
Security Target for Dencrypt Connex version 6.0

ST Version 0.14

Executive summary

This document is the Common Criteria Security Target for Dencrypt Connex for the iPhone. It is
following the specification given in Part 1 annex A of the Common Criteria version 3.1 Revision 5.

Dencrypt A/S Page 1

Contents

1 Introduction.. 3

1.1 Security Target identification and organisation...3
1.2 TOE identification... 3
1.3 TOE type... 3
1.4 TOE overview... 4
1.5 TOE description.. 4

2 Conformance claims.. 13

2.1 CC conformance claim..13
2.2 Conformance rationale... 13

3 Security problem definition...14

3.1 Threats... 14
3.2 Organisational security policies..14
3.3 Assumptions... 15

4 Security objectives..17

4.1 Security objectives for the TOE...17
4.2 Security objectives for the TOE environment...17
4.3 Security objectives rationale..18

5 Extended components definition..22

6 Security requirements... 25

6.1 Security functional policies...25
6.2 Security functional requirements...26
6.3 Security functional requirements rationale..35
6.4 Security assurance requirements...41
6.5 Security assurance requirements rationale..42

7 TOE Summary Specification...43

7.1 SF.PROVISIONING – Secure initialisation...44
7.2 SF.MANAGEMENT – Update of TOE settings, phone book and certificate.................44
7.3 SF.CALLS – Secure voice and video..45
7.4 SF.MESSAGES – Secure messaging..47
7.5 SF.STORAGE – Data-at-rest protection..47
7.6 SF.CHANNEL – Secure communication channel (TLS)..48
7.7 SF.PUSH – Encrypted push notifications...49
7.8 SF.TUNNEL – TCP tunnelling of secure calls...49
7.9 Cryptographic functions and parameters...49

8 Abbreviations and references..52

8.1 Abbreviations... 52
8.2 References.. 53

Dencrypt A/S Page 2

1 Introduction

1.1 Security Target identification and organisation
Title: Security Target for Dencrypt Connex version 6.0
ST Version: 0.14
Status: Released
Date: 2021-03-31
Sponsor: Dencrypt A/S
Developer: Dencrypt A/S
Keywords: Mobile application, VoIP, voice and message encryption

This Security Target (ST) has been structured in accordance with [CC] Part 1. The main sections of
the ST are the introduction, security problem definition, security objectives, security
requirements, TOE summary description and annexes.

The introduction provides general information about the TOE, serves as an aid to understand the
nature of the TOE and its security functionality and provide context for the evaluation.

The security problem definition describes the security aspects of the environment in which the
TOE is to be used and the manner in which it is to be deployed. The TOE security environment
includes:

a) assumptions regarding the TOE's intended usage and environment of use

b) threats relevant to secure TOE operation

c) organisational security policies with which the TOE must comply

The security objectives reflect the stated intent of the ST. They pertain to how the TOE will
counter identified threats and how it will cover identified organisational security policies and
assumptions. The security objectives are divided into security objectives for the TOE and for the
environment. The security objectives rationale demonstrates that the stated security objectives
are traceable to all of the aspects identified in the TOE security problem definition and that they
are suitable to cover them.

The extended components section identifies any extended security requirements, i.e.
requirements that in addition to requirements defined in CC Part 2 and 3 are used within this ST.

The security requirements section provides detailed requirements, in separate subsections, for
the TOE and its environment. The security requirements are further divided into the TOE security
functional requirements and the TOE security assurance requirements.

The TOE summary specification addresses the security functions that are represented by the TOE
to answer the security requirements.

The annex contains a list of abbreviations and a glossary relevant for this ST.

1.2 TOE identification
The TOE is Dencrypt Connex, version 6.0 for Apple iOS. The complete build version is 6.0.0.4.

1.3 TOE type
The TOE is an application for iPhone that offers encrypted mobile voice, video and message
communication within well-defined user groups. Once installed and configured, it allows persons
to talk or message securely, as well as allowing group calls with more than two persons. Although
the application is available for both iPhone and Android, only the iPhone version is considered to
be the TOE and evaluated.

Dencrypt A/S Page 3

1.4 TOE overview
Dencrypt Connex is a component in the Dencrypt Communication Solution. The TOE is an App,
running on an iPhone. It is a VoIP client providing end-to-end encrypted voice, video and message
communication between iPhones.

The main security features of the TOE and its operational environment are:

• Encrypted end-to-end voice and video communication (Secure Call)

• Encrypted messages (Secure Messaging)

• Encrypted group calls

• Secure Individual phone book

◦ Centrally managed (TOE environment)

◦ Distributed seamlessly to user devices

◦ Supports individual groups settings

◦ Supports individual emergency contacts

• Encrypted communication is restricted to administrator defined groups

• Supports secure provisioning to set up a new DCA installation

• Supports its own key-pair generation

• Secure data-at-rest storage of credentials and data

• Encrypted push notifications

• TCP tunnelling for voice or video communication

The Dencrypt Communication Solution consists of Dencrypt Connex (the TOE) and the Dencrypt
Server System, which contains: a Dencrypt Communication Server (a SIP and LIMEv2 server), a
Dencrypt Database Server (provides database services to servers), a Dencrypt Certificate Manager
(signs server and client certificates), a Dencrypt Provisioning Server (provisions clients), Dencrypt
Control Center (provides administrator interface) and a Dencrypt Server Bridge (connects to other

Dencrypt Server Systems). Only the Dencrypt Connex is part of the TOE. The other parts are not
within the scope of the TOE, but are considered as necessary parts of the TOE environment. The
Dencrypt Server System is specified in another Security Target and subject to a separate
evaluation and certification.

1.5 TOE description

1.5.1 Introduction and intended use

The key feature of Dencrypt Connex and the Dencrypt Communication Solution is to provide
mobile devices with end-to-end encrypted voice, video (Secure Call) and message communication
(Secure Messaging) within closed user groups that are centrally managed. The following picture
displays how the components of the Dencrypt Communication Solution interact.

1.5.2 The TOE architecture and key functions

1.5.2.1 Introduction

The functionalities of the main components of the Dencrypt Communication Solution are
described in more details below. It includes both Dencrypt Connex and the Dencrypt Server
System (DSS):

Dencrypt A/S Page 4

Dencrypt Connex Application (TOE)
The Dencrypt Connex Application (DCA) is a mobile SIP and messaging client that
runs on a mobile device (e.g. an iPhone). The client is able to establish encrypted calls
and send encrypted messages between clients on other mobile devices using the SIP
and LIMEv2 servers of the Dencrypt Communication Server. The client is installed and
updated using the Apple App Store. The client must be configured and initialised
before being used. This is done using the provisioning service. The Mobile Client is the
TOE.

Dencrypt Provisioning Server (TOE environment)
The Dencrypt Provisioning Server (DPS) is used to initialise clients with user
credentials, Dencrypt Communication Server URL and responds to the Certificate
Signing Request (CSR) sent from the TOE to set up its certificate. During provisioning,
the client is provided with a HTTPS web link for the initialisation. This link can also be
encoded into a QR code which the application can scan. The link is provided in a
secure way as part of the TOE environment. The HTTPS web link points to the web
server of the DPS, which is authenticated by the client.

Dencrypt Communication Server (TOE environment)
The Dencrypt Communication Server (DCS) provides the SIP and LIMEv2 Services that
are necessary for the Clients to establish communication between clients.

• SIP Server – necessary for the clients to establish voice and video
communication between two or more clients. Also provides routing for
messaging.

• LIMEv2 server – provides the key-exchange functionality to initiate secure
message communication.

• Tunnel server – provides a server to tunnel voice or video communication
over TCP.

Dencrypt A/S Page 5

Illustration 1: Dencrypt Communication Solution overview

Dencrypt Database (TOE environment)
The Dencrypt Database (DDB) provides the database services for the DCS. It keeps the
user data and most meta data e.g. call statistics.

Dencrypt Control Center (TOE environment)
The user management is performed using the Dencrypt Control Center (DCC). The
user management means creating/deleting users and groups, as well as adding and
removing users from these groups. The DCC offers a web interface that is accessible
using a web browser from the administrator's local machine.

Dencrypt Certificate Manager (TOE environment)
Dencrypt Certificate Manager (DCM) is the central point for TLS certificates in the
system. Once provisioning has taken place, all connections between the DCA and
server components use mutually authenticated TLS connections. The required TLS
certificates are issued by the DCM by the following procedure: The client or server
generates the private/public key pair and creates a certificate signing request (CSR).
The CSR is sent to the DCM which signs the CSR if permitted. The DCM provides the
certificate back to client/server for employment. All communication between the DCA
and the DCM take place via the DCS, except during provisioning where it takes place
via the DPS.

Dencrypt Server Bridge (TOE environment)
The Dencrypt Server Bridge (DSB) introduces functionality to make Dencrypt Calls
between users on two different DSS. It enables Secure Phonebook synchronization
between systems and routing of SIP or messaging data between systems. The
connection between two DSS are protected by a TLS channel. The DSB ensure that this
connection is authenticated.

1.5.2.2 Provisioning and user registration process

The provisioning process consists of two independent steps:

• Installation of the DCA (the TOE)

• Provisioning of the data to the TOE where the data are the following:

• DCS user credentials,

• DSS domain,

• Signed certificate from the CSR

The DCA is provided and installed using Apple’s App Store. The App Store delivery mechanism
operated by Apple is assumed to be trusted and secure. The DCA can also be provided using
Apple’s Volume Purchase Program (VPP), where the app is installed via an MDM.

Note that the DCA is delivered in an unprovisioned state. One possibility is to use an MDM to
configure apps, however, MDMs usually configure apps with constant values such as user names
or server URLs. The DCA provisioning uses one-time tokens, which are by default not constant.
Additionally, there might be a separation of duties between MDM administrators and DCA
administrators. Thus, the Dencrypt Communication Solution provides its own provisioning server
to facilitate the initial configuration of the DCA.

Provisioning is started by the Dencrypt administrator by adding the user to the Dencrypt
Communication Solution and directory. After that the administrator will send an invitation
message e.g. by email to the user's handset. The invitation message has a link to the web server
the user shall tap the link which starts the TOE. The link can also be encoded in a QR code which
the phone can scan to load the link into the TOE. The TOE parses the link, fetches the provisioning
data from the DPS and installs the data. The provisioning data are deleted on the DPS, i.e. the
HTTPS link can be used only once. Additionally, the link is only valid for a limited time after the
link has been provided. The URL, i.e. the token in the URL, is verified by the server when the client

Dencrypt A/S Page 6

connects. The URL check is implemented in the TLS module and a token check failure results in a
TLS connection termination. Thus, Dencrypt describes the DPS TLS connection as token-based
client authenticated. This feature allows to connect securely to the DPS from any internet
connection and securely provision a new device.

The settings and phone book of the DCA (TOE) are updated as described in chapter “Managing

settings and phone book”. After that the TOE is setup and operational.

In addition to the phonebook, other DCA settings are also controlled by the DSS. For instance, the
ability to integrate with native iOS call history. The DSS also assists the TOE in protecting data-at-
rest by storing an encrypted storage key of the TOE. This key is submitted at the end of
provisioning. The TOE must connect to the DSS, retrieve and decrypt this key to be able to decrypt
any data stored outside of RAM. For subsequent use of the DCA, this key is downloaded from the
DSS before files stored by the DCA can be accessed.

1.5.2.3 Managing settings and phone book

The DCA only allows calls and messaging to persons listed in the DCA phone book as well as to
predefined emergency contacts. The phone book is individual for each user and contains only the
persons which a user is allowed to call. Thus, each user may have a different phone book. Note
you may be able to receive calls from users not in your phone book. The user administrator (TOE
environment) can change the groups of users to whom a specific user can call to at any time. The
administrator also has the ability to send out user notifications to one or more DCAs regardless of
the phonebooks. Users of the DCA have the ability to call users of a different DSS if that system is
connected via the DSB. The administrator of a DSS can then push phonebooks to the remote
system.

The DCS (also TOE environment) takes care of distributing the phone book to the individual TOE
users. When a user starts the TOE, the TOE establishes a TLS connection to the DCS and makes a
SIP registration. When registration is successful, the client will send a web request to check if the
phonebook or settings have changed. The client will then regularly send these web requests. If
the phone book has been changed, DCS notifies the client about the current phone book version.
The client downloads the phone book if its currently used phone book version does not match the
advertised phone book version. Note, if the client has no phone book, it is considered as phone
book version 0. The same method applies for settings distribution. The following figure displays
the described process.

Dencrypt A/S Page 7

Illustration 2: Registration process

1.5.2.4 Making a secure call

The uniqueness of this TOE is that the end-to-end encrypted voice, video and messaging use
Dynamic Encryption, which ensures that each call session is encrypted with an additional layer
using a randomly chosen algorithm parameters (S-boxes) and randomly chosen keys.

The following figure illustrates the steps for a secure call between two DCAs.

1. Alice's DCA contacts the DCS she is registered to.

2. The SIP server resolves Bob's address and contacts Bob's DCA. This resolution is limited
because Alice can only contact the DCS for users listed in her phone book.
Note: For calls to users of a different DSS, these are forwarded via the DCS. When a call is
received to a user outside of the current system, the call establishment (SIP) is forwarded
to the DCS of a remote system from the DCS of the TOE over a TLS connection.

3. SIP takes care of signalling, i.e. triggers Bob's DCA to start ringing. As soon as Bob accepts
the call, both DCA are signalled to start a media session for the real-time audio data
stream.

4. Before the audio connection is encrypted, DTLS-SRTP takes over the data of media
session. DTLS-SRTP exchanges certificates and fingerprints to authenticate the callers. A
shared secret is then negotiated between Alice and Bob's DCA. Additionally, DTLS-SRTP
has been modified to securely negotiate the ciphersuite to be used for Dynamic
Encryption. DTLS-SRTP also authenticates the caller certificates.
Note: The TOE has the ability to provide a tunnelling service to tunnel all encrypted voice
and video communication data over TCP and TLS. Note that this tunnel is not used for
security purposes as the tunnelled call audio data is still end-to-end encrypted.

5. Once DTLS-SRTP has established the shared secret, it calculates different keys for the bi-
directional audio data stream between Alice and Bob. The key and Dynamic Encryption
parameters derived using Key Boosting. These are required for the dynamic encryption of
the audio data stream. The dynamically encrypted real-time data is transported over the
IP network by the secure variant of the real-time protocol, so called SRTP.

6. When Bob ends the call the DCS signals the call termination to Alice. All key material are
erased.

The following list characterises the secure call in the TOE:

• Dynamic encryption of communication data is implemented as multiple layers of
encryption optimized for voice or video data over the SRTP protocol.

• The voice or video stream is bidirectional, i.e. each direction uses different en/decryption
keys.

Dencrypt A/S Page 8

Illustration 3: Secure voice call description

• The DCA completes a DTLS handshake over ECDHE to initiate the secure channel.

• DTLS provides the shared secret to SRTP-KDF initiating the end-to-end encrypted
communication.

• To mitigate a man-in-the-middle attack of the media channel, the callers send their
certificates over the media stream and the certificates’ fingerprints over the SIP signalling
channel. Each DTLS-SRTP endpoint verifies that the fingerprint matches the certificate.

• To authenticate the callers after call setup, each caller will provide the SIP ID and the
certificate of the remote party to the server. The server verifies that the SIP ID is
associated with that certificate.

• Dynamic Encryption for voice and video uses the following keys, which are derived from
the DTLS shared secret using Key Boosting:

◦ 256-bit key for the standard AES-256 encryption. This key is provided by DTLS-SRTP.

◦ 128-bit Dynamic Encryption algorithm selection key that defines the S-box for an
additional AES-round.

• Dynamic Encryption keys and algorithms are established at call setup and destroyed as
soon as the call is terminated.

• Random number generation uses the RNG on Apple iOS (TOE environment).

1.5.2.5 Secure Messaging

DCA (TOE) provides secure end-to-end encrypted messaging between two or more end users.
Secure messaging enables asynchronous text based communication between the parties, where
attachments can also be sent. Messaging is implemented through the LIMEv2 protocol, which in
turn is based on the Signal protocol. The DCS (TOE environment) is acting as a trusted server
providing identification of peer devices and routing of messages. Note that Secure Messaging is
asynchronous, which differs from secure calls which are direct. The server is used to stores
messages and public keys until the receiver of a message retrieves them.

The following picture provides an overview of messaging between DCAs and the cryptographic
protocols involved.

1. Key pairs are generated by the DCAs and the public keys are uploaded to the LIMEv2
server for the X3DH protocol.

2. The sender of a message downloads these keys, generates an ephemeral key pair, and
performs the following operations: Diffie-Hellman computations generates shared keys
that are fed into a Double Ratchet KDF, which in turn generates a chain key. The chain key
is fed through the KDF to compute a message key and a new chain key.

Dencrypt A/S Page 9

Illustration 4: Secure messaging description

3. The 256-bit message key uses Dencrypt Key Boosting to create a 384-bit key that is used
for Dynamic Encryption.

4. The encrypted message is sent over SIPS together with the sender’s public identity keys
and DH public keys.

5. The receiver will use the keys to perform the same key derivation process and decrypt
the message.
Note: After having established a shared secret once, only Double Ratchet is used to
derivate keys and not X3DH.

1.5.2.6 The TLS connection

All connections made between the TOE and any other component, including the one with the SIP
server, are established using a trusted channel that is implemented using TLS version 1.2. The
exceptions are the VoIP connection and messages sent between the TOE and another instance of
the DCA. The secure messages are encrypted separately via the LIMEv2 protocol, while voice and
video is encrypted via the DTLS-SRTP and SRTP protocols. The connections are encrypted using
Dynamic Encryption as described in the previous sections.

Note that all TLS connections are initiated by the TOE and never by the server backend, such as
the SIP server. The TOE is keeping the SIPS TLS connection alive as long as the TOE is running. It is
necessary for being able make and receive calls and messages.

Push notifications sent from the server to the DCA are not sent through this TLS channel, but
instead transmitted via the mobile operating system vendor’s (in this case Apple) systems. Its
sensitive contents are encrypted by AES and decrypted within the application once it has started.

The TLS connection is mutually authenticated to ensure both that only authorized instances of the
TOE can establish connections, i.e. to retrieve the phone book information, and that the TOE is
not connecting to a server system that may deceive the TOE user with false phone books or
provisioning data. The TLS connection also ensures the confidentiality and integrity of any data
transmitted. The TLS connection is always initiated by the TOE and never by the DCS or DPS.

Please note that the TLS connection to the provisioning web server is not mutually authenticated
because the TOE is not yet configured and has no signed client certificate.

Finally, a TLS connection can also be used to tunnel the encrypted voice or video communication
over TCP. If SRTP communication is not possible over the networks connecting two DCA users, the
TOE can provide a TCP tunnel for said communication. The tunnel does not provide the protection
of the traffic, since it is still end-to-end encrypted via SRTP.

Details of the protocols and cipher suites used are provided in the TOE Summary Specification in
chapter 7.

1.5.2.7 Platform security

The DCA utilizes the available security mechanisms of the underlying platform, i.e. the iPhone
device and iOS operating system. Authentication via Apple Touch ID or Face ID is required during
start-up. In addition to these mechanisms, the TOE also implements an additional layer of data-at-
rest protection to protect stored application data or files. There are two keys involved in this
process:

• one Data Encryption Key called Storage Key (which encrypts the stored data)

• one Key Encryption Key called Device Key (which encrypts the previously mentioned
Storage Key).

All data stored on the device is encrypted by the Storage Key, which is only persistently stored on
the DSS. This key is encrypted by the Device Key before being uploaded to the DSS. The DCA only
stores the Device Key locally. This means that the DCA needs to connect and authenticate to the
DSS to access the any stored files. If a user is removed on the DSS then the key, and therefore also

Dencrypt A/S Page 10

the files, are not accessible. DCA data and messages are stored in an encrypted local database,
while file attachments from messaging are stored encrypted in the file system.

The application also employs further safeguards against mismanagement of the application data
by the platform. Restoring from an iCloud backup or quick migration is not possible in case the
phone is lost. The application does not support any backup or export of messaging history. The
DSS can also enable settings to disable native iOS interactions (e.g. camera or external viewers for
attachments). Additionally, the iOS Keychain protection by the Secure Enclave protects the private
TLS client key, the Device Key to encrypt the Storage Key, and the mobile push encryption key.

1.5.3 Security functions

This section provides a summary of the security functions implemented by the TOE. These
security functions have previously been described in the previous section.

• Encrypted end-to-end voice and video communication (Secure Call)

• Encrypted messages (Secure Messaging)

• Encrypted group calls

• Secure Individual phone book

◦ Centrally managed (TOE environment)

◦ Distributed seamlessly to user devices

◦ Supports individual groups settings

◦ Supports individual emergency contacts

• Encrypted communication is restricted to administrator defined groups

• Supports secure provisioning to set up a new DCA installation

• Supports its own key-pair generation

• Secure data-at-rest storage of credentials and data

• Encrypted push notifications

• TCP tunnelling for voice or video communication

1.5.4 Physical scope of the TOE

The TOE is limited to the DCA and user documentation. The following documentation is provided
to the users:

• Operational User Guide DCA v. 6.0 (iOS)

• Preparative Guide DCA v. 6.0 (iOS)

The TOE is delivered to the user via the operating system’s built-in software distribution system,
i.e. the Apple App Store. It can also be delivered via Apple’s VPP using an MDM. Note that both
the operating system and the App Store are outside the scope of the TOE. The developer will
upload the DCA to the Apple App Store, where a customer can find and download it using an
Apple ID account. The user installs and configures the app by following the instructions given in
the user documentation. Since Apple will receive and approve the DCA before it is made available
on the App Store, Apple is seen as a trusted middle-man for the delivery process.

1.5.4.1 IT environment

The TOE environment consists of the IT components that make up the mobile devices but are
outside of the TOE as well as any IT components that are outside of mobile device.

The IT components that are outside of the TOE but part of the mobile devices are:

Dencrypt A/S Page 11

• The mobile device hardware (iPhone) and iOS software on which the TOE is installed. This
includes the App Store application included in iOS, which is used for the delivery
mechanism.

The IT environment must contain the following:

• The mobile device (iPhone) where the TOE is installed.

• Any additional mobile devices where the TOE is also installed (to have another party to
securely communicate with)

• The DSS with DPS, DCC, DCM, DDB, DSB and DCS, as well as any standard MDM system in
the case that the DCA is distributed using Apple’s VPP.

The DSS must be used and operated by administrators that are trustworthy and have been
sufficiently trained to use and carry out the security management tasks in a proficient manner.
The TOE users must be trustworthy and trained and are expected to follow instructions.

Dencrypt A/S Page 12

2 Conformance claims

2.1 CC conformance claim
This ST is CC Part 2 extended and CC Part 3 conformant. This ST claims conformance to CC version
3.1 Revision 5, April 2017.

This ST claims conformance to the EAL4 package of security assurance requirements, augmented
with ALC_FLR.2. This ST does not claim conformance to any Protection Profile (PP).

2.2 Conformance rationale
In general, assurance requirements must be commensurate with the exposure of systems to
untrustworthy and unauthorized entities. For example, mobile devices will be more exposed to
attackers than systems in a well-guarded environment, but exposure through communication
channels may jeopardize even systems guarded in secure vaults.

Since the architecture addressed by the TOE specified in this ST includes systems where both the
attack potential and the value of the assets are likely to be high, a sufficient level of assurance
must be selected to provide system users with appropriate assurance that the system will be able
to withstand such threats.

The TOE is expected to provide assurance to ensure separation of compartments, which requires
a level of assurance that includes the evaluation of side channels between different
compartments.

The EAL4 level was also deemed appropriate because this will provide a necessary assurance for
encrypted communication services such as secure voice, secure video and secure message.

Dencrypt A/S Page 13

3 Security problem definition
A mobile device may be used in different ways. A device, where the TOE is installed, must be
under significant enterprise control over the configuration and software inventory. The enterprise
elects to provide users with mobile devices and control the configuration as well as the set of
applications that can be installed in order to maintain a high degree of control of their enterprise
data and security of their networks.

It is assumed that the TOE is under physical control of the user and that the users are trained and
trusted to handle the TOE and to access to the enterprise data and services they are given access
to. Although the users are assumed to be trustworthy and trained, we cannot exclude that
mistakes are being made.

3.1 Threats
This section of the security problem definition describes the threats that are countered by the
TOE, its operational environment, or a combination of the two.

Threat agents are typically characterized by a number of factors such as expertise, available
resources, and motivation, with the motivation being linked directly to the value of the assets at
stake.

Threat agents are entities such as unauthorized individuals or authorized users that are trying to
act outside of their authorization or any other entities acting on behalf of unauthorized users,
such as users. Those may attempt to get access to TSF services either by masquerading as an
authorized entity or by attempting to use TSF services without proper authorization.

The term threat agent is used to indicate that a threat can be performed by an unauthorized
external entity, an authorized external entity or an untrusted app. Threat agents are assumed to
have moderate level of expertise, resources and motivation.

The following threats are addressed by the TOE and the TOE environment.

Threat Description

T.DATA An unauthorized user or attacker will gain access to user credentials,
TOE settings or phone book entries to which they are not
authorized. This involves data sent between the TOE and the DSS,
including push notifications.

T.MASQUERADE A user within a closed user group is masquerading, pretending to be
another user to mislead the receiver that a secure voice or video
call, or a secure message is originating from another user belonging
to the phone book of that user group.

T.TRAFFIC An attacker (including network operators) may gain access
(disclosure or modification) to secure voice, video or messaging
conversations between users within a closed user group.

3.2 Organisational security policies
The following organisational security policies are enforced by the TOE and the TOE environment.

OSP Description

OSP.CLOSED The TOE shall ensure that secure calls and secure messages are
restricted to parties defined by the phone book on the TOE of the
calling party.

Dencrypt A/S Page 14

OSP Description

OSP.FORWARD The TOE must be able to prevent an unauthorized user that obtains a
handset to decrypt previously transmitted traffic (voice, video or
message) that has been encrypted using the obtained handset. Any
encryption keys used for the transmitted traffic must be erased.

OSP.PRIVATEKEY The TOE must be able to generate its own private-public key pairs.

OSP.MANAGE The TOE shall allow secure provisioning and remote update of
certificates and phone book.

OSP.PHONEBOOK The TOE must ensure that the phone book cannot be changed locally.

OSP.UPTODATE The TOE must ensure that the phone book held by the TOE is up-to-
date.

OSP.STORAGE The TOE must use cryptography to protect the confidentiality of data
stored on the device. The data involves both DCA data, messages and
message attachments. The data must only be accessible if the user can
authenticate to the DSS.

OSP.TUNNEL The TOE must support tunnelling of voice or video communication
over TCP by tunnelling the connection over TLS 1.2.

3.3 Assumptions
This section specifies the assumptions on the TOE environment that are necessary for the
TOE to meet its security objectives.

Assumption Description

A.ADMIN It is assumed that the TOE administrators (i.e. the administrators using
the DSS) are trustworthy and trained to perform the actions required
by them for the management and maintenance of the DSS.

A.APPS It is assumed that only approved, benign applications are running on
the handset where the TOE is running.

A.BACKEND It is assumed that the underlying hardware, firmware (BIOS and device
drivers) and software of the server system used by the TOE are
working correctly and have no undocumented security critical side
effect on the TOE. Furthermore, the server system is operated in a
physically secure and well managed environment.

A.HANDSET It is assumed that the functions in the TOE environment related to
memory management, program execution, access control and
privilege management provided by the underlying iOS of the handset
and the SIM card, work correctly and have no undocumented security
critical side effects on the security functions of the TOE.

A.KEYS It is assumed that random bits provided by the underlying platform
are of good quality and have sufficient entropy.

A.SINGLEUSER It is assumed that the TOE is under the physical control of a single
authorized user.

A.USER It is assumed that the users are trustworthy and trained to perform
their actions in accordance with their instructions and security
policies.

Dencrypt A/S Page 15

Assumption Description

A.PROVISIONING It is assumed that the operational environment ensures that the web
link is not predictable, only active for a limited time and that access to
the link is limited to one attempt only. It is also assumed that the
operational environment provides the link to clients in a secure way so
that the link is not disclosed to any potential attacker.
Note: The link might be disclosed for the user's organisation, e.g. the
link might be in cleartext on the organisation's local mail server.

A.APPSTORE It is assumed that the operational environment provides a secure
delivery mechanism for the TOE operated by a trusted third party. For
the TOE which runs on the iPhone iOS operating system, this is the
built in App Store operated by Apple.

Dencrypt A/S Page 16

4 Security objectives
The security objectives provide a concise statement of the intended response to the security
problem. It will describe which security needs will be addressed by the TOE and which will be
addressed by the TOE environment, in the form of a statement of security objectives.

4.1 Security objectives for the TOE
The following are the security objectives to be met by the TOE.

Security Objective Description

O.CALLERID The TOE must ensure that the end point of a secure call connection or
a secure message is unique and that the caller display name
associated with the caller identity is correctly shown to the TOE user
making or receiving the secure call or message.

O.GROUP The TOE must ensure that secure calls and messages are restricted to
users within the TOE phone book of the calling party.

O.TRAFFIC The TOE must ensure that secure calls are protected against disclosure
and modification.

O.MESSAGES The TOE must ensure that secure messages are protected against
disclosure and modification.

O.CHANNEL The TOE must ensure that there is a trusted path between the TOE
and the DSS ensuring authenticity, confidentiality and integrity of any
TSF or user data transmitted between the TOE and the server system,
such as phone book updates and SIP connections made when
establishing secure calls.

O.PHONEBOOK The TOE must ensure that the phone book cannot be changed locally.

O.FORWARD The TOE must ensure that an unauthorized user that obtains a
handset cannot decrypt previously transmitted traffic (voice, video or
messages) that has been encrypted using the obtained handset. Any
encryption keys used for the transmitted traffic must be erased.

O.PRIVATEKEY The TOE must be able to generate its own private-public key pairs.

O.MANAGE The TOE must support provisioning and ensure that settings and
phone book can be updated whenever the TOE is running and
registered on the DCS.

O.STORAGE The TOE must use cryptography to protect the confidentiality of data
stored on the device. The data involves both DCA data, messages and
file attachments. The data must only be accessible if the user can
authenticate to the DSS.

O.TUNNEL The TOE must support tunnelling of voice or video communication to
the server over TCP by tunnelling the connection over TLS 1.2.

O.PUSH The TOE must be able to decrypt Push Notifications that are sent via
the mobile operating system vendor’s systems.

4.2 Security objectives for the TOE environment
The following are the security objectives to be met by the TOE environment.

Dencrypt A/S Page 17

Security Objective Description

OE.ADMIN The operational environment shall ensure that the TOE administrators
(i.e. the administrators using the server system) are trustworthy and
trained to perform the actions required by them for the management
and maintenance of the DSS.

OE.APPS The operational environment shall ensure that only approved, benign
applications are running on the handset where the TOE is running.

OE.BACKEND The operational environment shall ensure that the underlying
hardware, firmware (BIOS and device drivers) and software of the DSS
system used by the TOE are working correctly and have no
undocumented security critical side effect on the TOE. The operational
environment shall also ensure that the server system is operated in a
physically secure and well managed environment.

OE.HANDSET The operational environment shall ensure that the functions in the
TOE environment related to memory management, program
execution, access control and privilege management provided by the
underlying iOS of the handset and the SIM card, work correctly and
have no undocumented security critical side effects on the security
functions of the TOE.

OE.KEYS The operational environment shall ensure that random bits provided
by the underlying platform are of good quality and have sufficient
entropy.

OE.SINGLEUSER The operational environment shall ensure that the TOE is under the
physical control of a single authorized user.

OE.USER The operational environment shall ensure that the users are
trustworthy and trained to perform their actions in accordance with
their instructions and security policies.

OE.PROVISIONING The operational environment shall ensure that the web link is not
predictable, only active for a limited time and that access to the link is
limited to one attempt only. It shall also provide the link to clients in a
secure way so that the link is not disclosed to any potential attacker.
Note: The link might be disclosed for the user's organisation, e.g. the
link might be in cleartext on the organisation's local mail server.

OE.APPSTORE The operational environment shall provide a secure delivery
mechanism for the TOE operated by a trusted third party. For the TOE
which runs on the iPhone iOS operating system, this is the built in App
Store operated by Apple.

4.3 Security objectives rationale

4.3.1 Security objectives completeness

The following tables provide a mapping of security objectives both for the TOE and the TOE
environment to the environment defined by the threats, policies and assumptions, illustrating
that each security objective for the TOE covers at least one threat or policy, and that each security
objective for the TOE environment covers at least one policy, threat or assumption.

Dencrypt A/S Page 18

T.
D

AT
A

T.
M

A
SQ

U
ER

A
D

E

T.
TR

A
FF

IC

O
SP

.C
LO

SE
D

O
SP

.F
O

R
W

A
R

D

O
SP

.P
R

IV
AT

EK
EY

O
SP

.M
A

N
A

G
E

O
SP

.P
H

O
N

EB
O

O
K

O
SP

.U
P

TO
D

AT
E

O
SP

.S
TO

R
A

G
E

O
SP

.T
U

N
N

EL

A
.A

D
M

IN

A
.A

P
P

S

A
.B

A
C

K
EN

D

A
.H

A
N

D
SE

T

A
.K

EY
S

A
.S

IN
G

LE
U

SE
R

S

A
.U

SE
R

A
.P

R
O

V
IS

IO
N

IN
G

A
.A

P
P

ST
O

R
E

O.CALLERID X

O.GROUP X

O.TRAFFIC X

O.MESSAGES X

O.CHANNEL X X

O.PHONEBOOK X X

O.FORWARD X

O.PRIVATEKEY X

O.MANAGE X X

O.STORAGE X

O.TUNNEL X

O.PUSH X

OE.ADMIN X

OE.APPS X

OE.BACKEND X

OE.HANDSET X

OE.KEYS X X

OE.SINGLEUSER X

OE.USER X

OE.PROVISIONING X X

OE.APPSTORE X

4.3.2 Security objectives sufficiency

The following rationale provides justification that the security objectives are suitable to counter
each individual threat and that each security objective tracing back to a threat actually
contributes to the mitigation of that threat.

Threat Rationale for the security objectives

T.DATA This threat is addressed by O.CHANNEL that ensures that there is a trusted
path between the TOE and the server system ensuring authenticity,
confidentiality and integrity of any TSF or user data transmitted between
the TOE and the server system, such as phone book updates and SIP
connections made when establishing secure calls. O.PUSH ensures that Push
Notifications containing user data sent form the DSS to the TOE are
encrypted. These are transmitted via the mobile device operating system
vendor.

Dencrypt A/S Page 19

Threat Rationale for the security objectives

T.MASQUERADE This threat is addressed by O.CHANNEL that enforces client authentication
and by O.CALLERID that ensures that the end point of a secure call or secure
message is unique and that the caller display name associated with the
caller identity is correctly shown to the TOE user making or receiving the
security call or message. T

T.TRAFFIC This threat is addressed by O.TRAFFIC and O.MESSAGES. O.TRAFFIC ensures
that secure calls are protected against disclosure and modification, while
O.MESSAGES ensures that secure messages are protected against disclosure
and modification. Note that these two protection mechanisms both involve
communication between two or more DCAs, but O.MESSAGES involve
asynchronous secure messaging communication.

The following rationale provides justification that the security objectives of the TOE and the TOE
environment are suitable to address each individual OSP and that each security objective tracing
back to an OSP actually contributes in addressing the OSP.

OSP Rationale for the security objectives

OSP.CLOSED This OSP is addressed by O.GROUP that ensures that secure calls and
messages are restricted to users within the TOE phone book of the calling
party and by O.PHONEBOOK that ensures that the phone book cannot be
changed locally.

OSP.FORWARD This OSP is addressed by O.FORWARD that ensures that an unauthorized
user that obtains a handset cannot decrypt previously transmitted traffic
(voice, video or message) that has been encrypted using the obtained
handset.

OSP.PRIVATEKEY This OSP is addressed by O.PRIVATEKEY that ensures that the key pair for
the TOE is generated by the TOE. This is supported by OE.KEYS that
provides the random number for the key generation.

OSP.MANAGE This OSP is addressed by O.MANAGE that ensures that settings and phone
book can be updated whenever the TOE is running and registered on the
DCS. The TOE provides management capabilities and ensuring that they are
restricted to authorized subjects. The secure provisioning is supported by
OE.PROVISIONING.

OSP.PHONEBOOK This OSP is addressed by O.PHONEBOOK that ensures that phone book
cannot be changed locally.

OSP.UPTODATE This OSP is addressed by O.MANAGE that ensures the phone book is
updated whenever the TOE is running and registered on the DCS.

OSP.STORAGE This OSP is addressed by O.STORAGE that ensures that any data stored by
the TOE must be encrypted and that the decryption key must only be
accessible after successful authentication to the server.

OSP.TUNNEL This OSP is addressed by O.TUNNEL that ensures the TOE can establish a
TLS 1.2 tunnel to the server.

The following rationale provides justification that the security objectives of the TOE environment
are suitable to address each individual assumption and that each security objective tracing back
to an assumption actually contributes in addressing the assumption.

Assumption Rationale for the security objectives

A.ADMIN Addressed by OE.ADMIN, which is identical to the assumption

Dencrypt A/S Page 20

Assumption Rationale for the security objectives

A.APPS Addressed by OE.APPS, which is identical to the assumption

A.BACKEND Addressed by OE.BACKEND, which is identical to the assumption

A.HANDSET Addressed by OE.HANDSET, which is identical to the assumption

A.KEYS Addressed by OE.KEYS, which is identical to the assumption

A.SINGLEUSER Addressed by OE.SINGLEUSER, which is identical to the assumption

A.USER Addressed by OE.USER, which is identical to the assumption

A.PROVISIONING Addressed by OE.PROVISIONING, which is identical to the assumption

A.APPSTORE Addressed by OE.APPSTORE, which is identical to the assumption

Dencrypt A/S Page 21

5 Extended components definition
The extended requirements are used to specify TLS for clients and servers. A TOE that implements
TLS must in addition to FTP_ITC.1 or FTP_TRP.1 also specify the TLS protocol that is implemented.
This is done in FCS_TLSC_EXT.1 and FCS_TLSC_EXT.2 (for cryptography). FCS_TLSC_EXT.2 also
describes the TLS protocol used for the tunnelling service. The extended components defined in
this Security Target have been copied from [cPPND].

5.1.1.1 FCS_TLSC_EXT – TLS Client Protocol

Family Behaviour

The component in this family addresses the ability for a client to use TLS to protect data between
the client and a server using the TLS protocol.

Component levelling

FCS_TLSC_EXT.1 TLS Client requires that the client side of TLS be implemented as specified.

FCS_TLSC_EXT.2 TLS Client requires that the client side of the TLS implementation include mutual
authentication.

Management: FCS_TLSC_EXT.1, FCS_TLSC_EXT.2

The following actions could be considered for the management functions in FMT:

a) There are no management activities foreseen.

Audit: FCS_TLSC_EXT.1, FCS_TLSC_EXT.2

The following actions should be considered for audit if FAU_GEN Security audit data generation is
included in the PP/ST:

a) Failure of TLS session establishment

b) TLS session establishment

c) TLS session termination

5.1.1.1.1 FCS_TLSC_EXT.1 – TLS Client Protocol

Hierarchical to: No other components

Dependencies: FCS_CKM. 1 Cryptographic Key Generation

FCS_CKM.2 Cryptographic Key Establishment

FCS_COP.1/DataEncryption Cryptographic operation (AES Data
encryption/decryption)

FCS_COP.1/SigGen Cryptographic operation (Signature Generation and
Verification)

FCS_COP.1/Hash Cryptographic operation (Hash Algorithm)

FCS_COP.1/KeyedHash Cryptographic operation (Keyed Hash Algorithm)

FCS_TLSC_EXT.1.1 The TSF shall implement [selection: TLS 1.2 (RFC 5246), TLS 1.1 (RFC 4346)] and
reject all other TLS and SSL versions. The TLS implementation will support the following
ciphersuites:

• [assignment: list of optional ciphersuites and reference to RFC in which each is defined].

Application Note

Dencrypt A/S Page 22

The ciphersuites to be tested in the evaluated configuration are limited by this requirement.

FCS_TLSC_EXT.1.2 The TSF shall verify that the presented identifier matches the reference
identifier per RFC 6125 section 6.

Application Note

The rules for verification of identify are described in Section 6 of RFC 6125. The reference identifier
is established by the user (e.g. entering a URL into a web browser or clicking a link), by
configuration (e.g. configuring the name of a mail server or authentication server), or by an
application (e.g. a parameter of an API) depending on the application service. Based on a singular
reference identifier’s source domain and application service type (e.g. HTTP, SIP, LDAP), the client
establishes all reference identifiers which are acceptable, such as a Common Name for the Subject
Name field of the certificate and a (case-insensitive) DNS name, URI name, and Service Name for
the Subject Alternative Name field. The client then compares this list of all acceptable reference
identifiers to the presented identifiers in the TLS server’s certificate.

The preferred method for verification is the Subject Alternative Name using DNS names, URI
names, or Service Names. Verification using the Common Name is required for the purposes of
backwards compatibility. Additionally, support for use of IP addresses in the Subject Name or
Subject Alternative name is discouraged as against best practices but may be implemented.
Finally, the client should avoid constructing reference identifiers using wildcards. However, if the
presented identifiers include wildcards, the client must follow the best practices regarding
matching; these best practices are captured in the evaluation activity.

FCS_TLSC_EXT.1.3 When establishing a trusted channel, by default the TSF shall not establish a
trusted channel if the server certificate is invalid. The TSF shall also [selection:

• Not implement any administrator override mechanism

• require administrator authorization to establish the connection if the TSF fails to
[selection: match the reference identifier, validate certificate path, validate expiration
date, determine the revocation status] of the presented server certificate

].

FCS_TLSC_EXT.1.4 The TSF shall [selection: not present the Supported Elliptic Curves Extension,
present the Supported Elliptic Curves Extension with the following NIST curves: [selection:
secp256r1, secp384r1, secp521r1] and no other curves] in the Client Hello.

Application Note

If ciphersuites with elliptic curves were selected in FCS_TLSC_EXT.1.1, a selection of one or more
curves is required. If no ciphersuites with elliptic curves were selected in FCS_TLS_EXT.1.1, then
“not present the Supported Elliptic Curves Extension” should be selected.

This requirement limits the elliptic curves allowed for authentication and key agreement to the
NIST curves from FCS_COP.1/SigGen and FCS_CKM.1 and FCS_CKM.2. This extension is required
for clients supporting Elliptic Curve ciphersuites.

5.1.1.1.2 FCS_TLSC_EXT.2 – TLS Client Protocol with Authentication

Hierarchical to: FCS_TLSC_EXT.1 TLS Client Protocol

Dependencies: FCS_CKM.1Cryptographic Key Generation

FCS_CKM.2 Cryptographic Key Establishment

FCS_COP.1/DataEncryption Cryptographic operation (AES Data
encryption/decryption)

FCS_COP.1/SigGen Cryptographic operation (Signature Generation and
Verification)

FCS_COP.1/Hash Cryptographic operation (Hash Algorithm)

Dencrypt A/S Page 23

FCS_COP.1/KeyedHash Cryptographic operation (Keyed Hash Algorithm)

FCS_RBG_EXT.1 Random Bit Generation

FCS_TLSC_EXT.2.1 The TSF shall implement [selection: TLS 1.2 (RFC 5246), TLS 1.1 (RFC 4346)] and
reject all other TLS and SSL versions. The TLS implementation will support the following
ciphersuites:

• [assignment: list of optional ciphersuites and reference to RFC in which each is defined].

Application Note

The ciphersuites to be tested in the evaluated configuration are limited by this requirement.

FCS_TLSC_EXT.2.2 The TSF shall verify that the presented identifier matches the reference
identifier per RFC 6125 section 6.

Application Note

The rules for verification of identify are described in Section 6 of RFC 6125. The reference identifier
is established by the user (e.g. entering a URL into a web browser or clicking a link), by
configuration (e.g. configuring the name of a mail server or authentication server), or by an
application (e.g. a parameter of an API) depending on the application service. Based on a singular
reference identifier’s source domain and application service type (e.g. HTTP, SIP, LDAP), the client
establishes all reference identifiers which are acceptable, such as a Common Name for the Subject
Name field of the certificate and a (case-insensitive) DNS name, URI name, and Service Name for
the Subject Alternative Name field. The client then compares this list of all acceptable reference
identifiers to the presented identifiers in the TLS server’s certificate.

The preferred method for verification is the Subject Alternative Name using DNS names, URI
names, or Service Names. Verification using the Common Name is required for the purposes of
backwards compatibility. Additionally, support for use of IP addresses in the Subject Name or
Subject Alternative name is discouraged as against best practices but may be implemented.
Finally, the client should avoid constructing reference identifiers using wildcards. However, if the
presented identifiers include wildcards, the client must follow the best practices regarding
matching; these best practices are captured in the evaluation activity.

FCS_TLSC_EXT.2.3 When establishing a trusted channel, by default the TSF shall not establish a
trusted channel if the server certificate is invalid. The TSF shall also [selection:

• Not implement any administrator override mechanism

• require administrator authorization to establish the connection if the TSF fails to
[selection: match the reference identifier, validate certificate path, validate expiration
date, determine the revocation status] of the presented server certificate

].

FCS_TLSC_EXT.2.4 The TSF shall [selection: not present the Supported Elliptic Curves Extension,
present the Supported Elliptic Curves Extension with the following NIST curves: [selection:
secp256r1, secp384r1, secp521r1] and no other curves] in the Client Hello.

Application Note

If ciphersuites with elliptic curves were selected in FCS_TLSC_EXT.1.1, a selection of one or more
curves is required. If no ciphersuites with elliptic curves were selected in

FCS_TLS_EXT.1.1, then “not present the Supported Elliptic Curves Extension” should be selected.

This requirement limits the elliptic curves allowed for authentication and key agreement to the
NIST curves from FCS_COP.1/SigGen and FCS_CKM.1 and FCS_CKM.2. This extension is required
for clients supporting Elliptic Curve ciphersuites.

FCS_TLSC_EXT.2.5 The TSF shall support mutual authentication using X.509v3 certificates.

Dencrypt A/S Page 24

6 Security requirements

6.1 Security functional policies

6.1.1 GROUP SFP

The TOE will implement an information flow control policy named GROUP SFP.

Policies are used to enforce security guidelines and restrict the users from undesired behaviour.
The TOE is implementing the GROUP information flow control security functional policy, or simply
GROUP SFP. This will ensure that the TOE does not allow any secure call or secure messaging
between a user and another user, unless the user is explicitly allowed to. This policy is set by the
central managed phone book for each user. The phone book on the TOE is kept in sync with server
system's phone book whenever the TOE is running and registered on the DCS. Secure Call and
Secure Messaging are restricted to parties in the phone book.

6.1.2 ENCRYPTION KEY SFP

The TOE must implement a functional policy for encrypted Storage Keys imported from the DSS.
The TOE must be able to receive these keys and use them to decrypt the stored date (i.e. message
chat history or file attachments) while also ensuring that the keys themselves are not stored
persistently on the device. These keys are received through a mutually authenticated TLS channel,
where the DSS is authenticated. This does not involve any information flow or access control
policy, and the keys are received securely from a trusted source.

Dencrypt A/S Page 25

6.2 Security functional requirements
The following convention is used for operations applied to the Security Functional Requirements:
Assignment and selection are indicated by bold. Refinements are indicated by bold underscore
for additions and by bold strike through for deletions. Iterations are indicated by appending a
letter to the requirement, e.g. FCS_COP.1a.

Voice and video encryption
These SFRs describe the cryptographic functionality for secure voice and video.

6.2.1 FCS_CKM.2a – Cryptographic key distribution (DTLS-SRTP)

FCS_CKM.2.1 The TSF shall perform distribute cryptographic key establishment in accordance
with a specified cryptographic key establishment distribution method DTLS-SRTP
using Elliptic Curve Diffie-Hellman that meets the following: [RFC5763] and
[RFC5764].

Application note: This SFR covers the key establishment and distribution for secure voice and
video. The DTLS-SRTP key agreement protocol performs a Diffie-Hellman key exchange during call
setup in the media path. It generates a shared secret, which is then used to generate keys and salt
for a Secure RTP (SRTP) [RFC3711] session via Dynamic Encryption FCS_COP.1d. Note that the
SRTP keys will pass through a Key Boosting (hash) algorithm in FCS_COP.1c to derive the keys and
salt. This SFR has been refined to specify that it involves key establishment rather than solely
distribution.

Application note: The key establishment does not use DTLS to authenticate the remote party.
RFC5764 separately describes certificate fingerprint validation over SIP during key establishment
and call setup. This validation uses the SHA-512 hash function described in FCS_COP.1c.

Messaging encryption
These SFRs describe the cryptographic functionality for secure messaging.

6.2.2 FCS_CKM.1c – Cryptographic key generation (LIME v2.0 EdDSA)

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm as defined in LIMEv2 protocol and
specified cryptographic key sizes 456-bit EdDSA448 that meet the following:
[LIME], [X3DH], [RFC7748], [RFC8032] and [DR].

Application note: These are the keys generated and used by the DCA as part of secure
messaging. Note that this is an asymmetric key and involved a private/public key-pair.

6.2.3 FCS_CKM.2c – Cryptographic key distribution (LIME v2.0 establishment)

FCS_CKM.2.1 The TSF shall perform distribute cryptographic key establishment in accordance
with a specified cryptographic key establishment distribution method as defined
in the LIMEv2, X3DH and Double Ratchet specifications using Elliptic Curve
Diffie-Hellman that meets the following:[LIME], [X3DH] and [DR].

Application note: The key establishment and distribution as part of X3DH will describe the initial
asynchronous setup of a shared secret between the TOE and another DCA user who are initiating
secure messaging for the first time. The key distribution as part of Double Ratchet will describe
continuous exchange of keys between a TOE and another DCA user engaging in secure messaging.
These key exchanges are based on X448 Elliptic Curve Diffie-Hellman.

Application note: This SFR has been refined to specify that it involves key establishment rather
than solely distribution. It includes the upload of keys to the DSS which acts as an intermediary
between two DCA.

Dencrypt A/S Page 26

6.2.4 FCS_COP.1e– Cryptographic operation (EdDSA signatures)

FCS_COP.1.1 The TSF shall perform signature generation and verification in accordance with a
specified cryptographic algorithm EdDSA448 and cryptographic key sizes 456-bit
that meet the following: [LIME] [X3DH], [RFC7748] and [RFC8032].

Application note: This is the signature generation and verification operation as part of the LIMEv2
and X3DH protocols.

6.2.5 FCS_COP.1f – Cryptographic operation (X3DH key derivation)

FCS_COP.1.1 The TSF shall perform X3DH key derivation in accordance with a specified
cryptographic algorithm LIMEv2 HKDF based on SHA512 and cryptographic key
sizes that meet the following: [LIME], [RFC5869], [RFC2104] and ISO/IEC 10118-
3:2018.

Application note: This is the cryptographic operation at the end of the X3DH protocol which
defines generation of a shared secret between two messaging parties. Note that while the HKDF
function does accept an input a cryptographic key, it is simply a zeroized buffer as there are no
shared secrets before this point of the messaging setup. Please see FCS_COP.1h for the HMAC
algorithm.

6.2.6 FCS_COP.1g – Cryptographic operation (Double Ratchet key derivation)

FCS_COP.1.1 The TSF shall perform Double Ratchet key derivation in accordance with a
specified cryptographic algorithm LIMEv2 HKDF based on SHA512 and
cryptographic key sizes 256-bit that meet the following: [LIME], [RFC5869],
[RFC2104] and ISO/IEC 10118-3:2018.

Application note: This SFR covers the cryptographic operation used for two purposes. One
purpose is the chain key derivation and one is the message key derivation. As defined by the
LIMEv2 protocol the input both in terms of the key and data differ depending on the key to be
generated. The derived keys will provide the input for message encryption and the next Double
Ratchet operation. For message encryption, the keys will be subject to Key Boosting before being
utilized by the Dynamic Encryption algorithms. Please see FCS_COP.1h for the HMAC algorithm.

Dencrypt A/S Page 27

TLS channel encryption
These SFRs describe the cryptographic functionality for secure communication with the DSS. Note
that this TLS channel is also used during calls and messaging, for instance during call initiation.

6.2.7 FCS_CKM.1a – Cryptographic key generation (TLS session key)

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm AES-256 in the Galois Counter Mode
(GCM) and specified cryptographic key sizes 256-bit (AES-256) that meet the
following: [FIPS197] and [NIST SP 800-38D].

Application note: This SFR covers the generation of AES keys (sessions keys) for TLS
connections.

6.2.8 FCS_CKM.2b – Cryptographic key distribution (TLS key establishment)

FCS_CKM.2.1 The TSF shall perform distribute cryptographic key establishment in accordance
with a specified cryptographic key establishment distribution method as defined
in TLS 1.2 using Elliptic Curve Diffie-Hellman that meets the following: RFC5246
and RFC6347

Application note: This SFR covers the key establishment and distribution which ensures the TOE is
able to setup a trusted TLS channel and establish a common secret. TLS is used when connecting
from the TOE to the DCS and DPS. This SFR has been refined to specify that it involves key
establishment rather than solely distribution.

6.2.9 FCS_COP.1a – Cryptographic operation (AES data encryption and
decryption)

FCS_COP.1.1 The TSF shall perform encryption and decryption in accordance with a specified
cryptographic algorithm AES-256 in GCM mode and cryptographic key sizes 256-
bit that meet the following: [FIPS197] and [NIST SP 800-38D].

Application note: This requirement addresses the data stream encryption and decryption of the
TLS connections between the TOE and other parties. Note that this differs from Dynamic
Encryption and is only used for the TLS channel with the DSS.

6.2.10 FCS_TLSC_EXT.1 – TLS client protocol

FCS_TLSC_EXT.1.1 The TSF shall implement TLS 1.2 (RFC 5246) and reject all other TLS and SSL
versions. The TLS implementation will support the following ciphersuites:

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

FCS_TLSC_EXT.1.2 The TSF shall verify that the presented identifier matches the reference
identifier per RFC 6125 section 6.

FCS_TLSC_EXT.1.3 When establishing a trusted channel, by default the TSF shall not establish a
trusted channel if the server certificate is invalid. The TSF shall also not
implement any administrator override mechanism.

FCS_TLSC_EXT.1.4 The TSF shall present the Supported Elliptic Curves Extension with the
following NIST curves: secp384r1 and no other curves in the Client Hello.

Application note: The unauthenticated TLS connection is only used for the provision connection
of the TOE.

6.2.11 FCS_TLSC_EXT.2 – TLS client protocol with authentication

FCS_TLSC_EXT.2.1 The TSF shall implement TLS 1.2 (RFC 5246) and reject all other TLS and SSL
versions. The TLS implementation will support the following ciphersuites:

Dencrypt A/S Page 28

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

FCS_TLSC_EXT.2.2 The TSF shall verify that the presented identifier matches the reference
identifier per RFC 6125 section 6.

FCS_TLSC_EXT.2.3 When establishing a trusted channel, by default the TSF shall not establish a
trusted channel if the server certificate is invalid. The TSF shall also not
implement any administrator override mechanism.

FCS_TLSC_EXT.2.4 The TSF shall present the Supported Elliptic Curves Extension with the
following NIST curves: secp384r1 and no other curves in the Client Hello.

FCS_TLSC_EXT.2.5 The TSF shall support mutual authentication using X.509v3 certificates.

Application note: The ciphersuites used for the DPS webAPI connection and the DCS webAPI
connection are the same. The authenticated TLS connection is for all TLS connections with
exception of the provisioning TLS connection, i.e. for the initial configuration of the TOE.

Dencrypt A/S Page 29

General encryption
These SFRs describe the general cryptographic functionality of the TOE which are not used
specifically for voice, video, messaging or DSS connections.

6.2.12 FCS_CKM.1b – Cryptographic key generation (RSA key generation)

FCS_CKM.1.1 The TSF shall generate asymmetric cryptographic keys in accordance with a
specified cryptographic key generation algorithm:

• RSA schemes using cryptographic key sizes of 2048-bit or greater 3072-bit
that meet the following: FIPS PUB 186-4, “Digital Signature Standard
(DSS)”, Appendix B.3.

Application note: This SFR covers the generation of the private-public key pair for the DCA
certificate. This requirement is a refinement of FCS_CKM.1.1 defined in [cPPND]. Before the client
certificate expires, a new key pair is generated and the client certificate is renewed. After that,
DCA has a new client certificate based on a new key pair.

6.2.13 FCS_CKM.1e – Cryptographic key generation (Storage key generation)

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm CTR_DRBG and specified cryptographic
key sizes 640-bit that meet the following: [NIST SP 800-90A]

Application note: This SFR covers the generation of keys for the protection of storage. This
involves two keys: one Storage Key (FCS_COP.1d) and one Device Key (FCS_COP.1j). The entropy
source is Apple iOS RNG. Note that Dynamic Encryption requires an AES 256-bit key, a 128-bit
seed for the S-Box generation, and two 128-bit whitening keys. This done by generating 640-bits
and separating them into the necessary keys. The whitening keys can be zeroized, which they are
in the application for the secure calls and secure messaging.

6.2.14 FCS_CKM.1d – Cryptographic key generation (Push key generation)

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm AES-256 in CFB mode and specified
cryptographic key sizes 256-bit (AES-256) that meet the following: [FIPS197] and
[NIST SP 800-38A].

Application note: This SFR covers the generation of AES keys for push notification encryption.

6.2.15 FCS_CKM.2d – Cryptographic key distribution (Key distribution to DSS)

FCS_CKM.2.1 The TSF shall distribute cryptographic keys in accordance with a specified
cryptographic key distribution method:

• The TOE distributes an encrypted Storage Key, a Push Encryption Key
and CSRs (RSA public key) to the DSS. All keys are transmitted via the
trusted TLS channel to the DSS, which stores and associates it with the
TOE user after the TOE has authenticated.

that meets the following: no standard.

Application note: This SFR covers the distribution of cryptographic keys to the DSS. There are
three different keys, but they are both distributed similarly over the TLS encrypted channel. The
storage and push encryption keys are uploaded at the end of provisioning. For the X.509v3 client
certificate only the public key is submitted along with relevant metadata as part of a CSR. The
client generates the key-pair (FCS_CKM.1b), creates a CSR with the public key and sends the CSR
to the DCM via the DCS or DPS. The DCM signs the CSR if permitted and returns a X.509v3 client
certificate to the TOE.

Dencrypt A/S Page 30

6.2.16 FCS_CKM.4 – Cryptographic key destruction

FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified
cryptographic key destruction method zeroization that meets the following: no
standard.

Application note: Key destruction is performed of all symmetric keys that are generated by the
TOE and used for data encryption and decryption.

6.2.17 FCS_COP.1b – Cryptographic operation (Digital signatures)

FCS_COP.1.1 The TSF shall perform cryptographic signature services (generation and
verification) in accordance with a specified cryptographic algorithm RSA Digital
Signature Algorithm and cryptographic key sizes:

• 3072-bit for generation

• 3072-bit for verification

• 4096-bit for verification

that meet the following: FIPS PUB 186-4 “Digital Signature Standard (DSS)”
Section 5.5 using PKCS #1 v2.1 Signature Scheme RSASSA-PKCS1-v1.5 [FIPS186-4]
[PKCS1v2.1].

Application note: This requirement addresses the RSA signature generation and verification
performed as part of the TLS server authentication performed by the TOE. This SFR applies also to
the signature of the CSR sent by the TOE to the DCM via the DCS or DPS.

6.2.18 FCS_COP.1c – Cryptographic operation (Hash algorithm)

FCS_COP.1.1 The TSF shall perform secure hash in accordance with a specified cryptographic
algorithms SHA-384 and SHA-512 and cryptographic key sizes that meet the
following: ISO/IEC 10118-3:2018.

Application note: The secure hash is used for both support integrity and key derivation with
cryptographic operations of the TOE. It is used during TLS, DTLS-SRTP, LIMEv2, Key Boosting and
during creation of X509 certificates.

Application Note: When this functionality is used for Key Boosting, it involves executing a number
of consecutive hash operations; Key boosting utilizes 2^16 SHA-512 iterations.

6.2.19 FCS_COP.1d – Cryptographic operation (Dynamic Encryption and
Decryption)

FCS_COP.1.1 The TSF shall perform decryption and encryption in accordance with a specified
cryptographic algorithm AES and modified AES in GCM mode for DCA and
cryptographic key sizes 256 and 128-bits that meet the following: [FIPS197] and
[NIST SP 800-38D] and for the modified AES [Dynamic].

Application note: This requirement addresses both the AES data stream and modified (dynamic)
encryption and decryption of the modified S-boxes as specified in the Dynamic Encryption. The
operation is performed with a 256-bit key for AES, a 128 salt key for S-box generation, and two
128-bit whitening keys. Note that the whitening keys can be zeroized, as they are for secure calls
and messaging.

Application note: Dynamic Encryption has the following uses by the TOE:

• Secure Call encryption using SRTP and SRTP-DTLS. This key is derived from the established
common secret (FCS_CKM.2a) using Key Boosting. It involves executing a number of
consecutive hash operations; Key boosting utilizes 2^16 SHA-512 iterations. (FCS_COP.1c).

Dencrypt A/S Page 31

• Secure Messaging using Double Ratchet. This key is derived from the derived Double
Ratchet key (FCS_COP.1g) using Key Boosting. It involves executing a number of
consecutive hash operations; Key boosting utilizes 2^16 SHA-512 iterations. (FCS_COP.1c).

• Dynamic Storage encryption using AES in GCM. This key is generated on the TOE
(FCS_CKM.1e).

6.2.20 FCS_COP.1h – Cryptographic operation (Keyed-hash algorithm)

FCS_COP.1.1 The TSF shall perform keyed-hash message authentication in accordance with a
specified cryptographic algorithm HMAC-SHA-384 and HMAC-SHA-512 and
cryptographic key sizes 256 and 384-bit that meet the following: ISO/IEC 10118-
3:2018.

Application note: This requirement addresses the HMAC operations as part of the TLS, DTLS-SRTP,
X3DH and Double Ratchet protocols.

6.2.21 FCS_COP.1i – Cryptographic operation (Push decryption)

FCS_COP.1.1 The TSF shall perform decryption in accordance with a specified cryptographic
algorithm AES-256 in CFB mode and cryptographic key sizes 256-bit that meet
the following: [FIPS197] and [NIST SP 800-38A].

Application note: This requirement addresses the decryption of Push Notifications sent from the
DSS to the TOE through the mobile OS vendor’s systems. The key used is generated by the TOE
and uploaded to the server during provisioning.

6.2.22 FCS_COP.1j – Cryptographic operation (Storage Key)

FCS_COP.1.1 The TSF shall perform encryption and decryption in accordance with a specified
cryptographic algorithm XOR and cryptographic key sizes 640-bit that meet the
following: no standard.

Application note: This requirement specifies the encryption and decryption of the Storage Key.
This encrypted key will then be sent to the DSS and is not stored locally by the TOE. When the TOE
is started, it needs to authenticate to the DSS and import this key before being able to decrypt
and read its storage. The Device Key is specific to this purpose in that it is only used to
encrypt/decrypt this one Storage Key, and is only stored locally on the device.

Dencrypt A/S Page 32

General SFRs
These SFRs describe the general security functionality of the product, not including cryptography.

6.2.23 FDP_IFC.2 – Complete information flow control

FDP_IFC.2.1 The TSF shall enforce the GROUP information flow control SFP on TOE instances
and voice, video or message data and all operations that cause that information
to flow to and from subjects covered by the SFP.

FDP_IFC.2.2 The TSF shall ensure that all operations that cause any information in the TOE to
flow to and from any subject in the TOE are covered by an information flow
control SFP.

Application note: The calls and messages are restricted to the phone book entries held by the
TOE. It is not possible for users to add, delete or modify these entries. The phone book is centrally
managed.

6.2.24 FDP_IFF.1 – Simple security attributes

FDP_IFF.1.1 The TSF shall enforce the GROUP information flow control SFP based on the
following types of subject and information security attributes: TOE instances
(user handsets) and user name.

FDP_IFF.1.2 The TSF shall permit an information flow between a controlled subject and
controlled information via a controlled operation if the following rules hold:
secure calls and secure messaging can only be established from a TOE to another
instance of the DCA when the name of the user of the second DCA instance
(callee) is in the phone book of the caller.

FDP_IFF.1.3 The TSF shall enforce no additional rules.

FDP_IFF.1.4 The TSF shall explicitly authorise an information flow based on the following
rules: none.

FDP_IFF.1.5 The TSF shall explicitly deny an information flow based on the following rules:
none.

Application note: A user’s phone book only contains the names of the other users he/she is
allowed to call or message to. Please note a pre-condition for this is that all these users have been
issued a permanent certificate by the DCM. If the receiver does not have the TOE user in the
phone book (there are cases where a small group of users can contact the users in a bigger group,
but not everyone in the bigger group are allowed to contact the users in the small group), the TOE
user’s display name is shown on the incoming call screen. The TOE user’s display name is provided
as metadata in call setup message, i.e. the server system defines what is displayed on the
incoming call screen. For messages, the TOE user’s identity is specified during the initial
messaging setup and verified by the identity keys.

6.2.25 FDP_ITC.1 – Import of user data without security attributes

FDP_ITC.1.1 The TSF shall enforce the Encryption Key SFP when importing user data,
controlled under the SFP, from outside of the TOE.

Application note: The TOE does not store the Storage Key locally on the device. This key is
encrypted by a Device Key, which is stored locally. Therefore, when the TOE needs to access its
stored encrypted contents, it first needs to authenticate and retrieve the Storage Key from the
DSS. The keys are received over a mutually authenticated channel, as specified in FCS_TLSC_EXT.2.
There is no additional flow or access control policy imposed on the object.

FDP_ITC.1.2 The TSF shall ignore any security attributes associated with the user data when
imported from outside the TOE.

Dencrypt A/S Page 33

Application note: This is the only key imported by the TOE and it in of itself has no attributes.

FDP_ITC.1.3 The TSF shall enforce the following rules when importing user data controlled
under the SFP from outside the TOE: the key must not be stored persistently by
the TOE.

Application note: The key must not be stored locally by the TOE and should only remain in RAM
for as long as the TOE is active. When the TOE is restarted, a successful authentication with the
server is necessary to retrieve the key.

6.2.26 FMT_MTD.1 – Management of TSF data

FMT_MTD.1.1 The TSF shall restrict the ability to modify the network settings and phone book
to the remote DCS connection.

Application note: The TOE management functions are performed in the TOE environment by the
administrator using the DCC. The settings are then pushed to the TOE from the DCS whenever a
DCS connection is made. The TOE user is not allowed to modify the network settings and phone
book on the TOE.

6.2.27 FMT_SMF.1 – Specification of management functions

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions:

• download network settings and phone book
• replace the existing network settings and phone book with the

downloaded versions

Application note: The network settings and phone book on the TOE are kept in sync with server
system's data whenever the TOE is running and registered on the DCS. Note: These management
functions are not performed by any user but are performed automatically by the TOE.

6.2.28 FTP_ITC.1a – Inter-TSF trusted channel (TLS)

FTP_ITC.1.1 The TSF shall provide a communication channel between itself and another
trusted IT product that is logically distinct from other communication channels
and provides assured identification of its end points and protection of the
channel data from modification or disclosure.

FTP_ITC.1.2 The TSF shall permit the TSF to initiate communication via the trusted channel.

FTP_ITC.1.3 The TSF shall initiate communication via the trusted channel for connecting to
DSS.

Application note: This is the trusted channel (TLS) between the TOE and the DCS and DPS. Note
that this is only used for the TOE and not for access to any other systems or corporate resources
(such as Intranet or email). The cryptography is described in FCS_TLSC_EXT.1 and in
FCS_TLSC_EXT.2.

Application note: The TLS connection to the provisioning web server is not authenticated by the
server but the provisioning data can be established only once and for a limited time after the link
has been provided and only by the TOE user that knows the unique link.

6.2.29 FTP_ITC.1b – Inter-TSF trusted channel (VoIP)

FTP_ITC.1.1 The TSF shall provide a communication channel between itself and another
trusted IT product that is logically distinct from other communication channels
and provides assured identification of its end points and protection of the
channel data from modification or disclosure.

FTP_ITC.1.2 The TSF shall permit the TSF or another instantiation of the TOE to initiate
communication via the trusted channel.

Dencrypt A/S Page 34

FTP_ITC.1.3 The TSF shall initiate communication via the trusted channel for secure voice and
video.

Application note: This channel is the end-to-end encrypted channel between the TOE and
another instantiation of the TOE that is used for encrypted voice and video (VoIP).

6.3 Security functional requirements rationale

6.3.1 Coverage

The following table provides a mapping of SFR to the security objectives, showing that each
security functional requirement addresses at least one security objective and that all security
objectives are addressed by one or more SFRs.

O
.C

A
LL

ER
ID

O
.G

R
O

U
P

O
.T

R
A

FF
IC

O
.M

ES
SA

G
ES

O
.C

H
A

N
N

EL

O
.P

H
O

N
EB

O
O

K

O
.P

R
IV

AT
EK

EY

O
.F

O
R

W
A

R
D

O
.M

A
N

A
G

E

O
.S

TO
R

A
G

E

O
.T

U
N

N
EL

O
.P

U
SH

FCS_CKM.1a (TLS session AES) X

FCS_CKM.1b (RSA keypair) X X X

FCS_CKM.1c (LIME EdDSA) X

FCS_CKM.1d (AES CFB key) X

FCS_CKM.1e (Storage
encryption)

X

FCS_CKM.2a (DTLS-SRTP key
establishment)

X

FCS_CKM.2b (TLS key
establishment)

X

FCS_CKM.2c (LIME key
establishment)

X

FCS_CKM.2d (DSS key
distribution)

X X X

FCS_CKM.4 X X X X

FCS_COP.1a (TLS AES) X

FCS_COP.1b (Digital signature) X X

FCS_COP.1c (Hash) X X X

FCS_COP.1d (Dynamic AES) X X X

FCS_COP.1e (EdDSA) X

FCS_COP.1f (X3DH) X

FCS_COP.1g (Double Ratchet) X

FCS_COP.1h (Keyed-hash) X X X

FCS_COP.1i (AES Push
decryption)

X

FCS_COP.1j (Storage key
encryption)

X

Dencrypt A/S Page 35

O
.C

A
LL

ER
ID

O
.G

R
O

U
P

O
.T

R
A

FF
IC

O
.M

ES
SA

G
ES

O
.C

H
A

N
N

EL

O
.P

H
O

N
EB

O
O

K

O
.P

R
IV

AT
EK

EY

O
.F

O
R

W
A

R
D

O
.M

A
N

A
G

E

O
.S

TO
R

A
G

E

O
.T

U
N

N
EL

O
.P

U
SH

FCS_TLSC_EXT.1 X

FCS_TLSC_EXT.2 X X X X

FDP_IFC.2 X X

FDP_IFF.1 X X

FDP_ITC.1 X

FMT_MTD.1 X X

FMT_SMF.1 X X

FTP_ITC.1a (DSS) X X X X X X

FTP_ITC.1b (VoIP) X X

6.3.2 Sufficiency

The following rationale provides justification for each security objective for the TOE, showing that
the security functional requirements are suitable to meet and achieve the security objectives.

Security Objective Security objectives

O.CALLERID The objective:
• The TOE must ensure that the end point of a secure call or

messaging connection is unique and that the caller display name
associated with the caller identity is correctly shown to the TOE
user making or receiving the secure call or message.

is met by:
• FDP_IFC.2 and FDP_IFF.1 ensuring that information flow is only

possible between parties represented in the caller's phone book.
• FTP_ITC.1b ensuring that there is a mutually authenticated

trusted channel between the two parties

O.GROUP The objective:
• The TOE must ensure that secure calls and messaging is restricted

to users within the TOE phone book of the calling party.
is met by:

• FDP_IFC.2 and FDP_IFF.1 ensuring that information flow is only
possible between parties represented in the caller's phone book.

O.TRAFFIC The objective:
• The TOE must ensure that secure calls are protected against

disclosure and modification.
is met by:

• FTP_ITC.1b ensures that there is a trusted path for secure voice
and video between the TOE and a different instance of the DCA.

• FCS_CKM.1b and FCS_CKM.2a ensures secure and authenticated
cryptographic key establishment via the DTLS-SRTP protocol.

• FCS_COP.1b, FCS_COP.1c, FCS_COP.1d and FCS_COP.1h ensure the
cryptographic functionality to achieve confidentiality, integrity
and authenticity.

Dencrypt A/S Page 36

Security Objective Security objectives

• FTP_ITC.1a ensures that there is a trusted path between the TOE
and the DSS, which is used to initiate the calls.

• FCS_TLSC_EXT.2 ensures that this path is cryptographically
protected by TLS.

• Key destruction is performed by FCS_CKM.4

O.MESSAGES The objective:
• The TOE must ensure that secure messages are protected against

disclosure and modification.
is met by:

• FCS_CKM.1c ensures cryptographic key generation of the
necessary identity keys and pre-keys for the protocol.

• FCS_CKM.2c ensures secure key establishment and distribution.
• FCS_COP.1c, FCS_COP.1f, FCS_COP.1g and FCS_COP.1h ensure

the necessary key derivation functionality providing forward
secrecy.

• FCS_COP.1e ensure signature generation and validation.
• FCS_COP.1d ensures confidentiality via encryption and

decryption of messages.
• FTP_ITC.1a ensures that there is a trusted path between the TOE

and the DSS, which is used to upload the messages and keys.
• FCS_TLSC_EXT.2 ensures that this path is cryptographically

protected by TLS.
• Key destruction is performed by FCS_CKM.4

O.CHANNEL The objective:
• The TOE must ensure that there is a trusted path between the

TOE and the server system ensuring authenticity, integrity and
confidentiality and integrity of any TSF or user data transmitted
between the TOE and the server system, such as phone book
updates and SIP connections made when establishing secure
calls.

is met by:
• FTP_ITC.1a that ensures that there is a trusted path between the

TOE and the DSS.
• FCS_CKM.2b ensures ECDH key establishment.
• Key generation is done by FCS_CKM.1a and FCS_CKM.1b.
• Key distribution of the public key (CSR) for mutual authentication

is done by FCS_CKM.2d.

• The TLS 1.2 protocol implemented by FCS_TLSC_EXT.2.
• FCS_COP.1a, FCS_COP.1b, FCS_COP.1c and FCS_COP.1h ensure the

cryptographic functionality to achieve confidentiality, integrity
and authenticity.

• Key destruction is performed by FCS_CKM.4.

O.PHONEBOOK The objective:
• The TOE must ensure that the phone book cannot be changed

locally.
is met by:

• FMT_SMF.1 ensures that the network settings and the phone
book can be managed

• FMT_MTD.1 ensures that this is restricted to the remote network
connection to the DCS

O.PRIVATEKEY The objective:

Dencrypt A/S Page 37

Security Objective Security objectives

• The TOE must be able to generate its own key pair.
is met by:

• FCS_CKM.1b ensures that the private/public key pair for the TOE
is generated by the TOE itself.

O.FORWARD The objective:
• The TOE must ensure that an unauthorized user that obtains a

handset cannot decrypt previously transmitted traffic (voice,
video or messages) that has been encrypted using the obtained
handset. Any encryption keys used for the transmitted traffic
must be erased.

is met by:
• FCS_CKM.4 ensures that keys used for encryption and decryption

of secure voice, video and messages are destroyed after a secure
call is completed or after a secure message is decrypted.

O.MANAGE The objective:
• The TOE must support provisioning and ensure that settings and

phone book can be updated whenever the TOE is running and
registered on the DCS.

is met by:
• FMT_SMF.1 ensures that the network settings and the phone

book can be managed.
• FMT_MTD.1 ensures that this is restricted to remote

management.
• FCS_TLSC_EXT.1 ensures that the initial credentials are

provisioned to the TOE by a trusted server system and the
credentials are protected by TLS during transmission.

O.STORAGE The objective:
• The TOE must use cryptography to protect the confidentiality of

DCA data stored on the device. The data must only be accessible
if the user can authenticate to the DSS.

is met by:
• FCS_CKM.1e ensures key generation.
• FCS_CKM.2d ensures that the encrypted Storage Key can be

distributed to the trusted DSS.
• FCS_COP.1d ensures that the stored data and message file

attachments can be encrypted and decrypted.
• FCS_COP.1j ensures that the Storage Key can be encrypted and

decrypted.
• FDP_ITC.1 ensures that the encrypted Storage Key can be

retrieved from the trusted DSS.
• FTP_ITC.1a ensure that the key is transmitted over the encrypted

channel.

O.TUNNEL The objective:
• The TOE must support tunnelling of voice or video

communication over TCP by tunnelling the connection over TLS
1.2.

is met by: protocol which is used by the tunnel.
• FCS_TLSC_EXT.2 enables the TCP tunnel via TLS 1.2.
• FTP_ITC.1a ensures that the encrypted tunnel can be established.

O.PUSH The objective:

Dencrypt A/S Page 38

Security Objective Security objectives

• The TOE must be able to decrypt Push Notifications that are
sent via the mobile operating system vendor’s systems.

is met by:
• FCS_CKM.1d ensures key generation.
• FCS_CKM.2d ensures key distribution to the DSS.
• FCS_COP.1i ensures decryption of push notifications from the

DSS.
• FTP_ITC.1a ensures that the encrypted tunnel can be established.

6.3.3 Dependency analysis between security functional components

The following table shows the dependencies of the SFRs and shows how these dependencies have
been resolved.

SFR Dependencies Resolved?

FCS_CKM.1a (TLS
session AES)

[FCS_CKM.2 or
FCS_COP.1]
FCS_CKM.4

Yes, by FCS_COP.1a

Yes, by FCS_CKM.4

FCS_CKM.1b (RSA
keypair)

[FCS_CKM.2 or
FCS_COP.1]
FCS_CKM.4

Yes, by FCS_CKM.2b

Yes, by FCS_CKM.4

FCS_CKM.1c (LIME
EdDSA)

[FCS_CKM.2 or
FCS_COP.1]
FCS_CKM.4

Yes, by FCS_CKM.2c

Yes, by FCS_CKM.4

FCS_CKM.1d (AES
CFB key)

[FCS_CKM.2 or
FCS_COP.1]
FCS_CKM.4

Yes, by FCS_COP.1i

Yes, by FCS_CKM.4

FCS_CKM.1e
(Storage key)

[FCS_CKM.2 or
FCS_COP.1]
FCS_CKM.4

Yes, by FCS_COP.1d.

 Yes, by FCS_CKM.4

FCS_CKM.2a (DTLS-
SRTP key
establishment)

[FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]
FCS_CKM.4

Yes, by FCS_CKM.1b

Yes, by FCS_CKM.4

FCS_CKM.2b (TLS
key establishment)

[FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]
FCS_CKM.4

Yes, by FCS_CKM.1b

Yes, by FCS_CKM.4

FCS_CKM.2c (LIME
key establishment)

[FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]
FCS_CKM.4

Yes, by FCS_CKM.1c

Yes, by FCS_CKM.4

FCS_CKM.2d (DSS
key distribution)

[FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]
FCS_CKM.4

Yes, by FCS_CKM.1b, FCS_CKM.1d and FCS_CKM.1e

Yes, by FCS_CKM.4

FCS_CKM.4 No dependencies --

Dencrypt A/S Page 39

SFR Dependencies Resolved?

FCS_COP.1a (TLS
AES)

[FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]
FCS_CKM.4

Yes, by FCS_CKM.1a

Yes, FCS_CKM.4

FCS_COP.1b (Digital
signature)

[FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]
FCS_CKM.4

FCS_CKM.1b

No, no key destruction is needed because the private
key is kept in the TOE for use as long as the
corresponding certificate is valid.

FCS_COP.1c (Hash) [FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]
FCS_CKM.4

No, no key is needed for SHA-384 or SHA-512.

No, no key destruction needed

FCS_COP.1d
(Dynamic AES)

[FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]
FCS_CKM.4

Yes, by FCS_CKM.1e. These keys are also derived from
key establishment methods FCS_CKM.2a and
FCS_CKM.2c.
Yes, by FCS_CKM.4

FCS_COP.1e (EdDSA) [FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]
FCS_CKM.4

Yes, by FCS_CKM.1c

Yes, by FCS_CKM.4

FCS_COP.1f (X3DH) [FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]
FCS_CKM.4

Yes, by FCS_CKM.1c. Note that keys are additionally
derived and established using FCS_CKM.2c

Yes, by FCS_CKM.4

FCS_COP.1g (Double
Ratchet)

[FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]
FCS_CKM.4

Yes, by FCS_CKM.1c. Note that keys are also derived
from FCS_COP.1f and FCS_COP.1g, and shared secrets
are established using FCS_CKM.2c.
Yes, by FCS_CKM.4

FCS_COP.1h (Keyed-
hash)

[FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]

FCS_CKM.4

No. The key generation for HMAC used within TLS are
generated via establishing the common secret in
FCS_CKM.2b. The key generated for HMAC within
Double Ratchet is derived by the HKDF specified by
FCS_COP.1g or FCS_COP.1h
Yes, by FCS_CKM.4

FCS_COP.1i (AES
Push decryption)

[FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]
FCS_CKM.4

Yes, by FCS_CKM.1d

Yes, by FCS_CKM.4

FCS_COP.1j (Storage
key encryption)

[FDP_ITC.1 or
FDP_ITC.2 or
FCS_CKM.1]

 FCS_CKM.4

Yes, by FDP_ITC.1. Note that the first instance of this
key is generated via FCS_CKM.1e

Yes, by FCS_CKM.4

FCS_TLSC_EXT.1 FCS_CKM.1
FCS_CKM.2
FCS_COP.1/
DataEncryption

 Yes, by FCS_CKM.1b
Yes, by FCS_CKM.2b

 Yes, by FCS_COP.1a

Dencrypt A/S Page 40

SFR Dependencies Resolved?

FCS_COP.1/SigGen
FCS_COP.1/Hash
FCS_COP.1/
KeyedHash
FCS_RBG_EXT.1

 Yes, by FCS_COP.1b
 Yes, by FCS_COP.1c
 Yes, by FCS_COP.1h

 No, but addressed by OE.KEYS

FCS_TLSC_EXT.2 FCS_CKM.1
FCS_CKM.2
FCS_COP.1/
DataEncryption
FCS_COP.1/SigGen
FCS_COP.1/Hash
FCS_COP.1/
KeyedHash
FCS_RBG_EXT.1

Yes, by FCS_CKM.1b
Yes, by FCS_CKM.2b

 Yes, by FCS_COP.1a

 Yes, by FCS_COP.1b
 Yes, by FCS_COP.1c
 Yes, by FCS_COP.1h

 No, but addressed by OE.KEYS

FDP_IFC.2 FDP_IFF.1 Yes, by FDP_IFF.1

FDP_IFF.1 FDP_IFC.1
FMT_MSA.3

Yes, by FDP_IFC.2
No, attributes are static and assigned as part of the
FMT_MTD.1

FDP_ITC.1 [FDP_ACC.1 or
FDP_IFC.1]

FMT_MSA.3

No, no dedicated Access Control or Information Flow
Control policy is used since this import takes place
over a mutually identified and authenticated TLS
session initiated by the trusted DSS. Only the Storage
Key is imported and no additional controls are
imposed.
No, the imported value is an encrypted Storage Key,
which is generated by FCS_CKM.1e and then
encrypted by the TOE via FCS_COP.1j

FMT_MTD.1 FMT_SMR.1

FMT_SMF.1

No, management functions are performed by the
backend connection to the DCS and the TOE.
Yes, by FMT_SMF.1

FMT_SMF.1 No dependencies –

FTP_ITC.1a No dependencies –

FTP_ITC.1b No dependencies –

6.4 Security assurance requirements
The security assurance requirements of this Security are those defined for the assurance level
EAL4 augmented with ALC_FLR.2.

Assurance class Assurance components

ADV: Development ADV_ARC.1 Security architecture description

ADV_FSP.4 Complete functional specification

ADV_IMP.1 Implementation representation of the TSF

ADV_TDS.3 Basic modular design

AGD: Guidance documents AGD_OPE.1 Operational user guidance ￼

AGD_PRE.1 Preparative procedures

Dencrypt A/S Page 41

Assurance class Assurance components

ALC: Life-cycle support ALC_CMC.4 Production support, acceptance procedures and
automation

ALC_CMS.4 Problem tracking CM coverage

ALC_DEL.1 Delivery procedures

ALC_DVS.1 Identification of security measures

ALC_FLR.2 Flaw reporting procedures (augmentation)

ALC_LCD.1 Developer defined life-cycle model

ALC_TAT.1 Well-defined development tools

ASE: Security Target evaluation ASE_CCL.1 Conformance claims

ASE_ECD.1 Extended components definition

ASE_INT.1 ST introduction

ASE_OBJ.2 Security objectives

ASE_REQ.2 Derived security requirements

ASE_SPD.1 Security problem definition

ASE_TSS.1 TOE summary specification

ATE: Tests ATE_COV.2 Analysis of coverage

ATE_DPT.1 Testing: basic design￼

ATE_FUN.1 Functional testing

ATE_IND.2 Independent testing – sample

AVA: Vulnerability assessment AVA_VAN.3 Focused vulnerability analysis

6.5 Security assurance requirements rationale
Dependencies within the EAL package selected (EAL4) for the security assurance requirements
have been considered by the authors of CC Part 3 and are not analysed here again. The
augmentation by flaw remediation, ALC_FLR.2, has no dependencies on other requirements. The
security functional requirements in this Security Target do not introduce dependencies on any
security assurance requirement; neither do the security assurance requirements in this Security
Target introduce dependencies on any security functional requirement.

The assurance level EAL4 augmented with ALC_FLR.2 has been chosen since EAL4 is the lowest
assurance package which includes source-code analysis. The source code analysis is necessary to
assess the implementation quality and ensure that the TOE does not contain any malicious code.

EAL4 is augmented by ALC_FLR.2 as during operations new vulnerabilities may be discovered,
either through developer actions (e.g., developer testing) or those discovered by others. It
requires the developer to have procedures addressing these vulnerabilities. The process used by
the developer corrects any discovered vulnerabilities and performs an analysis to ensure that no
new vulnerabilities are created while fixing the discovered ones.

Dencrypt A/S Page 42

7 TOE Summary Specification
The TOE summary specification identifies the security functions that the TOE implements to
meet the requirements defined in chapter 6 to the security target.

The table below shows which SFRs are satisfied by each of the TSFs.

TSF SFRs met by the TSF

SF.PROVISIONING FTP_ITC.1a
FMT_MTD.1

SF.MANAGEMENT FCS_CKM.1b
FCS_CKM.2d (for certificate signing request)
FMT_MTD.1
FMT_SMF.1

SF.CALLS FCS_CKM.2a (DTLS-SRTP)
FCS_COP.1d (AES + modified AES)
FCS_COP.1b (Signatures)
FCS_COP.1c (Hashing, key boosting)
FCS_COP.1h (HMAC)
FCS_CKM.4
FDP_IFC.2 (GROUP)
FDP_IFF.1 (GROUP)
FTP_ITC.1b (Call traffic)
FTP_ITC.1a (Call initialisation)

SF.MESSAGES FCS_CKM.1c
FCS_CKM.2c (X3DH Key establishment)
FCS_CKM.4
FCS_COP.1d (AES + modified AES)
FCS_COP.1e (Signatures)
FCS_COP.1c (Hashing, key boosting)
FCS_COP.1f (X3DH key derivation)
FCS_COP.1g (Double Ratchet key derivation)
FCS_COP.1h (Used by key derivation)
FDP_IFC.2 (GROUP)
FDP_IFF.1 (GROUP)
FTP_ITC.1a (Message routing)

SF.STORAGE FCS_CKM.1e
FCS_CKM.2d
FCS_COP.1d (Data encryption)
FCS_COP.1j (Key encryption/decryption)
FDP_ITC.1 (Key import)
FTP_ITC.1a

SF.CHANNEL FCS_COP.1a (AES for TLS)
FCS_COP.1b (Signatures)
FCS_COP.1c (Hashing)
FCS_COP.1h (HMAC)
FCS_CKM.1a
FCS_CKM.1b
FCS_CKM.2b (Key establishment)
FCS_TLSC_EXT.1
FCS_TLSC_EXT.2

Dencrypt A/S Page 43

TSF SFRs met by the TSF

FTP_ITC.1a

SF.PUSH FCS_CKM.1d
FCS_CKM.2d
FCS_COP.1i
FTP_ITC.1a

SF.TUNNEL FCS_TLSC_EXT.2
FTP_ITC.1a

7.1 SF.PROVISIONING – Secure initialisation
The provisioning process consist of two steps, the installation of the DCA and the provisioning of
the user credentials. The installation of the DCA is not part of the TSF, but the provisioning of the
user credentials to the TOE is, which is described here.

Provisioning starts by the Dencrypt administrator by adding the user to the DSS. Afterwards, the
administrator provides an invitation link to the user. This link can also be encoded as a QR-code.
This link must be provided in a secure way to the user, i.e. the link is not disclosed during
transmission to the TOE user. The invitation link might be mailed to the TOE if the mail
transmission between mail server and handset's mail client is encrypted and the mail server is
controlled by the organisation of the TOE's user. Note, SMS does not meet the requirement of
non-disclosure because the mobile operator that transmits the SMS has access to the its content,
the invitation link.

The invitation link points to the web server of the DPS. This is all done in the TOE environment.

The user shall tap the invitation link or scan the QR code which starts the TOE. The TOE parses the
link, fetches the provisioning data from the DPS and installs the provisioning data. This also
involves the generation of the first certificate and key pair on the TOE, where a CSR is submitted
to the DSS. The provisioning data are deleted on the DPS, i.e. the HTTPS link can be used only
once. Additionally, the link is only valid for a limited time after the link has been provided.

The network settings and phone book of the DCA (TOE) are updated as described in chapter

“Managing settings and phone book”. After that the TOE is fully setup and operational.

7.2 SF.MANAGEMENT – Update of TOE settings, phone book and
certificate

When a SIP registration is successful, the client will poll the DSS for updated settings. This allows
the TOE to keep its local settings in sync with the server system's settings. Whenever the TOE is
running and registered on the DCS, the TOE downloads network settings as soon as the checksum
of its local settings differs from the settings checksum advertised by the DCS. The same
mechanism applies to keep the phone book up-to-date.

The security settings that are updated are the:

• Network settings

• App settings

• Phone book

Note: These security settings are managed only by remote administrators that are identified and
authenticated by the TOE environment of the DSS The TOE simply downloads the settings when

Dencrypt A/S Page 44

new versions become available. Although the TOE user is the single individual that is authorized
to use the TOE, the user cannot change any phone book entries or make calls from a dial-pad:

• This minimizes the risk of a phishing attack.

• This keeps the administrator in full control of the phone book content.

• This adds a layer of security because only people that have been given permission can
call you using the DCA.

Besides, the mobile’s built-in phone book is kept completely separate from the DCA’s phone book.
Hence, removing DCA from the mobile phone does not leave “traces” in the built-in phone book
and deploying a new mobile simply means to provision the user on a new phone.

Apart from phone book updates, the TOE will generate by itself an RSA 3072-bit private-public key
pair and send its public key with a certificate signing request (CSR) to the DCM server which signs
it and delivers the client certificate. This is to ensure that the private key never must leave the
TOE.

The client creates a new private key and CSR if the client certificate expires soon (e.g. within the
next 12 months). This CSR is submitted to the DCM via the DCS, since the DPS is only used during
provisioning. This TLS session is mutually authenticated, so if the client certificate has expired it
would not be possible and require new provisioning.

7.3 SF.CALLS – Secure voice and video
The secure communication channel between two handsets, the TOE and other instance of the
TOE goes as followed: Dencrypt's secure calls extends a Voice/Video over IP (VoIP) system by a
patented Dynamic Encryption for voice and video data. Dencrypt's VoIP system employs the
Session Initiated Protocol (SIP), Secure Real-time Transmission Protocol (SRTP) (RFC 3711) and
DTLS-SRTP (RFC 5763) standard components that are partly modified to integrate dynamic
encryption.

The core elements of the SIP VoIP system are the SIP clients and the SIP server. The SIP server is
the signalling center of the communication system, e.g. contacting the SIP client for call, giving the
start signal for the waiting tone of the calling party and terminating the call as soon as one side is
releasing the call. Hence, the SIP session is named “call session”. SIP transmissions are protected
by mutually authenticated TLS. The SIP VoIP system is designed for the IP network, i.e. Dencrypt
Communication Solutions can be deployed where an IP network connection exits but is limited to
Dencrypt Communication Solution users.

The SRTP components are implemented in the SIP clients and secure the audio data stream. SRTP
is the secure variant of RTP. (S)RTP sessions are named media or content sessions. The DTLS-SRTP
protocol is used to establish the keys that are needed by Dynamic Encryption of the call. The
following figure displays the relationship between different keys for Dynamic Encryption in DCA.
Note that the implementations of secure call and messaging are different.

Dencrypt A/S Page 45

For secure calls, DTLS-SRTP uses Elliptic Curve Diffie-Hellman key exchange to establish a common
secret and authenticate the call. Additionally, both DCAs exchange their client certificates over the
peer-to-peer connection. The fingerprints of the certificates are sent over the call setup channel
through the DSS. To mitigate a Man-in-the-middle (MitM) attack, the fingerprint calculated from
the exchanged certificate has to match with the fingerprint signalled through the DSS. The parties
validate the calculated finger print with the certificate fingerprint received via SIP. The DSS
provides verification that the fingerprint matches the other party’s SIP ID. The common secret can
now be used to derive a 256-bit key and 128-bit salt which is fed into SRTP's key derivation
function (KDF). As specified in RFC3711, the KDF generates a message authentication session key,
a block cipher session key and a salt session key. To complete the Dynamic Encryption input Key
Boosting is used to create a common Dynamic Encryption key which is used for both AES and the
S-box seed. Once the SRTP session ends all the keys are destroyed (overwritten with zeros). But all
the content, i.e. SRTP stream for audio and text data for messaging, are dynamically encrypted.
Details of the Dynamic Encryption are given in section 7.3.1.

Secure calls and messages can only be initiated to users within the caller’s phone book. Note that
the DCA user can receive calls from users who are not listen in their phone book. The phone book
is centrally managed and the TOE user is not able to add, delete or modify it. If the call receiver
does not have the caller in the phone book (there are cases where a small group of users can call
the users in a bigger group, but not everyone in the bigger group are allowed to call the users in
the small group), the caller’s display name is shown on the incoming call screen. This display
name is defined by the DSS and is provided as metadata in the call setup message.

7.3.1 Dynamic Encryption

Dencrypt's patented Dynamic Encryption was invented by Lars Ramkilde Knudsen. The patent is
identified by its patent number WO2013060876.

Key elements of the patent:

1. The decryption method is not pre-defined but will be determined during the
communication establishment.

2. The sender of the encrypted data determines how the receiver shall decrypt the received
encrypted data.

Dynamic encryption relies on AES encryption for security, but adds a layer of obfuscation to AES.

Dencrypt's Implementation Concept

The patent itself does not define how to setup the decryption method on the receiver. Dencrypt's
implementation of Dynamic Encryption adds an additional layer around the standard AES cipher.
The additional layer and the standard AES cipher together form a new cipher: The Dynamic
Encryption cipher. The additional layer is determined by the whitening keys and the substitution-
box (S-box) where the S-box is determined by a given S-Box seed that is given before the

Dencrypt A/S Page 46

Illustration 5: Secure call cryptography overview

encryption session. The S-Box generator is responsible to return a secure S-Box based on a given
seed. Additional xor-ing by two different whitening keys is applied before and after AES
encryption and S-Box substitution to strengthen the Dynamic Encryption cipher. Note that the
whitening keys can be zeroised, which is the case with Secure Calls and Secure Messages.

For decryption, the inverse S-Box is calculated and the algorithm is executed backwards.

Mode of Operation

Dynamic encryption uses AES which is a block cipher that handle blocks of 128-bits. To ensure
confidentiality, the blocks are interconnected. Dynamic Encryption in the TOE uses the
Galois/Counter Mode (GCM).

7.3.2 Key Boosting

Dencrypt’s patent Key Boosting was invented by Lars Ramkilde Knudsen. The patent is identified
by the application number: EP appl. no.: 19197344.5

The key element of Key Boosting is that it is a method to generate additional secure bits from a
symmetric key. The additional bits are generated using a one-way function. The implementation
can vary based upon the number of generated secure bits and the one-way function.

The secure bits are a combination of the security of the initial key and the computational effort of
computing 2^n rounds of the one-way function SHA512. The patent assumes that the
computational complexity of guessing a bit is the same as 2 rounds of the one-way function. The
TOE performs the Key Boosting by iterating the one-way function 2^16 times.

7.4 SF.MESSAGES – Secure messaging
The Secure Messaging is provided by the LIMEv2 protocol, which in turn is based on the Signal
Protocol. Additionally the message encryption has been modified via Dencrypt’s Dynamic
Encryption and Key Boosting, which are the same implementation as for Secure Calls 7.3.1 and
7.3.2. Secure messaging is implemented very differently from the secure calls. Messaging is
asynchronous unlike secure calls and each message has to be encrypted individually. The LIMEv2
protocol also provides forward secrecy.

The DSS will route and store messages and public keys between the clients. The DCA primarily
generates asymmetric keypairs and uploads its public keys to the DSS. These include both identity
keys and Diffie-Hellman keys to derive the message keys. Each message will require a new
message key.

X3DH establishes the initial shared secret. The multiple DH operations require public DH keys of
the receiver which are downloaded from the DSS. Thus, all users maintain a pool of public keys for
all their devices on the DSS. X3DH is only required to start a new encryption session, i.e. a new
encrypt chat conversation. The algorithm is omitted for the later messages in the same
conversation.

Double Ratchet computes the symmetric key for the Dynamic Encryption of the messages. The
algorithm ratchets the symmetric for each message to ensure Perfect Forward Secrecy (PFS). If a
message is received, the Double Ratchets performs a Diffie-Hellman which features break-in
recovery. Note the difference between the DH ratchet and the symmetric ratchet.

The 256-bits exchanged message keys are key boosted utilizing 2^16 SHA-512 iterations to get a
384-bit Dynamic Encryption key. The messages are encrypted by Dynamic Encryption where the
whitening keys are set to 0. The deployed mode of operation is GCM. After a message is received
and decrypted, the related keys are erased.

7.5 SF.STORAGE – Data-at-rest protection
The TOE dynamically encrypts the databases that store the chat history and the LIMEv2 keys. The
same Dynamic Encryption key decrypts both databases and the key are constant but unique for

Dencrypt A/S Page 47

each TOE. The Dynamic Encryption principle is applied because each device has a unique
encryption algorithm.

At the end of provisioning the TOE generates two 640-bit keys. One (Storage Key) will be used for
Dynamic Encryption of the storage, while one (Device Key) will be used as a Key Encryption Key
using XOR. The encrypted Storage Key is submitted to the DSS and will not be stored by the TOE, it
is downloaded and only kept in RAM. After a message is received and decrypted using the LIMEv2
protocol it is encrypted via storage encryption before being stored on the device. The cleartext
data (messages and attachments) will only be stored in RAM.

The Device Key will be stored in the Secure Enclave of the iPhone, and will only be used to
decrypt the Storage Key.

The approach ensures that neither the device nor the server system becomes a point-of-attack. In
case of a lost or stolen device, the TLS certificate is revoked and the device cannot connect to the
server system to fetch the encrypted Storage Key.

The approach also implies that the chat history is not available for the end-user in offline mode.
The administrator can disable the upload of the encrypted storage key but it is stored in DCA's
HSM instead. However, offline access to the encrypted DB comes with the price of reduced
security.

7.6 SF.CHANNEL – Secure communication channel (TLS)
The TOE can establish a secure channel between the TOE and DSS components. All TLS
connections are initiated by the TOE.

The secure SIP connection between the TOE and the SIP server on the DCS uses mutually
authenticated TLS 1.2, with RSA signature, AES 256-bit encryption and SHA-384 hashing.

The HTTPS connection to the web server (webAPI) on the Dencrypt Provisioning Server (DPS) also
uses TLS 1.2, with RSA signature, AES 256-bit encryption and SHA-384 hashing. However, in this
case the TOE is not authenticated to the DPS (i.e. only the server side of the TLS channel is
authenticated). This is only performed once during the provisioning and the link is only valid for a
limited time after it has been provided.

For TLS 1.2 mutual authentication, the TOE has a 3072-bit RSA key pair while each server
component has a 4096-bit RSA key pair. So, the TOE shall verify server signature by using the
server system's 4096-bit RSA public key.

Dencrypt A/S Page 48

Illustration 6: Storage encryption overview

7.7 SF.PUSH – Encrypted push notifications
Apple requires the TOE to indicate to the user immediate feedback for incoming mobile push. This
leaves TOE no time to connect to DSS to get hold of the incoming caller ID. The SIP caller ID is
placed encrypted in the mobile push. This ensures that only the intended DCA recipient can read
the caller ID, even though the push message is sent via the system of a different vendor.

The TOE generates and submits an AES push encryption key at the end of provisioning. The key is
also stored by the TOE and used to decrypt incoming push notifications. AES CFB is used instead
of Dynamic Encryption since DSS has no Dynamic Encryption capabilities. There is no integrity
protection since the push notification is sent through Apple via TLS.

7.8 SF.TUNNEL – TCP tunnelling of secure calls
The TOE also supports tunnelling of voice and video traffic over TCP and TLS 1.2. Voice and video
are normally sent over UDP via SRTP, however, this tunnelling service will allow the TOE to instead
use TCP and TLS 1.2 to tunnel the call traffic. The DSS provides a tunnel server to which the TOE
can connect to enable this. Whether the tunnel is enabled or not by default depends on the
settings as specified on the server, but this setting can be changed on the TOE.

While the tunnel provides the TLS encryption, this is not security relevant since the tunnelled
traffic is still protected by SRTP.

7.9 Cryptographic functions and parameters
This section summarizes the cryptographic mechanisms and primitives and parameters used by
the TSFs previously described.

Dencrypt A/S Page 49

Dynamic Encryption Used by SF.CALLS, SF.MESSAGES and SF.STORAGE
Uses AES-256
128-bit seed for S-Box generation, i.e. 128-bit for algorithm selection
2 x 128-bit Whitening keys (xor'ing). Note that these can be zeroized.
Used by SRTP, Double Ratchet and Storage encryption.

SRTP (RFC 3711) Used by SF.CALLS
Modified by Dencrypt to support Dynamic Encryption cipher suite:

• SRTP_DYNCIPHER_KB16_GCM_256 (which is based on
AEAD_AES_256_GCM specified in RFC7714)

Key boosting with 2^16 SHA-512 iterations, whitening keys are
zeroised

DTLS-SRTP (RFC 5763,
RFC5764)

Used by SF.CALLS
DTLS 1.2 Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
Elliptic curve: secp384r1
Certificate fingerprint: SHA-512

X3DH Used by SF.MESSAGES
Elliptic Curve Diffie-Hellman with curve X448
HKDF: SHA512 (RFC5869) without any key
Signatures: EdDSA448

Double Ratchet Used by SF.MESSAGES
Elliptic Curve Diffie-Hellman with curve X448
Modified by Dencrypt to support Dynamic Encryption cipher suite:

• SRTP_DYNCIPHER_KB16_GCM_256 (which is based on
AEAD_AES_256_GCM specified in RFC7714)

Key boosting with 2^16 SHA-512 iterations, whitening keys are
zeroised
HKDF: SHA512 (RFC5869) with key including key.

Key boosting Used by SF.MESSAGES and SF.CALLS
Key boosting involves executing a number of consecutive hash
operations; Key boosting utilizes 2^16 SHA-512 iterations.

SIPS Used by SF.CHANNEL for the connection to the SIP server
Employs TLS
SIPS is SIP [RFC3261] that runs over Transport Layer Security (TLS)
[RFC5246]. Note that the security relies on TLS connection and not on
SIP or MD5.

TLS Used by SF.CHANNEL
TLS 1.2 Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
Elliptic curve: secp384r1

• Used for the DPS webAPI connection
• Used for the DCS webAPI connection
• Used for the SIP Server DCS connection

AES CFB Used by SF.PUSH
AES-256 in CFB Mode

X509 Certificates Used by SF.CHANNEL, SF.CALLS and SF.MESSAGES for the TLS
authentication

• RSA 3072bits
• SHA512

RNG Random number generation is using the CTR_DRBG algorithm on iOS
(TOE environment).

Dencrypt A/S Page 50

The TOE relies on two open source projects for encryption technology:

• mbedTLS. This is an Open Source cryptography library that provides a wide variety of
algorithms. The TOE uses mbedTLS's AES-256, SHA1, SHA2, MD5 and RSA, as well as its
TLS implementation. Dencrypt has extended mbedTLS's functionality by Dynamic
Encryption. See also https://tls.mbed.org/

• libSRTP. The libSRTP library is an open-source implementation of the Secure Real-time
Transport Protocol (SRTP) originally authored by Cisco Systems, Inc. It implements AES-
256 and SHA1. Dencrypt has extended libSRTP's functionality by Dynamic Encryption. See
also http://srtp.sourceforge.net/srtp.html

• decaf. Elliptic curve operations are provided by the decaf library: X448, EdDSA448 and
conversion from EdDSA key to ECDH key format.

Dencrypt A/S Page 51

http://srtp.sourceforge.net/srtp.html

8 Abbreviations and references

8.1 Abbreviations
AES Advanced Encryption Standard

AES-CM AES – counter mode

CBC Cipher Block Chaining

CC Common Criteria

CM Counter Mode

CRL Certificate Revocation List

CSR Certificate Signing Request

CUG Closed User Group

DCM Dencrypt Certificate Manager

DCC Dencrypt Control Center

DCS Dencrypt Communication Server

DDB Dencrypt DataBase

DES Data Encryption Standard

DH Diffie-Hellman key exchange

DPS Dencrypt Provisioning Server

DTLS Datagram Transport Layer Security

EAL Evaluation Assurance Level

ECC Elliptic Curve Cryptography

GCM Galois/Counter Mode

HMAC Keyed-Hash Message Authentication Code

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

MDM Mobile Device Management

OSP Organisational Security Policy

PKI Public Key Infrastructure

PP Protection Profile

RSA Acronym for Rivest, Shamir, Adleman, the creators of the RSA algorithm

RTP Real-Time Transport Protocol

SAR Security Assurance Requirement

SAS Short Authentication String

SDP Session Description Protocol

SFP Security Function Policy

SFR Security Functional Requirement

SIM Subscriber Identification Module

Dencrypt A/S Page 52

SIP Session Initiation Protocol

SMS Short Message Service

SMS-C Short Message Service Center

SRTP Secure Real-time Transport Protocol

ST Security Target

TLS Transport Layer Security

TOE Target of Evaluation

TSF TOE Security Functionality

TSFI TSF Interface

VoIP Voice over IP

X3DH Extended Triple Diffie-Hellman

ZRTP Zimmermann Real-time Transport Protocol

8.2 References
[CC] Common Criteria for Information Technology Security Evaluation. Part 1:

Introduction and general model, April 2017, Version 3.1 Revision 5, CCMB-2017-
04-001; Part 2: Security functional components, April 2017, Version 3.1 Revision
5, CCMB-2017-04-002; Part 3: Security assurance components, April 2017,
Version 3.1 Revision 5, CCMB-2017-04-003.

[CEM] Common Methodology for Information Technology Security Evaluation,
Evaluation Methodology, April 2017, Version 3.1 Revision 5, CCMB-2017-04-004.

[cPPND] Collaborative Protection Profile for Network Devices, Version 2.1, 24-Sept-2018.

[DR] The Double Ratchet Algorithm, Revision 1, 2016-11-20,
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf

[FIPS180-4] Federal Information Processing Standards Publication 180-4, Secure Hash
Standard (SHS), 2012 March.

[FIPS186-4] Federal Information Processing Standards Publication 186-4, Digital Signature
Standard (DSS), July 2013.

[FIPS197] Federal Information Processing Standards Publication 197, Advanced Encryption
Standard (AES), November 26, 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[ISO10118] ISO/IEC 10118-3:2018, October 2018, Information technology – Security
Techniques – Hash-functions – Part 3: Dedicated hash-functions

[LIME] Linphone Instant Message Encryption v2.0, Version 1.0, March 6, 2019.
https://gitlab.linphone.org/BC/public/lime/blob/master/lime.pdf

[NIST SP 800-38A] NIST Special Publication 800-38A 2001 Edition, NIST Special Publication 800-
38A 2001 Edition, Recommendation for Block Cipher Modes of Operation.
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf

[NIST SP 800-38D] NIST Special Publication 800-38D, November 2007, Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC.
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38 d .pdf

Dencrypt A/S Page 53

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
https://gitlab.linphone.org/BC/public/lime/blob/master/lime.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf

[NIST SP 800-90A] NIST Special Publication 800-90A, June 2015, Recommendation for Random
Number Generation Using Deterministic Random Bit Generators.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

[PKCS1v2.1] PKCS #1 v2.1: RSA Cryptography Standard, RSA Laboratories June 14, 2002
https://www.teletrust.de/fileadmin/files/oid/oid_pkcs-1v2-1.pdf

[RFC2104] HMAC: Keyed-Hashing for Message Authentication, February 1997.

[RFC2818] HTTP over TLS, May 2000

[RFC3261] SIP: Session Initiation Protocol, June 2002

[RFC3711] The Secure Real-time Transport Protocol (SRTP), March 2004

[RFC3830] MIKEY: Multimedia Internet KEYing, Ericsson Research, August 2004

[RFC5246] The Transport Layer Security (TLS) Protocol, Version 1, August 2008

[RFC5289] TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode
(GCM), August 2008.

[RFC5763] Framework for Establishing a Secure Real-time Transport Protocol (SRTP) Security
Context Using Datagram Transport Layer Security (DTLS), May 2010

[RFC5764] Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the
Secure Real-time Transport Protocol (SRTP)

[RFC5869] HMAC-based Extract-and-Expand Key Derivation Function (HKDF), May 2010

[RFC6125] Representation and Verification of Domain-Based Application Service Identity
within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the
Context of Transport Layer Security (TLS), March 2011.

[RFC6347] Datagram Transport Layer Security Version 1.2, January 2012

[RFC7714] AES-GCM Authenticated Encryption in the Secure Real-time Transport Protocol
(SRTP), December 2015

[RFC7748] Elliptic Curves for Security, January 2016

[RFC8032] Edwards-Curve Digital Signature Algorithm (EdDSA), January 2017

[X3DH] The X3DH Key Agreement Protocol, Revision 1, 2016-11-04
https://signal.org/docs/specifications/x3dh/x3dh.pdf

[Dynamic] Patent application WO 2013/060876 A1.
https://patents.google.com/patent/WO2013060876A1

Dencrypt A/S Page 54

https://patents.google.com/patent/WO2013060876A1
https://signal.org/docs/specifications/x3dh/x3dh.pdf
https://www.teletrust.de/fileadmin/files/oid/oid_pkcs-1v2-1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

	1 Introduction
	1.1 Security Target identification and organisation
	1.2 TOE identification
	1.3 TOE type
	1.4 TOE overview
	1.5 TOE description
	1.5.1 Introduction and intended use
	1.5.2 The TOE architecture and key functions
	1.5.2.1 Introduction
	1.5.2.2 Provisioning and user registration process
	1.5.2.3 Managing settings and phone book
	1.5.2.4 Making a secure call
	1.5.2.5 Secure Messaging
	1.5.2.6 The TLS connection
	1.5.2.7 Platform security

	1.5.3 Security functions
	1.5.4 Physical scope of the TOE
	1.5.4.1 IT environment

	2 Conformance claims
	2.1 CC conformance claim
	2.2 Conformance rationale

	3 Security problem definition
	3.1 Threats
	3.2 Organisational security policies
	3.3 Assumptions

	4 Security objectives
	4.1 Security objectives for the TOE
	4.2 Security objectives for the TOE environment
	4.3 Security objectives rationale
	4.3.1 Security objectives completeness
	4.3.2 Security objectives sufficiency

	5 Extended components definition
	5.1.1.1 FCS_TLSC_EXT – TLS Client Protocol
	5.1.1.1.1 FCS_TLSC_EXT.1 – TLS Client Protocol
	5.1.1.1.2 FCS_TLSC_EXT.2 – TLS Client Protocol with Authentication

	6 Security requirements
	6.1 Security functional policies
	6.1.1 GROUP SFP
	6.1.2 ENCRYPTION KEY SFP

	6.2 Security functional requirements
	6.2.1 FCS_CKM.2a – Cryptographic key distribution (DTLS-SRTP)
	6.2.2 FCS_CKM.1c – Cryptographic key generation (LIME v2.0 EdDSA)
	6.2.3 FCS_CKM.2c – Cryptographic key distribution (LIME v2.0 establishment)
	6.2.4 FCS_COP.1e– Cryptographic operation (EdDSA signatures)
	6.2.5 FCS_COP.1f – Cryptographic operation (X3DH key derivation)
	6.2.6 FCS_COP.1g – Cryptographic operation (Double Ratchet key derivation)
	6.2.7 FCS_CKM.1a – Cryptographic key generation (TLS session key)
	6.2.8 FCS_CKM.2b – Cryptographic key distribution (TLS key establishment)
	6.2.9 FCS_COP.1a – Cryptographic operation (AES data encryption and decryption)
	6.2.10 FCS_TLSC_EXT.1 – TLS client protocol
	6.2.11 FCS_TLSC_EXT.2 – TLS client protocol with authentication
	6.2.12 FCS_CKM.1b – Cryptographic key generation (RSA key generation)
	6.2.13 FCS_CKM.1e – Cryptographic key generation (Storage key generation)
	6.2.14 FCS_CKM.1d – Cryptographic key generation (Push key generation)
	6.2.15 FCS_CKM.2d – Cryptographic key distribution (Key distribution to DSS)
	6.2.16 FCS_CKM.4 – Cryptographic key destruction
	6.2.17 FCS_COP.1b – Cryptographic operation (Digital signatures)
	6.2.18 FCS_COP.1c – Cryptographic operation (Hash algorithm)
	6.2.19 FCS_COP.1d – Cryptographic operation (Dynamic Encryption and Decryption)
	6.2.20 FCS_COP.1h – Cryptographic operation (Keyed-hash algorithm)
	6.2.21 FCS_COP.1i – Cryptographic operation (Push decryption)
	6.2.22 FCS_COP.1j – Cryptographic operation (Storage Key)
	6.2.23 FDP_IFC.2 – Complete information flow control
	6.2.24 FDP_IFF.1 – Simple security attributes
	6.2.25 FDP_ITC.1 – Import of user data without security attributes
	6.2.26 FMT_MTD.1 – Management of TSF data
	6.2.27 FMT_SMF.1 – Specification of management functions
	6.2.28 FTP_ITC.1a – Inter-TSF trusted channel (TLS)
	6.2.29 FTP_ITC.1b – Inter-TSF trusted channel (VoIP)

	6.3 Security functional requirements rationale
	6.3.1 Coverage
	6.3.2 Sufficiency
	6.3.3 Dependency analysis between security functional components

	6.4 Security assurance requirements
	6.5 Security assurance requirements rationale

	7 TOE Summary Specification
	7.1 SF.PROVISIONING – Secure initialisation
	7.2 SF.MANAGEMENT – Update of TOE settings, phone book and certificate
	7.3 SF.CALLS – Secure voice and video
	7.3.1 Dynamic Encryption
	7.3.2 Key Boosting

	7.4 SF.MESSAGES – Secure messaging
	7.5 SF.STORAGE – Data-at-rest protection
	7.6 SF.CHANNEL – Secure communication channel (TLS)
	7.7 SF.PUSH – Encrypted push notifications
	7.8 SF.TUNNEL – TCP tunnelling of secure calls
	7.9 Cryptographic functions and parameters

	8 Abbreviations and references
	8.1 Abbreviations
	8.2 References

