
© 2008 QNX Software Systems

QNX Software Systems
QNX Neutrino® Secure Kernel v6.4

Security Target

Evaluation Assurance Level: EAL4+
Document Version: 1.1

Prepared for: Prepared by:

QNX Software Systems Corsec Security, Inc.

175 Terence Matthews Crescent
Ottawa, Ontario K2M 1W8

Canada

10340 Democracy Lane, Suite 201
Fairfax, VA 22030

United States of America
Phone: +1 (613) 591-0931 Phone: +1 (703) 267-6050

http://www.qnx.com http://www.corsec.com

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 2 of 52
© 2008 QNX Software Systems

Revision History

Version Modification Date Modified By Description of Changes

0.1 2008-02-24 Nathan Lee Initial draft.

0.2 2008-02-26 Nathan Lee Updates based on QSS feedback.

0.3 2008-03-04 Nathan Lee Updates based on Corsec QRP and QSS feedback.

0.4 2008-05-16 Nathan Lee Updates based on lab ORs.

0.5 2008-06-06 Nathan Lee Miscellaneous updates to harmonize ST with design
documentation.

0.6 2008-07-31 Greg Milliken Updates based on lab ORs.

0.7 2008-10-30 Nathan Lee Updates based on lab ORs and ADV updates.

0.8 2008-11-25 Nathan Lee Miscellaneous updates and re-incorporated previously
removed SFRs based on new lab ORs.

0.9 2008-12-01 Nathan Lee Updates based on lab ORs.

0.9.1 2008-12-02 Nathan Lee Corrected typo in Application Note for FDP_ACF.1.

1.0 2008-12-08 Nathan Lee Updates based on lab ORs.

1.1 2008-12-15 Nathan Lee Added detail on shared memory resource manager.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 3 of 52
© 2008 QNX Software Systems

Table of Contents

REVISION HISTORY ..2

TABLE OF CONTENTS ..3

TABLE OF FIGURES ..4

TABLE OF TABLES ..4

1 SECURITY TARGET INTRODUCTION..5
1.1 PURPOSE...5

1.2 SECURITY TARGET, TOE AND CC IDENTIFICATION AND CONFORMANCE..6

1.3 CONVENTIONS AND TERMINOLOGY..6
1.3.1 Conventions ...6

1.3.2 Terminology...6

2 TOE DESCRIPTION ..8

2.1 PRODUCT TYPE...8

2.2 PRODUCT DESCRIPTION..8
2.3 TOE BOUNDARY AND SCOPE...9

2.3.1 Physical Boundary...10

2.3.2 Logical Boundary ..11

2.3.3 Physical and Logical Features and Functionality Not Included in the Evaluated Configuration of the
TOE 11

3 SECURITY ENVIRONMENT...12

3.1 ASSUMPTIONS..12

3.2 THREATS TO SECURITY...12
3.3 ORGANIZATIONAL SECURITY POLICIES ..13

4 SECURITY OBJECTIVES ..14

4.1 SECURITY OBJECTIVES FOR THE TOE...14
4.2 SECURITY OBJECTIVES FOR THE ENVIRONMENT...14

4.2.1 IT Security Objectives..14

4.2.2 Non-IT Security Objectives..14

5 SECURITY REQUIREMENTS...16

5.1 TOE SECURITY FUNCTIONAL REQUIREMENTS...16

5.1.1 Class FDP: User Data Protection...18

5.1.2 Class FIA: Identification and Authentication ..23
5.1.3 Class FMT: Security Management ..24

5.1.4 Class FPT: Protection of the TSF..27

5.1.5 Class FRU: Resource Utilization...28

5.2 SECURITY FUNCTIONAL REQUIREMENTS ON THE IT ENVIRONMENT ..29
5.3 ASSURANCE REQUIREMENTS..29

6 TOE SUMMARY SPECIFICATION..31

6.1 TOE SECURITY FUNCTIONS..31
6.1.1 User Data Protection...32

6.1.2 Identification..33

6.1.3 Security Management ..33

6.1.4 Protection of the TSF...34

6.1.5 Resource Utilization ..35

6.2 TOE SECURITY ASSURANCE MEASURES..35

7 PROTECTION PROFILE CLAIMS...38

8 RATIONALE...39
8.1 SECURITY OBJECTIVES RATIONALE ..40

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 4 of 52
© 2008 QNX Software Systems

8.1.1 Security Objectives Rationale Relating to Threats ..40
8.1.2 Security Objectives Rationale Relating to Assumptions ..42

8.2 SECURITY FUNCTIONAL REQUIREMENTS RATIONALE ..43

8.2.1 Rationale for Security Functional Requirements of the TOE Objectives...43
8.3 SECURITY ASSURANCE REQUIREMENTS RATIONALE ..45

8.4 RATIONALE FOR REFINEMENTS OF SECURITY FUNCTIONAL REQUIREMENTS...46

8.5 DEPENDENCY RATIONALE ..46
8.6 TOE SUMMARY SPECIFICATION RATIONALE ..47

8.6.1 TOE Summary Specification Rationale for the Security Functional Requirements.............................47
8.6.2 TOE Summary Specification Rationale for the Security Assurance Requirements..............................48

8.7 STRENGTH OF FUNCTION..51

9 ACRONYMS..52

Table of Figures

FIGURE 1 - TOE BOUNDARY ..10

Table of Tables

TABLE 1 - ST, TOE, AND CC IDENTIFICATION AND CONFORMANCE..6
TABLE 2 - ASSUMPTIONS..12

TABLE 3 - THREATS..13

TABLE 4 - SECURITY OBJECTIVES FOR THE TOE..14
TABLE 5 - NON-IT SECURITY OBJECTIVES...14
TABLE 6 - TOE SECURITY FUNCTIONAL REQUIREMENTS...16

TABLE 7 – ACCESS CONTROL MATRIX ...18
TABLE 8 – INFORMATION FLOW CONTROL MATRIX ...20

TABLE 9 – ASSURANCE REQUIREMENTS...29
TABLE 10 – MAPPING OF TOE SECURITY FUNCTIONS TO SECURITY FUNCTIONAL REQUIREMENTS.............................31
TABLE 11 - ASSURANCE MEASURES MAPPING TO TOE SECURITY ASSURANCE REQUIREMENTS (SARS)....................35
TABLE 12 - RELATIONSHIP OF SECURITY THREATS TO OBJECTIVES...39
TABLE 13 - THREATS:OBJECTIVES MAPPING..40
TABLE 14 - ASSUMPTIONS:OBJECTIVES MAPPING..42

TABLE 15 - OBJECTIVES:SFRS MAPPING..43
TABLE 16 - FUNCTIONAL REQUIREMENTS DEPENDENCIES...46

TABLE 17 - MAPPING OF SECURITY FUNCTIONAL REQUIREMENTS TO TOE SECURITY FUNCTIONS.............................47
TABLE 18 - ACRONYMS..52

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 5 of 52
© 2008 QNX Software Systems

1 Security Target Introduction
This section identifies the Security Target (ST), Target of Evaluation (TOE), ST conventions, ST conformance
claims, and the ST organization. The Target of Evaluation is the QNX Neutrino® Secure Kernel v6.4, and will
hereafter be referred to as the TOE throughout this document. The TOE is a secure kernel and C-language library
for the QNX Neutrino® Realtime Operating System (RTOS).

1.1 Purpose

This ST provides mapping of the Security Environment to the Security Requirements that the TOE meets in order to
remove, diminish or mitigate the defined threats in the following sections:

• Security Target Introduction (Section 1) – Provides a brief summary of the ST contents and describes the
organization of other sections within this document.

• TOE Description (Section 2) – Provides an overview of the TOE security functions and describes the
physical and logical boundaries for the TOE.

• Security Environment (Section 3) – Describes the threats and assumptions that pertain to the TOE and its
environment.

• Security Objectives (Section 4) – Identifies the security objectives that are satisfied by the TOE and its
environment.

• Security Requirements (Section 5) – Presents the Security Functional Requirements (SFRs) and Security
Assurance Requirements (SARs) met by the TOE and by the TOE’s environment.

• TOE Summary Specification (Section 6) – Describes the security functions provided by the TOE that satisfy
the security functional requirements and objectives.

• Protection Profile Claims (Section 7) – Provides the identification of any ST Protection Profile claims as
well as a justification to support such claims.

• Rationale (Section 8) – Presents the rationale for the security objectives, requirements, and the TOE
summary specifications that relate to their consistency, completeness, and suitability.

• Acronyms (Section 9) – Defines the acronyms used within this ST.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 6 of 52
© 2008 QNX Software Systems

1.2 Security Target, TOE and CC Identification and Conformance

Table 1 - ST, TOE, and CC Identification and Confor mance

ST Title QNX Software Systems QNX Neutrino® Secure Kernel v6.4 Security Target

ST Version Version 1.1

Author Corsec Security, Inc.
Nathan Lee

TOE Identification QNX Neutrino® Secure Kernel v6.4

Common Criteria (CC)
Identification and

Conformance

Common Criteria for Information Technology Security Evaluation, Version 2.3, August
2005 (aligned with ISO/IEC 15408:2005); CC Part 2 conformant; CC Part 3 conformant;
PP claim (none); Parts 2 and 3 Interpretations from the Interpreted CEM as of February
25, 2008 were reviewed, and no interpretations apply to the claims made in this ST.

Protection Profile (PP)
Identification

None.

Evaluation Assurance
Level

EAL4+ (augmented with ALC_FLR.1)

Keywords Realtime operating system, RTOS, kernel

1.3 Conventions and Terminology

1.3.1 Conventions

There are several font variations used within this ST. Selected presentation choices are discussed here to aid the
Security Target reader.

The CC allows for assignment, refinement, selection and iteration operations to be performed on security functional
requirements. These operations are performed as described in Parts 2 and 3 of the CC, and are shown as follows:

• Completed assignment statements are identified using [italicized text within brackets].
• Completed selection statements are identified using [underlined italicized text within brackets].
• Refinements are identified using bold text. Any text removed is stricken (Example: TSF Data) and should

be considered as a refinement.
• Iterations are identified by appending a letter in parentheses following the component title. For example,

FAU_GEN.1(a) Audit Data Generation would be the first iteration and FAU_GEN.1(b) Audit Data
Generation would be the second iteration.

1.3.2 Terminology

This document assumes that the reader is already familiar with fundamental computer science and programming
concepts and terminology, and so does not define them here. However, the following terminology clarifications are
provided due to the specialized nature of the TOE and this Security Target document:

• Process: A non-schedulable entity, which defines the address space and a few data areas. A process must
have at least one thread running in it.

• Thread: The schedulable entity under QNX Neutrino. A thread is a flow of execution. Each thread exists
within the context of a single process.

• User: A thread with a priority from 1-63, which lacks root privileges.

• Administrator : A thread with a priority from 64-255, which possesses root privileges.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 7 of 52
© 2008 QNX Software Systems

• CPU Bandwidth: CPU bandwidth refers to the available portion of the CPU available to the AP at a given
time. CPU bandwidth does not reflect the total time or number of CPU cycles that a process or thread uses.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 8 of 52
© 2008 QNX Software Systems

2 TOE Description
The TOE Description provides an overview of the TOE. This section describes the general capabilities and security
functionality of the TOE. The TOE description provides a context for the TOE evaluation by identifying the product
type, describing the product, and defining the specific evaluated configuration.

2.1 Product Type

The QNX Neutrino® Secure Kernel provides the microkernel for the QNX Neutrino Realtime Operating System.
QNX Neutrino provides a memory-protected microkernel architecture for reliable, scalable, and realtime
performance for embedded applications.

2.2 Product Description

The QNX Neutrino RTOS is designed for applications requiring nonstop, 24 hours a day, 365 days a year operation.
It implements POSIX-compliant users, groups, permissions, usermasks, processes, threads, and priorities:

• Users: On QNX Neutrino and other Unix-like operating systems, users are identified within the kernel by
an integer value called a "user identifier", often abbreviated as "UID" or "user ID". Permissions can be
assigned to individual users. As implied in Section 1.3.2 above, users in the context of this TOE are
threads executing within the kernel.

• Groups: On QNX Neutrino and other Unix-like systems, multiple users can be categorized into groups,
which allows system permissions to be delegated to groups of users in an organized fashion. Groups are
identified within the kernel by an integer valued called a "group identifier", often abbreviated as "GID" or
"group ID".

• Permissions: Users and groups can be granted privileges on the system in the form of permission bits.
Permissions indicate what actions that user or group is allowed to perform.

• Usermasks: Each user (and each process associated with that user) has a usermask (often abbreviated
“umask”) which limits what permission bits a process may set when creating an object in the pathname
space. If a bit is “on” in the user’s umask then Neutrino will not allow the corresponding permission to be
set for objects created by that user.

• Processes: Processes, defined in Section 1.3.2 above, contain threads.

• Threads: Threads, also defined in Section 1.3.2 above, are the primary “agents” that act on users’ behalves.
Threads are contained in processes.

• Priorities: A priority is an attribute of processes and threads, in the form of an integer in the range 0 – 255,
that determines how “important” that particular process or thread is. Processes or threads with lower
priorities are “less important” than processes or threads with higher priorities, and Neutrino’s scheduler
function uses each process’ and thread’s priority as a component in determining how much CPU bandwidth
each process and thread should receive. Each process and thread has two types of priority: an actual
priority and an effective priority. The actual priority is the priority set by the process or thread itself, and
indicates to the kernel how important the process or thread considers itself to be. The effective priority,
however, is the priority that Neutrino’s scheduler function is currently using to schedule that process or
thread for access to controlled resources – the effective priority is adjusted up and down by the scheduler
on a regular basis, while the actual priority is only adjusted by the process or thread itself.

• Pathname space: The QNX pathname space is an abstract container that holds a logical grouping of unique
identifiers (pathnames). All devices, filesystems, and other addressable system entities are contained by
and addressed via the pathname space. Since QNX Neutrino is a distributed, microkernel OS with virtually
all non-kernel functionality provided by user-installable programs, objects in the pathname space are

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 9 of 52
© 2008 QNX Software Systems

managed by user-level or kernel-level server programs called “resource managers”. A resource manager
registers with the Process Manager to manage a specific portion of the pathname space, and then all
accesses to that portion of the pathname space are mediated by that resource manager (that is, the resource
manager determines what to do with the access request). The only resource manager contained within the
TOE boundary of the QNX Neutrino Secure Kernel v6.4 is the shared memory resource manager, which is
part of procnto.

QNX Neutrino® RTOS is built on a true microkernel architecture. The QNX Neutrino Secure Kernel operates as a
self-contained, protected microkernel within the QNX Neutrino RTOS. With the QNX Neutrino RTOS, every
driver, application, protocol stack, and file system runs outside the QNX Neutrino Secure Kernel, in the safety of
memory-protected user space. This modularity has two primary benefits:

1. The QNX Neutrino Secure Kernel can be used as a core system building block that can be deployed in
conjunction a variety of optional operating system technologies such as networking stacks or file systems.
This gives the flexibility of tailoring the set of QNX Neutrino RTOS components, or customer developed
components that can be used to implement a system.

2. Virtually any component can fail and be automatically restarted without affecting other components or the
QNX Neutrino Secure Kernel. This inherently modular design allows administrators and developers to
dynamically upgrade modules, introduce new features, or deploy bug fixes without costly downtime or
system outages.

The adaptive partitioning feature of the QNX Neutrino Secure Kernel provides CPU1 time guarantees to provide a
level of protection (known as partitions) between groups of processes and threads. To achieve the highest level of
performance, adaptive partitioning allows applications to use all available CPU cycles under normal operating
conditions. During overload conditions, adaptive partitioning enforces hard resource guarantees, ensuring
applications receive their budgeted share of CPU time.

The QNX Neutrino Secure Kernel symmetric multiprocessing (SMP) feature allows user processes to execute on
any CPU core in a SMP complex.

2.3 TOE Boundary and Scope

This section will primarily address what physical and logical components of the TOE are included in evaluation.
Figure 1 illustrates the TOE boundary:

1 CPU: Central Processing Unit

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 10 of 52
© 2008 QNX Software Systems

Figure 1 - TOE Boundary

2.3.1 Physical Boundary

The TOE is a software-only product comprising the procnto RTOS kernel and the lib/c C-language library. It is
installed along with various other external support components as part of a full operating system deployment as
depicted in Figure 1 above. The TOE runs on the following CPU architectures:

• ARM9

• ARM11

• x86 Multicore

2.3.1.1 TOE Environment

The TOE Environment consists of the following components:

• Other operating system components

• Applications

• Hardware

2.3.1.1.1 Security Considerations in the TOE Enviro nment:

The TOE is a RTOS kernel and C language support library, and is intended to be embedded in an appliance with
other utility software – it is not designed for stand-alone deployment. Its architecture focuses on providing reliable
execution of realtime, mission-critical applications, and for this reason the TOE itself does not implement the
traditional set of IT security checks-and-balances, instead leaving these up to the TOE Environment. When the TOE
is deployed as part of a larger, properly configured system it will perform its functions as designed; care must be
taken by the TOE administrators to ensure that the hardware on which the TOE is installed, and the other operating
system components with which it interacts, are properly designed, configured, and deployed.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 11 of 52
© 2008 QNX Software Systems

In order to build the TOE, the TOE administrator must use the appropriate build file and build options. These are
detailed in the QNX Neutrino® Secure Kernel v6.4 Common Criteria Guidance Supplement document. The build
file is a text file containing instructions that specify the contents and other details of an OS image that can be built
with automated tools. The build file and build options ensure that the source code that constitutes the TOE is built in
a manner that provides the security and configuration that was evaluated. The build file should be reviewed and
controlled by the TOE administrator at all times to ensure that the TOE is properly built and configured.

In order to operate the TOE in the CC-compliant configuration, TOE administrators must ensure that all application
interactions with procnto are mediated by and occur through the lib/c library – applications are not allowed to access
or communicate with procnto directly.

2.3.2 Logical Boundary

The TOE comprises the functionality provided by the procnto microkernel and the lib/c library when they are
compiled in the CC-compliant configuration as specified in the Common Criteria Guidance Supplement. Two
notable features of the CC-compliant configuration of procnto are Adaptive Partitioning (AP) and zeroization of
released memory.

The TOE’s logical boundary includes all of the claimed TSFs. The SFRs implemented by the TOE are grouped
under the following Security Function Classes:

• FDP User Data Protection
• FIA Identification and Authentication
• FMT Security Management
• FPT Protection of the TSF
• FRU Resource Utilization

These functions are discussed in greater detail in Section 6.1 below.

2.3.3 Physical and Logical Features and Functionali ty Not Included in the
Evaluated Configuration of the TOE

Although the TOE can be acquired as a stand-alone product from QNX, it is more commonly distributed as one
component of the QNX Neutrino RTOS development package. This package includes many optional software
components which are not utilized by all developers. The TOE boundary excludes these optional components and
includes only procnto and lib/c in order to provide developers with the broadest range of CC-compliant development
options.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 12 of 52
© 2008 QNX Software Systems

3 Security Environment
This section describes the security aspects of the environment in which the TOE will be used and the manner in
which the TOE is expected to be employed. It provides the statement of the TOE security environment, which
identifies and explains all:

• Assumptions about the secure usage of the TOE, including physical and personnel aspects
• Known and presumed threats countered by either the TOE or by the security environment
• Organizational security policies with which the TOE must comply

3.1 Assumptions

This section describes the security aspects of the intended environment for the evaluated TOE. The operational
environment must be managed in accordance with assurance requirement documentation for delivery, operation, and
user guidance. The following specific conditions are required to ensure the security of the TOE and are assumed to
exist in an environment where this TOE is employed.

Table 2 - Assumptions

Name Description

A.MANAGE There is one or more competent individuals (administrators) assigned to
manage the TOE.

A.NOEVIL The people administering the TOE and writing processes and threads for
execution by the TOE are non-hostile, appropriately trained, and follow all
guidance.

A.PHYSICAL It is assumed that the non-IT environment provides the TOE with appropriate
physical security commensurate with the value of the IT assets protected by the
TOE.

A.TRUSTED_INDIVIDUAL It is assumed that any individual allowed to perform procedures upon which the
security of the TOE may depend is trusted with assurance commensurate with
the value of the IT assets.

3.2 Threats to Security

This section identifies the threats to the IT assets against which protection is required by the TOE or by the security
environment. The threat agents are divided into two categories:

• TOE administrators: They have extensive knowledge of how the TOE operates and are assumed to possess a
high skill level, moderate resources to alter TOE configuration settings/parameters and physical access to
the TOE. (TOE administrators are, however, assumed not to be willfully hostile to the TOE)

• Misbehaving processes or threads which the TOE executes: They are created by programmers who have
extensive knowledge of how the TOE operates and are assumed to possess a high skill level, limited
resources to alter TOE configuration settings/parameters and no physical access to the TOE.

TOE Administrators are assumed to have no motivation to attack the TOE, and misbehaving processes or threads are
assumed to be created by programmers with low motivation to attack the TOE. The IT assets requiring protection
are the user data transitioning through the TOE and the processes and threads being executed by the TOE. Removal,
diminution and mitigation of the threats are through the objectives identified in Section 4 - Security Objectives.

The following threats are applicable:

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 13 of 52
© 2008 QNX Software Systems

Table 3 - Threats

Name Description

T.DENIAL_OF_SERVICE A misbehaving thread may block others from system resources (i.e., processing
time) via a resource exhaustion attack.

T.INSTALL An administrator may incorrectly install or configure the TOE, resulting in
ineffective security mechanisms.

T.UNAUTHORIZED _ACCESS A process or thread may gain access to resources or TOE security
management functions for which it is not authorized according to the TOE
security policy.

3.3 Organizational Security Policies

There are no Organizational Security Policies.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 14 of 52
© 2008 QNX Software Systems

4 Security Objectives
This section identifies the security objectives for the TOE and its supporting environment. The security objectives
identify the responsibilities of the TOE and its environment to meet the TOE’s security needs.

4.1 Security Objectives for the TOE

The specific security objectives are as follows:

Table 4 - Security Objectives for the TOE

Name Description

O.ACCESS The TOE will ensure that processes and threads gain only authorized access to
resources.

O.EXECUTION_PRIORITY The TOE will provide mechanisms that ensure that processes and threads with
higher priorities and higher Adaptive Partitioning budgets are given more
access to CPU time than processes and threads of lower priorities or lower AP
budgets.

O.FAILURE_ISOLATION The TOE will prevent a failure of one process or thread from affecting other
unrelated processes and threads.

O.RESIDUAL_INFORMATION The TOE will ensure that any information contained in a resource is not
released to processes or threads when the resource is reallocated.

O.RESOURCE_ALLOCATION The TOE will provide mechanisms that enforce constraints on the allocation of
resources.

O.SUBJECT_ISOLATION The TOE will provide mechanisms to protect each process or thread from
unauthorized interference by other processes or threads.

4.2 Security Objectives for the Environment

4.2.1 IT Security Objectives

The are no IT security objectives are to be satisfied by the environment.

4.2.2 Non-IT Security Objectives

The following non-IT environment security objectives are to be satisfied without imposing technical requirements
on the TOE. That is, they will not require the implementation of functions in the TOE hardware and/or software.
Thus, they will be satisfied largely through application of procedural or administrative measures.

Table 5 - Non-IT Security Objectives

Name Description

OE.ADMIN_GUIDANCE The TOE will provide administrators with the necessary information for secure
management of the TOE.

OE.INSTALL_GUIDANCE The TOE will be delivered with the appropriate installation guidance to establish
and maintain TOE security.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 15 of 52
© 2008 QNX Software Systems

Name Description

OE.MANAGE Sites deploying the TOE will provide competent, non-hostile TOE administrators
who are appropriately trained and follow all administrator guidance. TOE
administrators will ensure the system is used securely.

OE.PHYSICAL Physical security will be provided for the TOE by the non- IT environment
commensurate with the value of the IT assets protected by the TOE.

OE.TRUSTED_INDIVIDUAL Any individual allowed to perform procedures upon which the security of the
TOE may depend must be trusted with assurance commensurate with the value
of the IT assets.

OE.INSTALL Those responsible for the TOE must ensure that the TOE is delivered, installed,
managed, and operated in a manner that prevents disclosure, modification,
destruction, and other threats to the TOE that result from a deficiency in
delivery or customer site security.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 16 of 52
© 2008 QNX Software Systems

5 Security Requirements
This section defines the Security Functional Requirements (SFRs) and Security Assurance Requirements (SARs)
met by the TOE as well as Security Functional Requirements met by the TOE IT environment. These requirements
are presented following the conventions identified in Section 1.3.1.

5.1 TOE Security Functional Requirements

This section specifies the SFRs for the TOE. This section organizes the SFRs by CC class. Table 6 identifies all
SFRs implemented by the TOE and indicates the ST operations performed on each requirement.

Table 6 - TOE Security Functional Requirements

Name Description S A R I

FDP_ACC.1 Subset access control �

FDP_ACF.1 Security attribute based access control � �

FDP_IFC.1 Subset information flow control �

FDP_IFF.1 Simple security attributes � �

FDP_RIP.2 Full residual information protection � �

FIA_ATD.1 User attribute definition � �

FIA_UID.2 User identification before any action �

FMT_MOF.1 Management of security functions behavior � �

FMT_MSA.1(a) Management of security attributes � � �

FMT_MSA.1(b) Management of security attributes � � �

FMT_MSA.1(c) Management of security attributes � � � �

FMT_MSA.3 Static attribute initialisation � � �

FMT_SMF.1 Specification of management functions �

FMT_SMR.1 Security roles � �

FPT_FLS.1 Failure with preservation of secure state �

FPT_RVM.1 Non-bypassability of the TSP

FPT_SEP.1 TSF domain separation

FRU_FLT.1 Degraded fault tolerance �

FRU_PRS.1 Limited priority of service � �

FRU_RSA.1 Maximum quota � �

Note: S=Selection; A=Assignment; R=Refinement; I=Iteration

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 17 of 52
© 2008 QNX Software Systems

Section 5.1 contains the functional components from the Common Criteria (CC) Part 2 with the operations
completed. For the conventions used in performing CC operations please refer to Section 1.3.1.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 18 of 52
© 2008 QNX Software Systems

5.1.1 Class FDP: User Data Protection

FDP_ACC.1 Subset access control

Hierarchical to: No other components.

FDP_ACC.1.1

The TSF shall enforce the [access control SFP] on [

• Subjects: listed in Table 7

• Objects: listed in Table 7

• Operations: listed in Table 7].

Dependencies: FDP_ACF.1 Security attribute based access control

Table 7 – Access Control Matrix

Subject Subject Attribute
(Control Parameter)

Operation Object
(Resource)

Object
Attribute

Protection Offered

Threads Effective priority Use CPU bandwidth None If running the Adaptive Partitioning
(AP) Scheduler, groups of threads are
executed based on their effective
priorities and their AP assignments.

Application Note: Table 7 provides a matrix detailing which operations threads (“subjects” in CC-terminology)
may attempt to perform on resources (called “objects” in CC-terminology), and what attributes of each are used to
determine whether or not to allow the operation. This matrix is referred to by FDP_ACC.1 and FDP_ACF.1. In
short: a thread’s use of CPU time is mediated by the thread’s effective priority, which is calculated by the Scheduler
using the thread’s self-set actual priority as a parameter.

FDP_ACF.1 Security attribute based access control

Hierarchical to: No other components.

FDP_ACF.1.1

The TSF shall enforce the [access control SFP] to objects based on the following: [

• Subjects: listed in Table 7

• Subject attributes: listed in Table 7

• Objects: listed in Table 7

• Object attributes: listed in Table 7].

FDP_ACF.1.2

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 19 of 52
© 2008 QNX Software Systems

The TSF shall enforce the following rules to determine if an operation among controlled subjects and
controlled objects is allowed: [if the thread currently has the highest effective priority of all threads, as
determined by the Scheduler, then grant the thread access to CPU time, otherwise deny the access].

FDP_ACF.1.3

The TSF shall not explicitly authorise access of subjects to objects based on the following additional rules:
[assignment: rules, based on security attributes, that explicitly authorise access of subjects to objects].

FDP_ACF.1.4

The TSF shall not explicitly deny access of subjects to objects based on the [assignment: rules, based on
security attributes, that explicitly deny access of subjects to objects].

Dependencies: FDP_ACC.1 Subset access control
FMT_MSA.3 Static attribute initialization

Application Note: FDP_ACC.1 and FDP_ACF.1 describe the mechanism used to determine whether or not a thread
is allowed to access a shared memory object. In short: if the thread’s associated user ID has permission then allow
the access, otherwise deny the access.

FDP_IFC.1 Subset information flow control

Hierarchical to: No other components.

FDP_IFC.1.1

The TSF shall enforce the [information flow control SFP] on [

• Subjects: listed in Table 8

• Information: listed in Table 8

• Operations: listed in Table 8].

Dependencies: FDP_IFF.1 Simple security attributes

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 20 of 52
© 2008 QNX Software Systems

Table 8 – Information Flow Control Matrix

Subject Subject Attribute
(Control Parameter)

Operation Object
(Resource)

Object
Attribute

Protection Offered

Usermask Create Symbol in the
pathname
space2

Permission
bits

Used to determine the default
permissions when an object is created
in the pathname space. This operation
can be attempted by any thread;
however, its success or failure will
depend upon the thread’s permissions
to access that part of the pathname
space, as determined by the resource
manager.2

Threads

User ID and Group
ID3

Access,

Create

Symbol in the
pathname
space2

Permission
bits

Threads must have appropriate
permissions (either explicit
permissions, or implicit permissions
due to running as root) to access
symbols in the pathname space, as
determined by the applicable resource
manager. 2

Application Note: Table 8 provides a matrix detailing which operations threads (“subjects” in CC-terminology)
may attempt to perform on symbols in the pathname space (which, in the CC-evaluated configuration, are shared
memory objects), and what attributes of each are used to determine whether or not to allow the operation. This
matrix is referred to by FDP_IFC.1 and FDP_IFF.1. In short:

• A thread’s usermask is used to determine what permission bits are applied to an object created by that
thread in the pathname space. Threads may create symbols in the pathname space hierarchy and apply
access restrictions to them in the form of permission bits. Any thread may create a new symbol in the
“root” of the pathname space hierarchy (as long as the root of the pathname space is not being managed
by another thread or process). A thread may create a symbol under a pre-existing symbol (a “branch”) of
the pathname space if the branch is owned by that thread or process, or if the permission bits on that
branch (including the pathname space root, if it is being managed by another thread or process) allow
symbol creation to the thread.

• A thread’s user ID and group ID is used to determine whether or not it has permission to access a resource
in the pathname space, based on the object’s permission bits. “Access” permission includes both
permission to read or write to pre-existing symbols and permission to create symbols under a pre-existing
symbol. The resource manager (in the case of the TOE, the shared memory resource manager in procnto)

2 In the CC-evaluated configuration, symbols in the pathname space are shared memory objects, and the resource
manager for shared memory objects is contained within procnto.
3 The Real User ID and Group ID are inherited from the calling primitive (fork, vfork, exec, or spawn). The
effective User ID and Group ID are also determined this way for the fork primitive. For vfork, exec and spawn,
effective User ID and Group ID can be determined by arguments passed by the calling primitive. See
http://qnx.com/developers/docs/6.4.0/neutrino/sys_arch/proc.html for more information. Additional information on
each primitive can be found at http://qnx.com/developers/docs/6.4.0/neutrino/lib_ref/s/spawn.html,
http://qnx.com/developers/docs/6.4.0/neutrino/lib_ref/f/fork.html,
http://qnx.com/developers/docs/6.4.0/neutrino/lib_ref/v/vfork.html, and
http://qnx.com/developers/docs/6.4.0/neutrino/lib_ref/e/execl.html. A description of what each User ID and Group
ID means can be found at http://qnx.com/developers/docs/6.4.0/neutrino/user_guide/accounts.html.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 21 of 52
© 2008 QNX Software Systems

maintains a list of access permissions for the objects under its control and determines whether or not to
allow an access attempt.

FDP_IFF.1 Simple security attributes

Hierarchical to: No other components.

FDP_IFF.1.1

The TSF shall enforce the [information flow control SFP] based on the following types of subject and
information security attributes: [

• Subjects: listed in Table 8

• Subject attributes: listed in Table 8

• Information: listed in Table 8

• Information attributes: listed in Table 8].

FDP_IFF.1.2

The TSF shall permit an information flow between a controlled subject and controlled information via a
controlled operation if the following rules hold: [

• Pathname space symbol creation: use the usermask of the thread to determine what permission
bits to set on the newly-created symbol

• Pathname space symbol access: if the permission bits of the shared memory allow access to the
thread’s user ID or group ID, or if the thread is root, then allow the access, otherwise deny the
access].

Application Note: The “pathname space symbol creation” operation can be attempted by any thread; however, its
success or failure will depend upon the thread’s permissions to access that part of the pathname space.

FDP_IFF.1.3

The TSF shall enforce no additional rules the [assignment: additional information flow control SFP rules].

FDP_IFF.1.4

The TSF shall provide no additional SFP capabilities the following [assignment: list of additional SFP
capabilities].

FDP_IFF.1.5

The TSF shall not explicitly authorise an information flow based on the following rules: [assignment: rules,
based on security attributes, that explicitly authorise information flows].

FDP_IFF.1.6

The TSF shall not explicitly deny an information flow based on the following rules: [assignment: rules,
based on security attributes, that explicitly deny information flows].

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 22 of 52
© 2008 QNX Software Systems

Dependencies: FDP_IFC.1 Subset information flow control
FMT_MSA.3 Static attribute initialisation

FDP_RIP.2 Full residual information protection

Hierarchical to: FDP_RIP.1

FDP_RIP.2.1

The TSF shall ensure that any previous information content of a volatile memory resource is made
unavailable upon the [deallocation of the resource from] all objects.

Dependencies: No dependencies

Application Note: When compiled in the CC-evaluated configuration, memory objects are zeroized when they are
freed.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 23 of 52
© 2008 QNX Software Systems

5.1.2 Class FIA: Identification and Authentication

FIA_ATD.1 User attribute definition

Hierarchical to: No other components.

FIA_ATD.1.1

The TSF shall maintain the following list of security attributes belonging to individual user processes or
threads: [

• user mask

• User ID

• Group ID

• actual priority

• effective priority

• list of associated Adaptive Partitioning assignments].

Dependencies: No dependencies

Application Note: Process and threads have other attributes which are defined in struct thread_entry and struct
process_entry. The attributes listed in FIA_ATD.1 are the attributes specifically used to implement the TOE
functionality described in this Security Target.

Note that processes and threads have two types of “priorities”: “actual” priority and “effective” prio rity. The
actual priority is a value that is set by the process or thread itself and indicates to the scheduler “how important”
the process or thread currently considers itself to be; the effective priority is a value calculated by the scheduler
which indicates “how important” the scheduler currently considers that process or thread to be. The scheduler uses
the actual priority as a parameter when calculating the value of the effective priority, and only the effective priority
is used by the scheduler to make scheduling decisions.

Note also that processes and threads may be assigned to more than one Adaptive Partition (thus, the applicable
attribute above is “list of associated Adaptive Partitioning assignments”).

FIA_UID.2 User identification before any action

Hierarchical to: FIA_UID.1

FIA_UID.2.1

The TSF shall require each user process or thread to identify itself be identified before allowing any other
TSF-mediated actions on behalf of that user process or thread.

Dependencies: No dependencies

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 24 of 52
© 2008 QNX Software Systems

5.1.3 Class FMT: Security Management

FMT_MOF.1 Management of security functions behaviour

Hierarchical to: No other components.

FMT_MOF.1.1

The TSF shall restrict the ability to [modify the behaviour of] the functions [create a process or thread, kill
a process or thread] to [the process or thread itself, other threads within the same process, or a process or
thread with root privileges].

Dependencies: FMT_SMF.1 Specification of management functions
FMT_SMR.1 Security roles

Application Note: For the purposes of FMT_MOF.1, “modify the behavior of” is intended to mean “perform”.

FMT_MSA.1(a) Management of security attributes

Hierarchical to: No other components.

FMT_MSA.1.1(a)

The TSF shall enforce the [Information Flow Control SFP] to restrict the ability to [modify] the security
attributes [user mask, User ID, Group ID] to [a process or thread with root privileges (based on its priority
as defined in FMT_SMR.1)].

Dependencies: [FDP_ACC.1 Subset access control or
FDP_IFC.1 Subset information flow control]
FMT_SMF.1 Specification of management functions
FMT_SMR.1 Security roles

FMT_MSA.1(b) Management of security attributes

Hierarchical to: No other components.

FMT_MSA.1.1(b)

The TSF shall enforce the [Access Control SFP] to restrict the ability to [modify] the security attributes
[effective priority, list of associated Adaptive Partitioning assignments] to [no role].

Dependencies: [FDP_ACC.1 Subset access control or
FDP_IFC.1 Subset information flow control]
FMT_SMF.1 Specification of management functions
FMT_SMR.1 Security roles

Application Note: The effective priority is not, in fact, modified by any role, but rather is adjusted (calculated) by
the TOE itself as a way of performing scheduling “bookkeeping.” For this reason, it is listed as being modified by
“no role”. The list of associated Adaptive Partitioning assignments is specified by the process’ programmer as part
of the process itself, and is not modified during runtime.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 25 of 52
© 2008 QNX Software Systems

FMT_MSA.1(c) Management of security attributes

Hierarchical to: No other components.

FMT_MSA.1.1(c)

The TSF shall enforce the [Access Control SFP] to restrict the ability to [modify] the security attributes
[actual priority] to [the process or thread itself, or another process or thread with root privileges (based on
its priority as defined in FMT_SMR.1)].

Dependencies: [FDP_ACC.1 Subset access control or
FDP_IFC.1 Subset information flow control]
FMT_SMF.1 Specification of management functions
FMT_SMR.1 Security roles

Application Note: The actual priority can be modified by the process or thread itself, and any other process or
thread running with root privileges. This restriction is due to the design of the TOE itself, rather than an arbitrary
SFP, and so the SFR has been refined to reflect this.

FMT_MSA.3 Static attribute initialisation

Hierarchical to: No other components.

FMT_MSA.3.1

The TSF shall enforce the [Access Control SFP and Information Flow Control SFP] to provide
[permissive] default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2

The TSF shall allow the [processes and threads with root privileges, or the process or thread itself] to
specify alternative initial values to override the default values (except for the default value of the object’s
effective priority, which may not be overridden by any subject) when an object or information is
created.

Dependencies: FMT_MSA.1 Management of security attributes
FMT_SMR.1 Security roles

Application Note: Each process and thread have attributes which are defined in struct thread_entry and struct
process_entry when the process or thread is created. The attributes listed in FIA_ATD.1 are the attributes
specifically used to implement the TOE functionality described in this Security Target.

Each process and thread has an “actual” and “effective” priority. At process or thread creation, and at all times
afterward, the scheduler function of procnto is able to override the “actual” priority of a process or thread by
changing its’ “effective” priority to a value calculated by the scheduler, using the “actual” priority as a calculation
parameter.

FMT_SMF.1 Specification of Management Functions

Hierarchical to: No other components.

FMT_SMF.1.1

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 26 of 52
© 2008 QNX Software Systems

The TSF shall be capable of performing the following security management functions: [configure a
subject’s effective priority; configure a subject’s Adaptive Partitioning assignments; create a process or
thread; kill a process or thread].

Dependencies: No Dependencies

FMT_SMR.1 Security roles

Hierarchical to: No other components.

FMT_SMR.1.1

The TSF shall maintain the roles: [

• Priority 0: idle thread

• Priorities 1 – 63: subjects without root privileges, or subjects with root privileges choosing to run
at a lower priority

• Priorities 64 – 255: subjects with root privileges].

FMT_SMR.1.2

The TSF shall be able to associate processes and threads users with roles.

Dependencies: FIA_UID.1 Timing of identification

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 27 of 52
© 2008 QNX Software Systems

5.1.4 Class FPT: Protection of the TSF

FPT_FLS.1 Failure with preservation of secure state

Hierarchical to: No other components.

FPT_FLS.1.1

The TSF shall preserve a secure state when the following types of failures occur: [a failure of a thread in
one process will not cause threads in another unrelated process to fail].

Dependencies: ADV_SPM.1 Informal TOE security policy model

Application Note: FPT_FLS.1 refers to the fact that the TOE maintains separation of memory address spaces
between unrelated processes. Thus, threads in two unrelated processes – that is, two processes that do not share a
shared memory object – cannot corrupt the resources belonging to the other thread or otherwise interfere with the
operation of the other thread.

FPT_RVM.1 Non-bypassability of the TSP

Hierarchical to: No other components.

FPT_RVM.1.1

The TSF shall ensure that TSP enforcement functions are invoked and succeed before each function within
the TSC is allowed to proceed.

Dependencies: No dependencies

FPT_SEP.1 TSF domain separation

Hierarchical to: No other components.

FPT_SEP.1.1

The TSF shall maintain a security domain for its own execution that protects it from interference and
tampering by untrusted subjects.

FPT_SEP.1.2

The TSF shall enforce separation between the security domains of subjects in the TSC.

Dependencies: No dependencies

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 28 of 52
© 2008 QNX Software Systems

5.1.5 Class FRU: Resource Utilization

FRU_FLT.1 Degraded fault tolerance

Hierarchical to: No other components.

FRU_FLT.1.1

The TSF shall ensure the operation of [other unrelated processes and threads] when the following failures
occur: [failure or other execution errors by a process or thread].

Dependencies: FPT_FLS.1 Failure with preservation of secure state

Application Note: FRU_FLT.1 is closely related to FPT_FLS.1 above.

FRU_PRS.1 Limited priority of service

Hierarchical to: No other components.

FRU_PRS.1.1

The TSF shall assign a priority to each subject in the TSF.

FRU_PRS.1.2

The TSF shall ensure that each access to [CPU bandwidth] shall be mediated on the basis of the subject’s
assigned priority and the CPU time budget of its assigned Adaptive Partition .

Dependencies: No dependencies

FRU_RSA.1 Maximum quotas

Hierarchical to: No other components.

FRU_RSA.1.1

The TSF shall enforce maximum quotas of the following resources: [CPU bandwidth] that [subjects] can
use [over a specified period of time].

Dependencies: No dependencies

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 29 of 52
© 2008 QNX Software Systems

5.2 Security Functional Requirements on the IT Envi ronment

There are no security requirements for the TOE’s IT environment.

5.3 Assurance Requirements

This section defines the assurance requirements for the TOE. Assurance requirements are taken from the CC Part 3
and are EAL4 augmented with ALC_FLR.1. Table 9 – Assurance Requirements summarizes the requirements.

Table 9 – Assurance Requirements

Assurance Requirements

ACM_AUT.1 Partial CM automation

ACM_CAP.4 General support and acceptance procedures

Class ACM:
Configuration management

ACM_SCP.2 Problem tracking CM coverage

ADO_DEL.2 Detection of modification Class ADO:
Delivery and operation

ADO_IGS.1 Installation, generation, and start-up procedures

ADV_FSP.2 Fully defined external interfaces

ADV_HLD.2 Security-enforcing high-level design

ADV_IMP.1 Subset of the implementation of the TSF

ADV_LLD.1 Descriptive low-level design

ADV_RCR.1 Informal correspondence demonstration

Class ADV:
Development

ADV_SPM.1 Informal TOE security policy model

AGD_ADM.1 Administrator guidance Class AGD:
Guidance documents

AGD_USR.1 User guidance

ALC_DVS.1 Development security

ALC_FLR.1 Basic flaw remediation

ALC_LCD.1 Developer defined Life cycle model

Class ALC:
Life cycle support

ALC_TAT.1 Well-defined development tools

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 30 of 52
© 2008 QNX Software Systems

Assurance Requirements

ATE_COV.2 Analysis of coverage

ATE_DPT.1 Testing: high-level design

ATE_FUN.1 Functional testing

Class ATE:
Tests

ATE_IND.2 Independent testing – sample

AVA_MSU.2 Validation of analysis

AVA_SOF.1 Strength of TOE security function evaluation

Class AVA:
Vulnerability assessment

AVA_VLA.2 Independent vulnerability analysis

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 31 of 52
© 2008 QNX Software Systems

6 TOE Summary Specification
This section presents information to detail how the TOE meets the functional and assurance requirements described
in previous sections of this ST.

6.1 TOE Security Functions

Each of the Security Functional Requirements (SFRs) and the associated descriptions correspond to the security
functions. Hence, each function is described by how it specifically satisfies each of its related requirements. This
serves to both describe the security functions and rationalize that the security functions satisfy the necessary
requirements.

Table 10 – Mapping of TOE Security Functions to Sec urity Functional Requirements

TOE Security Function SFR ID Description

FDP_ACC.1 Subset access control

FDP_ACF.1 Security attribute based access control

FDP_IFC.1 Subset information flow control

FDP_IFF.1 Simple security attributes

User Data Protection

FDP_RIP.2 Full residual information protection

FIA_ATD.1 User attribute definition Identification

FIA_UID.2 User identification before any action

FMT_MOF.1 Management of security functions behaviour

FMT_MSA.1(a) Management of security attributes

FMT_MSA.1(b) Management of security attributes

FMT_MSA.1(c) Management of security attributes

FMT_MSA.3 Static attribute initialisation

FMT_SMF.1 Specification of management functions

Security Management

FMT_SMR.1 Security roles

FPT_FLS.1 Failure with preservation of secure state

FPT_RVM.1 Non-bypassability of the TSP

Protection of TSF

FPT_SEP.1 TSF domain separation

FRU_FLT.1 Degraded fault tolerance

FRU_PRS.1 Limited priority of service

Resource Utilization

FRU_RSA.1 Maximum quotas

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 32 of 52
© 2008 QNX Software Systems

6.1.1 User Data Protection

The User Data Protection TSF is primarily concerned with ensuring that processes and threads can only access the
resources for which they have the appropriate permissions or attributes.

When built with the CC-approved configuration4, the TOE overwrites the contents of a resource stored in volatile
memory (such as RAM5) before re-allocating that memory space to another resource. This ensures that the previous
information content is not available to other processes or threads.

The TOE enforces the following Security Functional Policies (SFPs):

6.1.1.1 Access Control SFP

The Access Control SFP is concerned with mediating access to CPU time, and supports the FRU_RSA.1 “Maximum
quotas” SFR. The Access Control SFP can be generally stated in the following manner: “If a thread currently has
the highest effective priority of all threads, as determined by the Scheduler, then grant the thread access to CPU
time, otherwise deny the access.” The Access Control SFP is applied to processes (and their associated threads) and
CPU time based on the attributes listed in Table 7 above.

6.1.1.2 Information Flow Control SFP

The Information Flow Control SFP can be generally stated in the following manner: “A thread may access a shared
memory object if the thread’s user ID or group ID has the appropriate permissions. When a thread creates a
shared memory object, the thread’s usermask is used to set the initial permission bits of the newly-created object.”
The Information Flow Control SFP is applied to processes (and their associated threads) based on the permission
bits of the shared memory and the process or thread’s user mask, user ID, and group ID.

A shared memory object is a range of memory which is allocated for simultaneous access by more than one process.
Shared memory objects are accessed via a corresponding symbol in the pathname space hierarchy at /shmem, which
is implemented by the shared memory resource manager contained within the TOE (other “filesystems” are
implemented by resource managers which are outside of the TOE). Each shared memory object has permission bits
which indicate what process user masks are allowed accesses. When a thread attempts to access a shared memory
object, procnto compares the thread’s user ID (and the group ID, if required) to the permission bits of the object and
determines whether to allow or deny the access.

Threads may create symbols in the pathname space hierarchy (corresponding to shared memory objects) and apply
access restrictions to them in the form of permission bits. Any thread may create a new symbol in the “root” of the
pathname space at /shmem, so long as /shmem is not being managed by another thread or process. A thread may
create a symbol under a pre-existing symbol (a “branch”) of the pathname space if the branch is owned by that
thread or process, or if the permission bits on that branch (including the pathname space root, if it is being managed
by another thread or process) allow symbol creation to the thread. Attempts by threads to create new shared
memory objects are governed by procnto, which determines whether or not the thread’s user ID (and the group ID, if
required) is authorized to create new shared memory objects in the requested branch of the pathname space.
Threads running as “root” are always allowed to perform any requested action.6

TOE Security Functional Requirements Satisfied: FDP_ACC.1, FDP_ACF.1, FDP_IFC.1, FDP_IFF.1,
FDP_RIP.2.

4 For details, see the Common Criteria Supplement Guide.
5 RAM: Random Access Memory
6 A process or thread is considered to be running as root if it has an effective UID of “0” and an effective GID of
“0”.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 33 of 52
© 2008 QNX Software Systems

6.1.2 Identification

The “users” of the TOE are processes and threads. Processes are “containers” for one or more threads. Each
process has an associated user mask, User ID, Group ID, actual priority, effective priority, and list of associated
Adaptive Partitioning assignments7, and these attributes are inherited by the process’ threads. The User ID
indicates the user that “owns” (is responsible for) that process, and associates the permissions assigned to that user
with that process. The Group ID similarly indicates the user group that the process owner belongs to, and associates
the related group permissions with that process. The user mask determines the default permissions that will be set
on any object that the process creates in the pathname space. The actual priority indicates the priority that the
process or thread itself (or another thread running with root privileges) wishes itself to run with. The effective
priority indicates the current calculated priority that is being used by the procnto scheduler to schedule the process
for access to CPU bandwidth; it uses the actual priority as a parameter when calculating this value. The list of
Adaptive Partitioning assignments determines indicates which AP partitions the process is assigned to, and is used
by the scheduler when making scheduling decisions.

Each thread inherits all of these attributes from its parent process. Process and threads have other attributes which
are defined in struct thread_entry and struct process_entry. The attributes listed in FIA_ATD.1 are the attributes
specifically used to implement the TOE functionality described in this Security Target. The unique identifier for a
process is its process ID; the unique identifier for a thread is the combination of its process ID and its thread ID. All
attributes are assigned at the moment that the process or thread is created – it is impossible to have a process or
thread without an ID. This ensures that no TSF-mediated actions are performed for a process or thread before it is
identified.

TOE Security Functional Requirements Satisfied: FIA_ATD.1, FIA_UID.2.

6.1.3 Security Management

The TOE provides four security management functions:

• Create a process or thread

• Kill a process or thread

• Configure a process’ or thread’s effective priority

• Configure a process’ Adaptive Partitioning assignments8

The TOE implements “roles” as process and thread priorities, where higher numbered priorities are guaranteed more
access to resources than lower numbered priorities. Priority “0” is the idle thread – no other thread may have
priority 0. Priorities 1 – 63 are threads without root privileges, or threads with root privileges that have currently
chosen to run at a lower priority. Priorities 64 – 255 are threads with root privileges. Processes and threads actually
have two priorities – an “actual” priority and an “effective” priority. The actual priority is a value that is set by the
process or thread itself and indicates to the scheduler (an entity within procnto) “how important” the process or
thread currently considers itself to be; the effective priority is a value calculated by the scheduler that indicates “how
important” the scheduler currently considers that process or thread to be. The scheduler uses the actual priority as a
parameter when calculating the value of the effective priority, and only the effective priority is used by the scheduler

7 Note that processes and threads may be assigned to more than one Adaptive Partition.
8 This includes management of CPU time budget. Assignment of an adaptive partition includes the assignment of an
associated CPU bandwidth limit (see Terminology). The CPU bandwidth limit dictates the CPU time budget. In
other words, CPU bandwidth limit is an attribute of Adaptive Partitioning assignments.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 34 of 52
© 2008 QNX Software Systems

to make scheduling decisions. Threads may change their own actual priority at any time, and they may adjust the
actual priority of another thread if they have root privileges. The scheduler function of procnto can “override” the
actual priority of a thread by adjusting its effective priority for scheduling purposes.

Any process or thread may create a new process or thread, which will inherit the applicable security attributes of the
process that created it. Permission to kill a process or thread is limited to the process or thread itself, other threads
contained in the process that spawned the thread, and to threads with root privileges. The ability to modify the
actual priority of a process or thread is limited to the process or thread itself and to other threads running with root
privileges. The ability to modify the effective priority of a process or thread is limited to the scheduler.

The TOE manages the SFPs discussed in Section 6.1.1 above by restricting the ability to modify the subject security
attributes that can be modified to no TOE role, the process or thread itself, or another process or thread with root
privileges, as appropriate:

• The actual priority can be modified by the process or thread itself and by other threads running with root
privileges.

• The list of Adaptive Partitioning assignments and the effective priority cannot be modified by any TOE
role. Note that, although the effective priority can be modified by the scheduler function of procnto, such
modification is performed as part of the normal functioning of the TOE and cannot be directly manipulated
by any TOE role.

• The other attributes specified in FIA_ATD.1 (user mask, User ID, Group ID) are typically set and managed
outside of the TOE, although they can also be modified by processes or threads running with root
privileges.

The TOE also manages the SFPs by providing permissive default values for the security attributes that are used to
enforce the SFPs – the security attributes defined in FIA_ATD.1 are specified by the process or thread itself when it
is created. The scheduler can override the default effective priority value and specify an alternative initial value.

TOE Security Functional Requirements Satisfied: FMT_MOF.1, FMT_MSA.1(a), FMT_MSA.1 (b),
FMT_MSA.1(c), FMT_MSA.3, FMT_SMF.1, FMT_SMR.1.

6.1.4 Protection of the TSF

The TOE maintains its own protected memory space (devoted to the kernel), which is kept separate from the
memory spaces allocated to the threads it executes. This separation allows the TOE to protect itself from tampering
and interference by the threads it executes, since the TOE does not allow the threads it executes to access or modify
its protected memory unless they are running as root.9 The TOE also maintains the separation of the memory spaces
of each thread it executes.

The TOE cannot execute a thread unless all of procnto’s functions (such as the scheduler, memory manager, etc.)
are functioning properly – this ensures that the TOE Security Policy (TSP) enforcement functions are invoked and
succeed before threads are executed.

The TOE’s scheduling and separation functions ensure that failures in executed threads will not cause a failure in the
TOE itself – all TOE functions will continue normally.

TOE Security Functional Requirements Satisfied: FPT_FLS.1, FPT_RVM.1, FPT_SEP.1.

9 Care must be taken to ensure that threads entrusted with root privileges do not maliciously overwrite kernel
memory.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 35 of 52
© 2008 QNX Software Systems

6.1.5 Resource Utilization

The TOE’s scheduling and separation functions ensure that failure of a thread in one process – whether due to poor
design or malicious behavior – will not directly cause threads in another process to fail.10

Each thread has a priority and an “effective” priority: the priority is the “actual” priority (that is, the priority that the
thread “would like to have”), while the “effective” priority is changed dynamically by the scheduler in order to
implement quotas as defined by FRU_RSA.1. CPU time is allocated to each thread based on their effective
priorities – threads with higher priorities are given “more” access to CPU time then threads with lower priority;
however, higher priority threads cannot “starve” lower priority threads within a different AP partition – CPU time
allocation is determined by the scheduler, which uses a thread’s priority as well as the thread’s AP partition CPU
time budget as variables when determining the allocation schedule. Threads are allocated CPU time by the
scheduler. For a detailed explanation of the scheduler and Adaptive Partitioning, please refer to the official QNX
manuals.

Quotas are enforced on the total amount of CPU bandwidth that any particular AP can use. CPU bandwidth refers to
the available portion of the CPU available to the AP at a given time. Quotas do not reflect total time or number of
CPU cycles that a process or thread uses.

TOE Security Functional Requirements Satisfied: FRU_FLT.1, FRU_PRS.1, FRU_RSA.1.

6.2 TOE Security Assurance Measures

EAL4+ was chosen to provide a basic level of independently assured security. This section of the Security Target
maps the assurance requirements of the TOE for a CC EAL4+ level of assurance to the assurance measures used for
the development and maintenance of the TOE. The following table provides a mapping of the appropriate
documentation to the TOE assurance requirements.

Note to Evaluator: The final versions of these documents have not yet been produced. The version numbers will be
completed when the evaluation is close to completion and the documents have been finalized.

Table 11 - Assurance Measures Mapping to TOE Securi ty Assurance Requirements (SARs)

Assurance
Component Assurance Measure

ACM_AUT.1

ACM_CAP.4

ACM_SCP.2

QNX Software Systems QNX Neutrino® Secure Kernel v6.4 Configuration
Management

ADO_DEL.2 QNX Software Systems QNX Neutrino® Secure Kernel v6.4 Secure Delivery

10 It is possible that a thread in a separate process which relies on actions performed by the failing thread could fail
due to poor coding practices. For example, the second thread might assume that the first thread will never fail, and
could then itself fail due to lack of error checking. However, consideration of these types of issues is beyond the
scope of this CC certification. Care should always be taken to use good coding practices.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 36 of 52
© 2008 QNX Software Systems

Assurance
Component Assurance Measure

ADO_IGS.1 QNX Neutrino® Secure Kernel v6.4 Installation Guidance

ADV_FSP.2

ADV_HLD.2

ADV_LLD.1

ADV_RCR.1

QNX Software Systems QNX Neutrino® Secure Kernel v6.4 TOE Architecture:
Functional Specification, High Level Design, Low Level Design, and
Representation Correspondence

ADV_IMP.1 QNX Software Systems QNX Neutrino® Secure Kernel v6.4 - Implementation
Representation

ADV_SPM.1 QNX Software Systems QNX Neutrino® Secure Kernel v6.4 Informal Security
Policy Model

AGD_ADM.1

AGD_USR.1

QNX Software Systems QNX Neutrino® Secure Kernel v6.4 Common Criteria
Supplement Guide

ALC_DVS.1

ALC_FLR.111

ALC_LCD.1

ALC_TAT.1

QNX Software Systems QNX Neutrino® Secure Kernel v6.4 Life Cycle Support

ATE_COV.2

ATE_DPT.1

ATE_FUN.1

QNX Software Systems QNX Neutrino® Secure Kernel v6.4 Functional Tests,
Coverage, and Depth Analysis

ATE_IND.2 [Performed by testing laboratory]

AVA_MSU.2

AVA_SOF.1

QNX Software Systems QNX Neutrino® Secure Kernel v6.4 Vulnerability Analysis

11 Augmentation to EAL 4+ assurance level.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 37 of 52
© 2008 QNX Software Systems

Assurance
Component Assurance Measure

AVA_VLA.2

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 38 of 52
© 2008 QNX Software Systems

7 Protection Profile Claims
There are no protection profile claims for this security target.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 39 of 52
© 2008 QNX Software Systems

8 Rationale
This section provides the rationale for the selection of the security requirements, objectives, assumptions, and
threats. In particular, it shows that the security requirements are suitable to meet the security objectives, which in
turn are shown to be suitable to cover all aspects of the TOE security environment.

Table 12 below provides a mapping of assumptions, threats, and security functional requirements to the objectives
for the TOE and TOE Environment, showing that the mapping is complete.

Table 12 - Relationship of Security Threats to Obje ctives

O
.A

C
C

E
S

S

O
.E

X
E

C
U

T
IO

N
_P

R
IO

R
IT

Y

O
. F

A
IL

U
R

E
_I

S
O

LA
T

IO
N

O
.R

E
S

ID
U

A
L_

IN
F

O
R

M
A

T
IO

N

O
.R

E
S

O
U

R
C

E
_A

LL
O

C
A

T
IO

N

O
.S

U
B

JE
C

T
_I

S
O

LA
T

IO
N

O
E

.IN
S

T
A

LL

O
E

.A
D

M
IN

_G
U

ID
A

N
C

E

O
E

.IN
S

T
A

LL
_G

U
ID

A
N

C
E

O
E

.M
A

N
A

G
E

O
E

.P
H

Y
S

IC
A

L

O
E

.T
R

U
S

T
E

D
_I

N
D

IV
ID

U
A

L

T.DENIAL_OF_SERVICE � � �

T.INSTALL � � � �

T
hr

ea
ts

T.UNAUTHORIZED_ACCESS � � � �

A.MANAGE � �

A.NOEVIL � �

A.PHYSICAL �

A
ss

um
pt

io
ns

A.TRUSTED_INDIVIDUAL �

FDP_ACC.1 �

FDP_ACF.1 �

FDP_IFC.1 �

FDP_IFF.1 � �

FDP_RIP.2 �

FIA_ATD.1 � �

FIA_UID.2 �

FMT_MOF.1 � S
ec

ur
ity

 F
un

ct
io

na
l R

eq
ui

re
m

en
ts

FMT_MSA.1(a) � �

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 40 of 52
© 2008 QNX Software Systems

O
.A

C
C

E
S

S

O
.E

X
E

C
U

T
IO

N
_P

R
IO

R
IT

Y

O
. F

A
IL

U
R

E
_I

S
O

LA
T

IO
N

O
.R

E
S

ID
U

A
L_

IN
F

O
R

M
A

T
IO

N

O
.R

E
S

O
U

R
C

E
_A

LL
O

C
A

T
IO

N

O
.S

U
B

JE
C

T
_I

S
O

LA
T

IO
N

O
E

.IN
S

T
A

LL

O
E

.A
D

M
IN

_G
U

ID
A

N
C

E

O
E

.IN
S

T
A

LL
_G

U
ID

A
N

C
E

O
E

.M
A

N
A

G
E

O
E

.P
H

Y
S

IC
A

L

O
E

.T
R

U
S

T
E

D
_I

N
D

IV
ID

U
A

L

FMT_MSA.1(b) � �

FMT_MSA.1(c) � �

FMT_MSA.3 � �

FMT_SMF.1 � �

FMT_SMR.1 �

FPT_FLS.1 �

FPT_RVM.1 � �

FPT_SEP.1 �

FRU_FLT.1 � �

FRU_PRS.1 �

FRU_RSA.1 �

8.1 Security Objectives Rationale

This section provides a rationale for the existence of each assumption and threat that compose the Security Target.

8.1.1 Security Objectives Rationale Relating to Thr eats

Table 13 - Threats:Objectives Mapping

Threats Objectives Rationale

T.DENIAL_OF_SERVICE

A misbehaving process or thread
may block others from system
resources (i.e., processing time)
via a resource exhaustion attack.

O.EXECUTION_PRIORITY

The TOE will provide mechanisms
that ensure that processes and
threads with higher priorities and
higher Adaptive Partitioning budgets
are given more access to CPU time
than processes and threads of lower
priorities or lower AP budgets.

O.EXECUTION_PRIORITY ensures
that a process or thread with a higher
priority or AP budget will be given
more access to CPU time than a
process or thread with a lower priority
or AP budget.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 41 of 52
© 2008 QNX Software Systems

Threats Objectives Rationale

O.FAILURE_ISOLATION

The TOE will prevent a failure of one
process or thread from affecting other
unrelated processes and threads.

O.FAILURE_ISOLATION contributes
to mitigation of this threat by ensuring
that a failure of one process or thread
does not cause a denial of service for
another unrelated process or thread.

O.RESOURCE_ALLOCATION

The TOE will provide mechanisms
that enforce constraints on the
allocation of resources.

O.RESOURCE_ALLOCATION
contributes to mitigation of this threat
by ensuring that the TOE allocates
system resources to subjects
according to the total amount of CPU
time each subject is using
simultaneously.

OE.ADMIN_GUIDANCE

The TOE will provide administrators
with the necessary information for
secure management of the TOE.

OE.ADMIN_GUIDANCE ensures that
the necessary information to securely
manage the TOE be provided to
administrators of the TOE.

OE.INSTALL_GUIDANCE

The TOE will be delivered with the
appropriate installation guidance to
establish and maintain TOE security.

OE.INSTALL_GUIDANCE ensures
that the appropriate information to
securely install and maintain TOE
security be provided as part of the
delivered TOE.

OE.INSTALL

Those responsible for the TOE must
ensure that the TOE is delivered,
installed, managed, and operated in a
manner that prevents disclosure,
modification, destruction, and other
threats to the TOE that result from a
deficiency in delivery or customer site
security..

OE.INSTALL ensures that
administrators will deliver, install,
manage, and operate the TOE in a
manner that prevents disclosure,
modification, destruction, and other
threats to the TOE that result from a
deficiency in delivery or customer site
security.

T.INSTALL

An administrator may incorrectly
install or configure the TOE,
resulting in ineffective security
mechanisms.

OE.MANAGE

Sites deploying the TOE will provide
competent, non-hostile TOE
administrators who are appropriately
trained and follow all administrator
guidance. TOE administrators will
ensure the system is used securely.

OE.MANAGE ensures that
administrators will follow all
administrator guidance, are non-
hostile, and will ensure that the
system is used in a secure manner.

O.ACCESS

The TOE will ensure that processes
and threads gain only authorized
access to resources.

O.ACCESS ensures that processes
and threads can gain access only to
those resources for which they are
authorized.

T.UNAUTHORIZED _ACCESS

A process or thread may gain
access to resources or TOE
security management functions for
which it is not authorized
according to the TOE security
policy.

O.RESIDUAL_INFORMATION

The TOE will ensure that any
information contained in a resource is
not released to processes or threads
when the resource is reallocated.

O.RESIDUAL_INFORMATION
ensures that residual information
contained in a resource, once
disassociated from one process or
thread, is not accessible when the
resource is allocated to another
process or thread.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 42 of 52
© 2008 QNX Software Systems

Threats Objectives Rationale

O.SUBJECT_ISOLATION

The TOE will provide mechanisms to
protect each process or thread from
unauthorized interference by other
processes or threads.

O.SUBJECT_ISOLATION ensures
that a process or thread cannot
interfere with another process or
thread by accessing resources for
which it is not authorized.

OE.PHYSICAL

Physical security will be provided for
the TOE by the non- IT environment
commensurate with the value of the IT
assets protected by the TOE.

OE.PHYSICAL establishes physical
controls that restrict physical access
to the TOE to only authorized
personnel.

8.1.2 Security Objectives Rationale Relating to Ass umptions

Table 14 - Assumptions:Objectives Mapping

Assumptions Objectives Rationale

OE.INSTALL

Those responsible for the TOE must
ensure that the TOE is delivered,
installed, managed, and operated in a
manner that prevents disclosure,
modification, destruction, and other
threats to the TOE that result from a
deficiency in delivery or customer site
security.

OE.INSTALL ensures that the TOE
will be installed correctly and
configured securely.

A.MANAGE

There is one or more competent
individuals (administrators)
assigned to manage the TOE.

OE.MANAGE

Sites deploying the TOE will provide
competent, non-hostile TOE
administrators who are appropriately
trained and follow all administrator
guidance. TOE administrators will
ensure the system is used securely.

OE.MANAGE ensures that the TOE
will be managed by competent, non-
hostile administrators who will
configure the system securely to limit
access to the TOE’s configuration
data.

OE.INSTALL

Those responsible for the TOE must
ensure that the TOE is delivered,
installed, managed, and operated in a
manner that prevents disclosure,
modification, destruction, and other
threats to the TOE that result from a
deficiency in delivery or customer site
security.

OE.INSTALL ensures that the TOE
will be installed correctly and
configured securely.

A.NOEVIL

The people administering the TOE
and writing processes and threads
for execution by the TOE are non-
hostile, appropriately trained, and
follow all guidance.

OE.MANAGE

Sites deploying the TOE will provide
competent, non-hostile TOE
administrators who are appropriately
trained and follow all administrator
guidance. TOE administrators will
ensure the system is used securely.

OE.MANAGE ensures that the TOE
will be managed by competent, non-
hostile administrators who will
configure the system securely to limit
access to the TOE’s configuration
data.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 43 of 52
© 2008 QNX Software Systems

Assumptions Objectives Rationale

A.PHYSICAL

It is assumed that the non-IT
environment provides the TOE
with appropriate physical security
commensurate with the value of
the IT assets protected by the
TOE.

OE.PHYSICAL

Physical security will be provided for
the TOE by the non- IT environment
commensurate with the value of the IT
assets protected by the TOE.

OE.PHYSICAL addresses this
assumption by requiring the non-IT
environment to provide physical
security for the TOE that is
commensurate with the value of the IT
assets protected by the TOE.

A.TRUSTED_INDIVIDUAL

It is assumed that any individual
allowed to perform procedures
upon which the security of the
TOE may depend is trusted with
assurance commensurate with the
value of the IT assets.

OE.TRUSTED_INDIVIDUAL

Any individual allowed to perform
procedures upon which the security of
the TOE may depend must be trusted
with assurance commensurate with
the value of the IT assets.

OE.TRUSTED_INDIVIDUAL
addresses this assumption by
requiring that any individual who is
allowed to perform procedures that
affect the security of the TOE be
trusted with assurance commensurate
with the value of the IT assets.

8.2 Security Functional Requirements Rationale

The following discussion provides detailed evidence of coverage for each security objective.

8.2.1 Rationale for Security Functional Requirement s of the TOE Objectives

Table 15 - Objectives:SFRs Mapping

Objective
Requirements Addressing the

Objective Rationale

FDP_ACF.1

Security attribute based access
control

FDP_ACF.1 specifies the attributes
used to enforce the access control
SFP.

FDP_IFF.1

Simple security attributes

FDP_IFF.1 specifies the information
flow control SFP.

FIA_ATD.1

User attribute definition

FIA_ATD.1 specifies the process and
thread attributes which are used for
enforcing the access control SFP.

FIA_UID.2

User identification before any action

FIA_UID.2 specifies that the TOE may
perform no actions for a process or
thread before it is identified.

FMT_MSA.3

Static attribute initialisation

FMT_MSA.3 specifies how the default
security attributes for process and
threads are determined and
overridden.

O.ACCESS

The TOE will ensure that
processes and threads gain only
authorized access to resources.

FDP_ACC.1

Subset access control

FDP_ACC.1 requires the TSF to
enforce the access control SFP.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 44 of 52
© 2008 QNX Software Systems

Objective
Requirements Addressing the

Objective Rationale

FMT_SMF.1

Specification of management
functions

FMT_SMF.1 requires the TSF to
provide capability to configure a
process' or thread’s security attributes
and to create or kill it.

FMT_MOF.1

Management of security functions
behavior

FMT_MOF.1 requires the TSF to
restrict the capability to configure a
process' or thread’s security attributes
and to create or kill it to other
appropriate processes or threads.

FPT_RVM.1

Non-bypassability of the TSP

FPT_RVM.1 requires that the security
functions be non-bypassable.

FMT_MSA.1(a), FMT_MSA.1(b),
FMT_MSA.1(c)

Management of security attributes

The iterations of FMT_MSA.1 require
the TSF to restrict the modification of
process or thread security attributes to
authorized entities.

FMT_SMF.1

Specification of management
functions

FMT_SMF.1 requires the TSF to
provide capability to configure a
process’ or thread's priority.

FIA_ATD.1

User attribute definition

FIA_ATD.1 specifies the process and
thread attributes which are used to
determine the priority of service that a
process or thread should receive.

FMT_MSA.1(a), FMT_MSA.1(b),
FMT_MSA.1(c)

Management of security attributes

The iterations of FMT_MSA.1 require
the TSF to restrict the modification of
process and thread security attributes
to authorized entities.

FRU_PRS.1

Limited priority of service

FRU_PRS.2 requires the TSF to use
each thread's priority when
determining how to utilize CPU time.

FMT_MSA.3

Static attribute initialisation

FMT_MSA.3 specifies how the default
security attributes for processes and
threads are determined and
overridden.

O.EXECUTION_PRIORITY

The TOE will provide mechanisms
that ensure that processes and
threads with higher priorities and
higher Adaptive Partitioning
budgets are given more access to
CPU time than processes and
threads of lower priorities or lower
AP budgets.

FMT_SMR.1

Security roles

FMT_SMR.1 specifies the roles
maintained by the TSF.

FPT_FLS.1

Failure with preservation of secure
state

FPT_FLS.1 requires the TSF to
preserve a secure state when a
process or thread encounters an error.

O.FAILURE_ISOLATION

The TOE will prevent a failure of
one process or thread from
affecting other unrelated
processes and threads.

FPT_RVM.1

Non-bypassability of the TSP

FPT_RVM.1 requires that the security
functions be non-bypassable.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 45 of 52
© 2008 QNX Software Systems

Objective
Requirements Addressing the

Objective Rationale

FRU_FLT.1

Degraded fault tolerance

FRU_FLT.1 requires the TSF to
prevent a failure of one process or
thread from causing the TOE to stop
rendering services to all other
processes and threads.

O.RESIDUAL_INFORMATION

The TOE will ensure that any
information contained in a
resource is not released to
processes and threads when the
resource is reallocated.

FDP_RIP.2

Full residual information protection

FDP_RIP.2 requires the TSF to
destroy the contents of a volatile
memory resource before reallocating
the memory to another resource.

O.RESOURCE_ALLOCATION

The TOE will provide mechanisms
that enforce constraints on the
allocation of resources.

FRU_RSA.1

Maximum quota

FRU_RSA.1 requires the TSF to
enforce maximum quotas on
resources.

FDP_IFC.1

Subset information flow control

FDP_IFC.1 requires the TSF to
enforce the information flow control
SFP.

FDP_IFF.1

Simple security attributes

FDP_IFF.1 specifies the information
flow control SFP.

FPT_SEP.1

TSF domain separation

FPT_SEP.1 requires that the TOE
protect its subjects (processes and
threads) from interference and
tampering by untrusted subjects.

O.SUBJECT_ISOLATION

The TOE will provide mechanisms
to protect each process or thread
from unauthorized interference by
other processes or threads.

FRU_FLT.1

Degraded fault tolerance

FRU_FLT.1 requires the TSF to
prevent a failure of one process or
thread from causing the TOE to stop
rendering services to all other
processes and threads.

8.3 Security Assurance Requirements Rationale

EAL4+ was chosen to provide a basic level of independently assured security and thorough investigation of the TOE
and its development. As such, minimal additional tasks are placed upon the vendor assuming the vendor follows
reasonable software engineering practices and can provide support to the evaluation for design and testing efforts.
The chosen assurance level is appropriate with the threats defined for the environment. The TOE is expected to be
in a non-hostile position and embedded in or protected by other products designed to address threats that correspond
with the intended environment. At EAL4+, the TOE will have incurred an independent vulnerability analysis to
support its introduction into the non-hostile environment.

The augmentation of ALC_FLR.1 was chosen to give greater assurance of the developer’s on-going flaw
remediation processes.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 46 of 52
© 2008 QNX Software Systems

8.4 Rationale for Refinements of Security Functiona l Requirements

The following refinements of Security Functional Requirements from CC version 2.3 have been made to clarify the
content of the SFRs, and make them easier to read:

• FDP_ACF.1: Refined to clarify that there are no additional rules.

• FDP_IFF.1: Refined to clarify that there are no additional rules.

• FDP_RIP.2: Refined to say specify that only volatile memory is destroyed when de-allocated.

• FIA_ATD.1: Refined to replace "user" with "process or threads" since the TOE does not directly support
human users.

• FIA_UID.2: Refined to replace "user" with "process or threads" since the TOE does not directly support
human users. Replaced “identify itself” with “be identified” to indicate that the identification is passive
rather than active.

• FMT_MSA.1(c): Refined to strike the mention of a specific SFP, since the restriction on modifying a
thread’s actual priority is implemented by the design of the TOE rather than an arbitrary SFP.

• FMT_MSA.3: Refined to clarify that the effective priority of an object may not be overridden by any
subject.

• FMT_SMR.1: Refined to clarify that priorities are the "roles"; also replaced "user" with "process or
threads" since the TOE does not directly support human users.

• FRU_PRS.1: Refined to clarify that Adaptive Partition budgets are also used to mediate access.

8.5 Dependency Rationale

This ST does satisfy all the requirement dependencies of the Common Criteria. Table 16 lists each requirement to
which the TOE claims conformance with a dependency and indicates whether the dependent requirement was
included. As the table indicates, all dependencies have been met.

Table 16 - Functional Requirements Dependencies

SFR ID Dependencies Dependency Met?

FDP_ACC.1 FDP_ACF.1 �

FDP_ACC.1 � FDP_ACF.1

FMT_MSA.3 �

FDP_IFC.1 FDP_IFF.1 �

FDP_IFC.1 � FDP_IFF.1

FMT_MSA.3 �

FDP_RIP.2 none �

FIA_ATD.1 none �

FIA_UID.2 none �

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 47 of 52
© 2008 QNX Software Systems

SFR ID Dependencies Dependency Met?

FMT_SMF.1 � FMT_MOF.1

FMT_SMR.1 �

FMT_SMR.1 �

FDP_ACC.1 �

FDP_IFC.1 �

FMT_MSA.1(a)

FMT_MSA.1(b)

FMT_MSA.1(c)

FMT_SMF.1 �

FMT_MSA.1 � FMT_MSA.3

FMT_SMR.1 �

FMT_SMF.1 none �

FMT_SMR.1 FIA_UID.1 �

(by FIA_UID.2, which is hierarchical to FIA_UID.1)

FPT_FLS.1 ADV_SPM.1 �

FPT_RVM.1 none �

FPT_SEP.1 none �

FRU_FLT.1 FPT_FLS.1 �

FRU_PRS.1 none �

FRU_RSA.1 none �

8.6 TOE Summary Specification Rationale

8.6.1 TOE Summary Specification Rationale for the S ecurity Functional
Requirements

Each subsection in the TOE Summary Specification (Section 6) describes a security function of the TOE. Each
description is organized by set of requirements with rationale that indicates how these requirements are satisfied by
aspects of the corresponding security function. The set of security functions works to satisfy all of the security
functions and assurance requirements. Furthermore, all of the security functions are necessary in order for the TSF
to provide the required security functionality. This section, in conjunction with the TOE Summary Specification
section, provides evidence that the security functions are suitable to fulfill the TOE security requirements.

Table 17 identifies the relationship between security requirements and security functions, showing that all security
requirements are addressed and all security functions are necessary (i.e., they correspond to at least one security
requirement).

Table 17 - Mapping of Security Functional Requireme nts to TOE Security Functions

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 48 of 52
© 2008 QNX Software Systems

TOE Security Function SFR

FDP_ACC.1

FDP_ACF.1

FDP_IFC.1

FDP_IFF.1

User Data Protection

FDP_RIP.2

FIA_ATD.1 Identification

FIA_UID.2

FMT_MOF.1

FMT_MSA.1(a), FMT_MSA.1(b), FMT_MSA.1(c)

FMT_MSA.3

FMT_SMF.1

Security Management

FMT_SMR.1

FPT_FLS.1

FPT_RVM.1

Protection of TOE Security
Functions

FPT_SEP.1

FRU_FLT.1

FRU_PRS.1

Resource Utilization

FRU_RSA.1

8.6.2 TOE Summary Specification Rationale for the S ecurity Assurance
Requirements

EAL4+ was chosen to provide a basic level of independently assured security. The chosen assurance level is
consistent with the postulated threat environment. The TOE is expected to operate in a non-hostile position and be
embedded in or protected by other products designed to address threats that correspond with the intended
environment.

8.6.2.1 Configuration Management

The Configuration Management documentation provides a description of tools used to control the configuration
items and how they are used by QNX. The documentation provides a complete configuration item list and a unique
reference for each item. Additionally, the configuration management system is described including procedures that
are used by developers to control and track changes that are made to the TOE. The documentation further details the
TOE configuration items that are controlled by the configuration management system.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 49 of 52
© 2008 QNX Software Systems

Corresponding CC Assurance Components:

• Generation support and acceptance procedures
• Partial CM automation
• Problem tracking CM coverage

8.6.2.2 Secure Delivery and Operation

The Delivery and Operation documentation provides a description of the secure delivery procedures implemented by
QNX to protect against TOE modification during product delivery. The Installation Documentation provided by
QNX details the procedures for installing the TOE and placing the TOE in a secure state offering the same
protection properties as the master copy of the TOE. The Installation Documentation provides guidance to the
administrator on the TOE configuration parameters and how they affect the TSF.

Corresponding CC Assurance Components:

• Delivery Procedures
• Installation, Generation, and Start-Up Procedures

8.6.2.3 Development

The QNX design documentation consists of several related design documents that address the components of the
TOE at different levels of abstraction. The following design documents address the Development Assurance
Requirements:

• The Functional Specification provides a description of the security functions provided by the TOE and a
description of the external interfaces to the TSF. The Functional Specification covers the purpose and
method of use and a list of effects, exceptions, and errors message for each external TSF interface.

• The High-Level Design provides a top level design specification that refines the TSF functional
specification into the major constituent parts (subsystems) of the TSF. The high-level design identifies the
basic structure of the TSF, the major elements, a listing of all interfaces, and the purpose and method of use
for each interface.

• The Low-Level Design describes each security supporting module in terms of its purpose and interaction
with other modules. It describes the TSF in terms of modules, designating each module as either security-
enforcing or security-supporting. It provides an algorithmic description for each security-enforcing module
detailed enough to represent the TSF implementation.

• The Implementation Representation unambiguously defines the TSF to a level of detail such that the TSF
can be generated without further design decisions. It also describes the relationships between all portions of
the implementation.

• The Security Policy Model provides an informal TSP model and it demonstrates correspondence between
the functional specification and the TSP model by showing that all of the security functions in the functional
specification are consistent and complete with respect to the TSP model. The TSP model describes the rules
and characteristics of all policies of the TSP that can be modeled. The model should include a rationale that
demonstrates that it is consistent and complete with respect to all policies of the TSP that can be modeled.

• The Correspondence Analysis demonstrates the correspondence between each of the TSF representations
provided. This mapping is performed to show the functions traced from the ST description to the High-
Level Design.

Corresponding CC Assurance Components:

• Functional Specification with Complete Summary
• Security-Enforcing High-Level Design
• Descriptive Low-Level Design
• Implementation of the TSF
• Informal TOE Security Policy Model
• Informal Representation Correspondence

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 50 of 52
© 2008 QNX Software Systems

8.6.2.4 Guidance Documentation

The QNX Guidance documentation provides administrator and user guidance on how to securely operate the TOE.
The Administrator Guidance provides descriptions of the security functions provided by the TOE. Additionally, it
provides detailed accurate information on how to administer the TOE in a secure manner and how to effectively use
the TSF privileges and protective functions. The User Guidance provided directs users on how to operate the TOE
in a secure manner. Additionally, User Guidance explains the user-visible security functions and how they are to be
used and explains the user’s role in maintaining the TOE’s Security. QNX provides single versions of documents
which address the administrator Guidance and User Guidance; there are no separate guidance documents
specifically for non-administrator users of the TOE.

Corresponding CC Assurance Components:

• Administrator Guidance
• User Guidance

8.6.2.5 Life Cycle Support Documents

The Life Cycle Support documentation describes all the physical, procedural, personnel, and other security measures
that are necessary to protect the confidentiality and integrity of the TOE design and implementation in its
development environment. It provides evidence that these security measures are followed during the development
and maintenance of the TOE. It provides evidence that these security measures are followed during the
development and maintenance of the TOE. The flaw remediation procedures addressed to the TOE developers are
provided and so are the established procedures for accepting and acting upon all reports of security flaws and
requests for corrections of those flaws. The flaw remediation guidance addressed to TOE users is provided. The
description also contains the procedures used by QNX to track all reported security flaws in each release of the
TOE. The established life-cycle model to be used in the development and maintenance of the TOE is documented
and explanation on why the model is used is also documented. The selected implementation-dependent options of
the development tools are described.

Corresponding CC Assurance Components:

• Identification of Development Security Measures
• Flaw Reporting Procedures
• Developer Defined Life Cycle Model
• Well-defined Development Tools

8.6.2.6 Tests

There are a number of components that make up the Test documentation. The Coverage Analysis demonstrates the
testing performed against the functional specification. The Coverage Analysis demonstrates the correspondence
between the tests identified in the test documentation and the TSF as described in the functional specification. The
depth analysis demonstrates that the tests identified in the test documentation are sufficient to demonstrate that the
TSF operates in accordance with its high-level design and low-level design. QNX Test Plans and Test Procedures,
which detail the overall efforts of the testing effort and break down the specific steps taken by a tester, are also
provided. The Independent Testing documentation provides an equivalent set of resources to those that were used in
the developer’s functional testing.

Corresponding CC Assurance Components:

• Analysis of Coverage
• High-Level Design
• Functional Testing
• Independent Testing

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 51 of 52
© 2008 QNX Software Systems

8.6.2.7 Vulnerability and TOE Strength of Function Analysis

The Strength of TOE Security Function Analysis demonstrates the strength of the probabilistic or permutational
mechanisms employed to provide security functions within the TOE and how they exceed the minimum SOF
requirements. The Independent Vulnerability Analysis documentation describes the analysis of the TOE
deliverables performed to search for ways in which a user can violate the TSP, and the disposition of the identified
vulnerabilities.

Corresponding CC Assurance Components:

• Strength of TOE Security Function Evaluation
• Independent Vulnerability Analysis

8.7 Strength of Function

No Strength of Function (SOF) claim is applicable for this TOE since there are no security functions or security
functional requirements which have probabilistic or permutational functions.

Security Target, Version 1.1 December 15, 2008

QNX Neutrino® Secure Kernel v6.4 Page 52 of 52
© 2008 QNX Software Systems

9 Acronyms
Table 18 - Acronyms

Acronym Definition

AP Adaptive Partitioning

CC The Common Criteria for Information Technology Security Evaluation

CPU Central Processing Unit

ID Identification; Identifier

IT Information Technology

PP Protection Profile

RAM Random Access Memory

RTOS Realtime Operating System

SFR Security Functional Requirement

SMP Symmetric Multiprocessing

SOF Strength of Function

ST Security Target

TOE Target of Evaluation

TSF TOE Security Function

TSP TOE Security Policy

TSC TOE Scope of Control

