.2.5.3: The reference identifier contains a DNS portion with three

labels, and the certificate includes a name whose DNS portion includes

two rightmost labels matching the reference identifier, and a wildcard in

the third (leftmost) label.

▪ Test 11.2.6: [conditional] If the TSF supports wildcards and supports embedded

DNS, URI, or SVR name types in the CN, then for each supported name type, the

evaluator shall repeat Test 11.2.3, Test 11.2.4, and Test 11.2.5 using certificates

with the prescribed name embedded in the CN.

▪ Test 11.2.7: [conditional] If the TSF supports IP addresses as an embedded name

type in the CN, the evaluator shall establish an IP address as a reference

identifier and establish a certificate with a valid DNS name in the subject field,

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 160 of 251

including a CN whose value is the digital formatting of the octets of the

reference identifier. The evaluator shall ensure the server sends the certificate

and observe that the TSF successfully completes the session.

▪ Test 11.2.8: [conditional] If the TSF supports IP addresses and any embedded

name type in the CN, the evaluator shall establish an IP address as a reference

identifier and establish a certificate with a valid DNS name in the subject field,

including a CN whose value is the digital formatting of the octets of the

reference identifier (as in Test 11.2.7) except that one of the octets is replaced

by the ‘*’ character. The evaluator shall ensure the server sends the certificate

and observe that the TSF terminates the session.

o Test 11.3: (mixed identifiers)[conditional] If the TSF supports a name matching method

where the TSF performs matching of both CN-encoded name types and SAN names of the

same type, then for each such method, and for each such name type, the evaluator shall

establish a valid certificate trusted by the TSF to represent the test server using one name

for the CN-encoded name type and a different name for the SAN name type The evaluator

shall perform the following tests:

▪ Test 11.3.1: The evaluator shall follow the operational guidance to configure the

TSF to use the name matching method and establish reference identifiers

matching only the SAN. The evaluator shall ensure that the test server sends the

certificate with the matching SAN and non-matching CN-encoded name, and

observe that the TSF completes the connection.

Note: Configuration of the TSF may depend on the application using TLS.

▪ Test 11.3.2: The evaluator shall follow the operational guidance to configure the

TSF to use the name matching method and establish reference identifiers

matching only the CN-encoded name. The evaluator shall ensure that the test

server sends the certificate with the matching SAN name and non-matching CN

encoded name, and observe that the TSF terminates the session.

It is preferred that the TSF sends a fatal error alert message (e.g., bad

certificate, unknown certificate) in response to this, but it is acceptable that the

TSF terminates the connection silently (i.e., without sending a fatal error alert).

o Test 11.4: (empty certificate) The evaluator shall configure the test TLS server to supply an

empty certificate message and verify that the TSF terminates the session. Note: It is

preferred that the TSF sends a fatal error alert message (e.g., bad certificate, unknown

certificate) in response to this, but it is acceptable that the TSF terminates the connection

silently (i.e., without sending a fatal error alert).

o Test 11.5: (invalid certificate) [conditional] If validity exceptions are supported, then for

each exception for certificate validity supported, the evaluator shall configure the TSF to

allow the exception and ensure the test TLS server sends a certificate that is valid and

trusted, except for the allowed exception. The evaluator shall observe that the TSF

completes the session.

Without modifying the TSF configuration, the evaluator shall initiate a new session with the

test TLS server that includes an additional validation error, and observe that the TSF

terminates the session.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 161 of 251

Note: It is preferred that the TSF sends a fatal error alert message (e.g., decode error, bad

certificate) in response to this, but it is acceptable that the TSF terminates the connection

silently (i.e., without sending a fatal error alert).

The intent of this test is to verify the scope of the exception processing. If verifying

certificate status information is claimed as an exception, then this test will verify that a TLS

session succeeds when all supported methods for obtaining certificate status information is

blocked from the TSF, to include removing any status information that might be cached by

the TSF. If the exception is limited to specific certificates (e.g., only leaf certificates are

exempt, or only certain leaf certificates are exempt) the additional validation error could be

unavailable revocation information for a non exempt certificate (e.g., revocation status

information from an intermediate CA is blocked for the issuing CA of an exempt leaf

certificate, or revocation information from the issuing CA is blocked for a non-exempt leaf

certificate). If the only option for the exception is for all revocation information for all

certificates, another validation error from FIA_X509_EXT.1 (e.g., certificate expiration,

extended key usage, etc.) may be used.

5.2.6.1.3 TLS Client Support for Mutual Authentication (FCS_TLSC_EXT.2)

TSS

The evaluator shall ensure that the TSS description required per FIA_X509_EXT.2.1 includes the use of

client-side certificates for TLS mutual authentication. The evaluator shall also ensure that the TSS

describes any factors beyond configuration that are necessary in order for the client to engage in mutual

authentication using X.509v3 certificates.

Guidance

The evaluator shall ensure that the operational guidance includes any instructions necessary to

configure the TOE to perform mutual authentication. The evaluator shall also verify that the operational

guidance required per FIA_X509_EXT.2.1 includes instructions for configuring the client-side certificates

for TLS mutual authentication.

Tests

Tests For each supported TLS version, the evaluator shall perform the following tests:

• Test 12: The evaluator shall establish a TLS connection from the TSF to a test TLS server that

negotiates the tested version and which is not configured for mutual authentication (i.e., does

not send a Server’s Certificate Request (type 13) message). The evaluator observes negotiation

of a TLS channel and confirms that the TOE did not send a Client’s Certificate message (type 11)

during handshake.

• Test 13: The evaluator shall establish a connection to a test TLS server with a shared trusted root

that is configured for mutual authentication (i.e., it sends a Server’s Certificate Request (type 13)

message). The evaluator observes negotiation of a TLS channel and confirms that the TOE

responds with a non-empty Client’s Certificate message (type 11) and Certificate Verify (type 15)

message.

• Test 14: [conditional] If the TSF supports post-handshake authentication, the evaluator shall

establish a pre-shared key between the TSF and a test TLS 1.3 server. The evaluator shall initiate

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 162 of 251

a TLS session using the pre-shared key and confirm the TSF and test TLS 1.3 server successfully

complete the TLS handshake and both support post-handshake authentication. After the session

is successfully established, the evaluator shall initiate a certificate request message from the

test TLS 1.3 server. The evaluator shall observe that the TSF receives that authentication request

and shall take necessary actions, in accordance with the operational guidance, to complete the

authentication request. The evaluator shall confirm that the test TLS 1.3 server receives

certificate and certificate verification messages from the TSF over the channel that

authenticates the client.

Note: TLS 1.3 certificate requests from the test server and client certificate and certificate verify

messages are encrypted. The evaluator confirms that the TSF sends the appropriate messages

by examining the messages received at the test TLS 1.3 server and by inspecting any relevant

server logs. The evaluator may also take advantage of the calling application to demonstrate

that the TOE receives data configured at the test TLS server.

5.2.6.1.4 TLS Client Support Downgrade Protection (FCS_TLSC_EXT.3)

TSS

The evaluator shall review the TSS and confirm that the description of the TLS client protocol includes

the downgrade protection mechanism in accordance with RFC 8446 and identifies any configurable

features of the TSF needed to meet the requirements. If the ST claims that the TLS 1.1 and below

indicator is processed, the evaluator shall confirm that the TSS indicates which configurations allow

processing of the downgrade indicator and the specific response of the TSF when it receives the

downgrade indicator as opposed to simply terminating the session for the unsupported version.

Guidance

The evaluator shall review the operational guidance and confirm that any instructions to configure the

TSF to meet the requirements are included.

Tests

The evaluator shall perform the following tests to confirm the response to downgrade indicators from a

test TLS 1.3 server:

• Test 15: [conditional] If the TSF supports TLS 1.3, the evaluator shall initiate a TLS 1.3 session

with a test TLS 1.3 server configured to send a compliant TLS 1.2 server hello (not including any

TLS 1.3 extensions) but including the TLS 1.2 downgrade indicator ‘44 4F 57 4E 47 52 44 01’ in

the last eight bytes of the server random field. The evaluator shall confirm that the TSF

terminates the session.

Note: It is preferred that the TSF send a fatal error alert message (e.g., illegal parameter), but it

is acceptable that the TSF terminate the session without sending an error alert.

• Test 16: [conditional] If the TSF supports the TLS 1.1 or below downgrade indicator and if the ST

indicates a configuration where the indicator is processed, the evaluator shall follow operational

guidance instructions to configure the TSF so it parses a TLS 1.1 handshake to detect and

process the TLS downgrade indicator. The evaluator shall initiate a TLS session between the TOE

and a test TLS server that is configured to send a TLS 1.1 server hello message with the

downgrade indicator ‘44 4F 57 4E 47 52 44 00’ in the last eight bytes of the server random field,

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 163 of 251

but which is otherwise compliant with RFC 4346. The evaluator shall observe that the TSF

terminates the session as described in the ST.

Note: It is preferred that the TSF send a fatal error alert message (illegal parameter or

unsupported version), but it is acceptable that the TSF terminate the session without sending an

error alert.

Use of the TLS 1.1 and below indicator as a redundant mechanism where there is no

configuration that actually processes the value does not require additional testing, since this

would be addressed by Test 4.1 for FCS_TLSC_EXT.1.1. This test is only required if the TSF

responds differently (e.g., a different error alert) when the downgrade indicator is present than

when TLS 1.1 or below is negotiated and the downgrade indicator is not present.

5.2.6.1.5 TLS Client Support for Renegotiation (FCS_TLSC_EXT.4)

TSS

The evaluator shall examine the ST to ensure that TLS renegotiation protections are described in

accordance with the requirements. The evaluator shall ensure that any configurable features of the

renegotiation protections are identified.

Guidance

The evaluator shall examine the operational guidance to confirm that instructions for any configurable

features of the renegotiation protection mechanisms are included.

Tests

The evaluator shall perform the following tests as indicated. One or both of "tls-client-accepts

renegotiation" or Test 18 is required, depending on whether the TSF is configurable to reject

renegotiation or supports secure renegotiation methods defined for TLS 1.2. If TLS 1.3 is supported, Test

18 is required.

• Test 17: [conditional] If the TSF supports a configuration to accept renegotiation requests for

TLS 1.2, the evaluator shall follow any operational guidance to configure the TSF. The evaluator

shall perform the following tests:

o Test 17.1: The evaluator shall initiate a TLS connection with a test server configured to

negotiate a compliant TLS 1.2 handshake. The evaluator shall inspect the messages

received by the test TLS 1.2 server. The evaluator shall observe that either the

“renegotiation_info” field or the SCSV ciphersuite is included in the client hello message

during the initial handshake.

o Test 17.2: For each of the following sub-tests, the evaluator shall initiate a new TLS

connection with a test TLS 1.2 server configured to send a renegotiation_info extension

as specified, but otherwise complete a compliant TLS 1.2 session:

▪ Test 17.2.1: The evaluator shall configure the test TLS 1.2 server to send a

renegotiation_info extension whose value indicates a non-zero length. The

evaluator shall confirm that the TSF terminates the connection.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., illegal

parameter) in response to this, but it is acceptable that the TSF terminates the

connection silently (i.e., without sending a fatal error alert).

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 164 of 251

▪ Test 17.2.2: The evaluator shall configure the test TLS 1.2 server to send a

compliant renegotiation_info extension and observe the TSF successfully

completes the TLS 1.2 connection.

▪ Test 17.2.3: The evaluator shall initiate a session renegotiation after completing

a successful handshake with a test TLS 1.2 server that completes a successful

TLS 1.2 handshake (as in Test 17.1) and then sends a hello reset request from

the test TLS server with a “renegotiation_info” extension that has an

unexpected “client_verify_data” or “server_verify_data” value (modify a byte

from a compliant response). The evaluator shall verify that the TSF terminates

the connection.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., illegal

parameter, handshake error) in response to this, but it is acceptable that the

TSF terminates the connection silently (i.e., without sending a fatal error alert).

• Test 18: [conditional] if the TSF supports a configuration that prevents renegotiation, the

evaluator shall perform the following tests:

o Test 18.1: (TLS 1.2) [conditional] If the TLS supports a configuration to reject TLS 1.2

renegotiation, the evaluator shall follow the operational guidance as necessary to

prevent renegotiation. The evaluator shall initiate a TLS session between the so

configured TSF and a test TLS 1.2 server that is configured to perform a compliant

handshake, followed by a hello reset request. The evaluator shall confirm that the TSF

completes the initial handshake successfully but terminates the TLS session after

receiving the hello reset request.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., unexpected

message) in response to this, but it is acceptable that the TSF terminates the connection

silently (i.e., without sending a fatal error alert).

o Test 18.2: [conditional] If the TSF supports TLS 1.3, the evaluator shall initiate a TLS

session between the TSF and a test TLS 1.3 server that completes a compliant TLS 1.3

handshake, followed by a hello reset message. The evaluator shall observe that the TSF

completes the initial TLS 1.3 handshake successfully, but terminates the session on

receiving the hello reset message.

It is preferred that the TSF sends a fatal error alert message (e.g., unexpected message)

in response to this, but it is acceptable that the TSF terminates the connection silently

(i.e., without sending a fatal error alert).

5.2.6.1.6 TLS Client Support for Session Resumption (FCS_TLSC_EXT.5)

TSS

The evaluator shall examine the ST and confirm that the TLS client protocol description includes a

description of the supported resumption mechanisms.

Guidance

The evaluator shall ensure the operational guidance describes instructions for any configurable features

of the resumption mechanism.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 165 of 251

Tests

The evaluator shall perform the following tests:

• Test 19: For each supported TLS version and for each supported resumption mechanism that is

supported for that version, the evaluator shall establish a new TLS session between the TSF and

a compliant test TLS server that is configured to negotiate the indicated version and perform

resumption using the indicated mechanism. The evaluator shall confirm that the TSF completes

the initial TLS handshake and shall cause the TSF to close the session normally. The evaluator

shall then cause the TSF to resume the session with the test TLS server using the indicated

method and observe that the TSF successfully establishes the session.

Note: For each method, successful establishment refers to proper use of the mechanism, to

include compliant extensions and behavior, as indicated in the referenced RFC.

• Test 20: (TLS 1.3 session id echo) [conditional] If the TSF supports TLS 1.3, the evaluator shall

initiate a new TLS 1.3 session with a test TLS server. The evaluator shall cause the test TLS server

to send a TLS 1.3 server hello message (or a hello retry request if the TSF doesn’t include the key

share extension) that contains a different value in the legacy_session_id field, and observe that

the TSF terminates the session.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., illegal parameter) in

response to this, but it is acceptable that the TSF terminates the connection silently (i.e.,

without sending a fatal error alert).

5.2.6.1.7 TLS Client 1.3 Resumption Refinements (FCS_TLSC_EXT.6)

TSS

The evaluator shall examine the TSS to verify that the TLS client protocol description indicates that the

PSK exchange requires DHE mode and prohibits sending early data. The evaluator shall examine the TSS

to verify it lists all applications that can be secured by TLS 1.3 using pre shared keys and describes how

each TLS 1.3 client application ensures data for the application is not sent using early data.

Guidance

The evaluator shall examine the operational guidance to verify that instructions for any configurable

features that are required to meet the requirement are included. The evaluator shall ensure the

operational guidance includes any instructions required to configure applications so the TLS 1.3 client

implementation does not send early data.

Tests

 [conditional] For each application that is able to be secured via TLS 1.3 using PSK, the evaluator shall

follow operational guidance to configure the application not to send early data. The evaluator shall

cause the application to initiate a resumed TLS 1.3 session between the TSF and a compliant test TLS 1.3

server as in Test 19 in FCS_TLSC_EXT.5. The evaluator shall observe that the TSF client hello for TLS 1.3

includes the psk_mode extension with the value psk_dhe_ke and sends a key share value for a

supported group. The evaluator shall confirm that early data is not received by the test TLS server. Note:

If no applications supported by the TOE provide data to TLS 1.3 that can be sent using PSK, this test is

omitted.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 166 of 251

5.2.6.1.8 TLS Server Protocol (FCS_TLSS_EXT.1)

TSS

The evaluator shall check the description of the implementation of this protocol in the TSS to ensure the

supported TLS versions, features, ciphersuites, and extensions, are specified in accordance with RFC

5246 (TLS 1.2) and RFC 8446 (TLS 1.3 and updates to TLS 1.2) as appropriate. The evaluator shall check

the description to see if beta TLS 1.3 versions are supported.

The evaluator shall verify that ciphersuites indicated in FCS_TLSS_EXT.1.2 are included in the

description, and that none of the following ciphersuites are supported: ciphersuites indicating 'NULL,'

'RC2,' 'RC4,' 'DES,' 'IDEA,' or 'TDES' in the encryption algorithm component, indicating 'anon,' or

indicating MD5 or SHA in the message digest algorithm component.

The evaluator shall verify that the TLS implementation description includes the extensions as required in

FCS_TLSS_EXT.1.4.

The evaluator shall confirm that the TLS description includes the number and types of certificates that

can be installed to represent the TOE.

Guidance

The evaluator shall check the operational guidance to ensure that it contains instructions on configuring

the product so that the TSF conforms to the requirements. If the ST indicates that beta versions of TLS

1.3 are supported for backward compatibility, the evaluator shall ensure that the operational guidance

provides instructions for disabling these versions. The evaluator shall review the operational guidance to

ensure instructions on installing certificates representing the TOE are provided.

Tests

The evaluator shall perform the following tests:

Test 21: (supported TLS 1.2 configurations) The evaluator shall perform the following tests: Test 21.1:

For each supported TLS 1.2 ciphersuite, the evaluator shall send a compliant TLS 1.2 client hello with the

highest version or legacy version of 1.2 (value '03 03'), a single entry in the ciphersuites field consisting

of the specific ciphersuite, and no supported version extension or key share extension. The evaluator

shall observe the TSF’s server hello indicates TLS 1.2 in the highest version or legacy version field, does

not include a supported version or key share extension, and indicates the specific ciphersuite in the

ciphersuite field. If the ciphersuite requires certificate-based authentication, the evaluator shall observe

that the TSF sends a valid certificate representing the TOE and successfully completes the TLS

handshake. Note: The ciphersuites TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384 as defined in RFC

8442, TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 as defined in RFC 5487,

TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256 as defined in RFC 8442, and

TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 as defined in RFC 5487, if supported, do not require

certificate-based authentication of the server. Test 21.2: (TLS 1.2 support for TLS 1.3 clients)

[conditional] If the TSF is configurable to support only TLS 1.2 (or if TLS 1.3 is not supported), and if the

TSF supports DHE or ECDHE ciphersuites, the evaluator shall follow any operational guidance

instructions necessary to configure the TSF to only support TLS 1.2. For each supported TLS 1.2

ciphersuite with DHE or ECDHE indicated as the key exchange method, the evaluator shall send a client

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 167 of 251

hello with the highest version or legacy version of 1.2 (value '03 03'), a list of ciphersuites consisting of

one or more TLS 1.3 ciphersuites followed by the specific TLS 1.2 ciphersuite and no other TLS 1.2

ciphersuites in the ciphersuites field, and including a TLS 1.3 supported group and key share extension

with consistent values. The evaluator shall observe that the TSF’s server hello indicates TLS 1.2 in the

highest version or legacy version field, does not include a supported version or key share extension, and

indicates the specific TLS 1.2 ciphersuite in the ciphersuite field. The evaluator shall observe that the TSF

completes the TLS 1.2 handshake successfully. Note: Supported ciphersuites using RSA key exchange

should not be included in this test. The supported groups extension sent by the test TLS client should be

consistent with the TLS 1.2 ciphersuite (e.g., it should be an EC group if the ciphersuite is ECDHE). Test

21.3: (TLS 1.3 support) [conditional] If the TSF supports TLS 1.3, then for each supported TLS 1.3

ciphersuite and key exchange group, the evaluator shall send a compliant TLS 1.3 client hello indicating a

list of one or more TLS 1.2 ciphersuites followed by the specific TLS 1.3 ciphersuite and no other

ciphersuites in the ciphersuites field, a supported version extension indicating TLS 1.3 (value '03 04')

only, a supported groups extension indicating the selected group, and a key share extension containing

a value representing an element of the specific group. The evaluator shall observe the TSF’s server hello

contains the supported versions extension indicating TLS 1.3, the specific ciphersuite in the selected

ciphersuite field, and a key share extension containing an element of the specific supported group. The

evaluator shall observe that the TSF completes the TLS 1.3 handshake successfully.

Test 22: (obsolete versions) The evaluator shall perform the following tests: Test 22.1: For each of SSL

version 2, SSL version 3, TLS version 1.0, and TLS version 1.1, the evaluator shall send a client hello to the

TSF indicating the selected version as the highest version. The evaluator shall observe the TSF

terminates the connection. Note: It is preferred that the TSF sends a fatal error alert message (e.g.,

protocol version, insufficient security) in response to this, but it is acceptable that the TSF terminates

the connection silently (i.e., without sending a fatal error alert). Test 22.2: The evaluator shall follow the

operational guidance to configure the TSF to ensure any supported beta TLS 1.3 versions are disabled, as

necessary. The evaluator shall send the TSF a client hello message indicating the supported version

(referred to as the legacy version in RFC 8446) with the value '03 04' and observe that the TSF responds

with a server hello indicating the highest version supported. Note: Test 22.2 is intended to test the TSF

response to non-standard versions, including beta versions of TLS 1.3. If the TSF supports such beta

versions, the evaluator shall follow the operational guidance instructions to disable them prior to

conducting Test 22.2. Some TLS 1.3 implementations ignore the legacy version field and only check for

the supported_versions extension to determine TLS 1.3 support by a client. It is preferred that the

legacy version field should still be set to a standard version ('03 03') in the server hello, but it is

acceptable that presence of the supported_versions indicating TLS 1.3 (value '03 04') overrides the

legacy_version indication to determine highest supported version. Test 23: (ciphersuites) The evaluator

shall perform the following tests on handling unexpected ciphersuites using a test TLS client sending

handshake messages compliant with the negotiated version except as indicated in the test: Test 23.1:

(ciphersuite not supported) For each supported version, the evaluator shall follow the operational

guidance, if available, to configure the TSF to disable a supported ciphersuite. The evaluator shall send a

compliant client hello to the TSF indicating support for the specific version and a ciphersuites field

containing this single disabled ciphersuite. The evaluator shall observe that the TOE rejects the

connection. Note: It is preferred that the TSF sends a fatal error alert message (e.g., handshake failure)

in response to this, but it is acceptable that the TSF terminates the connection silently (i.e., without

sending a fatal error alert). If the TSF’s ciphersuites are not configurable, it is acceptable to use a named

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 168 of 251

ciphersuite from the IANA TLS protocols associated with the tested version. Additional special cases of

this test for special ciphersuites are performed separately. Test 23.2: (version confusion) For each

supported version, the evaluator shall send a client hello that is compliant for the specific version that

includes a list of ciphersuites consisting of a single ciphersuite not associated with that version. The

evaluator shall observe that the TOE rejects the connection. Note: It is preferred that the TSF sends a

fatal error alert message (e.g., handshake failure) in response to this, but it is acceptable that the TSF

terminates the connection silently (i.e., without sending a fatal error alert). It is preferred that Test 23.2

use TLS 1.3 ciphersuites for a server negotiating TLS 1.2. If TLS 1.3 is supported, Test 23.2 also includes a

server negotiating TLS 1.3 with a TLS 1.2 ciphersuite – in this case, the negotiated ciphersuite should be

chosen to be one supported by the TOE if negotiating TLS 1.2. If the TOE is configurable to allow both

TLS 1.2 and TLS 1.3 clients (or does so by default), this configuration is used for both the TLS 1.2 and TLS

1.3 iteration of this test; otherwise the TOE is configured to support the negotiated version in each

iteration. Test 23.3: (null ciphersuite) For each supported version, the evaluator shall send a client hello

indicating support for the version and include a ciphersuite list consisting of only the null ciphersuite

(TLS_NULL_WITH_NULL_NULL, with the value '00 00') and observe that the TOE rejects the connection.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., handshake failure, insufficient

security) in response to this, but it is acceptable that the TSF terminates the connection silently (i.e.,

without sending a fatal error alert). Test 23.4: (anon ciphersuite) The evaluator shall send the TSF a TLS

1.2 handshake that is compliant, except that the ciphersuites field includes a ciphersuite list consisting

only of ciphersuites using the anonymous server authentication method and observe that the TOE

rejects the connection. Note: It is preferred that the TSF sends a fatal error alert message (e.g.,

handshake failure, insufficient security) in response to this, but it is acceptable that the TSF terminates

the connection silently (i.e., without sending a fatal error alert). See IANA TLS parameters for available

ciphersuites to be included in the client hello. The test ciphersuites list should include ciphersuites using

supported cryptographic algorithms in as many of the other components as possible. For example, if the

TSF supports the ciphersuite TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, the evaluator should

include TLS_DH_ANON_WITH_AES_256_GCM_SHA_384. Test 23.5: (deprecated encryption algorithm)

The evaluator shall send the TSF a TLS 1.2 client hello that is compliant, except that the ciphersuites field

is a list consisting only of ciphersuites indicating a deprecated encryption algorithm, including at least

one each of NULL, RC2, RC4, DES, IDEA, and TDES. The evaluator shall observe that the TOE rejects the

connection. Note: It is preferred that the TSF sends a fatal error alert message (e.g., handshake failure,

insufficient security) in response to this, but it is acceptable that the TSF terminates the connection

silently (i.e., without sending a fatal error alert). See IANA TLS parameters for available ciphersuites to

be included. The test ciphersuite should use supported cryptographic algorithms for as many of the

other components as possible. For example, if the TSF supports

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, the test could include

TLS_ECDHE_PSK_WITH_NULL_SHA_384, TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5,

TLS_ECDHE_RSA_WITH_RC4_128_SHA, TLS_DHE_DSS_WITH_DES_CBC_SHA,

TLS_RSA_WITH_IDEA_CBC_SHA, and TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA. Test 24: (extensions)

Test 24.1: (signature algorithms) [conditional] If the TSF supports certificate-based authentication, then

for each supported signature algorithm indicated in the ST, the evaluator shall perform the following

sub-tests with certificates that represent the TOE. For each sub-test, the evaluator shall establish a

certificate representing the TOE and using a public-private key pair suitable for the specific signature

algorithm value, and signed by a certification authority that uses the same signature algorithm. If the

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 169 of 251

TSF also supports the signature_algorithms_cert extension, then for each value of the

signature_algorithms_cert extension, the evaluator shall repeat the sub-tests using a certificate

representing the TOE and using a key pair consistent with the signature algorithm, but signed by a

certification authority using the signature algorithm specified in the signature_algorithms_cert

extension. Note: The TSF supports certificate-based server authentication if the TLS 1.2 supported

ciphersuites include ciphersuites other than TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384 as defined

in RFC 8442, TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 as defined in RFC 5487,

TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256 as defined in RFC 8442, and

TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 as defined in RFC 5487. If these are the only supported

ciphersuites, this test is omitted. For TLS 1.3, certificate-based server authentication, the client hello

should not include the PSK extension. The evaluator shall follow operational guidance instructions to

provision the TSF with one or more of these certificates as indicated in the following sub-tests: Test

24.1.1: (TLS 1.2) For each supported value of the signature_algorithms extension, the evaluator shall

provision a certificate with a key pair compatible with the specific signature_algorithm value and send

the TSF a TLS 1.2 client hello that indicates all supported ciphersuites and has a signature_algorithms

extension consisting of a single value matching the specific signature algorithm. If the TSF supports

signature_algorithms_cert extension, the client hello also contains the value consistent with the

previsioned certificate. The evaluator shall observe that the TSF negotiates TLS 1.2 with a TLS 1.2

ciphersuite that is compatible with the signature algorithm, and that it sends a certificate message

containing the provisioned certificate with a key pair that is consistent with the specific

signature_algorithm value (and signed using the signature_algorithms_cert extension value, if

supported). Note: For TLS 1.2, the ciphersuite describes the signature algorithm as RSA or ECDSA and is

compatible with the certificate used if the signature algorithm component of the ciphersuite is of the

same type as the signature value of the signature_algorithms extension. Test 24.1.2: [conditional] If the

TSF supports TLS 1.3, then for each supported value of the signature_algorithm, the evaluator shall

provision a certificate with a key pair that is compatible with the specific signature_algorithm value,

send a TLS 1.3 client hello that indicates a supported ciphersuite and has a signature_algorithms

extension consisting of a single value matching the specific signature algorithm. If the TSF supports the

signature_algorithms_cert extension, the client hello also contains a signature_algorithms_cert

extension with a value consistent with the provisioned certificate. The evaluator shall observe that the

TSF sends a certificate message containing the provisioned certificate consistent with the specific

signature_algorithm value (and signed using the signature_algorithms_cert extension value) and a

certificate verify message using the signature_algorithms extension value. Note: For TLS 1.3, the

certificate message and certificate verify is encrypted. The evaluator confirms the values of these

messages as received at the test TLS client, using logs, or using a test TLS client designed to expose the

certificates after they are decrypted. It is not necessary to manually verify the signature used in the key

exchange message (TLS 1.2) or certificate verify message (TLS 1.3). Test 24.1.3: [conditional] If the ST

indicates that the TSF supports provisioning of multiple certificates, the evaluator shall conduct the

following sub-tests: Test 24.1.3.1: The evaluator shall repeat Test 24.1.1 with both the provisioned

certificate indicated for Test 24.1.1 and a provisioned certificate using a public key that is not consistent

with the signature_algorithm value, but signed by a CA using the signature algorithm specified in the

client hello. The evaluator shall observe that the TSF’s certificate message does not include the

certificate that does not match the signature_algorithm value in the client hello. Test 24.1.3.2:

[conditional] If the ST also indicates support for TLS 1.3, the evaluator shall similarly repeat Test 24.1.2

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 170 of 251

with both the provisioned certificate indicated for test Test 24.1.2 and a provisioned certificate with

public keys that are not consistent with the signature_algorithm value but which are signed by a CA

using the signature_algorithm value specified in the client hello, and observe that the certificate

message sent by the TSF does not include the certificate that does not match the value of the

signature_algorithm entry in the client hello. Test 24.1.3.3: [conditional] If the ST also indicates support

for the signature_algorithms_cert extension, the evaluator shall repeat Test 24.1.3.1 and Test 24.1.3.2

(if TLS 1.3 is supported) using additional provisioned certificates representing the TOE that use public

keys consistent with the signature_algorithm value, but which are signed by CAs using signature

algorithms that do not match the value of the signature_algorithms_cert in the client hello and observe

that the TSF’s certificate message does not include the certificate that does not match the

signature_algorithms_cert values in the client hello. Test 24.1.4: (TLS 1.2) The evaluator shall provision a

certificate as in Test 24.1.1 but shall send a client hello that only offers ciphersuites whose signature

component does not match the value of the signature_algorithms extension. The evaluator shall

observe that the TSF terminates the handshake. Note: It is preferred that the TSF sends a fatal error

alert message (e.g., handshake failure, illegal parameter) in response to this, but it is acceptable that the

TSF terminates the connection silently (i.e., without sending a fatal error alert). Test 24.2: (extended

master secret): The evaluator shall initiate a TLS 1.2 session with the TSF from a test TLS client for which

the client hello does not include the extended master secret extension and observe that the TSF

terminates the session. Note: It is preferred that the TSF sends a fatal error alert message (e.g.,

handshake error) in response to this, but it is acceptable that the TSF terminates the connection silently

(i.e., without sending a fatal error alert).

Test 25: (key exchange) The evaluator shall perform the following tests to confirm compliant key

exchange: Test 25.1: (TLS 1.2 RSA key exchange) [conditional] If any of the supported TLS 1.2

ciphersuites in the ST includes RSA for the key exchange method, the evaluator shall perform the

following sub-tests: Test 25.1.1: For each supported RSA key size, the evaluator shall provision the TSF

with a valid certificate that has an RSA public key of that size. The evaluator shall initiate a valid TLS 1.2

handshake from a compliant test TLS 1.2 client and observe that the server certificate message matches

the provisioned certificate. Test 25.1.2: For each supported RSA key size, the evaluator shall send the

TSF a compliant TLS 1.2 client hello, but in place of the client’s key exchange message, the evaluator

shall send the TSF a (non-compliant) key exchange message that is properly formatted but uses an

invalid EncryptedPreMasterSecret field in the TLS handshake (e.g., modify a byte of a properly computed

value). The evaluator shall attempt to complete the handshake using compliant client change cipher

spec and finished messages and verify that the TSF terminates the handshake in a manner that is

indistinguishable from a finished message error and does not send application data. Note: Mitigations

for oracle attacks described in RFC 5246 Appendix D require the TSF to exhibit the same behavior for key

exchange failures as it does for finished message failures. It is preferred that the TSF send a fatal decrypt

failure error alert at the end of the handshake in both this case and for a finished message error, but it is

acceptable that the TSF terminate the session with another error alert, or without sending an error alert

in either case. If the failure error alert is not for a decryption failure, the evaluator shall note that the

TSF’s response agrees with the response observed in the TLS 1.2 iteration of Test 25.2. Test 25.2: For

each supported version, the evaluator shall initiate a compliant handshake up through the (implied for

TLS 1.3) change cipher spec message. The evaluator shall then send a (non-compliant) client finished

handshake message with an invalid ‘verify data’ value and verify that the server terminates the session

and does not send any application data. Note: TLS 1.2 handshakes include explicit change cipher spec

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 171 of 251

messages, but TLS 1.3 omits the change cipher spec message. If TLS 1.3 is supported, the modified

finished message is sent as the final message from the client after receiving the server’s second flight of

handshake messages [encrypted extensions, (new ticket), (certificate, certificate verify), (certificate

request)]. It is preferred that the TSF send a fatal decryption failure error alert, but it is acceptable that

the TSF terminate the session using another error alert or without sending an error alert. The finished

message is encrypted. The invalid ‘verify data’ can be constructed by modifying a byte of a compliant

finished message payload.

Test 25.3: (TLS 1.2 DHE or ECDHE key exchange) [conditional] If the ST indicates support for DHE or

ECDHE ciphersuites for TLS 1.2, then the evaluator shall perform the following sub-tests: Test 25.3.1:

[conditional] If the TSF supports DHE ciphersuites and supports DHE parameters that are not specified in

the supported groups extension, then for each supported DHE parameter set, the evaluator shall follow

the operational guidance to configure the TSF to use the DHE parameters in its key exchange. The

evaluator shall then initiate a TLS 1.2 handshake from a test client with a client hello indicating a single

DHE ciphersuite. The evaluator shall observe that the TSF key exchange message indicates the

configured parameters and ensure that the client key exchange is a valid point for the parameter set.

The evaluator shall confirm that the TSF successfully completes the session. The evaluator shall close the

session and resend the client hello. After the TSF responds with a valid key exchange message, the

evaluator shall send an empty client key exchange message and observe that the TSF terminates the

session. Note: It is preferred that the TSF sends a fatal error alert message (e.g., decryption failure,

illegal parameter, handshake error) in response to this, but it is acceptable that the TSF terminates the

connection silently (i.e., without sending a fatal error alert). Test 25.3.2: [conditional] If the TSF supports

DHE ciphersuites and supports DHE groups in the supported groups extension, then for each supported

DHE group, the evaluator shall send the TSF a compliant TLS 1.2 client hello indicating a single

ciphersuite that is compatible with the group and indicating the group in the supported groups

extension. The evaluator shall observe that the TSF negotiates TLS 1.2 using the indicated ciphersuite

and that the server key exchange message indicates the specific group. The evaluator shall send the TOE

a client key exchange with a valid point in the group and observe that the TSF successfully completes the

session. The evaluator shall close the session and resend the client hello. After the TSF responds with a

valid key exchange message, the evaluator shall send the TSF a client key exchange with the public key

value '0.' The evaluator shall observe that the TSF terminates the session. The evaluator shall send a new

client hello including the same ciphersuite but indicating a group not supported by the TSF in the

supported groups extension. The evaluator shall observe that the TSF terminates the session. Note: It is

preferred that the TSF sends a fatal error alert message (e.g., decryption failure, illegal parameter,

handshake error) in response to this, but it is acceptable that the TSF terminates the connection silently

(i.e., without sending a fatal error alert). Test 25.3.3: [conditional] If the TSF supports ECDHE

ciphersuites (and therefore supports ECDHE groups in the supported groups extension), the evaluator

shall send a client hello message indicating a single supported ECDHE ciphersuite and including the

supported ECDHE group in the supported groups extension. The evaluator shall observe that the TSF

sends a key exchange message with a valid point of the specified group. The evaluator shall send the TSF

a client key exchange message to the TSF consisting of a valid element in the supported group and

observe that the TSF successfully completes the session. The evaluator shall close the session and

resend the client hello. After the TSF sends the valid key exchange message, the evaluator shall send a

client key exchange message consisting of an invalid element of the supported group and observe that

the TSF terminates the handshake.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 172 of 251

The evaluator shall send a third client hello to the TSF indicating the supported ECDHE ciphersuite and

including an ECDHE group that is not supported. The evaluator shall observe that the TSF terminates the

session. Note: It is preferred that the TSF sends a fatal error alert message (e.g., decryption failure,

illegal parameter, handshake error, insufficient security) in response to this, but it is acceptable that the

TSF terminates the connection silently (i.e., without sending a fatal error alert). An invalid ECDSA point

consists of properly formatted x and y components, but for which the equation of the curve is not

satisfied. To obtain an invalid point, the evaluator can modify a byte of the y coordinate value of a valid

point and confirm that the point is not on the curve. The IANA TLS parameters website lists registered

ECDHE groups for use in selecting a non-supported group. If the TSF supports all registered ECDHE

groups, it is acceptable to send the client hello without a supported groups extension. The TSF should

reject such a client hello, but it is acceptable for the TSF to default to a supported group. In this case, the

TSF passes the test. Test 25.4: (TLS 1.3 key exchange) [conditional] If the TSF supports TLS 1.3, then for

each supported group the evaluator shall perform the following sub-tests: Test 25.4.1: The evaluator

shall send the TSF a compliant TLS 1.3 client hello indicating a single key share value from the supported

group and shall observe that the server hello includes valid elements of the supported group. Test

25.4.2: The evaluator shall send the TSF a TLS 1.3 client hello indicating a supported groups value

supported by the TSF but containing a key share extension indicating an element claiming to be in the

supported group that does not represent a valid element of the group. The evaluator shall observe that

the TSF terminates the session. Note: It is preferred that the TSF sends a fatal error alert message (e.g.,

illegal parameter, handshake failure, decryption failure) in response to this, but it is acceptable that the

TSF terminates the connection silently (i.e., without sending a fatal error alert). For DHE groups, the

invalid element may be of the wrong length; for ECDHE groups, the invalid element has coordinates (x

and y) that do not satisfy the equation of the elliptic curve. To obtain an invalid ECDHE point, the

evaluator can modify a byte of the y coordinate value of a valid point and confirm that the point is not

on the curve.

Test 25.5: For each supported version, the evaluator shall initiate a TLS handshake from a test TLS client

with compliant handshake messages negotiating the version and supported parameters to include the

change cipher spec message (implied for TLS 1.3), but which omits the finished message and instead

sends an application message containing random data. The evaluator shall observe that the TSF

terminates the connection. Note: It is preferred that the TSF sends a fatal error alert message (e.g.,

decryption failure) in response to this, but it is acceptable that the TSF terminates the connection

silently (i.e., without sending a fatal error alert). Application data is indicated by the TLSCipherText

ContentType field having value 23 (application data). The legacy record version '03 03' and length fields

should match a valid TLSCipherText message of the same size,

5.2.6.1.9 TLS Server Support for Mutual Authentication (FCS_TLSS_EXT.2)

TSS

The evaluator shall ensure that the TSS description required per FIA_X509_EXT.2.1 includes the use of

client-side certificates for TLS mutual authentication, and that the description includes any certificate

validation exception rules and the name types supported for matching to reference identifiers for all

applications that use TLS. The evaluator shall examine the TSS to ensure that any CN-embedded name

types that are used include a description of the encoding and matching rules.

Guidance

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 173 of 251

The evaluator shall verify that the operational guidance includes instructions for configuring trust stores

for client-side certificates used in TLS mutual authentication. The evaluator shall ensure that the

operational guidance includes instructions for configuring the server to require mutual authentication of

clients using these certificates and for configuring any certificate validation exception rules. The

evaluator shall ensure that the operational guidance includes instructions for configuring reference

identifiers normalized or matched by the TSF and matching rules for the supported name types.

Tests

The evaluator shall use TLS as a function to verify that the validation rules in FIA_X509_EXT.1 are

adhered to and shall perform the tests listed below. The evaluator shall apply the operational guidance

to configure the server to require TLS mutual authentication of clients for these tests unless overridden

by instructions in the test activity.

Note: TLS 1.3 is a fundamentally different protocol than TLS 1.2, so even though the certificate

validation and name checking tests are identical for both versions, it is likely that early deployments of

TLS 1.3 may use a different code-base that warrants independent testing. If TLS 1.3 is supported and the

evaluator can verify that the TSF uses the same code-base for certificate validation and name checking

for both TLS 1.3 and TLS 1.2, it is acceptable that testing be performed for only one version for these

tests.

• Test 26: For each supported version, the evaluator shall follow the operational guidance to

configure the TOE to require valid client authentication with no exceptions and initiate a TLS

session from a compliant TLS test client supporting that version. The evaluator shall ensure that

the test client sends a certificate_list structure which has a length of zero. The evaluator shall

verify the TSF terminates the session and no application data flows.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., handshake failure, bad

certificaate, unknown certificate, unknown CA) in response to this, but it is acceptable that the

TSF terminates the connection silently (i.e., without sending a fatal error alert).

• Test 27: [conditional] If the ST indicates that the TSF supports establishment of a TLS session for

missing or invalid certificates, then for each supported version, and for each supported response

option for a missing or invalid certificate indicated in FCS_TLSS_EXT.2.3, the evaluator shall

configure the TSF according to the operational guidance to respond as indicated for the calling

application. The evaluator shall send client handshake messages from a test TLS client as

indicated for each sub-test. The evaluator shall perform the following sub-tests:

o Test 27.1: [conditional]: If the TSF supports non-authenticated session establishment

when receiving an empty certificate message, the evaluator shall initiate a TLS

handshake from a compliant test TLS client supporting the version and providing a

certificate message containing a certificate_list structure of length zero. The evaluator

shall confirm that the TSF notifies the calling application that the user is

unauthenticated.

Note: Specific procedures for determining that the calling application is notified will vary

based on the application. If an API to the calling application is not available, the

evaluator may attempt to configure the calling application to provide a different

response (e.g., require authentication for flagged data) for authenticated and non

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 174 of 251

authenticated users and make a request at the test client that results in a response

indicating the application is treating the client as non-authenticated.

o Test 27.2: [conditional] If the TSF supports exceptions for when revocation status

information is unavailable, then the evaluator shall follow the operational guidance to

attempt to establish a narrowly defined exception for which both exempt and non

exempt certificates can be established. The evaluator shall establish a primary

certificate chain for the test client that only exhibits the allowed exception and one or

more alternate certificate chains for the test client that do not pass the exception rule,

as necessary to test the boundaries of the exception rules.

The evaluator shall follow the operational guidance to remove any cached revocation

status information for the test client’s primary certificate chain. The evaluator shall

initiate a valid TLS session from the test client that presents the primary certificate for

the test client, provide any feedback requested by the TSF to confirm the exception, and

observe that the TSF allows the certificate and completes the TLS handshake

successfully.

For each alternate certificate chain, the evaluator shall repeat the session initiation from

the test client but present the alternate certificate chain and observe that the TSF

terminates the session.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., bad certificate,

unknown certificate, access denied, handshake error) in response to this, but it is

acceptable that the TSF terminates the connection silently (i.e., without sending a fatal

error alert).

The alternate certificate chains are intended to test the boundaries of the exception

rules. For example, if the exception rule indicates that only leaf certificates are exempt,

the evaluator will include an alternate certificate chain for which a CA certificate’s

revocation information is advertised but is not available; if the exception can be

configured for an explicit leaf certificate, or particular subjects, an alternate chain will be

included that does not include an excepted certificate or subject. If the exception rules

can be configured for all certificates having advertised revocation information, an

alternate certificate chain can include an expired certificate – only one additional

validity failure (e.g., expired certificate) is required in this case. More comprehensive

validity failure handling is addressed by testing for FIA_X509_EXT.1.

• Test 28: For each supported version, the evaluator shall configure the TSF to negotiate the

version and require client authentication and perform the following steps:

o For each supported name matching method indicated in the outer selection of

FCS_TLSS_EXT.2.4, and for each name type supported by the matching method as

indicated in the inner-selections claimed in each outer selection, the evaluator shall

establish a valid primary certificate chain with single names for a test client containing

only the supported name types and a valid alternate certificate chain with single names

indicating a different name of the same type.

o [conditional] If any of the supported name types include CN encoding of a name type

also supported as a SAN entry, the evaluator shall establish additional certificate chains:

▪ The evaluator shall establish a primary certificate chain with multiple names, to

include a leaf certificate with:

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 175 of 251

• a SAN entry that matches the name in the primary certificate chain with

single names, of the same SAN name type; and

• a CN entry encoding the same SAN type which matches the name in the

alternate certificate chain with single names of the CN encoding of the

same SAN name type;

▪ The evaluator shall establish an alternate certificate chain with multiple names,

to include a leaf certificate with:

• A SAN entry that matches the name in the alternate certificate chain

with single names, of the same SAN name type; and

• a CN entry encoding the same SAN type which matches the name in the

primary certificate chain with single names, of the CN encoding of the

same SAN name type.

o [conditional] If any of the supported name types include CN encoding, the evaluator

shall follow the operational guidance to configure the TSF, establishing trust in the root

CA for all primary and alternate certificate chains. The evaluator shall configure the TSF

and any relevant TOE applications that use TLS for client authentication as necessary to

establish reference identifiers that match the names in the client’s primary certificate

chains with single names, but not matching any of the names in the alternate certificate

chains with single names.

o For each primary certificate chain (with single or multiple names), the evaluator shall

initiate a TLS session from the test TLS client that is configured to present the primary

certificate chain in a certificate message and a valid certificate verify message in

response to the server’s certificate request message. The evaluator shall confirm that

the TSF accepts the certificate and completes the authenticated TLS session successfully.

o For each alternate certificate chain (with single or multiple names), the evaluator shall

initiate a TLS session from the test TLS client that is configured to present the alternate

certificate chain in a certificate message and a valid certificate verify message in

response to the server’s certificate request message. The evaluator shall confirm that

the TSF terminates the session.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., access denied) in response to

this, but it is acceptable that the TSF terminates the connection silently (i.e., without sending a fatal

error alert).

The intent of this test is to confirm that for each method that the TSF uses to match name types

presented in validated certificates, it is able to recognize both matching and non matching names.

Names of special types implicitly encoded in the CN entry of the certificate subject name are especially

prone to error since they may only be validated by the issuing CA as a directory name (RDN) type,

especially if the issuing CA is unaware of the intended encoding as a different name type. It is a best

practice that when the CN is interpreted as an embedded name type other than RDN, an explicitly

encoded SAN entry should take precedence.

5.2.6.1.10 TLS Server Support Downgrade Protection (FCS_TLSS_EXT.3)

TSS

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 176 of 251

The evaluator shall examine the ST and confirm that the TLS description includes details on the session

downgrade protections that are supported.

Guidance

The evaluator shall examine the operational guidance to confirm that instructions are included to

configure the TSF to support only TLS 1.3 and to provide the associated downgrade indications.

Tests

The evaluator shall follow the operational guidance as necessary to configure the TSF to negotiate only

TLS 1.3 and to provide the associated downgrade indications. The evaluator shall send a TLS client hello

to the TOE that indicates support for only TLS 1.2. The evaluator shall observe that the TSF sends a

server hello with the last eight bytes of the server random value equal to 44 4F 57 4E 47 52 44 01.

5.2.6.1.11 TLS Server Support for Session Resumption (FCS_TLSS_EXT.5)

TSS

The evaluator shall examine the ST and confirm that the TLS server protocol description includes a

description of the supported resumption mechanisms.

Guidance

The evaluator shall ensure the operational guidance describes instructions for any configurable features

of the resumption mechanism.

Tests

The evaluator shall perform the following tests:

• Test 31: For each supported version, and for each supported resumption method for that

version, the evaluator shall establish a compliant initial TLS session with the TOE for the version

using the specified method. The evaluator shall close the successful session and initiate

resumption using the specified mechanism. The evaluator shall observe that the TSF successfully

establishes the resumed session in accordance with the requirements.

• Test 32: For each supported version and each supported resumption method for that version,

the evaluator shall send a compliant client hello message supporting only the specific version

and indicating support for the resumption method. The evaluator shall allow the TOE and test

client to continue with the compliant handshake until resumption information is established but

then cause a fatal error to terminate the session. The evaluator shall then send a new client

hello in an attempt to resume the session with the resumption information provided and verify

that the TSF does not resume the session, but instead either terminates the session or

completes a full handshake, ignoring the resumption information.

Note: For TLS 1.2, resumption information should be established at the point the TSF sends a

server hello, either acknowledging the session-based resumption or acknowledging support for

ticket-based resumption and sending a new_ticket message. A TLS 1.2 session can then be

terminated by sending a modified finished message. For TLS 1.3, the new_ticket message is sent

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 177 of 251

after the finished message; once received by the client, the session can be terminated by

modifying a byte of the encrypted application data.

5.2.6.1.12 TLS Server TLS 1.3 Resumption Requirements (FCS_TLSS_EXT.6)

TSS

The evaluator shall examine the ST to confirm that the TLS description includes details on session

resumption for TLS 1.3, describes each application capable of using TLS 1.3 with PSK, and describes how

the TSF and application respond to client attempts to use early data (including via logging or observable

responses). The evaluator shall confirm that the TLS description shows that only the psk_dhe_ke

psk_key_exchange_mode is supported and that early information is ignored.

Guidance

The evaluator shall examine the operational guidance to verify that instructions for any configurable

features that are required to meet the requirement are included.

Tests

The evaluator shall follow the operational guidance to configure the TSF to negotiate TLS 1.3 and shall

perform the following tests:

• Test 33: The evaluator shall attempt a resumed session (as for FCS_TLSS_EXT.5 Test 31) but

using psk_ke mode as the value for the psk_key_exchange_mode in the resumption client hello.

The evaluator shall observe that the TSF refuses to resume the session, either by completing a

full TLS 1.3 handshake or by terminating the session.

Note: It is preferred that the TSF sends a fatal error alert message (e.g., illegal parameter) in

response to this, but it is acceptable that the TSF terminates the connection silently (i.e.,

without sending a fatal error alert).

• Test 34: The evaluator shall initiate a resumed session (as for FCS_TLSS_EXT.5 Test 31) with a

test TLS 1.3 client attempting to provide early data that provokes a known reaction at the TOE if

received. The evaluator shall observe that the TSF does not react to the early data, indicating

that the data was ignored.

Note: The specific early data used may depend on the applications calling the TLS session and

should be selected to initiate an observable response in the TSF or calling application as

described in the ST. For HTTPS, for example, the early data can be an HTTP POST that updates

data at the TOE, which can then be observed via a user interface for the application if the data

was posted or via application logging indicating that the operation failed.

5.2.6.1.13 DTLS Client Protocol (FCS_DTLSC_EXT.1)

TSS

The evaluator shall verify that the TSS describes the actions that take place if a message received from

the DTLS server fails the integrity check. If both selections are chosen in FCS_DTLSC_EXT.1.7, the

evaluator shall verify that the TSS describes when each method is used and whether the behavior is

configurable.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 178 of 251

Guidance

If the ST indicates the behavior of the TSF on receiving a message from the DTLS server that fails the

MAC integrity check is configurable, the evaluator shall verify that the guidance documentation

describes instructions for configuring the behavior.

Tests

For each version supported, the evaluator shall establish a connection using a compliant handshake

negotiating the version. The evaluator will then cause the test server to send application data with at

least one byte in a record message modified from what a compliant test server would send, and verify

that the client discards the record or terminates the DTLS session as described in the TSS. If multiple

behaviors are supported, the evaluator shall repeat the test for each behavior.

5.2.6.1.14 DTLS Client Support for Mutual Authentication (FCS_DTLSC_EXT.2)

The evaluator shall perform all evaluation activities listed for FCS_TLSC_EXT.2 while ensuring that DTLS

(and not TLS) is used in each evaluation activity.

5.2.6.1.15 DTLS Client Downgrade Protection (FCS_DTLSC_EXT.3)

The evaluator shall perform all evaluation activities listed for FCS_TLSC_EXT.3, with the following

modifications:

• DTLS (and not TLS) is used in each evaluation activity

• References to FCS_TLSC_EXT.1.1 are replaced with references to FCS_DTLSC_EXT.1.1.

• DTLS clients may silently drop flawed or unexpected messages from a DTLS test server.

Therefore, it might be necessary to resend the message multiple times from the DTLS test server

according to the appropriate DTLS RFC to get the desired response.

• DTLS clients do not send fatal error alerts, but should generate them for diagnostics if the test

DTLS server repeatedly sends the flawed messages indicated in the tests. If the product

generates alerts, the evaluator may observe them in logs of the TSF rather than observing them

on the line. Otherwise, the evaluator observes the termination of a session (connection state) by

verifying that the TSF does not continue to resend messages after the last timeout expires.

5.2.6.1.16 [D]TLS Client Support for Renegotiation (FCS_DTLSC_EXT.4)

The evaluator shall perform all evaluation activities listed for FCS_TLSC_EXT.4, with the following

modifications:

• DTLS (and not TLS) is used in each evaluation activity, with references to TLS replaced by

references to DTLS.

• DTLS clients may silently drop flawed or unexpected messages from a DTLS test server.

Therefore, it might be necessary to resend the message multiple times from the DTLS test server

according to the appropriate DTLS RFC to get the desired response.

5.2.6.1.17 DTLS Client Support for Session Resumption (FCS_DTLSC_EXT.5)

The evaluator shall perform all evaluation activities listed for FCS_TLSC_EXT.5, with the following

modifications:

• DTLS (and not TLS) is used in each evaluation activity.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 179 of 251

• DTLS clients may silently drop flawed or unexpected messages from a DTLS test server.

Therefore, it might be necessary to resend the message multiple times from the DTLS test server

according to the appropriate DTLS RFC to get the desired response.

• DTLS clients do not send fatal error alerts, but should generate them for diagnostics if the test

DTLS server repeatedly sends the flawed messages indicated in the tests. If the product

generates alerts, the evaluator may observe them in logs of the TSF rather than observing them

on the line. Otherwise, the evaluator observes the termination of a session (connection state) by

verifying that the TSF does not continue to resend messages after the last timeout expires.

5.2.6.1.18 DTLS Server Protocol (FCS_DTLSS_EXT.1)

TSS

The evaluator shall verify that the TSS describes how the DTLS client IP address is validated prior to

issuing a server hello message.

Guidance

There are no guidance evaluation activities for this element.

Tests

• Test 1: The evaluator shall send a TLS 1.2 client hello message from a test client and observe

that the TSF sends a HelloVerifyRequest message. The evaluator shall modify at least one byte in

the cookie from the server's HelloVerifyRequest message and include the modified value as a

cookie in the test client’s second client hello message. The evaluator shall verify that the server

rejects the client's handshake message.

• Test 2: [conditional] If the TSF supports DTLS 1.3, the evaluator shall send a TLS 1.3 client hello

message from a test client and observe that the TSF sends a HelloRetryRequest message. The

evaluator shall modify at least one byte in the cookie from the server's HelloRetryRequest

message and include the modified value as a cookie in the test client’s second client hello

message. The evaluator shall verify that the server rejects the client's handshake message.

5.2.6.1.19 DTLS Server Support for Mutual Authentication (FCS_DTLSS_EXT.2)

The evaluator shall perform all evaluation activities listed for FCS_TLSS_EXT.2, with the following

modifications:

• DTLS (and not TLS) is used in each evaluation activity – ‘TLS’ is replaced with ‘DTLS’ and

references to FCS_TLSS_EXT.2 elements are replaced with the corresponding reference to the

FCS_DTLSS_EXT.2 element.

• DTLS servers may silently drop flawed or unexpected messages from a DTLS test client.

Therefore, it might be necessary to resend the message multiple times from the DTLS test client

according to the appropriate DTLS RFC to get the desired response.

• DTLS servers do not send fatal error alerts, but should generate them for diagnostics if the test

DTLS client repeatedly sends the flawed messages indicated in the tests. If the product

generates alerts, the evaluator may observe them in logs of the TSF rather than observing them

on the line. Otherwise, the evaluator observes the termination of a session (connection state) by

verifying that the TSF does not continue to resend messages after the last timeout expires.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 180 of 251

5.2.6.1.20 DTLS Server Downgrade Protection (FCS_DTLSS_EXT.3)

The evaluator shall perform the evaluation activities listed for FCS_TLSS_EXT.3, with references to TLS

replaced by the equivalent reference to DTLS.

5.2.6.1.21 DTLS Server Support for Session Resumption (FCS_DTLSS_EXT.5)

The evaluator shall perform the evaluation activities listed for FCS_TLSS_EXT.5, with the following

modifications:

• DTLS (and not TLS) is used in each evaluation activity.

• DTLS clients may silently drop flawed or unexpected messages from a DTLS test server.

Therefore, it might be necessary to resend the message multiple times from the DTLS test server

according to the appropriate DTLS RFC to get the desired response.

• DTLS clients do not send fatal error alerts, but should generate them for diagnostics if the test

DTLS server repeatedly sends the flawed messages indicated in the tests. If the product

generates alerts, the evaluator may observe them in logs of the TSF rather than observing them

on the line. Otherwise, the evaluator observes the termination of a session (connection state) by

verifying that the TSF does not continue to resend messages after the last timeout expires.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 181 of 251

6 TOE Summary Specification (TSS)
This chapter describes the Windows security functions that satisfy the security functional requirements

of the protection profile. The TOE also includes additional relevant security functions which are also

described in the following sections, as well as a mapping to the security functional requirements

satisfied by the TOE.

This section presents the TOE Security Functions (TSFs) and a mapping of security functions to Security

Functional Requirements (SFRs). The TOE performs the following security functions:

• Audit

• Cryptographic Support

• User Data Protection

• Identification and Authentication

• Security Management

• Protection of the TSF

• TOE Access

• Trusted Channels

6.1 Audit
The TOE Audit security function performs:

• Audit Collection

• Selective Audit

• Audit Log Overflow Protection

• Audit Log Restricted Access Protection

6.1.1 Audit Collection

The Windows Event Log service creates the security event log, which contains security relevant audit

records collected on a system, along with other event logs which are also registered by other audit entry

providers. The Local Security Authority (LSA) server collects audit events from all other parts of the TSF

and forwards them to the Windows Event Log service which will place the event into the log for the

appropriate provider. While there is no size limit for a single audit record, the authorized administrator

can specify a limit for the size of each event log. For each audit event, the Windows Event Log service

stores the following data in each audit entry:

Table 29 Standard Fields in a Windows Audit Entry

Field in Audit Entry Description

Date The date the event occurred.

Time The time the event occurred.

User The security identifier (SID) of that represents the user on whose
behalf the event occurred that represents the user.

Event ID A unique number within the audit category that identifies the
specific audit event.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 182 of 251

Source The Windows component that generated the audit event.

Outcome Indicates whether the security audit event recorded is the result of a
successful or failed attempt to perform the action.

Category The type of the event defined by the event source.

The LSA service defines the following categories for audit events in the security log:

• System,

• Logon / Logoff

• Object Access

• Directory Service Access

• Privilege Use

• Detailed Process Tracking

• Policy Change

• Account Management

• Account Logon

Each audit entry may also contain category-specific data that is contained in the body of the entry as

described below:

• For the System Category, the audit entry includes information relating to the system such as the

time the audit trail was cleared, start or shutdown of the audit function, and startup and

shutdown of Windows. Furthermore, the specific cryptographic operation is identified when

such operations are audited.

• For the Logon and Account Logon Category, the audit entry includes the reason the attempted

logon failed.

• For the Object Access and the Directory Service Access Category, the audit entry includes the

object name and the desired access requested.

• For the Privilege Use Category, the audit entry identifies the privilege.

• For the Detailed Process Tracking Category, the audit event includes the process identifier.

• For the Policy Change and Account Management Category, the audit event includes the new

values of the policy or account attributes.

• For the Account Logon Category, the audit event includes the logon type that indicates the

source of the logon attempt as one of the following types in the audit record:

o Interactive (local logon)

o Network (logon from the network)

o Service (logon as a service)

o Batch (logon as a batch job)

o Unlock (for Unlock screen saver)

o Network_ClearText (for anonymous authentication to IIS)

There are two places within the TSF where security audit events are collected. Inside the kernel, the

Security Reference Monitor (SRM), a part of the NT Executive, is responsible for generation of all audit

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 183 of 251

entries for the object access, privilege use, and detailed process tracking event categories. Windows

components can request the SRM to generate an audit record and supply all of the elements in the audit

record except for the system time, which the Executive provides. With one exception, audit events for

the other event categories are generated by various services that either co-exist in the LSA server or call,

with the SeAuditPrivilege privilege, the Authz Report Audit interfaces implemented in the LSA Policy

subcomponent. The exception is that the Event Log Service itself records an event record when the

security log is cleared and when the security log exceeds the warning level configured by the authorized

administrator.

The LSA server maintains an audit policy in its database that determines which categories of events are

actually collected. Defining and modifying the audit policy is restricted to the authorized administrator.

The authorized administrator can select events to be audited by selecting the category or categories to

be audited. An authorized administrator can individually select each category. Those services in the

security process determine the current audit policy via direct local function calls. The only other TSF

component that uses the audit policy is the SRM in order to record object access, privilege use, and

detailed tracking audit. LSA and the SRM share a private local connection port, which is used to pass the

audit policy to the SRM. When an authorized administrator changes the audit policy, the LSA updates its

database and notifies the SRM. The SRM receives a control flag indicating if auditing is enabled and a

data structure indicating that the events in particular categories to audit.

In addition to the system-wide audit policy configuration, it is possible to define a per-user audit policy

using auditpol.exe. This allows individual audit categories (of success or failure) to be enabled or

disabled on a per user basis.31 The per-user audit policy refines the system-wide audit policy with a

more precise definition of the audit policy for which events will be audited for a specific user.

Within each category, auditing can be performed based on success, failure, or both. For object access

events, auditing can be further controlled based on user/group identify and access rights using System

Access Control Lists (SACLs). SACLs are associated with objects and indicate whether or not auditing for

a specific object, or object attribute, is enabled.

6.1.2 SFR Summary

• FAU_GEN.1, FAU_GEN.1(WAN), FAU_GEN.1(VPN), FAU_GEN.1(BT): The TOE audit collection is

capable of generating audit events for items identified in section Error! Reference source not

found., Error! Reference source not found., and Error! Reference source not found.. For each

audit event the TSF records the date, time, user Security Identifier (SID) or name, logon type (for

logon audit records), event ID, source, type, and category.

• FAU_SEL.1: The TSF provides the ability for the authorized administrator to select the events to

be audited based upon object identity, user identity, workstation (host identity), event type, and

success or failure of the event.

31 Windows will prevent a local administrator from disabling auditing for local administrator accounts. If an
administrator can bypass auditing, they can avoid accountability for such actions as exfiltrating files without
authorization.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 184 of 251

6.2 Cryptographic Support

6.2.1 Cryptographic Algorithms and Operations

The Cryptography API: Next Generation (CNG) API is designed to be extensible at many levels and

agnostic to cryptographic algorithm suites. Windows uses CNG exclusively for its own encryption needs

and provides public APIs for external developers. An important feature of CNG is its native

implementation of the Suite B algorithms, including algorithms for AES (128, 192, 256 key sizes)32, the

SHA-1 and SHA-2 family (SHA-256, SHA-384 and SHA-512) of hashing algorithms, elliptic curve Diffie

Hellman (ECDH), and elliptical curve DSA (ECDSA) over the NIST-standard prime curves P-256, P-384 and

P-521.

Protocols such as the Internet Key Exchange (IKE), and Transport Layer Security (TLS), make use of

elliptic curve Diffie-Hellman (ECDH) included in Suite B as well as hashing functions.

Deterministic random bit generation (DRBG) is implemented in accordance with NIST Special Publication

800-90. Windows generates random bits by taking the output of a cascade of two SP800-90 AES-256

counter mode based DRBGs in kernel-mode and four cascaded SP800-90 AES-256 DRBGs in user-mode;

programmatic callers can choose to obtain either 128 or 256 bits from the RBG which is seeded from the

Windows entropy pool. Windows has different entropy sources (deterministic and nondeterministic)

which produce entropy data that is used for random numbers generation. In particular, this entropy

data together with other data (such as the nonce) seed the DRBG algorithm. The entropy pool is

populated using the following values:

An initial entropy value from a seed file provided to the Windows OS Loader at boot time (512 bits of

entropy). 33

A calculated value based on the high-resolution CPU cycle counter which fires after every 1024

interrupts (a continuous source providing 16384 bits of entropy).

Random values gathered periodically from the Trusted Platform Module (TPM), (320 bits of entropy on

boot, 384 bits thereafter on demand based on an OS timer).

• Random values gathered periodically by calling the RDRAND CPU instruction, (256 bits of

entropy).

The entropy data is obtained from the entropy sources in a raw format and is health-tested before using

it as input for the DRBG. The main source of entropy in the system is the CPU cycle counter which

continuously tracks hardware interrupts. This serves as a sufficient health test; if the computer were not

accumulating hardware and software interrupts it would not be running and therefore there would be

no need for any entropy to seed, or reseed, the random bit generator. In the same manner, a failure of

the TPM chip or the RDRAND instruction for the processor would be a critical error that halts the

32 Note that the 192-bit key size is not used by Windows but is available to developers.
33 The Windows OS Loader implements a SP 800-90 AES-CTR-DRBG and passes along 384 bits of entropy to the
kernel for CNG to be use during initialization. This DBRG uses the same algorithms to obtain entropy from the CPU
cycle counter, TPM, and RDRAND as described above.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 185 of 251

computer, effectively serving as an on-demand self-test.34 In addition, when the user chooses to follow

the CC administrative guidance, which includes operating Windows in the FIPS validated mode, it will

run FIPS 140 AES-256 Counter Mode DBRG Known Answer Tests (instantiate, generate) on start-up.

Windows always runs the SP 800-90-mandated self-tests for AES-CTR-DRBG during a reseed when the

user chooses to operate Windows in the FIPS validated mode.35

Each entropy source is independent of the other sources and does not depend on time. The CPU cycle

counter inputs vary by environmental conditions such as data received on a network interface card, key

presses on a keyboard, mouse movement and clicks, and touch input.

The TSF defends against tampering of the random number generation (RNG) / pseudorandom number

generation (PRNG) sources by encapsulating its use in Kernel Security Device Driver. The interface for

the Windows random number generator is BCryptGenRandom.

The CNG provider for random number generation is the AES_CTR_DRBG, when Windows requires the

use of a salt it uses the Windows RBG.

The encryption and decryption operations are performed by independent modules, known as

Cryptographic Service Providers (CSPs). Windows generates symmetric keys (AES keys) using the FIPS

Approved random number generator.

In addition to encryption and decryption services, the TSF provides other cryptographic operations such

as hashing and digital signatures. Hashing is used by other FIPS Approved algorithms implemented in

Windows (the hashed message authentication code, RSA, DSA, and EC DSA signature services, Diffie-

Hellman and elliptic curve Diffie-Hellman key agreement, and random bit generation). When Windows

needs to establish an RSA-based shared secret key it can act both as a sender or recipient, any

decryption errors which occur during key establishment are presented to the user at a highly abstracted

level, such as a failure to connect.

6.2.2 Cryptographic Algorithm Validation

Table 30 Cryptographic Algorithm Standards and Validation for Windows 11 (version 24H2)

Cryptographic Operation Standard Requirement
Evaluation
Method

Encryption/Decryption

FIPS 197 AES

FCS_COP.1(SYM)

NIST CAVP #
A7253, # A7249, #
A7250, # A7254

NIST SP 800-38A CBC
mode

NIST CAVP # A7253

NIST SP 800-38C CCM
mode

NIST CAVP #
A7253, # A7249

34 In other words, the expected result from the CPU cycle counter, the RDRAND instruction, and the TPM RBG is an
apparently random value which will be used as an input to seed the RBG. Windows will check the entropy returned
from the registered sources and halt the machine if it has insufficient quality.
35 Running Windows in FIPS validated mode is required according to the administrative guidance.

http://msdn.microsoft.com/en-us/library/aa375458(v=VS.85).aspx
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20012
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20017
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20037
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20012

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 186 of 251

NIST SP 800-38E XTS
mode

NIST CAVP #
A7253

NIST SP 800-38F KW
mode

NIST CAVP # A7250

NIST SP 800-38D GCM
mode

NIST CAVP #
A7253,

Digital signature (key
generation)

FIPS 186-5 RSA FCS_CKM.1
NIST CAVP #
A7253, # A7251

Digital signature
(generation)

FIPS 186-5 RSA FCS_COP.1(SIGN)
NIST CAVP #A7253,
A7254, #A7251

Digital signature
(verification)

FIPS 186-5 RSA FCS_COP.1(SIGN)
NIST CAVP #
A7253, # A7251, #
A7252, # A7254

Digital signature (key
generation)

FIPS 186-4 DSA
FCS_CKM.1
FCS_CKM.1(VPN)

NIST CAVP # A7253

Digital signature
(generation and
verification)

FIPS 186-4 DSA
Added as a prerequisite
of NIST CAVP KAS #
A7253, # A7254

NIST CAVP #
A7253, # A7254

Digital signature (key
generation)

FIPS 186-5 ECDSA
FCS_CKM.1,
FCS_CKM.1(WPA),
FCS_CKM.1(VPN)

NIST CAVP #
A7253, # A7254, #
A7251

Digital signature (key
generation, signature
generation and
verification)

FIPS 186-5 ECDSA
FCS_CKM.1,
FCS_CKM.1(WPA)

NIST CAVP #
A7253, # A7251

Hashing
FIPS 180-4 SHA-1 and
SHA-256, SHA-384, SHA-
512

FCS_COP.1 (HASH) NIST CAVP # A7253

Keyed-Hash Message
Authentication Code

FIPS 198-2 HMAC FCS_COP.1(HMAC)
NIST CAVP #
A7253, # A7254

Random number
generation

NIST SP 800-90
CTR_DRBG

FCS_RBG_EXT.1
NIST CAVP #
A7253, # A7254,

Key agreement NIST SP 800-56A ECDH FCS_CKM.2
NIST CAVP #
A7253, # A7254

Key establishment NIST SP 800-56B RSA
FCS_CKM.2,
FCS_CKM.2(WLAN)

NIST CVL # A7253,
A7251, Tested by
the CC evaluation
lab36

Key-based key derivation SP800-108
NIST CAVP #
A7250, # A7254

IKEv1 SP800-135 FCS_IPSEC_EXT.1 NIST CAVP # A7253

IKEv2 SP800-135 FCS_IPSEC_EXT.1 NIST CAVP # A7253

TLS SP800-135 FCS_TLSC_EXT.1, NIST CAVP # A7253

36 The test results are described in the evaluation and Assurance Activity Report.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20017
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20022
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20037
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20022
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20022
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20027
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20037
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20037
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20037
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20037
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20022
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20022
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20037
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20037
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20037
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20022
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20017
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20037
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20032

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 187 of 251

FCS_TLSC_EXT.2(WLAN)
FCS_TLSS_EXT.2,FCS_D
TLSC_EXT.1
FCS_DTLSS_EXT.1

Table 31 Cryptographic Algorithm Standards and Validation for Windows 11 (version 23H2)

Cryptographic Operation Standard Requirement Evaluation
Method

Encryption/Decryption FIPS 197 AES FCS_COP.1(SYM) NIST CAVP #
A7259, # A7255, #
A7256, # A7260

NIST SP 800-38A CBC
mode

NIST CAVP # A7259

NIST SP 800-38C CCM
mode

NIST CAVP #
A7259, # A7255

NIST SP 800-38E XTS
mode

NIST CAVP #A7259

NIST SP 800-38F KW
mode

NIST CAVP # A7256

NIST SP 800-38D GCM
mode

NIST CAVP # A7259

Digital signature (key
generation)

FIPS 186-5 RSA FCS_CKM.1 NIST CAVP #
A7259, # A7257

Digital signature
(generation)

FIPS 186-5 RSA FCS_COP.1(SIGN) NIST CAVP #
A7259, # A7257 #
A7260

Digital signature
(verification)

FIPS 186-5 RSA FCS_COP.1(SIGN) NIST CAVP #A7259,
A7257, # A7258,
A7260

Digital signature (key
generation)

FIPS 186-4 DSA FCS_CKM.1
FCS_CKM.1(VPN)

NIST CAVP # A7259

Digital signature
(generation and
verification)

FIPS 186-4 DSA Added as a prerequisite
of NIST CAVP KAS #
A7259, # A7260

NIST CAVP #
A7259, # A7260

Digital signature (key
generation)

FIPS 186-5 ECDSA FCS_CKM.1,
FCS_CKM.1(WPA),
FCS_CKM.1(VPN)

NIST CAVP #
A7259, # A7257, #
A7260

Digital signature (key
generation, signature
generation and
verification)

FIPS 186-5 ECDSA FCS_CKM.1,
FCS_CKM.1(WPA)

NIST CAVP #
A7259, # A7257

Hashing FIPS 180-4 SHA-1 and
SHA-256, SHA-384, SHA-
512

FCS_COP.1 (HASH) NIST CAVP # A7259

Keyed-Hash Message
Authentication Code

FIPS 198-2 HMAC FCS_COP.1(HMAC) NIST CAVP #
A7259, # A7260

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20013
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20018
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20038
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20013
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20018
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20023
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20023
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20038
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20023
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20028
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20038
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20038
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20038
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20023
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20038
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20023
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20038

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 188 of 251

Random number
generation

NIST SP 800-90
CTR_DRBG

FCS_RBG_EXT.1 NIST CAVP #
A7259, # A7260

Key agreement NIST SP 800-56A ECDH FCS_CKM.2 NIST CAVP #
A7259, # A7260

Key establishment NIST SP 800-56B RSA FCS_CKM.2,
FCS_CKM.2(WLAN)

NIST CVL # A7259,
A7257, Tested by
the CC evaluation
lab37

Key-based key derivation SP800-108 NIST CAVP # A7256
A7260

IKEv1 SP800-135 FCS_IPSEC_EXT.1 NIST CAVP # A7259

IKEv2 SP800-135 FCS_IPSEC_EXT.1 NIST CAVP #A7259

TLS SP800-135 FCS_TLSC_EXT.1,
FCS_TLSC_EXT.2(WLAN)
FCS_TLSS_EXT.2,FCS_D
TLSC_EXT.1
FCS_DTLSS_EXT.1

NIST CAVP # A7259

Table 32 Cryptographic Algorithm Standards and Validation for Windows Server 2025

Cryptographic Operation Standard Requirement Evaluation
Method

Encryption/Decryption FIPS 197 AES FCS_COP.1(SYM) NIST CAVP #
A7265, # A7261, #
A7262, # A7266

NIST SP 800-38A CBC
mode

NIST CAVP # A7265

NIST SP 800-38C CCM
mode

NIST CAVP #
A7265, # A7261

NIST SP 800-38E XTS
mode

NIST CAVP # A7265

NIST SP 800-38F KW
mode

NIST CAVP # A7262

NIST SP 800-38D GCM
mode

NIST CAVP # A7265

Digital signature (key
generation)

FIPS 186-5 RSA FCS_CKM.1 NIST CAVP #
A7265, # A7263

Digital signature
(generation)

FIPS 186-5 RSA FCS_COP.1(SIGN) NIST CAVP #
A7265, # A7263, #
A7266

Digital signature
(verification)

FIPS 186-5 RSA FCS_COP.1(SIGN) NIST CAVP #
A7265, # A7263, #
A7264, # A7266

37 The test results are described in the evaluation and Assurance Activity Report.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20038
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20038
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20023
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20018
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20038
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20033
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20014
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20019
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20039
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20014
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20019
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20024
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20024
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20039
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20024
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20029
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20039

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 189 of 251

Digital signature (key
generation)

FIPS 186-4 DSA FCS_CKM.1
FCS_CKM.1(VPN)

NIST CAVP # A7265

Digital signature
(generation and
verification)

FIPS 186-4 DSA Added as a prerequisite
of NIST CAVP KAS #
A7265, # A7266

NIST CAVP # A7265

Digital signature (key
generation)

FIPS 186-5 ECDSA FCS_CKM.1,
FCS_CKM.1(WPA),
FCS_CKM.1(VPN)

NIST CAVP #
A7265, # A7263, #
A7266

Digital signature (key
generation, signature
generation and
verification)

FIPS 186-5 ECDSA FCS_CKM.1,
FCS_CKM.1(WPA)

NIST CAVP #
A7265, # A7263

Hashing FIPS 180-4 SHA-1 and
SHA-256, SHA-384, SHA-
512

FCS_COP.1 (HASH) NIST CAVP # A7265

Keyed-Hash Message
Authentication Code

FIPS 198-2 HMAC FCS_COP.1(HMAC) NIST CAVP #
A7265, # A7266

Random number
generation

NIST SP 800-90
CTR_DRBG

FCS_RBG_EXT.1 NIST CAVP #
A7265, # A7266

Key agreement NIST SP 800-56A ECDH FCS_CKM.2 NIST CAVP # A7265

Key establishment NIST SP 800-56B RSA FCS_CKM.2,
FCS_CKM.2(WLAN)

NIST CVL # A7265,
A7263, Tested by
the CC evaluation
lab38

Key-based key derivation SP800-108 NIST CAVP #
A7262, # A7266

IKEv1 SP800-135 FCS_IPSEC_EXT.1 NIST CAVP # A7265

IKEv2 SP800-135 FCS_IPSEC_EXT.1 NIST CAVP # A7265

TLS SP800-135 FCS_TLSC_EXT.1,
FCS_TLSC_EXT.2(WLAN)
FCS_TLSS_EXT.2,FCS_D
TLSC_EXT.1
FCS_DTLSS_EXT.1

NIST CAVP # A7265

Table 33 Cryptographic Algorithm Standards and Validation for Azure Local (version 24H2)

Cryptographic Operation Standard Requirement Evaluation
Method

Encryption/Decryption FIPS 197 AES FCS_COP.1(SYM) NIST CAVP #
A7271, # A7267, #
A7268, # A7272

NIST SP 800-38A CBC
mode

NIST CAVP # A7271

38 The test results are described in the evaluation and Assurance Activity Report.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20039
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20024
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20039
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20024
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20039
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20039
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20024
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20019
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20039
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20034
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20016
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20021
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20041
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 190 of 251

NIST SP 800-38C CCM
mode

NIST CAVP #
A7271, # A7267

NIST SP 800-38E XTS
mode

NIST CAVP # A7271

NIST SP 800-38F KW
mode

NIST CAVP # A7268

NIST SP 800-38D GCM
mode

NIST CAVP # A7271

Digital signature (key
generation)

FIPS 186-5 RSA FCS_CKM.1 NIST CAVP #
A7271, # A7269

Digital signature
(generation)

FIPS 186-5 RSA FCS_COP.1(SIGN) NIST CAVP #
A7271, # A7269, #
A7272

Digital signature
(verification)

FIPS 186-5 RSA FCS_COP.1(SIGN) NIST CAVP #
A7271, A7269, #
A7270, # A7272

Digital signature (key
generation)

FIPS 186-4 DSA FCS_CKM.1
FCS_CKM.1(VPN)

NIST CAVP # A7271

Digital signature
(generation and
verification)

FIPS 186-4 DSA Added as a prerequisite
of NIST CAVP KAS #
A7271, # A7272

NIST CAVP #
A7271, # A7272

Digital signature (key
generation)

FIPS 186-5 ECDSA FCS_CKM.1,
FCS_CKM.1(WPA),
FCS_CKM.1(VPN)

NIST CAVP #
A7271, # A7269, #
A7272

Digital signature (key
generation, signature
generation and
verification)

FIPS 186-5 ECDSA FCS_CKM.1,
FCS_CKM.1(WPA)

NIST CAVP #
A7271, # A7269

Hashing FIPS 180-4 SHA-1 and
SHA-256, SHA-384, SHA-
512

FCS_COP.1 (HASH) NIST CAVP # A7271

Keyed-Hash Message
Authentication Code

FIPS 198-2 HMAC FCS_COP.1(HMAC) NIST CAVP # A7271

Random number
generation

NIST SP 800-90
CTR_DRBG

FCS_RBG_EXT.1 NIST CAVP #
A7271, # A7272

Key agreement NIST SP 800-56A ECDH FCS_CKM.2 NIST CAVP #
A7271, A7272

Key establishment NIST SP 800-56B RSA FCS_CKM.2,
FCS_CKM.2(WLAN)

NIST CVL # A7271,
A7269, Tested by
the CC evaluation
lab39

Key-based key derivation SP800-108 NIST CAVP # A7268
A7272

IKEv1 SP800-135 FCS_IPSEC_EXT.1 NIST CAVP # A7271

IKEv2 SP800-135 FCS_IPSEC_EXT.1 NIST CAVP # A7271

39 The test results are described in the evaluation and Assurance Activity Report.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20016
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20021
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20026
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20026
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20041
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20026
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20031
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20041
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20041
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20041
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20026
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20041
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20026
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20041
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20041
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20026
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20021
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20041
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 191 of 251

TLS SP800-135 FCS_TLSC_EXT.1,
FCS_TLSC_EXT.2(WLAN)
FCS_TLSS_EXT.2,FCS_D
TLSC_EXT.1
FCS_DTLSS_EXT.1

NIST CAVP # A7271

Table 34 Cryptographic Algorithm Standards and Validation for Azure Local (version 23H2)

Cryptographic
Operation

Standard Requirement Evaluation Method

Encryption/Decryption FIPS 197 AES FCS_COP.1(SYM) NIST CAVP # A7277, #
A7273, # A7274, #
A7278

NIST SP 800-38A CBC
mode

NIST CAVP # A7277

NIST SP 800-38C CCM
mode

NIST CAVP # A7277,
#A7273

NIST SP 800-38E XTS
mode

NIST CAVP # A7277

NIST SP 800-38F KW
mode

NIST CAVP # A7274

NIST SP 800-38D GCM
mode

NIST CAVP # A7277

Digital signature (key
generation)

FIPS 186-5 RSA FCS_CKM.1 NIST CAVP # A7277, #
A7275

Digital signature
(generation)

FIPS 186-5 RSA FCS_COP.1(SIGN) NIST CAVP # A7277, #
A7275, # A7278

Digital signature
(verification)

FIPS 186-5 RSA FCS_COP.1(SIGN) NIST CAVP # A7277, #
A7275, # A7276, #
A7278

Digital signature (key
generation)

FIPS 186-4 DSA FCS_CKM.1
FCS_CKM.1(VPN)

NIST CAVP # A7277

Digital signature
(generation and
verification)

FIPS 186-4 DSA Added as a prerequisite
of NIST CAVP KAS #
A7277, # A7278

NIST CAVP # A7277, #
A7278

Digital signature (key
generation)

FIPS 186-5 ECDSA FCS_CKM.1,
FCS_CKM.1(WPA),
FCS_CKM.1(VPN)

NIST CAVP # A7277, #
A7275, # A7278

Digital signature (key
generation, signature
generation and
verification)

FIPS 186-5 ECDSA FCS_CKM.1,
FCS_CKM.1(WPA)

NIST CAVP # A7277, #
A7275

Hashing FIPS 180-4 SHA-1 and
SHA-256, SHA-384,
SHA-512

FCS_COP.1 (HASH) NIST CAVP # A7277

Keyed-Hash Message
Authentication Code

FIPS 198-2 HMAC FCS_COP.1(HMAC) NIST CAVP # A7277, #
A7278

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20036
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20015
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20020
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20040
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20015
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20020
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20025
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20025
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20040
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20025
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20030
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20040
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20040
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20040
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20025
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20040
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20025
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20040

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 192 of 251

Random number
generation

NIST SP 800-90
CTR_DRBG

FCS_RBG_EXT.1 NIST CAVP # A7277, #
A7278

Key agreement NIST SP 800-56A ECDH FCS_CKM.2 NIST CAVP # A7277, #
A7278

Key establishment NIST SP 800-56B RSA FCS_CKM.2,
FCS_CKM.2(WLAN)

NIST CVL # A7277, #
A7275, Tested by the
CC evaluation lab40

Key-based key
derivation

SP800-108 NIST CAVP # A7274, #
A7278

IKEv1 SP800-135 FCS_IPSEC_EXT.1 NIST CAVP # A7277

IKEv2 SP800-135 FCS_IPSEC_EXT.1 NIST CAVP # A7277

TLS SP800-135 FCS_TLSC_EXT.1,
FCS_TLSC_EXT.2(WLAN
)
FCS_TLSS_EXT.2,FCS_D
TLSC_EXT.1
FCS_DTLSS_EXT.1

NIST CAVP # A7277

CNG includes a user-mode key isolation service designed specifically to host secret and private keys in a

protected process to mitigate tampering or access to sensitive key materials for user-mode processes.

CNG performs a key error detection check on each transfer of key (internal and intermediate transfers).

CNG prevents archiving of expired (private) signature keys and destroys non-persistent cryptographic

keys. Windows overwrites each intermediate storage area for plaintext key/critical cryptographic

security parameter (i.e., any storage, such as memory buffers for the key or plaintext password which

was typed by the user that is included in the path of such data). This overwriting is performed as follows:

• For volatile memory, the overwrite is a single direct overwrite consisting of zeros using the

RtlSecureZeroMemory function.

The following table describes the keys and secrets used for networking and data protection; when these

ephemeral keys or secrets are no longer needed for a network session, due to either normal end of the

session or abnormal termination, or after protecting sensitive data using DPAPI, they are deleted as

described above and in section Error! Reference source not found.. Note that the administrative

guidance precludes hibernating the computer and so these keys are not persisted into volatile storage.

Table 35 Types of Keys Used by Windows

Key Description

Symmetric

encryption/decryption keys

Keys used for AES (FIPS 197) encryption/decryption for IPsec ESP,

TLS, Wi-Fi.

HMAC keys Keys used for HMAC-SHA1, HMAC-SHA256, HMAC-SHA384, and

HMAC-SHA512 (FIPS 198-1) as part of IPsec

40 The test results are described in the evaluation and Assurance Activity Report.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20040
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20040
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20025
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20020
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20040
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=20035
https://msdn.microsoft.com/en-us/library/windows/hardware/ff562768(v=vs.85).aspx

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 193 of 251

Asymmetric ECDSA Public Keys Keys used for the verification of ECDSA digital signatures using the P-

256, P-384, and P-521 curves (FIPS 186-5) for TLS, IPsec traffic, and

peer authentication.

Asymmetric ECDSA Private Keys Keys used for the calculation of ECDSA digital signatures using the P-

256, P-384, and P-521 curves (FIPS 186-5) for TLS, IPsec traffic and

peer authentication.

Asymmetric RSA Public Keys Keys used for the verification of RSA digital signatures (FIPS 186-5)

for IPsec, TLS, Wi-Fi and signed product updates.

Asymmetric RSA Private Keys Keys used for the calculation of RSA digital signatures (FIPS 186-5)

for IPsec, TLS, and Wi-Fi as well as TPM-based health attestations.

The key size can be 2048 or 3072 bits.

Asymmetric DSA Private Keys Keys used for the calculation of DSA digital signatures (FIPS 186-4)

for IPsec and TLS. The key size can be 2048 or 3072 bits.

Asymmetric DSA Public Keys Keys used for the verification of DSA digital signatures (FIPS 186-4)

for IPsec and TLS. The key size can be 2048 or 3072 bits.

DH Private and Public values Private and public values using MODP-2048, MODP-3072, MODP-

4096 for Diffie-Hellman key establishment for IKE with only MODP-

2048; and ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144 Diffie-

Hellman key establishment for TLS.

ECDH Private and Public values Private and public values using the P-256, P-384, and P-521 curves in

EC Diffie-Hellman key establishment for TLS and IKE.

DPAPI master secret 512-bit random value used by DPAPI

DPAPI master AES key 256-bit encryption key that protects the DPAPI master secret

DPAPI AES key 256-bit esncryption key used by DPAPI

DRBG seed eed for the main DRBG, zeroized during reseeding

6.2.3 Networking

6.2.3.1 TLS, HTTPS, DTLS, EAP-TLS

The TOE implements TLS to enable a trusted network path that is used for client and server

authentication, as well as HTTPS.

The following table summarizes the TLS RFCs implemented in Windows:

Table 36 TLS RFCs Implemented by Windows

RFC # Name How Used

2246 The TLS Protocol Version 1.0 Specifies requirements for TLS 1.0.

3268 Advanced Encryption Standard (AES)
Ciphersuites for Transport Layer Security
(TLS)

Specifies additional ciphersuites
implemented by Windows.

3546 Transport Layer Security (TLS) Extensions Updates RFC 2246 with TLS 1.0 extensions
implemented by Windows.

http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc3546.txt

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 194 of 251

4346 The Transport Layer Security (TLS)
Protocol Version 1.1

Specifies requirements for TLS 1.1.

4366 Transport Layer Security (TLS) Extensions Obsoletes RFC 3546 Requirements for TLS
1.1 extensions implemented by Windows.

4492 Elliptic Curve Cryptography (ECC) Cipher
Suites for Transport Layer Security (TLS)

Specifies additional ciphersuites
implemented by Windows.

4681 TLS User Mapping Extension Extends TLS to include a User Principal
Name during the TLS handshake.

5216 The EAP-TLS Authentication Protocol The core Extensible Authentication
Protocol implementation.

5246 The Transport Layer Security (TLS)
Protocol Version 1.2

Obsoletes RFCs 3268, 4346, and 4366.
Specifies requirements for TLS 1.2.

5289 TLS Elliptic Curve Cipher Suites with SHA-
256/384 and AES Galois Counter Mode
(GCM)

Specifies additional ciphersuites
implemented by Windows.

8996 Deprecating TLS 1.0 and TLS 1.1 Recommendation to restrict TLS 1.0 and
1.1 versions.

SSL3 The SSL Protocol Version 3 Specifies requirements for SSL3.

 These protocols are described at:

• MS-TLSP Transport Layer Security (TLS) Profile

• RFC 2246 The TLS Protocol Version 1.0

• RFC 3268 -AES Ciphersuites for TLS

• RFC 3546 Transport Layer Security (TLS) Extensions

• RFC 4366 Transport Layer Security (TLS) Extensions

• RFC 4492 ECC Cipher Suites for TLS

• RFC 4681 TLS User Mapping Extension

• RFC 5246 - The Transport Layer Security (TLS) Protocol, Version 1.2

• RFC 5289 - TLS ECC Suites with SHA-256384 and AES GCM

The Cipher Suites in Schannel article describes the complete set of TLS cipher suites implemented in

Windows (reference: http://msdn.microsoft.com/en-

us/library/windows/desktop/aa374757(v=vs.85).aspx), of which the following are used in the evaluated

configuration:

• TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246,

• TLS_RSA_WITH_AES_256_CBC_SHA as defined in RFC 5246,

• TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246,

• TLS_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246,

• TLS_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5288,

• TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,

• TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5288,

• TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,

• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5289,

http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4366.txt
http://www.ietf.org/rfc/rfc4492.txt
http://www.ietf.org/rfc/rfc4681.txt
https://www.rfc-editor.org/rfc/rfc5216
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5289.txt
https://www.rfc-editor.org/rfc/rfc8996
https://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00
https://msdn.microsoft.com/en-us/library/dd207968.aspx
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc3546.txt
http://www.ietf.org/rfc/rfc4366.txt
http://www.ietf.org/rfc/rfc4492.txt
http://www.ietf.org/rfc/rfc4681.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5289.txt
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374757(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374757(v=vs.85).aspx)
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374757(v=vs.85).aspx)

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 195 of 251

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

• TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC 5289,

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5289,

• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 as defined in RFC 5289,

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

When negotiating a TLS 1.2 elliptic curve cipher suite, Windows will include automatically as part of the

Client Hello message both its supported elliptic curves extension, i.e., secp256r1, secp384r1, and

secp521r1 as well as signature algorithm, i.e., SHA256, SHA384, and SHA512 based on the ciphersuites

selected by the administrator. By default, the curve secp521r1 is disabled. This curve can be enabled

adding its name in the ECC Curve Order file. In addition, the curve priority can be edited in this file.

On the other hand, by default the signature algorithms in the Client Hello message are SHA256, SHA384

and SHA512. The signature algorithm extension is configurable by editing a registry key to meet with the

FCS_TLSC_EXT.3 requirement. Each Windows component that uses TLS checks that the identifying

information in the certificate matches what is expected, the component should reject the connection,

these checks include checking the expected Distinguished Name (DN), Subject Name (SN), or Subject

Alternative Name (SAN) attributes along with any applicable extended key usage identifiers. The DN,

and any Subject Alternative Name, in the certificate is checked against the identity of the remote

computer’s DNS entry or IP address to ensure that it matches as described at

http://technet.microsoft.com/en-us/library/cc783349(v=WS.10).aspx, and in particular the “Server

Certificate Message” section. The reference identifier in Windows for TLS is the DNS name or IP address

of the remote server, which is compared against the DNS name as presented identifier in the Subject

Alternative Name (SAN) or the Subject Name of the certificate. There is no configuration of the

reference identifier.

A certificate that uses a wildcard in the leftmost portion of the resource identifier (i.e., *.contoso.com)

can be accepted for authentication, otherwise the certificate will be deemed invalid. Windows does not

provide a general-purpose capability to “pin” TLS certificates.

Windows implements HTTPS as described in RFC 2818 so that Windows Store and system applications

executing on the TOE can securely connect to external servers using HTTPS.41

The Extensible Authentication Protocol for TLS (EAP-TLS) protocol implementation in Windows is the

same implementation as for the TLS client and server in Windows, thus using the same set of options

and sources for random numbers. In particular the EAP Master Session Key (MSK) is derived from the

TLS master key, with the MSK then being used as the shared key in an IKEv2 connection.

6.2.3.2 Wireless Networking

Windows has native implementations of IEEE 802.11-2012 and IEEE 802.11ac-2013 to provide secure

wireless local area networking (Wi-Fi). Windows can use PRF-384 in WPA2 Wi-Fi sessions and generate

41 The Windows Update client will not include the TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 and
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 ciphersuites in the available ciphersuites when establishing a TLS
session.

http://technet.microsoft.com/en-us/library/cc783349(v=WS.10).aspx

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 196 of 251

AES 128-bit keys or use PRF-704 to generate AES 256-bit keys, both utilize the Windows RBG. Windows

complies with the IEEE 802.11-2012 and IEEE 802.11ac-2013 standards and interoperates with other

devices that implement the standard. Computers running a Windows OS typically have Wi-Fi CERTIFIED

Interoperability Certificates from the Wi-Fi Alliance.

Windows implements key wrapping and unwrapping according to the NIST SP 800-38F specification (the

“KW” mode) and so unwraps the Wi-Fi Group Temporal Key (GTK) which was sent by the access point.

Because the GTK was protected by AES Key Wrap when it was delivered in an EAPOL-Key frame, the GTK

is not exposed to the network.

6.2.3.3 IPsec

The Windows IPsec implementation is an integral part of the Windows operating system ; it conforms to

RFC 4301, Security Architecture for the Internet Protocol. This is documented publicly in the Windows

protocol documentation at section 7.5.1 IPsec Overview and covers Windows 8, Windows RT, and Server

2012.42

Windows implements both RFCS 2409, Internet Key Exchange (IKEv1), and RFC 4306, Internet Key

Exchange version 2, (IKEv2).43 Windows IPsec supports both tunnel mode and transport mode and

provides an option for NAT transversal (reference: section 7.5.5, IPsec Encapsulations).44 The RAS VPN

interface uses tunnel mode only.

The Windows IPsec implementation includes a security policy database (SPD), which states how

Windows should process network packets. The SPD uses the traffic source, destination and transport

protocol to determine if a packet should be transmitted or received, blocked, or protected with IPsec,

(reference: 7.5.3, Security Policy Database Structure), based on firewall processing rules.45 These rules

are described in Understanding Firewall Rules and the “Managing IPsec and VPN Connections” section

of the Common Criteria Operational and Administrative Guidance for this evaluation. In order to prevent

unsolicited inbound traffic, an authorized administrator does not need to define a final catch-all rule

which will discard a network packet when no other rules in the SPD apply because Windows will discard

the packet. The security policy database also includes configuration settings to limit the time and

number of sessions before a new key needs to be generated.

Windows implements AES-GCM-128, AES-GCM-256, AES-CBC-128, and AES-CBC-256 as encryption

algorithms for the encapsulating security payload (ESP) (reference: section 6, Appendix A, Product

Behavior).46 . However only AES-CBC-128 and AES-CBC-256 can be used for IKEv1 and IKEv2 to protect

the encrypted payload. The resulting potential strength of the symmetric key will be 128 or 256 bits of

security depending on whether the IPsec VPN client and IPsec VPN server agreed to use a 128 or 256

AES symmetric key to protect the network traffic. Windows implements HMAC-SHA1, HMAC-SHA-256

and HMAC-SHA-38447 as authentication algorithms for key exchange as well as Diffie-Hellman Groups

42 Also available as [MS-WSO], Windows System Overview, page 43 for offline reading.
43 [MS-IKEE], Internet Key Exchange Protocol Extensions, page 8.
44 [MS-WSO], page 45.
45 [MS-WPO], page 44.
46 [MS-IKEE], pages 74 – 75.
47 Windows truncates the HMAC output as described in RFC 4868 for HMAC-SHA-256 and HMAC-SHA-384 and for
HMAC-SHA1-96 as described in RFC 2404.

http://www.ietf.org/rfc/rfc4301.txt
http://msdn.microsoft.com/en-us/library/jj709814.aspx
http://www.ietf.org/rfc/rfc2409.txt
http://www.ietf.org/rfc/rfc4306.txt
http://www.ietf.org/rfc/rfc4306.txt
http://msdn.microsoft.com/en-us/library/jj652462.aspx
http://msdn.microsoft.com/en-us/library/jj663164.aspx
http://technet.microsoft.com/en-us/library/dd421709(v=WS.10).aspx
http://msdn.microsoft.com/en-us/library/cc233476.aspx
http://msdn.microsoft.com/en-us/library/cc233476.aspx
https://tools.ietf.org/rfc/rfc4868.txt
https://tools.ietf.org/rfc/rfc2404.txt

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 197 of 251

14, 19, and 20 (reference: section 6, Appendix A, Product Behavior).48 The IPsec VPN client will propose

a cryptosuite to the IPsec VPN server; if the server responds with a cryptosuite that the client supports,

the client will use the server’s proposed cryptosuite instead. If the IPsec VPN client and server cannot

agree on a cryptosuite, either side may terminate the connection attempt.

In order to prevent security being reduced while transitioning from IKE Phase 1 / IKEv2 SA, an authorized

administrator must configure the IPsec VPN client such that algorithms with same strength are used for

both IKE Phase 1 and Phase 2 as well as for IKEv2 SA and IKEv2 Child SA.

Windows constructs nonces, which are 32-bit random values, as specified in RFC 2408, Internet Security

Association and Key Management Protocol (ISAKMP) section 3.13.49 When a random number is needed

for either a nonce or for key agreement, Windows uses a FIPS-validated random bit generator. When

requested, the Windows random bit generator can generate 256 or 512 bits for the caller, the

probability of guessing a 256 bit value is 1 in 2256 and a 512 bit value is 1 in 2512. When generating the

security value x used in the IKE Diffie-Hellman key exchange, gx mod p, Windows uses a FIPS validated

random number generator to generate ‘x’ with length 224, 256, or 384 bits for DH groups 14, 19, and 20

respectively. 50 See the TSS section for Error! Reference source not found. for the NIST CAVP validation

numbers.

Windows implements peer authentication using 2048 bit RSA certificates,51 or ECDSA certificates using

the P-256 and P-384 curves for both IKEv1 and IKEv2.52

While Windows supports pre-shared IPsec keys, it is not recommended due to the potential use of weak

pre-shared keys.53 Windows simply uses the pre-shared key that was entered by the authorized

administrator, there is no additional processing on the input data.

Windows operating systems do not implement the IKEv1 aggressive mode option during a Phase 1 key

exchange.

Windows will validate certificates as described in section 6.4.1 by comparing the distinguished name

(DN) in the certificate to the expected distinguished name in the X.509v3 certificate presented by the

VPN gateway and does not require additional configuration. This comparison occurs in the encrypted

and authenticated IKE identification payload. The reference identifiers of the remote computer is

compared against the presented identifier in either the Subject Alternative Name (SAN) or the Subject

Name of the certificate. The reference identifier may be any of the IP address, Distinguished Name (DN)

or Fully Qualified Domain Name (FQDN) of the VPN gateway.

Table 37 Windows Implementation of IPsec RFCs

RFC # Name How Used

48 Ibid.
49 [MS-IKEE], page 51.
50 http://technet.microsoft.com/en-us/library/cc962035.aspx.
51 [MS-IKEE], page 73.
52 http://technet.microsoft.com/en-us/library/905aa96a-4af7-44b0-8e8f-d2b6854a91e6.
53 http://technet.microsoft.com/en-us/library/cc782582(v=WS.10).aspx.

http://msdn.microsoft.com/en-us/library/cc233476.aspx
http://www.ietf.org/rfc/rfc2408.txt
http://www.ietf.org/rfc/rfc2408.txt
http://technet.microsoft.com/en-us/library/cc962035.aspx
http://technet.microsoft.com/en-us/library/905aa96a-4af7-44b0-8e8f-d2b6854a91e6
http://technet.microsoft.com/en-us/library/cc782582(v=WS.10).aspx

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 198 of 251

2407 The Internet IP Security Domain of
Interpretation for ISAKMP

Integral part of the Windows Internet Key
Exchange (IKE) implementation.

2408 Internet Security Association and Key
Management Protocol (ISAKMP)

Integral part of the Windows Internet Key
Exchange (IKE) implementation.

2409 The Internet Key Exchange (IKE) Integral part of the Windows Internet Key
Exchange (IKE) implementation.

2986 PKCS #10: Certification Request Syntax
Specification; Version 1.7

Public key certification requests issued by
Windows.

4106 The Use of Galois/Counter Mode (GCM)
in IPsec Encapsulating Security Payload
(ESP)

Certain IPsec cryptosuites implemented
by Windows.

4109 Algorithms for Internet Key Exchange
version 1 (IKEv1)

Certain IPsec cryptosuites implemented
by Windows.

4301 Security Architecture for the Internet
Protocol

Description of the general security
architecture for IPsec.

4303 IP Encapsulating Security Payload (ESP) Specifies the IP Encapsulating Security
Payload (ESP) implemented by Windows.

4304 Extended Sequence Number (ESN)
Addendum to IPsec Domain of
Interpretation (DOI) for Internet Security
Association and Key Management
Protocol (ISAKMP)

Specifies a sequence number high-order
extension that is implemented by
Windows.

4306 Internet Key Exchange (IKEv2) Protocol Integral part of the Windows Internet Key
Exchange (IKE) implementation.

4307 Cryptographic Algorithms for Use in the
Internet Key Exchange Version 2 (IKEv2)

Certain IPsec cryptosuites implemented
by Windows.

4868 Using HMAC-SHA-256, HMAC-SHA-384,
and HMAC-SHA-512 with IPsec

Certain IPsec cryptosuites implemented
by Windows.

4945 The Internet IP Security PKI Profile of
IKEv1/ISAKMP, IKEv2, and PKIX

Integral part of the Windows Internet Key
Exchange (IKE) implementation.

5280 Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List
(CRL) Profile

Specifies PKI support implemented by
Windows.

5282 Using Authenticated Encryption
Algorithms with the Encrypted Payload
of the Internet Key Exchange version 2
(IKEv2) Protocol

Certain IPsec cryptosuites implemented
by Windows.

5881 Bidirectional Forwarding Detection (BFD)
for IPv4 and IPv6 (Single Hop)

Interoperability between IPv4 and IPv6
networks.

5996 Internet Key Exchange Protocol Version 2
(IKEv2)

Integral part of the Windows Internet Key
Exchange (IKE) implementation.

6379 Suite B Cryptographic Suites for IPsec Certain IPsec cryptosuites implemented
by Windows.

https://datatracker.ietf.org/doc/html/rfc2407
https://datatracker.ietf.org/doc/html/rfc2408
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2986
https://datatracker.ietf.org/doc/html/rfc4106
https://datatracker.ietf.org/doc/html/rfc4109
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc4304
https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/rfc4307
https://datatracker.ietf.org/doc/html/rfc4868
https://datatracker.ietf.org/doc/html/rfc4945
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5282
https://datatracker.ietf.org/doc/html/rfc5881
https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc6379

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 199 of 251

6.2.4 Protecting Data with DPAPI

Windows provides the Data Protection API, DPAPI, which Windows components, first-party and third-

party applications can use to protect any persisted data which the developer deems to be sensitive.

DPAPI will use AES CBC encryption with a key that is based in part on the user’s password to protect the

user data. When storing private keys and secrets associated with the user account, the encrypted data is

stored on the file system in a directory which is part of the user’s profile.

6.2.5 SFR Summary

• FCS_CKM.1,54 FCS_CKM.1(WPA), FCS_CKM.1(VPN), FCS_CKM.1(VPN), FCS_CKM.2,55

FCS_CKM.2(WLAN), FCS_CKM.2(VPN), FCS_COP.1(SYM), FCS_COP.1(HASH), FCS_COP.1(SIGN),

FCS_COP.1(HMAC), FCS_RBG_EXT.1: See Table 30 Cryptographic Algorithm Standards and

through Table 34 Cryptographic Algorithm Standards and Validation for Azure Local (version

23H2).

• FCS_CKM_EXT.2, FCS_CKM.2(WLAN): Windows provides secure key storage for private

(asymmetric) keys and other data deemed by an authorized subject, such as the pre-shared key,

to require secure storage using DPAPI and the NTFS discretionary access control policy.56

• FCS_CKM_EXT.4: Windows overwrites critical cryptographic parameters immediately after that

data is no longer needed.

• FCS_CKM_EXT.8: When Windows initiates a new Bluetooth association it will generate a new

key pair for the association.

• FCS_STO_EXT.1: Windows provides the Data Protection API (DPAPI) for developers to encrypt

and decrypt sensitive data using the CryptProtectData and CryptUnprotectData interfaces.

• FCS_TLS_EXT.1, FCS_TLS_EXT.1(WLAN), FCS_TLS_EXT.2, FCS_TLS_EXT.2(WLAN),

FCS_TLS_EXT.3, FCS_TLS_EXT.4, FCS_EAP_EXT.1: Windows implements TLS 1.2 to provide

server and mutual authentication using X.509v3 certificates, confidentiality and integrity to

upper-layer protocols such as Extensible Authentication Protocol and HTTP.

• FCS_DTLS_EXT.1: The Windows implementation of DTLS 1.0 and DTLS 1.2 is based on underlying

SChannel component which implements TLS.

• FCS_IPSEC_EXT.1: Windows provides an IPsec implementation as described about in section

6.2.3.3.

6.3 User Data Protection

6.3.1 Discretionary Access Control

The executive component within the Windows kernel mediates access between subjects and user data

objects, also known as named objects. Subjects consist of processes with one or more threads running

on behalf of users. While the Windows Discretionary Access Control policy manages several different

54 In the context of this evaluation, Windows will generate RSA and ECC key pairs as part of establishing a TLS
session.
55 In the context of this evaluation, Windows will generate RSA and ECC key pairs as part of establishing a TLS
session.
56 See https://www.niap-ccevs.org/st/st_vid10677-st.pdf and
http://www.commoncriteriaportal.org/files/epfiles/st_windows10.pdf.

https://msdn.microsoft.com/en-us/library/windows/desktop/hh706794(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh706794(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa380261(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa380882(v=vs.85).aspx
https://www.niap-ccevs.org/st/st_vid10677-st.pdf
http://www.commoncriteriaportal.org/files/epfiles/st_windows10.pdf

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 200 of 251

kinds of named objects, the protection profile that is the basic for this evaluation focuses on the NTFS

File and NTFS Directory objects.

6.3.1.1 Subject DAC Attributes

Windows security access tokens contain the security attributes for a subject. Tokens are associated with

processes and threads running on behalf of the user. Information in a security access token that is used

by DAC includes:

• The Security Identifier (SID) for the user account

• SIDs representing groups for which the user is a member

• Privileges assigned to the user

• An owner SID that identifies the SID to assign as owner for newly created objects

• A default Discretionary Access Control List (DACL) for newly created objects

• Token type which is either a primary or an impersonation token

• The impersonation level (for impersonation tokens)

• The integrity label SID

• An optional list of restricting SIDs

• The logon SID that identifies the logon session.

An administrator can change all of these except for the user account SID and logon SID.

A thread can be assigned an impersonation token that would be used instead of the process’ primary

token when making an access check and generating audit data. Hence, that thread is impersonating the

client that provided the impersonation token. Impersonation stops when the impersonation token is

removed from the thread or when the thread terminates.

 An access token may also include a list of restricting SIDs which are used to limit access to objects.

Restricting SIDs are contained in restricted tokens, (which is a special form of a thread impersonation

token), and when configured serve to limit the corresponding process access to no more than that

available to the restricted SID.

Access decisions are made using the impersonation token of a thread if it exists, and otherwise the

thread’s process primary token (which always exists).

6.3.1.2 Object DAC Attributes

Security Descriptors (SDs) contain all of the security attributes associated with an object. All named

objects have an associated SD. The security attributes from a SD used for discretionary access control

are the object owner SID which specifies the owner of the security descriptor, the DACL present flag,

and the DACL itself, when present.

 DACLs contain a list of Access Control Entries (ACEs). Each ACE specifies an ACE type, a SID representing

a user or group, and an access mask containing a set of access rights. Each ACE has inheritance

attributes associated with it that specify if the ACE applies to the associated object only, to its children

objects only, or to both its children objects and the associated object.

There are two types of ACEs that apply to discretionary access control:

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 201 of 251

• ALLOW ACES

o ACCESS_ALLOWED_ACE: used to grant access to a user or group of users.

o ACCESS_ALLOWED_OBJECT_ACE: (for DS objects) used to grant access for a user or

group to a property or property set on the directory service object, or to limit the

ACE_inheritance to a specified type of child object. This ACE type is only supported for

directory service objects.

• DENY ACES

o ACCESS_DENIED_ACE: used to deny access to a user or group of users.

o ACCESS_DENIED_OBJECT_ACE: (for DS objects) used to deny access for a user or group

to a property or property set on the directory service object or to limit the

ACE_inheritance to a specified type of child object. This ACE type is only supported for

directory service objects.

In the ACE, an access mask contains object access rights granted (or denied) to the SID, representing a

user or group. An access mask is also used to specify the desired access to an object when accessing the

object and to identify granted access associated with an opened object. Each bit in an access mask

represents a particular access right. There are four categories of access rights: standard, specific,

special, and generic. Standard access rights apply to all object types. Specific access rights have

different semantic meanings depending on the type of object. Special access rights are used in desired

access masks to request special access or to ask for all allowable rights. Generic access rights are

convenient groupings of specific and standard access rights. Each object type provides its own mapping

between generic access rights and the standard and specific access rights.

For most objects, a subject requests access to the object (e.g., opens it) and receives a pointer to a

handle in return. The TSF associates a granted access mask with each opened handle. For kernel-mode

objects, handles are maintained in a kernel-mode handle table. There is one handle table per process;

each entry in the handle table identifies an opened object and the access rights granted to that object.

For user-mode TSF servers, the handle is a server-controlled context pointer associated with the

connection between the subject and the server. The server uses this context handle in the same

manner as with the kernel mode (i.e., to locate an opened object and it’s associated granted access

mask). In both cases (user and kernel-mode objects), the SRM makes all access control decisions.

The following table summarizes every DAC access right for each named object which were tested by the

evaluation lab:

Table 38 DAC Access Rights and Named Objects

Named Object Access Rights

NTFS Directory ACCESS_SYSTEM_SECURITY
READ_CONTROL
WRITE_DAC
WRITE_OWNER
SYNCHRONIZE
FILE_LIST_DIRECTORY
FILE_ADD_FILE
FILE_ADD_SUBDIRECTORY

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 202 of 251

Named Object Access Rights

FILE_DELETE_CHILD
FILE_READ_ATTRIBUTES
FILE_WRITE_ATTRIBUTES
FILE_DELETE_CHILD|FILE_ADD_FILE
DELETE

NTFS File ACCESS_SYSTEM_SECURITY
READ_CONTROL
WRITE_DAC
WRITE_OWNER
SYNCHRONIZE
FILE_WRITE_DATA
FILE_READ_DATA
FILE_APPEND_DATA
FILE_WRITE_EA
FILE_EXECUTE
FILE_READ_ATTRIBUTES
FILE_WRITE_ATTRIBUTES
FILE_WRITE_ATTRIBUTES.
FILE_WRITE_DATA and FILE_WRITE_ATTRIBUTES.
DELETE
FILE_WRITE_DATA | FILE_READ_DATA
FILE_READ_DATA | FILE_EXECUTE
FILE_READ_DATA | FILE_EXECUTE | FILE_WRITE_DATA
FILE_WRITE_DATA | FILE_WRITE_EA | FILE_WRITE_ATTRIBUTES

6.3.1.3 DAC Enforcement Algorithm

The TSF enforces the DAC policy to objects based on SIDs and privileges in the requestor’s token, the

desired access mask requested, and the object’s security descriptor.

Below is a summary of the algorithm used to determine whether a request to access a user data object

is allowed. In order for access to be granted, all access rights specified in the desired access mask must

be granted by one of the following steps. At the end of any step, if all of the requested access rights

have been granted then access is allowed. At the end of the algorithm, if any requested access right has

not been granted, then access is denied.

1. Privilege Check:

a. Check for SeSecurity privilege: This is required if ACCESS_SYSTEM_SECURITY is in the

desired access mask. If ACCESS_SYSTEM_SECURITY is requested and the requestor does

not have this privilege, access is denied. Otherwise ACCESS_SYSTEM_SECURITY is

granted.

b. Check for SeTakeOwner privilege: If the desired mask has WRITE_OWNER access right,

and the privilege is found in the requestor’s token, then WRITE_OWNER access is

granted.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 203 of 251

c. Check for SeBackupPrivilege: The Backup Files and Directories privilege allows a subject

process to read files and registry objects for backup operations regardless of their ACE in

the DACL. If the subject process has the SeBackupPrivilege privilege and the operation

requires the privilege, no further checking is performed and access is allowed.

Otherwise this check is irrelevant and the access check proceeds.

d. Check for SeRestorePrivilege: The Restore Files and Directories privilege allows a subject

process to write files and registry objects for restore operations regardless of their ACE

in the DACL. If the subject process has the SeRestorePrivilege privilege and the

operation requires the privilege no further checking is performed, and access is allowed.

Otherwise this check is irrelevant and the access check proceeds.

2. Owner Check:

a. If the DACL contains one or more ACEs with the OwnerRights SID, those entries, along

with all other applicable ACEs for the user, are used to determine the owner's rights.

b. Otherwise, check all the SIDs in the token to determine if there is a match with the

object owner. If so, the READ_CONTROL and WRITE_DAC rights are granted if

requested.

3. DACL not present:

a. All further access rights requested are granted.

4. DACL present but empty:

a. If any additional access rights are requested, access is denied.

5. Iteratively process each ACE in the order that they appear in the DACL as described below:

a. If the inheritance attributes of the ACE indicate the ACE is applicable only to children

objects of the associated object, the ACE is skipped.

b. If the SID in the ACE does not match any SID in the requestor’s access token, the ACE is

skipped.

c. If a SID match is found, and the access mask in the ACE matches an access in the desired

access mask:

i. Access Allowed ACE Types: If the ACE is of type

ACCESS_ALLOWED_OBJECT_ACE and the ACE includes a GUID representing a

property set or property associated with the object, then the access is granted

to the property set or specific property represented by the GUID (rather than to

the entire object). Otherwise the ACE grants access to the entire object.

ii. Access Denied ACE Type: If the ACE is of type ACCESS_DENIED_OBJECT_ACE and

the ACE includes a GUID representing a property set or property associated with

the object, then the access is denied to the property set or specific property

represented by the GUID. Otherwise the ACE denies access to the entire object.

If a requested access is specifically denied by an ACE, then the entire access

request fails.

6. If all accesses are granted but the requestor’s token has at least one restricting SID, the

complete access check is performed against the restricting SIDs. If this second access check does

not grant the desired access, then the entire access request fails.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 204 of 251

6.3.1.4 Default DAC Protection

The TSF provides a process ensuring a DACL is applied by default to all new objects. When new objects

are created, the appropriate DACL is constructed. The default DAC protections for DS objects and non-

DS objects are slightly different.

The TOE uses the following rules to set the DACL in the SDs for new named kernel objects:

• The object's DACL is the DACL from the SD specified by the creating process. The TOE merges

any inheritable ACEs into the DACL unless SE_DACL_PROTECTED is set in the SD control flags.

The TOE then sets the SE_DACL_PRESENT SD control flag. Note that a creating process can

explicitly provide a SD that includes no DACL. The result will be an object with no protections.

This is distinct from providing no SD which is described below.

• If the creating process does not specify a SD, the TOE builds the object's DACL from inheritable

ACEs in the parent object's DACL. The TOE then sets the SE_DACL_PRESENT SD control flag.

• If the parent object has no inheritable ACEs, the TOE uses its object manager subcomponent to

provide a default DACL. The TOE then sets the SE_DACL_PRESENT and SE_DACL_DEFAULTED SD

control flags.

• If the object manager does not provide a default DACL, the TOE uses the default DACL in the

subject's access token. The TOE then sets the SE_DACL_PRESENT and SE_DACL_DEFAULTED SD

control flags.

• The subject's access token always has a default DACL, which is set by the LSA subcomponent

when the token is created.

The method used to build a DACL for a new DS object is slightly different. There are two key differences,

which are as follows:

• The rules for creating a DACL distinguish between generic inheritable ACEs and object-specific

inheritable ACEs in the parent object's SD. Generic inheritable ACEs can be inherited by all types

of child objects. Object-specific inheritable ACEs can be inherited only by the type of child

object to which they apply.

• The AD schema definition for the object can include a SD. Each object class defined in the

schema has a defaultSecurityDescriptor attribute. If neither the creating process nor

inheritance from the parent object provides a DACL for a new AD object, the TOE uses the DACL

in the default SD specified by the schema.

The TOE uses the following rules to set the DACL in the security descriptor for new DS objects:

• The object's DACL is the DACL from the SD specified by the creating process. The TOE merges

any inheritable ACEs into the DACL unless SE_DACL_PROTECTED is set in the SD control flags.

The TOE then sets the SE_DACL_PRESENT SD control flag.

• If the creating process does not specify a SD, the TOE checks the parent object's DACL for

inheritable object-specific ACEs that apply to the type of object being created. If the parent

object has inheritable object-specific ACEs for the object type, the TOE builds the object's DACL

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 205 of 251

from inheritable ACEs, including both generic and object-specific ACEs. It then sets the

SE_DACL_PRESENT SD control flag.

• If the parent object has no inheritable object-specific ACEs for the type of object being created,

the TOE uses the default DACL from the AD schema for that object type. It then sets the

SE_DACL_PRESENT and SE_DACL_DEFAULTED SD control flags.

• If the AD schema does not specify a default DACL for the object type, the TOE uses the default

DACL in the subject's access token. It then sets the SE_DACL_PRESENT and

SE_DACL_DEFAULTED SD control flags.

• The subject's access token always has a default DACL, which is set by the LSA subcomponent

when the token is created.

All tokens are created with an appropriate default DACL, which can be applied to the new objects as

appropriate. The default DACL is restrictive in that it only allows the SYSTEM SID and the user SID that

created the object to have access. The SYSTEM SID is a special SID representing TSF trusted processes.

6.3.1.5 DAC Management

• The following are the four methods that DACL changes are controlled:

o Object owner: Has implicit WRITE_DAC access.

o Explicit DACL change access: A user granted explicit WRITE_DAC access on the DACL can

change the DACL.

o Take owner access: A user granted explicit WRITE_OWNER access on the DACL can take

ownership of the object and then use the owner’s implicit WRITE_DAC access.

o Take owner privilege: A user with SeTakeOwner privilege can take ownership of the

object and then user the owner’s implicit WRITE_DAC access.

6.3.1.6 Reference Mediation

Access to objects on the system is generally predicated on obtaining a handle to the object. Handles are

usually obtained as the result of opening or creating an object. In these cases, the TSF ensures that

access validation occurs before creating a new handle for a subject. Handles may also be inherited from

a parent process or directly copied (with appropriate access) from another subject. In all cases, before

creating a handle, the TSF ensures that that the security policy allows the subject to have the handle

(and thereby access) to the object. A handle always has a granted access mask associated with it. This

mask indicates, based on the security policy, which access rights to the object that the subject was

granted. On every attempt to use a handle, the TSF ensures that the action requested is allowed

according to the handle’s granted access mask. In a few cases, such as with DS, objects are directly

accessed by name without the intermediate step of obtaining a handle first. In these cases, the TSF

checks the request against the access policy directly (rather than checking for a granted access mask).

6.3.2 VPN Client

The Windows IPsec VPN client can be configured by the device local administrator. The administrator

can configure the IPsec VPN client that all IP traffic is routed through the IPsec tunnel except for:

• IKE traffic used to establish the VPN tunnel

• IPv4 ARP traffic for resolution of local network layer addresses and to establish a local address

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 206 of 251

• IPv6 NDP traffic for resolution of local network layer addresses and to establish a local address

The IPsec VPN is an end-to-end internetworking technology and so VPN sessions can be established over

physical network protocols such as wireless LAN (Wi-Fi) or local area network.

The IPsec network connection is authenticated as described in X.509 Certificate Validation and

Generation, IPsec and Pre-shared Keys, and IPsec.

The components responsible for routing IP traffic through the VPN client:

• The IPv4 / IPv6 network stack in the kernel processes ingoing and outgoing network traffic.

• The IPsec and IKE and AuthIP Keying Modules service which hosts the IKE and Authenticated

Internet Protocol (AuthIP) keying modules. These keying modules are used for authentication

and key exchange in Internet Protocol security (IPsec).

• The Remote Access Service device driver in the kernel, which is used primarily for VPN

connections; known as the “RAS IPsec VPN” or “RAS VPN”.

• The IPsec Policy Agent service which enforces IPsec policies.

Universal Windows App developers can implement their own VPN client if authorized by Microsoft to

use the networkingVpnProvider capability, which includes setting the policy to lockdown networking

traffic as described above.57

6.3.3 Memory Management and Object Reuse

Windows ensures that any previous information content is unavailable upon allocation to subjects and

objects. The TSF ensures that resources processed by the kernel or are exported to user-mode

processes do not have residual information in the following ways:

• All objects are based on memory and disk storage. Memory allocated for objects, which includes

memory allocated for network packets, is either overwritten with all zeros or overwritten with

the provided data before being assigned to an object. Read/write pointers prevent reading

beyond the space used by the object. Only the exact value of what is most recently written can

be read and no more. For varying length objects, subsequent reads only return the exact value

that was set, even though the actual allocated size of the object may be greater than this.

Objects stored on disk are restricted to only disk space used for that object.

• Subject processes using the IPsec client have associated memory and an execution context. The

TSF ensures that the memory associated with subjects is either overwritten with all zeros or

overwritten with user data before allocation as described in the previous point for memory

allocated to objects. In addition, the execution context (processor registers) is initialized when

new threads within a process are created and restored when a thread context switch occurs.

• Network packets processed by IPsec are encrypted in place. In other words, the data to be

encrypted is not copied to a separate buffer and then encrypted. The encrypted network packet

is encrypted into the same buffer and overwrites the plaintext network packet. The buffers

allocated to hold network packets are allocated with enough space to accommodate padding

required for encryption. Each network packet is held in its own buffer. There is a list of buffers,

57 See https://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.vpn.aspx .

https://msdn.microsoft.com/en-us/library/windows/apps/windows.networking.vpn.aspx

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 207 of 251

one for each packet. A buffer that holds a network packet is not reused for another network

packet. After a buffer holding a network packet is no longer in use the memory allocated for the

buffer is freed and released back to the TSF.

The above, in combination, will ensure that the memory used for inbound and outbound network

packets does not contain data from previous use.

6.3.4 SFR Summary

• FDP_ACF_EXT.1: Windows provides a Discretionary Access Control policy to limit modification

and reading of objects by non-authorized users.

• FDP_IFC_EXT.1, FDP_VPN_EXT.1: Windows provides a VPN client and interfaces for developers

to implement their own VPN client.

• FDP_RIP.2: The TSF ensures that previous information contents of resources used for new

objects are not discernible in the new object via zeroing or overwriting of memory and tracking

read/write pointers for disk storage. Every process is allocated new memory and an execution

context. Memory is zeroed or overwritten before allocation.

6.4 Identification and Authentication
All logons are treated essentially in the same manner regardless of their source (e.g., interactive logon,

network interface, internally initiated service logon) and start with an account name, domain name

(which may be NULL; indicating the local system), and credentials that must be provided to the TSF.

Windows can authenticate users based on username and password as well as using a Windows Hello PIN

which is backed by a TPM. Windows 11 and Windows Server can also use physical or virtual smart card

thus supporting multiple user authentication.

Password-based authentication to Windows succeeds when the credential provided by the user matches

the stored protected representation of the password; Windows Hello and smart cards both use PIN-

based authentication to unlock a protected resource, a private key, the stored representation of the PIN

is protected by the Secure Kernel.

Password authentication can be used for interactive, service, and network logons and to initiate the

“change password” screen; the Windows Hello PIN, physical and virtual smart cards can be used for

interactive logons; and the Windows Hello PIN is used to re-authenticate the user when the user

chooses to change their PIN.

When the authentication succeeds, the user will be logged onto their desktop, their screen unlocked, or

their authentication factors changed depending whether the user logged onto the computer, the display

was locked, or the PIN or password was to be changed.

The Local Security Authority component within Windows maintains a count of the consecutive failed

logon attempts by security principals from their last successful authentication. When the number of

consecutive failed logon attempts is larger than the policy for failed logon attempts, which ranges from

0 (never lockout the account) to 999, Windows will lockout the user account. Windows persists the

number of consecutive failed logons on for the user and so rebooting the computer does not reset the

failed logon counter. Interactive logons are done on the secure desktop, which does not allow other

programs to run, and therefore prevents automated password guessing. In addition, the Windows logon

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 208 of 251

component enforces a one second delay between every failed logon with an increased delay after

several consecutive logon failures.

6.4.1 X.509 Certificate Validation and Generation

Every Windows component that uses X.509 certificates is responsible for performing certificate

validation, however all components use a common system subcomponent,58 which validates certificates

as described in RFC 5280, and particular, the specific validation listed in sectionError! Reference source

not found., including all applicable usage constraints such as Server Authentication for networking

sessions and Code Signing when installing product updates. Every component that uses X.509

certificates will have a repository for public certificates and will select a certificate based on criteria such

as entity name for the communication partner, any extended key usage constraints, and cryptographic

algorithms associated with the certificate. The Windows component will use the same kinds of

information along with a certification path and certificate trust lists as part of deciding to accept the

certificate.

If certificate validation fails, or if Windows is not able to check the validation status for a certificate,

Windows will not establish a trusted network channel, e.g. IPsec, however it will inform the user and

seek their consent before establishing a HTTPS web browsing session. Certification validation for

updates to Windows, mobile applications, and integrity verification is mandatory, neither the

administrator nor the user have the option to bypass the results of a failed certificate validation;

software installation and updates is further described in Windows and Application Updates.

When Windows needs to generate a certificate enrollment request it will include a distinguished name,

information about the cryptographic algorithms used for the request, any certification extensions, and

information about the client requesting the certificate.

6.4.2 Certificate Storage

In a Windows OS, stored certificates known as trusted root certificates are contained in certificate

stores. Each user has their own certificate store and there is a certificate store for the computer

account; access to a certificate store is managed by the discretionary access control policy in Windows

such that only the authorized administrator, i.e., the user or the local administrator, can add or remove

entries. Certificates which are used by applications, for example, TLS, are also placed in certificate stores

for the user.

In addition to the standard certificate revocation processes, application certificates can be loaded by

either using administrative tools such as certutil.exe, changes to the trusted root certificates can be

made using Certificate Trust Lists.

6.4.3 IPsec and Pre-shared Keys

IPsec is the only protocol in this evaluation which supports the use of pre-shared keys. These keys can

range from a-z, A-Z, the numbers 0 – 9, and any special character entered from the keyboard. The length

58 See https://msdn.microsoft.com/en-us/library/windows/desktop/aa380252(v=vs.85).aspx for the win32
interface description for this component.

http://tools.ietf.org/html/rfc5280
http://msdn.microsoft.com/en-us/library/windows/desktop/aa376545(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa380252(v=vs.85).aspx

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 209 of 251

of the pre-shared key can range from 1 to 256 characters, and so the specific length of 22 characters

which the protection profile requires is supported.

The IPsec pre-shared key is used as-is without modification by Windows and so the pre-shared key does

not use the Windows random number generator. The reasoning for this is that if the user needs to

supply a particular key, that specific key should be used. If the user desires a randomized bit string, then

the solution is to use a X.509 certificate which will contain a bit string of suitable length and

randomness.

6.4.4 SFR Summary

• FIA_AFL.1: After the number of consecutive failed authentication attempts for a user account

has been surpassed, Windows can be configured to lockout the user account.

• FIA_BLT_EXT.1, FIA_BLT_EXT.2, FIA_BLT_EXT.3, FIA_BLT_EXT.4, FIA_BLT_EXT.6,

FIA_BLT_EXT.7: Windows requires Bluetooth mutual authentication between the Windows

device and the remote device prior to any data transfer over the Bluetooth connection because

all Bluetooth profiles are disabled without an explicit authorization by the user. After the user

explicitly authorizes the Bluetooth pairing then Windows deems the device to be trusted.

Windows will also reject any attempts from another Bluetooth device if the address is the same

as a device which is already paired. The collection of supported Bluetooth profiles for Windows

11 is documented at Bluetooth version and profile support in Windows 11", the profiles for the

other Windows operating systems in this evaluation is documented at Supported Bluetooth

profiles. Windows operates at security mode 2, service level enforced security, and Bluetooth

services proffered by Windows are at the “authorization and authentication” level.

• FIA_PAE_EXT.1: Windows conforms to IEEE 802.1X as a Port Access Entity acting in the

Supplicant role.

• FIA_PSK_EXT.1: Windows allows for the use of pre-shared IPsec keys which are directly used to

create an IPsec connection. The set of characters for the pre-shared key is a-z, A-Z, the numbers

0 – 9, and any special character entered from the keyboard.

• FIA_UAU.5: Windows provides authentication using a username and password.

• FIA_X509_EXT.1, FIA_X509_EXT.1(WLAN): Windows validates X.509 certificates according to

RFC 5280 and provides OCSP and CRL services for applications to check certificate revocation

status.

• FIA_X509_EXT.2, FIA_X509_EXT.2(WLAN), FIA_X509_IPSEC.3:(IPSEC): Windows uses X.509

certificates for EAP-TLS exchanges, TLS, DTLS, HTTPS, IPsec, code signing for system software

updates, code signing for mobile applications, and code signing for integrity verification.

• FIA_X509_EXT.4, FIA_X509_EXT.6: Windows stores trusted certificates in the certificate stores

which controls access based on the Windows Discretionary Access Control policy.

6.5 Security Management
The complete set of management functions are described in Error! Reference source not found., the

following table maps which activities can be done by a standard Windows user or a local administrator.

A checkmark indicates which entity can invoke the management function. Standard users, or programs

https://learn.microsoft.com/en-us/windows-hardware/drivers/bluetooth/general-bluetooth-support-in-windows
https://support.microsoft.com/en-us/windows/supported-bluetooth-profiles-8900e50f-318e-4283-2beb-c8325bfc9515
https://support.microsoft.com/en-us/windows/supported-bluetooth-profiles-8900e50f-318e-4283-2beb-c8325bfc9515

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 210 of 251

running on their behalf, are not able to modify policy or configuration that is set by the administrator,

the result is that the user cannot override the configuration specified by the administrator.

Table 39 General Purpose OS Windows Security Management Functions

Management Function Administrator User

1. Enable/disable screen lock and session timeout √ √

2. Configure screen lock inactivity timeout and session
timeout

√ √

3. Import keys/secrets into the secure key storage √ √

4. Configure local audit storage capacity √

5. Configure minimum password Length √

6. Configure minimum number of special characters in
password

N.A. N.A.

7. Configure minimum number of numeric characters in
password

N.A. N.A.

8. Configure minimum number of uppercase characters in
password

N.A. N.A.

9. Configure minimum number of lowercase characters in
password

N.A. N.A.

10. Configure lockout policy for unsuccessful authentication
attempts through by implementing timeouts between
attempts and by limiting number of attempts during a
time period

√

11. Configure host-based firewall √

12. Configure name/address of directory server to bind with √

13. Configure name/address of remote management server
from which to receive management settings

√

14. Configure name/address of audit/logging server to which
to send audit/logging records

N.A. N.A.

15. Configure audit rules √

16. Configure name/address of network time server √

17. Enable/disable automatic software update √

18. Configure Wi-Fi interface √

19. Enable/disable Bluetooth interface √

20. Enable/disable local area network interface, configure
USB interfaces

√

21. Manage Windows Diagnostics settings √ √

Configure remote connection inactivity timeout √

Table 40 WLAN Client Windows Security Management Functions

Management Function Implelmented Administrator User

WL-1 configure security policy for each
wireless network:

• specify the CA(s) from which the
TSF will accept WLAN

√ √ √

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 211 of 251

authentication server certificate(s),
specify the Fully Qualified Domain
Names (FQDNs) of acceptable
WLAN authentication server
certificate(s),

• security type,

• authentication protocol,

• client credentials to be used for
authentication,

•

WL-2 specify wireless networks (SSIDs) to
which the TSF may connect

√ √

WL-3 enable/disable wireless network
bridging capability (for example,
bridging a connection between the
WLAN and cellular radios to function as
a hotspot) authenticated by pre-shared
key, passcode, no authentication

√ √

WL-4 enable/disable certificate revocation
list checking

√ √ O

WL-5 disable ad hoc wireless client-to-client
connection capability

√ √ √

WL-6 disable roaming capability √ √ √

WL-7 enable/disable IEEE 802.1X pre-
authentication

√ √

WL-8 loading X.509 certificates into the TOE √ √

WL-9 revoke X.509 certificates loaded into
the TOE

√ √

WL-10 enable/disable and configure PMK
caching:

• set the amount of time (in
minutes) for which PMK entries are
cached,

• set the maximum number of PMK
entries that can be cached

√ √

WL-11 configure security policy for each
wireless network: set wireless
frequency band to 2.4 GHz, 5 GHz, and
6 GHz

√ √ √

Table 41 IPsec VPN Client Windows Security Management Functions

Management Task Local Administrative Interface Remote Administrative
Interface

Specify VPN gateways to use • PowerShell

• User Interface

• Group Policy

• MDM

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 212 of 251

Specify client credentials to use • PowerShell

• User Interface

• Group Policy

• MDM

Configuration of IKE protocol
versions

• PowerShell

• User Interface

• Group Policy

• MDM

Configure IKE authentication
techniques

• PowerShell

• User Interface

• Group Policy

• MDM

Configure the cryptoperiod for
the established session keys

• PowerShell • Group Policy

• VPN Gateway

Configure certificate revocation
check

• PowerShell • Group Policy

Specify the algorithm suites that
may be proposed and accepted
during the IPsec exchanges

• PowerShell • Group Policy

Load X.509v3 certificates • PowerShell

• User Interface

• Group Policy

• MDM

Table 42 Bluetooth Windows Security Management Functions

Function Implemen
ted?

Standard
user

Local
administr
ator

Admin
Only

BT-1. Configure the Bluetooth trusted channel.

• Disable/enable the Discoverable (for BR/EDR)
and Advertising (for LE) modes;

Yes Yes Yes No

BT-2. Change the Bluetooth device name (separately
for BR/EDR and LE);

No N.A. N.A. N.A.

BT-3. Provide separate controls for turning the
BR/EDR and LE radios on and off;

No N.A. N.A. N.A.

BT-4. Allow/disallow the following additional
wireless technologies to be used with Bluetooth:
[Wi-Fi, NFC, [assignment: other wireless
technologies]];

No N.A. N.A. N.A.

BT-5. Configure allowable methods of Out of Band
pairing (for BR/EDR and LE);

 No N.A. N.A. N.A.

BT-6. Disable/enable the Discoverable (for BR/EDR)
and Advertising (for LE) modes separately;

Yes No Yes Yes

BT-8. Disable/enable the Bluetooth for all Bluetooth
services using the Windows Settings pages. (See BT-1
for details.)

Yes No Yes No

BT-7. Disable/enable the Connectable mode (for
BR/EDR and LE);

 No N.A. N.A. N.A.

BT-8. Disable/enable all Bluetooth services using the
Windows Device Manager and enabling / disabling
the BT radio;

Yes No Yes Yes

BT-8. Disable/enable all Bluetooth services using the
ServicesAllowedList from the Bluetooth Policy

Yes No Yes Yes

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 213 of 251

Configuration Service Provider (CSP) managed by a
MDM

BT-9. Specify minimum level of security for each
pairing (for BR/EDR and LE)

No N.A. N.A. N.A.

6.5.1 SFR Summary

• FMT_MOF_EXT.1, FMT_SMF_EXT.1, FMT_SMF.1(WLAN), FMT_SMF_EXT.1(VPN),

FMT_MOF_EXT.1(BT), FMT_SMF_EXT.1(BT): Windows provides the user with the capability to

administer the security functions described in the security target. The mappings to specific

functions are described in each applicable section of the TOE Summary Specification.

6.6 Protection of the TSF

6.6.1 Separation and Domain Isolation

The TSF provides a security domain for its own protection and provides process isolation. The security

domains used within and by the TSF consists of the following:

• Hardware

• Virtualization Partitions

• Kernel-mode software

• Trusted user-mode processes

• User-mode Administrative tools process

• Application Containers

The TSF hardware is managed by the TSF kernel-mode software and is not modifiable by untrusted

subjects. The TSF kernel-mode software is protected from modification by hardware execution state

and protection for both physical memory and memory allocated to a partition; an operating system

image runs within a partition. The TSF hardware provides a software interrupt instruction that causes a

state change from user mode to kernel mode within a partition. The TSF kernel-mode software is

responsible for processing all interrupts and determines whether or not a valid kernel-mode call is being

made. In addition, the TSF memory protection features ensure that attempts to access kernel-mode

memory from user mode results in a hardware exception, ensuring that kernel-mode memory cannot be

directly accessed by software not executing in the kernel mode.

The TSF provides process isolation for all user-mode processes through private virtual address spaces

(private per process page tables), execution context (registers, program counters), and security context

(handle table and token). The data structures defining process address space, execution context and

security context are all stored in protected kernel-mode memory. All security relevant privileges are

considered to enforce TSF Protection.

User-mode administrator tools execute with the security context of the process running on behalf of the

authorized administrator. Administrator processes are protected like other user-mode processes, by

process isolation.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 214 of 251

Application Containers (“App Containers”) provide an execution environment for Universal Windows

Applications which prevents Universal Windows Applications from accessing data created by other

Universal Windows Applications except through brokered operating system services such as the File

Picker dialog.

Like TSF processes, user processes also are provided a private address space and process context, and

therefore are protected from each other. Additionally, the TSF has the added ability to protect memory

pages using Data Execution Prevention (DEP) which marks memory pages in a process as non-executable

unless the location explicitly contains executable code. When the processor is asked to execute

instructions from a page marked as data, the processor will raise an exception for the OS to handle.

The TSF implements cryptographic mechanisms within a distinct user-mode process, where its services

can be accessed by both kernel- and user-mode components, in order to isolate those functions from

the rest of the TSF to limit exposure to possible errors while protecting those functions from potential

tampering attempts.

Furthermore, the TSF includes a Code Integrity Verification feature, also known as Kernel-mode code

signing (KMCS), whereby device drivers will be loaded only if they are digitally signed by either Microsoft

or from a trusted root certificate authority recognized by Microsoft. KMCS uses public-key cryptography

technology to verify the digital signature of each driver as it is loaded. When a driver tries to load, the

TSF decrypts the hash included with the driver using the public key stored in the certificate. It then

verifies that the hash matches the one that it computes based on the driver code using the FIPS -

certified cryptographic libraries in the TSF. The authenticity of the certificate is also checked in the same

way, but using the certificate authority's public key, which must be configured in and trusted by the

TOE.

6.6.2 Protection of OS Binaries, Audit and Configuration Data

By default, a Windows operating system is installed into the \Windows\ directory of the first bootable

storage partition for the computer. The logical name for this directory is %systemRoot%. The kernel,

device drivers (.sys files), system executables (.exe files) and dynamically loadable libraries (.dll files) are

stored in the \%systemRoot%\system32 directory and subdirectories below system32. Standard users

have permissions to read and execute these files, however modify and write permissions are limited to

the local administrator and system service accounts.

The root directory for audit logs is %systemRoot%\system32\winevt. The local administrator, Event Log

service, and the system account have full control over the audit files; standard users are not authorized

to access the logs.

The primary configuration data store for Windows is the registry, and there are separate registry hives

for the computer itself and each user authorized to use the computer. The registry hives for operating

system configuration data is located at %systemRoot%\system32\config; the registry hive for the user is

located in the user’s profile home directory. Registry files use the same protection scheme as event log

files.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 215 of 251

6.6.3 Protection From Implementation Weaknesses

The Windows kernel, user-mode applications, and all Windows Store Applications implement Address

Space Layout Randomization (ASLR) in order to load executable code at unpredictable base addresses.59

The base address is generated using a pseudo-random number generator that is seeded by high quality

entropy sources when available which provides at least 8 random bits for memory mapping. 60

The Windows runtime also provides stack buffer overrun protection capability that will terminate a

process after Windows detects a potential buffer overrun on the thread’s stack by checking canary

values in the function prolog and epilog as well as reordering the stack. All Windows binaries and

Windows Store Applications implement stack buffer overrun protection by being complied with the /GS

option,61 and checking that all Windows Store Applications are compiled with buffer overrun protection

before ingesting the Windows Store Application into the Windows Store.

To enable these protections using the Microsoft Visual Studio development environment, programs are

complied with /DYNAMICBASE option for ASLR, and optionally with /HIGHENTROPYVA for 64-bit ASLR,

or /NXCOMPAT:NO to opt out of software-based DEP, and /GS (switched on by default) for stack buffer

overrun protection.

Windows Store Applications are compiled with the /APPCONTAINER option which builds the executable

to run in a Windows appcontainer, to run with the user-mode protections described in this section.

6.6.4 Windows Platform Integrity and Code Integrity

A Windows operating system verifies the integrity of Windows program code using the combination of

Secure Boot and Code Integrity capabilities in Windows. On computers with a TPM, such as those used

in this evaluation, before Windows will boot, the computer will verify the integrity of the early boot

components, which includes the Boot Loader, the OS Loader, and the OS Resume binaries.

This capability, known as Secure Boot, checks that the file integrity of early boot components has not

been compromised, mitigating the risk of rootkits and viruses, and additionally checks that critical boot-

time data have not been modified. Secure Boot collects these file and configuration measurements and

seals them to the TPM. When Secure Boot starts in the preboot environment, it will compare the sealed

values from the TPM to the measured values from the current boot cycle and if those values do not

match the sealed values, Secure Boot will lock the system (which prevents booting) and display a

warning on the computer display. While the TPM is part of the external IT environment in this

evaluation, the hardware-protected hashes serve as the first step of the chain that provides integrity

from the hardware, through the bootchain into the kernel and required device drivers.

When the measurements match, the UEFI firmware will load the OS Boot Manager, which is an

Authenticode-signed image file, based on the Portable Executable (PE) image file format. A SHA-256

hash-based signature and a public key certificate chain are embedded in the boot manager

Authenticode signed image file under the “Certificate” IMAGE_DATA_DIRECTORY of the

59 The 64-bit version of the Windows microkernel, ntoskrnl.exe, implements Kernel Patch Protection to prevent the
modification of kernel data structures which could be exploited by stack-based vulnerabilities.
60 The PRNG is seeded by the TPM RBG, the RDRAND instruction and other sources.
61 Winload.exe, winresume.exe, tcblaunch.exe, tcbloader.dll, and hvloader.exe are loaded before the stack buffer
overrun protection mechanism is operational and therefore are not compiled with this option.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 216 of 251

IMAGE_OPTIONAL_HEADER of the file. This public key certificate chain ends in a root public key. The

boot manager uses the embedded SHA-256 hash-based signature and public key certificate chain to

validate its own integrity. A SHA-256 hash of the boot manager image file is calculated for the whole file,

with the exception of the following three elements which are excluded from the hash calculation: the

CheckSum field in the IMAGE_OPTIONAL_HEADER, the IMAGE_DIRECTORY_ENTRY_SECURITY

IMAGE_DATA_DIRECTORY, and the public key certificate table, which always resides at the end of the

image file.

If the boot manager is validated, then the root public key of the embedded public key certificate chain

must match one of the Microsoft root public keys which indicate that Microsoft is the publisher of the

boot manager. These root public keys are necessarily hardcoded in the boot manager. If the boot

manager cannot validate its own integrity, then the boot manager does not continue to load other

modules and displays an error message.

After the boot manager determines its integrity, it attempts to load one application from the following

list of boot applications:

• OS Loader: (Winload.exe or Winload.efi): the boot application started by the boot manager load

the Windows kernel to start the boot process

• OS Resume (winresume.exe or winresume.efi): the boot application started by the boot

manager to resume the instance of the executing OS which is persisted in the hibernation file

“hiberfil.sys”

• A physical memory testing application (memtest.exe) to check the physical memory ICs for the

machine are working correctly.62

These boot applications are also Authenticode signed image files and so, the Boot Manager uses the

embedded trusted SHA-256 hash based signature and public key certificate chain within the boot

application’s IMAGE_OPTIONAL_HEADER to validate the integrity of the boot application before

attempting to load it. Except for three elements which are excluded from the hash calculation (these are

the same three elements mentioned above in the Boot Manager description), a hash of a boot

application image file is calculated in the same manner as for the Boot Manager.63

If the boot application is validated, then the root public key of the embedded public key certificate chain

must match one of the hardcoded Microsoft’s root public keys. If the boot manager cannot validate the

integrity of the boot application, then the boot manager will not load the boot application and instead

displays an error message below along with the full name of the boot application that failed the integrity

check.

After the boot application’s integrity has been determined, the boot manager attempts to load the boot

application. If the boot application is successfully loaded, the boot manager then transfers execution to

the loaded application.

62 This is considered to be a non-operational mode for the evaluation.
63 Note that this is an additional integrity check in addition to the TPM measurements check.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 217 of 251

After the Winload boot application is loaded, it receives the transfer of execution from the boot

manager. During its execution, Winload attempts to load the Windows kernel (ntoskrnl.exe) together

with a number of early-launch drivers. Among the modules that Winload must validate in the Portable

Executable (PE) image file format, are the cryptography-related modules listed below

• The Windows kernel (ntoskrnl.exe)

• The BitLocker drive encryption filter driver (fvevol.sys)

• The Windows kernel cryptography device driver (cng.sys)

• The Windows code integrity library module (ci.dll)

The four image files above have their trusted SHA hashes stored in catalog files that reside in the local

machine catalog directory.

Because they are PKCS #7 SignedData messages, catalog files are signed. The root public key of the

certificate chain used to verify the signature of a Microsoft’s catalog file must match one of the

Microsoft’s root public keys indicating that Microsoft is the publisher of the Windows image files. These

Microsoft’s root public keys are hardcoded in the Winload boot application.

If the image files are validated, their SHA-256 hashes, as calculated by the Winload boot application,

must match their trusted SHA-256 hashes in a Microsoft’s catalog file, which has been verified by the

Winload boot application. A hash of an image file is calculated for the whole file, with the exception of

the following three elements which are excluded from the hash calculation: the CheckSum field in the

IMAGE_OPTIONAL_HEADER, the IMAGE_DIRECTORY_ENTRY_SECURITY IMAGE_DATA_DIRECTORY, and

the public key certificate table, which always resides at the end of the image file.

Should the Winload boot application be unable to validate the integrity of one of the Windows image

files, the Winload boot application does not continue to load other Windows image files. Rather it

displays an error message and fails into a non-operational mode. In limited circumstances the pre-boot

environment will attempt to repair the boot environment, such as copying files from a repair partition to

repair files with integrity errors. When repair is not possible, the boot manager will ask the user to

reinstall Windows.

After the initial device drivers have been loaded, the Windows kernel will continue to boot the rest of

the operating system using the Code Integrity capability (ci.dll) to measure code integrity for (1) the

remaining kernel-mode and user-mode programs which need to be loaded for the OS to complete its

boot and (2) after booting, CI also verifies the integrity of applications launched by the user (applications

from Microsoft are always signed by Microsoft, and third-party applications which may be signed by the

developer) by checking the RSA signature for the binary and SHA-256 hashes of the binary which are

compared to the catalog files described above.

Kernel-mode code signing (KMCS), also managed by CI, prevents kernel-mode device drivers, such as

the TCIP/IP network driver (tcpip.sys), from loading unless they are published and digitally signed by

developers who have been vetted by one of a handful of trusted certificate authorities (CAs). KMCS,

using public-key cryptography technologies, requires that kernel-mode code include a digital signature

generated by one of the trusted certificate authorities. When a kernel device driver tries to load,

Windows decrypts the hash included with the driver using the public key stored in the certificate, then

verifies that the hash matches the one computed with the code. The authenticity of the certificate is

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 218 of 251

checked in the same way, but using the certificate authority's public key, which is trusted by Windows.

The root public key of the certificate chain that verifies the signature must match one of the Microsoft’s

root public keys indicating that Microsoft is the publisher of the Windows image files. These Microsoft’s

root public keys are hardcoded in the Windows boot loader.64

In addition, Windows File Protection maintains a set of protected files that are stored in a cache along

with cryptographic hashes of each of those files. Once the system is initialized, Windows File Protection

is loaded and will scan the protected files to ensure they have valid cryptographic hashes. Windows File

Protection also registers itself to be notified should any of the protected files be modified so that it can

recheck the cryptographic checksum at any point while the system is operational. Should the any of the

cryptographic hash checks fail, the applicable file will be restored from the cache.

6.6.5 Windows and Application Updates

Updates to Windows are delivered as Microsoft Update Standalone Package files (.msu fileswhich are

signed by Microsoft with two digital signatures, a RSA SHA1 signature for legacy applications and a RSA

SHA-256 signature for modern applications. The digital signature is signed by Microsoft Corporation,

with a certification path through a Microsoft Code Signing certificate and ultimately the Microsoft Root

Certification Authority. These certificates are checked by the Windows Trusted Installer prior to

installing the update.

The Windows operating system will check that the certificate is valid and has not been revoked using a

standard PKI CRL. Once the Trusted Installer determines that the package is valid, it will update

Windows; otherwise the installation will abort and there will be an error message in the event log. Note

that the Windows installer will not install an update if the files in the package have lower version

numbers than the installed files.

The integrity of the Microsoft Code Signing certificate on the computer is protected by the storage root

key within the TPM, and the validated integrity of the Windows binaries as a result of Secure Boot and

Code Integrity.

Updates to the Windows operating system, Windows applications, and Microsoft desktop applications

are delivered through the Windows Update capability (for Windows) and Microsoft Update (for

Microsoft desktop applications), which is enabled by default, or the user can go to

http://catalog.update.microsoft.com to search and obtain security updates on their own volition.

A user can then check that the signature is valid either by viewing the digital signature details of the file

from Windows Explorer or by using the Get-AuthenticodeSignature PowerShell Cmdlet. The

following is an example of using PowerShell:

64 Enforcing the Kernel Mode Code Signing policy is mandatory.

http://catalog.update.microsoft.com/

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 219 of 251

If the Get-AuthenticodeSignature PowerShell Cmdlet or Windows Explorer could not verify the

signature, the status will be marked as invalid. This verification check uses the same functionality

described above.

6.6.5.1 Windows Store Applications

Universal Windows Platform (UWP) apps can be downloaded from the Microsoft Store and their

installation packages are verified using a digital signature from Microsoft Corporation with the Code

Signing usage. These applications are contained in either AppX packages, or a collection of AppX

packages known as an AppX bundle.65 The AppX package uses the Open Packaging Conventions (OPC)

standard.66 Each package contains a directory file which lists the other files in the package, a digital

signature for the package, a block map representing the application files which may be installed on the

target computer, and the application files themselves.). The AppX Deployment Service will verify the RSA

SHA-256 digital signature for the block map and the other AppX metadata at the beginning of the AppX

package (or bundle) download. This is described in more detail as part at

http://blogs.msdn.com/b/windowsappdev/archive/2012/12/04/designing-a-simple-and-secure-app-

package-appx.aspx.

6.6.5.2 Distributing updates

There are several distribution channels for updates to Windows and Windows applications:

• Windows Update: Windows Update is the web service for delivering Windows updates to

directly to consumers.

• Windows Server Update Services (WSUS): WSUS is a server role in Windows Server which IT

administrators can use to distribute application updates to users within their enterprise.

• Windows Store: The Windows Store is a web service for delivering updates to Universal

Windows Platform apps which were originally installed from the Windows Store.

65 Windows Store Applications are typically downloaded from the Windows Store.
66 OPC is also part of ISO/IEC 2900-2 and ECMA 376-2.

http://blogs.msdn.com/b/windowsappdev/archive/2012/12/04/designing-a-simple-and-secure-app-package-appx.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/12/04/designing-a-simple-and-secure-app-package-appx.aspx
http://microsoft.com/store/apps

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 220 of 251

6.6.6 SFR Summary

• FPT_ACF_EXT.1: Windows provides a Discretionary Access Control policy to limit modification

and reading of objects by non-authorized users.

• FPT_ASLR_EXT.1: Windows randomizes user-mode process address spaces and kernel-mode

address space.

• FPT_BLT_EXT.1: All Bluetooth profiles are disabled without an explicit authorization by the user.

• FPT_SBOP_EXT.1: Windows binaries are compiled with stack overflow protection (compiled

using the /Gs option for native applications).

• FPT_SRP_EXT.1: Windows can restrict program execution based on the file path for the

executable, a digital signature for the executable, a version number for the executable, or a

hash of the executable file.

• FPT_TST_EXT.1, FPT_TST_EXT.3(WLAN), FPT_TST_EXT.1(VPN): Windows checks the integrity of

the Windows boot loader, OS loader, kernel, and system binaries and all application executable

code, i.e., Windows Store Applications and updates to Windows and Windows Store

Applications.

• FPT_TUD_EXT.1, FPT_TUD_EXT.2: Windows provides a means to identify the current version of

the Windows software, the hardware model, and installed applications. Windows has update

mechanisms to deliver updated operating system and application binaries and a means for a

user to confirm that the digital signatures, which ensure the integrity of the update, are valid for

both the operating system, applications, and Windows Store Applications.

6.7 TOE Access
Windows provides the ability for a user to lock their interactive logon session at their own volition or

after a user-defined inactivity timeout. Windows also provides the ability for the administrator to

specify the interval of inactivity after which the session will be locked. This policy will be applied to

either the local machine or the computers within a domain using either local policy or group policy

respectively. If both the administrator and a standard user specify an inactivity timeout period, Windows

will lock the session when the shortest time period expires.

Once a user has a desktop session, they can invoke the session locking function by using the same key

sequence used to invoke the trusted path (Ctrl+Alt+Del). This key sequence is captured by the TSF and

cannot be intercepted or altered by any user process. The result of that key sequence is a menu of

functions, one of which is to lock the workstation. The user can also lock their desktop session by going

to the Start screen, selecting their logon name, and then choosing the “Lock” option.

Windows constantly monitors the mouse, keyboard, touch display, and the orientation sensor for

inactivity in order to determine if they are inactive for the specified time period. After which, Windows

will lock the workstation and execute the screen saver unless the user is streaming video such as a

movie. Note that if the workstation was not locked manually, the TSF will lock the display and start the

screen saver program if and when the inactivity period is exceeded, as well any notifications from

applications which have registered to publish the application’s badge or the badge with associated

notification text to the locked screen. The user has the option to not display any notifications, or choose

one Windows Store Application to display notification text, and select other applications display their

badge.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 221 of 251

After the computer was locked, in order to unlock their session, the user either presses a key or swipes

the display. The user must provide the Ctrl+Alt+Del key combination if the Interactive Logon: Do not

required CTRL+ALT+DEL policy is set to disabled. Either action will result in an authentication dialog.

The user must then re-enter their authentication data, which has been cached by the local system from

the initial logon, after which the user’s display will be restored and the session will resume. Alternately,

an authorized administrator can enter their administrator identity and password in the authentication

dialog. If the TSF can successfully authenticate the administrator, the user will be logged off, rather than

returning to the user’s session, leaving the workstation ready to authenticate a new user.

As part of establishing the interactive logon session, Windows can be configured to display a logon

banner, which is specified by the administrator, that the user must accept prior to establishing the

session.

As described in the administrator guidance, an authorized administrator can specify which Wi-Fi

networks (SSIDs) a computer may be connected to.

6.7.1 SFR Summary

• FTA_TAB.1: An authorized administrator can define and modify a banner that will be displayed

prior to allowing a user to logon.

• FTA_WSE_EXT.1: An authorized administrator can specify which Wi-Fi networks connect to, as

specified in FMT_SMF_EXT.1(WLAN).

6.8 Trusted Channels
Windows provides trusted network channels to communicate with supporting IT infrastructure or

applications:

• Using TLS (HTTPS) for certificate enrollment; CRL checking; authentication to network resources

such as web (HTTPS) and directory (LDAP-S) servers; and management via configuration service

providers in Windows that are local interface for processing Mobile Device Management (MDM)

requests.

• Using DTLS for datagram-based services and web browsing using a DTLS version which is

specified by the client application.

• Using IPsec for remote management of Windows and to connect over a virtual private network

(VPN).

In order to establish a trusted channel, these communications are protected as described above in

section 6.2.3.

The remote access can be performed through the following methods:

• Remote Desktop Services Overview: https://technet.microsoft.com/en-

us/library/hh831447.aspx

• Connect to another computer using Remote Desktop Connection:

http://windows.microsoft.com/en-us/windows/connect-using-remote-desktop-

connection#connect-using-remote-desktop-connection=windows-7

https://technet.microsoft.com/en-us/library/hh831447.aspx
https://technet.microsoft.com/en-us/library/hh831447.aspx
http://windows.microsoft.com/en-us/windows/connect-using-remote-desktop-connection%23connect-using-remote-desktop-connection=windows-7
http://windows.microsoft.com/en-us/windows/connect-using-remote-desktop-connection%23connect-using-remote-desktop-connection=windows-7

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 222 of 251

• PowerShell Remoting: https://docs.microsoft.com/en-

US/powershell/scripting/setup/winrmsecurity?view=powershell-6

Both methods use TLS (1.2) protocol for establishing the remote connection.

Windows implements IEEE 802.11-2012, IEEE 802.1X and EAP-TLS to provide authenticated wireless

networking sessions when requested by the user as described above in Error! Reference source not

found..

The specific details for each protocol are described in section Network Protocols.

The Windows implementation of Bluetooth follows the Bluetooth SIG Specification, including OBEX data

transfer, RFCOMM, L2CAP, and OPP (object push profile). The OBEX specification, which Windows

implements, prevents any transfer of user data until both Bluetooth devices have paired, which requires

authorization by the Windows user. When a Windows OS encounters an unpaired device, it does not

transfer any data to the unpaired device. When paired to a Bluetooth device will reject connection

attempts from other devices that purport to use the same Bluetooth address as the connected device.

Windows will attempt to authenticate the device connection using the pre-established link key and if

there is a failure of the authentication procedure, or transferring encrypted data, Windows will

terminate the device connection and log an entry into the Windows event log.

6.8.1 SFR Summary

• FTP_ITC_EXT.1(TLS), FTP_ITC_EXT.1(DTLS), FTP_ITC.1(WLAN), FTP_ITC.1(VPN): Windows

provides several trusted network channels that protect data in transit from disclosure, provide

data integrity, and endpoint identification that is used by 802.11-2012, 802.1X, EAP-TLS, TLS,

HTTPS, DTLS, and IPsec. TLS and HTTPS is used as part of network-based authentication and

certification validation, HTTPS and DTLS are used for web-browsing and by other connection-

based and datagram-based application protocols.

• FTP_BLT_EXT.1, FTP_BLT_EXT.2, FTP_BLT_EXT.3(BR), FTP_BLT_EXT.1(LE): The Windows

Bluetooth implementation always encrypts data using a key that has at least 128 bits of strength

for BR/EDR and LE Bluetooth, Windows may choose to use a key size larger than this minimum

as part the Bluetooth pairing.

• FTP_TRP.1: Windows provide a local trusted path service as described in TOE Access and a

network-based trusted channel built on the network protocols described in this section.

6.9 Security Response Process
Microsoft utilizes industry standard practices to address reported product vulnerabilities. This includes

a central email address (secure@microsoft.com) to report issues (as described at

https://www.microsoft.com/en-us/msrc/faqs-report-an-issue?rtc=1), timely triage and root cause

analysis, and responsible resolution of the report which may result in the release of a binary update. If a

binary update is required, it is made available through automated channels to all customers following

the process described at https://docs.microsoft.com/en-us/security-updates/. If the sender wishes to

send secure email, there is a public PGP key for S/MIME at https://www.microsoft.com/en-

us/msrc/pgp-key-msrc?rtc=1. Security updates for Microsoft products – operating system, firmware,

and applications – are delivered as described in section 6.6.4 and 6.6.5.

https://docs.microsoft.com/en-US/powershell/scripting/setup/winrmsecurity?view=powershell-6
https://docs.microsoft.com/en-US/powershell/scripting/setup/winrmsecurity?view=powershell-6
mailto:secure@microsoft.com
https://www.microsoft.com/en-us/msrc/faqs-report-an-issue?rtc=1
https://docs.microsoft.com/en-us/security-updates/
https://www.microsoft.com/en-us/msrc/pgp-key-msrc?rtc=1
https://www.microsoft.com/en-us/msrc/pgp-key-msrc?rtc=1

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 223 of 251

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 224 of 251

7 Protection Profile Conformance Claim
This section provides the protection profile conformance claim and supporting justifications and

rationale.

This Security Target is in compliance with the Protection Profile for General Purpose Operating Systems,

Version 4.3, September 27, 2022 (GP OS PP), the PP-Module for WLAN Clients, version 1.0, (“WLAN

Client Module”), the PP-Module for Virtual Private Network (VPN) Clients, version 2.4, March 31, 2022

(“VPN Client Module”) the PP-Module for Bluetooth, version 1.0, April 15, 2021 (“Bluetooth Module”),

the Functional Package for Transport Layer Security (TLS), version 2.0, December 19, 2022, (“TLS

Module”); the Assurance Package for Flaw Remediation, version 1.0, June 28, 2024, (“ALC_FLR

Module”);.

For all of the content incorporated from the protection profile or protection profile module, the

corresponding rationale in that protection profile, or module, remains applicable to demonstrate the

correspondence between the TOE security functional requirements and TOE security objectives.

Moreover, as demonstrated in this security target Windows runs on a wide variety of hardware ranging

from tablets, convertibles, notebooks, desktop, and server computers and so it is a general-purpose

operating system.

The requirements in the protection profile, or module, are assumed to represent a complete set of

requirements that serve to address any interdependencies. All the functional requirements in this

security target have been copied from the protection profile so that all dependencies between SFRs are

satisfied by the inclusion of the relevant component.

Table 43 GP OS PP Security Objectives Rationale

Threat or Assumption Security Objective Rationale

T.NETWORK_ATTACK O.PROTECTED_COMMS,
O.INTEGRITY, O.MANAGEMENT,
O.ACCOUNTABILITY

The threat T.NETWORK_ATTACK
is countered by
O.PROTECTED_COMMS as this
provides for integrity of
transmitted data. The threat
T.NETWORK_ATTACK is
countered by O.INTEGRITY as
this provides for integrity of
software that is installed onto
the system from the network.
The threat T.NETWORK_ATTACK
is countered by
O.MANAGEMENT as this
provides for the ability to
configure the OS to defend
against network attack. The
threat T.NETWORK_ATTACK is
countered by
O.ACCOUNTABILITY as this

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 225 of 251

provides a mechanism for the OS
to report behavior that may
indicate a network attack has
occurred.

T.NETWORK_EAVESDROP O.PROTECTED_COMMS,
O.MANAGEMENT

The threat
T.NETWORK_EAVESDROP is
countered by
O.PROTECTED_COMMS as this
provides for confidentiality of
transmitted data. The threat
T.NETWORK_EAVESDROP is
countered by O.MANAGEMENT
as this provides for the ability to
configure the OS to protect the
confidentiality of its transmitted
data.

T.LOCAL_ATTACK O.INTEGRITY,
O.ACCOUNTABILITY

The objective O.INTEGRITY
protects against the use of
mechanisms that weaken the
TOE with regard to attack by
other software on the platform.
The objective
O.ACCOUNTABILITY protects
against local attacks by providing
a mechanism to report behavior
that may indicate a local attack is
occurring or has occurred.

T.LIMITED_PHYSICAL_ACCESS O.PROTECTED_STORAGE The objective
O.PROTECTED_STORAGE
protects against unauthorized
attempts to access physical
storage used by the TOE.

A.PLATFORM OE.PLATFORM The operational environment
objective OE.PLATFORM is
realized through A.PLATFORM.

A.PROPER_USER OE.PROPER_USER The operational environment
objective OE.PROPER_USER is
realized through
A.PROPER_USER.

A.PROPER_ADMIN OE.PROPER_ADMIN The operational environment
objective OE.PROPER_ADMIN is
realized through
A.PROPER_ADMIN.

Table 44 VPN Client Module Security Objectives Rationale

Threat or Assumption Security Objective Rationale

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 226 of 251

T.UNAUTHORIZED_ACCESS O.AUTHENTICATION The TOE mitigates the threat of
unauthorized access by requiring
IPsec communications to be
properly authenticated.

O.CRYPTOGRAPHIC_FUNCTIONS The TOE mitigates the threat of
unauthorized access by
implementing IPsec using strong
cryptographic algorithms.

T.TSF_CONFIGURATION O.KNOWN_STATE The TOE mitigates the threat of
inadequate configuration by
providing a management
interface that allows all security-
relevant functionality to be
configured.

OE_TRUSTED_CONFIG This objective mitigates the
threat of misconfiguration by
ensuring that a malicious actor is
not given direct administrative
control over the TOE.

T.USER_DATA_REUSE O.NONDISCLOSURE The TOE mitigates the threat of
data reuse by ensuring that
persistently stored data is
protected from unauthorized
access, non-persistently stored
data is appropriately purged, and
potentially to ensure that no
network traffic is inadvertently
transmitted outside of the IPsec
tunnel.

T.TSF_FAILURE O.KNOWN_STATE The TOE mitigates the threat of
TSF failure by enforcing the use
of self-tests so that the TOE
remains in a known state, and
potentially to generate audit
records that allow for potential
failures to be diagnosed.

A.NO_TOE_BYPASS OE.NO_TOE_BYPASS This assumption is satisfied by
the environmental objective that
ensures network routes do not
exist that allow traffic to be
transmitted from the TOE system
to its intended destination
without going through the TOE’s
IPsec tunnel.

A.PHYSICAL OE.PHYSICAL This assumption is satisfied by
the environmental objective that
ensures the TOE is not deployed

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 227 of 251

on a system that is vulnerable to
loss of physical custody.

A.TRUSTED_CONFIG OE.TRUSTED_CONFIG This assumption is satisfied by
the environmental objective that
ensures that anyone responsible
for administering the TOE can be
trusted not to misconfigure it,
whether intentionally or not.

Table 45 PP-Module for Bluetooth Security Objectives Rationale

Threat or Assumption Security Objective Rationale

T.NETWORK_EAVESDROP O.PROTECTED_COMMS The threat
T.NETWORK_EAVESDROP is
countered by
O.PROTECTED_COMMS as this
provides the capability to
communicate using Bluetooth as
a means to maintain the
confidentiality of data that are
transmitted outside of the TOE.

T.NETWORK_ATTACK O.PROTECTED_COMMS The threat T.NETWORK_ATTACK
is countered by
O.PROTECTED_COMMS as this
provides the capability to
communicate using Bluetooth as
a means to maintain the
confidentiality of data that are
transmitted outside of the TOE.

Table 46 GP OS PP Tracing Between SFR and TOE Security Objective

Security Objective Rationale

O.ACCOUNTABILITY Addressed by: FAU_GEN.1, FTP_ITC_EXT.1

Rationale: FAU_GEN.1 defines the auditable events that must be
generated to diagnose the cause of unexpected system behavior.
FTP_ITC_EXT.1 provides a mechanism for the TSF to transmit the
audit data to a remote system.

O.INTEGRITY Addressed by: FPT_SBOP_EXT.1, FPT_ASLR_EXT.1, FPT_TUD_EXT.1,
FPT_TUD_EXT.2, FCS_COP.1(2), FCS_COP.1(3), FCS_COP.1(4),
FPT_ACF_EXT.1, FPT_SRP_EXT.1, FIA_X509_EXT.1, FPT_TST_EXT.1,
FTP_ITC_EXT.1, FIA_AFL.1, FIA_UAU.5

Rationale: FPT_SBOP_EXT.1 enforces stack buffer overflow
protection that makes it more difficult to exploit running code.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 228 of 251

FPT_ASLR_EXT.1 prevents attackers from exploiting code that
executes in static known memory locations. FPT_TUD_EXT.1 and
FPT_TUD_EXT.2 enforce integrity of software updates.
FCS_COP.1(2), FCS_COP.1(3), and FCS_COP.1(4) provide the
cryptographic mechanisms that are used to verify integrity values.
FPT_ACF_EXT.1 guarantees the integrity of critical components by
preventing unauthorized modifications of them. FPT_SRP_EXT.1
restricts the execution of unauthorized software . FPT_X509_EXT.1
provides X.509 certificates as a way of validating software integrity.
FPT_TST_EXT.1 verifies the integrity of stored code. FIA_UAU.5
provides mechanisms that prevent untrusted users from accessing
the TSF and FIA_AFL.1 prevents brute-force authentication attempts.
FTP_ITC_EXT.1 provides trusted remote communications which
makes a remote authenticated session less susceptible to
compromise.

O.MANAGEMENT Addressed by: FMT_MOF_EXT.1, FMT_SMF_EXT.1, FTA_TAB.1,
FTP_TRP.1

Rationale: FMT_SMF_EXT.1 defines the TOE's management functions
and FMT_MOF_EXT.1 defines the privileges required to invoke them.
FTP_TRP.1 provides one or more secure remote interfaces for
management of the TSF and FTA_TAB.1 provides actionable
warnings against misuse of these interfaces.

O.PROTECTED_STORAGE Addressed by: FCS_STO_EXT.1, FCS_RBG_EXT.1, FCS_COP.1(1),
FDP_ACF_EXT.1

Rationale: FCS_STO_EXT.1 provides a mechanism by which the TOE
can designate data as ‘sensitive’ and subsequently require it to be
encrypted. FCS_COP.1(1) defines the symmetric algorithm used to
encrypt and decrypt sensitive data. FCS_RBG_EXT.1 defines the
random bit generator used to create the symmetric keys used to
perform this encryption and decryption. FDP_ACF_EXT.1 enforces
logical access control on stored data.

O.PROTECTED_COMMS Addressed by: FCS_TLSC_EXT.1, FCS_TLSC_EXT.2, FCS_TLSC_EXT.3,
FCS_TLSC_EXT.4, FCS_DTLS_EXT.1, FCS_RBG_EXT.1, FCS_CKM.1,
FCS_CKM.2, FCS_CKM_EXT.4, FCS_COP.1(1), FCS_COP.1(2),
FCS_COP.1(3), FCS_COP.1(4), FDP_IFC_EXT.1, FIA_X509_EXT.1,
FIA_X509_EXT.2, FTP_ITC_EXT.1

Rationale: FCS_TLSC_EXT.1, FCS_TLSC_EXT.2, FCS_TLSC_EXT.3, and
FCS_TLSC_EXT.4 define the ability of the TOE to act as a TLS client as
a method of enforcing protected communications. FCS_DTLS_EXT.1
defines the ability of the TOE to act as a DTLS client for the same
purpose. FCS_CKM.1, FCS_CKM.2, FCS_COP.1(1), FCS_COP.1(2),
FCS_COP.1(3), FCS_COP.1(4), and FCS_RBG_EXT.1 define the
cryptographic operations and key lifecycle activity used to support
the establishment of protected communications. FIA_X509_EXT.1
defines how the TSF validates x.509 certificates as part of

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 229 of 251

establishing protected communications. FIA_X509_EXT.2 defines the
trusted communication protocols for which the TOE must perform
certificate validation operations. FDP_IFC_EXT.1 defines the extent
to which the TSF provides an IPsec VPN as a protected
communications method. FTP_ITC_EXT.1 defines the trusted
communications channels supported by the TOE.

Table 47 WLAN Client Module Tracing Between SFR and TOE Security Objective

Security Objective Addressed by Rationale

O.AUTH_COMM FCS_TLSC_EXT.1/WLAN FCS_TLSC_EXT.1/WLAN supports
the objective by
requiring the TSF to use EAP-TLS
to establish a secure
connection to a wireless access
point, including authentication
of the access point.

FIA_PAE_EXT.1 FIA_PAE_EXT.1 supports the
objective by requiring the TSF to
act as the supplicant for 802.1X
authentication.

FIA_X509_EXT.1/WLAN FIA_X509_EXT.1/WLAN supports
the objective by defining how
the TSF determines the validity
of presented X.509 certificates.

FIA_X509_EXT.2/WLAN FIA_X509_EXT.2/WLAN supports
the objective by requiring the
TSF to implement X.509
certificate authentication as the
mechanism for authentication
EAP-TLS connections.

FTP_ITC.1/WLAN FTP_ITC.1/WLAN supports the
objective by requiring the TSF to
implement trusted protocols
that include authentication of
the remote endpoints.

FCS_TLSC_EXT.2/WLAN FCS_TLSC_EXT.2/WLAN supports
the objective by
optionally requiring the TSF to
support only certain
elliptic curves if the TOE
implements any EAP-TLS cipher
suites that rely on ECDHE as the
key establishment
method

O.CRYPTOGRAPHIC_FUNCTIONS FCS_CKM.1/WPA FCS_CKM.1/WPA supports the
objective by requiring the TSF to

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 230 of 251

generate symmetric keys used
for WPA2 and WPA3 in a
specified manner.

FCS_CKM.2/WLAN FCS_CKM.2/WLAN supports the
objective by requiring the TSF to
decrypt group temporal keys
used for IEEE 802.11.

FCS_WPA_EXT.1 FCS_WPA_EXT.1 supports this
objective by defining the
WPA versions that are
supported.

O.TSF_SELF_TEST FPT_TST_EXT.3/WLAN FPT_TST_EXT.3/WLAN supports
the objective by requiring the
TSF to perform self-tests to
ensure that it is operating in a
known state.

O.SYSTEM_MONITORING FAU_GEN.1/WLAN FAU_GEN.1/WLAN supports the
objective by requiring the TSF to
generate audit records for
security-relevant WLAN
behavior.

O.TOE_ADMINISTRATION FIA_X509_EXT.6 FIA_X509_EXT.6 supports the
objective by requiring the TSF to
securely store certificates in a
repository that an administrator
can interact with, whether that
repository is provided by the
WLAN client itself or by a
platform storage mechanism
defined by the Base-PP portion
of the TOE.

FMT_SMF.1/WLAN FMT_SMF.1/WLAN supports the
objective by requiring the TSF to
implement management
functionality for security-
relevant WLAN behavior.

O.WIRELESS_ACCESS_POINT_CO
NNECTION

FTA_WSE_EXT.1 FTA_WSE_EXT.1 supports the
objective by requiring the
TSF to restrict connectivity to
allowed wireless networks

Table 48 Tracing Between GP OS PP Security Objective and VPN Client Module SFRs

Security Objective Rationale

O.AUTHENTICATION FIA_X509_EXT.3 (when GPOS PP
is Base-PP)

This SFR supports the objective
by enforcing the use of X.509

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 231 of 251

certificate authentication for
IPsec.

FCS_IPSEC_EXT.1 This SFR supports the objective
by requiring the TOE’s
implementation of IPsec to
include requirements for how
the remote VPN gateway or peer
is authenticated.

FCS_EAP_EXT.1 (selection-based) This SFR supports the objective
by optionally implementing EAP-
TLS or EAP-TTLS as a mechanism
for authentication.

O.CRYPTOGRAPHIC_FUNCTIONS FCS_CKM.1 (refined from GPOS
PP)

This SFR supports the objective
by requiring that the TOE
implement key generation using
certain methods.

FCS_CKM.2 (refined from GPOS
PP)

This SFR supports the objective
by requiring that the TOE
implement key establishment
using certain methods.

FCS_COP.1/1 (refined from GPOS
PP)

This SFR supports the objective
by requiring that the TOE
implement symmetric
encryption and decryption using
certain methods.

FTP_ITC.1 (when GPOS PP is
Base-PP)

This SFR supports the objective
by requiring the TOE to support
the use of IPsec as a trusted
channel.

FCS_CKM.1/VPN This SFR supports the objective
by requiring the TOE to generate
keys used for IKE using certain
methods.

FCS_IPSEC_EXT.1 This SFR supports the objective
by requiring the TOE to
implement the IPsec protocol in
the specified manner.

FCS_EAP_EXT.1 (selection-based) This SFR supports the objective
by optionally defining the TOE's
implementation of EAP-TLS or
EAP-TTLS.

O.KNOWN_STATE FMT_SMF.1/VPN This SFR supports the objective
by requiring the TOE to
implement certain
administratively-configurable
functions.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 232 of 251

FPT_TST_EXT.1/VPN This SFR supports the objective
by requiring the TOE to execute
self-tests that demonstrate that
its integrity is maintained.

FAU_GEN.1/VPN (optional) This SFR supports the objective
by optionally requiring the TOE
to generate audit records of its
behavior.

FAU_SEL.1/VPN (optional) This SFR supports the objective
by optionally requiring the TOE
to allow for the configuration of
what behavior is audited.

O.NONDISCLOSURE FCS_CKM_EXT.2 (when GPOS PP
is Base-PP)

This SFR supports the objective
by requiring the TOE to store
sensitive data in the OS’ key
storage

FDP_RIP.2 This SFR supports the objective
by requiring the TOE or its
platform to ensure that residual
data is purged from the system.

FDP_VPN_EXT.1 (optional) This SFR supports the objective
by optionally requiring the TOE
to prohibit split-tunneling so that
network traffic cannot be
transmitted outside of an
established IPsec tunnel.

Table 49 Tracing Between GP OS PP Security Objective and PP-Module for Bluetooth SFRs67

Security Objective Rationale

O.ACCOUNTABILITY FAU_GEN.1(BT) FAU_GEN.1/BT supports the
objective by requiring the TSF to
specify the Bluetooth-related
auditable events for which it will
generate audit records.

O.MANAGEMENT FMT_MOF_EXT.1(BT) FMT_MOF_EXT.1/BT supports
the objective by restricting the
ability to perform Blue-tooth-
related management functions
to the Administrator.

FMT_SMF_EXT.1(BT) FMT_SMF_EXT.1/BT supports
the objective by specifying the
Bluetooth-related management

67 This security objective mapping was updated as part of NIAP Technical Decision 685.

https://www.niap-ccevs.org/Documents_and_Guidance/view_td.cfm?TD=0685

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 233 of 251

functions that the TSF must
perform.

O.PROTECTED_COMMS FAU_GEN.1(BT) The PP-Module defines auditable
events for Bluetooth that
extends the audit functionality
defined in each Base-PP.

FCS_CKM_EXT.8 FCS_CKM_EXT.8 supports the
objective by requiring the TSF to
specify how ECDH key pairs will
be refreshed.
This SFR applies to the frequency
of key generation activity. This
does not conflict with the Base-
PP because it involves a key
generation mechanism defined
in the Base-PP and relates
exclusively to Bluetooth
functionality so it does not affect
any other key generation
activities required by the Base-
PP.

FIA_BLT_EXT.1 This SFR applies to the
establishment of Bluetooth
connectivity, which is behavior
not described in or prevented by
the Base-PP.

FIA_BLT_EXT.2 This SFR applies to the
establishment of Bluetooth
connectivity, which is behavior
not described in or prevented by
the Base-PP.

FIA_BLT_EXT.3 This SFR applies to the
establishment of Bluetooth
connectivity, which is behavior
not described in or prevented by
the Base-PP.

FIA_BLT_EXT.4 This SFR applies to the
establishment of Bluetooth
connectivity, which is behavior
not described in or prevented by
the Base-PP.

FIA_BLT_EXT.6 This SFR applies to the
establishment of Bluetooth
connectivity, which is behavior
not described in or prevented by
the Base-PP.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 234 of 251

FIA_BLT_EXT.7 This SFR applies to the
establishment of Bluetooth
connectivity, which is behavior
not described in or prevented by
the Base-PP.

FMT_MOF_EXT.1(BT) This SFR applies to the
establishment of Bluetooth
connectivity, which is behavior
not described in or prevented by
the Base-PP.

FMT_SMF_EXT.1 (when GPOS PP
is Base-PP)

This SFR is unchanged from its
definition in the Base-PP; the
only change required by this PP-
Module is how to interpret it in
the context of Bluetooth
capabilities.

FMT_SMF_EXT.1(BT) The ST author is instructed to
complete an assignment in the
SFR with information related to
Bluetooth, and to include
additional management
functions in this SFR based on
the Bluetooth capability defined
by the PP-Module.

FTP_BLT_EXT.1 This SFR applies to encryption of
Bluetooth communications. This
is a trusted channel that is not
discussed in the Base-PP, but it
relies on the same cryptographic
algorithms specified in the Base-
PP to function.

FTP_BLT_EXT.2 This SFR applies to encryption of
Bluetooth communications. This
is a trusted channel that is not
discussed in the Base-PP, but it
relies on the same cryptographic
algorithms specified in the Base-
PP to function.

FTP_BLT_EXT.3(BR) FTP_BLT_EXT.3/BR support the
objective by requiring the TSF to
implement a minimum
encryption key size for Bluetooth
BR/EDR.
This SFR applies to encryption of
Bluetooth communications. This
is a trusted channel that is not
discussed in the Base-PP, but it

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 235 of 251

relies on the same cryptographic
algorithms specified in the Base-
PP to function.

FTP_BLT_EXT.3(LE) (selection-
based)

FTP_BLT_EXT.3/LE support the
objective by requiring the TSF to
implement a minimum
encryption key size for Bluetooth
LE.
This SFR applies to encryption of
Bluetooth communications. This
is a trusted channel that is not
discussed in the Base-PP, but it
relies on the same cryptographic
algorithms specified in the Base-
PP to function.

Table 50 WLAN Client Module Consistency Rationale to the GP OS PP

Threat or Assumption Security Objective Rationale

T.TSF_FAILURE O.SELF_TEST The threat T.TSF_FAILURE is
mitigated by O.SELF_TEST as
this defines a mechanism for
ensuring the reliability of the
TSF by detecting potential failure
conditions.

T.UNAUTHORIZED_ACCESS O.AUTH_COMM The threat
T.UNAUTHORIZED_ACCESS is
mitigated in part
by O.AUTH_COMM by ensuring
the authenticity of any
remote endpoint that the TSF
connects to.

O.CRYPTOGRAPHIC_FUNCTIONS The threat
T.UNAUTHORIZED_ACCESS is
mitigated in part
by
O.CRYPTOGRAPHIC_FUNCTIONS
by ensuring the
confidentiality and integrity of
data in transit to protect
against man-in-the-middle
attacks.

O.TOE_ADMINISTRATION The threat
T.UNAUTHORIZED_ACCESS is
mitigated in part
by O.TOE_ADMINISTRATION by
using the TOE platform's

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 236 of 251

authentication mechanism to
ensure that only authorized
administrators can configure the
TOE's behavior.

O.WIRELESS_ACCESS_POINT_
CONNECTION

The threat
T.UNAUTHORIZED_ACCESS is
mitigated in part
by this objective because it
provides a mechanism to restrict
the remote entities that the TOE
is permitted to communicate
with.

T.UNDETECTED_ACTIONS O.SYSTEM_ MONITORING The threat
T.UNDETECTED_ACTIONS is
mitigated by
O.SYSTEM_MONITORING by
enforcing an auditing
Mechanism that can be used to
track security-relevant TOE
behavior.

A.NO_TOE_BYPASS OE.NO_TOE_BYPASS The operational environment
objective OE.NO_TOE_BYPASS
is realized through
A.NO_TOE_BYPASS.

A.TRUSTED_ADMIN OE.TRUSTED_ADMIN The Operational Environment
objective OE.TRUSTED_ADMIN is
realized through
A.TRUSTED_ADMIN.

Table 51 WLAN Client Module Security Objectives Consistency Rationale to the GP OS PP

Objective Rationale

O.AUTH_COMM This objective is specifically for a communications
interface that is defined by the PP-Module, but it is
consistent with the general
O.PROTECTED_COMMS objective specified in the
Base-PP.

O.CRYPTOGRAPHIC_FUNCTIONS The TOE implements this objective in part by
relying on the cryptographic functionality specified
in the Base-PP to address the Base-PP's
O.PROTECTED_COMMS objective. The PP-Module
uses these cryptographic functions for the same
purpose as the Base-PP.

O.SELF_TEST The Base-PP defines a general O.INTEGRITY
objective; this PP-Module defines O.SELF_TEST as
a specific method of guaranteeing the integrity of
the TOE.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 237 of 251

O.SYSTEM_MONITORING The Base-PP defines an O.ACCOUNTABILITY
objective for system auditing. The
O.SYSTEM_MONITORING objective in this PP-
Module serves the same purpose.

O.TOE_ADMINISTRATION The Base-PP defines an O.MANAGEMENT objective
for TOE administration. The
O.TOE_ADMINISTRATION objective in this PP-
Module serves the same purpose.

O_WIRELESS_ACCESS_POINT_CONNECTION This objective relates to behavior that applies to a
communications interface defined in this PP-
Module and therefore does not relate to the Base-
PP's functionality.

OE.NO_TOE_BYPASS This objective relates to the deployment of the
TOE in relation to the network resources that it
interacts with. It does not enforce any restrictions
on the TOE's deployment that are contrary to what
the Base-PP requires.

OE.TRUSTED_ADMIN The Base-PP defines OE.PROPER_USER and
OE.PROPER_ADMIN objectives that serve the same
purpose as OE.TRUSTED_ADMIN in this PP-
Module.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 238 of 251

8 Rationale for Modifications to the Security Requirements
This section provides a rationale that describes how the Security Target reproduced the security

functional requirements and security assurance requirements from the protection profile.

8.1 Functional Requirements
This Security Target includes security functional requirements (SFRs) that can be mapped to SFRs found

in the protection profile along with SFRs that describe additional features and capabilities. The mapping

from protection profile SFRs to security target SFRs along with rationale for operations is presented in

Table 52 Rationale for Operations. SFR operations left incomplete in the protection profile have been

completed in this security and are identified within each SFR in section Error! Reference source not

found. Error! Reference source not found..

Table 52 Rationale for Operations

PP or EP PP or EP Requirement ST Requirement Operation & Rationale

GP OS FAU_GEN.1 FAU_GEN.1 A selection and multiple
assignments which are allowed by
the PP.

GP OS,
IPsec

FCS_CKM.1(1) FCS_CKM.1 Multiple selections which are
allowed by the PP and EP.

GP OS,
IPsec

FCS_CKM.2(1) FCS_CKM.2 A selection which is allowed by the
PP and EP.

GP OS FCS_CKM_EXT.4 FCS_CKM_EXT.4 Multiple selections which are
allowed by the Technical Decision
#239.

GP OS,
IPsec

FCS_COP.1/ENCRYPT FCS_COP.1/ENCRYPT Multiple selections which are
allowed by the PP and EP.

GP OS FCS_COP.1/HASH FCS_COP.1/HASH Multiple selections which are
allowed by the PP.

GP OS FCS_COP.1/SIGN FCS_COP.1/SIGN A selection which is allowed by the
PP.

GP OS FCS_COP.1/KEYHMAC FCS_COP.1/KEYHMAC An assignment and multiple
selections which are allowed by the
PP.

GP OS FCS_RBG_EXT.1 FCS_RBG_EXT.1 Multiple selections which are
allowed by the PP.

GP OS FCS_STO_EXT.1 FCS_STO_EXT.1 Copied from the PP without
changes.

GP OS FDP_ACF_EXT.1 FDP_ACF_EXT.1 Copied from the PP without
changes.

GP OS FDP_IFC_EXT.1 FDP_IFC_EXT.1 A selection which is allowed by the
PP.

GP OS FIA_AFL.1 FIA_AFLT.1 Multiple assignment and multiple
selections which are allowed by the
PP.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 239 of 251

PP or EP PP or EP Requirement ST Requirement Operation & Rationale

GP OS FIA_UAU.5 FIA_UAU.5 An assignment and a selection
which are allowed by the PP.

GP OS FIA_X509_EXT.1 FIA_X509_EXT.1 A selection which is allowed by the
PP.

GP OS FIA_X509_EXT.2 FIA_X509_EXT.2 A selection which is allowed by the
PP.

GP OS FMT_MOF_EXT.1 FMT_MOF_EXT.1 Copied from the Technical Decision
#0104 without changes.

GP OS FMT_SMF_EXT.1 FMT_SMF_EXT.1 Refinements, selections and
assignments which are allowed by
the Technical Decision #104.

GP OS FPT_ACF_EXT.1 FPT_ACF_EXT.1 Two assignment which is allowed
by the PP.

GP OS FPT_ASLR_EXT.1 FPT_ASLR_EXT.1 An assignment which is allowed by
the PP.

GP OS FPT_BLT_EXT.1 FPT_BLT_EXT.1 An assignment which is allowed by
the PP.

GP OS FPT_SBOP_EXT.1 FPT_SBOP_EXT.1 Copied from the PP without
changes.

GP OS FPT_SRP_EXT.1 FPT_SRP_EXT.1 A selection which is allowed by the
PP.

GP OS FPT_TST_EXT.1 FPT_TST_EXT.1 An assignment and multiple
selections which are allowed by the
PP.

GP OS FPT_TUD_EXT.1 FPT_TUD_EXT.1 Added a refinement to align on SFR
labels.

GP OS FPT_TUD_EXT.2 FPT_TUD_EXT.2 Added a refinement to align on SFR
labels.

GP OS FTA_TAB.1 FTA_TAB.1 Copied from the PP without
changes.

GP OS FTP_TRP.1 FTP_TRP.1 Multiple selections which are
allowed by the PP.

GP OS FTP_ITC_EXT.1 FTP_ITC_EXT.1 An assignment and a selection
which are allowed by the PP.

WLAN FAU_GEN.1/WLAN FAU_GEN.1(WLAN) Two selections which are allowed
by the WLAN Client module.

WLAN FCS_CKM.1/WPA FCS_CKM.1(WPA) Two selections which are allowed
by the WLAN Client module.

WLAN FCS_CKM.2/WLAN FCS_CKM.2(WLAN) Copied from the WLAN Client
module without changes.

WLAN FCS_TLSC_EXT.1/WLAN FCS_TLSC_EXT.1(WLAN) Two selections which are allowed
by the WLAN Client module.

WLAN FCS_TLSC_EXT.2/WLAN FCS_TLSC_EXT.2(WLAN) A selection which is allowed by the
WLAN Client module.

WLAN FCS_WPA_EXT.1 FCS_WPA_EXT.1 A selection which is allowed by the
WLAN Client module.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 240 of 251

PP or EP PP or EP Requirement ST Requirement Operation & Rationale

WLAN FIA_PAE_EXT.1 FIA_PAE_EXT.1 Copied from the WLAN Client
module without changes.

WLAN FIA_X509_EXT.1/WLAN FIA_X509_EXT.1(WLAN) Copied from the WLAN Client
module without changes.

WLAN FIA_X509_EXT.2/WLAN FIA_X509_EXT.2(WLAN) A selection which is allowed by the
WLAN Client module.

WLAN FIA_X509_EXT.6 FIA_X509_EXT.6 Two selections which are allowed
by the WLAN Client module.

WLAN FMT_SMF.1/WLAN FMT_SMF.1(WLAN) Three selections which are allowed
by the WLAN Client module.

WLAN FPT_TST_EXT.3/WLAN FPT_TST_EXT.3(WLAN) Two selections which are allowed
by the WLAN Client module.

WLAN FTA_WSE_EXT.1 FTA_WSE_EXT.1 Copied from the WLAN Client
module without changes.

WLAN FTP_ITC.1/WLAN FTP_ITC.1(WLAN) Copied from the WLAN Client
module without changes.

IPsec FAU_GEN.1 FAU_GEN.1 (VPN) Two selections and a refinement
which are allowed by the VPN
Client Module.

IPsec FAU_SEL.1 FAU_SEL.1 A selection and an assignment
which are allowed by the VPN
Client Module.

IPsec FCS_CKM.1/VPN FCS_CKM.1(VPN) Three selections which are allowed
by the VPN Client Module.

IPsec FCS_CKM_EXT.2 FCS_CKM_EXT.2 A selection which is allowed by the
VPN Client Module.

IPsec FCS_EAP_EXT.1 FCS_EAP_EXT.1 Multiple selections and
assignments which are allowed by
the VPN Client Module.

IPsec FCS_IPSEC_EXT.1 FCS_IPSEC_EXT.1 Multiple selections and
assignments which are allowed by
the VPN Client Module.

IPsec FDP_IFC_EXT.1 FDP_VPN_EXT.1 Copied from the VPN Client Module
without changes.

IPsec FDP_RDP.2 FDP_RDP.2 Two selections which are allowed
by the VPN Client Module.

IPsec FIA_PSK_EXT.1 FIA_PSK_EXT.1 Two selections which are allowed
by the VPN Client Module.

IPsec FIA_PSK_EXT.2 FIA_PSK_EXT.2 One selection which is allowed by
the VPN Client Module.

IPsec FIA_X509_EXT.3 FIA_X509_EXT.3 Multiple selections which are
allowed by the VPN Client Module.

IPsec FMT_SMF.1/VPN FMT_SMF.1(VPN) Two selections which are allowed
by the VPN Client Module.

IPsec FTP_TST_EXT.1/VPN FTP_TST_EXT.1(VPN) Three selections which are allowed
by the VPN Client Module.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 241 of 251

PP or EP PP or EP Requirement ST Requirement Operation & Rationale

IPsec FTP_ITC.1 FTP_ITC.1(VPN) Multiple selections which are
allowed by the VPN Client Module.

Bluetooth FAU_GEN.1/BT FAU_GEN.1(BT) A selection and assignment which
are allowed by the Bluetooth
Module.

Bluetooth FCS_CKM_EXT.8 FCS_CKM_EXT.8 An assignment which is allowed by
the Bluetooth Module.

Bluetooth FIA_BLT_EXT.1 FIA_BLT_EXT.1 Copied from the Bluetooth Module
without changes.

Bluetooth FIA_BLT_EXT.2 FIA_BLT_EXT.2 Copied from the Bluetooth Module
without changes.

Bluetooth FIA_BLT_EXT.3 FIA_BLT_EXT.3 Copied from the Bluetooth Module
without changes.

Bluetooth FIA_BLT_EXT.4 FIA_BLT_EXT.4 Copied from the Bluetooth Module
without changes.

Bluetooth FIA_BLT_EXT.6 FIA_BLT_EXT.6 An assignment which is allowed by
the Bluetooth Module.

Bluetooth FIA_BLT_EXT.7 FIA_BLT_EXT.7 An assignment which is allowed by
the Bluetooth Module.

Bluetooth FMT_MOF_EXT.1/BT FMT_MOF_EXT.1(BT) Copied from the Bluetooth Module
without changes.

Bluetooth FMT_SMF_EXT.1/BT FMT_SMF_EXT.1(BT) A selection and assignment which
are allowed by the Bluetooth
Module.

Bluetooth FTP_BLT_EXT.1 FTP_BLT_EXT.1 Copied from the Bluetooth Module
without changes.

Bluetooth FTP_BLT_EXT.2 FTP_BLT_EXT.2 A selection which is allowed by the
Bluetooth Module.

Bluetooth FTP_BLT_EXT.3/BR FTP_BLT_EXT.3(BR) An assignment which is allowed by
the Bluetooth Module.

Bluetooth FTP_BLT_EXT.3/LE FTP_BLT_EXT.3(LE) An assignment which is allowed by
the Bluetooth Module.

TLS FCS_TLS_EXT.1 FCS_TLS_EXT.1 A selection which is allowed by the
TLS Module.

TLS FCS_TLSC_EXT.1 FCS_TLSC_EXT.1 Multiple selections and
assignments which are allowed by
the TLS Module.

TLS FCS_TLSC_EXT.2 FCS_TLSC_EXT.2 Two selections which are allowed
by the TLS Module.

TLS FCS_TLSC_EXT.3 FCS_TLSC_EXT.3 A selection which is allowed by the
TLS Module.

TLS FCS_TLSC_EXT.4 FCS_TLSC_EXT.4 Two selections which are allowed
by the TLS Module.

TLS FCS_TLSC_EXT.5 FCS_TLSC_EXT.5 A selection which is allowed by the
TLS Module.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 242 of 251

PP or EP PP or EP Requirement ST Requirement Operation & Rationale

TLS FCS_TLSC_EXT.6 FCS_TLSC_EXT.6 Copied from the TLS Module
without changes.

TLS FCS_TLSS_EXT.1 FCS_TLSS_EXT.1 A selection which is allowed by the
TLS Module.

TLS FCS_TLSS_EXT.2 FCS_TLSS_EXT.2 Multiple selections and
assignments which are allowed by
the TLS Module.

TLS FCS_TLSS_EXT.3 FCS_TLSS_EXT.3 Two selections which are allowed
by the TLS Module.

TLS FCS_TLSS_EXT.5 FCS_TLSS_EXT.5 Two selections which are allowed
by the TLS Module.

TLS FCS_TLSS_EXT.6 FCS_TLSS_EXT.6 A selection which is allowed by the
TLS Module.

TLS FCS_DTLSC_EXT.1 FCS_DTLSC_EXT.1 A selection which is allowed by the
TLS Module.

TLS FCS_DTLSC_EXT.2 FCS_DTLSC_EXT.2 Multiple selections and
assignments which are allowed by
the TLS Module.

TLS FCS_DTLSC_EXT.3 FCS_DTLSC_EXT.3 Two selections which are allowed
by the TLS Module.

TLS FCS_DTLSC_EXT.4 FCS_DTLSC_EXT.4 A selection which is allowed by the
TLS Module.

TLS FCS_DTLSC_EXT.5 FCS_DTLSC_EXT.5 Two selections which are allowed
by the TLS Module.

TLS CS_DTLSS_EXT.1 CS_DTLSS_EXT.1 A selection which is allowed by the
TLS Module.

TLS FCS_DTLSS_EXT.2 FCS_DTLSS_EXT.2 Multiple selections and
assignments which are allowed by
the TLS Module.

TLS FCS_DTLSS_EXT.3 FCS_DTLSS_EXT.3 Two selections which are allowed
by the TLS Module.

TLS FCS_DTLSS_EXT.5 FCS_DTLSS_EXT.5 Two selections which are allowed
by the TLS Module.

8.2 Security Assurance Requirements
The statement of security assurance requirements (SARs) found in section 5.2.1 is in strict conformance

with the Protection Profile for General Purpose Operating Systems and the Assurance Package for Flaw

Remediation.

8.3 Rationale for the TOE Summary Specification
This section, in conjunction with section 6, the TOE Summary Specification (TSS), provides evidence that

the security functions are suitable to meet the TOE security requirements.

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 243 of 251

Each subsection in section 6, TOE Security Functions (TSFs), describes a Security Function (SF) of the

TOE. Each description is followed with rationale that indicates which requirements are satisfied by

aspects of the corresponding SF. The set of security functions work together to satisfy all of the

functional requirements. Furthermore, all the security functions are necessary in order for the TSF to

provide the required security functionality.

The set of security functions work together to provide all of the security requirements as indicated in

Table 53. The security functions described in the TOE Summary Specification and listed in the tables

below are all necessary for the required security functionality in the TSF.

Table 53 Requirement to Security Function Correspondence

PP or EP

Requirement A

u
d

it

C
ry

p
to

gr
ap

h
ic

 P
ro

te
ct

io
n

U
se

r
D

at
a

P
ro

te
ct

io
n

I &
 A

Se
cu

ri
ty

 M
an

ag
e

m
e

n
t

TS
F

P
ro

te
ct

io
n

R
e

so
u

rc
e

 U
ti

liz
at

io
n

TO
E

A
cc

e
ss

Tr
u

st
e

d
 P

at
h

 /
 C

h
an

n
el

GP OS FAU_GEN.1 X

GP OS FCS_CKM.1 X

GP OS FCS_CKM.2 X

GP OS FCS_CKM_EXT.4 X

GP OS FCS_COP.1/ENCRYPT X

GP OS FCS_COP.1/HASH X

GP OS FCS_COP.1/SIGN X

GP OS FCS_COP./KEY(MAC X

GP OS FCS_RBG_EXT.1 X

GP OS FCS_STO_EXT.1 X

GP OS FDP_ACF_EXT.1 X

GP OS FDP_IFC_EXT.1 X

GP OS FIA_AFL.1 X

GP OS FIA_UAU.5 X

GP OS FIA_X509_EXT.1 X

GP OS FIA_X509_EXT.2 X

GP OS FIA_X509_EXT.4 X

GP OS FMT_MOF_EXT.1 X

GP OS FMT_SMF_EXT.1 X

GP OS FPT_ACF_EXT.1 X

GP OS FPT_ASLR_EXT.1 X

GP OS FPT_BLT_EXT.1 X

GP OS FPT_SBOP_EXT.1 X

GP OS FPT_SRP_EXT.1 X

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 244 of 251

PP or EP

Requirement A

u
d

it

C
ry

p
to

gr
ap

h
ic

 P
ro

te
ct

io
n

U
se

r
D

at
a

P
ro

te
ct

io
n

I &
 A

Se
cu

ri
ty

 M
an

ag
em

e
n

t

TS
F

P
ro

te
ct

io
n

R
e

so
u

rc
e

U
ti

liz
at

io
n

TO
E

A
cc

es
s

Tr
u

st
e

d
 P

at
h

 /
 C

h
an

n
el

GP OS FPT_TST_EXT.1 X

GP OS FPT_TUD_EXT.1 X

GP OS FPT_TUD_EXT.2 X

GP OS FTA_TAB.1 X

GP OS FTP_TRP.1 X

GP OS FTP_ITC_EXT.1 X

WLAN FAU_GEN.1(WLAN) X

WLAN FCS_CKM.1(WPA) X

WLAN FCS_CKM.2(WLAN) X

WLAN FCS_TLSC_EXT.1(WLAN) X

WLAN FCS_TLSC_EXT.2(WLAN) X

WLAN FCS_WPA_EXT.1 X

WLAN FIA_PAE_EXT.1 X

WLAN FIA_X509_EXT.1(WLAN) X

WLAN FIA_X509_EXT.2(WLAN) X

WLAN FIA_X509_EXT.6 X

WLAN FMT_SMF.1(WLAN) X

WLAN FPT_TST_EXT.3(WLAN) X

WLAN FTA_WSE_EXT.1 X

WLAN FTP_ITC.1(WLAN) X

IPsec FAU_SEL.1 X

IPsec FCS_CKM.1(VPN) X

IPsec FCS_CKM_EXT.2 X

IPsec FCS_EAP_EXT.1 X

IPsec FCS_IPSEC_EXT.1 X

IPsec FDP_VPN_EXT.1 X

IPsec FDP_RIP.2 X

IPsec FCS_PSK_EXT.1 X

IPsec FCS_PSK_EXT.1 X

IPsec FIA_X509_EXT.3 X

IPsec FMT_SMF.1(VPN) X

IPsec FPT_TST_EXT.1(VPN) X

IPsec FTP_ITC.1(VPN) X

Bluetooth FAU_GEN.1(BT) X

Bluetooth FCS_CKM_EXT.8 X

Bluetooth FIA_BLT_EXT.1 X

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 245 of 251

PP or EP

Requirement A

u
d

it

C
ry

p
to

gr
ap

h
ic

 P
ro

te
ct

io
n

U
se

r
D

at
a

P
ro

te
ct

io
n

I &
 A

Se
cu

ri
ty

 M
an

ag
em

e
n

t

TS
F

P
ro

te
ct

io
n

R
e

so
u

rc
e

U
ti

liz
at

io
n

TO
E

A
cc

es
s

Tr
u

st
e

d
 P

at
h

 /
 C

h
an

n
el

Bluetooth FIA_BLT_EXT.2 X

Bluetooth FIA_BLT_EXT.3 X

Bluetooth FIA_BLT_EXT.4 X

Bluetooth FIA_BLT_EXT.6 X

Bluetooth FIA_BLT_EXT.7 X

Bluetooth FMT_MOF_EXT.1(BT) X

Bluetooth FMT_SMF_EXT.1(BT) X

Bluetooth FTP_BLT_EXT.1 X

Bluetooth FTP_BLT_EXT.2 X

Bluetooth FTP_BLT_EXT.3(BR) X

Bluetooth FTP_BLT_EXT.1(LE) X

TLS FCS_TLS_EXT.1 X

TLS FCS_TLSC_EXT.1 X

TLS FCS_TLSC_EXT.2 X

TLS FCS_TLSC_EXT.3 X

TLS FCS_TLSC_EXT.4 X

TLS FCS_TLSC_EXT.5 X

TLS FCS_TLSC_EXT.6 X

TLS FCS_TLSS_EXT.1 X

TLS FCS_TLSS_EXT.2 X

TLS FCS_TLSS_EXT.3 X

TLS FCS_TLSS_EXT.5 X

TLS FCS_TLSS_EXT.6 X

TLS FCS_DTLSC_EXT.1 X

TLS FCS_DTLSC_EXT.2 X

TLS FCS_DTLSC_EXT.3 X

TLS FCS_DTLSC_EXT.4 X

TLS FCS5DTLSC_EXT.1 X

TLS FCS_DTLSC_EXT.4 X

TLS FCS_DTLSS_EXT.2 X

TLS FCS_DTLSS_EXT.3 X

TLS FCS_DTLSS_EXT.5 X

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 246 of 251

9 Appendix A: List of Abbreviations

Table 54 Abbreviations

Abbreviation Meaning

3DES Triple DES

ACE Access Control Entry

ACL Access Control List

ACP Access Control Policy

AD Active Directory

ADAM Active Directory Application Mode

AES Advanced Encryption Standard

AGD Administrator Guidance Document

AH Authentication Header

ALPC Advanced Local Process Communication

ANSI American National Standards Institute

API Application Programming Interface

APIC Advanced Programmable Interrupt Controller

BTG BitLocker To Go

CA Certificate Authority

CBAC Claims Basic Access Control, see DYN

CBC Cipher Block Chaining

CC Common Criteria

CD-ROM Compact Disk Read Only Memory

CIFS Common Internet File System

CIMCPP Certificate Issuing and Management Components For Basic
Robustness Environments Protection Profile, Version 1.0, April 27,
2009

CM Configuration Management; Control Management

COM Component Object Model

CP Content Provider

CPU Central Processing Unit

CRL Certificate Revocation List

CryptoAPI Cryptographic API

CSP Cryptographic Service Provider

DAC Discretionary Access Control

DACL Discretionary Access Control List

DC Domain Controller

DEP Data Execution Prevention

DES Data Encryption Standard

DH Diffie-Hellman

DHCP Dynamic Host Configuration Protocol

DFS Distributed File System

DMA Direct Memory Access

DNS Domain Name System

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 247 of 251

DS Directory Service

DSA Digital Signature Algorithm

DYN Dynamic Access Control

EAL Evaluation Assurance Level

ECB Electronic Code Book

EFS Encrypting File System

ESP Encapsulating Security Protocol

FEK File Encryption Key

FIPS Federal Information Processing Standard

FRS File Replication Service

FSMO Flexible Single Master Operation

FTP File Transfer Protocol

FVE Full Volume Encryption

GB Gigabyte

GC Global Catalog

GHz Gigahertz

GPC Group Policy Container

GPO Group Policy Object

GPOSPP US Government Protection Profile for General-Purpose Operating
System in a Networked Environment

GPT Group Policy Template

GPT GUID Partition Table

GUI Graphical User Interface

GUID Globally Unique Identifiers

HTTP Hypertext Transfer Protocol

HTTPS Secure HTTP

I/O Input / Output

I&A Identification and Authentication

IA Information Assurance

ICF Internet Connection Firewall

ICMP Internet Control Message Protocol

ICS Internet Connection Sharing

ID Identification

IDE Integrated Drive Electronics

IETF Internet Engineering Task Force

IFS Installable File System

IIS Internet Information Services

IKE Internet Key Exchange

IP Internet Protocol

IPv4 IP Version 4

IPv6 IP Version 6

IPC Inter-process Communication

IPI Inter-process Interrupt

IPSec IP Security

ISAPI Internet Server API

IT Information Technology

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 248 of 251

KDC Key Distribution Center

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LPC Local Procedure Call

LSA Local Security Authority

LSASS LSA Subsystem Service

LUA Least-privilege User Account

MAC Message Authentication Code

MB Megabyte

MMC Microsoft Management Console

MSR Model Specific Register

NAC (Cisco) Network Admission Control

NAP Network Access Protection

NAT Network Address Translation

NIC Network Interface Card

NIST National Institute of Standards and Technology

NLB Network Load Balancing

NMI Non-maskable Interrupt

NTFS New Technology File System

NTLM New Technology LAN Manager

OS Operating System

PAE Physical Address Extension

PC/SC Personal Computer/Smart Card

PIN Personal Identification Number

PKCS Public Key Certificate Standard

PKI Public Key Infrastructure

PP Protection Profile

RADIUS Remote Authentication Dial In Service

RAID Redundant Array of Independent Disks

RAM Random Access Memory

RAS Remote Access Service

RC4 Rivest’s Cipher 4

RID Relative Identifier

RNG Random Number Generator

RPC Remote Procedure Call

RSA Rivest, Shamir and Adleman

RSASSA RSA Signature Scheme with Appendix

SA Security Association

SACL System Access Control List

SAM Security Assurance Measure

SAML Security Assertion Markup Language

SAR Security Assurance Requirement

SAS Secure Attention Sequence

SD Security Descriptor

SHA Secure Hash Algorithm

SID Security Identifier

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 249 of 251

SIP Session Initiation Protocol

SIPI Startup IPI

SF Security Functions

SFP Security Functional Policy

SFR Security Functional Requirement

SMB Server Message Block

SMI System Management Interrupt

SMTP Simple Mail Transport Protocol

SP Service Pack

SPI Security Parameters Index

SPI Stateful Packet Inspection

SRM Security Reference Monitor

SSL Secure Sockets Layer

SSP Security Support Providers

SSPI Security Support Provider Interface

ST Security Target

SYSVOL System Volume

TCP Transmission Control Protocol

TDI Transport Driver Interface

TLS Transport Layer Security

TOE Target of Evaluation

TPM Trusted Platform Module

TSC TOE Scope of Control

TSF TOE Security Functions

TSS TOE Summary Specification

UART Universal Asynchronous Receiver / Transmitter

UI User Interface

UID User Identifier

UNC Universal Naming Convention

US United States

UPN User Principal Name

URL Uniform Resource Locator

USB Universal Serial Bus

USN Update Sequence Number

v5 Version 5

VDS Virtual Disk Service

VPN Virtual Private Network

VSS Volume Shadow Copy Service

WAN Wide Area Network

WCF Windows Communications Framework

WebDAV Web Document Authoring and Versioning

WebSSO Web Single Sign On

WDM Windows Driver Model

WIF Windows Identity Framework

WMI Windows Management Instrumentation

WSC Windows Security Center

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 250 of 251

WU Windows Update

WSDL Web Service Description Language

WWW World-Wide Web

X64 A 64-bit instruction set architecture

X86 A 32-bit instruction set architecture

 Microsoft Common Criteria Security Target

Microsoft © 2025 Page 251 of 251

