

1 FQR 110 6155 Ed1

COSMO V 7.1-S

TOUTATIS

JAVA CARD OPEN PLATFORM

PUBLIC SECURITY TARGET

2 FQR 110 6155 Ed1

Table of contents

TABLE OF CONTENTS.. 2

LIST OF FIGURES .. 5

LIST OF TABLES .. 5

1 SECURITY TARGET INTRODUCTION... 6

1.1 SECURITY TARGET REFERENCE ...6
1.2 TOE REFERENCE ..7

2 TOE OVERVIEW.. 8

2.1 TOE TYPE ..8
2.1.1 Java Card Platform ..8
2.1.2 Global Platform...9
2.1.3 Integrated Circuit (IC) ...10
2.1.3.1 ST23YR48/80 .. 10
2.1.3.2 ST23YL80 .. 11
2.1.4 Operating System (OS)..11
2.1.4.1 BIOS .. 11
2.1.4.2 Cryptographic features... 12
2.1.4.3 Biometric feature ... 12
2.1.4.4 Virtual Machine .. 12
2.1.4.5 The Java Card Runtime Environment ... 12
2.1.4.6 APIs ... 13
2.1.4.7 Open and isolating Platform... 13
2.1.4.8 Resident Application .. 13
2.1.4.9 Applets.. 13

2.2 MAJOR SECURITY FEATURE OF THE TOE...13
2.3 NON-TOE HW/SW/FW AVAILABLE TO THE TOE..18
2.4 TOE USAGE...18
2.5 TOE GUIDANCES ..19
2.6 TOE LIFE CYCLE...21
2.7 SOFTWARE COMPONENTS LIFE CYCLE ..22

2.7.1 Card Life Cycle ..22
2.7.1.1 Pre_production... 23
2.7.1.2 OP_READY .. 24
2.7.1.3 INITIALIZED ... 24
2.7.1.4 SECURED... 24
2.7.1.5 CM_LOCKED ... 24
2.7.1.6 TERMINATED .. 25
2.7.2 Security Domain Life Cycle States ..25

2.7.2.1.1 INSTALLED... 25
2.7.2.1.2 SELECTABLE .. 26
2.7.2.1.3 PERSONALIZED ... 26
2.7.2.1.4 LOCKED ... 26
2.7.2.1.5 DELETED.. 26

3 FQR 110 6155 Ed1

2.7.3 Load File Life Cycle ...26
2.7.3.1.1 LOADED .. 27
2.7.3.1.2 DELETED.. 27

2.7.4 Application Life Cycle..28
2.7.4.1.1 INSTALLED... 28
2.7.4.1.2 SELECTABLE .. 28
2.7.4.1.3 LOCKED ... 28
2.7.4.1.4 DELETED.. 29
2.7.4.1.5 Application Specific Life Cycle States ... 29

3 COMMON CRITERIA CONFORMANCE CLAIM... 30

3.1 COMMON CRITERIA ...30
3.2 PROTECTION PROFILE..30
3.3 CONFORMANCE CLAIM RATIONALE ...30

3.3.1 TOE Type conformance ...31
3.3.2 SPD Statement Consitency...31
3.3.2.1 Assets.. 31
3.3.2.2 Threats.. 31
3.3.2.3 OSPs.. 31
3.3.2.4 Assumptions ... 32
3.3.3 Objectives ..32
3.3.3.1 Security Objectives for the TOE.. 32
3.3.3.2 Security Objectives for the Operational Environment ... 32
3.3.4 SFR and SARs Statements consistency ..32
3.3.4.1 SFRs Consistency .. 32

4 SECURITY ASPECTS... 36

4.1 CONFIDENTIALITY...36
4.2 INTEGRITY ..37
4.3 UNAUTHORIZED EXECUTIONS ...37
4.4 BYTECODE VERIFICATION..38

4.4.1 CAP file verification ..38
4.4.2 Integrity and authentication ..38
4.4.3 Linking and authentication ..39

4.5 CARD MANAGEMENT ..39
4.6 SERVICES ...40

5 SECURITY PROBLEM DEFINITION .. 42

5.1 ASSETS ..42
5.1.1 User data...42
5.1.2 TSF data ..42
5.1.3 Additional assets ...43

5.2 USERS / SUBJECTS ..44
5.2.1 Additional Users / Subjects ..44
5.2.2 Miscellaneous...44

5.3 THREATS ..45
5.3.1 CONFIDENTIALITY ..45
5.3.2 INTEGRITY..46
5.3.3 IDENTITY USURPATION ...46
5.3.4 UNAUTHORIZED EXECUTION..47
5.3.5 DENIAL OF SERVICE..47

4 FQR 110 6155 Ed1

5.3.6 CARD MANAGEMENT ...47
5.3.7 SERVICES ...48
5.3.8 MISCELLANEOUS ...48
5.3.9 Additional threats..48

5.4 ORGANISATIONAL SECURITY POLICIES ...49
5.5 ASSUMPTIONS..49

6 SECURITY OBJECTIVES.. 50

6.1 SECURITY OBJECTIVES FOR THE TOE...50
6.1.1 IDENTIFICATION ..50
6.1.2 EXECUTION ..50
6.1.3 SERVICES ...50
6.1.4 OBJECT DELETION..51
6.1.5 APPLET MANAGEMENT...51
6.1.6 Additional security objectives for the TOE ...52

6.2 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT53

7 EXTENDED REQUIREMENTS.. 55

7.1 EXTENDED FAMILIES..55
7.1.1 Extended Family FCS_RNG - FCS_RNG: Random Number Generation55
7.1.1.1 Description ... 55
7.1.1.2 Extended Components ... 55

7.1.1.2.1 Extended Component FCS_RNG.1.. 55

8 SECURITY REQUIREMENTS ... 57

8.1 SECURITY FUNCTIONAL REQUIREMENTS..57
8.1.1 CoreG_LC Security Functional Requirements..61
8.1.1.1 Firewall Policy... 61
8.1.1.2 Application Programming Interface ... 65
8.1.1.3 Card Security Management.. 71
8.1.1.4 AID Management ... 72
8.1.2 InstG Security Functional Requirements..74
8.1.3 ADELG Security Functional Requirements..77
8.1.4 RMIG Security Functional Requirements ...81
8.1.5 ODELG Security Functional Requirements ...84
8.1.6 CarG Security Functional Requirements ..85
8.1.6.1 Additional Security Functional Requirements for CM.. 89
8.1.6.2 Additional Security Functional Requirements for Resident application 92
8.1.6.3 Additional Security Functional Requirements for SmartCard Platform 98
8.1.6.4 Additional Security Functional Requirements for the applets 100
8.1.6.5 Additional Security Functional Requirements for BIO ... 101
8.1.6.6 Additional Security Functional Requirements for Runtime Verification................ 101

8.1.6.6.1 Stack Control .. 101
8.1.6.6.2 Heap Access.. 103
8.1.6.6.3 Transient Control.. 105

9 TOE SUMMARY SPECIFICATION...108

9.1 TOE SUMMARY SPECIFICATION .. 108

10 RELATED DOCUMENTS..116

5 FQR 110 6155 Ed1

List of figures
Figure 1: (Java Platform Architecture) 8
Figure 2: (TOE Life Cycle – Overviews) 22
Figure 3: (Card Life Cycle) 23
Figure 4: (Security Domain Life Cycle) 25
Figure 5: (Load File Life Cycle) 27
Figure 6: (Application Life Cycle) 28

List of tables

Table 1: (TOE Life Cycle – Summary)... 21

6 FQR 110 6155 Ed1

1 Security Target Introduction

This Security Target aims to satisfy the requirements of Common Criteria level EAL5+, augmented

with AVA_VAN.5 and ALC_DVS.2 in defining the security enforcing functions of the Target Of

Evaluation and describing the environment in which it operates.

The basis for this composite evaluation is the composite evaluation of Platform and the hardware

plus the cryptographic library.

1.1 Security Target reference

The following table defines the information related to the security target and associated evaluation.

Title:

TOUTATIS Security Target for

� ST23YR80/48

� ST23YL80

Product Name: Cosmo v 7.1-s

Editor: Oberthur Technologies

OT registration: FQR 110 6155

EAL:

EAL5+, augmented with:

� ALC_DVS.2

� AVA_VAN.5

ITSEF: CEA LETI

Certification Body: ANSSI

Evaluation scheme: French

More precisely, the security target describes:

� The Target Of Evaluation (TOE), including the TOE components, the components in the TOE

environment, the product type and its life cycle

� The TOE security environment TOE, including assets to be protected and threats to be

countered by the TOE and by the operational environment during the development and the

platform active phases

� The TOE security objectives and its supporting environment in terms of integrity and

confidentiality of sensitive information of the TOE

� The organizational security policies and the assumptions

� The security requirements which include the TOE functional requirements, the TOE

assurance requirements and the security requirements for the environment

� The summary of the TOE specification including a description of the security functions and

assurance measures that meet the TOE security requirements

This V7.1-s platform is able to receive and manage different types of applications (IAS, LDS and ID-

One Classic …).

7 FQR 110 6155 Ed1

Some of these applications are in ROM (already loaded in the platform), others can be loaded in

EEPROM at the Personalisation phase or at the use phase.

1.2 TOE Reference

TOE Name
ID-One Cosmo V7.1-s

Standard Dual

ID-One Cosmo V7.1-s

Basic Dual

ID-One Cosmo V7.1-s

Standard

Mask / Hardware

Identification
61 01 20 61 01 04 61 01 0C

Label PVCS code V71ST V1.10 V71ST V1.10 V71ST V1.10

Optional Code Generic

on ID-One Cosmo v7.1-s

Identification

(mandatory)

078624 078912 079722

IC reference version ST23YR80B ST23YR48B ST23YL80C

IC ST identification

ST23YR48B/ST23YR80B

Security Target

EAL6 augmented by

ALC_FLR.1

ST23YR48B/ST23YR80B

Security Target

EAL6 augmented by

ALC_FLR.1

ST23YL80C Security

Target

EAL5 augmented by

ALC_DVS.2 and

AVA_VAN.5

IC certificate ANSSI-CC-2010/01 ANSSI-CC-2010/01 ANSSI-CC-2009/37

Optional Code SAC on

ID-One Cosmo v7.1-s

Identification

(optional)

079212 079212

8 FQR 110 6155 Ed1

2 TOE overview

The Smart Card intended to support the TOE is composed of hardware and software components, as

listed below and described in Figure 1.

Figure 1: (Java Platform Architecture)

The TOE includes the BIOS, the Virtual Machine, the APIs, the Global Platform application, the

Resident application and the IC component. Details of components are presented in the TOE

description.

2.1 TOE Type

ID-One Cosmo V7.1-s on ST23 family is a contact/dual/contactless javacard platform based,

compatible with multi-application ID-One Cosmo product family.

The functional level of the OS will be based on a Java™ based multi-application platform, compliant

with Java Card 3.0.1 classic edition and Global Platform 2.2.1 specifications.

2.1.1 Java Card Platform

The Java technology, embedded on the TOE, combines a subset of the Java programming language

with a runtime environment optimized for smart cards and similar small-memory embedded devices.

The Java Card
TM

 platform is a smart card platform enabled with Java Card
TM

 technology (also called,

for short, a “Java Card”). This technology allows for multiple applications to run on a single card and

provides facilities for secure interoperability of applications. Applications running on the Java Card

platform (“Java Card applications”) are called applets.

9 FQR 110 6155 Ed1

The TOE is compliant with the version of the Java Card 3.0.1 classic edition, specified by three

documents related to Java Card API, Java Card Runtime Environment and Java Card Virtual Machine

Specifications, defined respectively in [R6], [R7] and [R8]. The next paragraph introduces those three

elements.

As the terminology is sometimes confusing, the term “Java Card System” has been introduced in [R5]

that defines the set constituted by the Java Card RE, the Java Card VM and the Java Card API.

The Java Card System provides an intermediate layer between the operating system of the card and

the applications. This layer allows applications written for one smart card platform enabled with Java

Card technology to run on any other such platform.

The Java Card VM is a bytecode interpreter embedded in the smart card. The Java Card RE is

responsible for card resource management, communication, applet execution, on-card system and

applet security.

Applet isolation is achieved through the Java Card Firewall mechanism defined in [R7]. This

mechanism confines an applet to its own designated memory area. Thus, each applet is prevented

from accessing fields and operations related to objects owned by other applets, unless those applets

provide a specific interface (shareable interface) for that purpose. This access control policy is

enforced at runtime by the Java Card VM.

However, applet isolation cannot be entirely granted by the firewall mechanism if certain well-

formedness conditions are not satisfied by loaded applications.

Therefore, a bytecode verifier (BCV) formally verifies those conditions. The BCV is out of the scope of

the Java Card System defined in [R5].

The following Bytecode verification exists:

Platform

Configuration
Verifier Type When?

Classic Off-card bytecode verifier Static Once, outside of the card

Defensive On-card bytecode verifier Static
Once, on the card during the

loading

Oberthur

Technologies
Runtime verifier Dynamic Every time, during execution

The Java Card API (JCAPI) provides classes and interfaces for the core functionality of a Java Card

application. It defines the calling conventions by which an applet may access the JCRE and services

such as, among others, I/O management functions, PIN and cryptographic specific management and

the exceptions mechanism. The JCAPI is compatible with formal international standards, such as

ISO/IEC 7816 and industry specific standards.

2.1.2 Global Platform

The TOE is compliant with the Global Platform 2.2.1 (GP) standard [R9] which provides a set of APIs

and technologies to perform in a secure way, the operations involved in the management of the

applications hosted by the card. Using GP maximizes the compatibility and the opportunities of

communication as it becomes the current card management standard.

10 FQR 110 6155 Ed1

The main features addressed by GP are:

� The authentication of users through secure channels

� The downloading, installation removal, and selection for execution of Java Card applications

� The life cycle management of both the card and the applications

� The sharing of a global common PIN among all the applications installed on the card

These operations are addressed by a set of APIs used by the applications hosted on the card in order

to communicate with the external world on a standard basis.

The version considered in this document is version 2.2.1 of the GP Card specification. The following

GP functionalities, at least, are present within the TOE:

� Card content loading

� Extradition

� Asymetric keys

� DAP support, Mandated DAP support

� DAP calculation with asymmetric cryptography

� Logical channels

� SCP02 support

� SCP03 support [R12]

� Support for contact and contactless cards different implicit selection on different interfaces

and channels

� Support for Supplementary Security Domains

� Trusted path privileges

� Post-issuance personalisation of Security Domain [R12]

� Application personalisation [R12]

2.1.3 Integrated Circuit (IC)

2.1.3.1 ST23YR48/80

The IC is a STMicroelectronics dual interface component that supports ISO/IEC 14443 Type B.

It is a hardware device composed of a processing unit, memories, security components and I/O

interfaces. It has to implement security features able to ensure:

- The confidentiality and the integrity of information processed and flowing through the

device,

- The resistance of the security IC to externals attacks such as physical tampering,

environmental stress or any other attacks that could compromise the sensitive assets stored

or flowing through it.

11 FQR 110 6155 Ed1

More information regarding the documentation is available in the public security target of the chip

[R26].

2.1.3.2 ST23YL80

The IC is a STMicroelectronics pure contact interface component.

It is a hardware device composed of a processing unit, memories, security components and I/O

interfaces. It has to implement security features able to ensure:

- The confidentiality and the integrity of information processed and flowing through the

device,

- The resistance of the security IC to externals attacks such as physical tampering,

environmental stress or any other attacks that could compromise the sensitive assets stored

or flowing through it.

More information regarding the documentation is available in the public security target of the chip

[R25].

2.1.4 Operating System (OS)

The TOE relies on an Operating System (OS) which is an embedded piece of software loaded into the

Security IC. The Operating System manages the features and resources provided by the underneath

chip. It is, generally divided into two levels:

1. Low level:

a. Drivers related to the I/O, RAM, ROM, EEPROM, , and any other hardware

component present on the Security IC

2. High level:

a. Protocols and handlers to manage I/O

b. Memory and file manager

c. Cryptographic services and any other high level services provided by the OS

2.1.4.1 BIOS

The BIOS is an interface between hardware and native components like VM and APIs. The BIOS

implements the following functionalities:

- APDU management, using T=0, T=1 and T=CL protocols

- Timer management

- Exceptions management

- Transaction management

- EEPROM access

TOUTATIS on ST23YR48/80:

Interfaces for the ST23YR48/80

Contactless References are standard ones

Contact *

Dual *

12 FQR 110 6155 Ed1

TOUTATIS on ST23YL80:

Interface for the ST23YL80

Contact References are standard ones

2.1.4.2 Cryptographic features

The following crypto services are included in the OS:

Cryptographic Services

RSA CRT from 64 to 2048-bits by step of 32-bits References are standard ones

RSA SFM from 64 to 2048-bits by step of 32-bits *

ECC with 160, 192, 256, 384, 512 and 521-bits key sizes *

TDES with 56, 112 and 168-bits key sizes *

AES with 128, 192, 256 key sizes *

SHA-1, SHA 224, 256, 384 and 512 *

RSA, ECC Key generation *

CRC 16 and 32 *

RNG FIPS DES SP800-90 *

RSA signature/verification Based on supported RSA key sizes

ECDSA signature/verification Based on supported ECC key sizes

ECDH Based on supported ECC key sizes

AES secure messaging *

TDES secure messaging *

2.1.4.3 Biometric feature

TOUTATIS embeds the MOC algorithm.

The biometric feature allows matching a CANDIDATE Template with REFERENCE Templates (up to 10)

2.1.4.4 Virtual Machine

The Virtual Machine, which is compliant with the Java Card 3.0.1 classic edition, interprets the byte

code of Java Card applets.

The Virtual Machine supports logical channels; this means that it allows an applet to be selected on a

channel, while a different applet is selected on another channel.

It also supports secure execution of applets loaded and stored in ROM.

The Virtual Machine is activated upon the selection of an applet.

2.1.4.5 The Java Card Runtime Environment

13 FQR 110 6155 Ed1

The Java Card Runtime Environment (JCRE) contains the Java Card Virtual Machine (VM), the Java

Card Application Programming Interface (API) classes and industry-specific extensions, and support

services. For details please refer to reference [R7].

2.1.4.6 APIs

The APIs, compliant with the Java Card 3.0.1 classic edition, support key generation, Key Agreement,

signature, ciphering of messages and proprietary OT API.

Proprietary APIs have been developed like ISOSecureMessaging to assure the data are exchanged in

confidentiality and integrity; OTPinBio to compare a candidate fingerprint template with one of the

reference fingerprint template previously store in the card; utilBER_Reader to read BER-TLV;

SecureStore to store integrity sensitive information

2.1.4.7 Open and isolating Platform

This security target claims conformance to the Application Note 10 on Open and Isolating platform,

issued by ANSSI [R29].

An “open platform” can host new applications:

- Before its delivery to the end user (during phases 4, 5 or 6 of the traditional smartcard

lifecycle). Such loadings are called “pre-issuance”.

- After its delivery to the end user (phase 7). Such loadings are called “post-issuance”.

An “isolating platform” is a platform that maintains the separation of the execution domains of all

embedded applications on a platform, as of the platform itself. “Isolation” refers here to domain

separation of applications as well as protection of application’s data.

2.1.4.8 Resident Application

It provides a native code application, with a basic main dispatcher, to receive the card commands

and dispatch them to the application and module functions to implement the application commands.

It also deals with the Card Manufacturer authentication and logical channels management.

The dispatcher is always activated. Some card commands (for administration) are only available

during prepersonalisation phase.

2.1.4.9 Applets

TOUTATIS platform embeds applets on the ROM. In conformance with ANSSI Note 10 [R41], the

applets have been provided to the ITSEF.

The applets list is provided in [R32].

2.2 Major Security feature of the TOE

14 FQR 110 6155 Ed1

The main goal of the TOE is to provide a sound and secure execution environment to critical assets

that need to be protected against unauthorized disclosure and/or modification.

The TOE with its security function has to protect itself and protect applets from bypassing, abuse or

tampering of its services that could compromise the security of all sensitive data. Even if the applets

are not in the scope of this evaluation.

Atomic Transactions

The TOE shall provide a transaction mechanism. It shall execute a sequence of modifications

and allocations on the persistent memory so that either all of them are completed, or the

TOE behaves as if none of them had been attempted.

The transaction mechanism shall permit to update internal TSF data as well as to perform

different functions of the TOE, like installing a new package on the card.

This mechanism shall be available for applet instances

The TOE shall perform the necessary actions to roll back to a safe state upon interruption.

Card Content Management

The TOE shall control the loading, installation, and deletion of packages and applet instances.

To remove the code of a package from the card, or to definitely deactivate an applet

instance, so that it becomes no longer selectable; it shall perform physical removal of those

packages and applet data stored in memories (except applet in ROM memory that shall only

be logically removed).

Card Management Environment

This function shall initialize and manage the internal data structure of the Card Manager.

During the initialization phase of the card, it creates the Installer and the Applet Deletion

Manager and initializes their internal data structures. The internal data structure of the Card

Manager includes the Package and Applet Registries, which respectively contains the

currently loaded packages and the currently installed applet instances, together with their

associated AIDs.

This function shall also be in charge of dispatching the APDU commands to the applet

instances installed on the card and keeping trace of the currently active ones.

It therefore handles sensitive TSF data of other security functions, like the Firewall or the

Remote Access Control function.

Cardholder Verification

The TOE shall implement mechanisms to identify and authenticate the user of the product.

This function is available to applet instances.

Clearing of sensitive information

The TOE shall ensure that no residual information is available from memories, and shall

protect sensitive information that is no longer used. The Platform has to securely clear and

destroy this information. It concerns PINs, keys, sensitive data (such as BIOMETRIC_DATA),

buffer APDU.

This function is also available to applet.

15 FQR 110 6155 Ed1

DAP Verification

An Application Provider may require that its Application code to be loaded on the card shall

be checked for integrity and authenticity. The DAP Verification privilege of the Application

Provider's Security Domain shall provide this service on behalf of the Application Provider. A

Controlling Authority may require that all Application code to be loaded onto the card shall

be checked for integrity and authenticity. The Mandated DAP Verification privilege of the

Controlling Authority's Security Domain shall provide this service on behalf of the Controlling

Authority.

Data coherency

As coherency of data should be maintained, and as power is provided by the CAD and might

be stopped at all moment (by tearing or attacks), a transaction mechanism need to be

implemented.

When updating data, before writing the new ones, the old ones are saved in a specific

memory area. If a failure appears, at the next start-up, if old data are valid in the transaction

area, the system restores them for staying in a coherent state.

Data integrity

Sensitive data have to be protected from modifications: keys, pins, patch code and sensitive

applet data.

Encryption and Decryption

The TOE provides the applet instances with a mechanism for encrypting and decrypting the

contents of a byte array.

Ciphering operations are implemented to resist environmental stress and glitches and

include measures for preventing information leakage through covert channels.

Entity authentication/secure Channel

Off-card entity authentication is achieved through the process of initiating a Secure Channel

and provides assurance to the card that it is communicating with an authenticated off-card

entity.

If any step in the off-card authentication process fails, the process shall be restarted (i.e. new

session keys generated).

The Secure Channel initiation and off-card entity authentication implies the creation of

session keys derived from card static key(s).

Exception

In case of abnormal event: data unavailable on an allocation or illegal access to a data, the

system shall own an internal mechanism allowing it to stop the code execution and raise an

exception.

Firewall

The TOE with the Firewall shall control information flow at runtime. It shall ensure controls

object sharing between different applet instances, and between applet instances and the

Java Card RE.

GP_Dispatcher

16 FQR 110 6155 Ed1

While a Security Domain or Card Manager is selected, the TOE shall test for every command

if Security Domain Owner authentication is required. If a secure channel is opened, the TOE

tests according to the Security Domain state and the Card state for every command if secure

messaging is required.

Hardware operating

The TOE shall boot after the IC has successfully powered-up. The TOE boot operations shall

ensure the correct initialization of the TOE functionalities and the integrity of the code and

data.

The TOE shall monitor IC detectors (e.g. out-of-range voltage, temperature, frequency, active

shield, memory aging) and shall provide automatic answers to potential security violations

through interruption routines that leave the device in a secure state.

Key Access

The TOE shall enforce secure access to all cryptographic keys on the card: RSA keys, DES keys,

EC keys, AES keys

Key Agreement

The TOE shall provide to applet instances a mechanism for supporting key agreement

algorithms such as EC Diffie-Hellman.

Key destruction

The TOE shall provide secure key destruction, such as keys can not be retrievec from erased

data.

Key Distribution

The TOE shall enforce the distribution of all the cryptographic keys of the card using a specific

method.

Key Generation

The TOE shall enforce the creation and the on card generation of all the cryptographic keys of

the card using a specific method.

Key management

The TOE shall manage key set: Loading keys, adding a new key set (version and value of the

key) or updating a key set (update key value).

Manufacturer Authentication

During prepersonalisation phase, manufacturer authentication at the beginning of a

communication session shall be mandatory prior to any relevant data being transferred to

the TOE.

Memory failure

This security functionality is in charge of the management of bad usage of the memory.

Message Digest

Message digest generation shall be implemented to resist environmental stress and glitches

and include measures for preventing information leakage through covert channels.

17 FQR 110 6155 Ed1

The TOE shall provide the applet instances with a mechanism for generating an (almost)

unique value for the contents of a byte array. This value can be used as a short

representative of the information contained in the whole byte array.

For Hashing algorithms that do not pad the messages, the TSF checks that the information is

block aligned before computing its hash value.

Pre-personalisation

This function shall permit to pre-initialize the internal data structures, to load the

configuration of the card and to load patch code if needed and locks.

The TOE shall allow loading of TOE sensitive data: configuration data. Configuration data can

contain patchs. The TOE shall check the integrity of the incoming data. Unless stated

otherwise, the origin of the incoming data shall be ensured by organisational means. The TOE

shall ensure that TOE code and patchs installed after delivery cannot be bypassed. The

loading functionality of patchs shall be disabled before entering the final usage phase. The

TOE identification shall take into account the patchs installed after delivery.

Random Number

This TOE functionality provides the card manager, the resident application and the applets a

mechanism for generating challenges and key values.

The Number Generator is a combination of hardware and software RNG. The RNG is

compliant with [R30].

Resident Application dispatcher

During prepersonalisation phase, this function shall verify for every command if

manufacturer authentication is required.

Remote access

During prepersonalisation phase, this function shall verify for every command if

manufacturer authentication is required.

Runtime Verifier

This security functionality ensures the secure processing of the stack, heap and transient by

ensuring additional controls.

Security functions of the IC

This TOE functionality ensures the correct execution of the IC functionalities.

Signature

This TSF shall provide the applet instances with a mechanism for generating an electronic

signature of the contents of a byte array and verifying an electronic signature contained in a

byte array.

An electronic signature is made of a hash value of the information to be signed, encrypted

with a secret key. The verification of the electronic signature includes decrypting the hash

value and checking that it actually corresponds to the block of signed bytes. Signature

operations shall be implemented to resist environmental stress and glitches and include

measures for preventing information leakage through covert channels.

Unobservability

18 FQR 110 6155 Ed1

The TOE shall use and manipulate sensitive information without revealing any element of this

information.

2.3 NON-TOE HW/SW/FW AVAILABLE TO THE TOE

The only non-TOE component required on the product is the bytecode verifier. The bytecode verifier

is a program that performs static checks on the bytecodes of the methods of a CAP file.

Bytecode verification is a key component of security: applet isolation, for instance, depends on the

file satisfying the properties a verifier checks to hold. A method of a CAP file that has been verified

shall not contain, for instance, an instruction that allows forging a memory address or an instruction

that makes improper use of a return address as if it were an object reference. In other words,

bytecodes are verified to hold up to the intended use to which they are defined. This TOE considers

static bytecode verification; it has to be performed on the host at off-card verification and prior to

the installation of the file on the card in any case.

2.4 TOE usage

This Platform is an open and isolating platform that is compliant with the ANSSI Application Note 10

that deals with open and isolating platforms.

Smart cards are used as data carriers that are secure against forgery and tampering as well as

personal, highly reliable, small size devices capable of replacing paper transactions by electronic data

processing. Data processing is performed by a piece of software embedded in the smart card chip,

called an application.

The Java Card System is intended to transform a smart card into a platform capable of executing

applications written in a subset of the Java programming language. The intended use of a Java Card

platform is to provide a framework for implementing IC independent applications conceived to safely

coexist and interact with other applications into a single smart card.

Applications installed on a Java Card platform can be selected for execution when the card

communicates with a card reader.

Notice that these applications may contain other confidentiality (or integrity) sensitive data than

usual cryptographic keys and PINs; for instance, passwords or pass-phrases are as confidential as the

PIN, or the balance of an electronic purse.

So far, the most typical applications are:

- Financial applications, like Credit/Debit ones, stored value purse, or electronic commerce,

among others.

- Transport and ticketing, granting pre-paid access to a transport system like the metro and

bus lines of a city.

- Telephony, through the subscriber identification module (SIM) or the NFC chip for mobile

phones.

- Personal identification, for granting access to secured sites or providing identification

credentials to participants of an event.

- Electronic passports and identity cards.

19 FQR 110 6155 Ed1

- Secure information storage, like health records, or health insurance cards.

- Loyalty programs, like the “Frequent Flyer” points awarded by airlines. Points are added and

deleted from the card memory in accordance with program rules. The total value of these

points may be quite high and they must be protected against improper alteration in the same

way that currency value is protected.

For more information on embedded applets and known applets, refer to §2.1.4.9.

This platform must provide a highly secure technology for smartcards applications. The Match-On-

Card technology is an entire part of the product, and enables the Authentication by way of digital

prints.

This secure platform is compliant with the security requirements (RGS_B1, RGS_B2 and RGS_B3) of

“Référentiel général de la sécurité des systèmes d’informations” [R31], with the maximum level of

trust: “qualification renforcée”.

This document is edited by ANSSI and is a requirement for highly secure product, destined to

Government market, such as Passport and ID cards.

2.5 TOE Guidances

The ID-One Cosmo V7.1-s is evaluated with its guidance. The guidances of the Platform are listed

hereafter:

Guide Ref Title

[GUIDE1] [R37] ID-One Cosmo V7.1 Security Recommendations FQR 110 6029

[GUIDE2] [R38] ID-One Cosmo V7.1 Reference Guide FQR 110 6028

[GUIDE3] [R39] ID-One Cosmo V7.1 Pre-Perso Guide FQR 110 6027

[GUIDE4] [R40]
ID-One Cosmo V7.1 Application Loading Protection Guidance FQR 110

6267

[GUIDE5] [R32]
Applications on ID ONE COSMO V7.1-S

FQR 110 6268

The platform is evaluated without applications.

Applications need to be verified by the Verifier before being loaded.

[GUIDE1]

If the applet needs to have a security certification, the applet must follow recommendations listed in

the document.

If the applet does not need additional security certification with the platform, the certificate of the

Platform is still valid if the applet go through the verifier when this applet is loaded (the security

function of the platform are still ok).

The [GUIDE1] is provided to the Developer of an application to be certified.

[GUIDE2]

20 FQR 110 6155 Ed1

This document describes the ID-One Cosmo V7.1-s smart card usage. It describes how to use the card

from an APDU commands point of view and gets onto topics such as common platform APDU

commands, secure channels and security domains.

This document also describes the available javacard and proprietary APIs for applet developers.

The [GUIDE2] is provided to the Developer of an application to be certified or not, and also to the

final user (in phases 6-7).

[GUIDE3]

This document describes the pre-personalisation steps that should be followed to correctly initialize

the Cosmo v7.1 platforms. The TOE is finalized once it’s prepersonalised.

This document is provided to the final user (phases 4-5).

[GUIDE4]

This document describes the loading procedure, in compliance with ANSSI Note 10 and the Java Card

Open Platform protection profile.

The [GUIDE4] is provided to the Loading Authority, who is in charge of loading an application.

[GUIDE5]

This document identifies the known applications and the one that could be embedded in the ID-One

Cosmo v7.1-s.

The [GUIDE5] is provided to the Application Provider, the loading authority and the final user. (phase

4,5, 6 and 7).

21 FQR 110 6155 Ed1

2.6 TOE Life cycle

The development and manufacturing processes of the Composite Product is separated into seven

distinct phases to be in accordance with the Java Card™ System Protection Profile (section 3.2). Each

phase is under the control of one (or several) administrator(s) and protected by an environment.

Each phase is covered by the assurance components.

Please note that AGD_PRE stands for [GUIDE3] and AGD_OPE stands for [GUIDE4].

Phase Phase name Covered by

1 Security IC Embedded Software development ALC [TOUTATIS]

2 Security IC Development ALC [IC]

3 Security IC Manufacturing ALC [IC]

4 Security IC Packaging AGD_PRE [TOUTATIS]

5 Composite Product Integration AGD_PRE [TOUTATIS]

6 Composite Product Personalisation AGD_OPE [TOUTATIS]

7 Operational Usage AGD_OPE [TOUTATIS]

Table 1: (TOE Life Cycle – Summary)

22 FQR 110 6155 Ed1

Figure 2: (TOE Life Cycle – Overviews)

2.7 Software Components Life Cycle

2.7.1 Card Life Cycle

Phase 1

Security IC

Embedded

Software

User Data & Supplement for

Security IC Embedded Software

Phase 2

Phase 5

Phase 6

Card Manager

Card Content Management

Card Manager

Card Content Management

Phase 7

Phase 4

P
R

O
D

U
C

T
 C

O
N

S
T

R
U

C
T

IO
N

P

R
O

D
U

C
T

 U
S

A
G

E

Delivery

Phase 3
Delivery Delivery

Card Manager

Card Content Management

Resident Application

Card Content Management

TOE Delivery TOE is self protected

23 FQR 110 6155 Ed1

Figure 3: (Card Life Cycle)

2.7.1.1 Pre_production

This initial life state of the Card allows managing the prepersonalisation of the Javacard Platform

Embedded Software up to the Card Manager Life Cycle OP_READY.

During this state, the Resident Application provides a set of APDU commands which allows:

o Writing User Data for configuring the Javacard Platform Embedded Software. This

configuration (by using lock mechanism) is only carried out during this state.

o Writing Supplement for Javacard Platform Embedded Software (patch code). It is developed

at Oberthur Technologies premises (phase 1), delivered and loaded securely in volatile

memory (EEPROM) during the Composite Product Integration (phase 5). The security of this

loading is fully enforced by technical measures provided by the TOE, and evaluated by the

ITSEF. This task is only carried out during this state.

o Activating Load Files from immutable persistent memory (ROM). This task is only carried out

during this state.

o Loading Load Files from mutable persistent memory (EEPROM).

o Instantiating the Issuer Security Domain (Card Manager). Only one ISD is available by card.

o Populating with initialization key (ISK) and Chip CPLC. The Card Life Cycle switchs

automatically in OP_READY state when the initialization key (ISK) is populated in the ISD.

The APDU commands depend on the mutual authentication carries out (by using MSK).

The next states possible are OP_READY or TERMINATED. The transition is irreversible.

24 FQR 110 6155 Ed1

2.7.1.2 OP_READY

During this life cycle state, all the basic functionalities of the runtime environment are available and

the Card Manager is ready to receive, execute and respond to APDU commands. During this state, a

new keyset have to be loaded before switching to INITIALIZED life state.

The card is assumed to have the following functionalites in the OP_READY state:

o The runtime environment is ready for execution.

o An Initialization key is available within the Card Manager.

o Card Content Management operations are supported.

o Post-issuance personalisation of applets belonging to the Card Issuer can be carried out via

the Card Manager.

The next states possible are INITIALIZED or TERMINATED. The transition is irreversible.

2.7.1.3 INITIALIZED

This life state is an administrative card production state. Most of the personalisation of the Card

Manager is performed when entering in this state.

The card is assumed to have the following functionalites in the INITIALIZED state:

o The runtime environment is ready for execution.

o A keyset is available within the Card Manager.

o Card Content Management operations are supported.

o Post-issuance personalisation of applets belonging to the Card Issuer can be carried out via

the Card Manager.

The next states possible are SECURED or TERMINATED. The transition is irreversible.

2.7.1.4 SECURED

The Card life cycle state SECURED is the normal operating life cycle state of the card after issuance.

This state is the indicator for the Card Manager to enforce the Card Issuer’s security policies related

to post-issuance card behaviour such as applet loading and activation.

The card is assumed to have the following functionality in the state SECURED:

o The Card Manager contains all necessary key sets and security elements for full functionality.

o Card Issuer initiated card content changes can be carried out through the Card Manager.

o Card Content Management operations are supported.

o Post-issuance personalisation of applets belonging to the Card Issuer can be carried out via

the Card Manager.

The next states possible are CM_LOCKED or TERMINATED.

The transition in the TERMINATED state is irreversible.

2.7.1.5 CM_LOCKED

The state CM_LOCKED is used to instruct the Card Manager to temporarily disable all applets on the

card except for the Card Manager. This state is created to give the Card Issuer the ability to

temporarily disable functionality of the card on detection of security threats (either internal or

external to the card).

Setting the Card Manager to this state implies that the card will no longer work, except via the Card

Manager which is controlled by the Card Issuer. No Card Content Management operation is possible.

25 FQR 110 6155 Ed1

The next states possible are SECURED or TERMINATED.

The transition in the TERMINATED state is irreversible.

2.7.1.6 TERMINATED

The Card Manager is set to the life cycle state TERMINATED to permanently disable all card

functionalities including the functionality of the Card Manager itself. This state is created as a

mechanism for the Card Issuer to logically ‘destroy’ the card for such reasons as the detection of a

severe security threat or upon expiration of the card.

Only GET DATA (CPLC) command is available. No Card Content Management operation is possible.

The Card Manager state TERMINATED is irreversible and signals the end of the card’s life cycle.

2.7.2 Security Domain Life Cycle States

The Security Domain Life Cycle begins when a Security Domain is instantiated in the card. The

Security Domain Life Cycle States defined by Global Platform are INSTALLED, SELECTABLE,

PERSONALIZED and LOCKED. There are no proprietary Security Domain Life Cycle States.

Figure 4: (Security Domain Life Cycle illustrates the state transition diagram for the Security Domain

Life Cycle. This can typically be viewed as a sequential process with certain possibilities for reversing

a state transition or skipping states.

Figure 4: (Security Domain Life Cycle)

2.7.2.1.1 INSTALLED

The state INSTALLED means that the Security Domain becomes an entry in the Global Platform

Registry and this entry is accessible to off-card entities authenticated by the associated Security

Domain. The Security Domain is not yet available for selection. It cannot be associated with

Executable Load Files or Applications yet and therefore its Security Domain services are not available

to Applications.

26 FQR 110 6155 Ed1

2.7.2.1.2 SELECTABLE

The state SELECTABLE means that the Security Domain is able to receive commands (specifically

personalisation commands) from off-card entities. As they still do not have keys, the Security

Domains cannot be associated with Executable Load Files or Applications and therefore their services

are not available to Applications when they are in this state. The state transition from INSTALLED to

SELECTABLE is irreversible. The transition to SELECTABLE may be combined with the Security Domain

installation process.

2.7.2.1.3 PERSONALIZED

The definition of what is required for a Security Domain to transition to the state PERSONALIZED is

Security Domain dependent but is intended to indicate that the Security Domain has all the

necessary personalisation data and keys for full runtime functionality (i.e. usable in its intended

environment). The transition from SELECTABLE to PERSONALIZED is irreversible.

In the state PERSONALIZED, the Security Domain may be associated with Applications and its services

become available to these associated Applications.

2.7.2.1.4 LOCKED

The OPEN, the Security Domain itself, the Security Domain's associated Security Domain (if any), an

Application with the Global Lock privilege or a Security Domain with the Global Lock privilege uses

the state LOCKED as a security management control to prevent the selection of the Security Domain.

If the OPEN detects a threat from within the card and determines that the threat is associated with a

particular Security Domain, that Security Domain may be prevented from further selection by the

OPEN setting the Security Domain's Life Cycle State to LOCKED.

Alternatively, the off-card entity may determine that a particular Security Domain on the card needs

to be locked for a business or security reason and may initiate the state transition via the OPEN.

Locking a Security Domain prevents this Security Domain from being associated with new Executable

Load Files or Applications. In this state DAP verification, extradition and access to that Security

Domain’s services shall fail. In summary, if a Security Domain is in the lifecycle state LOCKED, it shall

reject all received commands.

Once the Life Cycle State is LOCKED, only the Security Domain's associated Security Domain (if any),

an Application with Global Lock privilege or a Security Domain with Global Lock privilege is allowed to

unlock the Security Domain. The OPEN shall ensure that the Security Domain's Life Cycle returns to

its previous state.

2.7.2.1.5 DELETED

At any point in the Security Domain Life Cycle, the OPEN may receive a request to delete a Security

Domain.

The space previously used to store a physically deleted Security Domain is reclaimed and may be

reused. The entry within the Global Platform Registry shall no longer be available, and the OPEN is

not required to maintain a record of the deleted Security Domain's previous existence.

2.7.3 Load File Life Cycle

The Load Files Life Cycle begins when a Load File is activated from immutable persistent memory

(ROM) or loaded in mutable persistent memory (EEPROM).

27 FQR 110 6155 Ed1

Figure 5: (Load File Life Cycle) illustrates the state transition diagram for the Load File Life Cycle. This

can typically be viewed as a sequential process.

Figure 5: (Load File Life Cycle)

The Load Files activated (Phase 5) or loaded (Phase 5 and/or 6) must satisfy a process using the

following tools:

o Compiler: software that generates machine-independent code (bytecode)

o Converter: software that preprocesses all of the Java programming language class files that

make up a package, and converts the package to a standard file format for the binary

compatibility of the Java Card platform (CAP file). The Converter also produces an export file.

o Loader: software that transfers the Load File.

During the Phase 7, the TOE must prevent the installation of a package that has not been bytecode

verified, or that has been modified after bytecode verification. The loading process requires adding

the proof of the origin of the Load File (computed by off-card entity) and verifying it by a Security

Domain with Mandated DAP privilege. The following tools are used:

o Compiler: software that generates machine-independent code (bytecode)

o Converter: software that preprocesses all of the Java programming language class files that

make up a package, and converts the package to a standard file format for the binary

compatibility of the Java Card platform (CAP file). The Converter also produces an export file.

o Verifier: software that performs static checks on the bytecodes of the methods of a CAP file

and generates a signature <DAPBlock>.

o Loader: software that transfers the Load File (including the <DAPBlock>).

The bytecode, CAP file, DAP Block can be generated from any software.

2.7.3.1.1 LOADED

The state LOADED is the initial life state just after it has been activated (from the Resident

Application) or loaded (from the Resident Application or the Card Manager).

This state is independent of the visibility of the Load File (Get Status command of the Card Manager)

and just depends on the presence in the Global Platform registry.

2.7.3.1.2 DELETED

The OPEN may receive a request to delete a Load File. For Load Files in EEPROM, the space previously

used to store a physically deleted Load File is reclaimed and may be reused. For Load Files in ROM, a

flag definitely prohibits further use. The entry within the Global Platform Registry is also removed,

and the OPEN is not required to maintain a record of the deleted Load File's previous existence.

28 FQR 110 6155 Ed1

2.7.4 Application Life Cycle

The Application Life Cycle begins when an applet is instantiated in the card. This instantiation may

occur directly after loading transaction or alternatively from a Load File which is present on the card.

The Application Life Cycle States defined by Global Platform are INSTALLED, SELECTABLE or LOCKED.

Figure 6: (Application Life Cycle), illustrates the state transition diagram for the Application Life Cycle.

This can typically be viewed as a sequential process with certain possibilities for reversing a state

transition or skipping states.

In addition to these states, the Application may define its own Application dependent states. Once

the Application reaches the SELECTABLE state, it is responsible for managing the next steps of its own

Life Cycle. It may use any Application specific states as long as these do not conflict with the states

already defined by Global Platform. The OPEN may not perform these transitions without instruction

from the Application and the Application is responsible for defining state transitions and ensuring

that these transitioning rules are respected.

Figure 6: (Application Life Cycle)

2.7.4.1.1 INSTALLED

The INSTALLED state means that the Application executable code has been properly linked and that

any necessary memory allocation has taken place. The Application becomes an entry in the Global

Platform Registry and this entry is accessible to authenticated off-card entities. The Application is not

yet selectable. The installation process is not intended to incorporate personalisation of the

Application, which may occur as a separate step.

2.7.4.1.2 SELECTABLE

The SELECTABLE state implies that the applet is able to receive commands from off-card entities. The

state transition from INSTALLED to SELECTABLE is irreversible. The Application shall be properly

installed and functional before it may be set to the SELECTABLE state. The transition to SELECTABLE

may be combined with the Application installation process. The behaviour of the Application in the

SELECTABLE state is beyond the scope of this Specification.

2.7.4.1.3 LOCKED

The OPEN or the off-card entity authenticated by the Issuer Security Domain uses the state LOCKED

as a security management control to prevent the selection, and therefore the execution, of the

Application. If the OPEN detects a threat from within the card and determines that the threat is

29 FQR 110 6155 Ed1

associated to a particular Application, this Application may be prevented from further selection by

the OPEN setting its state to LOCKED. Alternatively, the off-card entity authenticated by the Issuer

Security Domain may determine that a particular Application on the card needs to be locked for a

business or security reason and may initiate the Application Life Cycle transition via the OPEN. Once

the state is LOCKED, only the Issuer Security Domain is allowed to unlock the Application. The OPEN

shall ensure that the Application Life Cycle returns to its previous state.

2.7.4.1.4 DELETED

At any point in the Application Life Cycle, the OPEN may receive a request to delete an Application.

The space previously used to store a physically deleted Application is reclaimed and may be reused.

The entry within the Global Platform Registry is also removed, and the OPEN is not required to

maintain a record of the deleted Application's previous existence.

2.7.4.1.5 Application Specific Life Cycle States

These states are Application specific. The behaviour of the Applet during these states is determined

by the Applet itself and is beyond the scope of this document. The OPEN does not enforce any

control on Application specific Life Cycle State transitions.

30 FQR 110 6155 Ed1

3 Common Criteria conformance claim

3.1 Common Criteria

This security Target claims conformance to the Common Criteria version 3.1 revision 3, with the

following documents:

1. "Common Criteria for information Technology Security Evaluation, Part 1: Introduction and

general model", July 2009, Version 3.1 revision 3 Final

2. "Common Criteria for information Technology Security Evaluation, Part 2: Security Functional

requirements", July 2009, Version 3.1 revision 3 Final

3. "Common Criteria for information Technology Security Evaluation, Part 3: Security Assurance

requirements", July 2009, Version 3.1 revision 3 Final

The Conformance to the Common Criteria is claims as follows:

Common

Criteria
Conformance rationale

Part 1 Strict conformance

Part 2
Conformance to the extended part.

FCS_RNG.1: “Random number generation”

Part 3

Compliant to EAL5 +, augmented with

- ALC_DVS.2: “Sufficiency of security measures”

(highest component)

- AVA_VAN.5: “Advanced methodical vulnerability analysis”

(highest component)

3.2 Protection Profile

This security target claims a demonstrable conformance to:

Java Card Protection Profile – Open Configuration version 3.0 - ANSSI-CC-PP-2010/03_M01

The product is in conformance with the minimum assurance level EAL4+ augmented with ALC_DVS.2

and AVA_VAN.5 described in paragraph 3.2 of the Protection Profile by claiming an evaluation level

EAL5+ augmented with ALC_DVS.2 and AVA_VAN.5.

3.3 Conformance claim rationale

31 FQR 110 6155 Ed1

This paragraph presents the consistency between the security target and the Java Card System Open

configuration profile Protection Profile.

3.3.1 TOE Type conformance

The TOE type is in conformance with the TOE type described in the protection profile. For more

information on this point, please refer to chapter 2.1 of this security target.

3.3.2 SPD Statement Consitency

3.3.2.1 Assets

All assets from the protection profile are included in the security target.

The following assets have been added:

Assets Rationale

D.CONFIG
This asset defines the elements of configuration during the

prepresonalization phase

D.SENSITIVE_DATA This asset describes the set of sensitive data to be protected

D.ARRAY This asset describes the applets sensitive data

D.JCS_KEYS
This asset describes two cryptographic keys used during the loading of a

file in the card

D.BIO This asset desribes the biometric sensitive data

3.3.2.2 Threats

All threats from the protection profile are included in the security target.

Two additional threats have been added in the security target:

Threats Rationale

T.CONFIGURATION This threat is directly linked to D.CONFIG

T.CONF_DATA_APPLET This threat is directly linked to D.ARRAY

T.PATCH_LOADING This threat is directly linked to patch loading

3.3.2.3 OSPs

All the OSP from the protection profile is included in the security target, no additional OSP have been

added.

32 FQR 110 6155 Ed1

3.3.2.4 Assumptions

All the assumptions from the protection profile have been added in the security target, except

A.DELETION.

A.DELETION has been removed from the security target because the deletion of applets is in the

scope of the evaluation, as O.CARD_MANAGEMENT is an objective in this security target.

3.3.3 Objectives

3.3.3.1 Security Objectives for the TOE

All the security objectives for the TOE from the protection profile are included in the security target.

The following security objectives have been added:

Security objectives for

the TOE
Rationale

O.SCP.SUPPORT
This security objective comes from a security objective for the

operational environment

O.SCP.IC
This security objective comes from a security objective for the

operational environment

O.SCP.RECOVERY
This security objective comes from a security objective for the

operational environment

O.RESIDENT_APPLICATION This security objective deals with the security of the resident application

O.CARD_MANAGEMENT
This security objective comes from a security objective for the

operational environment

O.SECURE_COMPARE This security objective is linked to D.ARRAY

O.PATCH_LOADING This security objective is related to patch loading

3.3.3.2 Security Objectives for the Operational Environment

All the security objectives for the operational environment are included in the security target.

Some security objectives for the operational environment has been transformed in security

objectives for the TOE, the rationale is presented in the previous chapter.

3.3.4 SFR and SARs Statements consistency

3.3.4.1 SFRs Consistency

All the SFR from the protection profile have been added in the security target.

The following SFR have been added in the security target:

33 FQR 110 6155 Ed1

Additional SFR for the Card Manager

SFR Rationale

FPT_TST.1 Initial startup test in case of future requirement

FCO_NRO.2/CM_DAP Refinement of the requirements in terms of non-repudiation of the

origin to the Card Manager during the DAP process

FIA_AFL.1/CM Concerns applets composition evaluation

FIA_UAU.1/CM Concerns smartcard product and composition

FIA_UAU.4/CardIssuer Prevents from Card Issuer authentication reuse

FIA_UAU.7/CardIssuer Defines the authentication process

FPR_UNO.1/Key_CM Prevents from observation of import key operation

FPT_TDC.1/CM Technical requirement for communication with another trusted IT

product

FMT_SMR.2/CM Defines several roles

FCS_COP.1/CM Defines the Cryptographic algorithm available to the CM for the Card

Issuer authentication

Additional SFR for the resident application

SFR Rationale

FDP_ACC.2/PP Access control policy during prepersonalisation

FDP_ACF.1/PP Access control functions during prepersonalisation

FDP_UCT.1/PP Precision of the prepersonalisation access control regarding inter-TSF

user data confidentiality transfer protection

FDP_ITC.1/PP Precision of the import of user data during prepersonalisation

FIA_AFL.1/PP Precision of the authentication failures during prepersonalisation

FIA_UAU.1/PP Precision of the user accessible functions before user authentication

during prepersonalisation

FIA_UID.1/PP Precision of the user accessible functions before user identification

during prepersonalisation

FMT_MSA.1/PP Precision of the management of the security attributes during

prepersonalisation

FMT_SMF.1/PP Precision of the specification of the management functions during

prepersonalisation

FIA_ATD.1/CardManu Precision of the user attribute during prepersonalisation

FIA_UAU.4/CardManu Prevents from Card Manufacturer authentication reuse during

prepersonalisation

FIA_UAU.7/CardManu Defines the authentication process of the Card Manufacturer during

prepersonalisation

FMT_MOF.1/PP Management of functions of the TSF during prepersonalisation,

34 FQR 110 6155 Ed1

especially for the resident application

FMT_SMR.2/PP Restrictions on security roles during prepersonalisation

FMT_MSA.3/PP Precision of the security attribute intialization during

prepersonalisation

FCS_COP.1/PP Cryptographic operation available during prepersonalisation

FCS_CKM.4/PP Cryptographic key destruction during prepersonalisation

FDP_UIT.1/PP Ensures the integrity of the patch loaded

FCS_CKM.1/PP Provides the MSK diversification

FTP_ITC.1/PP Defines the trusted channel for the patch and locks loading

FAU_STG.2 Provides the patch identification evidence

Additional SFR for the SmartCard Platform

SFR Rationale

FPT_PHP.3/SCP Additional security features are added in the product, using security

features of the IC

FPT_FLS.1/SCP Technical requirement for composition

FPT_RCV.3/SCP Additional SFR regarding operational objective on the operational

environment transformed in security objectives

FPT_RCV.4/SCP Additional SFR regarding operational objective on the operational

environment transformed in security objectives

FRU_FLT.1/SCP Additional SFR regarding operational objective on the operational

environment transformed in security objectives

FCS_RNG.1/SCP Additional SFR for RNG management

FPR_UNO.1/USE_KEY Additional SFR for the unobservability of keys

FIA_AFL.1/PIN Precision of the authentication failures for the PIN

FMT_MTD.2/GP_PIN Additional SFR for the management of limits on TSF data regarding the

GP PIN

FPR_UNO.1/Applet Additional SFR for the unobservability of array comparison by applets,

regarding D.ARRAY

FMT_MTD.1/PIN Additional SFR for the management of TSF data regarding the PIN

FIA_AFL.1/GP_PIN Precision of the authentication failures for the GP PIN

Additional SFR for the BIO

SFR Rationale

FIA_AFL.1/PIN_BIO Precision of the authentication failures for the PIN BIO

FMT_MTD.1/PIN_BIO Additional SFR for the management of TSF data regarding the PIN BIO

35 FQR 110 6155 Ed1

Additional SFR for the stack control

SFR Rationale

FDP_ACC.2/RV_Stack Access control policy for stack control

FDP_ACF.1/RV_Stack Access control functions for stack control

FMT_MSA.1/RV_Stack Precision of the Stack access control SFP

FMT_MSA.2/RV_Stack Precision of the secure security attributes for stack control

FMT_MSA.3/RV_Stack Precision of the static attribute intialization for stack control

FMT_SMF.1/RV_Stack Specification of management functions for stack control

Additional SFR for the heap access

SFR Rationale

FDP_ACC.2/RV_Heap Access control policy for heap access

FDP_ACF.1/RV_Heap Access control functions for heap access

FMT_MSA.1/RV_Heap Precision of the heap access control SFP

FMT_MSA.2/RV_Heap Precision of the secure security attributes for heap control

FMT_MSA.3/RV_Heap Precision of the static attribute intialization for heap control

FMT_SMF.1/RV_Heap Specification of management functions for heap control

Additional SFR for the transient control

SFR Rationale

FDP_ACC.2/RV_Transient Access control policy for transient control

FDP_ACF.1/RV_Transient Access control functions for transient control

FMT_MSA.1/RV_Transient Precision of the transient access control SFP

FMT_MSA.2/RV_Transient Precision of the secure security attributes for transient control

FMT_MSA.3/RV_Transient Precision of the static attribute intialization for transient control

FMT_SMF.1/RV_Transient Specification of management functions for transient control

36 FQR 110 6155 Ed1

4 Security aspects

This chapter describes the main security issues of the Java Card System and its environment

addressed in this Security Target, called “security aspects”, in a CC-independent way. In addition to

this, they also give a semi-formal framework to express the CC security environment and objectives

of the TOE. They can be instantiated as assumptions, threats, objectives (for the TOE and the

environment) or organizational security policies.

For instance, we will define hereafter the following aspect:

#.OPERATE (1) The TOE must ensure continued correct operation of its security functions. (2)

The TOE must also return to a well-defined valid state before a service request in case of

failure during its operation.

TSFs must be continuously active in one way or another; this is called “OPERATE”. The Security Target

may include an assumption, called “A.OPERATE”, stating that it is assumed that the TOE ensures

continued correct operation of its security functions, and so on. However, it may also include a

threat, called “T.OPERATE”, to be interpreted as the negation of the statement #.OPERATE. In this

example, this amounts to stating that an attacker may try to circumvent some specific TSF by

temporarily shutting it down. The use of “OPERATE” is intended to ease the understanding of this

document.

This section presents security aspects that will be used in the remainder of this document. Some

being quite general, wegive further details, which are numbered for easier cross-reference within the

document. For instance, the two parts of #.OPERATE, when instantiated with an objective

“O.OPERATE”, may be met by separate SFRs in the rationale. The numbering then adds further

details on the relationship between the objective and those SFRs.

4.1 Confidentiality

#.CONFID-APPLI-DATA:

Application data must be protected against unauthorized disclosure. This concerns logical attacks at

runtime in order to gain read access to other application’s data.

#.CONFID-JCS-CODE:

Java Card System code must be protected against unauthorized disclosure. Knowledge of the Java

Card System code may allow bypassing the TSF. This concerns logical attacks at runtime in order to

gain a read access to executable code, typically by executing an application that tries to read the

memory area where a piece of Java Card System code is stored.

#.CONFID-JCS-DATA:

Java Card System data must be protected against unauthorized disclosure. This concerns logical

attacks at runtime in order to gain a read access to Java Card System data. Java Card System data

includes the data managed by the Java Card RE, the Java Card VM and the internal data of Java Card

platform API classes as well.

37 FQR 110 6155 Ed1

4.2 Integrity

#.INTEG-APPLI-CODE:

Application code must be protected against unauthorized modification. This concerns logical attacks

at runtime in order to gain write access to the memory zone where executable code is stored. In

post-issuance application loading, this threat also concerns the modification of application code in

transit to the card.

#.INTEG-APPLI-DATA:

Application data must be protected against unauthorized modification. This concerns logical attacks

at runtime in order to gain unauthorized write access to application data. In post-issuance

application loading, this threat also concerns the modification of application data contained in a

package in transit to the card. For instance, a package contains the values to be used for initializing

the static fields of the package.

#.INTEG-JCS-CODE:

Java Card System code must be protected against unauthorized modification. This concerns logical

attacks at runtime in order to gain write access to executable code.

#.INTEG-JCS-DATA:

Java Card System data must be protected against unauthorized modification. This concerns logical

attacks at runtime in order to gain write access to Java Card System data. Java Card System data

includes the data managed by the Java Card RE, the Java Card VM and the internal data of Java Card

API classes as well.

4.3 Unauthorized executions

#.EXE-APPLI-CODE:

Application (byte)code must beprotected against unauthorized execution. This concerns (1) invoking

a method outside the scope of the accessibility rules provided by the access modifiers of the Java

programming language ([JAVASPEC], §6.6); (2) jumping inside a method fragment or interpreting the

contents of a data memory area as if it was executable code; (3) unauthorized execution of a remote

method from the CAD.

#.EXE-JCS-CODE:

Java Card System bytecode must be protected against unauthorized execution. Java Card System

bytecode includes any code of the Java Card RE or API. This concerns (1) invoking a method outside

the scope of the accessibility rules provided by the access modifiers of the Java programming

language([JAVASPEC], §6.6); (2) jumping inside a method fragment or interpreting the contents of a

data memory area as if it was executable code. Note that execute access to native code of the Java

Card System and applications is the concern of #.NATIVE.

#.FIREWALL:

The Firewall shall ensure controlled sharing of class instances, and isolation of their data and code

between packages (that is, controlled execution contexts) as well as between packages and the JCRE

context. An applet shall not read, write, compare a piece of data belonging to an applet that is not in

the same context, or execute one of the methods of an applet in another context without its

authorization.

#.NATIVE:

38 FQR 110 6155 Ed1

Because the execution of native code is outside of the JCS TSF scope, it must be secured so as to not

provide ways to bypass the TSFs of the JCS. Loading of nativecode, which is as well outside those

TSFs, is submitted to the same requirements. Should native software be privileged in this respect,

exceptions to the policies must include a rationale for the new security framework they introduce.

4.4 Bytecode verification

#.VERIFICATION

Bytecode must be verified prior to being executed. Bytecode verification includes (1) how well-

formed CAP file is and the verification of the typing constraints on the bytecode, (2) binary

compatibility with installed CAP files and the assurance that the export files used to check the CAP

file correspond to those that will be present on the card when loading occurs.

4.4.1 CAP file verification

Bytecode verification includes checking atleast the following properties: (3) bytecodeinstructions

represent a legal set of instructions used on the Java Card platform; (4) adequacy of bytecode

operands to bytecode semantics; (5) absence of operand stack overflow/underflow; (6) control flow

confinement to the current method (that is, no control jumps to outside the method); (7) absence of

illegal data conversion and reference forging; (8) enforcement of the private/public access modifiers

for class and class members; (9) validity of any kind of reference used in the bytecodes (that is, any

pointer to a bytecode, class, method, object, local variable, etc actually points to the beginning of

piece of data of the expected kind); (10) enforcement of rules for binary compatibility (full details are

given in [R8], [R42], [R43]). The actual set of checks performed by the verifier is implementation-

dependent, but shall at least enforce all the “must clauses” imposed in [R8] on the bytecodes and the

correctness of the CAP files’ format.

As most of the actual Java Card VMs do not perform all the required checks at runtime, mainly

because smart cards lack memory and CPU resources, CAP file verification prior to execution is

mandatory. On the other hand, there is no requirement on the precise moment when the verification

shall actually take place, as far as it can be ensured that the verified file is not modified thereafter.

Therefore, the bytecodes can be verified either before the loading of the file on to the card or before

the installation of the file inthe card or before the execution, depending on the card capabilities, in

order to ensurethat each bytecode is valid at execution time. This Security Target assumes bytecode

verification is performed off-card.

Another important aspect to be considered about bytecode verification and application downloading

is, first, the assurance that every package required by the loaded applet is indeed on the card, in a

binary-compatible version (binary compatibility is explained in [R8] §4.4), second, that the export

files used to check and link the loaded applet have the corresponding correct counterpart on the

card.

4.4.2 Integrity and authentication

Verification off-card is useless if the application package is modified afterwards. The usage of

cryptographic certifications coupled with the verifier in a secure module is a simple means to prevent

any attempt of modification between package verification and package installation.

39 FQR 110 6155 Ed1

Once a verification authority has verified the package, it signs it and sends it to the card. Prior to the

installation of the package, the card verifies the signature of the package, which authenticates the

fact that it has been successfully verified. In addition to this, a secured communication channel is

used to communicate itto the card, ensuring that no modification has been performed on it.

Alternatively, the card itself may include a verifier and perform the checks prior to the effective

installation of the applet or provide means for the bytecodes to be verified dynamically.

4.4.3 Linking and authentication

Beyond functional issues, the installer ensures at least a property that matters for security: the

loading order shall guarantee that each newly loaded package references only packages that have

been already loaded on the card. The linker can ensure this property because the Java Card platform

does not support dynamic downloading of classes.

4.5 Card management

#.CARD_MANAGEMENT:

(1) The card manager (CM) shall control the access to card management functions such as the

installation, update or deletion of applets. (2) The card manager shall implement the card issuer’s

policy on the card.

#.INSTALL:

(1) The TOE must be able to return to a safe and consistent state when the installation of a package

oran applet fails or be cancelled (whatever the reasons). (2) Installing an applet must have no effect

on the code and data of already installed applets. The installation procedure should not be used to

bypass the TSFs. In short, it is an atomic operation, free of harmful effects on the state of the other

applets. (3) The procedure of loading and installing a package shall ensure its integrity and

authenticity.

#.SID:

(1) Users and subjects of the TOE must be identified. (2) The identity of sensitive users and subjects

associated with administrative and privileged roles must be particularly protected; this concerns the

Java Card RE, the applets registered on the card, and especially the default applet and the currently

selected applet (and all other active applets in Java Card System 2.2.x). A change of identity,

especially standing for an administrative role (like an applet impersonating the Java Card RE), is a

severe violation of the Security Functional Requirements (SFR). Selection controls the access to any

data exchange between the TOE and the CAD and therefore, must be protected as well. The loading

of a package or any exchange of data through the APDU buffer (which can be accessed by any applet)

can lead to disclosure of keys, application code or data, and so on.

#OBJ-DELETION:

(1) Deallocation of objects shouldnot introduce security holes in the form of references pointingto

memory zones that are not longer in use, or have been reused for other purposes. Deletion of

collection of objects should not bemaliciously used to circumvent the TSFs. (2) Erasure, if deemed

successful, shall ensure that the deleted class instance is no longer accessible.

#DELETION:

40 FQR 110 6155 Ed1

(1) Deletion of installed applets (or packages) should not introduce security holes in the form of

broken references to garbage collected code or data, nor should they alter integrity or confidentiality

of remaining applets. The deletion procedure should not be maliciously used to bypass the TSFs. (2)

Erasure, if deemed successful, shall ensure that any data owned by the deleted applet is no longer

accessible (shared objects shall either prevent deletion or be made inaccessible). A deleted applet

cannot be selected or receive APDU commands. Package deletion shall make the code of the package

no longer available for execution. (3) Power failure or other failures during the process shall be taken

into account in the implementation so as to preserve the SFRs. This does not mandate, however, the

process to be atomic. For instance, an interrupted deletion may result in the loss of user data, as long

as it does not violate the SFRs.

The deletion procedure and its characteristics (whether deletion is either physical or logical, what

happens if the deleted application was the default applet, the order to be observed on the deletion

steps) are implementation-dependent. The only commitment is that deletion shall not jeopardize the

TOE (or its assets) in case of failure (such as power shortage).

Deletion of a single applet instance and deletion of a whole package are functionally different

operations and may obey different security rules. For instance, specific packages can be declared to

be undeletable (for instance, the Java Card API packages), or the dependency between installed

packages may forbid the deletion (like a package using super classes or super interfaces declared in

another package).

4.6 Services

#.ALARM:

The TOE shall provide appropriate feedback upon detection of a potential security violation. This

particularly concerns the type errors detected by the bytecode verifier, the security exceptions

thrown by the Java Card VM, or any other security-related event occurring during the execution of a

TSF.

#.OPERATE:

(1) The TOE must ensure continued correct operation of its security functions. (2) In case of failure

during its operation, the TOE must also return to a well-defined validstate before the next service

request.

#.RESOURCES:

The TOE controls the availability ofresources for the applications and enforces quotas and limitations

in order to prevent unauthorized denial of service or malfunction of the TSFs. This concerns both

execution (dynamic memory allocation) and installation (static memory allocation) of applications

and packages.

#.CIPHER:

The TOE shall provide a means to the applications for ciphering sensitive data, for instance, through a

programming interface to low-level, highly secure cryptographic services. In particular, those services

must support cryptographic algorithms consistent with cryptographic usage policies and standards.

#.KEY-MNGT:

The TOE shall provide a means to securely manage cryptographic keys. This includes: (1) Keys shall be

generated in accordance with specified cryptographic key generation algorithms and specified

cryptographic key sizes, (2) Keys must be distributed in accordance with specified cryptographic key

distribution methods, (3) Keys must be initialized before being used, (4) Keys shall be destroyed in

accordance with specified cryptographic key destruction methods.

41 FQR 110 6155 Ed1

#.PIN-MNGT:

The TOE shall provide a means to securely manage PIN objects. This includes: (1) Atomic update of

PIN value and try counter, (2) No rollback on the PIN-checking function, (3) Keeping the PIN value

(once initialized) secret (forinstance, no clear-PIN-reading function), (4) Enhanced protection of PIN’s

security attributes (state, try counter…) in confidentiality and integrity.

#.SCP:

The smart card platform must be secure with respect to the SFRs. Then: (1) After a power loss, RF

signal loss or sudden card removal prior to completion of some communication protocol, the SCP will

allow the TOE on the next power up to either complete the interrupted operation or revert to a

secure state. (2) It does not allow the SFRs to be bypassed or altered and does not allow access to

other low-level functions thanthose made available by the packages of the Java Card API. That

includes the protection of its private data and code (against disclosure or modification) from the Java

Card System. (3) It provides secure low-level cryptographic processing to the Java Card System. (4) It

supports the needs for any update to a single persistent object or class field to be atomic, and

possibly a low-level transaction mechanism. (5) It allows the Java Card System to store data in

“persistent technology memory” or in volatile memory, depending on its needs (for instance,

transient objects must not be stored in non-volatile memory). The memory model is structured

andallows for low–level control accesses (segmentation fault detection). (6) It safely transmits low–

level exceptions to the TOE (arithmetic exceptions, checksum errors), when applicable. Finally, itis

required that (7) the IC is designed in accordance with a well-defined set of policies and standards

(for instance, those specified in [R24]), and will be tamper resistant to actually prevent an attacker

from extracting or altering security data (like cryptographic keys) by using commonly employed

techniques (physical probing and sophisticated analysis of the chip). This especially matters to the

management (storage and operation) of cryptographic keys.

#.TRANSACTION:

The TOE must provide a means toexecute a set of operations atomically. This mechanism must not

jeopardise the execution of the user applications. The transaction status at the beginning of an

applet session must be closed (no pending updates).

42 FQR 110 6155 Ed1

5 Security Problem Definition

5.1 Assets

Assets are security-relevant elements to be directly protected by the TOE. Confidentiality of assets is

always intended with respect to un-trusted people or software, as various parties are involved during

the first stages of the smart card product life-cycle; details are given in threats hereafter.

Assets may overlap, in the sense that distinct assets may refer (partially or wholly) to the same piece

of information or data. For example, a piece of software may be either a piece of source code (one

asset) or a piece of compiled code (another asset), and may exist in various formats at different

stages of its development (digital supports, printed paper). This separation is motivated by the fact

that a threat may concern one form at one stage, but be meaningless for another form at another

stage.

The assets to be protected by the TOE are listed below. They are grouped according to whether it is

data created by and for the user (User data) or data created by and for the TOE (TSF data). For each

asset it is specified the kind of dangers that weigh on it.

5.1.1 User data

D.APP_CODE

The code of the applets and libraries loaded on the card.

To be protected from unauthorized modification.

D.APP_C_DATA

Confidential sensitive data of the applications, like the data contained in an object, a static field of

a package, a local variable of the currently executed method, or a position of the operand stack.

To be protected from unauthorized disclosure.

D.APP_I_DATA

Integrity sensitive data of the applications, like the data contained in an object, a static field of a

package, a local variable of the currently executed method, or a position of the operand stack.

To be protected from unauthorized modification.

D.APP_KEYs

Cryptographic keys owned by the applets.

To be protected from unauthorized disclosure and modification.

D.PIN

Any end-user's PIN.

To be protected from unauthorized disclosure and modification.

5.1.2 TSF data

D.API_DATA

Private data of the API, like the contents of its private fields.

43 FQR 110 6155 Ed1

To be protected from unauthorized disclosure and modification.

D.CRYPTO

Cryptographic data used in runtime cryptographic computations, like a seed used to generate a

key.

To be protected from unauthorized disclosure and modification.

D.JCS_CODE

The code of the Java Card System.

To be protected from unauthorized disclosure and modification.

D.JCS_DATA

The internal runtime data areas necessary for the execution of the Java Card VM, such as, for

instance, the frame stack, the program counter, the class of an object, the length allocated for an

array, any pointer used to chain data-structures.

To be protected from unauthorized disclosure or modification.

D.SEC_DATA

The runtime security data of the Java Card RE, like, for instance, the AIDs used to identify the

installed applets, the currently selected applet, the current context of execution and the owner of

each object.

To be protected from unauthorized disclosure and modification.

5.1.3 Additional assets

D.CONFIG

The configuration DATA are put at prepersonalisation phase. These elements of configuration

have to be loaded securely. To be protected from unauthorized disclosure or modification.

D.SENSITIVE_DATA

The other sensitive data are grouped in the same D.Sensitive Data. The list is presented below:

o D.NB_AUTHENTIC: Number of authentications. This number is specified in the SFR

o D.NB_REMAINTRYOWN: Number of remaining tries for owner PIN. This number is

specified in the SFR

o D.NB_REMAINTRYGLB: Number of remaining tries for a global PIN. This number is

specified in the SFR

o ASG.CARDREG: Card registry (AS.APID: Applet Identifier (AID), AS.CMID: Card Manager ID

(AID))

o ASG.APPRIV: Applet privileges group (Card Manager lock privilege, Card terminate

privilege, Default selected privilege, PIN change privilege, Security Domain privilege,

Security Domain with DAP verification privilege, Security Domain with Mandated DAP

verification privilege)

o AS.AUTH_MSK_STATUS: Authentication MSK Status

o AS.AUTH_CM_STATUS: Authentication CM Status

o AS.CMLIFECYC: Card life cycle state

o AS.MSKKEY: MSK (Manufacturer Secret Key)

o AS.SECURITY_LEVEL: Security levels of a Secure Channel (Confidentiality, Integrity or

both) To be protected from unauthorized disclosure and modification.

44 FQR 110 6155 Ed1

o D.NB_REMAINTRYOTPINBIO: Number of remaining tries for PIN BIO object. This number

is specified by the applet.

o D.TRESHOLDOTPINBIO: Threshold value used for Match On Card comparison. This value

is specified by the applet.

D.ARRAY

Applets are enabled to store confidential data. To be protected from unauthorized disclosure and

modification.

D.BIO

Any biometric template. To be protected from unauthorized disclosure and modification.

D.JCS_KEYS

AS.KEYSET_VERSION and AS.KEYSET_Value Cryptographic keys used when loading a file into the

card. To be protected from unauthorized disclosure and modification.

5.2 Users / Subjects

5.2.1 Additional Users / Subjects

S.RESIDENT_APPLICATION

The resident application

R.personaliser

Card Issuer or card Manufacturer

R.Prepersonaliser

Card manufacturer

U.Card_Issuer

The Card Issuer is the entity that own the card and is ultimately responsible for the behaviour of

the card. It is initially the only entity authorized to manage applications through a secure

communication channel with the card.

U.Card_Manufacturer

The Card Manufacturer is the entity responsible for producing smart cards on behalf of the Card

Issuer.

5.2.2 Miscellaneous

S.ADEL

The applet deletion manager which also acts on behalf of the card issuer. It may be an applet

([R7], §11), but its role asks anyway for a specific treatment from the security viewpoint. This

subject is unique and is involved in the ADEL security policy defined in §7.1.3.1.

S.APPLET

Any applet instance.

S.BCV

45 FQR 110 6155 Ed1

The bytecode verifier (BCV), which acts on behalf of the verification authority who is in charge of

the bytecode verification of the packages. This subject is involved in the PACKAGE LOADING

security policy

S.CAD

The CAD represents the actor that requests, by issuing commands to the card, for RMI services. It

also plays the role of the off-card entity that communicates with the S.INSTALLER.

S.INSTALLER

The installer is the on-card entity which acts on behalf of the card issuer. This subject is involved

in the loading of packages and installation of applets.

S.JCRE

The runtime environment under which Java programs in a smart card are executed.

S.JCVM

The bytecode interpreter that enforces the firewall at runtime.

S.LOCAL

Operand stack of a JCVM frame, or local variable of a JCVM frame containing an object or an array

of references.

S.MEMBER

Any object's field, static field or array position.

S.PACKAGE

A package is a namespace within the Java programming language that may contain classes and

interfaces, and in the context of Java Card technology, it defines either a user library, or one or

several applets.

S.TOE

Source code.

5.3 Threats

This section introduces the threats to the assets against which specific protection within the TOE or

its environment is required. Several groups of threats are distinguished according to the

configuration chosen for the TOE and the means used in the attack. The classification is also inspired

by the components of the TOE that are supposed to counter each threat.

5.3.1 CONFIDENTIALITY

T.CONFID-APPLI-DATA

The attacker executes an application to disclose data belonging to another application. See

#.CONFID-APPLI-DATA for details.

Directly threatened asset(s): D.APP_C_DATA, D.PIN and D.APP_KEYs, D.BIO.

T.CONFID-JCS-CODE

46 FQR 110 6155 Ed1

The attacker executes an application to disclose the Java Card System code. See #.CONFID-JCS-

CODE for details.

Directly threatened asset(s): D.JCS_CODE.

T.CONFID-JCS-DATA

The attacker executes an application to disclose data belonging to the Java Card System. See

#.CONFID-JCS-DATA for details.

Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA, D.CRYPTO and D.JCS_KEYS.

5.3.2 INTEGRITY

T.INTEG-APPLI-CODE

The attacker executes an application to alter (part of) its own code or another application's code.

See #.INTEG-APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE.

T.INTEG-APPLI-CODE.LOAD

The attacker modifies (part of) its own or another application code when an application package is

transmitted to the card for installation. See #.INTEG-APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE.

T.INTEG-APPLI-DATA

The attacker executes an application to alter (part of) another application's data. See #.INTEG-

APPLI-DATA for details.

Directly threatened asset(s): D.APP_I_DATA, D.PIN, D.BIO and D.APP_KEYs.

T.INTEG-APPLI-DATA.LOAD

The attacker modifies (part of) the initialization data contained in an application package when

the package is transmitted to the card for installation. See #.INTEG-APPLI-DATA for details.

Directly threatened asset(s): D.APP_I_DATA and D_APP_KEY.

T.INTEG-JCS-CODE

The attacker executes an application to alter (part of) the Java Card System code. See #.INTEG-

JCS-CODE for details.

Directly threatened asset(s): D.JCS_CODE.

T.INTEG-JCS-DATA

The attacker executes an application to alter (part of) Java Card System or API data. See #.INTEG-

JCS-DATA for details.

Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA, D.JCS_KEYS and D.CRYPTO.

Other attacks are in general related to one of the above, and aimed at disclosing or modifying on-

card information. Nevertheless, they vary greatly on the employed means and threatened assets, and

are thus covered by quite different objectives in the sequel. That is why a more detailed list is given

hereafter.

5.3.3 IDENTITY USURPATION

T.SID.1

47 FQR 110 6155 Ed1

An applet impersonates another application, or even the Java Card RE, in order to gain illegal

access to some resources of the card or with respect to the end user or the terminal. See #.SID for

details.

Directly threatened asset(s): D.SEC_DATA (other assets may be jeopardized should this attack

succeed, for instance, if the identity of the JCRE is usurped), D.PIN, D.BIO, D.JCS_KEYS and

D.APP_KEYs.

T.SID.2

The attacker modifies the TOE's attribution of a privileged role (e.g. default applet and currently

selected applet), which allows illegal impersonation of this role. See #.SID for further details.

Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized should this attack

succeed, depending on whose identity was forged).

5.3.4 UNAUTHORIZED EXECUTION

T.EXE-CODE.1

An applet performs an unauthorized execution of a method. See #.EXE-JCS-CODE and #.EXE-

APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE.

T.EXE-CODE.2

An applet performs an execution of a method fragment or arbitrary data. See #.EXE-JCS-CODE and

#.EXE-APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE.

T.EXE-CODE-REMOTE

The attacker performs an unauthorized remote execution of a method from the CAD. See #.EXE-

APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE.

Application Note:

This threat concerns version 2.2.x of the Java Card RMI, which allow external users (that is, other

than on-card applets) to trigger the execution of code belonging to an on-card applet. On the

contrary, T.EXE-CODE.1 is restricted to the applets under the TSF.

T.NATIVE

An applet executes a native method to bypass a TOE Security Function such as the firewall. See

#.NATIVE for details.

Directly threatened asset(s): D.JCS_DATA.

5.3.5 DENIAL OF SERVICE

T.RESOURCES

An attacker prevents correct operation of the Java Card System through consumption of some

resources of the card: RAM or NVRAM. See #.RESOURCES for details.

Directly threatened asset(s): D.JCS_DATA.

5.3.6 CARD MANAGEMENT

T.DELETION

48 FQR 110 6155 Ed1

The attacker deletes an applet or a package already in use on the card, or uses the deletion

functions to pave the way for further attacks (putting the TOE in an insecure state). See

#.DELETION for details).

Directly threatened asset(s): D.SEC_DATA and D.APP_CODE.

T.INSTALL

The attacker fraudulently installs post-issuance of an applet on the card. This concerns either the

installation of an unverified applet or an attempt to induce a malfunction in the TOE through the

installation process. See #.INSTALL for details.

Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized should this attack

succeed, depending on the virulence of the installed application).

5.3.7 SERVICES

T.OBJ-DELETION

The attacker keeps a reference to a garbage collected object in order to force the TOE to execute

an unavailable method, to make it to crash, or to gain access to a memory containing data that is

now being used by another application. See #.OBJ-DELETION for further details.

Directly threatened asset(s): D.APP_C_DATA, D.APP_I_DATA and D.APP_KEYs.

5.3.8 MISCELLANEOUS

T.PHYSICAL

The attacker discloses or modifies the design of the TOE, its sensitive data or application code by

physical (opposed to logical) tampering means. This threat includes IC failure analysis, electrical

probing, unexpected tearing, and DPA. That also includes the modification of the runtime

execution of Java Card System or SCP software through alteration of the intended execution order

of (set of) instructions through physical tampering techniques.

This threatens all the identified assets.

This threat refers to the point (7) of the security aspect #.SCP, and all aspects related to

confidentiality and integrity of code and data.

5.3.9 Additional threats

T.CONFIGURATION

The attacker tries to observe or modify configuration information exchanged between the TOE

and its environnment. The TOE in this phase must protect itself from modification or theft. Even

the field is protected by assurance measures, each operations realised in this phase has to be

protected.

T.CONF_DATA_APPLET

The attacker tries to observe the operation of compararison between two byte arrays in order to

catch confidential information manipulated.

T.PATCH_LOADING

The attacker tries to avoid the loading of a genuine patch, alter a patch (during loading or once

loaded), or to exploit the patch loading mechanism to load unauthenticated code on the TOE, in

order to get access to the assets, the TSF data or the TOE user data, or to modify the TSF.

49 FQR 110 6155 Ed1

5.4 Organisational Security Policies

This section describes the organizational security policies to be enforced with respect to the TOE

environment.

OSP.VERIFICATION

This policy shall ensure the consistency between the export files used in the verification and those

used for installing the verified file. The policy must also ensure that no modification of the file is

performed in between its verification and the signing by the verification authority. See

#.VERIFICATION for details. OE.VERIFICATION guarantees the correct integrity and authenticity

evidences for each application, by means of elements provided by OE.CODE-EVIDENCE.

5.5 Assumptions

This section introduces the assumptions made on the environment of the TOE.

Due to the Protection Profile and Security Target definition, T.DELETION replaces A.DELETION as

O.CARD_MANAGEMENT replaces OE.CARD_MANAGEMENT.

A.APPLET

Applets loaded post-issuance do not contain native methods. The Java Card specification explicitly

"does not include support for native methods" ([R8], §3.3) outside the API.

A.VERIFICATION

All the bytecodes are verified at least once, before the loading, before the installation or before

the execution, depending on the card capabilities, in order to ensure that each bytecode is valid at

execution time.

50 FQR 110 6155 Ed1

6 Security Objectives

6.1 Security Objectives for the TOE

This section defines the security objectives to be achieved by the TOE.

6.1.1 IDENTIFICATION

O.SID

The TOE shall uniquely identify every subject (applet, or package) before granting it access to any

service.

6.1.2 EXECUTION

O.FIREWALL

The TOE shall ensure controlled sharing of data containers owned by applets of different packages

or the JCRE and between applets and the TSFs. See #.FIREWALL for details.

O.GLOBAL_ARRAYS_CONFID

The TOE shall ensure that the APDU buffer that is shared by all applications is always cleaned

upon applet selection.

The TOE shall ensure that the global byte array used for the invocation of the install method of

the selected applet is always cleaned after the return from the install method.

O.GLOBAL_ARRAYS_INTEG

The TOE shall ensure that only the currently selected applications may have a write access to the

APDU buffer and the global byte array used for the invocation of the install method of the

selected applet.

O.NATIVE

The only means that the Java Card VM shall provide for an application to execute native code is

the invocation of a method of the Java Card API, or any additional API. See #.NATIVE for details.

O.OPERATE

The TOE must ensure continued correct operation of its security functions. See #.OPERATE for

details.

O.REALLOCATION

The TOE shall ensure that the re-allocation of a memory block for the runtime areas of the Java

Card VM does not disclose any information that was previously stored in that block.

O.RESOURCES

The TOE shall control the availability of resources for the applications. See #.RESOURCES for

details.

6.1.3 SERVICES

O.ALARM

51 FQR 110 6155 Ed1

The TOE shall provide appropriate feedback information upon detection of a potential security

violation. See #.ALARM for details.

O.CIPHER

The TOE shall provide a means to cipher sensitive data for applications in a secure way. In

particular, the TOE must support cryptographic algorithms consistent with cryptographic usage

policies and standards. See #.CIPHER for details.

O.KEY-MNGT

The TOE shall provide a means to securely manage cryptographic keys. This concerns the correct

generation, distribution, access and destruction of cryptographic keys. See #.KEY-MNGT.

O.PIN-MNGT

The TOE shall provide a means to securely manage PIN objects. See #.PIN-MNGT for details.

Application Note:

PIN objects may play key roles in the security architecture of client applications. The way they are

stored and managed in the memory of the smart card must be carefully considered, and this

applies to the whole object rather than the sole value of the PIN. For instance, the try counter's

value is as sensitive as that of the PIN.

O.REMOTE

The TOE shall provide restricted remote access from the CAD to the services implemented by the

applets on the card. This particularly concerns the Java Card RMI services introduced in version

2.2.x of the Java Card platform.

O.TRANSACTION

The TOE must provide a means to execute a set of operations atomically. See #.TRANSACTION for

details.

O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION and O.CIPHER are actually provided to applets in the

form of Java Card APIs. Vendor-specific libraries can also be present on the card and made available

to applets; those may be built on top of the Java Card API or independently. These proprietary

libraries will be evaluated together with the TOE.

6.1.4 OBJECT DELETION

O.OBJ-DELETION

The TOE shall ensure the object deletion shall not break references to objects. See #.OBJ-

DELETION for further details.

6.1.5 APPLET MANAGEMENT

O.DELETION

The TOE shall ensure that both applet and package deletion perform as expected. See #.DELETION

for details.

O.LOAD

The TOE shall ensure that the loading of a package into the card is safe. Besides, for code loaded

post-issuance, the TOE shall verify the integrity and authenticity evidences generated during the

52 FQR 110 6155 Ed1

verification of the application package by the verification authority. This verification by the TOE

shall occur during the loading or later during the install process.

Application Note:

Usurpation of identity resulting from a malicious installation of an applet on the card may also be

the result of perturbing the communication channel linking the CAD and the card. Even if the CAD

is placed in a secure environment, the attacker may try to capture, duplicate, permute or modify

the packages sent to the card. He may also try to send one of its own applications as if it came

from the card issuer. Thus, this objective is intended to ensure the integrity and authenticity of

loaded CAP files.

O.INSTALL

The TOE shall ensure that the installation of an applet performs as expected (See #.INSTALL for

details).

6.1.6 Additional security objectives for the TOE

Four security objectives for the operational environment defined in the PP JCS have been

transformed in security objectives for the TOE:

• OE.SCP.IC

• OE.SCP.SUPPORT

• OE.SCP.RECOVERY

• OE.CARD_MANAGEMENT

O.SCP.SUPPORT

The TOE shall support the following functionalities:

o It does not allow the TSFs to be bypassed or altered and does not allow access to other

low-level functions than those made available by the packages of the API. That includes

the protection of its private data and code (against disclosure or modification) from the

Java Card System.

o It provides secure low-level cryptographic processing to the Java Card System and Global

Platform.

o It supports the needs for any update to a single persistent object or class field to be

atomic, and possibly a low-level transaction mechanism.

o It allows the Java Card System to store data in "persistent technology memory" or in

volatile memory, depending on its needs (for instance, transient objects must not be

stored in non-volatile memory). The memory model is structured and allows for low-level

control accesses (segmentation fault detection).

O.SCP.IC

The SCP shall possess IC security features. It shall provide all IC security features against physical

attacks. It is required that the IC is designed in accordance with a well-defined set of policies and

standards (likely specified in another protection profile), and will be tamper resistant to actually

prevent an attacker from extracting or altering security data (like cryptographic keys) by using

commonly employed techniques (physical probing and sophisticated analysis of the chip). This

especially matters to the management (storage and operation) of cryptographic keys.

O.SCP.RECOVERY

If there is a loss of power, or if the smart card is withdrawn from the CAD while an operation is in

progress, the SCP must allow the TOE to eventually complete the interrupted operation

53 FQR 110 6155 Ed1

successfully, or recover to a consistent and secure state. The smart card platform must be secure

with respect to the SFRs. Then after a power loss or sudden card removal prior to completion of

some communiication protocol, the SCP will allow the TOE on the next power up to either

complete the interrupted operation or revert to a secure state.

O.RESIDENT_APPLICATION

This objective concerns the resident application. It provides a native code application, with a basic

main dispatcher to receive card commands and dispatch them to the application and module

functions that implement the application commands. It also deals with the Card Manufacturer

authentication and logical channels management. The dispatcher is always activated. Some card

commands (for administration) are only available during prepersonalisation phase. It ensures the

personaliser authentication before allowing operations in writing of the resident application.

O.CARD_MANAGEMENT

The card manager shall control the access to card management functions such as the installation,

update or deletion of applets. It shall also implement the card issuer's policy on the card.

The card manager is an application with specific rights, which is responsible for the administration

of the smart card. This component will in practice be tightly connected with the TOE, which in

turn shall very likely rely on the card manager for the effective enforcing of some of its security

functions. Typically the card manager shall be in charge of the life cycle of the whole card, as well

as that of the installed applications (applets). The card manager should prevent that card content

management (loading, installation, deletion) is carried out, for instance, at invalid states of the

card or by non-authorized actors. It shall also enforce security policies established by the card

issuer.

O.SECURE_COMPARE

The TOE shall provide to applet a means to securely compare two byte arrays.

O.PATCH_LOADING

 The TOE shall provide a secure patch code loading mechanism.

6.2 Security objectives for the Operational Environment

This section introduces the security objectives to be achieved by the environment.

Four security objectives for the operational environment from the PP JCS have been transformed in

security objectives for the TOE:

• OE.SCP.SUPPORT

• OE.SCP.IC

• OE.SCP.RECOVERY

• OE.CARD_MANAGEMENT

OE.APPLET

No applet loaded post-issuance shall contain native methods.

OE.VERIFICATION

All the bytecodes shall be verified at least once, before the loading, before the installation or

before the execution, depending on the card capabilities, in order to ensure that each bytecode is

valid at execution time. See #.VERIFICATION for details. Additionally, the applet shall follow all the

54 FQR 110 6155 Ed1

recommendations, if any, mandated in the platform guidance for maintaining the isolation

property of the platform. The list of applications embedded in the product is defined in the

following document: [R32]

Application Note:

Constraints to maintain the isolation property of the platform are provided by the platform

developer in application development guidance. The constraints apply to all application code

loaded in the platform.

OE.CODE-EVIDENCE

For application code loaded pre-issuance, evaluated technical measures implemented by the TOE

or audited organizational measures must ensure that loaded application has not been changed

since the code verifications required in OE.VERIFICATION. For application code loaded post-

issuance and verified off-card according to the requirements of OE.VERIFICATION, the verification

authority shall provide digital evidence to the TOE that the application code has not been

modified after the code verification and that he is the actor who performed code verification. For

application code loaded post-issuance and partially or entirely verified on-card, technical

measures must ensure that the verification required in OE.VERIFICATION are performed. On-card

bytecode verifier is out of the scope of this Security Target.

55 FQR 110 6155 Ed1

7 Extended Requirements

7.1 Extended Families

7.1.1 Extended Family FCS_RNG - FCS_RNG: Random Number Generation

7.1.1.1 Description

This family defines quality requirements for the generation of random numbers which are intended

to be used for cryptographic purposes.

7.1.1.2 Extended Components

7.1.1.2.1 Extended Component FCS_RNG.1

Description

A physical random number generator (RNG) produces the random number by a noise source based

on physical random processes. A non-physical true RNG uses a noise source based on non-physical

random processes like human interaction (key strokes, mouse movement). A deterministic RNG uses

a random seed to produce a pseudorandom output. A hybrid RNG combines the principles of physical

and deterministic RNGs.

Family behaviour:

This family defines quality requirements for the generation of random numbers which are intended

to be use for cryptographic purposes.

Component levelling:

Generation of random numbers requires that random numbers meet a defined quality metric.

Management:

There are no management activities foreseen

Audit:

There are no actions defined to be auditable

Hierarchical to:

No other components

Definition

56 FQR 110 6155 Ed1

FCS_RNG.1 Random Number Generation

FCS_RNG.1.1 The TSF shall provide a [selection: physical, non-physical true, deterministic hybrid]

random number generator that implements: [assignment: list of security capabilities].

FCS_RNG.1.2 The TSF shall provide random numbers that meet [assignment: a defined quality

metric].

 Dependencies: No dependencies.

57 FQR 110 6155 Ed1

8 Security Requirements

8.1 Security Functional Requirements

This section states the security functional requirements for the Java Card System - Open

configuration. For readability and for compatibility with the original Java Card System Protection

Profile Collection - Standard 2.2 Configuration [R45], requirements are arranged into groups. All the

groups defined in the table below apply to this Security Target.

Group Description

Core with

Logical Channels

(CoreG_LC)

The CoreG_LC contains the requirements concerning the runtime environment of

the Java Card System implementing logical channels. This includes the firewall

policy and the requirements related to the Java Card API. Logical channels are a

Java Card specification version 2.2 feature. This group is the union of requirements

from the Core (CoreG) and the Logical channels (LCG) groups defined in [R44] (cf.

Java Card System Protection Profile Collection [R44]).

Installation

(InstG)

The InstG contains the security requirements concerning the installation of post-

issuance applications. It does not address card management issues in the broad

sense, but only those security aspects of the installation procedure that are related

to applet execution.

Applet deletion

(ADELG)

The ADELG contains the security requirements for erasing installed applets from

the card, a feature introduced in Java Card specification version 2.2.

Remote Method

Invocation (RMI)

The RMIG contains the security requirements for the remote method invocation

feature, which provides a new protocol of communication between the terminal

and the applets. This was introduced in Java Card specification version 2.2.

Object deletion

(ODELG)

The ODELG contains the security requirements for the object deletion capability.

This provides a safe memory recovering mechanism. This is a Java Card

specification version 2.2 feature.

Secure carrier

(CarG)

The CarG group contains minimal requirements for secure downloading of

applications on the card. This group contains the security requirements for

preventing, in those configurations that do not support on-card static or dynamic

bytecode verification, the installation of a package that has not been bytecode

verified, or that has been modified after bytecode verification.

Subjects are active components of the TOE that (essentially) act on the behalf of users. The users of

the TOE include people or institutions (like the applet developer, the card issuer, the verification

authority), hardware (like the CAD where the card is inserted or the PCD) and software components

(like the application packages installed on the card). Some of the users may just be aliases for other

users. For instance, the verification authority in charge of the bytecode verification of the

applications may be just an alias for the card issuer.

Objects (prefixed with an "O") are described in the following table:

Object Description

58 FQR 110 6155 Ed1

O.APPLET Any installed applet, its code and data

O.CODE_PKG The code of a package, including all linking information. On the Java Card

platform, a package is the installation unit

O.JAVAOBJECT Java class instance or array. It should be noticed that KEYS, PIN, arrays and applet

instances are specific objects in the Java programming language

O.REMOTE_MTHD A method of a remote interface

O.REMOTE_OBJ A remote object is an instance of a class that implements one (or more) remote

interfaces. A remote interface is one that extends, directly or indirectly, the

interface java.rmi.Remote ([R6])

O.RMI_SERVICE These are instances of the class javacardx.rmi.RMIService. They are the objects

that actually process the RMI services.

O.ROR A remote object reference. It provides information concerning: (i) the

identification of a remote object and (ii) the Implementation class of the object or

the interfaces implemented by the class of the object. This is the object's

information to which the CAD can access

Information (prefixed with an "I") is described in the following table:

Information Description

I.APDU Any APDU sent to or from the card through the communication channel.

I.DATA JCVM Reference Data: objectref addresses of APDU buffer, JCRE-owned instances of

APDU class and byte array for install method.

I.RORD Remote object reference descriptors which provide information concerning: (i) the

identification of the remote object and (ii) the implementation class of the object or the

interfaces implemented by the class of the object. The descriptor is the only object's

information to which the CAD can access.

59 FQR 110 6155 Ed1

Security attributes linked to these subjects, objects and information are described in the following

table with their values:

Security

attribute

Description/Value

Active Applets The set of the active applets' AIDs. An active applet is an applet that is selected on at

least one of the logical channels.

Applet

Selection

Status

"Selected" or "Deselected".

Applet's

version

number

The version number of an applet (package) indicated in the export file.

Class Identifies the implementation class of the remote object.

Context Package AID or "Java Card RE".

COD Context

attribute

Delimits the space occupied in volatile memory by the data of the

CLEAR_ON_DESELECT transient arrays of a package

COR Context

attribute

Delimits the space occupied in volatile memory by the data of the CLEAR_ON_RESET

transient arrays of a package

Current Frame

Context

The lower and upper Boundary of the local variables area on the stack frame for a

method and the lower and upper Boundary of the operand stack area on the stack

frame for a method

Currently

Active Context

Package AID or "Java Card RE".

Dependent

package AID

Allows the retrieval of the Package AID and Applet's version number ([R8], §4.5.2).

ExportedInfo Boolean (indicates whether the remote object is exportable or not).

Identifier The Identifier of a remote object or method is a number that uniquely identifies the

remote object or method, respectively.

LC Selection

Status

Multiselectable, Non-multiselectable or "None".

LifeTime CLEAR_ON_DESELECT or PERSISTENT or CLEAR_ON_RESET

Object

Boundary

Delimits the space occupied by an object in the heap

Owner The Owner of an object is either the applet instance that created the object or the

package (library) where it has been defined (these latter objects can only be arrays

that initialize static fields of the package). The owner of a remote object is the

applet instance that created the object.

Package AID The AID of each package indicated in the export file.

Package

Boundary

Delimits the space occupied by the code and the static fields of a package

60 FQR 110 6155 Ed1

Security

attribute

Description/Value

Program

Counter

Position of the next Bytecode to execute

Registered

Applets

The set of AID of the applet instances registered on the card.

Remote An object is Remote if it is an instance of a class that directly or indirectly

implements the interface java.rmi.Remote.

Resident

Packages

The set of AIDs of the packages already loaded on the card.

Returned

References

The set of remote object references that have been sent to the CAD during the

applet selection session. This attribute is implementation dependent.

Selected Applet

Context

Package AID or "None".

Sharing Standards, SIO, Java Card RE entry point or global array.

Stack Pointer Position of the next free slot in the stack

Static Fields Static fields of a package

Static

References

Static fields of a package may contain references to objects. The Static References

attribute records those references.

Operations (prefixed with "OP") are described in the following table. Each operation has parameters

given between brackets, among which there is the "accessed object", the first one, when applicable.

Parameters may be seen as security attributes that are under the control of the subject performing

the operation.

Operation Description

OP.ARRAY_ACCESS

(O.JAVAOBJECT, field)

Read/Write an array component.

OP.CREATE (Sharing, LifeTime) Creation of an object (new or makeTransient call).

OP.DELETE_APPLET (O.APPLET,...) Delete an installed applet and its objects, either logically or

physically.

OP.DELETE_PCKG (

O.CODE_PKG,...)

Delete a package, either logically or physically.

OP.DELETE_PCKG_APPLET

(O.CODE_PKG,...)

Delete a package and its installed applets, either logically or

physically.

OP.FLOW (O.CODE_PKG) Any operation that modify the execution flow

OP.GET_ROR (O.APPLET,...) Retrieves the initial remote object reference of a RMI based

applet. This reference is the seed which the CAD client

application needs to begin remote method invocations.

OP.IMPORT_KEY Import of the keys

61 FQR 110 6155 Ed1

Operation Description

OP.INSTANCE_FIELD

(O.JAVAOBJECT, field)

Read/Write a field of an instance of a class in the Java

programming language.

OP.INVK_INTERFACE

(O.JAVAOBJECT, method, arg1,...)

Invoke an interface method.

OP.INVK_VIRTUAL

(O.JAVAOBJECT, method, arg1,...)

Invoke a virtual method (either on a class instance or an array

object).

OP.INVOKE (O.RMI_SERVICE,...) Requests a remote method invocation on the remote object.

OP.JAVA (...) Any access in the sense of [R7], §6.2.8. It stands for one of the

operations OP.ARRAY_ACCESS, OP.INSTANCE_FIELD,

OP.INVK_VIRTUAL, OP.INVK_INTERFACE, OP.THROW,

OP.TYPE_ACCESS.

OP.LOCAL_STACK_ACCESS (...) Any operation that read or write the local stack

OP.OPERAND_STACK_ACCESS (...) Any operation that push or pop items on the operand stack

OP.PUT (S1,S2,I) Transfer a piece of information I from S1 to S2.

OP.RET_RORD

(S.JCRE,S.CAD,I.RORD)

Send a remote object reference descriptor to the CAD.

OP.STATIC_FIELD (O.CODE_PKG,

field)

Read/Write a static field of a class in the JAVA prgramming

language

OP.THROW (O.JAVAOBJECT) Throwing of an object (athrow, see [R7], §6.2.8.7).

OP.TYPE_ACCESS (O.JAVAOBJECT,

class)

Invoke checkcast or instanceof on an object in order to access to

classes (standard or shareable interfaces objects).

Cardholder Authentication Authentication of the cardholder

U.Card_Issuer authentication Authentication of U.Card_Issuer

8.1.1 CoreG_LC Security Functional Requirements

This group is focused on the main security policy of the Java Card System, known as the firewall.

8.1.1.1 Firewall Policy

FDP_ACC.2/FIREWALL Complete access control

FDP_ACC.2.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP on S.PACKAGE,

S.JCRE, S.JCVM, O.JAVAOBJECT and all operations among subjects and objects covered by the

SFP.

Refinement:

The operations involved in the policy are:

o OP.CREATE,

o OP.INVK_INTERFACE,

62 FQR 110 6155 Ed1

o OP.INVK_VIRTUAL,

o OP.JAVA,

o OP.THROW,

o OP.TYPE_ACCESS.

FDP_ACC.2.2/FIREWALL The TSF shall ensure that all operations between any subject controlled by

the TSF and any object controlled by the TSF are covered by an access control SFP.

Application Note:

It should be noticed that accessing array's components of a static array, and more generally fields

and methods of static objects, is an access to the corresponding O.JAVAOBJECT.

FDP_ACF.1/FIREWALL Security attribute based access control

FDP_ACF.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to objects based on

the following:

Subject/Object Security attributes

S.PACKAGE LC Selection Status

S.JCVM Active Applets, Currently Active Context

S.JCRE Selected Applet Context

O.JAVAOBJECT Sharing, Context, LifeTime

.

FDP_ACF.1.2/FIREWALL The TSF shall enforce the following rules to determine if an operation among

controlled subjects and controlled objects is allowed:

o R.JAVA.1 ([R7], §6.2.8): S.PACKAGE may freely perform OP.ARRAY_ACCESS,

OP.INSTANCE_FIELD, OP.INVK_VIRTUAL, OP.INVK_INTERFACE, OP.THROW or

OP.TYPE_ACCESS upon any O.JAVAOBJECT whose Sharing attribute has value "JCRE

entry point" or "global array".

o R.JAVA.2 ([R7], §6.2.8): S.PACKAGE may freely perform OP.ARRAY_ACCESS,

OP.INSTANCE_FIELD, OP.INVK_VIRTUAL, OP.INVK_INTERFACE or OP.THROW upon any

O.JAVAOBJECT whose Sharing attribute has value "Standard" and whose Lifetime

attribute has value "PERSISTENT" only if O.JAVAOBJECT's Context attribute has the

same value as the active context.

o R.JAVA.3 ([R7], §6.2.8.10): S.PACKAGE may perform OP.TYPE_ACCESS upon an

O.JAVAOBJECT whose Sharing attribute has value "SIO" only if O.JAVAOBJECT is being

cast into (checkcast) or is being verified as being an instance of (instanceof) an

interface that extends the Shareable interface.

o R.JAVA.4 ([R7], §6.2.8.6): S.PACKAGE may perform OP.INVK_INTERFACE upon an

O.JAVAOBJECT whose Sharing attribute has the value "SIO", and whose Context

attribute has the value "Package AID", only if the invoked interface method extends

the Shareable interface and one of the following conditions applies:

� a) The value of the attribute Selection Status of the package whose AID is "Package

AID" is "Multiselectable",

63 FQR 110 6155 Ed1

� b) The value of the attribute Selection Status of the package whose AID is "Package

AID" is "Non-multiselectable", and either "Package AID" is the value of the currently

selected applet or otherwise "Package AID" does not occur in the attribute Active

Applets.

o R.JAVA.5: S.PACKAGE may perform OP.CREATE only if the value of the Sharing

parameter is "Standard".

FDP_ACF.1.3/FIREWALL The TSF shall explicitly authorise access of subjects to objects based on the

following additional rules:

o 1) The subject S.JCRE can freely perform OP.JAVA(") and OP.CREATE, with the

exception given in FDP_ACF.1.4/FIREWALL, provided it is the Currently Active Context.

o 2) The only means that the subject S.JCVM shall provide for an application to execute

native code is the invocation of a Java Card API method (through OP.INVK_INTERFACE

or OP.INVK_VIRTUAL).

FDP_ACF.1.4/FIREWALL The TSF shall explicitly deny access of subjects to objects based on the

following additional rules:

o 1) Any subject with OP.JAVA upon an O.JAVAOBJECT whose LifeTime attribute has

value "CLEAR_ON_DESELECT" if O.JAVAOBJECT's Context attribute is not the same as

the Selected Applet Context.

o 2) Any subject attempting to create an object by the means of OP.CREATE and a

"CLEAR_ON_DESELECT" LifeTime parameter if the active context is not the same as the

Selected Applet Context.

FDP_IFC.1/JCVM Subset information flow control

FDP_IFC.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP on S.JCVM,

S.LOCAL, S.MEMBER, I.DATA and OP.PUT(S1, S2, I).

FDP_IFF.1/JCVM Simple security attributes

FDP_IFF.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP based on the

following types of subject and information security attributes:

Subjects Security attributes

S.JCVM Currently Active Context

.

FDP_IFF.1.2/JCVM The TSF shall permit an information flow between a controlled subject and

controlled information via a controlled operation if the following rules hold:

o An operation OP.PUT(S1, S.MEMBER, I.DATA) is allowed if and only if the Currently

Active Context is "Java Card RE";

o other OP.PUT operations are allowed regardless of the Currently Active Context's

value.

FDP_IFF.1.3/JCVM The TSF shall enforce the none.

64 FQR 110 6155 Ed1

FDP_IFF.1.4/JCVM The TSF shall explicitly authorise an information flow based on the following rules:

none.

FDP_IFF.1.5/JCVM The TSF shall explicitly deny an information flow based on the following rules:

none.

FDP_RIP.1/OBJECTS Subset residual information protection

FDP_RIP.1.1/OBJECTS The TSF shall ensure that any previous information content of a resource is

made unavailable upon the allocation of the resource to the following objects: class instances

and arrays.

FMT_MSA.1/JCRE Management of security attributes

FMT_MSA.1.1/JCRE The TSF shall enforce the FIREWALL access control SFP to restrict the ability to

modify the security attributes Selected Applet Context to the Java Card RE.

FMT_MSA.1/JCVM Management of security attributes

FMT_MSA.1.1/JCVM The TSF shall enforce the FIREWALL access control SFP and the JCVM

information flow control SFP to restrict the ability to modify the security attributes Currently

Active Context and Active Applets to the Java Card VM (S.JCVM).

FMT_MSA.2/FIREWALL_JCVM Secure security attributes

FMT_MSA.2.1/FIREWALL_JCVM The TSF shall ensure that only secure values are accepted for all the

security attributes of subjects and objects defined in the FIREWALL access control SFP and the

JCVM information flow control SFP.

FMT_MSA.3/FIREWALL Static attribute initialisation

FMT_MSA.3.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to provide

restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/FIREWALL [Editorially Refined] The TSF shall not allow any role to specify alternative

initial values to override the default values when an object or information is created.

65 FQR 110 6155 Ed1

FMT_MSA.3/JCVM Static attribute initialisation

FMT_MSA.3.1/JCVM The TSF shall enforce the JCVM information flow control SFP to provide

restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/JCVM [Editorially Refined] The TSF shall not allow any role to specify alternative

initial values to override the default values when an object or information is created.

FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions:

o modify the Currently Active Context, the Selected Applet Context and the Active

Applets.

FMT_SMR.1 Security roles

FMT_SMR.1.1 The TSF shall maintain the roles:

o Java Card RE (JCRE),

o Java Card VM (JCVM).

FMT_SMR.1.2 The TSF shall be able to associate users with roles.

8.1.1.2 Application Programming Interface

The following SFRs are related to the Java Card API.

The whole set of cryptographic algorithms is generally not implemented because of limited memory

resources and/or limitations due to exportation. Therefore, the following requirements only apply to

the implemented subset.

It should be noticed that the execution of the additional native code is not within the TSF.

Nevertheless, access to API native methods from the Java Card System is controlled by TSF because

there is no difference between native and interpreted methods in their interface or invocation

mechanism.

FCS_CKM.1 Cryptographic key generation

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified cryptographic

key generation algorithm see table below and specified cryptographic key sizes see table below

that meet the following: see table below:

Cryptographic key generation

algorithm

Cryptographic key size List of standards

TDES 112 bits or 168 bits FIPS PUB 46-3 (ANSI

X3.92),

66 FQR 110 6155 Ed1

FIPS PUB 81

ECKeyP from 160 to 521 bits IEEE Std 1363a-2004

[R27]

RSA from 64 to 2048 bits with a step of

32-bit

ANSI X9.31

AES from 128 to 256 bits with a step of 64

bits

FIPS PUB 197

GP Keys - TDES (ECB) 112 bits GP2.1

GP Keys – AES (ECB) 128, 192, 256 bits GP2.1

GP Keys – AES (ECB) 128 bits Proprietary SCPF3

.

FCS_CKM.2 Cryptographic key distribution

FCS_CKM.2.1 The TSF shall distribute cryptographic keys in accordance with a specified cryptographic

key distribution method setKey that meets the following: Java Card API [R6] specification and

setEncKey/setMacKey in the class ISOSecureMessaging (Package

"com.oberthurcs.javacard.utilSM").

FCS_CKM.3 Cryptographic key access

FCS_CKM.3.1 The TSF shall perform the following types of cryptographic key access in accordance

with a specified cryptographic key access method see refinement below that meets the following:

o Packages "javacard.security" and "javacard.crypto"

o Package "com.oberthurcs.javacard.utilSM"

o Package "org.Global Platform"

o "Java Card JCRE" specification [JCRE]

o "Global Platform Card 2.2" specification [R12]

o "Java Card API" specification [R6].

Refinement:

Type of cryptographic key access Cryptographic key access methods (or commands)

DES

The following commands: PUT_KEY, EXTERNAL AUTHENTICATE, INITIALIZE UPDATE. The following

SecureChannel key access methods Unwrap, wrap, decryptData, encryptData, resetSecurity The

following ISOSecureMessaging key access methods reset, setEncKey, setKeyFormat, setMacKey,

unwrap_LDS, wrap_LDS, wrapLong, wrapLongFinal, wrapLongInit, wrapSW_LDS, setKeyFormat

The following "APICrypto" key access methods: Key.clearKey, DES.getKey, DES.setKey,

Signature.init, Signature.update, Signature.sign, Signature.verify, Cipher.init, Cipher.update,

Cipher.doFinal

AES

The following commands: PUT_KEY, EXTERNAL AUTHENTICATE, INITIALIZE UPDATE, The following

"ProviderSecurityDomain" key access methods: decryptVerifyKey, openSecureChannel, unwrap,

67 FQR 110 6155 Ed1

verifyExternalAuthenticate The following SecureChannel key access methods Unwrap, wrap,

decryptData, encryptData, resetSecurity The following ISOSecureMessaging key access methods

reset, setEncKey, setKeyFormat, setMacKey, unwrap_LDS, wrap_LDS, wrapLong, wrapLongFinal,

wrapLongInit, wrapSW_LDS, setKeyFormat The following "APICrypto" key access methods:

Key.clearKey, AES.getKey, AES.setKey, Signature.init, Signature.update, Signature.sign,

Signature.verify, Cipher.init, Cipher.update, Cipher.doFinal

RSA

The following commands: PUT_KEY, LOAD The following "ProviderSecurityDomain" key access

methods: DecryptVerifyKey, The following "APICrypto" key access methods: Key.clearKey,

RSAPrivateCRTKey.setP, RSAPrivateCRTKey.setQ, RSAPrivateCRTKey.setPQ,

RSAPrivateCRTKey.setDP1, RSAPrivateCRTKey.setDQ1, RSAPrivateCRTKey.getP,

RSAPrivateCRTKey.getQ, RSAPrivateCRTKey.getPQ, RSAPrivateCRTKey.getDP1,

RSAPrivateCRTKey.getDQ1, RSAPrivateKey.setModulus, RSAPrivateKey.setExponent,

RSAPrivateKey.getModulus, RSAPrivateKey.getExponent, RSAPublicKey.setModulus,

RSAPublicKey.setExponent, RSAPublicKey.getModulus, RSAPublicKey.getExponent, Signature.init,

Signature.update, Signature.sign, Signature.verify, Cipher.init, Cipher.update, Cipher.doFinal

ECkeyP

The following "APICrypto" key access methods: Key.clearKey, ECPrivateKey.setFieldFP,

ECPrivateKey.setA, ECPrivateKey.setB, ECPrivateKey.setG, ECPrivateKey.setR, ECPrivateKey.setK,

ECPrivateKey.getField, ECPrivateKey.getA, ECPrivateKey.getB, ECPrivateKey.getG,

ECPrivateKey.getR, ECPrivateKey.getK, ECPrivateKey.setS, ECPrivateKey.getS,

ECPublicKey.setFieldFP, ECPublicKey.setA, ECPublicKey.setB, ECPublicKey.setG,

ECPublicKey.setR,ECPublicKey.setK, ECPublicKey.getField, ECPublicKey.getA, ECPublicKey.getB,

ECPublicKey.getG, ECPublicKey.getR, ECPublicKey.getK, ECPublicKey.setW, ECPublicKey.getW,

Signature.init, Signature.update, Signature.sign, Signature.verify KeyAgreement.init,

KeyAgreement.generateSecret

Application Note:

• The keys can be accessed as specified in [R6] Key class.

• This component shall be instantiated according to the version of the Java Card API applicable

to the security target and the implemented algorithms ([R6]).

FCS_CKM.4 Cryptographic key destruction

FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified cryptographic

key destruction method The keys are reset in accordance with [R6] in class Key with the method

clearKey(). Any access to a cleared key attempting to use it for ciphering or signing shall throw

an exception that meets the following: "Java Card API" specification [R6]. The keys used in class

ISOSecureMessaging (Package "com.oberthurcs.javacard.utilSM") are classes Key that meets

the following: "Java Card API" specification [R6]. The methods 'reset' and 'setKeyFormat' call

the method key.clearKey() for clearing the value of each key.

Application Note:

• The keys are reset as specified in [R6] Key class, with the method clearKey(). Any access to a

cleared key for ciphering or signing shall throw an exception.

• This component shall be instantiated according to the version of the Java Card API applicable

to the security target and the implemented algorithms ([R6]).

68 FQR 110 6155 Ed1

FCS_COP.1 Cryptographic operation

FCS_COP.1.1 The TSF shall perform see table in accordance with a specified cryptographic algorithm

see table and cryptographic key sizes see table that meet the following: see below:

Cryptographic operation Cryptographic

algorithm

Key size List of standards

signature, signature's

verification, encryption

and decryption

DES - TDES 56, 112 or

168 bits

FIPS PUB 46-3, ANSI X3.92, FIPS

PUB 81, ISO/IEC 9797(1999), Data

integrity mechanism [R17]

signature, signature's

verification, encryption

and decryption

AES from 128 to

256 bits with

a step of 64

bits

FIPS PUB 197

SP800-38B (CMAC)

signature, signature's

verification, encryption

and decryption

RSA CRT, RSA SFM from 64 to

2048 bits with

a step of 32-

bit

ANSI X9.31, ISO/IEC 9796-1, annex

A, section A.4 and A.5, and annex

C, PKCS#1

Hash functions SHA-1, SHA-224, SHA-

256, SHA-384 and

SHA-512

no keys Secure Hash Standard, FIPS PUB

180-3

signature, signature's

verification, encryption

and decryption

ECDSA 160 to 521

bits

ANSI X9.62-1998

Key agreement ECDH 160 to 521

bits

BSI TR 03111 v1.11

IEEE P1363

Checksum CRC 16 and 32 bits ISO3309_CRC16

ISO3309_CRC32

Refinement:

TDES (IC)/OT has developed the algorithm using HW DES module/TDES encryption and

decryption/Triple Data Encryption (TDES)/56/112/168-bits/E-D-E triple- encryption

implementation of the Data Encryption Standard, FIPS PUB 46-3, 25 Oct. 1999

SHA /OT has developed the algorithm/Hash function/SHA-1/No cryptographic key/Secure Hash

Standard, Federal Information Processing Standards Publication 180-3, 2008, october

SHA /OT has developed the algorithm/Hash function/SHA-224/No cryptographic key/Secure Hash

Standard, Federal Information Processing Standards Publication 180-3, 2008, october

SHA /OT has developed the algorithm/Hash function/SHA-256/No cryptographic key/Secure Hash

Standard, Federal Information Processing Standards Publication 180-3, 2008, october

SHA /OT has developed the algorithm/Hash function/SHA-384/No cryptographic key/Secure Hash

Standard, Federal Information Processing Standards Publication 180-3, 2008, october

SHA /OT has developed the algorithm/Hash function/SHA-512/No cryptographic key/Secure Hash

Standard, Federal Information Processing Standards Publication 180-3, 2008, october

KG /OT has developed the algorithm using HW PK accelerator/Key Generator//Between 1024 bits

to 2048 bits/

69 FQR 110 6155 Ed1

RSA without CRT /OT has developed the algorithm using HW PK accelerator/Data Encryption and

Decryption/RSA Without CRT Data /Between 1024 bits to 2048 bits/PKCS#1 V2.0; 1st October,

1998

RSA with CRT /OT has developed the algorithm using HW PK accelerator/Data Encryption and

Decryption/RSA With CRT Data /Between 1024 bits and 2048 bits/PKCS#1 V2.0; 1st October, 1998

RNG/OT has developed the algorithm using HW RNG as seed/Random generator//No

cryptographic key/FIPS SP800-90, 2007, March

AES/OT has developed the algorithm/Data encryption / decryption//128/192/256 bits/FIPS PUB

197, 2001, November

Application Note:

• The TOE shall provide a subset of cryptographic operations defined in [R6] (see

javacardx.crypto.Cipher and javacardx.security packages).

• This component shall be instantiated according to the version of the Java Card API applicable

to the security target and the implemented algorithms ([R6]).

FDP_RIP.1/ABORT Subset residual information protection

FDP_RIP.1.1/ABORT The TSF shall ensure that any previous information content of a resource is

made unavailable upon the deallocation of the resource from the following objects: any

reference to an object instance created during an aborted transaction.

Application Note:

The events that provoke the de-allocation of a transient object are described in [R7], §5.1.

FDP_RIP.1/APDU Subset residual information protection

FDP_RIP.1.1/APDU The TSF shall ensure that any previous information content of a resource is made

unavailable upon the allocation of the resource to the following objects: the APDU buffer.

Application Note:

The allocation of a resource to the APDU buffer is typically performed as the result of a call to the

process() method of an applet.

FDP_RIP.1/bArray Subset residual information protection

FDP_RIP.1.1/bArray The TSF shall ensure that any previous information content of a resource is

made unavailable upon the deallocation of the resource from the following objects: the bArray

object.

Application Note:

A resource is allocated to the bArray object when a call to an applet's install() method is performed.

There is no conflict with FDP_ROL.1 here because of the bounds on the rollback mechanism

70 FQR 110 6155 Ed1

(FDP_ROL.1.2/FIREWALL): the scope of the rollback does not extend outside the execution of the

install() method, and the de-allocation occurs precisely right after the return of it.

FDP_RIP.1/KEYS Subset residual information protection

FDP_RIP.1.1/KEYS The TSF shall ensure that any previous information content of a resource is made

unavailable upon the deallocation of the resource from the following objects: the cryptographic

buffer (D.CRYPTO).

Application Note:

• The javacard.security & javacardx.crypto packages do provide secure interfaces to the

cryptographic buffer in a transparent way. See javacard.security.KeyBuilder and Key interface

of [R6].

FDP_RIP.1/TRANSIENT Subset residual information protection

FDP_RIP.1.1/TRANSIENT The TSF shall ensure that any previous information content of a resource is

made unavailable upon the deallocation of the resource from the following objects: any

transient object.

Application Note:

• The events that provoke the de-allocation of any transient object are described in [R7], §5.1.

• The clearing of CLEAR_ON_DESELECT objects is not necessarily performed when the owner of

the objects is deselected. In the presence of multiselectable applet instances,

CLEAR_ON_DESELECT memory segments may be attached to applets that are active in

different logical channels. Multiselectable applet instances within a same package must

share the transient memory segment if they are concurrently active ([R7], §4.2.

FDP_ROL.1/FIREWALL Basic rollback

FDP_ROL.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP and the JCVM

information flow control SFP to permit the rollback of the operations OP.JAVA and OP.CREATE

on the object O.JAVAOBJECT.

FDP_ROL.1.2/FIREWALL The TSF shall permit operations to be rolled back within the scope of a

select(), deselect(), process(), install() or uninstall() call, notwithstanding the restrictions given

in [R7], §7.7, within the bounds of the Commit Capacity ([R7], §7.8), and those described in [R6].

Application Note:

Transactions are a service offered by the APIs to applets. It is also used by some APIs to guarantee

the atomicity of some operation. This mechanism is either implemented in Java Card platform or

relies on the transaction mechanism offered by the underlying platform. Some operations of the API

are not conditionally updated, as documented in [R6] (see for instance, PIN-blocking, PIN-checking,

update of Transient objects).

71 FQR 110 6155 Ed1

8.1.1.3 Card Security Management

FAU_ARP.1 Security alarms

FAU_ARP.1.1 The TSF shall take one of the following actions:

o throw an exception,

o lock the card session,

o reinitialize the Java Card System and its data

upon detection of a potential security violation.

Refinement:

The "potential security violation" stands for one of the following events:

• CAP file inconsistency,

• typing error in the operands of a bytecode,

• applet life cycle inconsistency,

• card tearing (unexpected removal of the Card out of the CAD) and power failure,

• abort of a transaction in an unexpected context,

• violation of the Firewall or JCVM SFPs,

• unavailability of resources,

• array overflow

FDP_SDI.2 Stored data integrity monitoring and action

FDP_SDI.2.1 The TSF shall monitor user data stored in containers controlled by the TSF for integrity

errors on all objects, based on the following attributes: integrityControlledData.

FDP_SDI.2.2 Upon detection of a data integrity error, the TSF shall increase counter of the Killcard

file. If the maximum is reached the killcard is launched.

Application Note:

The following data persistently stored by TOE have the user data attribute "integrityControlledData ":

• PINs (i.e. objects instance of class OwnerPin or subclass of interface PIN)

• Keys (i.e. objects instance of classes implemented the interface Key)

• SecureStores (i.e. objects instance of class SecureStore)

• Packages Java Card

• Patchs

• BIOMETRIC_DATA

72 FQR 110 6155 Ed1

FPR_UNO.1 Unobservability

FPR_UNO.1.1 The TSF shall ensure that any user are unable to observe the operation Cardholder

authentication on D.PIN by no user and no subject.

Application Note:

Although it is not required in [R7] specifications, the non-observability of operations on sensitive

information such as keys appears as impossible to circumvent in the smart card world. The precise

list of operations and objects is left unspecified, but should at least concern secret keys and PIN

codes when they exists on the card, as well as the cryptographic operations and comparisons

performed on them.

FPT_FLS.1 Failure with preservation of secure state

FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of failures occur: those

associated to the potential security violations described in FAU_ARP.1.

Application Note:

The Java Card RE Context is the Current context when the Java Card VM begins running after a card

reset ([R7], §6.2.3) or after a proximity card (PICC) activation sequence ([R7]). Behaviour of the TOE

on power loss and reset is described in [R7], §3.6 and §7.1. Behaviour of the TOE on RF signal loss is

described in [R7], §3.6.1.

FPT_TDC.1 Inter-TSF basic TSF data consistency

FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret the CAP files, the bytecode

and its data arguments when shared between the TSF and another trusted IT product.

FPT_TDC.1.2 The TSF shall use

o the rules defined in [R8] specification,

o the API tokens defined in the export files of reference implementation,

when interpreting the TSF data from another trusted IT product.

Application Note:

Concerning the interpretation of data between the TOE and the underlying Java Card platform, it is

assumed that the TOE is developed consistently with the SCP functions, including memory

management, I/O functions and cryptographic functions.

8.1.1.4 AID Management

73 FQR 110 6155 Ed1

FIA_ATD.1/AID User attribute definition

FIA_ATD.1.1/AID The TSF shall maintain the following list of security attributes belonging to

individual users:

o Package AID,

o Applet's version number,

o Registered applet AID,

o Applet Selection Status ([R8], §6.5).

Refinement:

"Individual users" stand for applets.

FIA_UID.2/AID User identification before any action

FIA_UID.2.1/AID The TSF shall require each user to be successfully identified before allowing any

other TSF-mediated actions on behalf of that user.

Application Note:

• By users here it must be understood the ones associated to the packages (or applets) that act

as subjects of policies. In the Java Card System, every action is always performed by an

identified user interpreted here as the currently selected applet or the package that is the

subject's owner. Means of identification are provided during the loading procedure of the

package and the registration of applet instances.

• The role Java Card RE defined in FMT_SMR.1 is attached to an IT security function rather

than to a "user" of the CC terminology. The Java Card RE does not "identify" itself to the TOE,

but it is part of it.

FIA_USB.1/AID User-subject binding

FIA_USB.1.1/AID The TSF shall associate the following user security attributes with subjects acting on

the behalf of that user: Package AID.

FIA_USB.1.2/AID The TSF shall enforce the following rules on the initial association of user security

attributes with subjects acting on the behalf of users: rules are defined in FDP_ACC.2/Firewall

and FDP_ACF.1/Firewall.

FIA_USB.1.3/AID The TSF shall enforce the following rules governing changes to the user security

attributes associated with subjects acting on the behalf of users: none.

Application Note:

The user is the applet and the subject is the S.PACKAGE. The subject security attribute "Context" shall

hold the user security attribute "package AID".

74 FQR 110 6155 Ed1

FMT_MTD.1/JCRE Management of TSF data

FMT_MTD.1.1/JCRE The TSF shall restrict the ability to modify the list of registered applets' AIDs to

the JCRE.

Application Note:

• The installer and the Java Card RE manage other TSF data such as the applet life cycle or CAP

files, but this management is implementation specific. Objects in the Java programming

language may also try to query AIDs of installed applets through the lookupAID(...) API

method.

• The installer, applet deletion manager or even the card manager may be granted the right to

modify the list of registered applets' AIDs in specific implementations (possibly needed for

installation and deletion; see #.DELETION and #.INSTALL).

FMT_MTD.3/JCRE Secure TSF data

FMT_MTD.3.1/JCRE The TSF shall ensure that only secure values are accepted for the registered

applets' AIDs.

8.1.2 InstG Security Functional Requirements

This group consists of the SFRs related to the installation of the applets, which addresses security

aspects outside the runtime. The installation of applets is a critical phase, which lies partially out of

the Boundary of the firewall, and therefore requires specific treatment. In this PP, loading a package

or installing an applet modeled as importation of user data (that is, user application's data) with its

security attributes (such as the parameters of the applet used in the firewall rules).

FDP_ITC.2/Installer Import of user data with security attributes

FDP_ITC.2.1/Installer The TSF shall enforce the PACKAGE LOADING information flow control SFP

when importing user data, controlled under the SFP, from outside of the TOE.

FDP_ITC.2.2/Installer The TSF shall use the security attributes associated with the imported user

data.

FDP_ITC.2.3/Installer The TSF shall ensure that the protocol used provides for the unambiguous

association between the security attributes and the user data received.

FDP_ITC.2.4/Installer The TSF shall ensure that interpretation of the security attributes of the

imported user data is as intended by the source of the user data.

FDP_ITC.2.5/Installer The TSF shall enforce the following rules when importing user data controlled

under the SFP from outside the TOE:

Package loading is allowed only if, for each dependent package, its AID attribute is equal to a

resident package AID attribute, the major (minor) Version attribute associated to the

75 FQR 110 6155 Ed1

dependent package is lesser than or equal to the major (minor) Version attribute associated to

the resident package ([R8], §4.5.2)..

Application Note:

FDP_ITC.2.1/Installer:

• The most common importation of user data is package loading and applet installation on the

behalf of the installer. Security attributes consist of the shareable flag of the class

component, AID and version numbers of the package, maximal operand stack size and

number of local variables for each method, and export and import components

(accessibility).

FDP_ITC.2.3/Installer:

• The format of the CAP file is precisely defined in [R8] specifications; it contains the user data

(like applet's code and data) and the security attributes altogether. Therefore there is no

association to be carried out elsewhere.

FDP_ITC.2.4/Installer:

• Each package contains a package Version attribute, which is a pair of major and minor

version numbers ([R8], §4.5). With the AID, it describes the package defined in the CAP file.

When an export file is used during preparation of a CAP file, the versions numbers and AIDs

indicated in the export file are recorded in the CAP files ([R8], §4.5.2): the dependent

packages Versions and AIDs attributes allow the retrieval of these identifications.

Implementation-dependent checks may occur on a case-by-case basis to indicate that

package files are binary compatible. However, package files do have "package Version

Numbers" ([R8]) used to indicate binary compatibility or incompatibility between successive

implementations of a package, which obviously directly concern this requirement.

FDP_ITC.2.5/Installer:

• A package may depend on (import or use data from) other packages already installed. This

dependency is explicitly stated in the loaded package in the form of a list of package AIDs.

• The intent of this rule is to ensure the binary compatibility of the package with those already

on the card ([R8], §4.4).

• The installation (the invocation of an applet's install method by the installer) is

implementation dependent ([R7], §11.2).

• Other rules governing the installation of an applet, that is, its registration to make it

SELECTable by giving it a unique AID, are also implementation dependent (see, for example,

[R7], §11).

FMT_SMR.1/Installer Security roles

FMT_SMR.1.1/Installer The TSF shall maintain the roles: S.INSTALLER.

FMT_SMR.1.2/Installer The TSF shall be able to associate users with roles.

76 FQR 110 6155 Ed1

FPT_FLS.1/Installer Failure with preservation of secure state

FPT_FLS.1.1/Installer The TSF shall preserve a secure state when the following types of failures

occur: the installer fails to load/install a package/applet as described in [R7] §11.1.4.

Application Note:

The TOE may provide additional feedback information to the card manager in case of potential

security violations (see FAU_ARP.1).

FPT_RCV.3/Installer Automated recovery without undue loss

FPT_RCV.3.1/Installer When automated recovery from An applet (i.e. a package) is considered as

loaded, once its reference is written in the list of the loaded packages (i.e. instantiated applets).

This is the ultimate stage of the applet/package installation, done when everything has

succeeded before (verification, initialization, object instantiation). If an error occurs before

registration, everything must be rolled back. For package installation, the garbage collector will

automatically remove the package code since we stopped installation before the package

recording. For applet installation, we mainly relies on garbage collector, as it is done for

package, to remove the applet instance and AID objects (since the applet is not on the root of

persistence, these objects are unreachable). On applet installation, its install method is called

which can lead to change the states of the VM objects. To rollback the modifications eventually

made in field of other persistent objects, the installation is surrounded by a transaction (that is

aborted). Finally, we have additional mechanisms to rollback modifications eventually done in

the field of transient arrays since they are not covered but the transaction (volatile data is not

in the scope of Java Card transaction) is not possible, the TSF shall enter a maintenance mode

where the ability to return to a secure state is provided.

FPT_RCV.3.2/Installer For installation of the applet, the TSF shall ensure the return of the TOE to a

secure state using automated procedures.

FPT_RCV.3.3/Installer The functions provided by the TSF to recover from failure or service

discontinuity shall ensure that the secure initial state is restored without exceeding the loss of the

Executable Load File being installed for loss of TSF data or objects under the control of the TSF.

FPT_RCV.3.4/Installer The TSF shall provide the capability to determine the objects that were or

were not capable of being recovered.

Application Note:

FPT_RCV.3.1/Installer:

• This element is not within the scope of the Java Card specification, which only mandates the

behaviour of the Java Card System in good working order. Further details on the

"maintenance mode" shall be provided in specific implementations. The following is an

excerpt from [R2], p298: In this maintenance mode normal operation might be impossible or

severely restricted, as otherwise insecure situations might occur. Typically, only authorised

users should be allowed access to this mode but the real details of who can access this mode

is a function of FMT: Security management. If FMT: Security management does not put any

controls on who can access this mode, then it may be acceptable to allow any user to restore

77 FQR 110 6155 Ed1

the system if the TOE enters such a state. However, in practice, this is probably not desirable

as the user restoring the system has an opportunity to configure the TOE in such a way as to

violate the SFRs.

FPT_RCV.3.2/Installer:

• Should the installer fail during loading/installation of a package/applet, it has to revert to a

"consistent and secure state". The Java Card RE has some clean up duties as well; see [R7],

§11.1.5 for possible scenarios. Precise behaviour is left to implementers. This component

shall include among the listed failures the deletion of a package/applet. See ([R7], 11.3.4) for

possible scenarios. Precise behaviour is left to implementers.

• Other events such as the unexpected tearing of the card, power loss, and so on, are partially

handled by the underlying hardware platform (see [R24]) and, from the TOE's side, by events

"that clear transient objects" and transactional features. See FPT_FLS.1.1,

FDP_RIP.1/TRANSIENT, FDP_RIP.1/ABORT and FDP_ROL.1/FIREWALL.

FPT_RCV.3.3/Installer:

• The quantification is implementation dependent, but some facts can be recalled here. First,

the SCP ensures the atomicity of updates for fields and objects, and a power-failure during a

transaction or the normal runtime does not create the loss of otherwise-permanent data, in

the sense that memory on a smart card is essentially persistent with this respect (EEPROM).

Data stored on the RAM and subject to such failure is intended to have a limited lifetime

anyway (runtime data on the stack, transient objects' contents). According to this, the loss of

data within the TSF scope should be limited to the same restrictions of the transaction

mechanism.

8.1.3 ADELG Security Functional Requirements

This group consists of the SFRs related to the deletion of applets and/or packages, enforcing the

applet deletion manager (ADEL) policy on security aspects outside the runtime. Deletion is a critical

operation and therefore requires specific treatment. This policy is better thought as a frame to be

filled by ST implementers.

FDP_ACC.2/ADEL Complete access control

FDP_ACC.2.1/ADEL The TSF shall enforce the ADEL access control SFP on S.ADEL, S.JCRE, S.JCVM,

O.JAVAOBJECT, O.APPLET and O.CODE_PKG and all operations among subjects and objects

covered by the SFP.

Refinement:

The operations involved in the policy are:

o OP.DELETE_APPLET,

o OP.DELETE_PCKG,

o OP.DELETE_PCKG_APPLET.

FDP_ACC.2.2/ADEL The TSF shall ensure that all operations between any subject controlled by the

TSF and any object controlled by the TSF are covered by an access control SFP.

78 FQR 110 6155 Ed1

FDP_ACF.1/ADEL Security attribute based access control

FDP_ACF.1.1/ADEL The TSF shall enforce the ADEL access control SFP to objects based on the

following:

Subject/Object Attributes

S.JCVM Active Applets

S.JCRE Selected Applet Context, Registered Applets, Resident Packages

O.CODE_PKG Package AID, Dependent Package AID, Static References

O.APPLET Applet Selection Status

O.JAVAOBJECT Owner, Remote

.

FDP_ACF.1.2/ADEL The TSF shall enforce the following rules to determine if an operation among

controlled subjects and controlled objects is allowed:

In the context of this policy, an object O is reachable if and only if one of the following

conditions hold:

o (1) the owner of O is a registered applet instance A (O is reachable from A),

o (2) a static field of a resident package P contains a reference to O (O is reachable from

P),

o (3) there exists a valid remote reference to O (O is remote reachable),

o (4) there exists an object O' that is reachable according to either (1) or (2) or (3) above

and O' contains a reference to O (the reachability status of O is that of O').

The following access control rules determine when an operation among controlled subjects and

objects is allowed by the policy:

o R.JAVA.14 ([R7], §11.3.4.1, Applet Instance Deletion): S.ADEL may perform

OP.DELETE_APPLET upon an O.APPLET only if,

� (1) S.ADEL is currently selected,

� (2) there is no instance in the context of O.APPLET that is active in any logical

channel and

� (3) there is no O.JAVAOBJECT owned by O.APPLET such that either O.JAVAOBJECT is

reachable from an applet instance distinct from O.APPLET, or O.JAVAOBJECT is

reachable from a package P, or ([R7], §8.5) O.JAVAOBJECT is remote reachable.

o R.JAVA.15 ([R7], §11.3.4.1, Multiple Applet Instance Deletion): S.ADEL may perform

OP.DELETE_APPLET upon several O.APPLET only if,

� (1) S.ADEL is currently selected,

� (2) there is no instance of any of the O.APPLET being deleted that is active in any

logical channel and

� (3) there is no O.JAVAOBJECT owned by any of the O.APPLET being deleted such that

either O.JAVAOBJECT is reachable from an applet instance distinct from any of those

O.APPLET, or O.JAVAOBJECT is reachable from a package P, or ([R7], §8.5)

O.JAVAOBJECT is remote reachable.

o R.JAVA.16 ([R7], §11.3.4.2, Applet/Library Package Deletion): S.ADEL may perform

OP.DELETE_PCKG upon an O.CODE_PKG only if,

� (1) S.ADEL is currently selected,

79 FQR 110 6155 Ed1

� (2) no reachable O.JAVAOBJECT, from a package distinct from O.CODE_PKG that is an

instance of a class that belongs to O.CODE_PKG, exists on the card and

� (3) there is no resident package on the card that depends on O.CODE_PKG.

o R.JAVA.17 ([R7], §11.3.4.3, Applet Package and Contained Instances Deletion): S.ADEL

may perform OP.DELETE_PCKG_APPLET upon an O.CODE_PKG only if,

� (1) S.ADEL is currently selected,

� (2) no reachable O.JAVAOBJECT, from a package distinct from O.CODE_PKG, which is

an instance of a class that belongs to O.CODE_PKG exists on the card,

� (3) there is no package loaded on the card that depends on O.CODE_PKG, and

� (4) for every O.APPLET of those being deleted it holds that: (i) there is no instance in

the context of O.APPLET that is active in any logical channel and (ii) there is no

O.JAVAOBJECT owned by O.APPLET such that either O.JAVAOBJECT is reachable from

an applet instance not being deleted, or O.JAVAOBJECT is reachable from a package

not being deleted, or ([R7], §8.5) O.JAVAOBJECT is remote reachable.

FDP_ACF.1.3/ADEL The TSF shall explicitly authorise access of subjects to objects based on the

following additional rules: none.

FDP_ACF.1.4/ADEL [Editorially Refined] The TSF shall explicitly deny access of any subject but

S.ADEL to O.CODE_PKG or O.APPLET for the purpose of deleting them from the card.

Application Note:

FDP_ACF.1.2/ADEL:

• This policy introduces the notion of reachability, which provides a general means to describe

objects that are referenced from a certain applet instance or package.

• S.ADEL calls the "uninstall" method of the applet instance to be deleted, if implemented by

the applet, to inform it of the deletion request. The order in which these calls and the

dependencies checks are performed are out of the scope of this Security Target.

FDP_RIP.1/ADEL Subset residual information protection

FDP_RIP.1.1/ADEL The TSF shall ensure that any previous information content of a resource is made

unavailable upon the deallocation of the resource from the following objects: applet instances

and/or packages when one of the deletion operations in FDP_ACC.2.1/ADEL is performed on

them.

Application Note:

Deleted freed resources (both code and data) may be reused, depending on the way they were

deleted (logically or physically). Requirements on de-allocation during applet/package deletion are

described in [R7], §11.3.4.1, §11.3.4.2 and §11.3.4.3.

80 FQR 110 6155 Ed1

FMT_MSA.1/ADEL Management of security attributes

FMT_MSA.1.1/ADEL The TSF shall enforce the ADEL access control SFP to restrict the ability to

modify the security attributes Registered Applets and Resident Packages to the Java Card RE.

FMT_MSA.3/ADEL Static attribute initialisation

FMT_MSA.3.1/ADEL The TSF shall enforce the ADEL access control SFP to provide restrictive default

values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/ADEL The TSF shall allow the following role(s): none, to specify alternative initial

values to override the default values when an object or information is created.

FMT_SMF.1/ADEL Specification of Management Functions

FMT_SMF.1.1/ADEL The TSF shall be capable of performing the following management functions:

modify the list of registered applets' AIDs and the Resident Packages.

Application Note:

The modification of the Active Applets security attribute should be performed in accordance with the

rules given in [R7], §4.

FMT_SMR.1/ADEL Security roles

FMT_SMR.1.1/ADEL The TSF shall maintain the roles: applet deletion manager.

FMT_SMR.1.2/ADEL The TSF shall be able to associate users with roles.

FPT_FLS.1/ADEL Failure with preservation of secure state

FPT_FLS.1.1/ADEL The TSF shall preserve a secure state when the following types of failures occur:

the applet deletion manager fails to delete a package/applet as described in [R7], §11.3.4.

Application Note:

• The TOE may provide additional feedback information to the card manager in case of a

potential security violation (see FAU_ARP.1).

• The Package/applet instance deletion must be atomic. The "secure state" referred to in the

requirement must comply with Java Card specification ([R7], §11.3.4.)

81 FQR 110 6155 Ed1

8.1.4 RMIG Security Functional Requirements

This group specifies the policies that control the access to the remote objects and the flow of

information that takes place when the RMI service is used. The rules relate mainly to the lifetime of

the remote references. Information concerning remote object references can be sent out of the card

only if the corresponding remote object has been designated as exportable. Array parameters of

remote method invocations must be allocated on the card as global arrays. Therefore, the storage of

references to those arrays must be restricted as well. The JCRMI policy embodies both an access

control and an information flow control policy.

FDP_ACC.2/JCRMI Complete access control

FDP_ACC.2.1/JCRMI The TSF shall enforce the JCRMI access control SFP on S.CAD, S.JCRE, O.APPLET,

O.REMOTE_OBJ, O.REMOTE_MTHD, O.ROR, O.RMI_SERVICE and all operations among subjects

and objects covered by the SFP.

Refinement:

The operations involved in this policy are:

o OP.GET_ROR,

o OP.INVOKE.

FDP_ACC.2.2/JCRMI The TSF shall ensure that all operations between any subject controlled by the

TSF and any object controlled by the TSF are covered by an access control SFP.

FDP_ACF.1/JCRMI Security attribute based access control

FDP_ACF.1.1/JCRMI The TSF shall enforce the JCRMI access control SFP to objects based on the

following:

Subject/Object Attributes

S.JCRE Selected Applet Context

O.REMOTE_OBJ Owner, Class, Identifier, ExportedInfo

O.REMOTE_MTHD Identifier

O.RMI_SERVICE Owner, Returned References

.

FDP_ACF.1.2/JCRMI The TSF shall enforce the following rules to determine if an operation among

controlled subjects and controlled objects is allowed:

o R.JAVA.18: S.CAD may perform OP.GET_ROR upon O.APPLET only if O.APPLET is the

currently selected applet, and there exists an O.RMI_SERVICE with a registered initial

reference to an O.REMOTE_OBJ that is owned by O.APPLET.

o R.JAVA.19: S.JCRE may perform OP.INVOKE upon O.RMI_SERVICE, O.ROR and

O.REMOTE_MTHD only if O.ROR is valid (as defined in [R7], §8.5) and it belongs to the

Returned References of O.RMI_SERVICE, and if the Identifier of O.REMOTE_MTHD

82 FQR 110 6155 Ed1

matches one of the remote methods in the Class of the O.REMOTE_OBJ to which

O.ROR makes reference.

FDP_ACF.1.3/JCRMI The TSF shall explicitly authorise access of subjects to objects based on the

following additional rules: none.

FDP_ACF.1.4/JCRMI [Editorially Refined] The TSF shall explicitly deny access of any subject but

S.JCRE to O.REMOTE_OBJ and O.REMOTE_MTHD for the purpose of performing a remote

method invocation.

Application Note:

FDP_ACF.1.2/JCRMI:

• The validity of a remote object reference is specified as a lifetime characterization. The

security attributes involved in the rules for determining valid remote object references are

the Returned References of the O.RMI_SERVICE and the Active Applets (see

FMT_REV.1.1/JCRMI and FMT_REV.1.2/JCRMI). The precise mechanism by which a remote

method is invoked on a remote object is defined in detail in ([R7], §8.5.2 and [R6]).

• Note that the owner of an O.RMI_SERVICE is the applet instance that created the object. The

attribute Returned References lists the remote object references that have been sent to the

S.CAD during the applet selection session. This attribute is implementation dependent.

FDP_IFC.1/JCRMI Subset information flow control

FDP_IFC.1.1/JCRMI The TSF shall enforce the JCRMI information flow control SFP on S.JCRE, S.CAD,

I.RORD and OP.RET_RORD(S.JCRE,S.CAD,I.RORD).

Application Note:

FDP_IFC.1.1/JCRMI:

• Array parameters of remote method invocations must be allocated on the card as global

arrays objects. References to global arrays cannot be stored in class variables, instance

variables or array components. The control of the flow of that kind of information has

already been specified in FDP_IFC.1.1/JCVM.

• A remote object reference descriptor is sent from the card to the CAD either as the result of

a successful applet selection command ([R7], §8.4.1), and in this case it describes, if any, the

initial remote object reference of the selected applet; or as the result of a remote method

invocation ([R7],§8.3.5.1).

FDP_IFF.1/JCRMI Simple security attributes

FDP_IFF.1.1/JCRMI The TSF shall enforce the JCRMI information flow control SFP based on the

following types of subject and information security attributes:

Subjects/Information Security attributes

I.RORD ExportedInfo

.

83 FQR 110 6155 Ed1

FDP_IFF.1.2/JCRMI The TSF shall permit an information flow between a controlled subject and

controlled information via a controlled operation if the following rules hold:

OP.RET_RORD(S.JCRE, S.CAD, I.RORD) is permitted only if the attribute ExportedInfo of I.RORD

has the value "true" ([R7], §8.5).

FDP_IFF.1.3/JCRMI The TSF shall enforce the none.

FDP_IFF.1.4/JCRMI The TSF shall explicitly authorise an information flow based on the following

rules: none.

FDP_IFF.1.5/JCRMI The TSF shall explicitly deny an information flow based on the following rules: the

rules describing the communication protocol used by the CAD and the card for transmitting a

new package, see chapter 9.3.9 [R9].

Application Note:

The ExportedInfo attribute of I.RORD indicates whether the O.REMOTE_OBJ which I.RORD identifies

is exported or not (as indicated by the security attribute ExportedInfo of the O.REMOTE_OBJ).

FMT_MSA.1/EXPORT Management of security attributes

FMT_MSA.1.1/EXPORT The TSF shall enforce the JCRMI access control SFP to restrict the ability to

modify the security attributes: ExportedInfo of O.REMOTE_OBJ to its owner applet.

Application Note:

The Exported status of a remote object can be modified by invoking its methods export() and

unexport(), and only the owner of the object may perform the invocation without raising a

SecurityException (javacard.framework.service.CardRemoteObject). However, even if the owner of

the object may provoke the change of the security attribute value, the modification itself can be

performed by the Java Card RE.

FMT_MSA.1/REM_REFS Management of security attributes

FMT_MSA.1.1/REM_REFS The TSF shall enforce the JCRMI access control SFP to restrict the ability to

modify the security attributes Returned References of O.RMI_SERVICE to its owner applet.

FMT_MSA.3/JCRMI Static attribute initialisation

FMT_MSA.3.1/JCRMI The TSF shall enforce the JCRMI access control SFP and the JCRMI information

flow control SFP to provide restrictive default values for security attributes that are used to

enforce the SFP.

FMT_MSA.3.2/JCRMI The TSF shall allow the following role(s): none, to specify alternative initial

values to override the default values when an object or information is created.

Application Note:

84 FQR 110 6155 Ed1

FMT_MSA.3.1/JCRMI:

• Remote objects' security attributes are created and initialized at the creation of the object,

and except for the ExportedInfo attribute, the values of the attributes are not longer

modifiable. The default value of the Exported attribute is true. There is one default value for

the Selected Applet Context that is the default applet identifier's context, and one default

value for the active context, that is "Java Card RE".

FMT_MSA.3.2/JCRMI:

• The intent is to have none of the identified roles to have privileges with regards to the

default values of the security attributes. It should be noticed that creation of objects is an

operation controlled by the FIREWALL access control SFP.

FMT_REV.1/JCRMI Revocation

FMT_REV.1.1/JCRMI [Editorially Refined] The TSF shall restrict the ability to revoke the Returned

References of O.RMI_SERVICE to the Java Card RE.

FMT_REV.1.2/JCRMI The TSF shall enforce the rules that determine the lifetime of remote object

references.

Application Note:

The rules are described in [R7], §8.5

FMT_SMF.1/JCRMI Specification of Management Functions

FMT_SMF.1.1/JCRMI The TSF shall be capable of performing the following management functions:

o modify the security attribute ExportedInfo of O.REMOTE_OBJ,

o modify the security attribute Returned References of O.RMI_SERVICE.

FMT_SMR.1/JCRMI Security roles

FMT_SMR.1.1/JCRMI The TSF shall maintain the roles: applet.

FMT_SMR.1.2/JCRMI The TSF shall be able to associate users with roles.

Application Note:

Applets own remote interface objects and may choose to allow or forbid their exportation, which is

managed through a security attribute.

8.1.5 ODELG Security Functional Requirements

The following requirements concern the object deletion mechanism. This mechanism is triggered by

the applet that owns the deleted objects by invoking a specific API method.

85 FQR 110 6155 Ed1

FDP_RIP.1/ODEL Subset residual information protection

FDP_RIP.1.1/ODEL The TSF shall ensure that any previous information content of a resource is made

unavailable upon the deallocation of the resource from the following objects: the objects owned

by the context of an applet instance which triggered the execution of the method

javacard.framework.JCSystem.requestObjectDeletion().

Application Note:

• Freed data resources resulting from the invocation of the method

javacard.framework.JCSystem.requestObjectDeletion() may be reused. Requirements on de-

allocation after the invocation of the method are described in [R6].

• There is no conflict with FDP_ROL.1 here because of the bounds on the rollback mechanism:

the execution of requestObjectDeletion() is not in the scope of the rollback because it must

be performed in between APDU command processing, and therefore no transaction can be in

progress.

FPT_FLS.1/ODEL Failure with preservation of secure state

FPT_FLS.1.1/ODEL The TSF shall preserve a secure state when the following types of failures occur:

the object deletion functions fail to delete all the unreferenced objects owned by the applet

that requested the execution of the method.

Application Note:

The TOE may provide additional feedback information to the card manager in case of potential

security violation (see FAU_ARP.1).

8.1.6 CarG Security Functional Requirements

This group includes requirements for preventing the installation of packages that has not been

bytecode verified, or that has been modified after bytecode verification.

FCO_NRO.2/CM Enforced proof of origin

FCO_NRO.2.1/CM The TSF shall enforce the generation of evidence of origin for transmitted

application packages at all times.

FCO_NRO.2.2/CM [Editorially Refined] The TSF shall be able to relate the identity of the originator

of the information, and the application package contained in the information to which the

evidence applies.

FCO_NRO.2.3/CM The TSF shall provide a capability to verify the evidence of origin of information to

recipient given immediate verification.

Application Note:

FCO_NRO.2.1/CM:

86 FQR 110 6155 Ed1

• Upon reception of a new application package for installation, the card manager shall first

check that it actually comes from the verification authority. The verification authority is the

entity responsible for bytecode verification.

FCO_NRO.2.3/CM:

• The exact limitations on the evidence of origin are implementation dependent. In most of the

implementations, the card manager performs an immediate verification of the origin of the

package using an electronic signature mechanism, and no evidence is kept on the card for

future verifications.

FDP_IFC.2/CM Complete information flow control

FDP_IFC.2.1/CM The TSF shall enforce the PACKAGE LOADING information flow control SFP on

S.INSTALLER, S.BCV, S.CAD and I.APDU and all operations that cause that information to flow to

and from subjects covered by the SFP.

FDP_IFC.2.2/CM The TSF shall ensure that all operations that cause any information in the TOE to

flow to and from any subject in the TOE are covered by an information flow control SFP.

Application Note:

• The subjects covered by this policy are those involved in the loading of an application

package by the card through a potentially unsafe communication channel.

• The operations that make information to flow between the subjects are those enabling to

send a message through and to receive a message from the communication channel linking

the card to the outside world. It is assumed that any message sent through the channel as

clear text can be read by an attacker. Moreover, an attacker may capture any message sent

through the communication channel and send its own messages to the other subjects.

• The information controlled by the policy is the APDUs exchanged by the subjects through the

communication channel linking the card and the CAD. Each of those messages contain part of

an application package that is required to be loaded on the card, as well as any control

information used by the subjects in the communication protocol.

FDP_IFF.1/CM Simple security attributes

FDP_IFF.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow control SFP based

on the following types of subject and information security attributes: LoadFile, Dap.

FDP_IFF.1.2/CM The TSF shall permit an information flow between a controlled subject and

controlled information via a controlled operation if the following rules hold: the rules describing

the communication protocol used by the CAD and the card for transmitting a new package, see

chapter 9.3.9 [R9].

FDP_IFF.1.3/CM The TSF shall enforce the none.

87 FQR 110 6155 Ed1

FDP_IFF.1.4/CM The TSF shall explicitly authorise an information flow based on the following rules:

none.

FDP_IFF.1.5/CM The TSF shall explicitly deny an information flow based on the following rules: the

rules describing the communication protocol used by the CAD and the card for transmitting a

new package, see chapter 9.3.9 [R9].

Application Note:

FDP_IFF.1.1/CM:

• The security attributes used to enforce the PACKAGE LOADING SFP are implementation

dependent. More precisely, they depend on the communication protocol enforced between

the CAD and the card. For instance, some of the attributes that can be used are: (1) the keys

used by the subjects to encrypt/decrypt their messages; (2) the number of pieces the

application package has been split into in order to be sent to the card; (3) the ordinal of each

piece in the decomposition of the package, etc. See for example Appendix D of [R12].

FDP_IFF.1.2/CM:

• The precise set of rules to be enforced by the function is implementation dependent. The

whole exchange of messages shall verify at least the following two rules: (1) the subject

S.INSTALLER shall accept a message only if it comes from the subject S.CAD; (2) the subject

S.INSTALLER shall accept an application package only if it has received without modification

and in the right order all the APDUs sent by the subject S.CAD.

FDP_UIT.1/CM Data exchange integrity

FDP_UIT.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow control SFP to

receive user data in a manner protected from deletion, insertion, replay and modification errors.

FDP_UIT.1.2/CM [Editorially Refined] The TSF shall be able to determine on receipt of user data,

whether modification, deletion, insertion, replay of some of the pieces of the application sent

by the CAD has occurred.

Application Note:

Modification errors should be understood as modification, substitution, unrecoverable ordering

change of data and any other integrity error that may cause the application package to be installed

on the card to be different from the one sent by the CAD.

FIA_UID.1/CM Timing of identification

FIA_UID.1.1/CM The TSF shall allow Execution of Card Manager on behalf of the user to be

performed before the user is identified.

FIA_UID.1.2/CM The TSF shall require each user to be successfully identified before allowing any

other TSF-mediated actions on behalf of that user.

Application Note:

88 FQR 110 6155 Ed1

The list of TSF-mediated actions is implementation-dependent, but package installation requires the

user to be identified. Here by user is meant the one(s) that in the Security Target shall be associated

to the role(s) defined in the component FMT_SMR.1/CM.

FMT_MSA.1/CM Management of security attributes

FMT_MSA.1.1/CM The TSF shall enforce the PACKAGE LOADING information flow control SFP to

restrict the ability to modify the security attributes AS.KEYSET_VERSION, AS.KEYSET_VALUE,

Default SELECTED Privileges, AS.CMLIFECYC to CARD_MANAGER.

FMT_MSA.3/CM Static attribute initialisation

FMT_MSA.3.1/CM The TSF shall enforce the PACKAGE LOADING information flow control SFP to

provide restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/CM The TSF shall allow the Card manager to specify alternative initial values to

override the default values when an object or information is created.

FMT_SMF.1/CM Specification of Management Functions

FMT_SMF.1.1/CM The TSF shall be capable of performing the following management functions:

Modify the following security attributes: AS.KEYSET_VERSION, AS.KEYSET_VALUE, Default

SELECTED Privileges, AS.CMLIFECYC.

FMT_SMR.1/CM Security roles

FMT_SMR.1.1/CM The TSF shall maintain the roles Card manager.

FMT_SMR.1.2/CM The TSF shall be able to associate users with roles.

89 FQR 110 6155 Ed1

FTP_ITC.1/CM Inter-TSF trusted channel

FTP_ITC.1.1/CM The TSF shall provide a communication channel between itself and another trusted

IT product that is logically distinct from other communication channels and provides assured

identification of its end points and protection of the channel data from modification or disclosure.

FTP_ITC.1.2/CM [Editorially Refined] The TSF shall permit the CAD placed in the card issuer secured

environment to initiate communication via the trusted channel.

FTP_ITC.1.3/CM The TSF shall initiate communication via the trusted channel for loading/installing a

new application package on the card.

Application Note:

There is no dynamic package loading on the Java Card platform. New packages can be installed on

the card only on demand of the card issuer.

8.1.6.1 Additional Security Functional Requirements for CM

FPT_TST.1 TSF testing

FPT_TST.1.1 The TSF shall run a suite of self tests during initial start-up to demonstrate the correct

operation of the TSF.

FPT_TST.1.2 The TSF shall provide authorised users with the capability to verify the integrity of TSF

data.

FPT_TST.1.3 The TSF shall provide authorised users with the capability to verify the integrity of

stored TSF executable code.

FCO_NRO.2/CM_DAP Enforced proof of origin

FCO_NRO.2.1/CM_DAP The TSF shall enforce the generation of evidence of origin for transmitted

Loadfile at all times.

FCO_NRO.2.2/CM_DAP The TSF shall be able to relate the AS.KEYSET_VALUE of the originator of the

information, and the CAP file components of the information to which the evidence applies.

FCO_NRO.2.3/CM_DAP The TSF shall provide a capability to verify the evidence of origin of

information to recipient given during CAP file loading.

90 FQR 110 6155 Ed1

FIA_AFL.1/CM Authentication failure handling

FIA_AFL.1.1/CM The TSF shall detect when 1 unsuccessful authentication attempts occur related to

U.Card_Issuer authentication.

FIA_AFL.1.2/CM When the defined number of unsuccessful authentication attempts has been met

and surpassed, the TSF shall slow down exponentially the next authentication.

FIA_UAU.1/CM Timing of authentication

FIA_UAU.1.1/CM The TSF shall allow Get_Data, Initialize_Update, Select on behalf of the user to be

performed before the user is authenticated.

FIA_UAU.1.2/CM The TSF shall require each user to be successfully authenticated before allowing

any other TSF-mediated actions on behalf of that user.

FIA_UAU.4/CardIssuer Single-use authentication mechanisms

FIA_UAU.4.1/CardIssuer The TSF shall prevent reuse of authentication data related to the Card

Issuer authentication mechanism.

FIA_UAU.7/CardIssuer Protected authentication feedback

FIA_UAU.7.1/CardIssuer The TSF shall provide only the result of the authentication (NOK), the key

set version, Secure channel identifier and the card random and the card cryptogram to the user

while the authentication is in progress.

FPR_UNO.1/Key_CM Unobservability

FPR_UNO.1.1/Key_CM The TSF shall ensure that all subjects are unable to observe the operation

OP.IMPORT_KEY on Key by D.JCS_KEYS.

91 FQR 110 6155 Ed1

FPT_TDC.1/CM Inter-TSF basic TSF data consistency

FPT_TDC.1.1/CM The TSF shall provide the capability to consistently interpret AS.KEYSET_VALUE,

Packages when shared between the TSF and another trusted IT product.

FPT_TDC.1.2/CM The TSF shall use the PUT KEY data format when interpreting the TSF data from

another trusted IT product.

FMT_SMR.2/CM Restrictions on security roles

FMT_SMR.2.1/CM The TSF shall maintain the roles: see below.

FMT_SMR.2.2/CM The TSF shall be able to associate users with roles.

FMT_SMR.2.3/CM The TSF shall ensure that the conditions see details below:

Roles Condition for this role

R.personaliser Successful authentication (Card Issuer) using a key set of the Card Manager or

Security Domain associates with CM life cycle phase from OP_READY to SECURED

R.Card_Manager Successful authentication (of Card Issuer) using its key set, with CM life cycle

phase from OP_READY to SECURED

R.Security_Domain Successful authentication (of application provider) using its key set, with CM life

cycle phase different from locked

R.Use_API Successful identification (of Applet), with Applet life cycle phase after

SELECTABLE

R.Applet_privilege have the privilege to modify CM life cycle, ATR, and also Global Pin

are satisfied.

FCS_COP.1/CM Cryptographic operation

FCS_COP.1.1/CM The TSF shall perform see table below in accordance with a specified cryptographic

algorithm see table below and cryptographic key sizes see table below that meet the following:

Cryptographic operation Algorithm Key length Standard

TOE authentication key

ISK/KMC

SCP02 112 bits GP 2.1.1

TOE authentication key

ISK/KMC

SCP03 128/192/256

bits

GP 2.1.1

SCP02 - signature, verification

of signature, encryption and

decryption

TDES 112 bits SCP02 – GP 2.1.1

SCP03 - signature, verification

of signature, encryption and

decryption

AES 128/192/256

bits

SCP03 – GP 2.1.1

92 FQR 110 6155 Ed1

Cryptographic operation Algorithm Key length Standard

SCPF3 - signature, verification

of signature, encryption and

decryption

AES 128 bits Proprietary

.

8.1.6.2 Additional Security Functional Requirements for Resident application

FDP_ACC.2/PP Complete access control

FDP_ACC.2.1/PP The TSF shall enforce the See below on See below and all operations among

subjects and objects covered by the SFP

Access Control

Prepersonalisation Access Control S.Resident application and for all obj

Patch & Locks Loading Access Control S.TOE and for all objects

.

FDP_ACC.2.2/PP The TSF shall ensure that all operations between any subject controlled by the TSF

and any object controlled by the TSF are covered by an access control SFP.

Application note:

This SFR enforces the access control for the patch and locks loading and the ISK loading.

FDP_ACF.1/PP Security attribute based access control

FDP_ACF.1.1/PP The TSF shall enforce the See below to objects based on the following:

Access Control

Prepersonalisation Access Control AS_AUTH_MSK_STATUS

Patch & Locks Loading

Access Control

AS_AUTH_MSK_STATUS

93 FQR 110 6155 Ed1

 .

FDP_ACF.1.2/PP The TSF shall enforce the following rules to determine if an operation among

controlled subjects and controlled objects is allowed: AS.AUTH_MSK_STATUS=TRUE.

FDP_ACF.1.3/PP The TSF shall explicitly authorise access of subjects to objects based on the

following additional rules: none.

FDP_ACF.1.4/PP The TSF shall explicitly deny access of subjects to objects based on the following

additional rules: none.

FDP_UCT.1/PP Basic data exchange confidentiality

FDP_UCT.1.1/PP The TSF shall enforce the Prepersonalisation access control and Patch and Locks

loading access control to receive user data in a manner protected from unauthorised disclosure.

FDP_ITC.1/PP Import of user data without security attributes

FDP_ITC.1.1/PP The TSF shall enforce the Prepersonalisation access control and Patch and Locks

loading access control when importing user data, controlled under the SFP, from outside of the

TOE.

FDP_ITC.1.2/PP The TSF shall ignore any security attributes associated with the user data when

imported from outside the TOE.

FDP_ITC.1.3/PP The TSF shall enforce the following rules when importing user data controlled under

the SFP from outside the TOE: none.

FIA_AFL.1/PP Authentication failure handling

FIA_AFL.1.1/PP The TSF shall detect when 3 unsuccessful authentication attempts occur related to

U.Card_manufacturer authentication.

FIA_AFL.1.2/PP When the defined number of unsuccessful authentication attempts has been met,

the TSF shall always return an error.

94 FQR 110 6155 Ed1

FIA_UAU.1/PP Timing of authentication

FIA_UAU.1.1/PP The TSF shall allow INITIALIZE AUTHENTICATION PROCESS, GET DATA, MANAGE

CHANNEL, SELECT APPLET on behalf of the user to be performed before the user is authenticated.

FIA_UAU.1.2/PP The TSF shall require each user to be successfully authenticated before allowing any

other TSF-mediated actions on behalf of that user.

FIA_UID.1/PP Timing of identification

FIA_UID.1.1/PP The TSF shall allow INITIALIZE AUTHENTICATION PROCESS, GET DATA, MANAGE

CHANNEL, SELECT APPLET on behalf of the user to be performed before the user is identified.

FIA_UID.1.2/PP The TSF shall require each user to be successfully identified before allowing any

other TSF-mediated actions on behalf of that user.

FMT_MSA.1/PP Management of security attributes

FMT_MSA.1.1/PP The TSF shall enforce the Prepersonalisation access control to restrict the ability

to modify the security attributes AS.AUTH_MSK_STATUS to R.Prepersonaliser.

FMT_SMF.1/PP Specification of Management Functions

FMT_SMF.1.1/PP The TSF shall be capable of performing the following management functions:

modify security attributes.

FIA_ATD.1/CardManu User attribute definition

FIA_ATD.1.1/CardManu The TSF shall maintain the following list of security attributes belonging to

individual users: AS.AUTH_MSK_STATUS.

FIA_UAU.4/CardManu Single-use authentication mechanisms

FIA_UAU.4.1/CardManu The TSF shall prevent reuse of authentication data related to the Card

Manufacturer authentication mechanism.

95 FQR 110 6155 Ed1

FIA_UAU.7/CardManu Protected authentication feedback

FIA_UAU.7.1/CardManu The TSF shall provide only the result of the authentication (NOK) and the

random to the user while the authentication is in progress.

FMT_MOF.1/PP Management of security functions behaviour

FMT_MOF.1.1/PP The TSF shall restrict the ability to see below the functions see below to:

 Functions Role

Disable INITIALIZE AUTHENTICATION PROCESS,

EXTERNAL AUTHENTICATE,

LOAD STRUCTURE,

INSTALL,

LOAD SECURE,

LOAD APPLET,

GET DATA

R.Prepersonaliser

Modify Self tests described in FPT_TST.1 R.Prepersonaliser

Modify the

behaviour

All functions R.Developer

Application note:

The first operation ensures the irreversible locking of the patch and locks loading features once in

OP_READY, after pre production state. Once in OP_READY state, those APDU can not be used.

The second operation described the product configuration regarding self tests, as described in

AGD_PRE, chapter 8 [R39].

The last operation permits the loading of patch and locks during phase 5.

FMT_SMR.2/PP Restrictions on security roles

FMT_SMR.2.1/PP The TSF shall maintain the roles: R.Prepersonaliser and R.Developer.

FMT_SMR.2.2/PP The TSF shall be able to associate users with roles.

FMT_SMR.2.3/PP The TSF shall ensure that the conditions see refinement below are satisfied.

Refinement:

Roles Condition for this role

R.Prepersonaliser Successful authentication (of Card Manufacturer) using MSK and card still in

prepersonalisation state, in phase 4-5.

R.Developer Succesful authentication (of TOE developer) using LSK in phase 4-5

96 FQR 110 6155 Ed1

FMT_MSA.3/PP Static attribute initialisation

FMT_MSA.3.1/PP The TSF shall enforce the Prepersonalisation access control to provide same rights

by default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/PP The TSF shall allow the following role(s):none to specify alternative initial values

to override the default values when an object or information is created.

FCS_COP.1/PP Cryptographic operation

FCS_COP.1.1/PP The TSF shall perform see table below in accordance with a specified cryptographic

algorithm see table below and cryptographic key sizes see table below that meet the following:

Cryptographic operation Algorithm Key length Standard

 Decryption (MSK) and signature

verification

DES 112 bits FIPS-PUB 46-3 (ANSI X3.92), FIPS PUB 81

or ISO/IEC 9797, Data integrity

mechanism

Card Manufacturer authentication

(MSK)

DES 112 bits FIPS PUB 197

Card Manufacturer authentication

(MSK)

AES 128, 192

and 256

bits

FIPS-PUB 46-3 (ANSI X3.92), FIPS PUB 81

or ISO/IEC 9797, Data integrity

mechanism

Decryption (of patch and locks

ciphered with LSK) and signature

verification

TDES 112 bits FIPS-PUB 46-3 (ANSI X3.92), FIPS PUB 81

or ISO/IEC 9797, Data integrity

mechanism

TOE authentication key ISK/KMC TDES 112 bits FIPS PUB 197

.

FCS_CKM.4/PP Cryptographic key destruction

FCS_CKM.4.1/PP The TSF shall destroy cryptographic keys in accordance with a specified

cryptographic key destruction method Key is set to NULL that meets the following: no.

97 FQR 110 6155 Ed1

FDP_UIT.1/PP Data exchange integrity

FDP_UIT.1.1/PP The TSF shall enforce the Patch and locks and Prepersonalisation loading access

control SFP to receive user data in a manner protected from modification errors.

FDP_UIT.1.2/PP [Editorially Refined] The TSF shall be able to determine on receipt of user data,

whether modification of some of the pieces of the application sent by the TOE developer and

Card Manufacturer has occurred.

FCS_CKM.1/PP Cryptographic key generation

FCS_CKM.1.1/PP The TSF shall generate cryptographic keys in accordance with a specified

cryptographic key generation algorithm see table below and specified cryptographic key sizes see

table below that meet the following: see table below:

Cryptographic key generation algorithm Cryptographic key

size

List of

standards

TOE’s MSK derived from the MSK loaded in phase 1, using

SHA-256

16, 24 and 32 bytes None

98 FQR 110 6155 Ed1

FTP_ITC.1/PP Inter-TSF trusted channel

FTP_ITC.1.1/PP The TSF shall provide a communication channel between itself and another trusted IT

product that is logically distinct from other communication channels and provides assured

identification of its end points and protection of the channel data from modification or disclosure.

FTP_ITC.1.2/PP [Editorially Refined] The TSF shall permit the TOE Developer and Card Manufacturer

to initiate communication via the trusted channel.

FTP_ITC.1.3/PP The TSF shall initiate communication via the trusted channel for loading the patch

code, locks and ISK on the card.

FAU_STG.2 Guarantees of audit data availability

FAU_STG.2.1 The TSF shall protect the stored audit records in the audit trail from unauthorized

deletion.

FAU_STG.2.2 The TSF shall be able to prevent unauthorized modifications to the stored audit records

in the audit trail.

FAU_STG.2.3 The TSF shall ensure that Patch code identification stored audit records will be

maintained when the following conditions occur: audit storage exhaustion, failure and attack.

8.1.6.3 Additional Security Functional Requirements for SmartCard Platform

FPT_PHP.3/SCP Resistance to physical attack

FPT_PHP.3.1/SCP The TSF shall resist physical manipulation and physical probing to the all TOE

components implementing the TSF by responding automatically such that the SFRs are always

enforced.

Application Note:

The physical manipulation and physical probing include: changing operational conditions every times:

the frequency of the external clock, power supply, and temperature

FPT_FLS.1/SCP Failure with preservation of secure state

FPT_FLS.1.1/SCP The TSF shall preserve a secure state when the following types of failures occur: cf

FAU_ARP.1.

99 FQR 110 6155 Ed1

FPT_RCV.3/SCP Automated recovery without undue loss

FPT_RCV.3.1/SCP When automated recovery from none is not possible, the TSF shall enter a

maintenance mode where the ability to return to a secure state is provided.

FPT_RCV.3.2/SCP For all cases, the TSF shall ensure the return of the TOE to a secure state using

automated procedures.

FPT_RCV.3.3/SCP The functions provided by the TSF to recover from failure or service discontinuity

shall ensure that the secure initial state is restored without exceeding the loss of the Executable

Load File being installed for loss of TSF data or objects under the control of the TSF.

FPT_RCV.3.4/SCP The TSF shall provide the capability to determine the objects that were or were not

capable of being recovered.

FPT_RCV.4/SCP Function recovery

FPT_RCV.4.1/SCP The TSF shall ensure that reading from and writing to static and objects' fields

interrupted by power loss have the property that the function either completes successfully, or

for the indicated failure scenarios, recovers to a consistent and secure state.

FRU_FLT.1/SCP Degraded fault tolerance

FRU_FLT.1.1/SCP The TSF shall ensure the operation of Fault tolerance when the following failures

occur: Lack of EEPROM.

Application Note:

The TOE implements a mechanism to detect a problem of EEPROM. During the

life of the TOE, the Transaction area reduces its size to skip damaged EEPROM bytes. During the

writing or erasing operations, up to 3 maximum attempts to get successful programming are done.

Otherwise the EXCEPTION_EEPROM_ERROR is raised.

FPR_UNO.1/USE_KEY Unobservability

FPR_UNO.1.1/USE_KEY The TSF shall ensure that all subjects are unable to observe the operation

use on key by D.JCS_KEYS.

100 FQR 110 6155 Ed1

FCS_RNG.1/SCP Random Number Generation

FCS_RNG.1.1/SCP The TSF shall provide a deterministic hybrid random number generator that

implements: none.

FCS_RNG.1.2/SCP The TSF shall provide random numbers that meet RGS_B1 [R31].

8.1.6.4 Additional Security Functional Requirements for the applets

FIA_AFL.1/PIN Authentication failure handling

FIA_AFL.1.1/PIN The TSF shall detect when an administrator configurable positive integer within

from 1 to 127 for OwnerPIN unsuccessful authentication attempts occur related to any user

authentication using a PIN.

FIA_AFL.1.2/PIN When the defined number of unsuccessful authentication attempts has been met,

the TSF shall block the PIN.

FMT_MTD.2/GP_PIN Management of limits on TSF data

FMT_MTD.2.1/GP_PIN The TSF shall restrict the specification of the limits for D.NB_REMAINTRYGLB,

GlobalPIN to R.Card_Manager.

FMT_MTD.2.2/GP_PIN The TSF shall take the following actions, if the TSF data are at, or exceed, the

indicated limits: block D.PIN.

FPR_UNO.1/Applet Unobservability

FPR_UNO.1.1/Applet The TSF shall ensure that S.APPLET are unable to observe the operation

Comparison on two bytes arrays by D.ARRAY.

FMT_MTD.1/PIN Management of TSF data

FMT_MTD.1.1/PIN The TSF shall restrict the ability to change_default, query and modify the

OwnerPIN to applet itself.

101 FQR 110 6155 Ed1

FIA_AFL.1/GP_PIN Authentication failure handling

FIA_AFL.1.1/GP_PIN The TSF shall detect when an administrator configurable positive integer

within 3 to 15 unsuccessful authentication attempts occur related to any user authentication

using a Global PIN.

FIA_AFL.1.2/GP_PIN When the defined number of unsuccessful authentication attempts has been

met, the TSF shall block the PIN.

8.1.6.5 Additional Security Functional Requirements for BIO

FIA_AFL.1/PIN_BIO Authentication failure handling

FIA_AFL.1.1/PIN_BIO The TSF shall detect when an administrator configurable positive integer

within user defined maximum from 1 to 254 for BIOMETRIC_DATA unsuccessful authentication

attempts occur related to any user authentication using MOC.

FIA_AFL.1.2/PIN_BIO When the defined number of unsuccessful authentication attempts has been

met, the TSF shall block the MOC.

FMT_MTD.1/PIN_BIO Management of TSF data

FMT_MTD.1.1/PIN_BIO The TSF shall restrict the ability to change_default, query and modify the

BIOMETRIC_DATA to applet itself.

8.1.6.6 Additional Security Functional Requirements for Runtime Verification

8.1.6.6.1 Stack Control

FDP_ACC.2/RV_Stack Complete access control

FDP_ACC.2.1/RV_Stack The TSF shall enforce the [assignment: access control SFP] on

[assignment: list of subjects and objects] and all operations among subjects and objects

covered by the SFP.

FDP_ACC.2.2/RV_Stack The TSF shall ensure that all operations between any subject controlled by

the TSF and any object controlled by the TSF are covered by an access control SFP.

102 FQR 110 6155 Ed1

FDP_ACF.1/RV_Stack Security attribute based access control

FDP_ACF.1.1/RV_Stack The TSF shall enforce the [assignment: access control SFP] to

objects based on the following: [assignment: list of subjects and objects controlled
under the indicated SFP, and for each, the SFP-relevant security attributes,
or named groups of SFP-relevant security attributes].

FDP_ACF.1.2/RV_Stack The TSF shall enforce the following rules to determine if an operation among

controlled subjects and controlled objects is allowed: [assignment: rules governing
access among controlled subjects and controlled objects using controlled
operations on controlled objects].

FDP_ACF.1.3/RV_Stack The TSF shall explicitly authorise access of subjects to objects based on the

following additional rules: [assignment: rules, based on security attributes, that
explicitly authorise access of subjects to objects].

FDP_ACF.1.4/RV_Stack The TSF shall explicitly deny access of subjects to objects based on the

following additional rules: [assignment: rules, based on security attributes, that
explicitly deny access of subjects to objects].

FMT_MSA.1/RV_Stack Management of security attributes

FMT_MSA.1.1/RV_Stack The TSF shall enforce the [assignment: access control SFP(s),
information flow control SFP(s)] to restrict the ability to [selection:

change_default, query, modify, delete, [assignment: other operations]] the

security attributes [assignment: list of security attributes] to [assignment: the
authorised identified roles].

FMT_MSA.2/RV_Stack Secure security attributes

FMT_MSA.2.1/RV_Stack The TSF shall ensure that only secure values are accepted for

[assignment: list of security attributes].

103 FQR 110 6155 Ed1

FMT_MSA.3/RV_Stack Static attribute initialisation

FMT_MSA.3.1/RV_Stack The TSF shall enforce the [assignment: access control SFP,
information flow control SFP] to provide [selection, choose one of: restrictive,
permissive, [assignment: other property]] default values for security attributes that

are used to enforce the SFP.

FMT_MSA.3.2/RV_Stack The TSF shall allow the [assignment: the authorised identified
roles] to specify alternative initial values to override the default values when an object or

information is created.

FMT_SMF.1/RV_Stack Specification of Management Functions

FMT_SMF.1.1/RV_Stack The TSF shall be capable of performing the following management

functions: [assignment: list of management functions to be provided by the
TSF].

8.1.6.6.2 Heap Access

FDP_ACC.2/RV_Heap Complete access control

FDP_ACC.2.1/ RV_Heap The TSF shall enforce the [assignment: access control SFP] on

[assignment: list of subjects and objects] and all operations among subjects and objects

covered by the SFP.

FDP_ACC.2.2/ RV_Heap The TSF shall ensure that all operations between any subject controlled by

the TSF and any object controlled by the TSF are covered by an access control SFP.

104 FQR 110 6155 Ed1

FDP_ACF.1/RV_Heap Security attribute based access control

FDP_ACF.1.1/RV_Heap The TSF shall enforce the [assignment: access control SFP] to

objects based on the following: [assignment: list of subjects and objects controlled
under the indicated SFP, and for each, the SFP-relevant security attributes,
or named groups of SFP-relevant security attributes].

FDP_ACF.1.2/RV_Heap The TSF shall enforce the following rules to determine if an operation among

controlled subjects and controlled objects is allowed: [assignment: rules governing
access among controlled subjects and controlled objects using controlled
operations on controlled objects].

FDP_ACF.1.3/RV_Heap The TSF shall explicitly authorise access of subjects to objects based on the

following additional rules: [assignment: rules, based on security attributes, that
explicitly authorise access of subjects to objects].

FDP_ACF.1.4/RV_Heap The TSF shall explicitly deny access of subjects to objects based on the

following additional rules: [assignment: rules, based on security attributes, that
explicitly deny access of subjects to objects].

FMT_MSA.1/RV_Heap Management of security attributes

FMT_MSA.1.1/RV_Heap The TSF shall enforce the [assignment: access control SFP(s),
information flow control SFP(s)] to restrict the ability to [selection:

change_default, query, modify, delete, [assignment: other operations]] the

security attributes [assignment: list of security attributes] to [assignment: the
authorised identified roles].

FMT_MSA.2/RV_Heap Secure security attributes

FMT_MSA.2.1/RV_Heap The TSF shall ensure that only secure values are accepted for

[assignment: list of security attributes].

105 FQR 110 6155 Ed1

FMT_MSA.3/RV_Heap Static attribute initialisation

FMT_MSA.3.1/RV_Heap The TSF shall enforce the [assignment: access control SFP,
information flow control SFP] to provide [selection, choose one of: restrictive,
permissive, [assignment: other property]] default values for security attributes that

are used to enforce the SFP.

FMT_MSA.3.2/RV_Heap The TSF shall allow the [assignment: the authorised identified
roles] to specify alternative initial values to override the default values when an object or

information is created.

FMT_SMF.1/RV_Heap Specification of Management Functions

FMT_SMF.1.1/RV_Heap The TSF shall be capable of performing the following management

functions: [assignment: list of management functions to be provided by the
TSF].

8.1.6.6.3 Transient Control

FDP_ACC.2/RV_Transient Complete access control

FDP_ACC.2.1/RV_Transient The TSF shall enforce the [assignment: access control SFP] on

[assignment: list of subjects and objects] and all operations among subjects and objects

covered by the SFP.

FDP_ACC.2.2/RV_Transient The TSF shall ensure that all operations between any subject controlled

by the TSF and any object controlled by the TSF are covered by an access control SFP.

106 FQR 110 6155 Ed1

FDP_ACF.1/RV_Transient Security attribute based access control

FDP_ACF.1.1/RV_Transient The TSF shall enforce the [assignment: access control SFP] to

objects based on the following: [assignment: list of subjects and objects controlled
under the indicated SFP, and for each, the SFP-relevant security attributes,
or named groups of SFP-relevant security attributes].

FDP_ACF.1.2/RV_Transient The TSF shall enforce the following rules to determine if an operation

among controlled subjects and controlled objects is allowed: [assignment: rules
governing access among controlled subjects and controlled objects using
controlled operations on controlled objects].

FDP_ACF.1.3/RV_Transient The TSF shall explicitly authorise access of subjects to objects based on

the following additional rules: [assignment: rules, based on security attributes,
that explicitly authorise access of subjects to objects].

FDP_ACF.1.4/RV_Transient The TSF shall explicitly deny access of subjects to objects based on the

following additional rules: [assignment: rules, based on security attributes, that
explicitly deny access of subjects to objects].

FMT_MSA.1/RV_Transient Management of security attributes

FMT_MSA.1.1/RV_Transient The TSF shall enforce the [assignment: access control SFP(s),
information flow control SFP(s)] to restrict the ability to [selection:

change_default, query, modify, delete, [assignment: other operations]] the

security attributes [assignment: list of security attributes] to [assignment: the
authorised identified roles].

FMT_MSA.2/RV_Transient Secure security attributes

FMT_MSA.2.1/RV_Transient The TSF shall ensure that only secure values are accepted for

[assignment: list of security attributes].

107 FQR 110 6155 Ed1

FMT_MSA.3/RV_Transient Static attribute initialisation

FMT_MSA.3.1/RV_Transient The TSF shall enforce the [assignment: access control SFP,
information flow control SFP] to provide [selection, choose one of: restrictive,
permissive, [assignment: other property]] default values for security attributes that

are used to enforce the SFP.

FMT_MSA.3.2/RV_Transient The TSF shall allow the [assignment: the authorised
identified roles] to specify alternative initial values to override the default values when an

object or information is created.

FMT_SMF.1/RV_Transient Specification of Management Functions

FMT_SMF.1.1/RV_Transient The TSF shall be capable of performing the following management

functions: [assignment: list of management functions to be provided by the
TSF].

108 FQR 110 6155 Ed1

9 TOE Summary Specification

9.1 TOE Summary Specification

SF_ATOMIC_TRANSACTION

This TSF provides means to execute a sequence of modifications and allocations on the persistent

memory so that either all of them are completed, or the TOE behaves as if none of them had been

attempted. The transaction mechanism is used for updating internal TSF data as well as for

performing different functions of the TOE, like installing a new package on the card. This TSF is

also available for applet instances through the javacard.framework.JCSystem,

javacard.framework.Util and javacardx.framework.util.ArrayLogic classes. The first class provides

the applet instances with methods for starting, aborting and committing a sequence of

modifications of the persistent memory. The other classes provide methods for atomically

copying arrays. This TSF ensures that the following data is never updated conditionally:

o The validated flag of the PINs

o The validated flag of the BIO template

o The reason code of the CardException and CardRuntimeException

o Transient objects

o Global arrays, like the APDU buffer and the buffer that the applet instances use to store

installation data

o Any intermediate result state in the implementation instance of the Checksum,

Signature, Cipher, and Message Digest classes of the JavaCard API.

This TSF also performs the actions necessary to roll back to a safe state upon interruption of the

following procedures, for example because of a card withdrawal or an unexpected fatal error:

o Loading and linking of a package

o Installing a new applet instance

o Deleting a package

o Deleting an applet instance

o Collecting unreachable objects

o Reading from and writing to a static field, instance field or array position

o Populating, updating or clearing a cryptographic key

o Modifying a PIN value

Finally, this TSF ensures that no transaction is in progress when a method of an applet instance is

invoked for installing, deselecting, selecting or processing an APDU sent to the applet instance.

Concerning memory limitations on the transaction journal, this TSF guarantees that an exception

is thrown when the maximal capacity is reached. The TSF preserves a secure state when such limit

is reached. Atomic Transactions are detailed in the chapter Atomicity and Transactions of the [R7]

and in the documentation associated to the JCSystem class in the [R6].

SF_CARD_CONTENT_MANAGEMENT

This TSF ensures the following functionalities:

o Loading (Section 9.3.5 of [R12]): This function allows the addition of code to mutable

persistent memory in the card. During card content loading, this TSF checks that the

required packages are already installed on the card. If one of the required packages does

not exist, or if the version installed on the card is not binary compatible with the version

109 FQR 110 6155 Ed1

required, then the loading of the package is rejected. Loading is also rejected if the

version of the CAP format of the package is newer than the one supported by the TOE. If

any of those checks fails, a suitable error message is returned to the CAD.

o Installation (Section 9.3.6 of [R12]): This function allows the Installer to create an

instance of a previously loaded Applet subclass and make it selectable. In order to do

this, the install() method of the Applet subclass is invoked using the context of that new

instance as the currently active context. If this method returns with an exception, the

exception is trapped and the smart card rolls back to the state before starting the

installation procedure.

o Deletion (Section 9.5 of [R12]): This function allows the Applet Deletion Manager to

remove the code of a package from the card, or to definitely deactivate an applet

instance, so that it becomes no longer selectable. This TSF performs physical removal of

those packages and applet data stored in NVRAM, while only logical removal is

performed for packages in ROM. This TSF checks that the package or applet actually

exists, and that no other package or applet depends on it for its execution. In this case,

the entry of the package or applet is removed from the registry, and all the objects on

which they depend are garbage collected. Otherwise, a suitable error is returned to the

CAD. The deletion of the Applet Deletion Manager, the Installer or any of the packages

required for implementing the Java Card platform Application Programming Interface

(Java Card API) is not allowed.

o Extradition (Section 9.4.1 of): This function allows the Installer to associate load files or

applet instances to a Security Domain different than their currently associated Security

Domain. It is also used to associate a Security Domain to another Security Domain or to

itself thus creating Security Domains hierarchies. If this method returns with an

exception, the exception is trapped and the smart card rolls back to the state before

starting the extradition procedure.

o Registry update (Section 9.4.2 of): This function allows the Installer to populate, modify

or delete elements of the Registry entry of applet instances. If this method returns with

an exception, the exception is trapped and the smart card rolls back to the state before

starting the extradition procedure.

SF_CARD_MANAGEMENT_ENVIRONMENT

This TSF is in charge of initializing and managing the internal data structures of the Card Manager.

During the initialization phase of the card, this TSF creates the Installer and the Applet Deletion

Manager and initializes their internal data structures. The internal data structures of the Card

Manager includes the Package and Applet Registries, which respectively contains the currently

loaded packages and the currently installed applet instances, together with their associated AIDs.

This TSF is also in charge of dispatching the APDU commands to the applets instances installed on

the card and keeping traces of which are the currently active ones. It therefore handles sensitive

TSF data of other security functions, like the Firewall or the Remote Access Control function.

SF_CARDHOLDER_VERIFICATION

This TSF enables applet instances to authenticate the sender of a request as the true cardholder.

Applet instances have access to these services through the OwnerPIN class. Cardholder

authentication is performed using the following security attributes:

o A secret enabling to authenticate the cardholder

o The maximum number of consecutive unsuccessful comparison attempts that are

admitted

o A counter of the number of consecutive unsuccessful comparison attempts that have

been performed so far

110 FQR 110 6155 Ed1

o The current life cycle state of the secret (reference value). This state is always updated,

even if the modification is in the scope of an open transaction. Each time an attempt is

made to compare a value to the reference value, and prior to the comparison being

actually performed, if the reference is blocked, then the comparison fails and the

reference value is not accessed. Otherwise, the try counter is decremented by one. This

operation is always performed, even if it is in the scope of an open transaction. If the

comparison is successful, then the try counter is reset to the try limit. When the try

counter reaches zero, the reference enters into a blocked state, and cannot be used until

it is unblocked. Cardholder Verification Method services are implemented to resist to

environmental stress and glitches and include measures for preventing information

leakage through covert channels. In particular, unsuccessful authentication attempts

consume the same power and execution time than successful ones. The Cardmanager

uses the class OwnerPin to provide the services to the Applet that want benefit of the

Shared GP_PIN.

SF_CLEARING_OF_SENSITIVE_INFORMATION

This TSF clears all the data containers that hold sensitive information when that information is no

longer used. This includes:

o The contents of the memory blocks allocated for storing class instances, arrays, static

field images and local variables, before allocating a fresh block

o The objects reclaimed by the Java Card VM garbage collector

o The code of the deleted packages

o The objects accessible from a deleted applet instance

o All the information contained in the packages that is not necessary for executing the

code of the applets, like the Descriptor Component, the Reference Location Component

and the Constant Pool of the CAP files

o The contents of the APDU buffer after processing an APDU command

o The content of the bArray argument of the Applet.install method after a new applet

instance is installed

o The content of CLEAR ON DESELECT transient objects owned by an applet instance that

has been deselected when no other applets from the same package are active on the

card

o The content of all transient objects after a card reset

o The reason code contained in the instances of a CardException or CardRuntimeException

classes after a card reset

o The validated flag of the PINs after a card reset

o The validated flag of the BIO templates after a card reset

o The contents of the cryptographic buffer after performing cryptographic operations

o The content of the input parameters of a remote method invocation after returning the

response to the terminal

Application Note:

This function is in charge of clearing the information contained in the objects that are no longer

accessible from the installed packages and applet instances. Clearing is performed on demand of

an applet instance through the JCSystem.requestObjectDeletion() method.

SF_DAP_VERIFICATION

An Application Provider may require that its Application code to be loaded on the card is checked

for integrity and authenticity. The DAP Verification privilege of the Application Provider's Security

111 FQR 110 6155 Ed1

Domain detailed in Section 9.2.1 of provides this service on behalf of an Application Provider. A

Controlling Authority may require that all Application code to be loaded onto the card shall be

checked for integrity and authenticity. The Mandated DAP Verification privilege of the Controlling

Authority's Security Domain detailed in Section 9.2.1 of provides this service on behalf of the

Controlling Authority. The keys and algorithms to be used for DAP Verification or Mandated DAP

Verification are implicitly known by the corresponding Security Domain.

SF_DATA_COHERENCY

As coherency of data should be maintained, and as power is provided by the CAD and might be

stopped at all moment (by tearing or attacks), a transaction mechanism is provided. When

updating data, before writing the new ones, the old ones are saved in a specific memory area. If a

failure appears, at the next start-up, if old data are valid in the transaction area, the system

restores them for staying in a coherent state.

SF_DATA_INTEGRITY

Some of the data in non volatile memory can be protected. Keys, PIN, BIO templates package and

patch code are protected with integrity value. When reading and writing operation are, the

integrity value is checked and maintained valid. In case of incoherency, an exception is raise to

prevent the bad use of the data. SecureStore is a mean for protecting JavaCard data in integrity.

SF_ENCRYPTION_AND_DECRYPTION

This TSF provides the applet instances with mechanisms for encrypting and decrypting the

contents of a byte array.

The ciphering algorithms are available to the applets through the Cipher class of the Java Card

API, ISOSecureMessaging class and SecureChannel class. The length of the key to be used for the

ciphering operation is defined by the applet instance when the key is generated. Before

encrypting or decrypting the byte array, the TSF verifies that the specified key has been previously

initialized, and that is in accordance with the specified ciphering algorithm (DES, RSA, etc). The

TSF also checks that it has been provided with all the information necessary for the

encryption/decryption operation. Once the ciphering operation is performed, the internal TSF

data used for the operation like the ICV is cleared. Ciphering operations are implemented to resist

to environmental stress and glitches and include measures for preventing information leakage

through covert channels.

Mechanisms of encrypting and decrypting for Secure Messaging are available to the applets

through the SecureChannel (Global Platform Card 2.2" specification) and ISOSecureMessaging

(Proprietary API) classes.

SF_ENTITY_AUTHENTICATION/SECURE_CHANNEL

Off-card entity authentication is achieved by initiating a Secure Channel and provides assurance

to the card that it is communicating with an authenticated off-card entity. If any step in the off-

card authentication process fails, the process shall be restarted (i.e. new session keys generated).

The Secure Channel initiation and off-card entity authentication implies the creation of session

keys derived from card static key(s).

SF_EXCEPTION

In case of abnormal event: data unavailable on an allocation, illegal access to a data, the system

owns an internal mechanism that allows to stop the code execution and raise an exception.

SF_FIREWALL

112 FQR 110 6155 Ed1

This TSF enforces the Firewall security policy and the information flow control policy at runtime.

The former policy controls object sharing between different applet instances, and between applet

instances and the Java Card RE. The latter policy controls the access to global data containers

shared by all applet instances. This TSF is enforced by the Java Card platform Virtual Machine

(Java Card VM). During the execution of an applet, the Java Card VM keeps track of the applet

instance that is currently performing an action. This information is known as the currently active

context. Two kinds of contexts are considered: applet instances contexts and the Java Card RE

context, which has special privileges for accessing objects. The TSF makes no difference between

instances of applets defined in the same package: all of them belong to the same active context.

On the contrary, instances of applets defined in different packages belong to different contexts.

Each object belongs to the context that was active when the object was allocated. Initially, when

the Java Card VM is launched, the context corresponding to the applet instance selected for

execution becomes the first active context. Each time an instance method is invoked on an object,

a context switch is performed, and the owner of the object becomes the new active context. On

the contrary, the invocation of a static method does not entail a context switch. Before executing

a bytecode that accesses an object, the object's owner is checked against the currently active

context in order to determine if access is allowed. Access is determined by the Firewall access

control rules specified in the chapter Applet Isolation and Object Sharing of the [R7]. Those rules

enable controlled sharing of objects through interface methods that the object's owner explicitly

exports to other applet instances, and provided that the object's owner explicitly accepts to share

it upon request of the method's invoker.

SF_GP_DISPATCHER

While a Security Domain is selected, this function tests for every command, according to the

Security Domain life cycle state and the Card life cycle state, if security requirements are needed

(if a Secure Channel is required).

SF_HARDWARE_OPERATING

When needed, at each start up or before first use, a self test of each hardware functional module

is done, i.e.: DES, RSA, RNG implements a know calculus and checks if the result is correct. When

executing, external hardware event can be trigged to prevent attacks or bad use. Temperature,

frequency, voltage, light, glitch are considered as abnormal environmental conditions and put the

card in frozen state. The TOE shall monitor IC detectors (e.g. out-of-range voltage, temperature,

frequency, active shield, memory aging) and shall provide automatic answers to potential security

violations through interruption routines that leave the device in a secure state.

The TOE with the IC has detectors of operational conditions. It shall resist to attackers with high-

attack potential according to [R36] characterisation, in particular, to leakage attacks, intrusive

(e.g. probing, fault injection) and non-intrusive (e.g. SPA, DPA, EMA) attacks, operational

conditions manipulation (voltage, clock, temperature, etc) and physical attacks aiming at

modification of the IC content or behaviour. To be compliant to related SUN Protection Profile

[R5], the off-card verifier is mandatory in this ST; however, this TOE runs some additional

verification at execution time. These verifications ensure that: 1. No read accesses are made to

Java Card System code, data belonging to another application, data belonging to the Java Card

System, 2. No write accesses are made to another application's code, Java Card System code,

another application's data Java Card System or API data, 3. No execution of code is done from a

method or from a method fragment belonging to another package (including execution on

arbitrary data).

SF_KEY_ACCESS

This TSF enforces secure access to all cryptographic keys of the card: RSA keys, DES keys, EC keys,

AES keys

113 FQR 110 6155 Ed1

SF_KEY_AGREEMENT

This TSF provides the applet instances with a mechanism for supporting key agreement

algorithms such as Diffie-Hellman and EC Diffie-Hellman [IEEE P1363].

SF_KEY_DESTRUCTION

This TSF disables the use of a key both logically and physically. When a key is cleared, the internal

life cycle of the key container is moved to a state in which no operation is allowed. Applet

instances may invoke this TSF through the interfaces declared in the javacard.security package of

the Java Card API.

SF_KEY_DISTRIBUTION

This TSF enforces the distribution of all the cryptographic keys of the card using the method

specified in that SFR.

SF_KEY_GENERATION

This TSF enforces the creation and/or the oncard generation of all the cryptographic keys of the

card using the method specified in that SFR.

SF_KEY_MANAGEMENT

This function enables key sets management (PIN, BIO). It allows creating updating and deleting

key sets. It is used to load keys to the card. It also implements verification of Key sets attributes:

key lengths, key types... and enforces the loaded keys integrity

SF_MANUFACTURER_AUTHENTICATION

At prepersonalisation phase, manufacturer authentication at the beginning of a communication

session is mandatory prior to any relevant data being transferred to the TOE.

SF_MESSAGE_DIGEST

This TSF provides the applet instances with a mechanism for generating an (almost) unique value

for a byte array content. That value can be used as a short representative of the information

contained in the whole byte array. The hashing algorithms are available to the applets through

the MessageDigest class of the Java Card API. Before generating the hash value, the TSF verifies

that it has been provided with all the information necessary for the hashing operation. For those

algorithms that do not pad the messages, the TSF checks that the information is block aligned

before computing its hash value. Message digest generation is implemented to resist to

environmental stress and glitches and include measures for preventing information leakage

through covert channels.

SF_MEMORY_FAILURE

When using the non volatile memory, in case of a bad writing, internal mechanisms are

implemented to prevent an incoherency of the written data. In case of an impossible writing, an

exception is raised

SF_PREPERSONALISATION

This function is in charge of pre-initializing the internal data structures, loading the configuration

of the card and loading patch code if needed.

SF_RANDOM_NUMBER

This TSF provides to card manager, resident application, applets a mechanism for generating

challenges and key values. Random number generators are available to the applets through the

114 FQR 110 6155 Ed1

RandomData class of the Java Card API. Off-card entity authentication is achieved through the

process of initiating a Secure Channel and provides assurance to the card that it is communicating

with an authenticated off-card entity. If any step in the off-card authentication process fails, the

process shall be restarted (i.e. new session keys generated). The Secure Channel initiation and off-

card entity authentication implies the creation of session keys derived from card static key(s).

SF_RESIDENT_APPLICATION_DISPATCHER

During prepersonalisation phase, this function tests for every command if manufacturer

authentication is required.

SF_REMOTE_ACCESS

This TSF enforces the access control to remote objects when the RMI service is used. The Remote

objects and its security attributes are created and initialized at the creation of the object.

SF_RUNTIME_VERIFIER

This security functionality ensures the secure processing of information by ensuring the following

elements:

o Stack Control

o Heap Control

o Transient Control

Information on the processing is described on the related FDP_ACF.1.

SF_SECURITY_FUNCTIONS_OF_THE_IC

The TOE uses the security functions of the IC. The list of the security function is presented in the

ST lite of the IC component

SF_SIGNATURE

This TSF provides the applet instances with a mechanism for generating an electronic signature of

a byte array content and verifying an electronic signature contained in a byte array. An electronic

signature is made of a hash value of the information to be signed encrypted with a secret key. The

verification of the electronic signature includes decrypting the hash value and checking that it

actually corresponds to the block of signed bytes.

The signature algorithms are available to the applets through the javacard.Signature class of the

Java Card API, ISOSecureMesssaging class and SecureChannel class. The length of the key to be

used for the signature is defined by the applet instance when the key is created. Before

generating the signature, the TSF verifies that the specified key is suitable for the operation

(secret keys for signature generation), that it has been previously initialized, and that is in

accordance with the specified signature algorithm (DES, RSA, etc). The TSF also checks that it has

been provided with all the information necessary for the signature operation. For those

algorithms that do not pad the messages, the TSF checks that the information to be signed is

block aligned before performing the signature operation. Once the signature operation is

performed, the internal TSF data used for the operation like the ICV is cleared. Signature

operations are implemented to resist to environmental stress and glitches and include measures

for preventing information leakage through covert channels.

Mechanisms of signature for Secure Messaging are available to the applets through the

SecureChannel (Global Platform Card 2.2" specification) and ISOSecureMessaging (Proprietary

API) classes. The signature is included in Data Objects.

SF_UNOBSERVABILITY

115 FQR 110 6155 Ed1

This function assures that processing based on secure elements of the TOE does not reveal any

information on those elements. For example, observation of a PIN verification cannot reveal the

PIN value, observation a cryptographic computation cannot give information on the key.

116 FQR 110 6155 Ed1

10 Related documents

Ref Document details

[R1]

"Common Criteria for information Technology Security Evaluation, Part 1: Introduction

and general model"

July 2009, Version 3.1 revision 3.

[R2]

"Common Criteria for information Technology Security Evaluation, Part 2: Security

Functional requirements"

July 2009, Version 3.1 revision 3.

[R3]

"Common Criteria for information Technology Security Evaluation, Part 3: Security

Assurance requirements"

July 2009, Version 3.1 revision 3.

[R4]
“Composite product evaluation for Smart Cards and similar devices”

September 2007, Version 1.0, CCDB-2007-09-001.

[R5]
PP SUN Java Card™ System Protection Profile Open Configuration v3.0

May 2012, ANSSI-CC-PP-2010/03_M01

[R6]
"Java Card - API" Application Programming Interfaces, Classic Edition

Version 3.01, February 23, 2009, Sun Microsystems.

[R7]
"Java Card – JCRE” Runtime Environment Specification, Classic Edition

Version 3.01, February 23, 2009, Sun Microsystems.

[R8]
"Java Card - Virtual Machine Specifications" Classic Edition, Version 3.01

February 23, 2009, Sun Microsystems.

[R9]
Global Platform, Card Specification

Version 2.2.1 – January 2011.

[R10]

Global Platform Card, Mapping Guidelines of Existing GP v2.1.1 Implementation on

v2.2.1

Version 1.0.1 – January 2011.

[R11]
Global Platform Card, ID Configuration

Version 1.0 - December 2011.

[R12]

Global Platform Card Technology, Secure Channel Protocol 03, Card Specification v 2.2 -

Amendment D

Version 1.1 - September 2009.

[R13]

Global Platform Card Technology, Security Upgrade for Card Content Management,

Card Specification v 2.2 – Amendment E

Version 0.14 - October 2011.

117 FQR 110 6155 Ed1

Ref Document details

[R14]

"Identification cards - Integrated Circuit(s) Cards with contacts, Part 6: Interindustry

data elements for interchange"

ISO/IEC 7816-6 (2004)

[R15]

"Digital Signatures using Reversible Public Key Cryptography for the Financial Services

Industry (rDSA)"

ANSI X9.31-1998, American Bankers Association

[R16]
"FIPS PUB 46-3, Data Encryption Standard"

October 25, 1999 (ANSI X3.92), National Institute of Standards and Technology

[R17]
"FIPS PUB 81, DES Modes of Operation"

April 17, 1995, National Institute of Standards and Technology

[R18]
"FIPS PUB 180-3, Secure Hash Standard"

October 2008 , National Institute of Standards and Technology

[R19]
"FIPS PUB 186-3"

June 2009, Digital Signature Standard (DSS)

[R20]
"Public Key Cryptography using RSA for the financial services industry"

ISO/IEC 9796-1, annex A, section A.4 and A.5, and annex C (1995)

[R21]

“Information technology – Security techniques: Data integrity mechanism using a

cryptographic check function employing a block cipher algorithm”

ISO/IEC 9797-1 (1999) , International Organization for Standardization

[R22]
“FIPS PUB 140-2, Security requirements for cryptographic modules”

Mars 2002 , National Institute of Standards and Technology

[R23]
PKCS#1 The public Key Cryptography standards

RSA Data Security Inc. 1993

[R24]
Security IC Platform Protection Profile, Version 1.0, reference

BSI-PP-0035 (15.06.2007).

[R25]
Security Target Lite, Public - ST23YL80C of ST Microelectronics

ANSSI-CC-2009/37

[R26]
Security Target Lite, Public - ST23YR80B/48B of ST Microelectronics

ANSSI-CC-2010/01

[R27] IEEE Std 1363a-2004 Standard Specification of Public-Key Cryptography

[R28]
FIPS PUB 197, The Advanced Encryption Standard (AES)

U.S. DoC/NIST, November 26, 2001.

[R29]
CERTIFICATION OF APPLICATIONS ON “OPEN AND ISOLATING PLATFORM

Paris, the 27th July 2012. Reference: ANSSI-CCNOTE/10EN.02deW10

[R30] The NIST SP 800-90 Recommendation for Random Number Generation Using

Deterministic Random Bit Generators (Revise) – March 2007

118 FQR 110 6155 Ed1

Ref Document details

[R31]
Référentiel general de sécurité

version 1.0 du 06/05/12

[R32]
Applications on ID ONE COSMO V7.1-S

FQR 110 6268

[R33]
Note d’application 6

Agence Nationale de la Sécurité des Systèmes d’Information (ANSSI)

[R34]
ANSI x9.62-2005 Public Key Cryptography for the Financial Services Industry

The Elliptic Curve Digital Signature Algorithm (ECDSA)

[R35]
ANSI x9.63-2001 Public Key Cryptography for the Financial Services Industry

Key Agreement and Key Transport Using Elliptic Curve Cryptography

[R36] JIL-Guidance-for-smartcard-evaluation-v2-0

[R37]
ID-One Cosmo V7.1 Security Recommendations

FQR 110 6029

[R38]
ID-One Cosmo V7.1 Reference Guide

FQR 110 6028

[R39]
ID-One Cosmo V7.1 Pre-Perso Guide

FQR 110 6027

[R40]
ID-One Cosmo V7.1 Application Loading Protection Guidance

FQR 110 6267

[R41]
Note d’application 10

Agence Nationale de la Sécurité des Systèmes

[R42]
The Java Virtual Machine Specification. Lindholm, Yellin

ISBN 0-201-43294-3

[R43]
Java Card 3 Platform Off-card Verification Tool Specification, Classic Edition

Version 1.0. Published by Oracle

[R45]
Java Card System Protection Profile Collection

Version 1.0b – August 2003

[R45]
Java Card System Standard 2.2 Configuration Protection Profile – PP/0305

Version 1.0b – August 2003

