

 MontaVista VPN Client (MVC)

Common Criteria Security Target

Version 0.042
FINAL (provisional)

2021-11-03

Prepared By:
MontaVista Software, LLC
5201 Great America Parkway, Suite 432
Santa Clara, CA 95054
USA

MVC Security Target Version 0.042

 FINAL (provisional) Page 2

Contents
1 Security Target (ST) Introduction .. 6

1.1 Security Target Reference ... 6

1.2 TOE Reference ... 6

1.3 TOE Overview ... 7

1.4 TOE Description .. 7
1.4.1 TOE software components .. 8
1.4.2 Platform software components required for operation of the MVC 9
1.4.3 Operating environment for execution of the MVC ... 10
1.4.4 Hardware/firmware platform for execution of the TOE/PLT software components 10
1.4.5 MVC Security features ... 10
1.4.6 MVC life cycle .. 12
1.4.7 Physical Scope .. 12
1.4.8 Logical Scope .. 13

2 Conformance claims ... 14

2.1 Common Criteria Conformance Claims .. 14

2.2 Conformance rationale .. 14

3 Security problem definition ... 15

3.1 Preliminaries ... 15

3.2 Threats ... 15

3.3 Organizational security policies .. 15

3.4 Assumptions on the MVC operational environment .. 16

4 Security objectives .. 17

4.1 Security Objectives for the TOE .. 17

4.2 Security Objectives for the Operational Environment .. 17

4.3 Rationale for the Security Objectives .. 18

5 Extended components definition ... 21

5.1 Security functional requirement extended components ... 21
5.1.1 FCS_IPSEC_EXT.1 IPsec Protocol ... 21
5.1.2 FCS_RBG_EXT.1 Random Bit Generation ... 23

5.2 Extended security components rationale ... 24

6 Security requirements for the TOE .. 25

6.1 Security functional requirements for the TOE ... 25

MVC Security Target Version 0.042

 FINAL (provisional) Page 3

6.1.1 Security Audit (FAU) ... 26
6.1.2 Cryptographic Support (FCS) ... 26
6.1.3 Protection of the TSF (FPT) ... 28
6.1.4 Trusted path/channels (FTP) ... 29
6.1.5 Security functional requirements provided by the platform 29
6.1.6 Security functional requirements rationale ... 31

6.2 Security assurance requirements for the TOE ... 34
6.2.1 Security assurance requirements rationale .. 34

7 TOE Summary Specification .. 35

7.1 Mapping of security features from the TOE description to SFRs 35

7.2 Security audit ... 35
7.2.1 Security audit data generation (FAU_GEN) ... 35

7.3 Cryptographic support .. 36
7.3.1 Cryptographic key management (FCS_CKM) ... 36
7.3.2 Internet protocol security (IPsec) extended (FCS_IPSEC_EXT) 37

7.4 Protection of the TSF ... 40
7.4.1 Testing of external entities (FPT_TEE) .. 40
7.4.2 TSF self test (FPT_TST) ... 40

7.5 Trusted Channel .. 43
7.5.1 Inter-TSF trusted channel (FTP_ITC) .. 43

8 Glossary of terms and abbreviations .. 45

References .. 48

MVC Security Target Version 0.042

 FINAL (provisional) Page 4

Figures

Figure 1: TOE and platform components of extended MVC architecture 8

Tables
Table 1 – Threats .. 15
Table 2 – Organizational Security Policies ... 15
Table 3 – Assumptions on the Operational Environment ... 16
Table 4 – Security Objectives for the TOE ... 17
Table 5 – Security Objectives for the Operational Environment .. 17
Table 6 – Security Problem to Security Objectives Mapping ... 18
Table 7 – Allocation of OEs ... 20
Table 8 – TOE Security Functional Requirements Summary .. 25
Table 9 – Mapping of Objectives to SFRs .. 31
Table 10 – SFR Dependencies .. 33
Table 11 – TOE Security Assurance Requirements Summary EAL4+ .. 34
Table 12 – Mapping of Security Features from the TOE Description to SFRs 35
Table 13 – FAU implementation .. 35
Table 14 – Cryptographic algorithms ... 36
Table 15 – Cryptographic keys ... 37
Table 16 – FCS implementation ... 38
Table 17 – FCS_IPSEC_EXT.1 dependencies satisfied by the platform 39
Table 18 – FPT implementation ... 40
Table 19 – FTP implementation ... 43
Table 20 – Terms .. 45
Table 21 – Common Criteria v3.1 References .. 48
Table 22 – PPs and Supporting Documents .. 48
Table 23 – Informative References ... 48

MVC Security Target Version 0.042

 FINAL (provisional) Page 5

Change History

Version Change Description Date
V003 Pre-PRELIMINARY 31 July 2020
V004 PRELIMINARY 6 August 2020
V006 PRELIMINARY 10 August 2020
V009 PRELIMINARY 31 August 2020
V014 PRELIMINARY 21 September 2020
V015 DRAFT (first version meeting criteria for DRAFT) 24 September 2020
V016 DRAFT Changed Figure 1; added Change History; formatting 28 September 2020
V017 DRAFT edits and initial modifications from review 7 October 2020
V018 DRAFT changes due to 1st atsec review 18 October 2020
V018a DRAFT Incorporated RS changes 19 October 2020
V019 DRAFT changed SFR numbering and order 20 October 2020
V020 DRAFT responses to incremental atsec review; rationales 31 October 2020
V021 DRAFT edits to section 1; misc edits 3 November 2020
V022 DRAFT delete arch design summary; add to TOE overview; misc edits;

glossaries
11 November 2020

V023 DRAFT edits to SFRs and EXT component defs; misc edits 29 November 2020
V024 FINAL DRAFT 1 December 2020
V025 FINAL DRAFT some additions 7 December 2020
V026 FINAL DRAFT atsec comments (multiple dated versions) w/markup 29 January 2021
V027 FINAL (provisional) completed comments; PLT crypto SFRs; w/markup 8 February 2021
V028 FINAL (provisional) 17 February 2021
V029 FINAL (provisional): Update based on evaluator comments 25 February 2021
V030 FINAL (provisional): addressed some issues from evaluator comments 28 February 2021
V031 FINAL (provisional): changes from evaluator comments 7 March 2021
V032 FINAL (provisional): more changes from evaluator comments 18 March 2021
V033 FINAL (provisional): Clarifications and updates made based on the QA

review comments
5 April 2021

V034 FINAL (provisional): Minor updates and clarifications 15 April 2021
V035 FINAL (provisional): Minor updates and clarifications 26 April 2021
V036 FINAL (provisional): added guidance doc name and FPT_TST details 14 July 2021
V037 FINAL (provisional): minor fixes to the FPT_TEE and FPT_TST 25 August 2021
V038 FINAL (provisional): physical scope, typographical/grammatical edits 31 August 2021
V039 FINAL (provisional): CGX 2.6 source repo and distribution id strings 13 September 2021
V040 FINAL (provisional): Update to kernel key erasure 26 September 2021
V041 FINAL (provisional): Update to the delivery 29 September 2021
V042 FINAL (provisional): Added clarification to testing in section 1.4.2 3 November 2021

MVC Security Target Version 0.042

 FINAL (provisional) Page 6

1 Security Target (ST) Introduction
The structure of this document is defined by CC v3.1R5 Part 1 Annex A, Section A.2
“Mandatory contents of an ST” [1].

1.1 Security Target Reference

ST Title: MontaVista VPN Client (MVC) Common Criteria Security Target
ST Version Number: Version 0.042 (FINAL (provisional))
ST Author(s): Rance DeLong and Riku Salminen and Markus Veranen
ST Publication Date: 2021-11-03
Keywords: IPsec, VPN, client

1.2 TOE Reference

TOE Developer MontaVista Software, LLC
 5201 Great America Parkway, Suite 432
 Santa Clara, CA 95054
 USA

TOE Name: MontaVista VPN Client (MVC)

TOE Software Version: MVC 1.0

MVC Security Target Version 0.042

 FINAL (provisional) Page 7

1.3 TOE Overview
The TOE is part of the MontaVista VPN Client (MVC). The MVC is a software product that
provides an VPN IPsec connection between the client (TOE) and a server.

The MVC is employed by an end-user as a client on an operating environment to establish a
mutually-authenticated trusted channel with a server on a remote system running a compatible
implementation of the standard protocols implemented by TOE.

The summary of the security functionality of the TOE is:

• The TOE provides data confidentiality and integrity, and protects against replay and
disclosure and manipulation attacks against data transmitted within the trusted channel.

• TOE utilizes the Internet Key Exchange version 2 (IKEv2) protocol and the IPsec
Encapsulating Security Payload (ESP) protocol. These protocols provide strong mutual
authentication of the TOE’s VPN peer and negotiate keys to establish one or more trusted
channels for confidentiality- and integrity-protected communication between endpoints
over both IPv4 and IPv6 network protocol implementations provided by the operating
environment.

• The TOE generates audit records for security-relevant events and forwards them to audit
logging and storage facilities provided by the operating environment.

• Self-tests to assure the correct operation of security functions.

The MVC is intended to be used with the MontaVista Linux Carrier Grade eXpress (CGX)
operating system using the ARM processor architecture.

The MVC consists of a collection of software modules that include components from the open-
source software project strongSwan and Linux kernel networking components. The TOE is
provided as a binary executables along with the whole MVC source code, including all of the
non-TOE components and tools necessary to build the executable images. However, only the
binary executables and not the source code version is considered the TOE. The scope of the TOE
is shown in Figure 1 below.

1.4 TOE Description
The MVC is used to establish a cryptographically secure data communication channel between a
local user and a remote trusted user or to establish a trusted network over a potentially unsafe
network. We will refer to such data, as well as configuration data that is critical to the security of
the VPN client, as sensitive or “red” data. An unsafe network we will refer to as a “public
network” or “black network.”

The client is physically realized in the MVC as a software product (identified as an instance of
“Variant 2” in [11]). The core functionality is to transmit red data with confidentiality, integrity
and authenticity achieved by establishing a suitably configured VPN tunnel between the VPN
client and a compatible VPN gateway. Supporting functions needed to protect the VPN client
and to configure and establish the secure channel, perform encryption/decryption and signing of
data, key and certificate management, key storage, etc. are provided by the platform running the
MVC product. The MVC utilizes features of the non-TOE hardware/firmware/software platform

MVC Security Target Version 0.042

 FINAL (provisional) Page 8

provided by its environment, including cryptographic operations, key management and key
storage.

Figure 1 illustrates the extended architecture of the MVC, including the TOE components, and
the platform (PLT) components. It distinguishes among the TOE and the PLT by color. Of note
among the non-TOE components is the Configuration Agent component of the platform. The
TOE and other PLT components provide configuration interfaces but the actual Configuration
Agent that uses those interfaces is to be provided by the integrator, who will determine the
manner in which the MVC fits into the operational workflow and management of the larger
system in which MVC is employed. The figure also depicts whether an TOE or PLT component
runs in the CGX kernel or in user space.

Figure 1: TOE and platform components of extended MVC architecture

1.4.1 TOE software components
Encapsulating Security Payload (ESP), Security Policy Database (SDP) and Security Association
Database (SAD) are TOE functions implemented by the following Linux kernel components:

MVC Security Target Version 0.042

 FINAL (provisional) Page 9

• ESP4 (MVC) implements ESP for Internet Protocol version 4 (IPv4).
• ESP6 (MVC) implements ESP for Internet Protocol version 6 (IPv6).
• XFRM (MVC) implements the Security Policy Database (SPD) and the Security

Association Database (SAD).

Internet Key Exchange version 2 (IKEv2) is implemented by the following MVC strongSwan
charon keying daemon components:

• charon-systemd implements charon keying daemon systemd integration.
• libcharon implements most of the charon IKEv2 daemon functionality.
• libstrongswan is the foundation library of the charon IKEv2 keying daemon.

1.4.2 Platform software components required for operation of the MVC
The MVC relies on platform-provided functionality for identification and authentication, file
system, access control, log storage, networking support (IP/UDP), cryptographic algorithm
implementations, secure key storage and other operating system services.

The platform may provide discrete user identities and provide an identification and
authentication procedure to bind a specific user identity to an instance of the execution of the
MVC or it may simply preserve and associate an identity established by an external
administrative procedure, such as assignment of a device having an implicit associated identity to
a person. MVC connections to environment resources such as files or network ports, or to
subjects such as a user or administrator subject is done through associations by the platform
between such resources or subjects and the interfaces of the MVC.

Cryptographic algorithm implementations for the kernel space ESP implementation are provided
by the platform and accessed via the Linux Kernel Crypto API. For the kernel part the MVC
relies on the Linux Kernel Crypto API. During startup, the TOE runs a set of tests on the
algorithms that it relies upon.

Cryptographic algorithm implementations for the user space charon-systemd IKEv2
implementation are provided by the OpenSSL library (platform) and a PKCS#11 module. By
default, the MVC platform uses SoftHSM, a software only PKCS#11 implementation. SoftHSM
is configured to use cryptographic algorithm imlementations provided by the OpenSSL library.

The charon-systemd daemon controls the Security Policy Database (SPD), which specifies what
security services are to be applied to IP packets and how, and the Security Association Database
(SAD), which determines whether a packet is subject to IPsec processing and the processing
details. These databases are maintained in kernel space through the Netlink Socket API. The
same API is used for communication from the kernel space IPsec stack to the charon-systemd
daemon.

The platform provides the systemd init daemon. Systemd starts charon-systemd and collects and
stores log information generated by charon-systemd.

MVC Security Target Version 0.042

 FINAL (provisional) Page 10

The Configuration Agent is a platform component provided by the integrator. It provides the user
interface for configuration and interfaces to other parts of the user’s system. The Configuration
Agent uses libest. Libest implements RFC 7030, Enrollment over Secure Transport (EST), and
uses OpenSSL.

During the evaluation, the TOE was tested against an independent reference implementation of
IPsec/IKE. That reference implementation is part of SUSE Linux Enterprise Server 15 SP2
which was CC certified by BSI on 2021-07-08. This would also allow the evaluator to verify not
only the TOE’s implementation of IPsec and IKE protocols, but also the underlying
cryptographic primitives that are provided by the operational environment.

1.4.3 Operating environment for execution of the MVC
MontaVista Linux Carrier Grade eXpress (CGX) is MontaVista’s main operating system product
that delivers Carrier Grade reliability, security, and serviceability in a highly configurable,
flexible package with consistent high quality. CGX is compliant with the Carrier Grade Linux
(CGL) 5.0 standard which in turn complies with the Linux Standard Base (LSB) 3.0. A goal of
the CGL working group is to promote migration from proprietary hardware platforms to COTS
hardware by assuring adequate support for COTS platforms.
Considering the diversity of hardware platforms, the CGL working group defines generic
platform requirements and then provides an “Industry Platforms” section with guidelines for
specific architectures.

CGX meets key criteria set by the CGL working group, including IPv6, cipher, IPsec, IKE
daemon support, role-based access control, auditing, file access tracing, and tamper resistant
storage for security-relevant data such as keys and certificates.

The primary MVC configuration and management functions are delegated to a Configuration
Agent that is run within the IT environment referred to here as the platform, which is provided
by the integrator and uses the configuration interfaces provided by the MVC.

1.4.4 Hardware/firmware platform for execution of the TOE/PLT software components
The TOE requires a hardware/firmware platform that is compatible with the CGX operating
system, has at least one network interface and provides persistent storage for software
components, configuration and log data. The TOE does not interface to the hardware directly,
but only through interfaces provided by the platform’s operating environment. The evaluation
platform hardware is an AGIB A101 board, secure SoC environment (ARM ISA).

1.4.5 MVC Security features
The following security features are provided by the MVC:

1. Cryptographic protocols capable of successful runs despite passive eavesdropping or
active manipulations of coordination and data communication messages in transit by an
adversary with powers such as those defined by the Dolev-Yao symbolic model

2. Cryptographic key negotiation and handling
3. Establish a mutually authenticated trusted channel “VPN tunnel” over a public “black”

network
4. Confidentiality and integrity of red data-in-transit through VPN tunnel
5. Generation of audit records for security-relevant events occurring within the MVC

MVC Security Target Version 0.042

 FINAL (provisional) Page 11

6. Self-tests to assure the correct operation of supporting functions.

MVC implements security functionality that integrates with the CGX kernel to provide IPSec
ESP packet path functionality, maintaining Security Association & Security Policy databases
(SAD and SPD) and enforcing IPsec ESP protocol transformation of network packets. In CGX
user space, MVC implements security functionality for managing IPsec configuration, running
IPsec IKEv2 keying protocol and controlling ESP transformation in the kernel by applying SA
and SP information.

1.4.5.1 Cryptographic protocols
The MVC implements ESP protocol to provide confidentiality, data origin authentication,
connectionless integrity, and anti-replay service to connections between local and remote red
networks for both ipv4 and ipv6. The MVC performs encrypting and signing by using algorithms
which fulfill the requirements for VS-NfD classified information [11], to mitigate against
eavesdropping and manipulation of messages while in transit over the black network.

For a detailed description of the cryptographic algorithms and keys used, please see section 7.3.1
and especially Table 14 – Cryptographic algorithms and Table 15 – Cryptographic keys.

1.4.5.2 Cryptographic key negotiation and handling
IKEv2 protocol is implemented by the MVC for IPsec keying functionality. At phase 1 the MVC
performs mutual authentication of the peers using X.509 certificates, negotiates cryptographic
parameters, and creates session keys for the rest of IKEv2 communication (Phase 2).

1.4.5.3 Establish mutually authenticated trusted channel
IPsec ESP functionality of the MVC implements IPsec tunnel mode, which encapsulates the
whole IP packet by encrypting and authenticating the original IP packet. Encryption and
authentication is performed by utilizing keys and algorithm selections from an Security
Association (SA) entry in SA Database. The SA entry is created for the connection by IKEv2
functionality in Phase 2 negotiation.

1.4.5.4 Confidentiality and Integrity of red data-in-transit
The red data in-transit is protected by encapsulating it into IPsec VPN ESP tunnel, negotiated
between local and remote peer as described above. For network packets, IPsec Security Policy
Database is searched to determine whether a packet is subject to IPsec transformation.

1.4.5.5 Generation of audit records
StrongSwan generates audit records of IPsec IKEv2 security-relevant events via the systemd
logging interface provided by the platform. The log entries are stored into a file and accessible
locally to the security administrator.

1.4.5.6 Self-test of the cryptographic functions
During start-up, the TOE will perform test of the strongSwan and test of the cryptographic
functions that are provided by the platform (both the kernel and the user space part). The TOE
will also test the integrity of the strongSwan configuration. If these tests are failing the TOE will
not be operational and will enter a secure state. In that case the TOE will generate an audit event.

MVC Security Target Version 0.042

 FINAL (provisional) Page 12

1.4.6 MVC life cycle
The MV is provided as binary images along with a minimal supporting software platform in
form of a the CGX 2.6 deliverable reflecting the version and evaluated configuration of the TOE.

In addition, the MVC is provided as source code to the integrator as network download
containing a Docker image, which in turn contains all software components of the MVC test
configuration, including the PLT, CGX, third party components needed to complete the MVC
architecture, and a simple generic placeholder component to take the place of the Configuration
Agent that is to be replaced by the integrator supplied version. The integrator will combine the
MVC with its own software components and hardware to create its own product that includes the
MVC and will provide delivery, acceptance procedures, and user guidance for the product.

MVC is provided along with guidance for the integrator in the document CGX 2.6 Getting
Started Guide TI 66AK2H (AGIB) that covers the use of the MVC delivery and the
establishment of the necessary operational environment for tasks that the integrator must perform
with the MVC. The integrator guidance includes sections reflecting the objectives for the
operational environment that are intended for the integrator to pass through by inclusion in the
User Guidance that the integrator provides to the end users of its product. The integrator will
need to include product-specific installation and administration information in the User Guidance
it provides.

1.4.7 Physical Scope
The TOE is delivered as binary images along with a minimal supporting software platform in
form of a the CGX 2.6 deliverable. The TOE is delivered by download from the MontaVista
“Zone” at https://support.mvista.com. The binary images are considered to be the TOE, along
with the documentation as described below. Additionally, the source code is available for
download and build using the provided build tools and procedures.

The MVC delivery consists of the following items:

• A Docker image containing images comprising a minimal executable CGX system,
binary images of the MVC components identified in Section 1.4 as built from the source
repository, and the environment and tools required for re-building the MVC and its
platform components from source code;

• Pre-built binary image(s) of CGX including MVC, suitable for execution on the target
hardware, as the CGX 2.6 deliverable with buildtag “agib-4.19-2.6_210823084105”;

• Documentation in digital form within the physical distribution media containing the
instructions for installing and executing the contents of the distribution area, guidance for
integration of integrator-supplied components, guidance for preparation of a suitable
execution environment for the MVC based on the environment objectives for the MVC,
and guidance that should be passed through to the end user as part of integrator-provided
user guidance; and

• A PDF file of the CGX 2.6 Getting Started Guide and a description of how to access the
MontaVista Zone and the balance of the documentation in digital form.

In addition, a collection of Git repositories is made available, containing the source of the MVC
and of platform components required to support the MVC. The Git branch name of the source

MVC Security Target Version 0.042

 FINAL (provisional) Page 13

repository is “thud-210823084105”. From this source the binary images of the MVC and PLT
can be built. The source code is available to be downloaded by the integrators for development
and integration activities. The source repositories may be either mounted or cloned to the Docker
container. Build may be run inside the container and resulting binary image(s) copied from the
Docker container to the host system.

1.4.8 Logical Scope
The logical scope is described in section 1.4.5 and the subsections 1.4.5.1 to 1.4.5.7.

MVC Security Target Version 0.042

 FINAL (provisional) Page 14

2 Conformance claims

2.1 Common Criteria Conformance Claims
This ST is CC Part 2 extended and CC Part 3 conformant.

This ST claims conformance to CC version 3.1 Revision 5, April 2017.

This ST claims conformance to the EAL4 package of security assurance requirements augmented
with ALC_FLR.2 and AVA_VAN.4.

This ST does not claim conformance to any protection profile.

2.2 Conformance rationale
The MVC is to be applied in environments wherein at most VS NfD “restricted” information is
handled and to be processed by the MVC. The choice of EAL4 conformance and its
augmentation is based on precedent established by BSI in Germany. Specifically, these assurance
requirements are based on the VS-Anforderungsprofil VPN-Client (VPNC), 19.09.2018 [11].

MVC Security Target Version 0.042

 FINAL (provisional) Page 15

3 Security problem definition

3.1 Preliminaries
Terms and abbreviations used in this security problem definition and elsewhere in the security
target are defined in Section 8.

The assets of concern with respect to the MVC are:

• User- or organization-sensitive data (red data)
• TSF data such as configuration data or internal data (also considered red data)

Data assets occur as data-at-rest (DAR), data-in-use (DIU), or data-in-transit (DIT).
Note that user authentication data as well as long-term keys and certificates are assets that are
managed by and stored within the platform, not under direct control of the TOE.

3.2 Threats
The following subsections define the security threats for the MVC, characterized by a threat
agent (“adversary”), an asset, and an adverse effect on that asset caused by the threat agent.

The threats listed in Table 1 are to be countered by the MVC operating on its platform within the
operating environment.

Table 1 – Threats
Threat Description

T.NETWORK_ATTACK The actions of an adversary on the black network (including message inspection,
disassembly, replay, deletion, modification, and creation potentially across multiple
sessions) enable the adversary to defeat the objectives of the security protocols
implemented by the TOE resulting in violation of a security policy, such as the
confidentiality or integrity of red DIT.

3.3 Organizational security policies
The OSPs listed in Table 2 are intended to represent generic policies expected to be common to
organizations using the MVC.

Table 2 – Organizational Security Policies
OSP Description

P.LOGGING Information regarding the occurrence of security-relevant events within the TSF shall be
logged for later forensic examination, including the identity of associated individual user
or subject, along with other relevant particulars.

P.RED_DATA_PROT The TOE shall ensure that red data is protected when it is under control of the TOE and
that it is only transmitted over the designated communication channel to or from a peer
over a black network.

P.SELF_TEST The TOE must verify the integrity of the configuration and verify that the cryptographic
operations are performed correctly before any outside connections is established. If the test
fails the TOE must come to a halt.

MVC Security Target Version 0.042

 FINAL (provisional) Page 16

3.4 Assumptions on the MVC operational environment
This section describes the assumptions that are made on the operational environment in which
the MVC runs in order to be able to provide its security functionality. It includes information
about the physical, personnel, and IT platform aspects of the environment.

The operational environment must be managed in accordance with the provided guidance
documentation. Table 3 enumerates specific conditions that are assumed to exist in the
environment and in the IT system upon which the TOE operates (those prefixed with “IT_”).

Table 3 – Assumptions on the Operational Environment
Assumption Description

A.PHYSICAL_SECURITY The non-IT environment provides the TOE and the platform upon which it operates with
appropriate physical security to prevent tampering commensurate with the value of the
IT assets protected by the TOE.

A.PERSONNEL Personnel that use or administer the TOE or the platform are assumed to be trusted,
trained and follow all applicable guidance documentation.

A.IT_ADMIN The operational environment of the TOE provides procedures and tools for the secure
configuration and administration of the TOE.

A.IT_STORAGE The IT environment provides protected persistent storage for programs and data of the
TOE

A.IT_ACCESS_CONTROL The IT environment for the operation of the TOE provides appropriate and adequate
access control for assets upon which the TOE depends, including: TOE executable files,
configuration files, ports, or other interfaces.

A.IT_CRYPTO_EXP The cryptographic primitives, RNG and memory management for kernel key erasure
required by the TOE are provided by the underlying platform.

A.IT_CRYPTO_GEN The IT environment provides mechanisms for the storage, distribution and management
of cryptographic private keys and certificates.

A.IT_INITIALIZATION The IT environment has hardware and software features to ensure correct establishment
of initial secure state.

A.IT_TIME The IT environment has hardware and software features to provide the current time.
A.IT_MEDIATION All access to data assets (including red data and external network connections) that exist

in the IT environment is mediated by and subject to the controls provided by the platform
upon which the TOE executes.

MVC Security Target Version 0.042

 FINAL (provisional) Page 17

4 Security objectives

4.1 Security Objectives for the TOE
The security objectives for the TOE are listed in Table 4.

Table 4 – Security Objectives for the TOE
TOE Objective Description

O.COMMUNICATION TOE establishes a mutually authenticated trusted communication channel with its peer.
The trusted channel provides confidentiality and integrity of red data-in-transit over the
black network. The cryptographic/communication protocols implemented by the TOE
ensure that red data does not reach the black network as cleartext, and thwart network
attacks such as replay and other message manipulation attacks

O.AUDIT Select security-relevant events in the TOE are logged for later inspection
O.SELF_TEST The TOE must verify the integrity of the configuration and verify that the cryptographic

operations are performed correctly before any outside connections is established. If the test
fails the TOE must come to a halt.

O.INFO_FLOW TOE processing and communication prevents modification of red data by, or disclosure of
red data to, an untrusted subject by forcing red data to flow only to trusted subjects
through trusted channels.

4.2 Security Objectives for the Operational Environment
The security objectives for the operational environment are listed in Table 5.

Table 5 – Security Objectives for the Operational Environment
Objective Description

OE.PHYSICAL_SECURITY Physical access to the environment and to the platform for the execution of the TOE is
restricted to authorized individuals

OE.PERSONNEL Personnel that access, operate, or maintain the TOE or the platform are trained to follow all
applicable guidance documentation and are deemed trustworthy at a level commensurate
with the value of the data assets (may be facilitated by background investigations and other
vetting)

OE.PT_ADMIN The operational environment of the TOE provides procedures and tools for the secure
configuration and administration of the TOE.

OE.PT_FILE_STORAGE The platform provides persistent and access-controlled storage of data-at-rest including
TOE configuration, cryptographic keys and certificates, and audit logs

OE.PT_ACCESS_CONTROL The platform provides adequate enforcement of an access control policy at appropriate
granularity for assets processed by or upon which the TOE depends, including: TOE
executables, configuration files, ports, or other interfaces

OE.PT_CRYPTO_EXP The platform provides cryptographic primitives, RNG and memory management for kernel
key erasure required by the TOE.

OE.PT_CRYPTO_GEN The platform provides mechanisms for the storage, distribution and management of
cryptographic private keys and certificates.

OE.PT_INITIALIZATION The platform provides a secure boot procedure that ensures that the hardware, firmware
and software components of the platform and the TOE are using uncorrupted instances.

OE.PT_TIME The platform provides the TOE with a source of reliable and accurate time.
OE.PT_SEP The platform provides separation of the TOE from other applications and separation of

TSF data from other data, preventing infiltration to and exfiltration from the TOE’s
processes and data areas by other processes.

OE.PT_RVM The platform provides mediation of data flows to and from the TOE to achieve non-
bypass-ability of the security functions provided by the TOE.

MVC Security Target Version 0.042

 FINAL (provisional) Page 18

4.3 Rationale for the Security Objectives
Table 6 presents the mapping of the threats, organizational security policies, and environmental
assumptions to the security Objectives for the TOE (O) and Objectives for the Environment
(OE), including the specific objectives for the platform (OE.PT). The appearance of and ‘X’
indicates that a threat, policy or assumption is addressed in some measure by the objective. The
manner in which the objectives contribute to the elimination or mitigation of each threat, or to
the enforcement of each policy are discussed subsequently.

Table 6 – Security Problem to Security Objectives Mapping

O
.C

O
M

M
U

N
IC

AT
IO

N

O
.A

U
DI

T

O
.S

EL
F _

TE
ST

O
.IN

FO
_F

LO
W

O
E.

PH
YS

IC
AL

_S
EC

U
RI

TY

O
E.

PE
RS

O
N

N
EL

O
E.

PT
_A

DM
IN

O
E.

PT
_F

IL
E_

ST
O

RA
GE

O
E.

PT
_A

CC
ES

S_
CO

N
TR

O
L

O
E.

PT
_C

RY
PT

O
_E

XP

O
E.

PT
_C

RY
PT

O
_G

EN

O
E.

PT
_I

N
IT

IA
LI

ZA
TI

O
N

O
E.

PT
_T

IM
E

O
E.

PT
_S

EP

O
E.

PT
_R

VM

T.NETWORK_ATTACK X
P.LOGGING X
P.SELF_TEST X
P.RED_DATA_PROT X X
A.PHYSICAL_SECURITY X
A.PERSONNEL X
A.IT_ADMIN X
A.IT_STORAGE X
A.IT_ACCESS_CONTROL X
A.IT_CRYPTO_EXP X
A.IT_CRYPTO_GEN X
A.IT_INITIALIZATION X
A.IT_TIME X
A.IT_MEDIATION X X

The application to each threat and policy of the Objectives for the TOE, and for each threat,
policy, and assumption of the Objectives for the Environment are described in the following:

• T.NETWORK_ATTACK – Network attacks are addressed by O.COMMUNICATION.
O.COMMUNICATION requires establishment of a mutually authenticated trusted
channel that has the properties: confidentiality and integrity of red data and resistance to
network message and protocol manipulation attacks. This threat is deemed to be
eliminated by the cited security objectives.

• P.SELF_TEST – The organizational security policy of self test is mitigated by the TOE
objective O.SELF_TEST, which is intended to detect loss of integrity in the configuration
of the TOE and to verify that the cryptographic operations are performed correctly before
any outside connections is established. The tests are performed dusing startip and if the
test fails the TOE must come to a halt.

MVC Security Target Version 0.042

 FINAL (provisional) Page 19

• P.LOGGING – The organizational security policy that there be logging of security-
relevant events for forensic purposes is served by the O.AUDIT objective.

• P.RED_DATA_PROT – The protection of the confidentiality and integrity of red data is
the overarching organizational security policy, and it is enforced within the TOE and
during its transmission over the VPN. The objective O.COMMUNICATION achieves
protection of red data over the black network through mutual authentication and
encrypted communication. The objective O.INFO_FLOW concerns the protection and
confinement of red data coming into and used within the TOE, assuring that red data does
not reach the black network in cleartext form and is not improperly exported by the TOE.
This policy is complemented by the assumption A.IT_MEDIATION that the platform
will provide protection of red data flowing into and out of the TOE from other domains in
the platform.

• A.PHYSICAL_SECURITY – The assumption of physical security is guaranteed by the
operational environment objective OE.PHYSICAL_SECURITY.

• A.PERSONNEL – The assumption of users that are trusted, trained and follow applicable
guidance is guaranteed by the operational environment objective OE.PERSONNEL that
ensures that only trusted and trained users are granted access to the TOE and are vetted to
an appropriate level of trustworthiness.

• A.IT_ADMIN – The assumption of administrative procedures and tools for secure
configuration and administration of the TOE by the security objective OE.PT_ADMIN.

• A.IT_STORAGE – The assumption that the IT environment provides protected persistent
storage for programs and data associated with the TOE and PLT is met by the platform
objective OE.PT_FILE_STORAGE.

• A.IT_ACCESS_CONTROL – The assumption that the IT environment provides access
control for TOE and PLT executable files, configuration files, ports, etc. is guaranteed by
the platform objective OE.PT_ACCESS_CONTROL.

• A.IT_CRYPTO_EXP – The assumption that the platform provides the cryptographic
primitives, RNG and memory management for key erasure required by the TOE is
guaranteed by the platform objective OE.PT_CRYPO_EXP.

• A.IT_CRYPTO_GEN – The assumption that the platform provides mechanisms for the
storage, distribution and management of cryptographic private keys and certificates is
guaranteed by the platform objective OE.PT_CRYPTO_GEN.

• A.IT_INITIALIZATION –The assumption that the IT environment provides secure
initialization to guarantee that key elements of the TOE and PLT are uncorrupted is met
by the platform objective OE.PT_INITIALIZATION.

• A.IT_TIME – The assumption that the IT environment provides an accurate and
trustworthy source of the current time is met by the platform objective OE.PT_TIME.

• A.IT_MEDIATION – The assumption that the platform mediates all access to and
transfer of data assets is addressed by OE.PT_SEP and OE.PT_RVM which guarantee
that the mediation mechanisms are tamperproof and non-bypassable.

MVC Security Target Version 0.042

 FINAL (provisional) Page 20

Table 7 indicates whether Objectives for the Environment are met by the platform or by other
non-IT environment conditions. ‘P’ indicates that the Platform (IT environment) meets an
environment objective; ‘E’ indicates that a non-IT environment condition meets an environment
objective. All of these Objectives for the Environment are achieved through the application of
the provided guidance documentation.

Table 7 – Allocation of OEs

PL
T

(IT
 e

nv
iro

nm
en

t)

EN
V

(n
on

-IT
 e

nv
iro

nm
en

t)

OE.PHYSICAL_SECURITY E
OE.PERSONNEL E
OE.PT_ADMIN P
OE.PT_FILE_STORAGE P
OE.PT_ACCESS_CONTROL P
OE.PT_CRYPTO_EXP P
OE.PT_CRYPTO_GEN P
OE.PT_INITIALIZATION P
OE.PT_TIME P
OE.PT_SEP P
OE.PT_RVM P

MVC Security Target Version 0.042

 FINAL (provisional) Page 21

5 Extended components definition

5.1 Security functional requirement extended components
This ST incorporates extended SFR definitions for FCS_IPSEC_EXT and FCS_RBG_EXT from
the collaborative Protection Profile for Network Devices (cPPND) [6]. For completeness of the
ST, the extended SFR definitions are copied below. Modifications made to the cPPND
component definitions appear as refinements when these components are invoked in the security
requirements for the TOE in Section 6.1.

5.1.1 FCS_IPSEC_EXT.1 IPsec Protocol
Family Behaviour
Components in this family address the requirements for protecting communications using IPsec.

Component levelling

FCS_IPSEC_EXT.1 IPsec requires that IPsec be implemented as specified.

Management: FCS_IPSEC_EXT.1
The following actions could be considered for the management functions in FMT:

a) Maintenance of SA lifetime configuration

Audit: FCS_IPSEC_EXT.1
The following actions should be considered for audit if FAU_GEN Security audit data generation is
included in the PP/ST:

a) Decisions to DISCARD, BYPASS, PROTECT network packets processed by the TOE.
b) Failure to establish an IPsec SA
c) IPsec SA establishment
d) IPsec SA termination
e) Negotiation “down” from an IKEv2 to IKEv1 exchange.

FCS_IPSEC_EXT.1 Internet Protocol Security (IPsec) Communications
Hierarchical to: No other components
Dependencies: FCS_CKM.1Cryptographic KeyGeneration
 FCS_CKM.2Cryptographic KeyEstablishment
 FCS_COP.1/DataEncryption Cryptographic operation (AES Data encryption/decryption)
 FCS_COP.1/SigGen Cryptographic operation (Signature Generation and Verification)
 FCS_COP.1/HashCryptographic operation (HashAlgorithm)
 FCS_COP.1/KeyedHash Cryptographic operation (Keyed Hash Algorithm)
 FCS_RBG_EXT.1 Random Bit Generation
FCS_IPSEC_EXT.1.1 The TSF shall implement the IPsec architecture as specified in RFC 4301.

FCS_IPSEC_EXT.1.2 The TSF shall have a nominal, final entry in the SPD that matches anything that is
otherwise unmatched and discards it.

FCS_IPSEC_EXT.1.3 The TSF shall implement [selection: tunnel mode, transport mode].

FCS_IPSEC_EXT.1.4 The TSF shall implement the IPsec protocol ESP as defined by RFC 4303 using
the cryptographic algorithms [selection: AES-CBC-128 (RFC 3602), AES-CBC-192
(RFC 3602), AES-CBC-256 (RFC 3602), AES-GCM-128 (RFC 4106), AES-GCM-
192 (RFC 4106), AES-GCM-256 (RFC 4106),] together with a Secure Hash
Algorithm (SHA)-based HMAC [selection: HMAC-SHA-1, HMAC-SHA-256, HMAC-
SHA-384, HMAC-SHA-512, no HMAC algorithm].

FCS_IPSEC_EXT.1.5 The TSF shall implement the protocol: [selection:

MVC Security Target Version 0.042

 FINAL (provisional) Page 22

• IKEv1, using Main Mode for Phase 1 exchanges, as defined in RFCs 2407, 2408,
2409, RFC 4109, [selection: no other RFCs for extended sequence numbers, RFC
4304 for extended sequence numbers], and [selection: no other RFCs for hash
functions, RFC 4868 for hash functions];

• IKEv2 as defined in RFCs 5996 [selection: with no support for NAT traversal, with
mandatory support for NAT traversal as specified in RFC 5996, section 2.23)], and
[selection: no other RFCs for hash functions, RFC 4868 for hash functions]].

FCS_IPSEC_EXT.1.6 The TSF shall ensure the encrypted payload in the [selection: IKEv1, IKEv2]
protocol uses the cryptographic algorithms [selection: AES-CBC-128, AES_CBC-
192 AES-CBC-256 (specified in RFC 3602), AES-GCM-128, AES-GCM-192, AES-
GCM-256 (specified in RFC 5282)].

FCS_IPSEC_EXT.1.7 The TSF shall ensure that [selection:

• IKEv1 Phase 1 SA lifetimes can be configured by a Security Administrator based
on [selection:

 o number of bytes;

 o length of time, where the time values can be configured within [assignment:

 integer range including 24] hours;];

• IKEv2 SA lifetimes can be configured by a Security Administrator based on
[selection:

 o number of bytes;

 o length of time, where the time values can be configured within

 [assignment: integer range including 24] hours

]].

FCS_IPSEC_EXT.1.8 The TSF shall ensure that [selection:

 • IKEv1 Phase 2 SA lifetimes can be configured by a Security Administrator based
on [selection:

 o number of bytes;

 o length of time, where the time values can be configured within [assignment:

 integer range including 8] hours;

];

 • IKEv2 Child SA lifetimes can be configured by a Security Administrator based on
[selection:

 o number of bytes;

 o length of time, where the time values can be configured within [assignment:

 integer range including 8] hours;

]].

FCS_IPSEC_EXT.1.9 The TSF shall generate the secret value x used in the IKE Diffie- Hellman key
exchange (“x” in gx mod p) using the random bit generator specified in
FCS_RBG_EXT.1, and having a length of at least [assignment: (one or more)
number(s) of bits that is at least twice the security strength of the negotiated Diffie-
Hellman group] bits.

FCS_IPSEC_EXT.1.10 The TSF shall generate nonces used in [selection: IKEv1, IKEv2] exchanges of
length [selection:

MVC Security Target Version 0.042

 FINAL (provisional) Page 23

 • according to the security strength associated with the negotiated Diffie-Hellman
group;

 • at least 128 bits in size and at least half the output size of the negotiated
pseudorandom function (PRF) hash

].

FCS_IPSEC_EXT.1.11 The TSF shall ensure that IKE protocols implement DH Group(s) [selection:

 • [selection: 14 (2048-bit MODP), 15 (3072-bit MODP), 16 (4096-bit MODP), 17
(6144-bit MODP), 18 (8192-bit MODP)] according to RFC 3526,

 • [selection: 19 (256-bit Random ECP), 20 (384-bit Random ECP), 21 (521-bit
Random ECP), 24 (2048-bit MODP with 256-bit POS)] according to RFC 5114.

].

FCS_IPSEC_EXT.1.12 The TSF shall be able to ensure by default that the strength of the symmetric
algorithm (in terms of the number of bits in the key) negotiated to protect the
[selection: IKEv1 Phase 1, IKEv2 IKE_SA] connection is greater than or equal to
the strength of the symmetric algorithm (in terms of the number of bits in the key)
negotiated to protect the [selection: IKEv1 Phase 2, IKEv2 CHILD_SA]
connection.

FCS_IPSEC_EXT.1.13 The TSF shall ensure that all IKE protocols perform peer authentication using
[selection: RSA, ECDSA] that use X.509v3 certificates that conform to RFC 4945
and [selection: Pre-shared Keys, no other method].

FCS_IPSEC_EXT.1.14 The TSF shall only establish a trusted channel if the presented identifier in the
received certificate matches the configured reference identifier, where the
presented and reference identifiers are of the following fields and types:
[selection: SAN: IP address, SAN: Fully Qualified Domain Name (FQDN), SAN:
user FQDN, CN: IP address, CN: Fully Qualified Domain Name (FQDN), CN:
user FQDN, Distinguished Name (DN)] and [selection: no other reference
identifier type, [assignment: other supported reference identifier types]].

5.1.2 FCS_RBG_EXT.1 Random Bit Generation
Family Behaviour
Components in this family address the requirements for random bit/number generation. This is a new
family defined for the FCS class.

Component levelling

FCS_RBG_EXT.1 Random Bit Generation requires random bit generation to be performed in accordance
with selected standards and seeded by an entropy source.

Management: FCS_RBG_EXT.1
The following actions could be considered for the management functions in FMT:

a) There are no management activities foreseen

Audit: FCS_RBG_EXT.1
The following actions should be auditable if FAU_GEN Security audit data generation is included in the
PP/ST:

a) Minimal: failure of the randomization process

FCS_RBG_EXT.1 Random Bit Generation
Hierarchical to: No other components

MVC Security Target Version 0.042

 FINAL (provisional) Page 24

Dependencies: No other components
FCS_RBG_EXT.1.1 The TSF shall perform all deterministic random bit generation services in accordance

with ISO/IEC 18031:2011 using [selection: Hash_DRBG (any), HMAC_DRBG (any),
CTR_DRBG (AES)].

FCS_RBG_EXT.1.2 The deterministic RBG shall be seeded by at least one entropy source that
accumulates entropy from [selection: [assignment: number of software-based
sources] software-based noise source, [assignment: number of platform-based
sources] platform-based noise source] with a minimum of [selection: 128 bits, 192
bits, 256 bits] of entropy at least equal to the greatest security strength, according to
ISO/IEC 18031:2011 Table C.1 “Security Strength Table for Hash Functions”, of the
keys and hashes that it will generate.

5.2 Extended security components rationale
The new FCS_IPSEC_EXT family and its components FCS_IPSEC_EXT.1 –
FCS_IPSEC_EXT.14 used in this ST are introduced by the cPPND [6].

The new FCS_RBG_EXT family and the FCS_RBG_EXT.1 component as used in this ST is
introduced by the cPPND to satisfy a dependency on the part of the extended component
FCS_IPSEC_EXT.1.

MVC Security Target Version 0.042

 FINAL (provisional) Page 25

6 Security requirements for the TOE
This section descriptions the security functional and assurance requirements for the TOE. The
notation, formatting, and conventions used are defined below.

Application notes have been added by the ST authors to provide the reader with additional
understanding or to clarify the ST author's intent; they are italicized and usually appear
immediately preceding or following the element needing clarification.

CC component operations are identified in the following way:

• Assignments and Selections are typeset in bold text
• Refinements are identified by bold underlined text for any additions and by strikes thru

for any removals; any refinement that performs a deletion in text is also noted in a
numbered footnote.

6.1 Security functional requirements for the TOE
This section describes the security functional requirements for the TOE. The security functional
requirement components in this security target are CC Part 2 conformant or CC Part 2 extended.

Typographical and notational conventions introduced above are in reference to operations
applied in the ST on the SFRs.

A summary of the security functional requirements is given by Table 8.

Table 8 – TOE Security Functional Requirements Summary
SFR Description

FAU_GEN.1 Security audit data generation
FCS_CKM.2 Cryptographic key distribution (refined to key establishment)
FCS_CKM.4 Cryptographic key destruction
FCS_IPSEC_EXT.1 IPsec protocol
FPT_TEE.1 Testing of external entities
FPT_TST.1 TSF (self) testing
FTP_ITC.1 Inter-TSF trusted channel

MVC Security Target Version 0.042

 FINAL (provisional) Page 26

6.1.1 Security Audit (FAU)

6.1.1.1 Security audit data generation (FAU_GEN)

6.1.1.1.1 Audit data generation (FAU_GEN.1)
FAU_GEN.1.1 The TSF shall be able to generate an audit record of the following auditable

events:

a) Start-up and shutdown of the audit functions;

b) All auditable events for the not specified level of audit; and

c) The auditable events: TOE start-up, TOE shutdown, TOE self-
test failure, strongSwan external entity test failure, IKE SA
initiation, IKE SA establishment, IKE SA reinitiation (rekeying),
IKE SA reauthentication, IKE SA deletion, IKE CHILD SA
establishment, IKE CHILD SA expiration.

Application note: From the standpoint of the TOE, the start-up and shutdown of the audit
functions shall correspond to the start-up and shutdown of the TOE.

FAU_GEN.1.2 The TSF shall record within each audit record at least the following
information:

a) Date and time of the event, type of event, subject identity (if
applicable), and the outcome (success or failure) of the event; and

b) For each audit event type, based on the auditable event definitions of
the functional components included in the ST, no other information.

6.1.2 Cryptographic Support (FCS)

6.1.2.1 Cryptographic key management (FCS_CKM)

6.1.2.1.1 Cryptographic key distribution establishment (FCS_CKM.2)
FCS_CKM.2.1 The TSF shall distribute perform cryptographic keys key establishment in

accordance with a specified cryptographic key distribution establishment
method IKEv2 as defined in RFC 7296, with:

• Key establishment schemes using Diffie-Hellman MODP groups
that meet the following: RFC 3526

• Key establishment schemes using Diffie-Hellman ECP groups
that meet the following: RFC 5114

• Key establishment schemes using Diffie-Hellman ECP groups
that meet the following: RFC 6954

 that meets the following: [assignment: list of standards].
Application note: The distribution of cryptographic keys is done as part of the IPSEC and

IKEv2 protocol that defines the key agreement between the client and the
server. The TOE acts as a IPSEC client in a scenario where it obtains data
from a non-TOE component. The cryptographic operation is done as part of
FCS_COP.1 implemented by the platform. The kernel implementation is part
of the Linux Kernel 4.19 and accessible using the Linux Kernel Crypto API.
The user space crypto is implemented by OpenSSL 1.1.1b and accessible
using the SoftHSM 2.6.1.

MVC Security Target Version 0.042

 FINAL (provisional) Page 27

6.1.2.1.2 Cryptographic key destruction (FCS_CKM.4)
FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified

cryptographic key destruction method overwriting with zeroes that meets
the following: none.

Application note: The MVC TOE destroys session keys stored in user space memory by
overwriting with zeroes. Long-term keys are managed by the platform.
Cryptographic keys in kernel space are erased by memory management of
the kernel and part of the platform as described in OE.PT_CRYPO_EXP.

6.1.2.2 Internet Protocol Security (IPsec) Extended (FCS_IPSEC_EXT)
The IPsec protocol is used to establish a mutually authenticated communication channel between
subjects that provides data confidentiality and integrity. IPsec is a peer-to-peer protocol and as
such does not need to be separated into distinct client and server requirements.

Application note: IPsec Protocol Security Functional Requirement extended component

definitions are taken from the collaborative Protection Profile for Network
Devices [6].

6.1.2.2.1 IPsec Protocol (FCS_IPSEC_EXT.1)
FCS_IPSEC_EXT.1.1 The TSF shall implement the IPsec architecture as specified in RFC 4301.

Application note: RFC 4301 calls for an IPsec implementation to use a Security Policy
Database (SPD) to define how IP packets are to be handled.

FCS_IPSEC_EXT.1.2 The TSF shall have a nominal, final entry in the SPD that matches anything
that is otherwise unmatched and discards it.

FCS_IPSEC_EXT.1.3 The TSF shall implement tunnel mode.

FCS_IPSEC_EXT.1.4 The TSF shall implement the IPsec protocol ESP as defined in RFC 4303
using cryptographic algorithms AES-CBC-128 (RFC3602), AES-CBC-256
(RFC3602), AES-GCM-128 (RFC 4106), AES-GCM-192 (RFC 4106), AES-
GCM-256 (RFC 4106) together with a Secure Hash Algorithm (SHA)-based
HMAC HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512.

FCS_IPSEC_EXT.1.5 The TSF shall implement the protocol: IKEv2 as defined in RFC 72961 and
with mandatory support for NAT traversal as specified in RFC 72962,
section 2.23, and RFC 4868 for hash functions.

Application note: IPsec Protocol Security Functional Requirements are adapted from the
collaborative Protection Profile for Network Devices revision v2.2e. The
obsoleted RFC 5996 in FCS_IPSEC_EXT.1.5 has been upgraded to RFC
7296.

FCS_IPSEC_EXT.1.6 The TSF shall ensure the encrypted payload in the IKEv2 protocol uses the
cryptographic algorithms AES-CBC-128, AES-CBC-256 (specified in RFC
3602), AES-GCM-128, AES-GCM-192, AES-GCM-256 (specified in RFC
5282).

FCS_IPSEC_EXT.1.7 The TSF shall ensure that IKEv2 SA lifetimes can be configured by a
Security Administrator based on:

• number of bytes;

1 Reference to RFC 5669 has been replaced with a reference to RFC 7296 [r2]
2 Reference to RFC 5669 has been replaced with a reference to RFC 7296 [r2]

MVC Security Target Version 0.042

 FINAL (provisional) Page 28

• length of time, where the time values can be configured within
1-48 hours.

FCS_IPSEC_EXT.1.8 The TSF shall ensure that IKEv2 Child SA lifetimes can be configured by
a Security Administrator based on:

• number of bytes;

• length of time, where the time values can be configured within
1-24 hours.

FCS_IPSEC_EXT.1.9 The TSF shall generate the secret value x used in the IKE Diffie-Hellman key
exchange (“x” in g^x mod p) using the random bit generator specified in
FCS_RBG_EXT.1, and having a length of at least 224, 256, 384, 512 bits.

Application note: The MVC TOE does not contain the implementation of the cryptographic
algorithms, so FCS_RBG_EXT.1 is addressed by OE.PT_CRYPTO_EXP.

FCS_IPSEC_ETX.1.10 The TSF shall generate nonces used in IKEv2 exchanges of length
according to the security strength associated with the negotiated Diffie-
Hellman group.

FCS_IPSEC_EXT.1.11 The TSF shall ensure that IKE protocols implement DH Group(s):

• 14 (2048-bit MODP), 15 (3072-bit MODP), 16 (4096-bit MODP)
according to RFC 3526,

• 19 (256-bit Random ECP), 20 (384-bit Random ECP), 21 (521-bit
Random ECP) according to RFC 5114.

• 25 (192-bit Random ECP), 26 (224-bit Random ECP) according
to RFC 5114.

• 27 (Brainpool 224-bit Random ECP), 28 (Brainpool 256-bit
Random ECP), 29 (Brainpool 384-bit Random ECP), 30
(Brainpool 512-bit Random ECP) according to RFC 6954.

FCS_IPSEC_EXT.1.12 The TSF shall be able to ensure by default that the strength of the symmetric
algorithm (in terms of the number of bits in the key) negotiated to protect the
IKEv2 IKE_SA connection is greater than or equal to the strength of the
symmetric algorithm (in terms of the number of bits in the key) negotiated to
protect the IKEv2 CHILD_SA connection.

FCS_IPSEC_EXT.1.13 The TSF shall ensure that all IKE protocols perform peer authentication using
RSA, ECDSA that use X.509v3 certificates that conform to RFC 4945 and
no other method.

FCS_IPSEC_EXT.1.14 The TSF shall only establish a trusted channel if the presented identifier in
the received certificate matches the configured reference identifier, where the
presented and reference identifiers are of the following fields and types:
SAN: IP address, SAN: Fully Qualified Domain Name (FQDN), SAN: user
FQDN, Distinguished Name (DN) and no other reference identifier type.

6.1.3 Protection of the TSF (FPT)

6.1.3.1 Testing of external entities (FPT_TEE)

6.1.3.1.1 Testing of external entities (FPT_TEE.1)
FPT_TEE.1.1 The TSF shall run a suite of tests during initial start-up and under no

other conditions to check the fulfillment of correct operation of the
cryptographic algorithms, and correct operation of the random bit
generator.

MVC Security Target Version 0.042

 FINAL (provisional) Page 29

FPT_TEE.1.2 If the test fails, the TSF shall refuse to start or disable the failing
algorithm.

Application note: Since the MVC TOE does not implement the cryptographic algorithms, the
start-up test of the cryptographic algorithms is addressed by the testing of
external entities. The kernel is configured to panic and halt the system if a
kernel space cryptographic algorithm test fails. If a user space cryptographic
algorithm test fails, the TOE refuses to load the failing algorithm thus
preventing use of a misbehaving implementation.

6.1.3.2 TSF self test (FPT_TST)

6.1.3.2.1 TSF testing (FPT_TST.1)
FPT_TST.1.1 The TSF shall run a suite of self tests during initial start-up and under no

other conditions to demonstrate the correct operation of parts of the TSF
by verifying the strongSwan configuration data and parts of the TSF
executables.

FPT_TST.1.2 The TSF shall provide authorised users with the capability to verify the
integrity of no parts of the TSF data.

FPT_TST.1.3 The TSF shall provide authorised users with the capability to verify the
integrity of no parts of the TSF.

Application note: The TOE performs the verification of configuration data and parts of TSF
executables during startup.

6.1.4 Trusted path/channels (FTP)

6.1.4.1 Inter-TSF trusted channel (FTP_ITC)

6.1.4.1.1 Inter-TSF trusted channel (FTP_ITC.1)
FTP_ITC.1.1 The TSF shall provide a communication channel between itself and another

trusted IT product that is logically distinct from other communication channels
and provides assured identification of its end points and protection of the
channel data from modification or disclosure.

FTP_ITC.1.2 The TSF shall permit the TSF to initiate communication via the trusted
channel.

FTP_ITC.1.3 The TSF shall initiate communication via the trusted channel for exchange
of red data.

Application note: Red data is not to be sent or received without encryption to protect
confidentiality and integrity. Any red data sent through the TOE to a VPN
peer or received from a peer goes through the trusted channel as is
established by FCS_IPSEC_EXT.1 as an IPsec tunnel.

6.1.5 Security functional requirements provided by the platform
The following cryptographic SFRs have been added because of the CSEC Scheme Crypto Policy
188 [12].

6.1.5.1 Cryptographic key management (FCS_CKM)

6.1.5.1.1 Cryptographic Key Generation (FCS_CKM.1)
FCS_CKM.1.1 The TSFPLT shall generate asymmetric cryptographic keys in accordance

with a specified cryptographic key generation algorithm:

MVC Security Target Version 0.042

 FINAL (provisional) Page 30

• ECC schemes using ‘NIST curves’ P-192, P-224, P-256, P-
384, P-521 that meet the following: FIPS PUB 186-4, “Digital
Signature Standard (DSS)”, Appendix B.4;

• FFC schemes using cryptographic key sizes of 2048, 3072
and 4096-bit that meet the following: FIPS PUB 186-4,
“Digital Signature Standard (DSS)”, Appendix B.1;

• ECC schemes using ‘Brainpool curves’ brainpoolP224r1,
brainpoolP256r1, brainpoolP384r1 and brainpoolP512r1 that
meet the following: RFC 5639

and specified cryptographic key sizes [assignment: cryptographic key
sizes] that meet the following: [assignment: list of standards].

Application note: This SFR specifies the generation of Diffie-Hellman values that are required
fo the Diffie-Hellman key exchanges specified in FCS_CKM.2

6.1.5.2 Cryptographic operation (FCS_COP)

6.1.5.2.1 Cryptographic operation (FCS_COP.1)
FCS_COP.1.1/DataEncryption The TSFPLT shall perform encryption/decryption in accordance with a

specified cryptographic algorithm AES used in CBC and GCM mode and
cryptographic key sizes 128 bits, 192 bits and 256 bits that meet the
following: AES as specified in ISO 18033-3, CBC as specified in ISO
10116 and GCM as specified in ISO 19772.

Application note: The cryptographic primitives are all performed by the OpenSSL library, which
is part of the operational environment.

FCS_COP.1.1/SigGen The TSFPLT shall perform cryptographic signature services (generation

and verification) in accordance with a specified cryptographic algorithm

• RSA Digital Signature Algorithm and cryptographic key sizes
(modulus) 2048, 3072 and 4096,

• Elliptic Curve Digital Signature Algorithm and cryptographic key
sizes 256 bits, 384 bits, 512 bits and 521 bits.

and cryptographic key sizes [assignment: cryptographic key sizes] that meet
the following:

• For RSA schemes: FIPS PUB 186-4, “Digital Signature Standard
(DSS)”, Section 5.5, using PKCS #1 v2.1 Signature Schemes
RSASSA-PSS and/or RSASSA-PKCS1v1_5; ISO/IEC 9796-2,
Digital signature scheme 2 or Digital Signature scheme 3,

• For ECDSA schemes: FIPS PUB 186-4, “Digital Signature
Standard (DSS)”, Section 6 and Appendix D, Implementing
“NIST curves” P-256, P-384 and P-521; ISO/IEC 14888-3, Section
6.4

• For ECDSA schemes using P-256, P-384 and P-521 brainpool
curves: RFC 5639

FCS_COP.1.1/Hash The TSFPLT shall perform cryptographic hashing services in accordance
with a specified cryptographic algorithm SHA-256, SHA-384 and SHA-512
and cryptographic key sizes [assignment: cryptographic key sizes] and

MVC Security Target Version 0.042

 FINAL (provisional) Page 31

message digest sizes 256, 384 and 512 bits that meet the following:
ISO/IEC10118-3:2004.

FCS_COP.1.1/KeyedHash The TSFPLT shall perform keyed-hash message authentication in
accordance with a specified cryptographic algorithm HMAC-SHA-256,
HMAC-SHA-384 and HMAC-SHA-512 and cryptographic key sizes 256, 384
and 512 bits and message digest sizes 256, 384 and 512 bits that meet
the following: ISO/IEC 9797-2:2011, Section 7 “MAC Algorithm 2”.

Application note: The cryptographic operation is done as part of FCS_COP.1 implemented by
the platform. The kernel implementation is part of the Linux Kernel 4.19 and
accessible using the Linux Kernel Crypto API. The user space crypto is
implemented by OpenSSL 1.1.1b and accessible using the SoftHSM 2.6.1.

6.1.5.3 Random Bit Generation (FCS_RBG_EXT)

6.1.5.3.1 Random Bit Generation (FCS_RBG_EXT.1)
FCS_RBG_EXT.1.1 The TSFPLT shall perform all deterministic random bit generation services in

accordance with ISO/IEC 18031:2011 using HMAC_DRBG (any).
FCS_RBG_EXT.1.2 The deterministic RBG shall be seeded by at least one entropy source that

accumulates entropy from one platform-based noise source with a
minimum of 256 bits of entropy at least equal to the greatest security
strength, according to ISO/IEC 18031:2011 Table C.1 “Security Strength
Table for Hash Functions”, of the keys and hashes that it will generate.

Application note: The TOE relies on the pseudo random generator provided by OpenSSL
1.1.1b, which is part of the operational environment.

6.1.6 Security functional requirements rationale
The TOE is a VPN client used to establish a cryptographically secure data communication
channel between a local user and a remote trusted user or to establish a trustworthy virtual
network over a potentially unsafe network. The trustworthy virtual network must be suitable to
securely transfer red data. The VPN client is physically realized in the MVC TOE as a software
product (represented by Variant 2 in [11]). The core functionality is to transmit red data with
confidentiality, integrity and authenticity by establishing a suitably configured VPN tunnel
between the VPN client and a VPN gateway or other network device implementing the same
protocol. This TOE is limited, in terms for the functionality provided, to that service.

Several sources were consulted to identify the necessary TOE functional requirements, including
[6] and [11]. Supporting functions are provided by the platform (PLT).

6.1.6.1 Security functional requirements rationale
Table 9 demonstrates that all of the security objectives for the TOE are met by the SFRs and the
following rationale describes how the objectives map to the SFRs:

Table 9 – Mapping of Objectives to SFRs

FA
U

_G
EN

.1

FC
S_

CK
M

. 1

FC
S_

CK
M

. 2

FC
S_

CK
M

.4

FC
S_

C O
P.

1

FC
S_

IP
SE

C_
EX

T.
1

FC
S_

RB
G_

EX
T.

1

FP
T_

T S
T .

1

FP
T_

TE
E.

1

F T
P_

IT
C.

1

MVC Security Target Version 0.042

 FINAL (provisional) Page 32

O.COMMUNICATION X X X
O.AUDIT X
O.SELF_TEST X X
O.INFO_FLOW X X
OE.PT_CRYPTO_EXP X X X

Note: Although the crypto graphic operations FCS_CKM.1, FCS_COP.1 and FCS_RGB_EXT.1
are all provided by the operational environment the CSEC crypto policy SP188 requires them to
be specified as SFRs in the ST. So for completeness they are also listed here in this table.

6.1.6.1.1 Rationale for SFRs meeting O.COMMUNICATION
O.COMMUNICATION is the primary objective of the TOE (intended to counter the primary
threat T.NETWORK_ATTACK). The threat encompasses all of the manipulations that can be
performed on the black network by a powerful attacker operating within the symbolic model.
The objective is realized by the implementation of the IPsec architecture, protocols, and
cryptographic algorithms represented by the various elements of FCS_IPSEC_EXT.1. The
protocols achieve the establishment of a trusted channel that is mutually authenticated, provides
confidentiality and integrity of red data exchanged over the channel, and is resistant to network
message manipulation attacks. Mechanisms meeting this objective must additionally provide the
distribution of negotiated keys to the communication participants through the operation of the
IPsec and IKEv2 protocols implemented by the TOE as required by FCS_CKM.2, and
confidentiality of user data including data used as cryptographic keys in cryptographic operations
employed by the protocols, which shall not retain them beyond their required use and shall be
destroyed as required by FCS_CKM.4.

6.1.6.1.2 Rationale for SFRs meeting O.AUDIT
The objective to generate security-relevant events is achieved by FAU_GEN.1, stating that audit
events will be generated for start-up, shutdown, self- test failure, external entity test failure and a
number of IKE events.

6.1.6.1.3 Rationale for SFRs meeting O.SELF_TEST
The objective to perform self tests to detect malfunction of security-enforcing or security-
supporting functions is achieved by FPT_TST.1 and FPT_TEE.1. The TOE will verify the
integrity of the configuration and verify that the cryptographic operations are performed
correctly before any outside connections is established. If the tests are failing the TOE will
generate an audit record and refuse to start or disable the failing algorithm.

6.1.6.1.4 Rationale for SFRs meeting O.INFO_FLOW
The objective to prevent modification or disclosure of red data is achieved by
FCS_IPSEC_EXT.1, which provides the protocols and mechanisms for mutual authentication
and secure communication, and FTP_ITC.1, which provides for the establishment of the trusted
channel for exchange of red data with the peer.

6.1.6.1.5 Rationale for SFRs meeting OE.PT_CRYPTO_EXP
The objective for the environment platform to provide the explicitly specified cryptographic
primitives is achieved by the SFRs satisfied by the platform as enumerated in Section 6.1.5:
FCS_CKM.1, FCS_COP.1, and FCS_RBG_EXT.1. These SFRs also satisfy the dependencies
arising from FCS_IPSEC_EXT.1.

MVC Security Target Version 0.042

 FINAL (provisional) Page 33

6.1.6.2 SFR dependencies
Table 10 shows the dependencies for each of the SFRs and how they are resolved. Note that in
the dependencies column that alternative dependencies (such as in FCS_CKM.4) are represented
in a single cell whereas multiple dependencies (such as in FCS_IPSEC_EXT.1) are represented
in distinct cells.

Table 10 – SFR Dependencies
TOE SFR Dependencies How dependency is resolved

FAU_GEN.1 Audit data
generation

FPT_STM.1 Not resolved by FPT_STM.1. Timestamps are
provided as part of the platform objective
OE.PT_TIME

FCS_CKM.2 Cryptographic
key distribution

FDP_ITC.1 or FDP_ITC.2 or
FCS_CKM.1

Satisfied by FCS_CKM.1

FCS_CKM.4 Satisfied by FCS_CKM.4
FCS_CKM.4 Cryptographic
key destruction

FDP_ITC.1 or FDP_ITC.2 or
FCS_CKM.1

Satisfied by FCS_CKM.1 for keys generated
by the platform and by FCS_CKM.2 for
session keys negotiated with the IPSEC
channel.

FCS_IPSEC_EXT.1 IPsec
protocol

FCS_CKM.1 Cryptographic key
generation

Satisfied FCS_CMK.1

FCS_CKM.2 Cryptographic key
establishment

Satisfied FCS_CMK.2

FCS_COP.1/DataEncryption
Cryptographic Operation (AES Data
encryption/decryption)

Satisfied FCS_COP.1/ DataEncryption
Cryptographic Operation (AES Data
encryption/decryption),

FCS_COP.1/SigGen Signature
Generation Cryptographic operation

Satisfied FCS_COP.1/SigGen Signature
Generation Cryptographic operation

FCS_COP.1/Hash Cryptographic
operation (Hash Algorithm)

Satisfied by FCS_COP.1/Hash Cryptographic
operation (Hash Algorithm)

FCS_COP.1/KeyedHash
Cryptographic operation (Keyed Hash
Algorithm)

Satisfied by FCS_COP.1/KeyedHash
Cryptographic operation (Keyed Hash
Algorithm)

FCS_RBG_EXT.1 Random Bit
Generation

Satisfied by FCS_RBG_EXT.1 Random Bit
Generation.

FPT_TEE.1 Testing of external
entities

No dependencies -

FPT_TST.1 TSF (self) testing No dependencies -
FTP_ITC.1 Inter-TSF trusted
channel

No dependencies -

Non-TOE SFR Dependencies How dependency is resolved
FCS_CKM.1 FCS_CKM.2 or FCS_COP.1 Satisfied by FCS_CKM.2

FCS_CKM.4 Satisfied by FCS_CKM.4
FCS_COP.1.1/DataEncryption FDP_ITC.1 or FDP_ITC.2 or

FCS_CKM.1
Satisfied by FCS_CKM.2

FCS_CKM.4 Satisfied by FCS_CKM.4
FCS_COP.1.1/SigGen FDP_ITC.1 or FDP_ITC.2 or

FCS_CKM.1
No, but satisfied by OE.PT_CRYPTO_GEN
that ensure that RSA and EC keys are available
for the use of the TOE.

FCS_CKM.4 No, the long term keys are protected by
OE.PT_CRYPTO_GEN

FCS_COP.1.1/Hash FDP_ITC.1 or FDP_ITC.2 or
FCS_CKM.1

The dependency is not resolved since no key is
required in a Hash operation.

FCS_CKM.4 The dependency is not resolved since no key is
required in a Hash operation.

FCS_COP.1.1/KeyedHash FDP_ITC.1 or FDP_ITC.2 or
FCS_CKM.1

Satisfied by FCS_CKM.2

MVC Security Target Version 0.042

 FINAL (provisional) Page 34

Table 10 – SFR Dependencies
TOE SFR Dependencies How dependency is resolved

FCS_CKM.4 Satisfied by FCS_CKM.4
FCS_RBG_EXT.1 No dependencies -

6.2 Security assurance requirements for the TOE
The security assurance requirements of the Security Target are those defined for assurance level
EAL4 augmented with ALC_FLR.2 and AVA_VAN.4. The relevant SARs are summarized in
Table 11.

Table 11 – TOE Security Assurance Requirements Summary EAL4+
Assurance Class Assurance Component Assurance Component Description

Development ADV_ARC.1 Security architecture description
ADV_FSP.4 Complete functional specification
ADV_IMP.1 Implementation representation of the TSF
ADV_TDS.3 Basic modular design

Guidance Documents AGD_OPE.1 Operational user guidance
AGD_PRE.1 Preparative procedures

Life-cycle Support ALC_CMC.4 Production support, acceptance procedures and automation
ALC_CMS.4 Problem tracking CM coverage
ALC_DEL.1 Delivery procedures
ALC_DVS.1 Identification of security measures
ALC_FLR.2 Flaw reporting procedures
ALC_LCD.1 Developer defined life-cycle model
ALC_TAT.1 Well-defined development tools

Tests ATE_COV.2 Analysis of Coverage
ATE_DPT.1 Testing: basic design
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing - sample

Vulnerability Assessment AVA_VAN.4 Methodical vulnerability analysis

6.2.1 Security assurance requirements rationale
The integrator for the TOE intends to incorporate the TOE in systems that will process at most
VS NfD “restricted” information and has specified the EAL4+ assurance level. The Integrator’s
choice of EAL4 conformance and its augmentation is based on a precedent established by BSI of
Germany. Specifically, these assurance requirements for a VPN client are based on the VS-
Anforderungsprofil VPN-Client (VPNC), 19.09.2018 [11].

MVC Security Target Version 0.042

 FINAL (provisional) Page 35

7 TOE Summary Specification

7.1 Mapping of security features from the TOE description to SFRs
Table 12 presents a mapping from security features presented in Section1.4.5 to the SFRs
identified in Section 6.1.

Table 12 – Mapping of Security Features from the TOE Description to SFRs

FA
U

_G
EN

.1

FC
S_

CK
M

. 1
 (P

LT
)

FC
S_

CK
M

. 2

FC
S_

CK
M

.4

FC
S_

CO
P .

1
(P

LT
)

FC
S_

IP
SE

C_
EX

T.
1

FC
S_

RB
G_

EX
T.

1
(P

LT
)

FP
T_

TE
E.

1

FP
T_

T S
T.

1

F T
P_

IT
C.

1

1. Cryptographic protocols (and operations) X X X X
2. Cryptographic key negotiation and handling X X
3. Establish mutually-authenticated trusted channel (VPN tunnel) X
4. Confidentiality and integrity of red data-in-transit X
5. Generation of audit records X
6. Self-test of the cryptographic functions X X

7.2 Security audit

7.2.1 Security audit data generation (FAU_GEN)
Security audit data is generated by strongSwan. Audit data (logs) are written to the system
journal and can be accessed with systemd tools. The TSF can also be configured to write logs to
a file, or to pass logs to the syslog(3) POSIX function.

StrongSwan allows the log level to be configured. Logging can be turned completely off and can
be configured to log sensitive material such as keys.

Storing logs and maintaining their integrity and confidentiality is a responsibility of the PLT.

Table 13 – FAU implementation
SFR Summary of SFR implementation

FAU_GEN.1.1 The TOE generates audit records for the following events:
• IKE SA initiation
• IKE SA establishment
• IKE SA reinitiation (rekeying)
• IKE SA reauthentication
• IKE SA deletion
• IKE CHILD SA establishment
• IKE CHILD SA expiration
• Failures in external cryptographic algorithm tests
• Failure in entropy test

MVC Security Target Version 0.042

 FINAL (provisional) Page 36

Table 13 – FAU implementation
SFR Summary of SFR implementation

FAU_GEN.1.2 Generated audit events contain following information:
• Date and time of the event
• Type of event
• Subject identity (if applicable)
• The outcome (success or failure) of the event

7.3 Cryptographic support

7.3.1 Cryptographic key management (FCS_CKM)
The TOE implements FCS_CKM.2 Cryptographic Key Establishment and FCS_CKM.4
Cryptographic Key Destruction (for session keys). The functions FCS_CKM.1 Cryptographic
Key Generation is implemented by the platform (see the tables below).

Below is a table with cryptographic algorithms used within the TOE, its purpose, algorithm and
the component that provides the cryptographic operation.

Table 14 – Cryptographic algorithms
Purpose Algorithm(s) Provider

ESP / Encryption AES-CBC-128
AES-CBC-256

Kernel Crypto API

ESP / Authentication HMAC-SHA-256
HMAC-SHA-384
HMAC-SHA-512

Kernel Crypto API

ESP / Authenticated
Encryption

AES-GCM-128
AES-GCM-192
AES-GCM-256

Kernel Crypto API

IKEv2 / Encryption AES-CBC-128
AES-CBC-256

OpenSSL

IKEv2 / Authentication HMAC-SHA-256
HMAC-SHA-384
HMAC-SHA-512

OpenSSL

IKEv2 / Authenticated
Encryption

AES-GCM-128
AES-GCM-192
AES-GCM-256

OpenSSL

IKEv2 / DH Key Exchange 2048-bit MODP
3072-bit MODP
4096-bit MODP
256-bit Random ECP
384-bit Random ECP
521-bit Random ECP
NIST 192-bit Random ECP
NIST 224-bit Random ECP
Brainpool 224-bit Random ECP
Brainpool 256-bit Random ECP
Brainpool 384-bit Random ECP
Brainpool 512-bit Random ECP

OpenSSL

IKEv2 / Peer Authentication RSA (2048, 3072, 4096 bits)
ECDSA (192, 224, 256, 384, 512, 521 bits)

OpenSSL through SoftHSM

Disk encryption (*) AES-CBC-ESSIV (256 bits)
AES-XTS (256 bits)

Kernel Crypto API

MVC Security Target Version 0.042

 FINAL (provisional) Page 37

Table 14 – Cryptographic algorithms
Purpose Algorithm(s) Provider

Disk encryption key
wrapping (*)

RSA (2048)
ECC (BN256, P256)

TPM

The purposes marked by (*) above are not used by the TOE for any security functions of to meet
any security objectives. They are only mentioned here for completeness. The provider versions
used are OpenSSL 1.1.1b, SoftHSM 2.6.1 and Linux Kernel 4.19.

The following table list all the cryptographic keys that are used within the TOE. The table shows
for each key the types, context, origin storage and destruction.

Table 15 – Cryptographic keys
Key Type Context Origin Storage Destruction

ESP Encryption key AES_CBC TOE Established by IKEv2
(CREATE_CHILD_SA)

Plaintext in RAM Zeroized when
no longer used

ESP Authentication key HMAC_SHA2 TOE Established by IKEv2
(CREATE_CHILD_SA)

Plaintext in RAM Zeroized when
no longer used

ESP
Encryption+Authentication
key

AES_GCM TOE Established by IKEv2
(CREATE_CHILD_SA)

Plaintext in RAM Zeroized when
no longer used

IKEv2 encryption key AES_CBC TOE Established by IKEv2
(IKE_SA_INIT)

Plaintext in RAM Zeroized when
no longer used

IKEv2 authentication key HMAC_SHA2 TOE Established by IKEv2
(IKE_SA_INIT)

Plaintext in RAM Zeroized when
no longer used

IKEv2
encryption+authentication
key

AES_GCM TOE Established by IKEv2
(IKE_SA_INIT)

Plaintext in RAM Zeroized when
no longer used

IKEv2 DH Key Exchange
parameters

MODP, ECP PLT Generated by OpenSSL Plaintext in RAM Zeroized when
no longer used

IKEv2 / Peer
Authentication keypair

RSA, ECDSA PLT Generated on SoftHSM
or imported into
SoftHSM

Plaintext in RAM,
encrypted in flash

Zeroized in
RAM when no
longer used,
zeroized in
flash when
removed

IKEv2 / Peer
Authentication certificate

RSA, ECDSA PLT Imported into SoftHSM Plaintext in RAM,
encrypted in flash

Zeroized in
RAM when no
longer used,
zeroized in
flash when
removed

TPM primary key RSA, ECC PLT Generated on TPM In TPM Managed by
TPM

SoftHSM data encryption
key

passphrase PLT Generated from
/dev/random

Plaintext in RAM,
sealed in TPM

Managed by
TPM

7.3.2 Internet protocol security (IPsec) extended (FCS_IPSEC_EXT)
This function is used to implement the trusted path with the VPN peer.

MVC implements the IPsec protocol architecture as specified in RFC 4301. Implementation is
based on strongSwan and Linux kernel XFRM functionality.

MVC Security Target Version 0.042

 FINAL (provisional) Page 38

StrongSwan implements IKEv2 as specified in RFC 7296 (updating RFC 5669) and manages the
Security Policy Database (SPD), and IKE and IPsec security associations (SAs). StrongSwan
communicates the SPD and SAs to the XFRM kernel module which in turn is responsible for
enforcing the contents of the SPD and performing encryption/decryption on packets sent to, or
received from, an IPsec tunnel according to the defined SAs.

StrongSwan communicates the SPD and SAs to the XFRM module via the Netlink socket using
NETLINK_XFRM protocol. Netlink socket implementation is part of the PLT.

StrongSwan configuration is performed via the VICI-plugin. Modifying the configuration is
performed via a Unix domain socket connection to the IKE daemon. Accessing the configuration
socket is allowed only for security administrators using the PLT access control policy
enforcement.

StrongSwan and XFRM implementations are broader in scope than MVC. Allowed configuration
options for MVC are restricted.

Cryptographic algorithm implementations are part of the PLT. Correct operation of
cryptographic primitives supplied by the PLT and used by the TSF is verified as described in
Section 7.4

Table 16 – FCS implementation
SFR Summary of SFR implementation

FCS_CKM.2 The TOE performs key establishment as part of the IPSEC and
IKEv2 protocol.

FCS_CKM.4 The TOE destroys all session key material in user space, derived by
execution of the IPsec/IKE protocols, in its memory after use by
overwriting with zeroes. Any session keys in kernel space are erased
by the kernel memory management of the platform as described in
OE.PT_CRYPO_EXP.

FCS_IPSEC_EXT.1.1 The TOE implements IPsec architecture as specified in RFC 4301.
The TOE supports both IPv4 and IPv6.

FCS_IPSEC_EXT.1.2 The TOE drops all packets not matching an SPD entry.
FCS_IPSEC_EXT.1.3 The TSF implements IPsec tunnel mode.
FCS_IPSEC_EXT.1.4 The TSF implements ESP. Cryptographic algorithms are provided

by the platform. The TSF truncates the output MAC value of
HMAC-SHA-256 algorithm to 128 bits, HMAC-SHA-384 to 192
bits, and HMAC-SHA 512 to 256 bits. For compatibility reasons,
HMAC-SHA-256 truncation can be overridden in configuration by
setting it to 96 bits.

FCS_IPSEC_EXT.1.5 The TOE implements IKEv2 for endpoint authentication and key
exchange.

FCS_IPSEC_EXT.1.6 The TOE uses AES-CBC-128, AES-CBC-256, AES-GCM-128,
AES-GCM-192, AES-GCM-256 algorithms provided by the
platform.

MVC Security Target Version 0.042

 FINAL (provisional) Page 39

Table 16 – FCS implementation
SFR Summary of SFR implementation

The TOE uses HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-
512 algorithms provided by the platform.

FCS_IPSEC_EXT.1.7 The TOE implements support for configuring IKEv2 SA lifetimes
via a programmatic interface. Lifetimes can be configured in length
of time or number of bytes. Use of configuration interface is limited
to platform-defined security administrators only.

FCS_IPSEC_EXT.1.8 The TOE implements support for configuring IKEv2 Child SA
lifetimes via a programmatic interface. Lifetimes can be configured
in length of time or number of bytes. Use of configuration interface
is limited to platform-defined security administrators only.

FCS_IPSEC_EXT.1.9 The TOE uses platform provided RBG to generate DH parameters.
FCS_IPSEC_EXT.1.10 The TOE generates 32-byte nonces for IKEv2 exchanges using

platform-provided RBG.
FCS_IPSEC_EXT.1.11 The TOE implements support for DH groups: regular groups 14, 15,

16; NIST Elliptic Curve Groups 19, 20, 21, 25, 26; Brainpool
Elliptic Curve Groups 27, 28, 29, 30.

FCS_IPSEC_EXT.1.12 The TOE configuration guidance in the CGX 2.6 Getting Started
Guide provides instructions on configuring IKEv2 and ESP
proposals in such way that chosen IKEv2 IKE_SA is of equal or
greater strength than chosen IKEv2 CHILD_SA.

FCS_IPSEC_EXT.1.13 The TOE implements X.509v3 support for peer authentication.
FCS_IPSEC_EXT.1.14 The TOE authenticates peers using X.509v3 certificates. Following

certificate fields are supported for inferring peer identity:
• SAN: IP address
• SAN: Fully Qualified Domain Name (FQDN)
• SAN: user FQDN
• Distinguished Name (DN)

Table 17 – FCS_IPSEC_EXT.1 dependencies satisfied by the platform
SFR Summary of SFR dependency

FCS_CKM.1 StrongSwan uses user space OpenSSL library provided by the
platform to generate Diffie-Hellmann values for key
establishments within IKEv2.

FCS_COP.1/DataEncryption To encrypt and decrypt ESP messages the XFRM kernel
module calls kernel crypto API provided by the platform. User
space StrongSwan uses cryptographic algorithms from
OpenSSL library for IKEv2 protocol encryption.

FCS_COP.1/SigGen StrongSwan uses PKCS#11 module/OpenSSL library to
perform X.509v3 certificate signature generation/verification in
IKEv2 negotiation.

FCS_COP.1/Hash StrongSwan uses OpenSSL to perform cryptographic hash
calculation of IKEv2 signatures.

MVC Security Target Version 0.042

 FINAL (provisional) Page 40

Table 17 – FCS_IPSEC_EXT.1 dependencies satisfied by the platform
SFR Summary of SFR dependency

FCS_COP.1/KeyedHash The TOE uses HMAC functions of OpenSSL library to ensure
integrity of IKEv2 messages. The TOE uses HMAC functions
of Kernel Crypto API to protect ESP message integrity.

FCS_RBG_EXT.1 StrongSwan relies on OpenSSL on randomness generation.
OpenSSL uses pseudo random generator provided by the core
platform.

7.4 Protection of the TSF

7.4.1 Testing of external entities (FPT_TEE)
StrongSwan performs crypto tests on startup. The Linux kernel tests cryptographic primitives
used by the XFRM module during the system boot. These are described further in Table 18.

7.4.2 TSF self test (FPT_TST)

The TSF self test comprises two parts: test of TSF components through FPT_TST and test of the
external entities through FPT_TEE. The self test part is performed by verifying the integrity of
the strongSwan configuration using SHA-256 a checksum, but also trigger the invocation of the
tests performed through FPT_TEE.

The test of the external cryptographic functions that are invoked by the TSF, and therefore
considered part of, the TSF start-up self test.

Table 18 – FPT implementation
SFR Summary of SFR implementation

FPT_TEE.1.1 The TSF tests proper operation for all cryptographic algorithms it
uses that are provided by the platform. These tests are performed
through a combination of system boot-time tests and strongSwan
startup tests.

The Linux kernel tests cryptographic primitives used by the XFRM
module during system boot. The kernel space cryptographic tests
include:

• AES encrypt/decrypt for CBC mode from RFC 3602, NIST
SP 800-38A

• AES encrypt/decrypt for GCM mode from McGrew & Viega,
The Galois/Counter Mode of Operation (GCM)

• HMAC-SHA-256 from draft-ietf-ipsec-ciph-sha-256-01.txt
• HMAC-SHA-384, HMAC-SHA-512 from RFC 4231

StrongSwan performs generic crypto tests on startup that can be run
against any underlying crypto implementations. Each encryption is
tested during demon initialization. Cryptographic primitives are

MVC Security Target Version 0.042

 FINAL (provisional) Page 41

Table 18 – FPT implementation
SFR Summary of SFR implementation

required to have at least one test vector defined. The tests cover
crypto primitives used by strongSwan. Tests need to be enabled in
the configuration.

StrongSwan performs crypto tests for external cryptographic
primitives during startup, including:

• AES encrypt/decrypt for CBC mode from RFC 3602, NIST
SP 800-38A

• AES encrypt/decrypt for GCM mode from McGrew & Viega,
The Galois/Counter Mode of Operation (GCM)

• HMAC_DRBG from NIST SP 800-90A (DRBGVS)
• Brainpool DH groups from RFC 6932 / RFC 7027
• DH groups from RFC 5114
• HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512 from

RFC 4868
• SHA-256, SHA-384, SHA-512 from The Secure Hash

Algorithm Validation System, SHAVS

FPT_TEE.1.2 The kernel is configured (requiring a kernel command line parameter
to be used) to panic and halt the system if a kernel space
cryptographic algorithm test fails. If a user space cryptographic
algorithm test fails, the TOE refuses to load the failing algorithm thus
preventing use of a misbehaving implementation.

The user space components of the MVC generate a log entry noting a
failed test.

FPT_TST.1.1 At startup the MVC performs a set of self tests.

At startup verification of the integrity of the parts of the strongSwan
configuration and parts of the TSF included by the executable files
listed below is done by calculating the checksums and comparing
with previously stored checksums.

For the self tests a simple integrity checker scheme verifies the SHA-
256 checksums of a variety of files and will keep the strongSwan
systemd service from starting if there is a mismatch in any of the
checksums.

As part of the build process, after the root file system has been
created, a post process script is run as defined in the Bitbake class;
integrity.bbclass. The first step is to insert the Simple Integrity script
as defined by “CHKSUM_BIN” into the strongSwan systemd
service. This will run as a systemd ExecStartPre function.

MVC Security Target Version 0.042

 FINAL (provisional) Page 42

Table 18 – FPT implementation
SFR Summary of SFR implementation

The checksums are created in three stages.
• Checksum the systemd server itself
• Checksum of all of the files defined in the variable

“CHKSUM_FILE_LIST” is placed in the parent file
“CHKSUM_FILE_NAME”

• Checksum the file “CHKSUM_FILE_NAME”
At startup time the systemd service will run the shell script defined
by “CHKSUM_BIN” that performs three checks:

• Verify the checksum of the systemd service itself
(strongswan-swanctl.service)

• Verify the “CHKSUM_FILE_NAME” file
• Verify each file listed in “CHKSUM_FILE_LIST”

If there is a mismatch in the checksum of any of these files the
strongSwan service will not be started.

The files included in the integrity check are:

• /usr/lib/ipsec/libvici.so.0.0.0
• /usr/lib/ipsec/libcharon.so.0.0.0
• /usr/lib/ipsec/libstrongswan.so.0.0.0
• /usr/lib/ipsec/libvici.so.0.0.0
• /usr/bin/pki
• /usr/sbin/charon-systemd
• /usr/sbin/ipsec
• /usr/sbin/swanctl
• /usr/lib/ipsec/plugins/libstrongswan-aes.so
• /usr/lib/ipsec/plugins/libstrongswan-resolve.so
• /usr/lib/ipsec/plugins/libstrongswan-attr.so
• /usr/lib/ipsec/plugins/libstrongswan-nonce.so
• /usr/lib/ipsec/plugins/libstrongswan-revocation.so
• /usr/lib/ipsec/plugins/libstrongswan-cmac.so
• /usr/lib/ipsec/plugins/libstrongswan-openssl.so
• /usr/lib/ipsec/plugins/libstrongswan-sha1.so
• /usr/lib/ipsec/plugins/libstrongswan-constraints.so
• /usr/lib/ipsec/plugins/libstrongswan-pem.so
• /usr/lib/ipsec/plugins/libstrongswan-sha2.so
• /usr/lib/ipsec/plugins/libstrongswan-pgp.so
• /usr/lib/ipsec/plugins/libstrongswan-socket-default.so
• /usr/lib/ipsec/plugins/libstrongswan-curl.so
• /usr/lib/ipsec/plugins/libstrongswan-pkcs11.so
• /usr/lib/ipsec/plugins/libstrongswan-sqlite.so
• /usr/lib/ipsec/plugins/libstrongswan-des.so
• /usr/lib/ipsec/plugins/libstrongswan-pkcs12.so

MVC Security Target Version 0.042

 FINAL (provisional) Page 43

Table 18 – FPT implementation
SFR Summary of SFR implementation

• /usr/lib/ipsec/plugins/libstrongswan-sshkey.so
• /usr/lib/ipsec/plugins/libstrongswan-dnskey.so
• /usr/lib/ipsec/plugins/libstrongswan-pkcs1.so
• /usr/lib/ipsec/plugins/libstrongswan-stroke.so
• /usr/lib/ipsec/plugins/libstrongswan-pkcs7.so
• /usr/lib/ipsec/plugins/libstrongswan-updown.so
• /usr/lib/ipsec/plugins/libstrongswan-gmp.so
• /usr/lib/ipsec/plugins/libstrongswan-pkcs8.so
• /usr/lib/ipsec/plugins/libstrongswan-vici.so
• /usr/lib/ipsec/plugins/libstrongswan-hmac.so
• /usr/lib/ipsec/plugins/libstrongswan-pubkey.so
• /usr/lib/ipsec/plugins/libstrongswan-x509.so
• /usr/lib/ipsec/plugins/libstrongswan-kernel-netlink.so
• /usr/lib/ipsec/plugins/libstrongswan-random.so
• /usr/lib/ipsec/plugins/libstrongswan-xauth-generic.so
• /usr/lib/ipsec/plugins/libstrongswan-md5.so
• /usr/lib/ipsec/plugins/libstrongswan-rc2.so
• /usr/lib/ipsec/plugins/libstrongswan-xcbc.so

FPT_TST.1.2 See above.

FPT_TST.1.3 See above.

7.5 Trusted Channel

7.5.1 Inter-TSF trusted channel (FTP_ITC)
The MVC communicates red data with other compatible trusted peers over a trusted
communication channel. This channel is established using the standard protocols for IPsec and
IKEv2. All red data is forced flow only through the trusted channel. See Section 7.3.2 for a
description of how the channel is established with IPsec.

The TOE uses keys and certificates stored in SoftHSM (the platform’s encrypted certificate
storage) via PKCS#11 API. Used certificates and keys are referred to in the IPsec configuration.
All cryptographic operations are performed by OpenSSL and access from the TOE via PKCS#11
API of the SoftHSM,. The Configuration Agent (provided by the integrator) in Figure 1 is
responsible for managing keys and certificates stored in SoftHSM.

Table 19 – FTP implementation
SFR Summary of SFR implementation

FTP_ITC.1.1 A mutually authenticated trusted channel is established with the VPN
peer through use of the IPsec provided by FCS_IPSEC_EXT.1.4 and

MVC Security Target Version 0.042

 FINAL (provisional) Page 44

Table 19 – FTP implementation
SFR Summary of SFR implementation

IKEv2 protocols provided by FCS_IPSEC_EXT.1.5 as described in
Table 16.

FTP_ITC.1.2 The VPN client initiates communication via the trusted channel with
a compatible VPN peer.

FTP_ITC.1.3 All exchange of red data with the VPN peer occurs only via the
trusted channel as initiated by the VPN client.

MVC Security Target Version 0.042

 FINAL (provisional) Page 45

8 Glossary of terms and abbreviations

Table 20 – Terms
Term Definition

adversary a person or other agent, not authorized to access the TOE or one of
its peers but is able to exercise significant powers on the black
network over which the TOE and its peers communicate, that
mounts a network attack from the black network with the objective
of violating one of the security policies

API Application Programming Interface
ARM Advanced RISC Machine (processor) (originally Acorn RISC

Machine)
black network a computer network that carries only cleartext nonsensitive data and

encrypted red data (also referred to as an “untrusted network”) and
that is accessible to adversaries

BSI Bundesampt für Sicherheit in der Informationstechnik (Federal
Office for Information Security)

CC Common Criteria for Information Technology Security Evaluation
Version 3.1r5

CBC Cipher Block Chaining
CGL Carrier Grade Linux (standard working group) CGL 5.0 standard
CGX MontaVista Linux Carrier Grade eXpress operating system
charon-systemd IKE daemon for use with systemd
cleartext data that is not encrypted
COTS Commercial-Off-The-Shelf
DAR Data at rest
DH Diffie-Hellman
DIT Data in transit
DIU Data in use
DN Distinguished Name
EAL Evaluation Assurance Level
ECDSA Elliptic Curve Digital Signature Algorithm (cryptography)
ESP Encapsulating Security Payload
EST Enrollment over Secure Transport
GCM Galois/Counter Mode (cryptography)
HMAC Hashed (Hash-based) Message Authentication Code
IKE Internet Key Exchange
IKEv2 Internet Key Exchange version 2
IPsec Internet Protocol security (protocols)
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
ISA Instruction Set Architecture
IT Information Technology
I&A Identification and Authentication
libest library offering EST client and server functions

MVC Security Target Version 0.042

 FINAL (provisional) Page 46

Table 20 – Terms
Term Definition

libcharon library of plugins for strongSwan
libstrongswan foundation library of the IKEv2 keying daemon
MIPS Microprocessor without Interlocked Pipelined Stages (ISA)
MVC MontaVista VPN Client
netlink Linux kernel interface used for communication between kernel and

user space processes and between user space processes
NIST National Institute of Standards and Technology (USA)
OS Operating System
PKCS #11 Public-Key Cryptography Standards API to create and manipulate

cryptographic tokens
platform Hardware, firmware, operating system, and utilities that provide the

IT environment within which the TOE runs
PLT Platform components upon which the TOE depends
PowerPC Performance Optimization With Enhanced RISC (ISA)
POSIX Portable Operating System Interface (standard)
PP Protection Profile
red data data that is proprietary, sensitive, or otherwise restricted in its

distribution
RFC Request For Comments (standards)
RISC Reduced Instruction Set Computer (ISA)
RBG Random Bit Generator (or Generation)
RNG Random Number Generator (or Generation)
RVM Reference Validation Mechanism
Security administrator a distinguished user or role acting within the IT environment, that

confers the privilege to perform platform and TOE configuration
operations

SA Security Association
SAD Security Associations Database
SAN Subject Alternative Name (extension to X.509 specification)
SF Security Function
SFP Security Function Policy
SFR Security Functional Requirement
SHA Secure Hash Algorithm
SPD Security Policy Database
SSL Secure Sockets Layer
ST Security Target
strongSwan a multiplatform IPsec implementation available under GNU GPL
subject a process operating on behalf of a user
systemd system and service manager for Linux operating systems
TLS Transport Layer Security
TOE Target of Evaluation
TSF TOE Security Functions
user Person employing the VPN service

MVC Security Target Version 0.042

 FINAL (provisional) Page 47

Table 20 – Terms
Term Definition

VICI Versatile IKE Configuration Interface
Virtual Private
Network

a method employing encryption to provide secure access to a remote
computer over the Internet (or other unsecure network)

VPN Virtual Private Network
VPNC Virtual Private Network Client (term used in [11])
VPN peer a VPN gateway, a VPN client, or a network device with a

compatible VPN implementation
XFRM Transform (Transformation)
X.509 Standard defining the format of public key certificates

MVC Security Target Version 0.042

 FINAL (provisional) Page 48

References

Table 21 identifies the normative Common Criteria documents relied upon in the development of
this ST.

Table 21 – Common Criteria v3.1 References

Ref # Title
[1] Common Criteria for Information Technology Security Evaluation

Part 1: Introduction and general model, Version 3.1 Revision 5, CCMB-2017-04-001,
Version 3.1 Revision 5, April 2017.

[2] Common Criteria for Information Technology Security Evaluation
Part 2: Security functional components, Version 3.1 Revision 5, CCMB-2017-04-002,
April 2017.

[3] Common Criteria for Information Technology Security Evaluation
Part 3: Security assurance components, Version 3.1 Revision 5, CCMB-2017-04-003,
April 2017.

[4] Common Criteria for Information Technology Security Evaluation
Evaluation Methodology, Version 3.1 Revision 5, CCMB-2017-04-004, April 2017.

Table 22 identifies protection profiles, guidance documents and mandatory technical supporting
documents relied upon in the development of this ST.

Table 22 – PPs and Supporting Documents
Ref # Title
[6] Collaborative Protection Profile for Network Devices (cPPND), Version 2.2e, March

23, 2020.

Table 23 identifies informative references consulted in the development of this ST.

Table 23 – Informative References

Ref # Title
[11] VS-Anforderungsprofil VPN-Client (VPNC), Version 2.0, BSI, September 19, 2018.
[12] CSEC Swedish Certification Body for IT Security, 188 Scheme Crypto Policy, Issue

10.0, November 03, 2020.
[r1] https://tools.ietf.org/html/rfc4303 - IP Encapsulating Security Payload (ESP)
[r2] https://tools.ietf.org/html/rfc7296 - Internet Key Exchange Protocol Version 2

(IKEv2)
[r3] https://tools.ietf.org/html/rfc4945 - PKI Profile for IKE/ISAKMP/PKIX
[r4] https://tools.ietf.org/html/rfc3602 - The AES-CBC Cipher Algorithm and Its Use with

Ipsec
[r5] https://tools.ietf.org/html/rfc4106 - The Use of Galois/Counter Mode (GCM) in IPsec

Encapsulating Security Payload (ESP)
[r6] https://tools.ietf.org/html/rfc4868 - Using HMAC-SHA-256, HMAC-SHA-384, and

HMAC-SHA-512 with Ipsec

MVC Security Target Version 0.042

 FINAL (provisional) Page 49

Table 23 – Informative References

Ref # Title
[r7] https://tools.ietf.org/html/rfc5282 - Using Authenticated Encryption Algorithms with

the Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) Protocol
[r8] https://tools.ietf.org/html/rfc3526 - More Modular Exponential (MODP) Diffie-

Hellman groups for Internet Key Exchange (IKE)
[r9] https://tools.ietf.org/html/rfc5114 - Additional Diffie-Hellman Groups for Use with

IETF Standards
[r10] https://tools.ietf.org/html/rfc6954 - Using the Elliptic Curve Cryptography (ECC)

Brainpool Curves for the Internet Key Exchange Protocol Version 2 (IKEv2)
[s1] https://www.strongswan.org/apidoc/md_src_libcharon_plugins_vici_README.html

- The Versatile IKE Control Interface (VICI) protocol
[s2] https://www.opendnssec.org/softhsm/ - SoftHSM cryptographic store accessible

through a PKCS #11 interface
[s3] https://wiki.strongswan.org/projects/strongswan/wiki/SmartCards - strongSwan smart

card configuration HOWTO
[s4] https://wiki.strongswan.org/projects/strongswan/wiki/PKCS11Plugin - Using smart

cards
[s5] https://wiki.strongswan.org/projects/strongswan/wiki/LoggerConfiguration -

strongSwan Logger Configuration
[s6] https://wiki.strongswan.org/projects/strongswan/wiki/IKEv2CipherSuites - IKEv2

Cipher Suites
[s7] https://wiki.strongswan.org/projects/1/wiki/CryptoTest - Crypto Tests
[s8] https://wiki.strongswan.org/projects/strongswan/wiki/PluginList - strongSwan plugins
[s9] https://wiki.strongswan.org/projects/strongswan/wiki/Charon-systemd - charon-

systemd

