IC Platform of FeliCa Contactless Smartcard ## CXD9916H3 / MB94RS403 # **Security Target** (Public Version) Version 2 May 20th, 2008 Developed and provided by System Micro Division FUJITSU Microelectronics Limited and FeliCa Business Division B2B Solutions Business Group SONY Corporation ## **Document History** | Version | Date | Description | |---------|----------------|---------------------------| | 1 | May 12th, 2008 | First release | | | | | | | | Number of page: 101 pages | | 2 | May 20th, 2008 | Correct description. | | | - | Update references. | | | | | | | | Number of page: 101 pages | #### **Table of Contents** | 1 | 51 | Introduction | 1 | |---|--|---|----------------------------------| | | 1.1 | ST Identification | 1 | | | 1.2 | ST Overview | 1 | | | 1.3 | CC Conformance | 3 | | | | | | | 2 | TO | E Description | 4 | | | 2.1 | TOE Definition | 4 | | | | Hardware Description | | | | | 2 TOE Software Description | | | | | 4 Interface of TOE | | | | 2.2 | Smartcard Product Life Cycle | 7 | | | 2.3 | TOE Environment | 10 | | | | 1 Environment of IC Development Sites | | | | | 2 Environment of Mask Manufacturing Site | | | | 2.4 | TOE Intended Usage | | | | | 1 Smartcard Intended Usage | | | | 2.4. | 2 TOE IT Security features | 12 | | | 2.4. | 3 TOE Related Users | 12 | | _ | | | | | 3 | | E Security Environment | | | | 3.1 | Description of Assets | | | | 3.2 | Assumptions | | | | 3.3 | Threats | | | | 3.4 | Organizational Security Policies | 23 | | | | | | | 4 | | | | | | | ırity Objectives | | | | 4.1 | Security Objectives for the TOE | 24 | | | | | 24 | | 5 | 4.1
4.2 | Security Objectives for the TOE Security Objectives for Environment | 24
29 | | 5 | 4.1
4.2
IT S | Security Objectives for the TOE Security Objectives for Environment Security Requirements | 24
29 | | 5 | 4.1
4.2
IT 8
5.1 | Security Objectives for the TOE Security Objectives for Environment. Security Requirements TOE Security Requirements | 24
29
32 | | 5 | 4.1
4.2
IT \$
5.1
5.1. | Security Objectives for the TOE Security Objectives for Environment Fecurity Requirements TOE Security Requirements TOE Functional Requirements TOE Assurance Requirements | 24
29
32
32
46 | | 5 | 4.1
4.2
IT \$
5.1
5.1. | Security Objectives for the TOE Security Objectives for Environment Security Requirements TOE Security Requirements TOE Functional Requirements | 24
29
32
32
46 | | 5 | 4.1
4.2
IT \$
5.1
5.1.
5.1.5
5.2 | Security Objectives for the TOE Security Objectives for Environment Fecurity Requirements TOE Security Requirements TOE Functional Requirements TOE Assurance Requirements | 24
29
32
32
46
47 | | | 5.2.2 | 2 Security Requirements for the Non-IT-Environment | 63 | |---|----------------|--|----------------| | 6 | TOI | E Summary Specification | 65 | | | 6.1 | TOE Security Functions | 65 | | | 6.2 | Assurance measures | 69 | | 7 | PP (| Claims | 70 | | | 7.1 | PP reference | 70 | | | 7.2 | PP tailoring | 70 | | | 7.3 | PP additions | | | 8 | Rati | onale | 72 | | | 8.1 | Security Objectives Rationale | 72 | | | 8.2.2
8.2.3 | Security Requirements Rationale | 75
82
84 | | | | TOE Summary Specification Rationale | 89 | | | 8.4 | PP Claims Rationale | 90 | | 9 | Glos | ssary and References | 91 | | | 9.1 | Vocabulary | 91 | | | 9.2 | List of Abbreviations | 93 | | | 9.3 | Referencesvaluation evidences | 94 | ## **List of Figure** | Figure 1 | Internal Block Diagram of CXD9916H3 | | |----------|---|----| | | Smartcard product life cycle | | | | Attack Model for the TOE | | | _ | Paradigm regarding Operating Conditions | | | | | | | | List of Table | | | Table 1 | Security Functional Requirement | 33 | | | List of document describing the measures regarding the assurance requirements | | | Table 3 | PP tailoring. | 70 | | | PP additions | | | Table 5 | Security Objectives versus Assumption, Threat or Policies | 72 | | | Security Requirements versus Security Objectives | | | | Dependencies of Security Functional Requirements | | | | Additional SFR dependencies | | | | Palationship between Security Requirements and Security Functions | | #### 1 ST Introduction #### 1.1 ST Identification Title: IC Platform of FeliCa Contactless Smartcard CXD9916H3 / MB94RS403, Security Target (Public Version) Date: 2008-05-20 Version: 2 Authors: FRAM Design Dept. System Micro Div. Fujitsu Microelectronics Limited (FML) #### TOE identity The TOE includes below: - Smartcard Integrated Circuit "CXD9916H3/MB94RS403, FR01 0001 A06/A02" ("FR01 0001 A06/A02" means TOE version.) - HAL Library Version 01 This Security Target has been built with the CC version 2.3. References for all evaluation evidences are listed in Section 9.3 References. #### 1.2 ST Overview This document is the Security Target of Smartcard Integrated Circuit CXD9916H3 (FML's original naming MB94RS403; replaced by customer's naming CXD9916H3), which is developed and produced by FML. The issued TOE in this Security Target consists of Hardware (IC Chip) in CXD9916H3 and IC Dedicated Software implemented in CXD9916H3. This software is called HAL Library. This Security Target is produced in the frame of the security evaluation and certification of the CXD9916H3. These are conducted under the French IT Security Evaluation and Certification scheme, with the work of the DCSSI as Certification body and of CEACI / Thales Security Systems as Evaluation laboratory (also called ITSEF). The goal of this Security Target is to specify the functional and assurance requirements that are applicable to the CXD9916H3 as a Smartcard Integrated Circuit for smartcard applications. CXD9916H3 is developed as Platform of Contactless Smartcard for communication purpose, which carries the application system for transportation and finance. It is in conformity with ISO/IEC18092 Passive Communication Mode of Contactless communication interface (212/424 kbps). CXD9916H3 also carries functions such as ROM, SRAM, FRAM, DES, Contactless RF interface, centring on the F²MC-8FX CPU core. Furthermore, Non-volatile Ferroelectric Random Access Memory (FRAM) makes low power consumption and high-speed communication possible. Ideally suited to contactless and rapid transactions, the FRAM greatly improves the performances of the overall system. In general, a Smartcard is usually seen as a credit card-sized card having a non-volatile memory and a processing unit embedded within it. Due to the build-in IC chip, Smartcard is capable to contain/process more information than magnetic card. For this reason, the use of Smartcard can be various from transportation (electronic ticket, commuter pass), finance (emoney, credit card), ID authentication (identification, company's ID card, management of working hours), to Marketing services (point card, shopping card, amusement card). In such a context, since IC chip stores the private / financial information that requires the protection against leakage or tampering, the demand for security becomes higher. Also, as Smartcard can be exposed to unspecified people in various circumstances, the attacker may possess powerful attack ability. Responding to such risks, Smartcard has to be equipped with the security functions against high-level attacks. For this purpose, CXD9916H3 has to assure the confidentiality and integrity of stored data in IC chip and of the data transported by Reader/Writer device. In addition, stability and accuracy are required on the behavior of the IC chip. All this must also be carefully considered and assured throughout the whole development process of the IC chip (designing, production, test), as well as its delivery. For all above stages, the secure environment must be maintained in order to assure the confidentiality and integrity of IC chip and the data stored inside it. The main objectives of this Security Target are to: - Describe the Target of Evaluation (TOE) as a product and position it in the life cycle of the smartcard. The ST includes the development and the production phase of the IC Chip with its dedicated software, without the smartcard embedded software development phase, smartcard production phase and followings. These information is explained in Section 2. - Describe the security environment of the TOE including the assets to be protected and the threats to be countered by the TOE and by the operational environment during the development and production phases. We define the following assets and threats in Section 3. - Assets; User data, the smartcard embedded software, pre-personalization data, design data, IC dedicated software, TSF data, initialization data, test and characterization related data. - Threats; side channel attacks (e.g. SPA, DPA, SEMA, DEMA), fault attack, probing, manipulation, malfunction, modification and exploitation of the TOE. - Describe the security objectives for the TOE and for its environment in terms of integrity and confidentiality of application data and programs, protection of the TOE and associated documentation during the development and production phases. These information are explained in Section 4 - Specify the security requirements that include the TOE security functional requirements and the TOE security assurance requirements in Section 5. - Describe the TSF in Section 6, based on the threats, the objectives, the TOE security functional requirements and the TOE security assurance requirements. - Describe PP claims in Section 7. This Security Target conforms to [BSI-PP-0002]. - Describe rationale between threats, assumption, policy, objectives, security requirements
and TSF, in order to show consistency in our security policy. #### 1.3 CC Conformance This Security Target has been built with the CC version2.3, for Information Technology Security Evaluation (refer to [CC/1], [CC/2], [CC/3].). - Part2 extended; Security Functional Requirements - Part3 conformant; Security Assurance Requirements Furthermore, this Security Target claims conformance to Protection Profile; BSI-PP-002 version 1.0 (refer to [BSI-PP-0002].). The level of Assurance is EAL4 augmented. The EAL4 is augmented by taking the following components: - ADV IMP.2 - ALC_DVS.2 - AVA_MSU.3 - AVA_VLA.4 The minimum Strength Of Function of TOE Security Function is SOF-high. (Strength of Functions High) #### 2 TOE Description #### 2.1 TOE Definition The TOE is a single-chip microcomputer CXD9916H3, developed as Platform of Contactless Smartcard for communication purpose. CXD9916H3 consists of Hardware (IC Chip) and IC Dedicated Software. This software intends to HAL Library. Also, the TOE includes the Test features that are used at the IC testing during a phase of wafer manufacturing and are not available to user phases after IC testing. Nevertheless, Smartcard Embedded Software (OS/Applications) is outside the scope of the TOE. Figure 1 demonstrates Block Diagram of CXD9916H3 as following. Figure 1 Internal Block Diagram of CXD9916H3 #### 2.1.1 Hardware Description Hardware of CXD9916H3 is a single-chip microcomputer that is developed for the Smartcard Integrated circuit with Contactless communication function. It is intended to be used for platform of application system, which carries the application system for transportation and finance. Centering on F²MC8FX-CPU Core, CXD9916H3 consists of ROM, SRAM, FRAM, DES Co-processor, DMA controller, Contactless communication analog circuit (ISO/IEC 18092 Passive Communication Mode (212/424 kbps)) (refers to Block Diagram of Figure 1). #### $F^2MC-8FX$ (CPU): - 8-bit CISC - Maximum CPU operating frequency of 6.78 MHz (during normal operation) - Fixed-length 8-bit instructions (basic instructions), 1 instruction per cycle (minimum) - Linear accessibility to 64-KB memory space #### Memory: - 56KB ROM - 3KB SRAM - 4KB FRAM nonvolatile memory #### **DES Coprocessor:** - Conformance to FIPS PUB 46-3 - Supporting the ECB and CBC modes and encryption and decryption. - Supporting single/triple-DES processing #### DMA controller: - Operable in coordination with the contactless communication logic circuit, supporting data transmission and data reception functions (the maximum data transfer length is of 256 bytes) - Equipped with a circuit to support CRC calculation of SRAM/FRAM contents during transferring. #### Analog circuit: - Communication protocol: ISO/IEC 18092 Passive Communication Mode (212/424 kbps) - Carrier frequency: 13.56 MHz - Supporting the communication speed: 212 kbps and 424 kbps - Extracting the power from the carrier and supplying power and power-on reset to the chip - · ASK modulation and demodulation used for transmission and reception - Sensors for detection of illegal voltage, frequency and temperature which induce malfunction of the TOE hardware. #### 2.1.2 TOE Software Description The TOE includes HAL Library, as IC Dedicated Software. It is supplied to user in secure procedure and is stored in ROM. However, Smartcard Embedded Software (OS/Applications) is outside the scope of the TOE. HAL (; Hardware Abstraction Layer) library is, as IC Dedicated Software of CXD9916H3, a part of the TOE component, which is developed by IC Developer. Also, stored on ROM, HAL library contains the function for Smartcard Embedded Software to facilitate the use of Hardware. Moreover, HAL Library contains functions to operate DRNG (Deterministic Random Number Generator) conformed to AIS20, functionality class K3, strength of mechanism:high and also satisfies standard level of French cryptographic robustness level in [REF_CRY]. Then its algorithm is conformed to ANSIX9.42-2001 Annex C.2. #### 2.1.3 TOE Test Features TOE Test features include IC Dedicated Test Software and Test circuits implemented in the TOE as parts of the TOE. The IC Dedicated Test Software includes the software code to activate test circuits and test programs, which are only used before IC Delivery and are not available to user phases. #### 2.1.4 Interface of TOE The TOE interface is defined as followings: - CXD9916H3's contactless RF communication antenna, which performs the communication with outside. - CXD9916H3's HAL Library, which is used by Smartcard Embedded Software. (Details are in [HAL].) - Assuming the TOE attack described in Section 3.3, Chip surface of TOE can be TOE interface. #### 2.2 Smartcard Product Life Cycle Life Cycle of Smartcard products can be categorised to 7 phases as followings (refers to Figure 2 and [BSI-PP-0002, Section 8.1.1]). FML is responsible for IC development and IC manufacturing in phase2 and phase3, including TOE traceability, interface / data exchange process between phase1 and phase2 and TOE delivery from phase3 to phase4. Phase 1, phase 4 and following phases are outside of the scope of responsibility for FML. #### Phase1: Smartcard Embedded Software Development The Phase1 is outside the scope of TOE, and is managed by Smartcard Embedded Software developer. Development of Smartcard Embedded Software (including pre-personalisation data) is performed on this phase. IC sensitive information, software and tools are delivered from IC developer to Smartcard Embedded Software developer. #### **Phase2: IC Development** In the Phase2, the IC developer is responsible for IC Design, IC Dedicated Software development, Mask manufacturing and Test program development. Also, in this phase, IC sensitive information, software and tools are provided to Smartcard Embedded Software developer (on Phase1) by IC developer. Then, IC developer receives Smartcard Embedded Software and the pre-personalization data from Smartcard Embedded Software developer (on Phase1). In Mask manufacturing, photomask databases generated by IC developer in FML are delivered to Mask manufacturer, which is subcontractor of FML. Then, photomasks are manufactured in the secure environment and delivered to IC manufacturer (on Phase3) by secure procedure. #### **Phase3: IC Manufacturing** In the Phase3, IC Manufacturer is responsible for IC manufacturing, IC Testing, injecting pre-personalization data, chip post-processing, and TOE delivery. Also, in this phase, the photomask is delivered from Mask manufacturer by secure procedure and wafer fabrication starts for manufacturing secure products. After the wafer fabrication, IC testing is performed in order to assure conformance with the device specification. During the IC testing, TOE identification data (Chip manufacturing information) and pre-personalisation data that includes customer's confidential data are injected into the TOE during the IC testing. After the IC testing, chip post-processing is done in this phase. At the end of the Phase3, Test features (including IC dedicated test software and test circuits) are deactivated, in order to avoid that attacker exploits the TOE. After Phase3, TOE (IC chips) is delivered to IC Packaging Manufacturer or Smartcard Product Manufacturer (Phase4 and followings) by trusted delivery and verification procedure. FML is responsible for managing from Phase2 to TOE Delivery after Phase3. Phase4 and Phase5: Smartcard production These phases are outside the scope of TOE. In these phases, the smartcard is produced at a smartcard manufacturing facility. These phases include IC packaging, testing module, and incorporation of module into the plastic card body, and the IC Packaging Manufacturer and the Smartcard Product Manufacturer are responsible for those things. #### **Phase6: Smartcard personalization** This phase is the final step necessary to prepare the smartcard for issue to users consists of personalisation of smartcard. The Personaliser is responsible for the above things. #### Phase7: End-user This phase is the end-user phase where the smartcard is issued to end-users for operational deployment. The end-user phase contains also the end of life process of the smartcard, which is critical aspect in the life cycle. The Smartcard Issuer is responsible for the above things. Figure 2 Smartcard product life cycle #### 2.3 TOE Environment The TOE environment related with TOE development and production corresponds to Phase2, and Phase3 (refer to Section 2.2). Then there are several identified sites in the TOE life cycle, as evaluation scope (refer to Figure 2, as below). - IC development sites in phase2 - Mask manufacturing site in phase2 - IC Manufacturing site in phase3 #### 2.3.1 Environment of IC Development Sites In IC development sites, operations, as shown in Figure 2, are performed in secure environment. The sites are controlled by the following secure procedures. - To assure security, the environment in which the development takes place shall be made secured with controllable accesses having traceability. Furthermore, it is important that all authorized personnel involved fully understand the importance and the rigid implementation of defined security procedures. - The development begins with the TOE's specification. All parties in contact with sensitive information are required to abide by Non-Disclosure agreement. - Network in these sites is stand-alone. Therefore, network system of these sites is disconnected to Fujitsu-Wan by physical and logical procedures. - The engineer uses a secure computer system (preventing unauthorized access) to make his design simulation, circuit performance verifications, generation of test specification, test pattern and test program and generation of TOE's IC photomask databases. - Sensitive documents, databases on tapes, diskettes, and printed circuit layout information are stored in appropriate locked cupboards/safe. Of paramount importance also is the disposal of unwanted data (complete
electronic erasure) and documents (e.g. shredding). The data, which shall maintain integrity and confidentiality, includes followings; - Smartcard embedded software and pre-personalization data - Logical design data and physical design data - Mask data - IC dedicated software - Test specification and Test data - Test program - Documentation #### 2.3.2 Environment of Mask Manufacturing Site In Mask manufacturing site, Operations, as shown in Figure 2, are performed in secure environment. This site is controlled by the following secure procedures. - Photomasks are manufactured in subcontractor of FML by subcontractor's secure procedure. They are transported and worked on in a secure environment with accountability and traceability of all (good and bad) products. - During the transfer of sensitive data electronically, procedures shall be established to ensure that the data arrive only at the destination and are not accessible at intermediate stages. The data, which shall maintain integrity and confidentiality, includes followings; - Photomask databases - Photomask (Reticle) #### 2.3.3 Environment of IC Manufacturing Site In IC Manufacturing site, Operations, as shown in Figure 2, are performed in secure environment. This site is controlled by the following secure procedures. - By access control system, secure environment is established in the IC manufacturing environment. Also, transfer of wafer between each process is operated by secure procedures. Furthermore the only authorized persons can work for secure products. The all authorized persons fully understand the importance and the rigid wafer processing of defined security procedures. - After fabrication, IC testing is operated in secure environment, same as IC manufacturing. Also, test program and test tools are securely protected and operated by the only authorized staff. Furthermore, TOE identification data and the pre-personalization data are injected to TOE in secure environment during the IC testing. - After IC testing, chip post-processing is done. Then TOE is packed up and is delivered to the smartcard product manufacturer by trusted delivery and verification procedure. - On the each process in IC manufacturing site, tracking system maintains traceability of the TOE. The data, which shall maintain integrity and confidentiality, includes followings; - Product - Test program, and test and characterisation related data - Initialisation Data and Pre-personalisation Data #### 2.4 TOE Intended Usage #### 2.4.1 Smartcard Intended Usage Contactless Smartcard for communication purpose, which includes CXD9916H3, is intended to be used for financial settlement, transportation, personal identification and distribution service. For such purposes, Smartcard stores personal/monetary information, which requires the protection against leakage and tampering. Following list demonstrates the possible use of Smartcard. - Finance/Settlement purposes: E-money card on pre-paid format and as credit card are imaginable - Transportation purposes: E-transportation tickets/pass on pre-paid format are imaginable. - Identification purposes: Personal identification/Company identification/Entry or Exit control are imaginable. - Marketing service purposes: Point card/shopping card/amusement card are imaginable For the uses above, Smartcard is expected to provide the security features and to be used effectively in various purposes to improve the service for users. #### 2.4.2 TOE IT Security features In order to assure the confidentiality and integrity of TOE, CXD9916H3 carries several functions as followings: - DES function secure against the Side-Channel Attack/DFA (Differential Fault Attack)/Timing Attack - Sensor against the malfunction induced by environmental stress (temperature/frequency/voltage) - HAL Library which supports generation of deterministic random numbers. - Hardware Security Function against Physical Manipulation/Physical Probing #### 2.4.3 TOE Related Users Followings are possible personnel, who are related to Life Cycle of Smartcard (refers to Section 2.2 and [BSI-PP-0002, Section 8.1.1]). #### **TOE User** · Smartcard Embedded Software developer #### **TOE Administrator** - · IC Developer - · IC Manufacturer - · IC Packaging Manufacturer - · Smartcard Product manufacturer - Personaliser - Smartcard Issuer #### **3 TOE Security Environment** #### 3.1 Description of Assets This section defines the primary and secondary assets to be protected by the TOE. The following assets are derived from [BSI-PP-0002 section3.1]. #### **Assets regarding the Threats** The primary assets to be protected - The User Data: - This includes especially Cryptographic keys, personalisation data and other data generated and used by the Smartcard Embedded Software. - The Smartcard Embedded Software, comprising followings; - Hard-coded Smartcard Embedded Software (stored in ROM) - Soft-coded Smartcard Embedded Software (stored in FRAM) The further primary assets to be protected - The correct operation of TOE (including its Random Number Generator). In particular this means that Smartcard Embedded Software is correctly being executed which includes the correct operation of the TOE's functions. - The random numbers generated by the TOE. The secondary assets include logical design data, physical design data, IC Dedicated Software and TSF data that are data created and used by the TSF. In addition, the following will also contain information about the TOE. - Initialisation Data and Pre-personalisation Data, specific development aids, test and characterisation related data, material for software development support, and photomasks. Such information and the ability to perform manipulations assist in threatening the above primary assets. Note that there are many ways to manipulate or disclose the User Data. (i) An attacker may manipulate the Smartcard Embedded Software or the TOE. (ii) An attacker may cause malfunctions of the TOE or abuse Test Features provided by the TOE. Such attacks usually require design information of the TOE to be obtained. Therefore, the design information is a secondary asset. They pertain to all information about (i) the circuitry of the IC (hardware including the physical memories), (ii) the IC Dedicated Software and (iii) the TSF data. _ ¹ The pre-personalization data includes confidential data of customer. #### Assets regarding the Organisational Security Policy P.Process-TOE The information and material produced and/or processed by the TOE Manufacturer in the TOE development and production environment (Phases 2 up to TOE Delivery) can be grouped as follows: - Logical design data, - Physical design data, - IC Dedicated Software, Smartcard Embedded Software, Initialisation Data and Prepersonalisation Data, - Specific development aids, - Test and characterisation related data. - Material for software development support, and - Photomasks and products in any form, as long as they are generated, stored, or processed by the TOE Manufacturer. Explanations can be found in [BSI-PP-0002, Section 8.1.2] #### Assets regarding the Assumption A.Process-Card The information and material produced and/or processed by the Smartcard Embedded Software Developer in Phase 1 and by the Card Manufacturer can be grouped as follows: - The Smart Card Embedded Software including specifications, implementation and related documentation, - Pre-personalisation and personalisation data including specifications of formats and memory areas, test related data, - The User Data and related documentation, and - Material for software development support, as long as they are not under the control of the TOE Manufacturer. #### 3.2 Assumptions In this section, the assumptions are described according to [BSI-PP-0002, Section 3.2]. The intended usage of the TOE is twofold, depending on the Life Cycle Phase: (i) The Smartcard Embedded Software developer uses it as a platform for the smartcard software being developed. (ii) The Card Manufacturer (and the end-user) uses it as a part of the Smartcard. The Smartcard is used in a terminal that supplies the card (with power and clock) and (at least) mediates the communication with the Smartcard Embedded Software. The following Assumptions are derived from [BSI-PP-0002, Section 3.2]. Appropriate "Protection during Packaging, Finishing and Personalisation (A. Process-Card)" must be ensured after TOE Delivery up to the end of Phase 6, as well as during the delivery to Phase 7 as specified below. #### **A.Process-Card** Protection during Packaging, Finishing and Personalisation It is assumed that security procedures are used after delivery of the TOE by the TOE Manufacturer up to delivery to the end-user to maintain confidentiality and integrity of the TOE and of its manufacturing and test data (to prevent any possible copy, modification, retention, theft or unauthorised use). This means that the Phases after TOE Delivery (refer to Section 2.2) are assumed to be protected appropriately. For a preliminary list of assets to be protected, see Section 3.1. The developer of the Smartcard Embedded Software must ensure the appropriate "Usage of Hardware Platform (A.Plat-Appl)" while developing this software in Phase1 as specified below. #### **A.Plat-Appl** Usage of Hardware Platform The Smartcard Embedded Software is designed so that the requirements from the following documents are met: - (i) The TOE LSI specification [SPC], HAL Library specification [HAL], Security Recommendation Guidance [SRG] and the hardware application notes, - (ii) Findings of the TOE evaluation reports relevant for the Smartcard Embedded Software. Note1: "Security Requirements" is described in Section 4 of [HAL]. It is required that software developer shall develop the smartcard embedded software according to the "Security Requirements", in order to maintain TSF operation securely. Note2: note that particular requirements for the Smartcard Embedded Software are often not clear before considering a
specific attack scenario during vulnerability analysis of the smartcard integrated circuit (AVA_VLA). Therefore, such results from the TOE evaluation (as contained in the Evaluation Technical Report (ETR)) must be given to the developer of the Smartcard Embedded Software in an appropriate and authorised form and be taken into account during the evaluation of the software. This may also hold for additional tests being required for the combination of hardware and software. The TOE evaluation must be completed before evaluation of the Smartcard Embedded Software can be completed. The TOE evaluation can be conducted before and independent from the evaluation of the Smartcard Embedded Software. The developer of the Smartcard Embedded Software must ensure the appropriate "Treatment of User Data (A.Resp-Appl)" while developing this software in Phase1 as specified below. #### **A.Resp-Appl** Treatment of User Data All User Data are owned by Smartcard Embedded Software. Therefore, it must be assumed that security relevant User Data (especially cryptographic keys) are treated by the Smartcard Embedded Software as defined for the specific application context. Examples of embedded software security concerns are given in [BSI-PP-0002, Section 8.2] #### **Additional Assumptions** The following Assumption is derived from [SSVG Augmentation]. The developer of Smartcard Embedded Software must ensure the appropriate "Usage of key-dependent Functions (A.Key-Function)" while developing this software in Phase1 as specified below. #### **A.Key-Function** Usage of Key-dependent Functions Key-dependent functions (if any) shall be implemented in the Smartcard Embedded Software in a way that they are not susceptible to leakage attacks (as described under T.Leak-Inherent and T.Leak-Forced). Note that here the routines which may comprise keys when being executed are part of the Smartcard Embedded Software. In contrast to this the threats T.Leak-Inherent and T.Leak-Forced address (i) the cryptographic routines which are part of the TOE and (ii) the processing of User Data including cryptographic keys. #### 3.3 Threats In this section, the threats are described according to [BSI-PP-0002, Section 3.3]. The TOE has the following high-level security concerns: - SC1 manipulation of User Data and of the Smartcard Embedded Software (while being executed / processed and while being stored in the TOE's memories) and - SC2 disclosure of User Data and of the Smartcard Embedded Software (while being processed and while being stored in the TOE's memories). - SC3 deficiency of random numbers. These high-level security concerns are refined below by defining threats as required by Common Criteria. Note that manipulation of the TOE is only a means to threaten User Data or the Smartcard Embedded Software and is not a success for the attacker in itself. The Smartcard Embedded Software must contribute to averting the threats: At least it must not undermine the security provided by the TOE. For detail refer to the assumptions regarding the Smartcard Embedded Software specified in Section 3.2. These security concerns are derived from considering the end-usage phase (Phase 7) since - Phase1 and the Phases from TOE Delivery up to the end of Phase 6 are covered by assumptions and - the development and production environment starting with Phase 2 up to TOE Delivery are covered by an organisational security policy. The TOE's countermeasures are designed to avert the threats described below. Nevertheless, they may be effective in earlier phases (Phases 4 to 6). The TOE is exposed to different types of influences or interactions with its outer world. Some of them may result from using the TOE only but others may also indicate an attack. The different types of influences or interactions are visualised in Figure 3, which is modified [BSI-PP-0002, Section 3.3, Figure 8] to meet this TOE. Figure 3 Attack Model for the TOE ² An interaction with the TOE can be done through the contactless interface (Number 7-9 in Figure 3). Influences or interactions with the TOE also occur through the chip surface (Number 1-6 in Figure 3). In Number 1 and 6, galvanic contacts are used. In Number 2 and 5, the influence (arrow directed to the chip) or the measurement (arrow starts from the chip) does not require a contact. Number 3 and 4 refer to specific situations where the TOE and its functional behaviour is not only influenced but definite changes are made by applying mechanical, chemical and other methods (such as 1, 2). Many attacks require a prior inspection and some reverse engineering (Number 3). Examples for specific attacks are given in [BSI-PP-0002, Section 8.3] - ² Figure 3 was modified [BSI-PP-0002, Section 3.3 Figure 8] to meet the TOE. #### The Threats derived from SC1 \sim SC3 The TOE shall avert the threat "Inherent Information Leakage (T.Leak-Inherent)" as specified below. #### T.Leak-Inherent Inherent Information Leakage An attacker may exploit information that is leaked from the TOE during usage of the Smartcard in order to disclose confidential data (User Data or TSF data). No direct contact with the Smartcard internals is required here. Leakage may occur through emanations, variations in power consumption, I/O characteristics, clock frequency, or by changes in processing time requirements. Some examples are the Differential and Simple Power Attack (DPA, SPA), Differential and Simple Electro Magnetic Attack (DEMA, SEMA)³. These leakages may be interpreted as a covert channel transmission but are more closely related to measurement of operating parameters, which may be derived either from direct (contact) measurements (Numbers 6 and 7 in Figure 3) or measurement of emanations (Number 5 in Figure 3) and can then be related to the specific operation being performed. The TOE shall avert the threat "Physical Probing (T.Phys-Probing)" as specified below. #### **T.Phys-Probing** Physical Probing An attacker may perform physical probing of the TOE in order to: - (i) Disclose User Data, - (ii) Disclose/reconstruct the Smartcard Embedded Software or - (iii) Disclose other critical operational information especially TSF data. Physical probing requires direct interaction with the Smartcard Integrated Circuit internals (Numbers 5 and 6 in Figure 3). Techniques commonly employed in IC failure analysis and IC reverse engineering efforts may be used. Before that hardware security mechanisms and layout characteristics need to be identified (Number 3 in Figure 3). Determination of software design including treatment of User Data may also be a pre-requisite. This pertains to "measurements" using galvanic contacts or any type of charge interaction whereas manipulations are considered under the threat "Physical Manipulation (T.Phys-Manipulation)". The threats "Inherent Information Leakage (T.Leak-Inherent)" and "Forced Information Leakage (T.Leak-Forced)" may use physical probing but require complex signal processing in addition. The TOE shall avert the threat "Malfunction due to Environmental Stress (T.Malfunction)" as specified below. ³ Differential and Simple Electro Magnetic Analysis (DEMA, SEMA) were added to this sentence to meet the TOE. #### **T.Malfunction** Malfunction due to Environmental Stress An attacker may cause a malfunction of TSF or of the Smartcard Embedded Software by applying environmental stress in order to: - (i) Deactivate or modify security features or functions of the TOE or - (ii) Deactivate or modify security functions of the Smartcard Embedded Software. This may be achieved by operating the Smartcard outside the normal operating conditions (Numbers 1, 2 and 9 in Figure 3). To exploit this an attacker needs information about the functional operation. The TOE shall avert the threat "Physical Manipulation (T.Phys-Manipulation)" as specified below. #### T.Phys-Manipulation Physical Manipulation An attacker may physically modify the Smartcard in order to: - (i) Modify security features or functions of the TOE, - (ii) Modify security functions of the Smartcard Embedded Software or - (iii) Modify User Data. The modification may be achieved through techniques commonly employed in IC failure analysis (Numbers 1, 2 and 4 in Figure 3) and IC reverse engineering efforts (Number 3 in Figure 3). The modification may result in the deactivation of a security function. Before that hardware security mechanisms and layout characteristics need to be identified. Determination of software design including treatment of User Data may also be a pre-requisite. Changes of circuitry or data can be permanent or temporary. In contrast to malfunctions (refer to T.Malfunction) the attacker requires to gather significant knowledge about the TOE's internal construction here (Number 3 in Figure 3). The TOE shall avert the threat "Forced Information Leakage (T.Leak-Forced)" as specified below. #### **T.Leak-Forced** Forced Information Leakage An attacker may exploit information that is leaked from the TOE during usage of the Smartcard in order to disclose confidential data (User Data or TSF data) even if the information leakage is not inherent but caused by the attacker. This threat pertains to attacks where methods described in "Malfunction due to Environmental Stress" (refer to T.Malfunction) and/or "Physical Manipulation" (refer to T.Phys-Manipulation) are used to cause leakage from signals (Numbers 5, 6, 7 and 8 in Figure 3) that normally do not contain significant information about secrets. The TOE shall avert the threat "Abuse of Functionality (T.Abuse-Func)" as specified below. #### **T.Abuse-Func** Abuse of Functionality An attacker may use functions of the TOE that may not be used after TOE Delivery in order to: - (i) Disclose or manipulate User Data, - (ii) Manipulate (explore, bypass, deactivate or change) security features or functions of the TOE or of the Smartcard Embedded Software or - (iii) Enable an attack. The TOE shall avert the threat "Deficiency of Random Numbers
(T.RND)" as specified below. #### **T.RND** Deficiency of Random Numbers An attacker may predict or obtain information about random numbers generated by the TOE for instance because of a lack of entropy of the random numbers provided. An attacker may gather information about the produced random numbers which might be a problem because they may be used for instance to generate cryptographic keys. Here the attacker is expected to take advantage of statistical properties of the random numbers generated by the TOE without specific knowledge about the TOE's generator. Malfunctions or premature ageing are also considered which may assist in getting information about random numbers. Also, an attacker may crack the cryptographic keys by analyzing the rules of leaked random numbers during the wireless communication of Smartcard.⁴ - ⁴ This sentence was added to [BSI-PP-0002, Section 3.3] to meet the TOE. #### **Additional Threats** The following additional threat assumes attack against exploiting or modifying FRAM data. #### T.Memory-Integrity Memory Integrity of FRAM An attacker with high motivation and resources as well as a good knowledge of IC process (and of embedded software development), can try to exploit FRAM sensitivity to environmental conditions in order to modify FRAM contents (both TSF and user data). #### T.Memory-Access Memory Access to FRAM An attacker with high motivation and resources as well as a good knowledge of embedded software development, can try to bypass the memory control access policy and gain illegal access to the user data and TSF data, which are stored in protected FRAM area. #### 3.4 Organizational Security Policies The following policy is derived from [BSI-PP-0002, Section 3.4]. The IC Developer/Manufacturer must apply the policy "Protection during TOE Development and Production (P.Process-TOE)" as specified below. #### **P.Process-TOE** Protection during TOE Development and Production The TOE Manufacturer must ensure that the development and production of the Smartcard Integrated Circuit (Phase 2 up to TOE Delivery, refer to Section 2.2) is secure so that no information is unintentionally made available for the operational phase of the TOE. For example, the confidentiality and integrity of design information and test data shall be guaranteed; access to samples, development tools and other material shall be restricted to authorised persons only; scrap will be destroyed etc. This not only pertains to the TOE but also to all information and material exchanged with the developer of the Smartcard Embedded Software and therefore especially to the Smartcard Embedded Software itself. This includes the delivery (exchange) procedures for phase 1 and the phases after TOE Delivery as far as they can be controlled by the TOE Manufacturer. An accurate identification must be established for the TOE. This requires that each instantiations of the TOE carry this unique identification. #### **Additional Policies** The following Policy is derived from [SSVG Augmentation]. The TOE provides specific security functionality that can be used by the Smartcard Embedded Software. In the following specific security functionality is listed which is not derived from threats identified for the TOE's environment because it can only be decided in the context of the smartcard application, against which threats the Smartcard Embedded Software will use the specific security functionality. The IC Developer / Manufacturer must apply the policy "Additional Specific Security Functionality (P.Add-Functions)" as specified below. #### **P.Add-Functions** Additional Specific Security Functionality The TOE shall provide the following specific security functionality to the Smartcard Embedded Software: - Data Encryption Standard (DES) - Triple Data Encryption Standard (3DES) #### 4 Security Objectives #### 4.1 Security Objectives for the TOE In this section, the security objectives for TOE are described according to [BSI-PP-0002, Section 4.1]. The product supports the following high-level security goals: - maintain the integrity of User Data and of the Smartcard Embedded Software (when being executed / processed and when being stored in the TOE's memories) as well as - sG2 maintain the confidentiality of User Data and of the Smartcard Embedded Software (when being processed and when being stored in the TOE's memories). - SG3 provide random numbers. These standard high-level security goals are refined below by defining security objectives, as required by the Common Criteria. Note that the integrity of the TOE is a means to reach these objectives. #### The Security Objectives derived from SG1 \sim SG3 The TOE shall provide "Protection against Inherent Information Leakage (O.Leak-Inherent)" as specified below. #### **O.Leak-Inherent** Protection against Inherent Information Leakage The TOE must provide protection against disclosure of confidential data (User Data or TSF data) stored and/or processed in the Smartcard IC. - by measurement and analysis of the shape and amplitude of signals (for example on the power, clock, or I/O lines) and - by measurement and analysis of the time between events found by measuring signals (for instance on the power, clock, or I/O lines) and - by measurement and analysis of the electro magnetic emanations of TOE.⁵ This objective pertains to measurements with subsequent complex signal processing whereas O.Phys-Probing is about direct measurements on elements on the chip surface. Details correspond to an analysis of attack scenarios that is not given here. The TOE shall provide "Protection against Physical Probing (O.Phys-Probing)" as specified below. **O.Phys-Probing** Protection against Physical Probing _ ⁵ This sentence was added to [BSI-PP-0002, Section 4.1] to meet the TOE. The TOE must provide protection against disclosure of User Data, against the disclosure/reconstruction of the Smartcard Embedded Software or against the disclosure of other critical operational information. This includes protection against - Measuring through galvanic contacts which is direct physical probing on the chips surface except on pads being bonded (using standard tools for measuring voltage and current) or - Measuring not using galvanic contacts but other types of physical interaction between charges (using tools used in solid-state physics research and IC failure analysis) #### With a prior - Reverse-engineering to understand the design and its properties and functions. The TOE must be designed and fabricated so that it requires a high combination of complex equipment, knowledge, skill, and time to be able to derive detailed design information or other information that could be used to compromise security through such a physical attack. The TOE shall provide "Protection against Malfunctions (O.Malfunction)" as specified below. #### **O.Malfunction** Protection against Malfunctions The TOE must ensure its correct operation. The TOE must prevent its operation outside the normal operating conditions where reliability and secure operation has not been proven or tested. This is to prevent errors. The environmental conditions may include voltage, clock frequency, temperature, or external energy fields. Remark: A malfunction of the TOE may also be caused using a direct interaction with elements on the chip surface. This is considered as being a manipulation (refer to the objective O.Phys-Manipulation) provided that detailed knowledge about the TOE's internal construction is required and the attack is performed in a controlled manner. The TOE shall provide "Protection against Physical Manipulation (O.Phys-Manipulation)" as specified below. #### O.Phys-Manipulation Protection against Physical Manipulation The TOE must provide protection against manipulation of the TOE (including its software and TSF data), the Smartcard Embedded Software and the User Data. This includes protection against - Reverse-engineering (understanding the design and its properties and functions), - Manipulation of the hardware and any data, as well as - Controlled manipulation of memory contents (User Data). The TOE must be designed and fabricated so that it requires a high combination of complex equipment, knowledge, skill, and time to be able to derive detailed design information or other information that could be used to compromise security through such a physical attack. The TOE shall provide "Protection against Forced Information Leakage (O.Leak-Forced)" as specified below: #### **O.Leak-Forced** Protection against Forced Information Leakage The Smartcard must be protected against disclosure of confidential data (User Data or TSF data) processed in the Card (using methods as described under O.Leak-Inherent) even if the information leakage is not inherent but caused by the attacker - by forcing a malfunction (refer to "Protection against Malfunction due to Environmental Stress (O.Malfunction)" and/or - by a physical manipulation (refer to "Protection against Physical Manipulation (O.Phys-Manipulation)". If this is not the case, signals that normally do not contain significant information about secrets could become an information channel for a leakage attack. The TOE shall provide "Protection against Abuse of Functionality (O.Abuse-Func)" as specified below. #### **O.Abuse-Func** Protection against Abuse of Functionality The TOE must prevent those functions of the TOE that may not be used after TOE Delivery can be abused in order to - (i) Disclose critical User Data. - (ii) Manipulate critical User Data of the Smartcard Embedded Software. - (iii) Manipulate Soft-coded Smartcard Embedded Software or - (iv) Bypass, deactivate, change or explore security features or functions of the TOE. Details depend, for instance, on the capabilities of the Test Features provided by the IC Dedicated Test Software that are not specified here. The TOE shall provide "TOE Identification (O.Identification)" as specified below: **O.Identification** TOE Identification The
TOE must provide means to store Initialisation Data and Prepersonalisation Data in its non-volatile memory. The Initialisation Data (or parts of them) are used for TOE identification. The TOE shall provide "Random Numbers (O.RND)" as specified below. #### **O.RND** Random Numbers The TOE will ensure the cryptographic quality of random number generation. For instance, random numbers shall not be predictable and shall have sufficient entropy. The TOE will ensure that no information about the produced random numbers is available to an attacker since they might be used for instance to generate cryptographic keys. #### **Additional Objectives 1** The following Policy is derived from [SSVG Augmentation]. The TOE shall provide "Additional Specific Security Functionality (O.Add-Functions)" as specified below. O.Add-Functions Additional Specific Security Functionality The TOE must provide the following specific security functionality to the Smartcard Embedded Software: - Data Encryption Standard (DES) - Triple Data Encryption Standard (3DES) #### **Additional Objectives 2** The following additional threat objective assumes protection against that FRAM data is exploited or modified. #### O.Memory-Integrity Memory Integrity of FRAM The TOE must provide protection against exploitation of FRAM sensitivity to environmental conditions by an attacker with high motivation and resources as well as a good knowledge of IC process (and of embedded software development), in order to protect modification of FRAM contents (both TSF and user data). #### O.Memory-Access Memory Access to FRAM The TOE must provide protection against bypassing the memory control access policy and gaining illegal access to the user data and TSF data, which are stored in protected FRAM area, by an attacker with high motivation and resources as well as a good knowledge of embedded software development. #### 4.2 Security Objectives for Environment In this section, the security objectives for Environment are described according to [BSI-PP-0002, Section 4.2]. Then some clarifications derived from "O.Add-Functions» are added according to [SSVG Augmentation]. #### Phase 1 The Smartcard Embedded Software shall provide "Usage of Hardware Platform (OE.Plat-Appl)" as specified below. #### **OE.Plat-Appl** Usage of Hardware Platform To ensure that the TOE is used in a secure manner the Smartcard Embedded Software shall be designed so that the requirements from the following documents are met: - (i) The TOE LSI specification [SPC], HAL Library specification [HAL], Security Recommendation Guidance [SRG] and the TOE application notes, - (ii) findings of the TOE evaluation reports relevant for the Smartcard Embedded Software. Note: Software developer shall develop the smartcard embedded software according to "Security Requirements" which is described in Section 4 of [HAL]. Clarification of "Usage of Hardware Platform (OE.Plat-Appl)" The TOE supports cipher schemes as additional specific security functionality (as in O.Add-Functions). If required, the Smartcard Embedded Software shall use these cryptographic services of the TOE and their interface as specified. When key-dependent functions implemented in the Smartcard Embedded Software are just being executed, the Smartcard Embedded Software must provide protection against disclosure of confidential data (User Data) stored and/or processed in the TOE by using the methods described under "Inherent Information Leakage (T.Leak-Inherent)" and "Forced Information Leakage (T.Leak-Forced)". The Smartcard Embedded Software shall provide "Treatment of User Data (OE.Resp-Appl)" as specified below. #### **OE.Resp-Appl** Treatment of User Data Security relevant User Data (especially cryptographic keys) are treated by the Smartcard Embedded Software as required by the security needs of the specific application context. For example the Smartcard Embedded Software will not disclose security relevant user data to unauthorised users or processes when communicating with a terminal. Clarification of "Treatment of User Data (OE.Resp-Appl)" The TOE supports cipher schemes as additional specific security functionality (as in O.Add-Functions). By definition cipher or plain text data and cryptographic keys are User Data. The Smartcard Embedded Software shall treat these data appropriately, use only proper secret keys (chosen from a large key space) as input for the cryptographic function of the TOE and use keys and functions appropriately in order to ensure the strength of cryptographic operation. This means that keys are treated as confidential as soon as they are generated. The keys must be unique with a very high probability, as well as cryptographically strong. For example, it must be ensured that it is beyond practically to derive the private key from a public key if asymmetric algorithms are used. If keys are imported into the TOE and/or derived from other keys, quality and confidentiality must be maintained. This implies that appropriate key management has to be realised in the environment. #### Phase 2 up to TOE Delivery The TOE Manufacturer shall ensure the "Protection during TOE Development and Production (OE.Process-TOE)" as specified below. **OE.Process-TOE** Protection during TOE Development and Production The TOE Manufacturer must ensure that the development and production of the Smartcard Integrated Circuit (Phases 2 and 3 up to TOE Delivery, refer to Section 2.2) is secure so that no information is unintentionally made available for the operational phase of the TOE. For example, the confidentiality and integrity of design information and test data must be guaranteed, access to samples, development tools and other material must be restricted to authorised persons only, scrap must be destroyed. This not only pertains to the TOE but also to all information and material exchanged with the developer of the Smartcard Embedded Software and therefore especially to the Smartcard Embedded Software itself. This includes the delivery (exchange) procedures for Phase 1 and the Phases after TOE Delivery as far as they can be controlled by the TOE Manufacturer. An accurate identification must be established for the TOE. This requires that each instantiation of the TOE carry this unique identification. In order to make this practical, electronic identification shall be possible. #### TOE Delivery up to the end of Phase 6 Appropriate "Protection during Packaging, Finishing and Personalisation (OE.Process-Card)" must be ensured after TOE Delivery up to the end of Phases 6, as well as during the delivery to Phase 7 as specified below. **OE.Process-Card** Protection during Packaging, Finishing and Personalisation Security procedures shall be used after TOE Delivery up to delivery to the end-user to maintain confidentiality and integrity of the TOE and of its manufacturing and test data (to prevent any possible copy, modification, retention, theft or unauthorized use). This means that Phases after TOE Delivery up to the end of Phase 6 (refer to Section 2.2) must be protected appropriately. # 5 IT Security Requirements # **5.1 TOE** Security Requirements # **5.1.1 TOE Functional Requirements** Following Security Functional Requirements are derived from CC Part2. As for FCS_RND.1, FMT_LIM.1, FMT_LIM.2, FAU_SAS.1, these requirements are extended CC Part2, which is newly added for Smartcard IC. The details are defined in [BSI-PP-0002, Section 8.4 to 8.6]. The strength of function of SFRs conforms to FCS_RND.1. Followings are the SFRs used in this Security Target. | Security Functional Requirement | | Requirements | | | |---------------------------------|---|---|--|--| | Component | Component name | Requirements | | | | FRU_FLT.2 | Limited fault | Addressing the robustness within some limit | | | | | tolerance | before active reaction takes place. | | | | | Failure with | Correct detection of outside the scope of some limit | | | | FPT_FLS.1 | preservation of secure state | | | | | | secure state | | | | | FPT_SEP.1 | TSF domain | The TSF shall maintain a security domain for its own execution that protects it from interference | | | | 11 1_SE1.1 | separation | and tampering by untrusted subjects. | | | | | Resistance to | 1 0 1 | | | | FPT_PHP.3 | physical attack | Countermeasures against physical attacks | | | | FDP_ITT.1 | Basic internal | | | | | 101_111.1 | transfer protection | Protection against leakage. | | | | FDP_IFC.1 | Subset information flow | Enforcing the Data Processing Policy to protect | | | | | control Basic internal TSF data | against leakage. FDP_IFC.1 provides the data processing policy. | | | | FPT_ITT.1 (1) | transfer protection | FDF_IFC.1 provides the data processing policy. | | | | | • | Storage of TOE identification data and | | | | FAU_SAS.1 | Audit storage | pre-personalization data | | | | FMT_LIM.1 | Limited capability | Countermeasures against the abuse of TOE | | | | FMT_LIM.2 | Limited availability | functionality by using Test features after TOE | | | | TWII_LIWI.2 | • | delivery | | | | FCS_RND.1 | Quality metric for random number | Generation of good quality random numbers | | | | FCS_COP.1 | | Implementation of DEC or processor | | | | | Cryptographic operation | Implementation of DES co-processor | | | | FDP_ACC.1 | Subset access control | | | | | FDP_ACF.1 | Security attribute based access control | | | | | FMT_MSA.3 | Static attributes | Protection against improper access to memory. | | | | | initialization | Enforcing Controlled Access Memory Policy to | | | | FMT_MSA.1 | Management of security attributes | control the access to memory | | | | FMT_SMR.1 | Security role | | | | | EMTE CAME 1 | Specification of | | | | | FMT_SMF.1 | management functions | | | | | FDP_SDI.2 | Stored data integrity | Monitoring user data stored in FRAM | | | | | and monitoring | | |---------------
---|---| | FPT_ITT.3 | TSF data integrity monitoring | Monitoring for integrity of TSF data read from or | | FPT_ITT.1 (2) | Basic internal TSF data transfer protection | written to FRAM | **Table 1 Security Functional Requirement** The following functional requirements and those interpretations are derived from [BSI-PP-0002, section 5.1.1] ## **Malfunctions** There are different ranges of operating conditions such as supply voltage, external frequency and temperature. The TOE can be operated within the limits visualised as the inner dashed rounded rectangle in Figure 4 and must operate correctly there. The limits have been reduced to ensure correct operation. This is visualised by the outer dotted rounded rectangle in the Figure 4. **Figure 4 Paradigm regarding Operating Conditions** Figure 4 must not be understood as being two-dimensional and defining static limits only. Reality is multi-dimensional and includes a variety of timing aspects. Note that the limit of the operating conditions visualised by the inner dashed rounded rectangle in Figure 4 is not necessarily exactly reflected by the limits identified in the TOE's data sheet. Instead this limit marks the boundary between the "tolerance reaction" of the TOE and the "active reaction" of sensors (and perhaps other circuitry). The security functional component Limited fault tolerance (FRU_FLT.2) has been selected in order to address the robustness within some limit (as shown by the inner dashed rectangle in Figure 4) before active reaction takes place. Note that the TOE does not actually detect faults or failures and then correct them in order to guarantee further operation of all the TOE's capabilities. This is the way software would implement Limited fault tolerance (FRU_FLT.2). Instead the TOE will achieve exactly the same by eliminating the cause for possible faults (by means of filtering for instance) and by being resistant against influences (robustness). In the case of the TOE the "reaction to a failure" is replaced by the "reaction to operating conditions" which could cause a malfunction without the reaction of the TOE's countermeasure. If the TOE is exposed to other operating conditions this may not be tolerated. Then the TOE must detect that and "preserve a secure state" (use of detectors and cause a reset for instance). The security functional component **Failure with preservation of secure state (FPT_FLS.1)** has been selected to ensure that. The way the secure state is reached depends on the implementation. Note that the TOE can monitor both external operating conditions and other internal conditions and then react appropriately. Exposure to specific "out of range" external operating conditions (environmental stress) may actually cause failure conditions internally which can be detected by FPT_FLS.1. Referring to external operating conditions the TOE is expected to respond if conditions are detected that may cause a failure. Examples for implementations of the security functional requirement Failure with preservation of secure state (FPT_FLS.1) are a voltage detector (external condition) and a circuitry that detects accesses to address areas that are not used (internal condition). Those parts of the TOE that support the security functional requirements "Limited fault tolerance (FRU_FLT.2)" and "Failure with preservation of secure state (FPT_FLS.1)" shall be protected from interference of the Smartcard Embedded Software. The security functional component **TSF Domain Separation (FPT_SEP.1)** has been selected to ensure that. The TOE shall meet the requirement "Limited fault tolerance (FRU FLT.2)" as specified below. FRU_FLT.2 Limited fault tolerance Hierarchical to: FRU_FLT.1 FRU_FLT.2.1 The TSF shall ensure the operation of all the TOE's capabilities when the following failures occur: exposure to operating conditions that are not detected according to the requirement Failure with preservation of secure state (FPT_FLS.1)⁶ Dependencies: FPT_FLS.1 Failure with preservation of secure state Refinement: The term "failure" above means "circumstances". The TOE prevents failures for the "circumstances" defined above. ### Application note: CXD9916H3 is assured to maintain secure operation within the scope of limited fault tolerance. The TOE shall meet the requirement "Failure with preservation of secure state (FPT FLS.1)" as specified below. **FPT_FLS.1** Failure with preservation of secure state ⁶ [assignment: list of type of failures] Hierarchical to: No other components. FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of failures occur: exposure to operating conditions that may not be tolerated according to the requirement Limited fault tolerance (FRU_FLT.2) and where therefore a malfunction could occur⁷. Dependencies: ADV_SPM.1 Informal TOE security policy model Refinement 1: The term "failure" above also covers "circumstances". The TOE prevents failures for the "circumstances" defined above. Refinement 2: The term "secure state" means that the TOE is reset, in order to preserve the TOE malfunction when outside the scope of "circumstances" are detected. The TOE shall meet the requirement "TSF domain separation" state (FPT_SEP.1)" as specified below. **FPT_SEP.1** TSF domain separation Hierarchical to: No other components. FPT_SEP.1.1 The TSF shall maintain a security domain for its own execution that protects it from interference and tampering by untrusted subjects. FPT SEP.1.2 The TSF shall enforce separation between the security domains of subjects in the TSC. Dependencies: No dependencies. Refinement: Those parts of the TOE that support the security functional requirements "Limited fault tolerance (FRU_FLT.2)" and "Failure with preservation of secure state (FPT_FLS.1)" shall be protected from interference of the Smartcard Embedded Software. ## Abuse of Functionality During testing at the end of Phase 3 before TOE Delivery, the TOE shall be able to store some data (for instance about the production history or identification data of the individual die or other data to be used after delivery). Therefore, the security functional component **Audit storage** (**FAU_SAS.1**) has been added. The security functional component FAU_SAS.1 has been newly created (refer to [BSI-PP-0002, Section 8.6]) and is used instead of FAU_GEN.1 that is too comprehensive to be applicable in this context. The requirement FAU_SAS.1 shall be regarded as covering the injection of Initialisation Data, Pre-personalisation Data and of supplements of the Smartcard Embedded Software as described ⁷ [assignment: list of types of failures in the TSF] in [BSI-PP-0002, Section 8.1.1]. After TOE Delivery the identification data (injected as part of the Initialisation Data) and the Pre-personalisation Data are available to the Smartcard Embedded Software. These data are protected by the TOE as all other User Data. It's up to the Smartcard Embedded Software to use these data stored and provided by the TOE. The TOE shall prevent functions (provided by the IC Dedicated Test Software and Test circuits) from being abused after TOE Delivery in order to compromise the TOE's security. (All such functions are called "Test Features" below.) This includes but is not limited to: disclose or manipulate User Data and bypass, deactivate, change or explore security features or functions of the TOE. Details depend on the capabilities of the Test Features provided by the IC Dedicated Test Software and Test circuits. This can be achieved (i) by limiting the capabilities of these Test Features after Phase3, (ii) by limiting the availability of these Test Features after Phase 3 or (iii) by a combination of both. The security functional components **Limited capabilities** (FMT_LIM.1) and **Limited availability** (FMT_LIM.2) have been newly created (refer to [BSI-PP-0002, Section 8.5]) to address this. The TOE shall meet the requirement "Limited capabilities (FMT_LIM.1)" as specified below (Common Criteria Part 2 extended). **FMT_LIM.1** Limited capabilities Hierarchical to: No other components. FMT_LIM.1.1 The TSF shall be designed in a manner that limits their capabilities so that in conjunction with "Limited availability (FMT_LIM.2)" the following policy is enforced: Deploying Test Features after TOE Delivery does not allow User Data to be disclosed or manipulated, TSF data to be disclosed or manipulated, software to be reconstructed and no substantial information about construction of TSF to be gathered which may enable other attacks⁸. Dependencies: FMT_LIM.2 Limited availability. ⁸ [assignment: Limited capability and availability policy] # Application note: The IC dedicated test software and Test circuits implemented in TOE have the "capability" required in FMT_LIM.1. The TOE shall meet the requirement "Limited availability (FMT_LIM.2)" as specified below (Common Criteria Part 2 extended). FMT LIM.2 Limited availability Hierarchical to: No other components. FMT_LIM.2.1 The TSF shall be designed in a manner that limits their availability so that in conjunction with "Limited capabilities (FMT_LIM.1)" the following policy is enforced: Deploying Test Features after TOE Delivery does not allow User Data to be disclosed or manipulated, TSF data to be disclosed or manipulated, software to be reconstructed and no substantial information about construction of TSF to be gathered which may enable other attacks⁹. Dependencies: FMT_LIM.1 Limited capabilities. ## Application note: The IC dedicated test software and Test circuits implemented in TOE have the "availability" required in FMT_LIM.2. The TOE shall meet the requirement "Audit storage (FAU_SAS.1)" as specified below (Common Criteria Part 2 extended). **FAU_SAS.1** Audit storage Hierarchical to: No other components. FAU SAS.1.1 The TSF shall provide test personnel before TOE Delivery 10 with the capability to store the Initialisation Data and/or
Pre-personalisation Data and/or supplements of the Smartcard Embedded Software 11 in the audit records. Dependencies: No dependencies. ## Refinement: "Initialisation Data" means TOE Identification Data (Chip Manufacturing information). Also, "Pre-personalisation Data" and "supplements of the Smartcard Embedded Software" include customer confidential data. ⁹ [assignment: Limited capability and availability policy] [[]assignment: authorised users] ¹¹ [assignment: list of audit information] ## Physical Manipulation and Probing The TOE can be subject to "tampering" which pertains to (i) manipulation of the chip hardware and its security features with (ii) prior reverse-engineering to understanding the design and its properties and functions, (iii) determination of critical data through measuring using galvanic contacts, (iv) determination of critical data not using galvanic contacts and (v) manipulation or probing of memory contents. The TOE is not always powered and therefore not able to detect, react or notify that it has been subject to tampering. Nevertheless, its design characteristics make reverse-engineering and manipulations etc. more difficult. This is regarded as being an "automatic response" to tampering. Therefore, the security functional component **Resistance to physical attack** (**FPT_PHP.3**) has been selected. The TOE may also provide features to actively respond to a possible tampering attack which is also covered by FPT_PHP.3. The TOE may also leave it up to the Smartcard Embedded Software to react when a possible tampering has been detected. Comprehensive guidance (refer to Common Criteria assurance class AGD) will be given for the developer of the Smartcard Embedded Software in this case. Taking the assumption "Usage of Hardware Platform (A.Plat-Appl)" into consideration this case shall therefore also be covered by FPT_PHP.3. ¹² The TOE shall meet the requirement "Resistance to physical attack (FPT_PHP.3)" as specified below. **FPT_PHP.3** Resistance to physical attack Hierarchical to: No other components. FPT_PHP.3.1 The TSF shall resist physical manipulation and physical Probing¹³ to the TSF^{14} by responding automatically such that the TSP is not violated. Dependencies: No dependencies. Refinement: The TOE will implement appropriate measures to continuously counter physical manipulation and physical probing. Due to the nature of these attacks (especially manipulation) the TOE can by no means detect attacks on all of its elements. Therefore, permanent protection against these attacks is required ensuring that the TSP could not be violated at any time. Hence, "automatic response" means here (i) assuming that there might be an attack at any time regardless power-on and (ii) countermeasures are provided at any time regardless power-on. ¹² This must be evaluated for the final smartcard product. ¹³ [assignment: physical tampering scenarios] ¹⁴ [assignment: list of TSF devices/elements] ### Leakage When the Smartcard processes User Data and/or TSF Data, information about these data may be leaked by signals which can be measured. An attacker may also cause malfunctions or perform manipulations of the TOE in order to cause the TOE to leak information. The analysis of those measurement data can lead to the disclosure of User Data and other critical data. Examples are given in [BSI-PP-0002, Section 8.3]. The security functional requirements "Basic internal transfer protection (FDP ITT.1)" and "Basic internal TSF data transfer protection (FPT ITT.1)" have been selected to ensure that the TOE must resist leakage attacks (both for User Data and TSF data). The corresponding security policy is defined in the security functional requirement "Subset information flow control (FDP_IFC.1)". These security functional requirements address inherent leakage. With respect to forced leakage they have to be considered in combination with the security functional requirements "Limited fault tolerance (FRU FLT.2)" and "Failure with preservation of secure state (FPT FLS.1)" on the one hand and "Resistance to physical attack (FPT PHP.3)" on the other. The TOE shall meet the requirement "Basic internal transfer protection (FDP_ITT.1)" as specified below. FDP_ITT.1 Basic internal transfer protection Hierarchical to: No other components. The TSF shall enforce the Data Processing Policy 15 to prevent the FDP ITT.1.1 disclosure 16 of user data when it is transmitted between physically separated parts of the TOE. [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information Dependencies: flow control] Refinement: The different memories, the CPU and other functional units of the TOE (e.g. a cryptographic co-processor, the DMA controller) are seen as physically separated parts of the TOE. The DATA Processing Policy is defined under FDP_IFC.1 below. The TOE shall meet the requirement "Basic internal TSF data transfer protection (FPT ITT.1)" as specified below. **FPT_ITT.1** (1) Basic internal TSF data transfer protection Hierarchical to: No other components. The TSF shall protect TSF data from disclosure 17 when it is transmitted FPT_ITT.1.1 between separate parts of the TOE. ¹⁵ [assignment: access control SFP(s) and/or information flow control SFP(s)] ¹⁶ [selection: disclosure, modification, loss of use] ¹⁷ [selection: disclosure, modification] Dependencies: No dependencies. Refinement: The different memories, the CPU and other functional units of the TOE are seen as separated parts of the TOE. This requirement is equivalent to FDP ITT.1 above but refers to TSF data instead of User Data. Therefore, it should be understood as to refer to the same Data Processing Policy defined under FDP IFC.1 below. The TOE shall meet the requirement "Subset information flow control (FDP_IFC.1)" as specified below: FDP IFC.1 Subset information flow control Hierarchical to: No other components. The TSF shall enforce the Data Processing Policy¹⁸ on all confidential FDP_IFC.1.1 data when they are processed or transferred by the TOE or by the Smartcard Embedded Software¹⁹. Dependencies: FDP IFF.1 Simple security attributes The following Security Function Policy (SFP) Data Processing Policy is defined for the requirement "Subset information flow control (FDP IFC.1)": #### Data processing Policy: User Data and TSF data shall not be accessible from the TOE except when the Smartcard Embedded Software decides to communicate the User Data via an external interface. The protection shall be applied to confidential data only but without the distinction of attributes controlled by the Smartcard Embedded Software. #### Random Numbers The TOE generates random numbers. To define the IT security functional requirements of the TOE an additional family (FCS_RND) of the Class FCS (cryptographic support) is defined in [BSI-PP-0002, Section 8.4]. This class FCS_RND Generation of random numbers describes the functional requirements for random number generation used for cryptographic purposes. The TOE shall meet the requirement "Quality metric for random numbers (FCS_RND.1)" as specified below (Common Criteria Part 2 extended). FCS_RND.1 Quality metric for random numbers FCS RND.1.1 The TSF shall provide a mechanism to generate random numbers that meet the functionality class K3 and the strength of mechanism:high of [AIS20] and standard level of French cryptographic robustness level in ¹⁸ [assignment: information flow control SFP] ¹⁹ [assignment: list of subjects, information, and operations that cause controlled information to flow to and from controlled subjects covered by the SFP] [REF_CRY]. 20. Dependencies: No dependencies. ## Application note; The random number generator conforms to the functionality class K3 and the strength of mechanism:high of [AIS20] and also satisfies standard level of French cryptographic robustness level in [REF_CRY] using the DES co-processor. And algorithm is conformed to ANSIX9.42-2001 Annex C.2. # Cryptographic Support The TOE provides a DES coprocessor, which can be used to implement single or triple DES. This SFR is additional requirement derived from "Smartcard Integrated Circuit Platform Augmentations, v1.0, march 2002". FCS_COP.1 (1) Cryptographic operation Hierarchical to: No other components. FCS_COP.1.1 The TSF shall perform encryption and decryption²¹ in accordance with a specified cryptographic algorithm *Data Encryption Standard* $(DES)^{22}$ and cryptographic key sizes of 56 bit²³ that meet the following standards²⁴: U.S. Department of Commerce / National bureau of Standards Data Encryption Standard (DES), FIPS PUB 46-3, 1999 October 25. Dependencies: [FDP_ITC.1 Import of user data without security attributes or FCS_CKM.1 Cryptographic key generation] FCS_CKM.4 Cryptographic key destruction FMT MSA.2 Secure security attributes FCS_COP.1 (2) Cryptographic operation Hierarchical to: No other components. FCS COP.1.1 The TSF shall perform encryption and decryption²⁵ in accordance with a specified cryptographic algorithm *Triple Data Encryption Standard* (3DES) ²⁶ and cryptographic key sizes of 112 bit ²⁷ that meet the following standards²⁸. ²⁰ [assignment of Quality metric for Random number is under consideration.] ²¹ [assignment: list of crypto-graphic operations] ²² [assignment: cryptographic algorithm] ²³ [assignment: cryptographic key size] ²⁴ [assignment: list of standard] ²⁵ [assignment: list of crypto-graphic operations] ²⁶ [assignment: cryptographic algorithm] ²⁷ [assignment: cryptographic key size] ²⁸ [assignment: list of standard] U.S. Department of Commerce / National bureau of Standards Data Encryption Standard (DES), FIPS PUB 46-3, 1999 October 25, keying option 2 Dependencies: [FDP_ITC.1 Import of user data without security attributes or FCS_CKM.1 Cryptographic key generation] FCS_CKM.4 Cryptographic key destruction FMT_MSA.2 Secure security attributes The following are the additional SFRs to [BSI-PP-0002] # Controlled Access Memory The TOE provides functions to protect FRAM against illegal exploitation of
FRAM data. **FDP_ACC.1** Subset access control Hierarchical to: No other components. FDP_ACC.1.1 The TSF shall enforce the Controlled Access Memory Policy²⁹ on read or write operations performed on memory by any software code 30. Dependencies: FDP_ACF.1 Security attribute based access control **FDP_ACF.1** Security Attribute based access control Hierarchical to: No other components. FDP_ACF.1.1 The TSF shall enforce the Controlled Access Memory Policy³¹to objects based on the following: - Subject: software code, - Object: FRAM, with the security attribute: accessible_area. 32 FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed: - If a software code performs a read or write access attempt on FRAM out of the address range specified in accessible area attribute, then an interrupt request is output to CPU. FDP_ACF.1.3 The TSF shall explicitly authorize access of subjects to objects based on the following additional rules: [none]³³. FDP ACF.1.4 The TSF shall explicitly deny access of subjects to objects based on the ²⁹ [assignment: access control SFP] ³⁰ [assignment: list of subjects, objects, and operations among subjects and objects covered by the SFP] ³¹ [assignment: access control SFP] ³² [assignment: list of subjects and objects controlled under the indicated SFP, and, for each, the SFP-relevant security attributes, or named groups of SFP-relevant security attributes] ³³ [assignment: rules, based on security attributes, that explicitly authorize access of subjects to objects] $Inonel^{34}$. Dependencies: FDP_ACC.1 Subset access control FMT_MSA.3 Static attribute initialization FMT_MSA.3 Static attributes initialization Hierarchical to: No other components. The TSF shall enforce the Controlled Access Memory Policy³⁵ to provide FMT_MSA.3.1 restrictive³⁶ default values for security attributes that are used to enforce the SFP. FMT MSA.3.2 The TSF shall allow the IC dedicated software 37 to specify alternative initial values to override the default values when an object or information is created. Dependencies: FMT_MSA.1 Management of security attributes FMT_SMR.1 Security roles FMT MSA.1 Management of security attributes Hierarchical to: No other components. The TSF shall enforce the *Controlled Access Memory Policy*³⁸ to restrict the ability to *modify*³⁹ the security attributes *accessible_area*⁴⁰ to *IC* FMT_MSA.1.1 dedicated software⁴¹. Dependencies: [FDP_ACC.1 Subset access control or FDP_IFC.1 Subset information flow control] FMT_SMF.1 specification of management functions FMT_SMR.1 Security roles FMT SMR.1 Security role Hierarchical to: No other components. The TSF shall maintain the roles IC dedicated software⁴². FMT_SMR.1.1 FMT SMR.1.2 The TSF shall be able to associate users with roles. Dependencies: FIA_UID.1 Timing of identification ³⁴ [assignment: rules, based on security attributes, that explicitly deny access of subjects to objects] ³⁵ [assignment: access control SFP, information flow control SFP] ³⁶ [selection: choose one of: restrictive, permissive, [assignment: other property]] ³⁷ [assignment: the authorized identified roles] ³⁸ [assignment: access control SFP, information flow control SFP] ³⁹ [selection: change_default, query, modify, delete, [assignment: other operations]] ⁴⁰ [assignment: list of security attributes] ^{41 [}assignment: the authorized identified roles] ⁴² [assignment: the authorized identified roles] Application note: This requirement is intended to identify the roles that will be authorized to modify the security attribute accessible_area. **FMT_SMF.1** Specification of Management Functions Hierarchical to: No other components. FMT_SMF.1.1 The TSF shall be capable of performing the following security management functions: management of protected FRAM area⁴³. Dependencies: No Dependencies These security functional requirements address the following Security Function Policy: ### Controlled Access Memory Policy The TOE shall monitor the FRAM memory in order to prevent a software code from gaining read or write access to protected FRAM areas. When the TOE detects an illegal access attempt, it notifies the software code with a CPU interrupt. The TOE shall allow the IC dedicated software to modify the protected FRAM area boundaries. #### **Memory Integrity** The TOE provides functions to protect FRAM against unauthorized modification of FRAM data. | FDP | SDI.2 | Stored data | integrity | and monitoring | |------------|-------|-------------|-----------|----------------| |------------|-------|-------------|-----------|----------------| FDP_SDI.2.1 The TSF shall monitor user data stored within the TSC for *integrity errors* of FRAM read or write data⁴⁴ on all objects, based on the following attributes: verification of FRAM read or write data by Cyclic Redundancy Check⁴⁵. FDP SDI.2.2 Upon detection of a data integrity error, the TSF shall notify the smartcard embedded software via the IC dedicated software⁴⁶. Dependencies: No dependencies FPT_ITT.3 TSF data integrity monitoring FPT_ITT.3.1 The TSF shall be able to detect a data integrity error on FRAM⁴⁷ for TSF data transmitted between separate parts of the TOE. FPT ITT.3.2 Upon detection of a data integrity error, the TSF shall take the following ⁴³ [assignment: list of security management functions to be provided by the TSF] ^{44 [}assignment: integrity errors] ^{45 [}assignment: user data attributes] ^{46 [}assignment: action to be taken] ⁴⁷ [selection: modification of data, substitution of data, re-ordering of data, deletion of data, [assignment: other integrity errors]] actions: - notify error message to the smartcard embedded software via the IC dedicated software. ⁴⁸. Dependencies: FPT_ITT.1 Basic internal TSF data transfer protection **FPT_ITT.1** (2) Basic internal TSF data transfer protection Hierarchical to: No other components. FPT_ITT.1.1 The TSF shall protect TSF data from *modification*⁴⁹ when it is transmitted between separate parts of the TOE. Dependencies: No Dependencies These security functional requirements address the following Security Function Policy: ## FRAM Memory Integrity Policy The TOE shall monitor the FRAM memory to protect user data and TSF data stored in the specified FRAM areas against modification. Upon detection of an integrity error, the IC dedicated software shall notify the smartcard embedded software. - ⁴⁸ [assignment: specify the action to be taken] ⁴⁹ [selection: disclosure, modification] ### **5.1.2 TOE Assurance Requirements** In this section, the Assurance Requirements of EAL4 augmented are described according to [BSI-PP-0002]. Then they have to conform to Common Criteria v2.3. The Assurance Requirements for the evaluation of the TOE and its development and operating environment are those taken from the Evaluation Assurance Level 4 (EAL4) and augmented by taking the following components: ADV_IMP.2 ALC_DVS.2 AVA_MSU.3 AVA_VLA.4 The assurance requirements are: Evaluation of Security Target (Class ASE) Development activities (Class ADV) Functional Specification (Component ADV_FSP.2) Security Policy Modeling (Component ADV_SPM.1) High-Level Design (Component ADV_HLD.2) Low-Level Design (Component ADV_LLD.1) Implementation Representation (Component ADV_IMP.2) Representation Correspondence (Component ADV_RCR.1) Tests activities (Class ATE) Coverage (Component ATE_COV.2) Depth (Component ATE_DPT.1) Functional Tests (Component ATE_FUN.1) Independent Testing (Component ATE IND.2) Delivery and operation activities (Class ADO) Delivery (Component ADO_DEL.2) Installation, generation, and start-up (Component ADO_IGS.1) Guidance documents activities (Class AGD) Administrator Guidance (Component AGD_ADM.1) User guidance (Component AGD USR.1) Configuration management activities (Class ACM) CM automation (Component ACM_AUT.1) CM Capabilities (Component ACM_CAP.4) CM Scope (Component ACM_SCP.2) Life cycle support activities (Class ALC) Development Security (Component ALC DVS.2) Life Cycle Definition (Component ALC LCD.1) Tools and Techniques (Component ALC_TAT.1) Vulnerability assessment activities (Class AVA) Misuse (Component AVA_MSU.3) Strength of TOE Security Functions (Component AVA_SOF.1) Vulnerability Analysis (Component AVA_VLA.4) The minimum strength of security functions for the TOE is SOF-high (Strength of Functions High). ### 5.1.3 Refinements of the TOE Assurance Requirements Refinements of the following assurance requirements are described in [BSI-PP-0002, Section 5.1.3]. They are required by [BSI-PP-0002] and shall support the comparability of evaluations according to [BSI-PP-0002]. Refinements regarding Delivery (ADO_DEL) Refinements regarding Development Security (ALC_DVS) Refinement regarding CM scope (ACM SCP) Refinement regarding CM capabilities (ACM_CAP) Refinements regarding Functional Specification (ADV_FSP) Refinement regarding Test Coverage (ATE_COV) Refinement regarding Installation, Generation and Start-up (ADO_IGS) Refinement regarding User Guidance (AGD_USR) Refinement regarding Administrator Guidance (AGD ADM) Additional Guidance regarding Vulnerability Analysis (AVA_VLA)" and Strength of Functions (AVA_SOF) Note that [BSI-PP-0002, Section 5.1.3] is not mandatory according to the Common Criteria. The Refinements of the TOE Assurance Requirements take into account the peculiarities of the smartcard development and production process (card's life-cycle). The Refinements of assurance requirements are described according to [BSI-PP-0002, Section 5.1.3] and are modified in order to conform the CC v2.3. ### Refinements regarding Delivery (ADO_DEL) ## Introduction The Common Criteria assurance component of the family ADO_DEL (delivery) refer to the delivery of (i) the TOE or parts of it (ii) to the user or user's site. The Common Criteria assurance component ADO_DEL.2 requires procedures and technical measures to detect modifications. In the particular case of a Smartcard Integrated
Circuit more "material and information" than the TOE itself (which by definition includes the necessary guidance) is exchanged with "users". Therefore, considering the definition of the Common Criteria the following refinement is made regarding the items "TOE" and "to the user or user's site": The following text reflects the requirements of the selected component ADO DEL.2: Developer action elements: ADO_DEL.2.1D The developer shall document procedures for delivery of the <u>TOE or parts</u> of it to the user. ADO_DEL.2.2D The developer shall use the delivery procedures. Content and presentation of evidence elements: ADO_DEL.2.1C The delivery documentation shall describe all procedures that are necessary to maintain security when distributing versions of the TOE to a user's site. ADO_DEL.2.2C The delivery documentation shall describe how the various procedures and technical measures provide for the detection of modifications, or any discrepancy between the developer's master copy and the version received at the user site. ADO_DEL.2.3C The delivery documentation shall describe how the various procedures allow detection of attempts to masquerade as the developer, even in cases in which the developer has sent nothing to the user's site. #### Evaluator action elements: ADO_DEL.2.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence. #### Refinement For delivery "to the user" or "the user's site", all the external interfaces of the TOE Manufacturer have to be taken into account. These are: - the interface with the Smartcard Embedded Software Developer (Phase 1) where information about the smartcard integrated circuit, development software and/or tools for software development, IC pre-personalisation requirements and the Smartcard Embedded Software are exchanged and - the interface with the Phase after TOE Delivery (Phase 4) where pre -personalisation data, information about tests, and the product in form of wafers, sawn wafers (dice) are exchanged. All assets identified in Section 3.1 and additionally described in [BSI-PP-0002, Section 8.1.2] (if being exchanged) have to be taken into account in order to avoid any tampering with the actual version or substitution of a false version (including unauthorised modification or replacement) as specified in the Common Criteria. # Refinements regarding Development Security (ALC_DVS) #### Introduction The Common Criteria assurance component of the family ALC_DVS refer (i) to "Development environment", (ii) to the "TOE" or "TOE design and implementation". The component ALC_DVS.2 requires additional evidence for the sufficiency of the security measures. In the particular case of a Smartcard Integrated Circuit the TOE is developed and produced within a complex industrial process that must especially be protected. Therefore, considering the definition of the Common Criteria the following refinement is made regarding the items "development environment", "TOE" or "TOE design and implementation" and the confirmation of the application of the security measures: The following text reflects the requirements of the selected component ALC_DVS.2: Developer action elements: ALC_DVS.2.1D The developer shall produce development security documentation. Content and presentation of evidence elements: ALC_DVS.2.1C The development security documentation shall describe all the physical, procedural, personnel, and other security measures that are necessary to protect the confidentiality and integrity of the <u>TOE design and implementation</u> in its <u>development environment</u>. ALC_DVS.2.2C The development security documentation shall provide evidence that these security measures are followed during the development and maintenance of the <u>TOE</u>. ALC_DVS.2.3C The evidence shall justify that the security measures provide the necessary level of protection to maintain the confidentiality and integrity of the <u>TOE</u>. Evaluator action elements: ALC_DVS.2.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence. ALC_DVS.2.2E The evaluator shall confirm that the security measures are being applied. #### Refinement The "development environment" as referred to in the Common Criteria covers both, the development (Phase 2) and the production (at least Phase 3) of the TOE. The scope of the requirement of "Development Security (ALC_DVS)" pertains to the Phase 2 up to TOE Delivery. These phases are under the control of the TOE Manufacturer. The IC Designer or IC Manufacturer is responsible to guarantee confidentiality and authenticity on the interface within Phase 3 where the necessary part of the smartcard IC database is delivered to the IC Mask Manufacturer and the IC photomasks are received by the IC manufacturer. Mask manufacturing is covered by this Security Target and considered under the Common Criteria assurance component of the family ALC_DVS (development security) since the manufacturer of the TOE cannot delegate any responsibility here. The certification body has to decide on a case-by-case decision how to handle this if the mask manufacturing is outsourced. "TOE design and implementation" must be understood as comprising all material and information related to the development and production of the TOE. Therefore, all assets identified in Section 3.1and [BSI-PP-0002, Section 8.1.2] (referred to as information and material in the following paragraphs) have to be taken into account in order to ensure confidentiality and integrity (including unauthorised disclosure, unauthorized modification or replacement and theft) as specified in the Common Criteria. The evaluator action includes assessment of all sites being involved in the development and production of the product. Sometimes standard cells (such as standard gates, standard memories) are used for the TOE as well as in other products. The corresponding items are produced and/or processed (also) in other sites where not all requirements may be applicable for practical reasons. For those assets, the certification body has to decide on a case-by-case decision how to handle these assets within a specific evaluation. Whenever material and information is given to external partners (such as the developer of the Smartcard Embedded Software) the latter must be obliged by an Non Disclosure Agreement to treat the material and information as it is required for the TOE Manufacturer. #### Guidance Additionally, the following guidance is given, in order to fulfil the requirements of the Common Criteria assurance family ALC_DVS. There are restrictions resulting from the nature of the material and information. But in addition there are general requirements for the organisation of an industrial complex like a semiconductor manufacturer. All sensitive information and material shall be forwarded on a need-to-know basis. To guarantee the confidentiality of information each department must have a clear interface to other departments or partners. It must be ensured that the material and information being exchanged is limited to what is absolutely needed by the other partner to do the work he is responsible for. Roles and responsibilities of departments and teams shall be well defined. This includes the content and the extent of the work to be done. Responsibilities and competence of individuals (including managers) shall be defined. All departments should consider that they contribute to develop and produce a security product. Defined procedures must be adhered to - and their significance has to be understood by the personnel. The process procedures shall especially define requirement for secure communication and distribution of data, documents and material between the different development and production departments and to external companies and their departments the chip manufacturer works with. Confidentiality and integrity of data have to be preserved during the whole developing and manufacturing cycle. The hardware design department shall provide sufficient information to the department developing the IC Dedicated Software regarding inherent hardware security mechanisms in order to allow the latter to appropriately use the hardware. On the other hand this information shall be limited as far as possible. All sensitive information and material must be stored in a secure way to ensure confidentiality and to avert unauthorised access. Appropriate measures for physical protection include but are not limited to admittance control, airlock, fences, camera supervision, locked doors and windows, safes, locked cupboards, alarm systems, burglary proof buildings. Appropriate measures to protect data files include but are not limited to logon procedures, access control, encryption, firewall systems, isolation of computers and local networks, audit and accountability. Appropriate procedures and means for the disposal and destruction of wafers, dies and chips failed during the performed tests have to be provided in co-ordination with the requirements for traceability (refer to the sub-section "Refinement regarding 'Configuration Management (ACM)'"). Whenever material and information is given to external partners (such as the developer of the Smartcard Embedded Software) the latter must be obliged by an Non Disclosure Agreement to treat the material and information as it is required for the TOE Manufacturer. #### Refinement regarding CM scope (ACM_SCP) #### Introduction The Common Criteria assurance component of the family ACM_SCP (CM scope) refers to the requirements of the items to be included configuration items and hence placed under the CM requirements of ACM_CAP. In the particular case of a Smartcard Integrated Circuit it is helpful to clarify the scope of the configuration item "TOE implementation representation": The following text reflects the requirements of the selected component ACM_SCP.2: Developer action elements:
ACM_SCP.2.1D The developer shall provide a list of configuration items for the TOE. Content and presentation of evidence elements: ACM_SCP.2.1C The list of configuration items shall include the following: implementation representation; security flaws; and the evaluation evidence required by the assurance components in the ST. Evaluator action elements: ACM_SCP.2.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence. #### Refinement The "TOE implementation representation" within the scope of the CM shall include at least: - Logical design data, - Physical design data, - IC Dedicated Software, - Smartcard Embedded Software, - Final physical design data necessary to produce the photomasks, and - Photomasks and products in any form. ## Refinement regarding CM capabilities (ACM_CAP) #### Introduction The Common Criteria assurance component of the family ACM_CAP (CM capabilities) refers to the capabilities of a CM system. The component ACM_CAP.4 refers to "configuration items" and "configuration list" and uses the term "TOE" in addition. In the particular case of a Smartcard Integrated Circuit the scope of "configuration items" and the meaning of "TOE" in this context need to be clarified: The following text reflects the requirements of the selected component ACM_CAP.4: Developer action elements: ACM_CAP.4.1D The developer shall provide a reference for the <u>TOE</u>. ACM_CAP.4.2D The developer shall use a CM system. ACM_CAP.4.3D The developer shall provide CM documentation. Content and presentation of evidence elements: - ACM_CAP.4.1C The reference for the TOE shall be unique to each version of the TOE. - ACM_CAP.4.2C The TOE shall be labelled with its reference. - ACM_CAP.4.3C The CM documentation shall include a configuration list, a CM plan, and an acceptance plan. - ACM_CAP.4.4C The configuration list shall uniquely identify all configuration items that comprise the TOE. - ACM_CAP.4.5C The configuration list shall describe the configuration items that comprise the TOE. - ACM_CAP.4.6C The CM documentation shall describe the method used to uniquely identify the configuration items that comprise the TOE. - ACM_CAP.4.7C The CM system shall uniquely identify all configuration items that comprise the TOE. - ACM CAP.4.8C The CM plan shall describe how the CM system is used. - ACM_CAP.4.9C The evidence shall demonstrate that the CM system is operating in accordance with the CM plan. - ACM_CAP.4.10C The CM documentation shall provide evidence that all <u>configuration items</u> have been and are being effectively maintained under the CM system. - ACM_CAP.4.11C The CM system shall provide measures such that only authorised changes are made to the configuration items. - ACM_CAP.4.12C The CM system shall support the generation of the TOE. - ACM_CAP.4.13C The acceptance plan shall describe the procedures used to accept modified or newly created configuration items as part of the TOE. Evaluator action elements: ACM_CAP.4.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence. #### Refinement "Configuration items" comprise all items defined and refined under ACM_SCP (see above) to be tracked under CM. The item "Smartcard Embedded Software" is only relevant for the configuration list as far as the TOE manufacturer can control it since the Smartcard Embedded Software is developed by another company and not part of the TOE though delivered together with it. If specific requirements are not applicable for standard cells (such as standard gates, standard memories) being also used in other products, the certification body has to decide on a case-by-case decision how to handle them within the evaluation. The term "TOE" shall be read as comprising all results built on the basis of the data sources. The results are - Final physical design data necessary to produce the photomasks, - Photomasks and product, Photomasks and products must be uniquely traceable to above "configuration items". A production control system has to be applied to guarantee the traceability and completeness of different production charges or lots. The number of wafers, dies and chips must be tracked by this system. Appropriate administration procedures have to be provided for managing wafers, dies or complete chips, which are being removed from the production-process in order to verify and to control predefined quality standards and production parameters. It has to be controlled that these wafers or dies are returned to the same production stage from which they are taken; otherwise they have to be destroyed. ## Refinements regarding Functional Specification (ADV_FSP) #### Introduction The Common Criteria assurance component of the family ADV_FSP (functional specification) refer to the user-visible interface and behaviour of the TSF. It is an instantiation of the TOE security functional requirements. The functional specification has to show that all the TOE security functional requirements are addressed. It is a basis for the Test Coverage Analysis. In the particular case of a Smartcard Integrated Circuit specific design measures, which are non-functional in nature, provide security and additionally, a test tool is delivered to the user as a part of the TOE. Therefore, refinements are provided. The following text reflects the requirements of the selected component ADV_FSP.2: Developer action elements: ADV_FSP.2.1D The developer shall provide a functional specification. Content and presentation of evidence elements: ADV_FSP.2.1C The functional specification shall describe the TSF and its external interfaces using an informal style. | ADV_FSP.2.2C | The functional | specification shall | be internal | ly consistent. | |--------------|----------------|---------------------|-------------|----------------| |--------------|----------------|---------------------|-------------|----------------| ADV_FSP.2.3C The functional specification shall describe the purpose and method of use of all external TSF interfaces, providing complete details of all effects, exceptions and error messages. ADV FSP.2.4C The functional specification shall completely represent the TSF. ADV_FSP.2.5C The functional specification shall include rationale that the TSF is completely represented. #### Evaluator action elements: ADV_FSP.2.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence. ADV_FSP.2.2E The evaluator shall determine that the functional specification is an accurate and complete instantiation of the TOE security functional requirements. #### Refinement The Functional Specification is expected also to specify the operating conditions of the TOE. These conditions include but are not limited to the frequency of the clock, the power supply, and the temperature. The Functional Specification is expected to refer to measures against physical attacks in a more general way only, but detailed enough to be able to support Test Coverage Analysis also for those measures where inspection of the layout is of relevance. Although the IC Dedicated Test Software is a part of the TOE, the test functions of the IC Dedicated Test Software are not described in the Functional Specification because the IC Dedicated Test Software is considered as a test tool delivered with the TOE but not providing security functions for the operational phase of the TOE. All functions and mechanisms which control access to the functions provided by the IC Dedicated Test Software (refer to the security functional requirement Limited availability (FMT LIM.2)) must at least be referred to within the Functional Specification. Details can be given in the document for "Installation, Generation and Start-up (ADO_IGS)", refer to [BSI-PP-0002, Section 5.1.3.7.] In addition, all these functions and mechanisms must subsequently be refined according to all relevant requirements of the Common Criteria assurance class ADV because these functions and mechanisms are active after TOE Delivery and need to be part of the assurance aspects Tests (class ATE) and Vulnerability Assessment (class AVA). Therefore, all necessary information must be provided to allow tests and vulnerability assessment. ### Refinement regarding Test Coverage (ATE COV) ## Introduction The Common Criteria assurance component of the family ATE_COV (test coverage) "addresses the extent to which the TSF is tested, and whether or not the testing is sufficiently extensive to demonstrate that the TSF operates as specified." The following text reflects the requirements of the selected component ATE_COV.2: Developer action elements: ATE COV.2.1D The developer shall provide an analysis of the test coverage. Content and presentation of evidence elements: ATE_COV.2.1C The analysis of the test coverage shall demonstrate the correspondence between the tests identified in the test documentation and the TSF as described in the functional specification. ATE_COV.2.2C The analysis of the test coverage shall demonstrate that the correspondence between the TSF as described in the functional specification and the tests identified in the test documentation is complete. Evaluator action elements: ATE_COV.2.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence. #### Refinement The TOE must be tested under different operating conditions (at least) within the specified ranges. These conditions include but are not limited to the frequency of the clock, the power supply, and the temperature. This means that "Limited fault tolerance (FRU_FLT.2)" must be proven for all TSF (including the TOE's random number generator, refer to the functional requirement FCS_RND.1). The tests must also cover functions which may be affected by "ageing" (such as FRAM writing). The existence and effectiveness of measures against physical attacks
(as specified by the functional requirement FPT_PHP.3) cannot be tested in a straightforward way. Instead the TOE Manufacturer shall provide evidence that the TOE actually has the particular physical characteristics (especially layout design principles). This can be done by checking the layout (implementation or actual integrated circuit) in an appropriate way. The required evidence pertains to the existence of measures against physical attacks (unless being obvious) but will cover only a subset of the characteristics against physical attacks. The IC Dedicated Test Software is seen as a "test tool" being delivered as part of the TOE. However, the Test Features do not provide security functions and are not used after TOE Delivery. Therefore, Test Features need not to be covered by the Test Coverage Analysis but all functions and mechanisms that control access to the functions provided by the IC Dedicated Test Software must be part of the Test Coverage Analysis. Refinement regarding Installation, Generation and Start-up (ADO IGS) ### Introduction The life-cycle model to be described under the Common Criteria assurance component of the family ALC_LCD refers to organisational and procedural controls such as design methods, review procedures, project management controls, change control procedures, test methods and acceptance procedures. TOE configuration and administration is subject to the Common Criteria assurance component of the families ADO_IGS and AGD_ADM. The requirements of the Common Criteria assurance family ADO_IGS "call for a secure transition from the TOE's implementation representation being under configuration control to its initial operation in the user environment." "The requirements in this assurance family are presented separately from those in the AGD_ADM family, due to the infrequent, possibly one-time use of the installation, generation and start-up procedures." Though the TOE is not delivered and then configured, its configuration needs to be addressed as a specific aspect since these procedures may affect the overall security. Therefore, the terms "installation" and "generation" need to be refined: The following text reflects the requirements of the selected component ADO_IGS.1: Developer action elements: ADO_IGS.1.1D The developer shall document procedures necessary for the secure installation, generation, and start-up of the TOE. Content and presentation of evidence elements: ADO_IGS.1.1C The installation, generation, and start-up documentation shall describe all the steps necessary for secure installation, generation, and start-up of the TOE. Evaluator action elements: ADO_IGS.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence. ADO_IGS.1.2E The evaluator shall determine that the installation, generation, and start-up procedures result in a secure configuration. ## Refinement The TOE may be configured after production before the Smartcard is delivered to the end-user (this would be addressed by security functional requirement Limited availability (FMT_LIM.2)). In this case, these configuration aspects have to be considered. Differences between the TOE before first use (normally done during wafer test) and Phase 7 must be summarised. Guidance to change that behaviour must exist. Regarding technical details, the documentation provided by the developer can refer to documents provided for the Common Criteria class ADV. Note that most of the security functions will already be effective before TOE Delivery. However, guidance to determine the behaviour of Security Functions, to disable, to enable or to modify the behaviour of Security Functions must be given as follows: - If configuration of a Security Function of the TOE done before TOE Delivery (that means by the TOE Manufacturer) the corresponding guidance is given under the assurance component of the family ADO_IGS. Note that this document is an internal document of the TOE Manufacturer and not delivered to their customers. - If administration of a Security Function of the TOE is done after TOE Delivery (that means by the Card Manufacturer) the corresponding guidance must be in the Administrator Guidance (refer to the Common Criteria assurance component of the family AGD_ADM) as it shall describe how to administer the TOE in a secure manner. This guidance document is delivered by the TOE Manufacturer. Guidance documents must not contain security relevant details that are not absolutely necessary for the administration actually to be done. #### Refinement regarding User Guidance (AGD_USR) Introduction The Common Criteria assurance components of the families AGD_USR (user guidance) and AGD_ADM (administrator guidance) "describe all relevant aspects for the secure application of the TOE." The terms "user" and "administrator" are used. In the case of a Smartcard Integrated Circuit the meaning of the terms "user" and "Administrator" are not obvious. Therefore, the following refinements are given regarding guidance. User guidance refers to material that is intended to be used by non-administrative human users of the TOE, and by others (e.g. programmers) using the TOE's external interfaces. User guidance describes the security functions provided by the TSF and provides instructions and guidelines, including warnings, for its secure use. The following text reflects specific requirements of the selected component AGD_USR.1: Developer action elements: AGD_USR.1.1D The developer shall provide <u>user</u> guidance. Content and presentation of evidence elements: | AGD_USR.1.1C | The user guidance shall describe the functions and interfaces available to | |--------------|--| | | the non-administrative users of the TOE. | - AGD_USR.1.2C The user guidance shall describe the use of user-accessible security functions provided by the TOE. - AGD_USR.1.3C The user guidance shall contain warnings about user-accessible functions and privileges that should be controlled in a secure processing environment. - AGD_USR.1.4C The user guidance shall clearly present all user responsibilities necessary for secure operation of the TOE, including those related to assumptions regarding user behavior found in the statement of TOE security environment. - AGD_USR.1.5C The user guidance shall be consistent with all other documentation supplied for evaluation. AGD_USR.1.6C The user guidance shall describe all security requirements for the IT environment that are relevant to the user. Evaluator action elements: AGD_USR.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence. #### Refinement The TOE serves as a platform for the Smartcard Embedded Software. Therefore, the "user" of the TOE (as used in the Common Criteria assurance class AGD: guidance) is the Smartcard Embedded Software. - User Guidance (refer to the Common Criteria assurance component of the family AGD_USR) must be given to the developer of the Smartcard Embedded Software to ensure that the Smartcard Embedded Software properly uses the TOE. On the other hand the Smartcard (with the TOE as a major element) is used in a terminal where communication is performed through the ISO interface provided by the TOE. Therefore, another "user" of the TOE is the terminal (with its software). - User Guidance (refer to the Common Criteria assurance component of the family AGD_USR) must be given to the developer of the terminal. However, this is only little information about the physical characteristics of the device, the ISO interface and perhaps standard protocols (such as T=1 if implemented in the TOE). Other information could be needed if the TOE provides other services in the end-user phase (Phase 7, refer to [BSI-PP-0002, Section 8.1]) that may be augmented to this Security Target. The User Guidance documents should provide only the information that is necessary for using the TOE. Depending on the recipient of that guidance documentation User and Administrator Guidance can be given in the same document. After production the TOE is tested where communication is performed by directly contacting the pads that mostly become part of the ISO interface during packaging. Here no guidance document according to Common Criteria class AGD is required (provided that the tests are performed by the TOE Manufacturer). Note that test procedures are described under the Common Criteria assurance component of the family ATE_FUN. #### Refinement regarding Administrator Guidance (AGD ADM) Introduction Administrator guidance refers to written material that is intended to be used by those persons responsible for configuring, maintaining, and administering the TOE in a correct manner for maximum security. The following text reflects specific requirements of the selected component AGD ADM.1: Developer action elements: AGD_ADM.1.1D The developer shall provide administrator guidance addressed to system ### administrative personnel. Content and presentation of evidence elements: - AGD_ADM.1.1C The administrator guidance shall describe the administrative functions and interfaces available to the administrator of the TOE. - AGD_ADM.1.2C The administrator guidance shall describe how to administer the TOE in a secure manner. - AGD_ADM.1.3C The administrator guidance shall contain warnings about functions and privileges that should be controlled in a secure processing environment. - AGD_ADM.1.4C The administrator guidance shall describe all assumptions regarding user behavior that are relevant to secure operation of the TOE. - AGD_ADM.1.5C The administrator guidance shall describe all security parameters under the control of the administrator, indicating secure values as appropriate. - AGD_ADM.1.6C The administrator guidance shall describe each type of security-relevant event relative to the administrative functions that need to be performed,
including changing the security characteristics of entities under the control of the TSF. - AGD_ADM.1.7C The administrator guidance shall be consistent with all other documentation supplied for evaluation. - AGD_ADM.1.8C The administrator guidance shall describe all security requirements for the IT environment that are relevant to the administrator. Evaluator action elements: AGD_ADM.1.1E The evaluator shall confirm that the information provided meets all requirements for content and presentation of evidence. #### Refinement If the TOE provides security functions which can or need to be administrated (i) by the Smartcard Embedded Software or (ii) using services of the TOE after TOE Delivery (refer to Section 2.2) Administrator Guidance must be given in addition. Most of the security functions will already be effective before TOE Delivery. However, guidance to determine the behaviour of Security Functions, to disable, to enable or to modify the behaviour of Security Functions must be given if administration of a Security Function is done after TOE Delivery (that means by the Card Manufacturer). This guidance document is delivered by the TOE Manufacturer. Guidance documents must not contain security relevant details that are not absolutely necessary for the administration actually to be done. Depending on the recipient of that guidance documentation User and Administrator Guidance can be given in the same document. Additional Guidance regarding Vulnerability Analysis (AVA_VLA)" and Strength of Functions (AVA SOF) When rating attack potential according to the Common Methodology for Information Technology Security Evaluation (CEM), Part 2: Evaluation Methodology for the assurance aspects Vulnerability Analysis and Strength of Functions, as expertise of an attacker it is distinguished between "expert", "proficient" and "laymen". With respect to the knowledge of the TOE it is distinguished between "no information about the TOE", "public information concerning the TOE", and "sensitive information about the TOE". The information gained from a user guide is given as an example for public information concerning the TOE. This is not applicable here since the protection of such information is demanded according to this Security Target (refer to refinement regarding "Development Security (ALC_DVS)"). During the Vulnerability Analysis it must be assessed that the functions provided by the IC Dedicated Test Software cannot be abused after TOE Delivery (refer to the security functional requirements FMT_LIM.1 and FMT_LIM.2). All necessary information must be provided to allow that assessment. # 5.2 Security Requirements for the Environment ## **5.2.1** Security Requirements for the IT-Environment In [BSI-PP-0002, Section 5.2.1], the security objectives for the environment will be ensured by Non-IT security requirements only (refer to the next subsection, Section 5.2.2). The following requirements for the environment are derived from "Smartcard Integrated Circuit Platform Augmentations, v1.0, march 2002" and are applicable to Smartcard Embedded Software though depending on the users. The security functional requirement "Cryptographic operation (FCS_COP.1)" met by TOE has the following dependencies - [FDP_ITC.1 Import of user data without security attributes or FCS_CKM.1 Cryptographic key generation], - FCS_CKM.4 Cryptographic key destruction, - FMT MSA.2 Secure security attributes. These requirements all address the appropriate management of cryptographic keys used by the specified cryptographic function. All requirements concerning key management shall be fulfilled by the environment since the Smartcard Embedded Software is designed for a specific application context and uses the cryptographic functions provided by the TOE. These operations cannot be performed in this Security Target because they all depend on the way the smartcard embedded software will be implemented. The environment shall meet the requirement "Import of user data without security attributes (FDP ITC.1)" or "Cryptographic key generation (FCS CKM.1)" as specified below. **FDP_ITC.1** Import of user data without security attributes Hierarchical to: No other components. FDP ITC.1.1 The TSF shall enforce the [assignment: access control SFP and/or information flow control SFP] when importing user data, controlled under the SFP, from outside of the TSC. FDP_ITC.1.2 The TSF shall ignore any security attributes associated with the user data when imported from outside of the TSC. FDP ITC.1.3 The TSF enforce the following rules when importing user data controlled under the SFP from outside the TSC: [assignment: additional importation control rules]. Dependencies: [FDP_ACC.1 Subset access control, or FDP_IFC.1 Subset information flow control] FMT MSA.3 Static attribute initialization FCS_CKM.1 Cryptographic key generation Hierarchical to: No other components. FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm [assignment: cryptographic key generation algorithm] and specified cryptographic key sizes [assignment: cryptographic key sizes] that meet the following: [assignment: list of standards]. Dependencies: [FCS CKM.2 Cryptographic key distribution or FCS COP.1 Cryptographic operation] FCS_CKM.4 Cryptographic key destruction FMT_MSA.2 Secure security attributes The environment shall meet the requirement "Cryptographic key destruction (FCS_CKM.4)" as specified below. FCS_CKM.4 Cryptographic key destruction Hierarchical to: No other components. FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method [assignment: cryptographic key destruction method] that meet the following: [assignment: list of standards]. Dependencies: [FDP_ITC.1 Import of user data without security attributes or FCS_CKM.1 Cryptographic key generation] FMT_MSA.2 Secure security attributes The environment shall meet the requirement "Secure security attributes (FMT_MSA.2)" as specified below. **FMT_MSA.2** Secure security attributes Hierarchical to: No other components. FMT_MSA.2.1 The TSF shall ensure that only secure values are accepted for security attributes. Dependencies: ADV_SPM.1 Informal TOE security policy model [FDP_ACC.1 Subset access control or FDP_IFC.1 Subset information flow controll FMT MSA.1 Management of security attributes FMT SMR.1 Security roles # 5.2.2 Security Requirements for the Non-IT-Environment In this section, security requirements for the non-IT-environment are described according to [BSI-PP-0002, Section 5.2.2]. In the following security requirements for the Non-IT-Environment are defined for the development of the Smartcard Embedded Software (in Phase 1) and the Smartcard Packaging, Finishing and Personalisation (Phases after TOE Delivery up to Phase 7). The Smartcard Embedded Software is developed in Phase 1 and must support the security functionality of the TOE. This Security Target does not directly define obligatory security functional requirements for the Smartcard Embedded Software itself, because this might restrict the implementation possibilities for the developer. Instead the following general requirement for the design and implementation of the software is stated. # RE.Phase-1 Design and Implementation of the Smartcard Embedded Software The developers shall design and implement the Smartcard Embedded Software in such way that it meets the requirements from the following documents: - (i) The TOE LSI specification [SPC], HAL Library specification [HAL], Security Recommendation Guidance [SRG] and the TOE application notes - (ii) findings of the TOE evaluation reports relevant for the Smartcard Embedded Software. The developers shall implement the Smartcard Embedded Software in a way that it protects security relevant User Data (especially cryptographic keys) as required by the security needs of the specific application context⁵⁰. The requirement RE.Phase-1 also addresses the fact that the Smartcard Embedded Software may need to support the security functions of the TOE. Examples for such security functional requirements for the Smartcard Embedded Software are given in [BSI-PP-0002, Section 8.2.2] The responsible parties for the Phases 4-6 are required to support the security of the TOE by appropriate measures: RE.Process-Card Protection during Packaging, Finishing and Personalisation The Card Manufacturer (after TOE Delivery up to the end of Phase 6) shall use adequate security measures to maintain confidentiality and integrity of the TOE and of its manufacturing and test data (to prevent any possible copy, modification, retention, theft or unauthorised use). ⁵⁰ In particular, the Smartcard Embedded Software shall not disclose secret User Data to unauthorised users or processes as defined for the application context. Similarly the Smartcard Embedded Software shall not allow unauthorised users or processes to use or modify security relevant User Data ### Additional requirement for the environment The following Security Requirements for the non-IT environment is derived from [SSVG Augmentations] The Smartcard Embedded Software shall meet the requirements "Cipher Schemas (RE.Cipher)" as specified below RE.Cipher Cipher Schemas The developers of Smartcard Embedded Software must not implement routines in a way that may compromise keys when the routines are executed as part of the Smartcard Embedded Software. Performing functions that access cryptographic keys could allow an attacker to misuse these functions to gather information about the key that is used in the computation of the function. Keys must be kept confidential as soon as they are generated. The keys must be unique with a very high probability, as well as cryptographically strong. For example, it must be ensured that it is not possible to derive the private key from public key if asymmetric algorithms are used. If keys are imported into the TOE and/or derived from other
keys, quality and confidentiality must be maintained. This implies that an appropriate key management has to be realised in the environment. ## **6 TOE Summary Specification** ### **6.1 TOE Security Functions** IT Security Functions in this section corresponds to Security Functional Requirements that are defined in Section 5.1.1. Following security functions are active on phase 4 to 7. #### SF.RNG: The TOE implements a Deterministic Random Number Generator (DRNG) which generates 64bit random numbers which satisfy functionality class K3 specified in [AIS20] and standard level of French cryptographic robustness level in [REF_CRY] using the DES co-processor. This DRNG is dedicated to the Smartcard Embedded Software in order to generate cryptographic parameter on Smartcard. This DRNG uses the DES co-processor implemented in TOE and the algorithm of this RNG is conformed to "ANSIX9.42-2001 Annex C.2". HAL library as part of IC dedicated software supports operation of DRNG in secure means. Operation of HAL library is described in [SPC] and [HAL]. This Security Function satisfies Security Functional Component FCS_RND.1, and Random Numbers from this Random Number Generator (SF.RNG) are generated by cryptographic mechanism. Then the strength of mechanism is high according to the specific metric defined in AIS20 and French cryptographic robustness level is standard level defined in [REF_CRY]. #### **SF.DES:** CXD9916H3 is equipped with a DES Co-processor. This DES Co-processor, which is in conformance with FIPS46-3, supplies single/triple-DES processing and supports the ECB and CBC mode, encryption and decryption. It also contains countermeasures against side-channel attacks (SPA, DPA, SEMA, DEMA) and DFA (Differential Fault Attack). This security function reduces the risk of leakage of confidential User data and TSF data. While the Security Function is active, an attacker cannot measure TOE behaviour from outside to analyse the cryptographic key and plain text. This Security Function satisfies the Security Functional Components, FCS_COP.1, FDP_ITT.1, FPT_ITT.1 (1), and FDP_IFC.1. Also, it satisfies the Data Processing Policy which is defined by FDP_ITT.1, FPT_ITT.1 (1), and FDP_IFC.1, and the policy "Additional Specific Security Functionality (P.Add-Functions)" which is defined by FCS_COP.1, on the other hand. #### **SF.Mal-Detect:** This Security Function has the sensor functions that detect when the TOE is used outside the scope of defined environment such as abnormal temperature, frequency and voltage. This function includes four different functions below. - Function to detect abnormal voltage outside of limit of fault tolerance: After detection, it asserts the internal reset. - Function to detect abnormal FRAM voltage outside of limit of fault tolerance: After detection, FRAM access will be inhibited for protecting FRAM data including user data and TSF data. - Function to detect abnormal clock frequency outside of limit of fault tolerance: After detection, it asserts the internal reset. - Function to detect abnormal temperature outside of limit of fault tolerance: After detection, it asserts the internal reset. This Security Function satisfies Security Functional Component, FRU_FLT.2, FPT FLS.1, and FPT SEP.1. #### **SF.Phy-Detect:** This Security Function provides an active shield which detects the physical modification of the TOE in order to protect the TOE against physical-probing and physical-manipulation. If the active shield detects physical manipulation, this security function generates interrupt request signals. This Security Function satisfies FPT_PHP.3, and supports FDP_ITT.1, FPT_ITT.1 (1), and FDP_IFC.1. Also, it satisfies the Data Processing Policy which is defined by FDP_ITT.1, FPT_ITT.1 (1), and FDP_IFC.1. ## **SF.Phy-Protect:** This Security Function provides the physical layout that protects the TOE from physical manipulation and physical probing and make difficult to attack. Furthermore, this security function provides the physical functions to protect confidential information (user data and TSF data) against the electro magnetic attack and electric power attack, like side channel attack. This Security Function satisfies FPT_PHP.3, and supports FDP_ITT.1, FPT_ITT.1 (1), and FDP IFC.1. Also, it satisfies the Data Processing Policy that is defined by FDP_ITT.1, FPT_ITT.1 (1), and FDP_IFC.1. ## SF.TEST: At the end of phase3 (before TOE delivery), IC testing is performed by the Test features including IC Dedicated Test software and Test circuits in order to assure the correct operation of TOE function and the quality of TOE operation. Once IC testing is completed, Test features are invalidated. Therefore, User data and TSF data are not disclosed by manipulating the test functions at the user phases. This Security Function satisfies Security Functional Component, FMT_LIM.1, and FMT_LIM.2. Also, it satisfies the underlying policy defined by FMT_LIM.1 and FMT_LIM.2. #### **SF.Identification:** This Security Function provides the ability to write each TOE identification data on FRAM and pre-personalization data. The identification data includes information about TOE Chip manufacturing. This identification data is stored in FRAM at the IC testing and is prohibited to write access after testing. Pre-personalization data and Supplement of Smartcard Embedded Software are provided as confidential data that depend on Smartcard Embedded Software by smartcard embedded software developer in phase2 and are stored on the TOE at the IC testing. This Security Function satisfies Security Functional Component, FAU_SAS.1. ### **SF.Memory-Access:** This Security Function provides the functions that detect when the malicious software code performs unauthorized access to the TOE and the DMA access data is modified deliberately, in order to prevent disclose of the confidential data (User data and TSF data). - Controlled access of DMA DMA controller has a function which detects that the DMA access data is modified deliberately. If this function detects the modification of the DMA access data, the interrupt signal is requested to the CPU. - Controlled write/read on the accessible FRAM area This function detects that a software code performs a read or write access on FRAM out of the address range specified in accessible area. By default, the whole FRAM area is inaccessible. The range of the protected FRAM area can be modified only by the IC Dedicated Software (HAL Library). If it detects the unauthorized access, an interrupt signal is requested to the CPU. This Security Function satisfies Security Functional Component, FDP_ACC.1, FDP_ACF.1, FMT_MSA.3, FMT_MSA.1, FMT_SMF.1 and FMT_SMR.1, and supports FDP_ITT.1, FPT_ITT.1 (1), and FDP_IFC.1. Also it satisfies the Controlled Access Memory Policy that are defined by FDP ACC.1, FDP ACF.1, FMT MSA.3, FMT MSA.1, FMT SMF.1, FMT SMR.1. ## **SF.Memory-Scramble:** This Security Function provides the function that protects the confidential data stored in TOE memory areas against the manipulation and probing attacks. This function scrambles memory address data logically and makes difficult to read the memory data physically from outside. This Security Function satisfies Security Functional Component, FPT_PHP.3 and supports to FDP_ITT.1, FPT_ITT.1 (1), and FDP_IFC.1. Also, it satisfies the Data Processing Policy that is defined by FDP_ITT.1, FPT_ITT.1 (1), and FDP_IFC.1. ## **SF.Memory-Verification:** This Security Function provides a CRC function to assure the integrity of FRAM data. If CRC error is generated, error message is notified the smartcard embedded software via HAL Library interface. This Security Function satisfies Security Functional Component, FPT_ITT.3, FPT_ITT.1 (2) and FDP_SDI.2. Also it satisfies the Memory Integrity Policy that is related to these requirements. ## **6.2** Assurance measures The table below is the summary of Documents that satisfy Security Assurance Requirements of Section 5.1.2. | Security Assurance components | Security Assurance documents | |-------------------------------|---| | ADV_FSP.2 | Functional Specification | | ADV_HLD.2 | High Level Design for each SFs | | ADV_LLD.1 | Low Level Design for each SFs | | ADV_IMP.2 | Implementation Representation | | ADV_RCR.1 | Correspondence analysis between TOE summary | | | specification, functional specification, high level | | | design, low level design and implementation | | ADV_SPM.1 | This Security Target includes this requirement. | | AGD_ADM.1 | No document required | | AGD_USR.1 | LSI Specification, HAL Library specification, | | | Security Recommendation Guidance | | ACM_AUT.1 | Configuration Management system document | | ACM_CAP.4 | | | ACM_SCP.2 | | | ADO_DEL.2 | Parts of Delivery Procedure documentation | | ADO_IGS.1 | No document required | | ALC_DVS.2 | Development Security documentation for each | | | development sites | | ALC_LCD.1 | Life cycle flow for TOE development | | ALC_TAT.1 | Tool list is included in configuration management | | | system documentation | | ATE_COV.2 | Functional tests specification including tests coverage | | ATE_DPT.1 | and test depth | | ATE_FUN.1 | | | ATE_IND.2 | No document required | | AVA_MSU.3 | Misuse analysis | | AVA_SOF.1 | Strength of function analysis | | AVA_VLA.4 | Vulnerability analysis | Table 2 List of document describing the measures regarding the assurance requirements # 7 PP Claims #### 7.1 PP reference This Security Target is conformant to [BSI-PP-0002], which has been registered at the German Certification Body. Additionally, this Security Target makes reference to [SSVG Augmentations] # 7.2 PP tailoring This section shows SFRs that is tailored from [BSI-PP-0002]. | Security Functional
Requirement | Operation | Note | |------------------------------------|-----------------------|---| | FCS_RND.1 | assignation | Tailoring | | FPT_FLS.1 |
refinement | Addition of "secure state" | | FAU_SAS | refinement | Modification of the PP's refinement | | ACM_SCP | Conformance of CCv2.3 | Modification of the PP's assurance requirements | | ACM_CAP | Conformance of CCv2.3 | Modification of the PP's assurance requirements | | ADO_IGS | Conformance of CCv2.3 | Modification of the PP's assurance requirements | | ADO_DEL | refinement | Modification of the PP's refinement | | ATE_COV | refinement | Modification of the PP's refinement | Table 3 PP tailoring Note also that FPT_ITT.1 is renamed into FPT_ITT.1 (1). ## 7.3 PP additions This section shows the security objectives and IT security requirements statements that are in addition to those contained in the PP [BSI-PP-0002] towhich this Security Target conforms. | Additions | Sections | |--------------------|---------------| | O.Add-Functions | Section 4.1 | | O.Memory-Integrity | Section 4.1 | | O.Memory-Access | Section 4.1 | | FDP_ACC.1 | Section 5.1.1 | | FDP_ACF.1 | Section 5.1.1 | | FMT_MSA.3 | Section 5.1.1 | | FMT_MSA.1 | Section 5.1.1 | | FMT_SMF.1 | Section 5.1.1 | | FMT_SMR.1 | Section 5.1.1 | | FDP_SDI.2 | Section 5.1.1 | | FCS_COP.1 | Section 5.1.1 | | FPT_ITT.3 | Section 5.1.1 | | FPT_ITT.1 (2) | Section 5.1.1 | Table 4 PP additions #### 8 Rationale ### 8.1 Security Objectives Rationale Table 5 below gives an overview, how the assumptions, threats, and organisational security policies that are given in [BSI-PP-0002] are addressed by the objectives. Furthermore the Table 5 below adds the rational for the additional assumptions and policy in this Security Target. The text following after the table justifies this in detail. | Assumption, Threat or | Security Objective | Note | |--------------------------------|---------------------|--------------| | Organisational Security Policy | | | | A.Plat-Appl | OE.Plat-Appl | (Phase1) | | A.Resp-Appl | OE.Resp-Appl | (Phase1) | | A.Key-Function | OE.Plat-Appl | (Phase1) | | | OE.Resp-Appl | | | P.Process-TOE | OE.Process-TOE, | (Phase2 - 3) | | | O.Identification | | | P.Add-Functions | O.Add-Functions | | | A.Process-Card | OE.Process-Card | (Phase4 - 6) | | T.Leak-Inherent | O.Leak-Inherent | | | T.Phys-Probing | O.Phys-Probing | | | T.Malfunction | O.Malfunction | | | T.Phys-Manipulation | O.Phys-Manipulation | | | T.Leak-Forced | O.Leak-Forced | | | T.Abuse-Func | O.Abuse-Func | | | T.RND | O.RND | | | T.Memory-Integrity | O.Memory-Integrity | | | T.Memory-Access | O.Memory-Access | | Table 5 Security Objectives versus Assumption, Threat or Policies The justification related to the assumption "Usage of Hardware Platform (A.Plat-Appl)" is as follows: Since OE.Plat-Appl requires the Smartcard Embedded Software developer to implement those measures assumed in A.Plat-Appl, the assumption is covered by the objective. The justification related to the assumption "Treatment of User Data (A.Resp-Appl)" is as follows: Since OE.Resp-Appl requires the developer of the Smartcard Embedded Software to implement measures as assumed in A.Resp-Appl, the assumption is covered by the objective. The justification related to the assumption "Usage of Key-dependent Function (A.Key-Function)" is as follows: Since OE.Plat-Appl and OE.Resp-Appl require the Smartcard Embedded Software to use cryptographic services and functions as assumed in A.Key-Function, the assumption is covered by the objective. The justification related to the organisational security policy "Protection during TOE Development and Production (P.Process-TOE)" is as follows: OE.Process-TOE requires the TOE Manufacturer to implement those measures assumed in P.Process-TOE. Therefore, the organisational security policy is covered by this objective, as far as organisational measures are concerned. The only issue not completely covered by these measures is the fact that the TOE has to support the possibility of unique identification. This is the content of O.Identification. Therefore, the organisational security policy is covered by OE.Process-Card and O.Identification. The justification related to the assumption "Protection during Packaging, Finishing and Personalisation (A.Process-Card)" is as follows: Since OE.Process-Card requires the Card Manufacturer to implement those measures assumed in A.Process-Card, the assumption is covered by this objective. The justification related to the threats "Inherent Information Leakage (T.Leak-Inherent)", "Physical Probing (T.Phys-Probing)", "Malfunction due to Environmental Stress (T.Malfunction)", "Physical Manipulation (T.Phys-Manipulation)", "Forced Information Leakage (T.Leak-Forced)", "Abuse of Functionality (T.Abuse-Func)", "Deficiency of Random Numbers (T.RND)", "Memory Integrity of FRAM (T.Memory-Integrity)" and "Memory Access to FRAM (T.Memory-Access)" is as follows: For all threats the corresponding objectives O.Leak-Inherent, O.Phys-Probing, O.Malfunction, O.Phys-Manipulation, O.Leak-Forced, O.Abuse-Func, O.RND, O.Memory-Integrity and O.Memory-Access are stated in a way, which directly corresponds to the description of the threat (refer to Section 3.3). It is clear from the description of each objective (refer to Section 4.1), that the corresponding threat is removed if the objective is valid. More specifically, in every case the ability to use the attack method successfully is countered, if the objective holds. The justification related to the security policy "Additional Specific Security Functionality (P.Add-Functions)" is as follows: Since O.Add-Functions requires the TOE to implement exactly the same specific functionality as required by P.Add-Functions, the organizational security policy is covered by the objective. Nevertheless the security objectives O.Leak-Inherent, O.Phys-Probing, O.Malfunction, O.Phys-Manipulation and O.Leak-Forced define how to implement the specific security functionality required by P.Add-Functions. (Note that these objectives support that the specific security functionality is provided in a secure way as expected from P.Add-Functions.) Especially O.Leak-Inherent and O.Leak-Forced refer to the protection of confidential data (User Data or TSF data) in general. User Data are also processed by the specific security functionality required by P.Add-Functions. Compared to [BSI-PP-0002] a clarification has been made for the security objective "Usage of Hardware Platform (OE.Plat-Appl)": If required the Smartcard Embedded Software shall use these cryptographic services of the TOE and their interface as specified. In addition, the Smartcard Embedded Software must implement functions which perform operations on keys (if any) in such a manner that they do not disclose information about confidential data. This addition ensures that the assumption A.Plat-Appl is still covered by the objective OE.Plat-Appl although additional functions are being supported according to O.Add-Functions. Compared to [BSI-PP-0002] a clarification has been made for the security objective "Treatment of User Data (OE.Resp-Appl)": By definition encryption data, plain text data and cryptographic keys are User Data. So, the Smartcard Embedded Software will protect such data if required and use keys and functions appropriately in order to ensure the strength of cryptographic operation. Quality and confidentiality must be maintained for keys that are imported and/or derived from other keys. This implies that appropriate key management has to be realized in the environment. These measures make sure that the assumption A.Resp-Appl is still covered by the security objective OE.Resp-Appl although additional functions are being supported according to P.Add-Functions. The justification of the additional policy and the additional assumption show that they do not contradict to the rational already given in the Protection Profile for the assumptions, policy and threats defined there. ## **8.2** Security Requirements Rationale ## **8.2.1** Rationale for the security functional requirements The way in which [BSI-PP-0002] objectives are implemented by SFRs and requirements on the environment is given in [BSI-PP-0002, Section 7.2]. The table below includes the mapping from [BSI-PP-0002, Section 7.2] and adds the rationale for the additional SFRs in this Security Target. | Objective | TOE SFR | Security Requirements for the environment | |---------------------|---|--| | O.Leak-Inherent | FDP_ITT.1
FPT_ITT.1 (1)
FDP_IFC.1 | RE.Phase-1 | | O.Phys-Probing | FPT_PHP.3 | RE.Phase-1 | | O.Malfunction | FRU_FLT.2
FPT_FLS.1
FPT_SEP.1 | - | | O.Phys-Manipulation | FPT_PHP.3 | RE.Phase-1 (e.g. by implementing FDP_SDI.1 Stored data integrity monitoring) | | O.Leak-Forced | FDP_ITT.1
FPT_ITT.1 (1)
FDP_IFC.1
FRU_FLT.2
FPT_FLS.1
FPT_SEP.1 FPT_PHP.3 | RE.Phase-1 | | O.Abuse-Func | FMT_LIM.1
FMT_LIM.2
FDP_ITT.1
FPT_ITT.1 (1)
FDP_IFC.1
FPT_PHP.3
FRU_FLT.2
FPT_FLS.1
FPT_SEP.1 | - | | O.Identification | FAU_SAS.1 | - | | O.RND | FCS_RND.1
FDP_ITT.1
FPT_ITT.1 (1)
FDP_IFC.1
FPT_PHP.3
FRU_FLT.2
FPT_FLS.1
FPT_SEP.1 | RE.Phase-1 | | O.Add-Functions | FCS_COP.1 | RE.Phase-1 | | | | RE.Cipher | |--------------------|--|--| | O.Memory-Integrity | FPT_ITT.3
FDP_SDI.2
FPT_ITT.1 (2) | - | | O.Memory-Access | FDP_ACC.1
FDP_ACF.1
FMT_MSA.3
FMT_MSA.1
FMT_SMF.1
FMT_SMR.1 | - | | OE.Plat-Appl | - | RE.Phase-1 | | OE.Resp-Appl | - | RE.Phase-1
RE.Cipher
FDP_ITC.1 or FCS_CKM.1,
FCS_CKM.4, FMT_MSA.2 | | OE.Process-TOE | FAU_SAS.1 | Assurance Components: Refer to below*** | | OE.Process-Card | - | RE.Process-Card possibly supported by RE.Phase-1 | **Table 6 Security Requirements versus Security
Objectives** *** Assurance Components: Delivery (ADO_DEL); Installation, generation, and start-up (ADO_IGS) (using Administrator Guidance (AGD_ADM), User guidance (AGD_USR); CM automation (ACM_AUT); CM Capabilities (ACM_CAP); CM Scope (ACM_SCP); Development Security (ALC_DVS); Life Cycle Definition (ALC_LCD); Tools and Techniques (ALC_TAT) The justification related to the security objective "Protection against Inherent Information Leakage (O.Leak-Inherent)" is as follows: The refinements of the security functional requirements FPT_ITT.1 (1) and FDP_ITT.1 together with the policy statement in FDP_IFC.1 explicitly require the prevention of disclosure of secret data (TSF data as well as User Data) when transmitted between separate parts of the TOE or while being processed. This includes that attackers cannot reveal such data by measurements of electro/magnetic emanations, power consumption or other behaviour of the TOE while data are transmitted between or processed by TOE parts. Of course this has also to be supported by the Smartcard Embedded Software. For example timing attacks were possible if the processing time of algorithms implemented in the software would depend on the content of secret variables. The requirement RE.Phase-1 makes sure that this is avoided. The justification related to the security objective "Protection against Physical Probing (O.Phys-Probing)" is as follows: The scenario of physical probing as described for this objective is explicitly included in the assignment chosen for the physical tampering scenarios in FPT_PHP.3. Therefore, it is clear that this security functional requirement supports the objective. It is possible that the TOE needs additional support by the Smartcard Embedded Software (e.g. to send data over certain buses only with appropriate precautions). If necessary this support is provided according to RE.Phase-1. Together with this FPT_PHP.3 is suitable to meet the objective. The justification related to the security objective "Protection against Malfunctions (O.Malfunction)" is as follows: The definition of this objective shows that it covers a situation, where malfunction of the TOE might be caused by the operating conditions of the TOE (while direct manipulation of the TOE is covered O.Phys-Manipulation). There are two possibilities in this situation: Either the operating conditions are inside of the tolerated range or at least one of them is outside of this range. The second case is covered by FPT_FLS.1, because it states that a secure state is preserved in this case. The first case is covered by FRU_FLT.2 because it states that the TOE operates correctly under normal (tolerated) conditions. To support this, FPT_SEP.1 the functions implementing FRU_FLT.2 and FPT_FLS.1 must work independently so that their operation cannot be affected by the Smartcard Embedded Software. Therefore, there is no possible instance of conditions under O.Malfunction, which is not covered. The justification related to the security objective "Protection against Physical Manipulation (O.Phys-Manipulation)" is as follows: The scenario of physical manipulation as described for this objective is explicitly included in the assignment chosen for the physical tampering scenarios in FPT_PHP.3. Therefore, it is clear that this security functional requirement supports the objective. It is possible that the TOE needs additional support by the Embedded Software (for instance by implementing FDP_SDI.1 to check data integrity with the help of appropriate checksums). This support is provided according to RE.Phase-1. Together with this FPT_PHP.3 is suitable to meet the objective. The justification related to the security objective "Protection against Forced Information Leakage (O.Leak-Forced)" is as follows: This objective is directed against attacks, where an attacker wants to force an information leakage, which would not occur under normal conditions. In order to achieve this the attacker has to combine a first attack step, which modifies the behaviour of the TOE (either by exposing it to extreme operating conditions or by directly manipulating it) with a second attack step measuring and analysing some output produced by the TOE. The first step is prevented by the same measures that support O.Malfunction and O.Phys-Manipulation, respectively. The requirements covering O.Leak-Inherent also support O.Leak-Forced because they prevent the attacker from being successful if he tries the second step directly. The justification related to the security objective "Protection against Abuse of Functionality (O.Abuse-Func)" is as follows: This objective states that abuse of functions (especially provided by the IC Dedicated Test Software, for instance in order to read secret data) must not be possible in Phase7 of the life cycle. There are two possibilities to achieve this: (i) They cannot be used by an attacker (i. e. its availability is limited) or (ii) using them would not be of relevant use for an attacker (i. e. its capabilities are limited) since the functions are designed in a specific way. The first possibility is specified by FMT_LIM.2 and the second one by FMT_LIM.1. Since these requirements are combined to support the policy, which is suitable to fulfil O.Abuse-Func, both security functional requirements together are suitable to meet the objective. Other security functional requirements that prevent attackers from circumventing the functions implementing these two security functional requirements (for instance by manipulating the hardware) also support the objective. The relevant objectives are also listed in Table 6. It was chosen to define FMT_LIM.1 and FMT_LIM.2 explicitly (not using Part 2 of the Common Criteria) for the following reason: Though taking components from the Common Criteria catalogue makes it easier to recognise functions, any selection from Part 2 of the Common Criteria would have made it harder for the reader to understand the special situation meant here. As a consequence, the statement of explicit security functional requirements was chosen to provide more clarity. The justification related to the security objective "TOE Identification (O.Identification)" is as follows: Obviously the operations for FAU_SAS.1 are chosen in a way that they require the TOE to provide the functionality needed for O.Identification. The Initialisation Data are used for TOE identification. It was chosen to define FAU_SAS.1 explicitly (not using a given security functional requirement from Part 2 of the Common Criteria) for the following reason: The security functional requirement FAU_GEN.1 in Part 2 of the CC requires the TOE to generate the audit data and gives details on the content of the audit records (for instance data and time). The possibility to use the functions in order to store security relevant data which are generated outside of the TOE, is not covered by the family FAU_GEN or by other families in Part 2. Moreover, the TOE cannot add time information to the records, because it has no real time clock. Therefore, the new family FAU_SAS was defined for this situation. The justification related to the security objective "Random Numbers (O.RND)" is as follows: FCS_RND.1 requires the TOE to provide random numbers, which is in conformity with [AIS20] and [REF_CRY]. Other security functional requirements, which prevent physical manipulation and malfunction of the TOE (see the corresponding objectives listed in the table) support this objective because they prevent attackers from manipulating or otherwise affecting the random number generator. Random numbers are often used by the Smartcard Embedded Software to generate cryptographic keys for internal use. Therefore, the TOE must prevent the unauthorised disclosure of random numbers. Other security functional requirements that prevent inherent leakage attacks, probing and forced leakage attacks ensure the confidentiality of the random numbers provided by the TOE. Depending on the functionality of specific TOEs the Smartcard Embedded Software will have to support the objective by providing runtime-tests of the random number generator. Together, these requirements allow the TOE to provide cryptographically good random numbers and to ensure that no information about the produced random numbers is available to an attacker. It was chosen to define FCS_RND.1 explicitly, because Part 2 of the Common Criteria do not contain generic security functional requirements for Random Number Generation. (Note, that there are security functional requirements in Part 2 of the Common Criteria, which refer to random numbers. However, they define requirements only for the authentication context, which is only one of the possible applications of random numbers.) The justification related to the security objective "Memory Integrity of FRAM (O.Memory-Integrity)" is as follows: The objective states protection of TSF data and User data on FRAM against modification. SFRs, which satisfy the requirement of this objective, are twofold. Regarding TSF data integrity, FPT_ITT.1 (2) and FPT_ITT.3 require the TSF to respectively protect TSF data from modification and monitor TSF data integrity by detecting a data integrity error on FRAM with a cyclic redundancy check and notifying error message to the smartcard embedded software via the IC dedicated software. Regarding user data integrity, FDP_SDI.2 requires verifying FRAM read or write data by performing cyclic redundancy check, in order to protect user data stored in FRAM against its modification. If integrity errors of FRAM read or write data are detected, FDP_SDI.2 requires notifying the smartcard embedded software via the IC dedicated software. FDP_SDI.2 together with FPT_ITT.3 and FPT_ITT.1 (2) monitor user data and TSF data integrity of FRAM read or write data and detect a data integrity error of them in order to prevent disclosure or modification of TSF data and User data on FRAM. Therefore these three SFRs satisfy O.Memory-Integrity.
The justification related to the security objective "Memory Access to FRAM (O.Memory-Access)" is as follows: The objective states protection against attempts to gain illegal access on protected FRAM area. Therefore, in order to achieve this objective, FDP_ACC.1 and FDP_ACF.1 require enforcing the Controlled Access Memory Policy by detecting against unauthorized access to FRAM. The smartcard embedded software shall not be able to modify the protected FRAM area boundaries. This is met by the requirements FMT_MSA.3, FMT_MSA.1 FMT_SMR.1 and FMT_SMF.1. Indeed, FMT_SMR.1 requires the TSF to maintain the role of IC dedicated software, which is part of the TOE, and FMT_SMF.1 requires the TSF to perform a management function on the protected FRAM area whose rules are defined by FMT_MSA.3 and FMT_MSA.1, that respectively require that only the IC dedicated software can initialize and modify the protected FRAM area boundaries. The justification related to the security objective "Usage of Hardware Platform (OE.Plat-Appl)" is as follows: RE.Phase-1 requires the Smartcard Embedded Software developer to design and implement the software in a way, which is suitable to meet OE.Plat-Appl. The justification related to the security objective "Treatment of User Data (OE.Resp-Appl)" is as follows: FDP_ITC.1 or FCS_CKM.1, FCS_CKM.4 and FMT_MSA.2 require the appropriate management of cryptographic keys used by the specified cryptographic function. These requirements satisfy the OE.Resp-Appl since cryptographic keys and plain text data are defined user data and the Smartcard Embedded Software must treat them appropriately in OE.Resp- Appl. RE.Phase-1 requires the developer of the Smartcard Embedded Software to design and implement the software in a way, which is suitable to meet OE.Resp-Appl. RE.Cipher requires the developers of Smartcard Embedded Software not to implement routines in a way that may compromise keys when the routines are executed as part of the Smartcard Embedded Software. This requirement satisfies the OE.Resp-Appl that requires using cryptographic keys and plain text data appropriately. The justification related to the security objective "Protection during TOE Development and Production (OE.Process-TOE)" is as follows: The objective OE.Process-TOE has mainly to be fulfilled by organisational and other measures, which the TOE Manufacturer has to implement. These measures are a subset of those measures, which are examined during the evaluation of the assurance requirements of the classes ACM, AGD, ALC and ADO. The technical capability of the TOE to store Initialisation Data and/or Pre-personalisation Data is provided according to FAU_SAS.1. Together these security requirements are suitable to meet the objective. The justification related to the security objective "Protection during Packaging, Finishing and Personalisation (OE.Process-Card)" is as follows: RE.Process-Card requires the Card Manufacturer to use adequate measures to fulfil OE.Process-Card. Depending on the security needs of the application, the Smartcard Embedded Software may have to support this for instance by using appropriate authentication mechanisms for personalisation functions. Therefore, RE.Phase-1 may support RE.Process-Card in fulfilling the objective in addition. The justification related to the security objective "Additional Specific Security Functionality (O.Add-Functions)" is as follows: The security functional requirement(s) "Cryptographic operation (FCS_COP.1)" exactly require those functions to be implemented that are demanded by O.Add-Functions. Therefore, FCS_COP.1 is suitable to meet the security objective. Nevertheless, the developer of the Smartcard Embedded Software must ensure that the additional functions are used as specified and that the User Data processed by these functions are protected as defined for the application context. These issues are addressed by the requirement RE.Phase-1 and more specific by the security functional requirements. - [FDP_ITC.1 Import of user data without security attributes or FCS_CKM.1 Cryptographic key generation], - FCS_CKM.4 Cryptographic key destruction, - FMT_MSA.2 Secure security attributes. to be met by the environment. The security functional requirements required to meet the security objectives O.Leak-Inherent, O.Phys-Probing, O.Malfunction, O.Phys-manipulation and O.Leak-Forced define how to implement the specific security functionality. However, key-dependent functions could be implemented in the Smartcard Embedded Software. In this case, RE.Cipher requires that these functions ensure that confidential data (User Data) cannot be disclosed while they are just being processed by the Smartcard Embedded Software. Therefore, with respect to the Smartcard Embedded Software the issues addressed by the objectives just mentioned are addressed by the requirement RE.Cipher. The usage of cryptographic algorithms requires using appropriate keys. Otherwise they do not provide security. The requirement RE.Cipher addresses these specific issues since cryptographic keys and other data are provided by the Smartcard Embedded Software. RE.Cipher requires that keys must be kept confidential. They must be unique with a very high probability, cryptographically strong etc. If keys are imported into the TOE (usually after TOE Delivery), it must be ensured that quality and confidentiality is maintained. Therefore, with respect to the environment the issues addressed by the objectives just mentioned and implicitly by O.Add-Functions are addressed by the requirement RE.Cipher. The justification of the security objective and the additional requirements (both for the TOE and its environment) show that they do not contradict to the rationale already given in the Protection Profile for the assumptions, policy and threats defined there. ## 8.2.2 Dependencies of security functional requirements Table 7 below lists the security functional requirements applied to [BSI-PP-0002, Section 7.2.2]. | Security Functional | Dependencies | Fulfilled by security | | |---------------------|------------------------|-------------------------|--| | Requirement | | requirements in this ST | | | FRU_FLT.2 | FPT_FLS.1 | Yes | | | FPT_FLS.1 | ADV_SPM.1 | Yes (Part of EAL4) | | | FPT_SEP.1 | None | No dependency | | | FMT_LIM.1 | FMT_LIM.2 | Yes | | | FMT_LIM.2 | FMT_LIM.1 | Yes | | | FAU_SAS.1 | None | No dependency | | | FPT_PHP.3 | None | No dependency | | | FDP_ITT.1 | FDP_ACC.1 or FDP_IFC.1 | Yes | | | FDP_IFC.1 | FDP_IFF.1 | See discussion below | | | FPT_ITT.1 (1) | None | No dependency | | | FCS_RND.1 | None | No dependency | | **Table 7 Dependencies of Security Functional Requirements** Part 2 of the Common Criteria defines the dependency of FDP_IFC.1 (information flow control policy statement) on FDP_IFF.1 (Simple security attributes). The specification of FDP_IFF.1 would not capture the nature of the security functional requirement nor add any detail. As stated in the *Data Processing Policy* referred to in FDP_IFC.1 there are no attributes necessary. The security functional requirement for the TOE is sufficiently described using FDP_ITT.1 and its *Data Processing Policy* (FDP_IFC.1). Therefore the dependency is considered satisfied. As Table 7 shows, all other dependencies are fulfilled by security requirements defined in this Security Target. The discussion in Section 8.2.1 has shown, how the security functional requirements support each other in meeting the security objectives of this Security Target. In particular the security functional requirements providing resistance of the hardware against manipulations (e.g. FPT_PHP.3) support all other more specific security functional requirements (e.g. FCS_RND.1) because they prevent an attacker from disabling or circumventing the latter. Together with the discussion of the dependencies above this shows that the security functional requirements build a mutually supportive whole. The additional dependencies relating to the new SFRs introduced in this ST are analysed below. | Security Functional | Dependencies | Fulfilled by security | | |---------------------|---------------------------|-------------------------|--| | Requirement | | requirements in this ST | | | FCS_COP.1 | [FDP_ITC.1 or FCS_CKM.1] | Yes | | | | FCS_CKM.4 | (By the IT environment) | | | | FMT_MSA.2 | | | | FDP_ACC.1 | FDP_ACF.1 | Yes | | | FDP_ACF.1 | FDP_ACC.1, FMT_MSA.3 | Yes | | | FMT_MSA.3 | FMT_MSA.1, FMT_SMR.1 | Yes | | | FMT_MSA.1 | [FDP_ACC.1 or FDP_IFC.1], | Yes | | | | FMT_SMF.1, FMT_SMR.1 | | | | FMT_SMF.1 | None | No dependency | | | FMT_SMR.1 | FIA_UID.1 | See discussion | | | FDP_SDI.2 | None | No dependency | | | FPT_ITT.3 | FPT_ITT.1 (2) | Yes | | | FPT_ITT.1 (2) | None | No dependency | | Table 8 Additional SFR dependencies The dependencies of FCS_COP.1 (Cryptographic operation) defined Part2 of the Common Criteria are covered by the IT environment because the Smartcard Embedded Software uses the cryptographic functions provided by the TOE. Dependencies of security requirements in the IT environment are fulfilled FCS_COP.1 by the Smartcard Embedded Software. The dependency of FMT_SMR.1 on FIA_UID.1 is not relevant in this particular case because the defined role is the IC dedicated software, which is, in fact, part of the TOE. So there is no need of identification by the TSF. As Table 8 shows, all other dependencies are fulfilled by security requirements defined in this Security Target. ## 8.2.3 Assurance Requirements and the Strength of Function Level This Section is described according to [BSI-PP-0002, Section 7.2.3]. The assurance level EAL4 and the augmentation with the requirements ADV_IMP.2, ALC_DVS.2, AVA_MSU.3, and AVA_VLA.4 were chosen in order to meet assurance expectations explained in the following paragraphs. An assurance level of EAL4 is required for this type of TOE since it is intended to defend against sophisticated attacks. This evaluation assurance level was selected since it is
designed to permit a developer to gain maximum assurance from positive security engineering based on good commercial practices. In order to provide a meaningful level of assurance that the TOE provides an adequate level of defence against such attacks, the evaluators should have access to the low level design and source code. ### **ADV IMP.2 Implementation of the TSF** This assurance component is a higher hierarchical component to EAL4 (which only requires ADV_IMP.1). It is important for a smartcard IC that the evaluation includes the implementation representation of the entire TSF and determines whether the functional requirements in the Security Target are addressed by the representation of the TSF. IC dedicated software source code and IC hardware drawings are examples of TSF implementation representation. The implementation representation is used to express the notion of the least abstract representation of the TSF, specifically the one that is used to create the TSF itself without further design refinement. ADV_IMP.2 has dependencies with ADV_LLD.1 "Descriptive Low-Level design", ADV_RCR.1 "Informal correspondence demonstration", ALC_TAT.1 "Well defined development tools". These assurance components are included in EAL4, then these dependencies are satisfied. #### **ALC_DVS.2 Sufficiency of security measures** Development security is concerned with physical, procedural, personnel and other technical measures that may be used in the development environment to protect the TOE. In the particular case of a Smartcard Integrated Circuit the TOE is developed and produced within a complex and distributed industrial process that must especially be protected. Details about the implementation (e.g. from design, test and development tools as well as Initialisation Data) may make such attacks easier. Therefore, in the case of a Smartcard Integrated Circuit, maintaining the confidentiality of the design is very important. This assurance component is a higher hierarchical component to EAL4 (which only requires ALC DVS.1). ALC DVS.2 has no dependencies. ## AVA_MSU.3 Analysis and testing for insecure states The user guidance must be correct and sufficient to ensure that the TOE can be used in a secure way and that vulnerabilities are not introduced. This component is included to ensure that misleading, unreasonable and conflicting guidance is absent from the guidance documentation, and that secure procedures for all modes of operation have been addressed. Insecure states should be easy to detect. In this component, an analysis of the guidance documentation provided by the developer is validated and confirmed through testing by the evaluator to provide additional assurance. This assurance component is a higher hierarchical component to EAL4 (which only requires AVA_MSU.2). AVA_MSU.3 has dependencies with ADO_IGS.1 "Installation, generation, and start-up procedures", ADV_FSP.1 "Informal functional specification", AGD_ADM.1 "Administrator guidance" and AGD_USR.1 "User guidance". The dependencies are satisfied in EAL4. ### **AVA VLA.4 Highly resistant** Due to the intended use of the TOE, it must be shown to be highly resistant to penetration attacks. This assurance requirement is achieved by the AVA_VLA.4 component. Independent vulnerability analysis is based on highly detailed technical information and goes beyond the vulnerabilities identified by the developer. The main intent of the evaluator analysis is to determine that the TOE is resistant to penetration attacks performed by an attacker possessing a high attack potential. AVA_VLA.4 has dependencies with ADV_FSP.1 "Informal functional specification", ADV_HLD.2 "Security enforcing high-level design", ADV_LLD.1 "Descriptive low-level design", ADV_IMP.1 "Subset of the implementation of the TSF", AGD_ADM.1 "Administrator Guidance", AGD_USR.1 "User Guidance". All these dependencies are satisfied by EAL4. It has to be assumed that attackers with high attack potential try to attack smart cards used for digital signature applications or payment systems. Therefore, specifically AVA_VLA.4 was chosen in order to assure that even these attackers can not successfully attack the TOE. For the same reason the Strength of Function level "SOF-high", the specific metric strength of mechanism: high of [AIS20] and standard level of French cryptographic robustness level in [REF_CRY] are required. The assurance components in an evaluation assurance level (EAL) are chosen in a way that they build a mutually supportive and complete set of components. The requirements chosen for augmentation do not add any dependencies, which are not already fulfilled for the corresponding requirements contained in EAL4. Therefore, these components add additional assurance to EAL4, but the mutual support of the requirements is still guaranteed. Note that detailed refinements for assurance requirements are given in Section 5.1.3 ### 8.2.4 Mutually Supportive and Internally Consistent This Section is described according to [BSI-PP-0002, Section 7.3]. The discussion of security functional requirements and assurance components in the preceding sections has shown that mutual support and consistency are given for both groups of requirements. The arguments given for the fact that the assurance components are adequate for the functionality of the TOE also shows that the security functional requirements and assurance requirements support each other and that there are no inconsistencies between these groups. The security functional requirement FPT_PHP.3 makes it harder to manipulate User Data and TSF Data. This protects the primary assets identified in Section 3.1 and other security features or functions that use these data. Though a manipulation of the TOE (refer to FPT_PHP.3) is not of great value for an attacker in itself, it can be an important step in order to threaten the primary assets identified in Section 3.1. Therefore, the security functional requirement FPT_PHP.3 is not only required to meet the security objective O.Phys-Manipulation. Instead it protects other security features or functions of both the TOE and the Smartcard Embedded Software from being bypassed, deactivated or changed. In particular this may pertain to the security features or functions being specified using FDP_ITT.1, FPT_ITT.1 (1), FPT_FLS.1, FMT_LIM.2, FCS_RND.1, FDP_SDI.2, FPT_ITT.3, FPT_ITT.1 (2), and those implemented in the Smartcard Embedded Software. A malfunction of TSF (refer to FRU_FLT.2 and FPT_FLS.1) can be an important step in order to threaten the primary assets identified in Section 3.1. Therefore, the security functional requirements FRU_FLT.2 and FPT_FLS.1 are not only required to meet the security objective O.Malfunction. Instead they protect other security features or functions of both the TOE and the Smartcard Embedded Software from being bypassed, deactivated or changed. In particular this pertains to the security features or functions being specified using FDP_ITT.1, FPT_ITT.1 (1), FMT_LIM.1, FMT_LIM.2, FCS_RND.1, FDP_SDI.2, FPT_ITT.3, FPT_ITT.1 (2), and those implemented in the Smartcard Embedded Software. In a forced leakage attack the methods described in "Malfunction due to Environmental Stress" (refer to T.Malfunction) and/or "Physical Manipulation" (refer to T.Phys-Manipulation) are used to cause leakage from signals that normally do not contain significant information about secrets. Therefore, in order to avert the disclosure of primary assets identified in Section 3.1 it is important that the security functional requirements averting leakage (FDP_ITT.1, FPT_ITT.1 (1)) and those against malfunction (FRU FLT.2 and FPT FLS.1) and physical manipulation (FPT PHP.3) are effective and bind well. The security features and functions against malfunction ensure correct operation of other security functions (refer to above) and help to avert forced leakage themselves in other attack scenarios. The security features and functions against physical manipulation make it harder to manipulate the other security functions (refer to above). Physical probing (refer to FPT_PHP.3) shall directly avert the disclosure of primary assets identified in Section 3.1. In addition, physical probing can be an important step in other attack scenarios if the corresponding security features or functions use secret data. For instance the security functional requirement FMT LIM.2 may use passwords. Therefore, the security functional requirement FPT_PHP.3 (against probing) help to protect other security features or functions including those being implemented in the Smartcard Embedded Software. Details depend on the implementation. Leakage (refer to FDP_ITT.1, FPT_ITT.1 (1)) shall directly avert the disclosure of primary assets identified in Section 3.1. In addition, inherent leakage and forced leakage (refer to above) can be an important step in other attack scenarios if the corresponding security features or functions use secret data. For instance the security functional requirement FMT_LIM.2 may use passwords. Therefore, the security functional requirements FDP_ITT.1 and FPT_ITT.1 (1) help to protect other security features or functions implemented in the Smartcard Embedded Software (FDP_ITT.1) or provided by the TOE (FPT_ITT.1 (1)). Details depend on the implementation. According to the assumption Usage of Hardware Platform (A.Plat-Appl) the Smartcard Embedded Software will correctly use the functions provided by the TOE. Hereby the User Data are treated as required to meet the requirements defined for the specific application context (refer to Treatment of User Data (A.Resp-Appl)). However, the TOE may implement additional functions. This can be a risk if their interface cannot completely be controlled by the Smartcard Embedded Software. Therefore, the security functional requirements FMT_LIM.1 and FMT_LIM.2 are very important. They ensure that appropriate control is applied to the interface of these functions (limited availability) and that
these functions, if being usable, provide limited capabilities only. The combination of the security functional requirements FMT_LIM.1 and FMT_LIM.2 ensures that (especially after TOE Delivery) these additional functions can not be abused by an attacker to (i) disclose or manipulate User Data, (ii) to manipulate (explore, bypass, deactivate or change) security features or functions of the TOE or of the Smartcard Embedded Software or (iii) to enable an attack. Hereby the binding between these two security functional requirements is very important: The security functional requirement Limited Capabilities (FMT_LIM.1) must close gaps that could be left by the control being applied to the function's interface (Limited Availability (FMT_LIM.2)). Note that the security feature or function that limits the availability can be bypassed, deactivated or changed by physical manipulation or a malfunction caused by an attacker. Therefore, if Limited Availability (FMT_LIM.2) is vulnerable⁵¹, it is important to limit the capabilities of the functions in order to limit the possible benefit for an attacker. The security functional requirement Limited Availability (FMT_LIM.2) must close gaps that could result from the fact that the function's kernel in principle would allow to perform attacks. The TOE must limit the availability of functions that potentially provide the capability to disclose or manipulate User Data, to manipulate security features or functions of the TOE or of the Smartcard Embedded Software or to enable an attack. Therefore, if an attacker could benefit from using such functions⁵², it is important to limit their availability so that an attacker is not able to use them. No perfect solution to limit the capabilities (FMT_LIM.1) is required if the limited availability (FMT_LIM.2) alone can prevent the abuse of functions. No perfect solution to limit the availability (FMT_LIM.2) is required if the limited capabilities (FMT_LIM.1) alone can prevent the abuse of functions. Therefore, it is correct that both requirements are defined in a way that they together provide sufficient security. It is important to avert malfunctions of TSF and of security functions implemented in the Smartcard Embedded Software (refer to above). There are two security functional requirements . ⁵¹ or, in the extreme case, not being provided ⁵² the capabilities are not limited in a perfect way (FMT_LIM.1) which ensure that malfunctions can not be caused by exposing the TOE to environmental stress. First it must be ensured that the TOE operates correctly within some limits (Limited fault tolerance (FRU_FLT.2)). Second the TOE must prevent its operation outside these limits (Failure with preservation of secure state (FPT_FLS.1)). Both security functional requirements together prevent malfunctions. The two functional requirements must define the "limits". Otherwise there could be some range of operating conditions that is not covered so that malfunctions may occur. Consequently, the security functional requirements Limited fault tolerance (FRU_FLT.2) and Failure with preservation of secure state (FPT_FLS.1) are defined in a way that they together provide sufficient security. For the additional functionality included in O.Add-Functions, the security functional requirements required to meet the security objectives O.Leak-Inherent, O.Phys-Probing, O.Malfunction, O.Phys-Manipulation, O.Leak-Forced, O.Memory-Integrity and O.Memory-Access also protect the cryptographic algorithms implemented according to the security functional requirement FCS_COP.1. Therefore, these security functional requirements support the secure implementation and operation of FCS_COP.1. ## **8.3** TOE Summary Specification Rationale ## **8.3.1** TOE security functions rationale The Table 9 below shows the relationship between TOE Security Functional Requirements and Security Functions of TOE Summary Specification. This security target (public version) removes the rational of the TOE security function, because description of the refinements includes proprietary information of the TOE. | SFR | SF.RNG | SF.DES | SF.Mal-Detect | SF.Phy-Detect | SF.Phy-Protect | SF.TEST | SF. Identification | SF.Memory-Access | SF.Memory-Scramble | SF.Memory-Verification | |---------------|--------|--------|---------------|---------------|----------------|---------|--------------------|------------------|--------------------|------------------------| | FRU_FLT.2 | | | X | | | | | | | | | FPT_FLS.1 | | | X | | | | | | | | | FPT_SEP.1 | | | X | | | | | | | | | FMT_LIM.1 | | | | | | X | | | | | | FMT_LIM.2 | | | | | | X | | | | | | FAU_SAS.1 | | | | | | | X | | | | | FPT_PHP.3 | | | | X | X | | | | X | | | FDP_ITT.1 | | X | | X | X | | | X | X | | | FDP_IFC.1 | | X | | X | X | | | X | X | | | FPT_ITT.1 (1) | | X | | X | X | | | X | X | | | FCS_RND.1 | X | | | | | | | | | | | FCS_COP.1 | | X | | | | | | | | | | FDP_ACC.1 | | | | | | | | X | | | | FDP_ACF.1 | | | | | | | | X | | | | FMT_MSA.3 | | | | | | | | X | | | | FMT_MSA.1 | | | | | | | | X | | | | FMT_SMF.1 | | | | | | | | X | | | | FMT_SMR.1 | | | | | | | | X | | | | FDP_SDI.2 | | | | | | | | | | X | | FPT_ITT.3 | | | | | | | | | | X | | FPT_ITT.1 (2) | | | | | | | | | | X | Table 9 Relationship between Security Requirements and Security Functions #### 8.3.2 Assurance measures rationale Table 2 lists the documents describing the measures regarding the assurance requirements. This table shows that each assurance requirement is satisfied by at least one assurance measure. Actually, as it is obvious that the assurance measures are suitable to meet the TOE security assurance requirements, there is no need of further explanation to justify that the stated assurance measures are compliant with the assurance requirements. #### **8.4** PP Claims Rationale This Security Target claims conformance to Protection Profile "Smartcard IC Platform Protection Profile Version 1.0, BSI-PP-0002 Version 1.0". Additionally, this Security Target makes reference to "Smartcard Integrated Circuit Platform Augmentations Version 1.0, March 8, 2002". Furthermore, this security target adds to this PP refer to the following kinds of things: - (a) O.Add-Function and FCS_COP.1 are added to cover the organisational security policy P.Add-Functions which requires the TOE provides cryptographic services to the Smartcard Embedded Software; - (b) O.Memory-Integrity, FDP_SDI.2, FPT_ITT.3 and FPT_ITT.1 (2), are added to preserve integrity of User data and TSF data from the TOE against the additional threat T.Memory-Integrity related to modification of TSF data and User data in FRAM. - (c) O.Memory-Access, FDP_ACC.1, FDP_ACF.1, FMT_MSA.3, FMT_MSA.1, FMT_SMR.1 and FMT_SMF.1, are added to preserve confidentiality of data stored into the protected FRAM areas against the additional threat T.Memory-Access related to illegal access to protected FRAM areas. ### 9 Glossary and References ### 9.1 Vocabulary ## Smartcard Embedded Software Software embedded in a smartcard IC and not being developed by the IC Designer. The Smartcard Embedded Software is designed in Phase 1 and embedded into the Smartcard IC in Phase3. Some part of that software may actually implement a smartcard application others may provide standard services. Nevertheless, this distinction doesn't matter here so that the Smartcard Embedded Software can be considered as being application dependent whereas the IC Dedicated Software is definitely not. #### IC Dedicated Software IC proprietary software embedded in a smartcard IC and developed by the IC Developer. This software may provide additional services to facilitate usage of the hardware. In this Security Target, this software is defined HAL-API (Hardware Abstraction Layer Application Program Interface) ### IC Dedicated Test Software That part of the IC Dedicated Software that is used to test the TOE before TOE Delivery but which does not provide any functionality thereafter. #### Test Features All features and functions (implemented by the IC Dedicated Test Software and Test circuits) that are designed to be used before TOE Delivery only and delivered as part of the TOE. #### Initialisation Data Any data defined by the TOE Manufacturer and injected into the non-volatile memory by the Integrated Circuits manufacturer (Phase 3). These data are for instance used for traceability and for TOE identification. ## Pre-personalisation Data Any data supplied by the Card Manufacturer that is injected into the non-volatile memory by the Integrated Circuits manufacturer (Phase 3). These data are for instance used for traceability and to secure shipment between phases. ### **Smartcard** (as used in this [BSI-PP-0002]) Composition of the TOE, the Smartcard Embedded Software, User Data and the package (the smartcard carrier). #### **TOE Delivery** The period when the TOE is delivered which is (refer to Section 2.2) after Phase 3 if the TOE is delivered in form of chip die. #### TOE Manufacturer The TOE Manufacturer must ensure that all requirements for the TOE and its development and production environment are fulfilled. In this ST, the TOE Manufacturer has the following roles: IC Developer and IC Manufacturer. #### Card Manufacturer The customer of the TOE Manufacturer who receives the TOE during TOE Delivery. The Card Manufacturer includes all roles after TOE Delivery up to Phase 7 (refer to *section 2.2*). The Card Manufacturer has the following roles, the IC Packaging Manufacturer, the Smartcard Product Manufacturer, the Personaliser. #### TSF data Data created by and for the TOE, that might affect the operation of the TOE (for example configuration data). Note that the TOE is the Smartcard IC.Initialisation Data defined by the Integrated Circuits manufacturer to identify the TOE and to keep track of the product's production and further life-cycle phases are also considered as belonging to the TSF data. #### User The TOE serves as a platform for the Smartcard Embedded Software. Therefore,
the "user" of the TOE (as used in the Common Criteria assurance class AGD: guidance) is the Smartcard Embedded Software. Guidance is given for the Smartcard Embedded Software Developer. On the other hand the Smartcard (with the TOE as a major element) is used in a terminal where communication is performed through the ISO interface provided by the TOE. Therefore, another "user" of the TOE is the terminal (with its software). #### User Data All data managed by the Smartcard Embedded Software in the application context. User data comprise all data in the final Smartcard IC except the TSF data. ## 9.2 List of Abbreviations **CC** Common Criteria **EAL** Evaluation Assurance Level. *IC* Integrated circuit. IT Information Technology. **PP** Protection Profile. **SOF** Strength of function. **ST** Security Target. **TOE** Target of Evaluation. TSF Scope of control. **TSF** TOE Security functions. **TSP** TOE Security Policy. SF Security Function **SFP** Security Function Policy SFR Security Function Requirement **RAM** Random Access Memory **ROM** Read Only Memory **FRAM** Ferroelectric Random Access Memory **SRAM** Static Random Access Memory **DES** Data Encryption Standard **RNG** Random Number Generator **DRNG** Deterministic Random Number Generator CRC Cyclic Redundancy Check **DMA** Direct Memory Access **ASK** amplitude shift keying **FML** Fujitsu Microelectronics Limited #### 9.3 References #### **Related documents** #### [CC/1] Common Criteria for Information Technology Security Evaluation Part1: Introduction and general model, Version2.3, August 2005 ## [CC/2] Common Criteria for Information Technology Security Evaluation Part2: Functional Requirement, Version2.3, August 2005 ## [CC/3] Common Criteria for Information Technology Security Evaluation Part3: Assurance Requirement, Version2.3, August 2005 ## [BSI-PP-0002] Smartcard IC Platform Protection Profile, Version 1.0, BSI-PP-0002, July 2001 # [SSVG Augmentation] Smartcard Integrated Circuit Platform Augmentations, Version 1.0, March 2002 Atmel, Hitachi Europe, Infineon Technologies and Philips Semiconductors ## [ISO/IEC 18092] Information technology -- Telecommunications and information exchange between systems -- Near Field Communication -- Interface and Protocol (NFCIP-1) ### [FIPS PUB 46-3] DATA ENCRIPTION STANDARD, Reaffirmed 1999 October 25 ### [FIPS PUB 81] Announcing the standard for DES MODES OPERATION, 1980 December 2 ## [AIS20] Functionality Classes and Evaluation Methodology for Deterministic Random Number Generators, Version 2.0, 2 December 1999, BSI #### [AIS31] Functionality classes and evaluation methodology for true (physical) random number generator, AIS31 Version 3.1 25.09.2001, BSI ## [REF_CRY] Mecanismes cryptographiques, Regles et recommandations concernant le choix et le dimensionnement des mecanismes cryptographiques de niveau de robustesse standard - Version 1.10 du 19/12/2006 ## **Evaluation evidences** The followings are references for evaluation evidences. These reference numbers are applicable to the other evidences listed on MB94RS403 Configuration lists for CC document. Security Target | Ref. No. | Document number | Document Title and Version | |----------|----------------------|--| | [ST] | | IC Platform of FeliCa Contactless Smartcard | | | | CXD9916H3/MB94RS403 Security Target, Version 6 | | [STlite] | MB94RS403_STlite_E02 | IC Platform of FeliCa Contactless Smartcard | | | | CXD9916H3/MB94RS403 Security Target (Public | | | | Version), Version 2 | ## User Guidance | Ref. No. | Document number | Document Title and Version | |----------|---------------------|--| | [SPC] | MB94RS403_USR_J/E05 | CXD9916H3/MB94RS403 LSI Specification, | | | | Version 3 | | [HAL] | MB94RS403_USR_J/E04 | MB94RS403 HAL Library Specification, Version 3 | | [SRG] | MB94RS403_SRG_J/E01 | MB94RS403 Security Recommendation Guidance, | | | | Version 1 | ---- End of Document ---- Fujitsu Microelectronics Limited