

Version 2.3 Copyright © 2021 by Red Hat Page 1 (64)

Red Hat Virtualization Security Target

 Version: 2.3

 Status: RELEASED

 Last Update: 2021-12-08

 Classification: Public

Version 2.3 Copyright © 2021 by Red Hat Page 2 (64)

Trademarks

Legal Notices
This document is provided AS IS with no express or implied warranties. Use the
information in this document at your own risk.
This document may be reproduced or distributed in any form without prior permission
provided the copyright notice is retained on all copies. Modified versions of this
document may be freely distributed provided that they are clearly identified as such, and
this copyright is included intact.

Version 2.3 Copyright © 2021 by Red Hat Page 3 (64)

Table of Contents
1 Introduction .. 7

1.1 Security Target Identification .. 7
1.2 TOE Identification .. 7
1.3 TOE Type ... 7
1.4 TOE Overview .. 7

1.4.1 Description ... 7
1.4.2 Security functionality ... 8
1.4.3 IT environment support .. 9

1.5 TOE Description ... 10
1.5.1 Architecture ... 10
1.5.2 TOE boundaries .. 13
1.5.3 Security Policy Model ... 14

2 CC Conformance Claim ... 15

3 Security Problem Definition .. 16
3.1 Threat Environment ... 16

3.1.1 Threats countered by the TOE ... 16
3.2 Assumptions .. 16
3.3 Organizational Security Policies ... 17

4 Security Objectives .. 18
4.1 Objectives for the TOE ... 18
4.2 Objectives for the Operational Environment .. 18
4.3 Security Objectives Rationale .. 18

4.3.1 Coverage .. 18
4.3.2 Sufficiency .. 19

5 Extended Components Definition .. 21
5.1 Class FDP: User data protection .. 21

5.1.1 Hardware-Based Isolation Mechanisms (FDP_HBI_EXT) 21
5.1.2 Physical Platform Resource Controls (FDP_PPR_EXT) 21
5.1.3 Residual information protection (FDP_RIP) ... 22
5.1.4 VM Separation (FDP_VMS_EXT) .. 22
5.1.5 Virtual Networking Components (FDP_VNC_EXT) 23

5.2 Class FIA: Identification and authentication ... 24
5.2.1 Authentication failures (FIA_AFL) ... 24
5.2.2 Password Management (FIA_PMG_EXT) .. 24
5.2.3 Administrator Identification and Authentication (FIA_UIA_EXT) 25

5.3 Class FMT: Security management ... 25
5.3.1 Management of functions in TSF (FMT_MOF) .. 25
5.3.2 Management of security attributes (FMT_MSA) 26
5.3.3 Separation of Management and Operational Networks (FMT_SMO_EXT) 26

5.4 Class FPT: Protection of the TSF .. 27
5.4.1 Non-Existence of Disconnected Virtual Devices (FPT_DVD_EXT) 27
5.4.2 Execution Environment Mitigations (FPT_EEM_EXT) 27
5.4.3 Hardware Assists (FPT_HAS_EXT) ... 28
5.4.4 Removable Devices and Media (FPT_RDM_EXT) 28
5.4.5 Virtual Device Parameters (FPT_VDP_EXT) ... 29
5.4.6 VMM Isolation from VMs (FPT_VIV_EXT) .. 29

5.5 Class FTP: Trusted path/channels .. 30
5.5.1 User Interface: I/O Focus (FTP_UIF_EXT) ... 30

6 Security Requirements ... 32
6.1 TOE Security Functional Requirements ... 32

Version 2.3 Copyright © 2021 by Red Hat Page 4 (64)

6.1.1 Security audit (FAU) ... 34
6.1.2 User data protection (FDP) ... 36
6.1.3 Identification and authentication (FIA) ... 39
6.1.4 Security management (FMT) .. 40
6.1.5 Protection of the TSF (FPT) ... 41
6.1.6 Trusted path/channels (FTP) .. 44

6.2 Security Functional Requirements Rationale ... 44
6.2.1 Coverage .. 44
6.2.2 Sufficiency .. 46
6.2.3 Security Requirements Dependency Analysis .. 46

6.3 Security Assurance Requirements ... 47
6.4 Security Assurance Requirements Rationale ... 48

7 TOE Summary Specification .. 50
7.1 TOE Security Functionality ... 50

7.1.1 Audit ... 52
7.1.2 User Data Protection .. 54
7.1.3 Identification and Authentication ... 55
7.1.4 Security Management .. 56
7.1.5 Protection of the TSF .. 56
7.1.6 Trusted Path/Channels ... 60

8 Abbreviations, Terminology and References .. 61
8.1 Abbreviations .. 61
8.2 Terminology ... 61
8.3 References .. 64

Version 2.3 Copyright © 2021 by Red Hat Page 5 (64)

List of Tables
Table 1: TOE Components ... 7
Table 2: Mapping of security objectives to threats and policies 19
Table 3: Mapping of security objectives for the environment to the SPD 19
Table 4: Sufficiency of objectives countering threats .. 19
Table 5: Sufficiency of objectives holding assumptions ... 20
Table 6: Sufficiency of objectives enforcing Organizational Security Policies 20
Table 7: SFRs for the TOE .. 34
Table 8: Auditable Events .. 36
Table 9: Mapping of security functional requirements to security objectives 46
Table 10: Security objectives for the TOE rationale ... 46
Table 11: SFR dependency analysis .. 47
Table 12: Security Assurance Requirements ... 48

Version 2.3 Copyright © 2021 by Red Hat Page 6 (64)

List of Figures
Figure 1: Virtualization System and Platform ... 10
Figure 2: Self-Hosted Engine Red Hat Virtualization Architecture 11
Figure 3, Virtualization System and Platform ... 52

Version 2.3 Copyright © 2021 by Red Hat Page 7 (64)

1 Introduction

1.1 Security Target Identification
Title: Red Hat Virtualization Security Target
Version: 2.3
Status: RELEASED
Date: 2021-12-08
Sponsor: Red Hat
Developer: Red Hat, Inc.
Keywords: Security Target, Common Criteria

1.2 TOE Identification
The TOE is Red Hat Virtualization Version 4.3.

1.3 TOE Type
The TOE type is Linux-based virtualization environment.

1.4 TOE Overview
This security target documents the security characteristics of the Red Hat Virtualization
distribution (abbreviated as RHV throughout this document).

1.4.1 Description
Red Hat Virtualization is an enterprise-grade virtualization platform built on Red Hat
Enterprise Linux. Virtualization allows users to provision new virtual servers and
workstations and provides more efficient use of physical server resources.
Red Hat Enterprise Linux (RHEL) 7.9 provides virtualization primitives used by Red Hat
Virtualization. The Red Hat Virtualization Host is derived from RHEL 7.9. The following
components are part of the TOE:
Name Description
Red Hat
Virtualization
Host (RHVH)

A minimal installation of the Red Hat Enterprise Linux (RHEL) environment
establishes the Red Hat Virtualization Host. It contains the Linux kernel
providing the KVM virtualization environment. In addition, the user space
QEMU framework is provided which utilizes the KVM environment to
instantiate virtual machines. The libvirtd management system controls the
life-cycle of virtual machines.

Red Hat
Virtualization
Manager

A service that provides a graphical user interface and a REST API to
manage the resources in the environment using virtualization primitives
provided by the virtualization host as described above. The Manager is
installed on a physical or virtual machine running Red Hat Enterprise
Linux.

Table 1: TOE Components

Version 2.3 Copyright © 2021 by Red Hat Page 8 (64)

1.4.2 Security functionality

1.4.2.1 Audit
The TOE implements its audit functionality using the Linux Audit Framework (LAF)
provided by RHEL. LAF is designed to be an audit system making Linux compliant with
the requirements from Common Criteria. LAF is able to intercept all system calls as well
as retrieving audit log entries from privileged user space applications. The subsystem
allows configuring the events to be actually audited from the set of all events that are
possible to be audited.
Events are logged in an audit trail, ASCII files stored locally. The TOE provides tools to
manage, view, and perform post-processing on the audit trail. Audit files are accessible
by root only. The TOE notifies the administrator when the audit trail reaches a certain
threshold and can halt the system to guarantee no audit data is lost.

1.4.2.2 User Data Protection
The TOE uses hardware-based isolation mechanisms and physical platform resource
controls to protect user data. Many are implemented using components of the virtual
machine environment.
Virtual machine functionality is implemented by the Kernel-based Virtual Machine (KVM)
Linux kernel module, the Quick Emulator (QEMU) virtual machine monitor used for
hardware emulation, and libvirtd which serves as a management daemon to control
resources assigned to virtual machines. Both are provided by the underlying RHEL
system. To the host system, a virtual machine is just another running process. KVM
implements memory management and virtual machine maintenance functionality. QEMU
provides I/O virtualization.
The TOE uses Linux kernel mechanisms to constrain VM access to physical devices. Some
of these mechanisms depend on the following underlying hardware-based mechanisms.

• Processor virtualization support
• Shadow page table support
• IOMMU virtualization support

The TOE implements access control restrictions to limit virtual machine access to only
their resources. These restrictions are implemented using both Linux and hardware-
based capabilities.

• Security-enhanced Linux (SELinux), which is part of RHEL
• the hardware I/O memory management unit (IOMMU)
• Linux Control groups (cgroups)

 Separation of VMs is also achieved since each virtual machine runs in a separate Linux
process.
The TOE supports the following types of interfaces or Virtual Devices:

• hypercalls used to access para-virtualized host services
• exceptions used to signal the host kernel
• VNC providing access to the VM console

 Access to the guest VM console is possible through QEMU using either the SPICE or VNC
graphics protocols.
The TOE provides residual information protection for data in memory and data on disk
using mechanisms provided by the Linux kernel.

1.4.2.3 Identification and Authentication
The TOE provides multiple authentication mechanisms, authentication failure handling,
and password management, leveraged from RHEL.

Version 2.3 Copyright © 2021 by Red Hat Page 9 (64)

1.4.2.4 Security Management
The TOE supports two types of users, a regular user and an administrative user. The
administrator creates virtual machines and manages their resources. The regular user
starts, stops, and interacts with deployed virtual machines.
The TOE provides ways for the administrator of the virtualization environment to
manage:

• physical resources
• system resources (memory, disk)
• objects and properties
• virtual machines

The TOE also provides the capability for the administrator to perform resource
administration on:

• hosts
• storage
• the network

Separation of management and operational networks is achieved by establishing a
separate administrative LAN for the TOE.
The TOE is administered using the Red Hat Virtualization Manager which provides an
easy-to-use graphical user interface. The management framework is implemented by
libvirtd in RHEL. All management operations performed in the GUI are handed to the
libvirtd management system which enforces configurations. The GUI is SFR-supporting
only, not SFR-enforcing. Management-related security claims are implemented by libvirtd
unless explicitly noted.

1.4.2.5 Protection of the TSF
The TOE protects itself from removable (both connected and disconnected) and non-
existent virtual devices and isolates itself from guest VMs. Numerous hardware assists
and execution environment mitigation mechanisms are also employed.
The TOE provides several mechanisms to protect against exploitation of common buffer
overrun attacks.

• a guard variable (stack canary) to validate stack data
• address space layout randomization (ASLR)
• making runtime memory segments read-only (RELRO)
• using FORTIFY_SOURCE macro to identify buffer overflows

 The TOE will also take advantage of Intel chips' SMEP or SMAP features if available.

1.4.2.6 Trusted Path/Channels
The TOE identifies which resources are being accessed via a trusted channel.

1.4.3 IT environment support
The TOE may be run on several systems on a network. Each TOE system implements its
own security policy. If other systems are connected to the network, they must be
configured and managed by the same authority using an appropriate security policy that
does not conflict with the security policy of the TOE. All connections between this
network and untrusted networks (e. g. the Internet) must be protected by appropriate
measures such as carefully configured firewall systems that prohibit attacks from the
untrusted networks. Those protections are part of the TOE environment.
The TOE requires at least one Intel x64 platform upon which it will be installed.
TOE functionality depends on no software or firmware external to the TOE.

Version 2.3 Copyright © 2021 by Red Hat Page 10 (64)

1.5 TOE Description
The TOE is a Virtualization System. A simplified view of a generic Virtualization System
and platform, provided in [BVPPv1.0], is reproduced in Figure 1. In this example, TOE
components are shaded red and non-TOE components are shaded blue. The platform is
the hardware, firmware, and software onto which the VS is installed.

Figure 1: Virtualization System and Platform

1.5.1 Architecture
Red Hat Virtualization can be deployed as a self-hosted engine or as a standalone
Manager. In the evaluated configuration, the TOE is deployed as a self-hosted engine.
In complete Red Hat Virtualization deployment is created by installing the TOE in
cooperation with other non-TOE components:

• storage service
• data warehouse
• metrics store

1.5.1.1 Self-Hosted Engine Architecture
In the evaluated configuration, the Red Hat Virtualization Manager runs as a virtual
machine on self-hosted engine nodes (specialized hosts) in the same environment it
manages. A self-hosted engine environment requires one less physical server, but more
administrative overhead to deploy and manage. The Manager is highly available without
external HA management.
The minimum setup of a self-hosted engine environment includes:

• One Red Hat Virtualization Manager virtual machine hosted on one of the self-
hosted engine nodes. The RHV-M Appliance is used to automate the installation of
a Red Hat Enterprise Linux 7 virtual machine and the Manager on that virtual
machine.

• A minimum of two self-hosted engine nodes for virtual machine high availability.
This can be achieved using Red Hat Enterprise Linux hosts or Red Hat
Virtualization Hosts (RHVH). VDSM (the host agent) runs on all hosts to facilitate
communication with the Red Hat Virtualization Manager. The HA services run on
all self-hosted engine nodes to manage the high availability of the Manager virtual
machine.

• One storage service which can be hosted locally or on a remote server depending
on the storage type used. The storage service must be accessible to all hosts.

Version 2.3 Copyright © 2021 by Red Hat Page 11 (64)

Figure 2: Self-Hosted Engine Red Hat Virtualization Architecture

1.5.1.2 Red Hat Virtualization Manager
The following components are part of the TOE, but do not provide any security
functionality. The ST covers the separation of virtual machines from each other, as well
as separation between the virtual machines and the host. The installation and
preparation of the resources required for virtual machines are part of the TOE, but
outside of the security claims.

Storage
Setting up storage and attaching it to the Red Hat Virtualization environment is a
prerequisite before creating end-user virtual machines. Red Hat Virtualization can use
three types of storage domains, however only the data domain is now fully supported.

• The data domain contains all the data associated with virtual machines. The data
domain supports all storage types that are supported for use with Red Hat
Virtualization.

• The ISO domain is a deprecated storage domain type that was used to store ISO
files for installing a virtual machine operating system or additional applications,
such as the Windows guest agents and drivers. Virtual machine images can now
be uploaded to data domains instead.

• The export domain is a deprecated storage domain type that was used as a
temporary storage repository for moving images between data centers and Red
Hat Virtualization environments. This is now accomplished by importing data
storage domains.

The ISO and export domains only support file-based storage types (NFS, POSIX, or
GlusterFS). The ISO domain supports local storage when used in a local storage data
center.

Data Warehouse
The Red Hat Virtualization Manager includes a data warehouse that collects monitoring
data about hosts, virtual machines, and storage. Data Warehouse, which includes a
database and a service, must be installed and configured along with the Manager, either
on the same machine or on a separate server.
The Red Hat Virtualization installation creates two databases.

• The Manager database (engine) is the primary data store used by the Red Hat
Virtualization Manager. Information about the virtualization environment, like its
state, configuration, and performance, are stored in this database.

• The Data Warehouse database (ovirt_engine_history) contains configuration
information and statistical data which is collated over time from the Manager

Version 2.3 Copyright © 2021 by Red Hat Page 12 (64)

database. The configuration data in the Manager database is examined every
minute and changes are replicated to the Data Warehouse database. Tracking the
changes to the database provides information on the objects in the database. This
enables analysis and enhancement of the performance of the Red Hat
Virtualization environment.

Metrics Store
The Metrics Store architecture is based on the OpenShift EFK logging stack and runs on
the OpenShift Container Platform. This includes Elasticsearch, a Metric Store virtual
machine, used to index data. Another Metric Store virtual machine called Kibana provides
dashboards, charts, and data analysis.
Metrics Store collects logs and metrics from Red Hat Virtualization. The data is
transferred from Red Hat Virtualization to OpenShift where it is stored and aggregated in
Elasticsearch and saved in indexes. The data can then be analyzed and visualized in
Kibana.

• Elasticsearch is a distributed, RESTful search and analytics engine providing many
types of searches.

• Kibana is an open source analytics and visualization platform designed to work
with Elasticsearch. One can easily perform advanced data analysis and visualize
data in a variety of charts and tables.

1.5.1.3 Red Hat Virtualization
Operations such as storage, host management, user connections, and virtual machine
connectivity all rely on a well-planned and well-configured network to deliver optimal
performance. Setting up networking is a vital prerequisite for a Red Hat Virtualization
environment. Planning for projected networking requirements and implementing the
network accordingly is much simpler than discovering networking requirements through
use and altering the network configuration retroactively.
Red Hat Virtualization separates network traffic by defining logical networks. Logical
networks define the path that a selected network traffic type must take through the
network. They are created to isolate network traffic by functionality or to virtualize a
physical topology.
The ovirtmgmt logical network is created by default and labeled as the Management
network. The ovirtmgmt logical network is intended for management traffic between the
Red Hat Virtualization Manager and hosts. Additional logical networks may be defined to
segregate:

• General virtual machine traffic
• Storage-related traffic (such as NFS or iSCSI)
• Virtual machine migration traffic
• Virtual machine display traffic
• Gluster storage traffic

1.5.1.4 Segregation of TOE Components from non-TOE
Components

The TOE includes all components outlined in Table 1. The TOE includes the Red Hat
Virtualization Manager which is provided via the oVirt management framework. oVirt
allows the configuration of complex resources like Gluster, NFS or iSCSI storage. Any
resource that is not local to the TOE instance is considered to be a non-TOE component.
For example, the NFS server that may be accessed by the TOE and the guest operating
systems managed by the TOE are not part of the TOE.
In addition, the TOE allows the configuration of external authentication providers like
LDAP or Active Directory. All authentication providers external to the TOE are non-TOE

Version 2.3 Copyright © 2021 by Red Hat Page 13 (64)

components. Only the authentication of users using the local user database is part of the
TOE and subject to security claims in this Security Target.

1.5.2 TOE boundaries

1.5.2.1 Physical
The Target of Evaluation is Red Hat Virtualization 4.3. The TOE is supplied as ISO images
containing installation executables distributed via the Red Hat Network. The TOE includes
a package containing the user and administrator documentation for the TOE.
The general TOE documentation is also available online at the Red Hat Network.
Along with the installation media files, the following documentation is provided as part of
the TOE:

• Evaluated Configuration Guide [ECG]
• Product Guide [RHVPG]
• Technical Reference [RHVTR]
• Administration Guide [RHVAG]
• Planning and prerequisites Guide [RHVPPG]

The Evaluated Configuration Guide as well as the associated guides can be obtained from
https://access.redhat.com/articles/2918071.

1.5.2.2 Logical
The TOE includes all components outlined in Table 1. The TOE includes the Red Hat
Virtualization Manager, which is provided via the oVirt management framework. oVirt
allows the configuration of complex resources like Gluster, NFS or iSCSI storage. Any
resource that is not local to the TOE instance is considered to be a non-TOE component.
For example, the NFS server that may be accessed by the TOE and the guest operating
systems managed by the TOE are not part of the TOE.
The TOE provides the following security features:
Auditing

The TOE implements auditing using the Linux Audit Framework (LAF) provided by
RHEL. LAF gathers audit events from system calls and audit log entries of user and
system applications. The TOE can also be deployed as an audit server and receive
audit logs from other TOE instances.

Virtual machine environments
The TOE implements the host system for virtual machines, providing separation
between resources. It acts as a hypervisor providing an environment in which other
operating systems may execute concurrently.

Security Management
The security management facilities provided by the TOE are usable by authorized
administrators to modify the configuration of TSF. The TOE allows the configuration
of external authentication providers like LDAP or Active Directory. All authentication
providers external to the TOE are non-TOE components, but only the authentication
of users using the local user database is part of the TOE and subject to security
claims in this ST.

Runtime Protection Mechanisms
The TOE leverages mechanisms supported by the underlying Linux system to
prevent or significantly increase the complexity of an exploitation of common buffer
overflow and similar attacks. These mechanisms are used for the TSF and are
available to untrusted code. It also takes advantage of hardware-provided support
on Intel CPUs to prevent the kernel from dereferencing user space memory (except
in well-defined cases) and prevent the execution of code residing in user space
memory.

Version 2.3 Copyright © 2021 by Red Hat Page 14 (64)

1.5.2.3 Evaluated configuration
The evaluated configuration is defined as follows:

• The CC evaluated package set must be selected at install time and installed and
configured in accordance with the descriptions provided in the Evaluated
Configuration Guide ([ECG]).

• The TOE is configured self-hosted as shown by Host 1 in Figure 2.
• The TOE is configured with a dedicated administrative network (either a separate

physical LAN or an isolated VLAN) for separation of operational and administrative
functions.

Any deviation from the configurations and settings specified in [ECG] take the TOE out of
its Evaluated Configuration.

1.5.3 Security Policy Model
The security policy for RHV is defined by the security functional requirements in section
6.1 and refined into a security policy model by the TSF in section 7.1 . The following is a
list of the subjects and objects participating in the policy.
Subjects:

• unprivileged users
• administrative users

Objects:
• data objects
• physical devices (CPU, RAM, PCI devices, Block devices, TPM, Watchdog)
• removable devices and media (USB, CD/DVD, ISO image)
• virtual machines

TSF data:
• user accounts, including the following security attributes:

o user ID
o default access group
o password
o superuser attribute
o association with access groups and permission groups

• workflow definitions (e.g., assignment of required permissions and parameters)
• SELinux labels (for identification of each virtual machine)
• audit records
• VM configuration data

User data:
• user data is mainly constituted by attributes of the data objects that are not

relevant for the TSP enforcements, such as parameters for remote management
of the instance represented by a data object

Version 2.3 Copyright © 2021 by Red Hat Page 15 (64)

2 CC Conformance Claim
This Security Target is CC Part 2 extended and CC Part 3 conformant, with a claimed
Evaluation Assurance Level of EAL2, augmented by ALC_FLR.3.
This Security Target does not claim conformance to any Protection Profile.
Common Criteria [CC] version 3.1 revision 5 is the basis for this conformance claim.

Version 2.3 Copyright © 2021 by Red Hat Page 16 (64)

3 Security Problem Definition

3.1 Threat Environment
This section describes the threat model for the TOE and identifies the individual threats
that are assumed to exist in the TOE environment.
The assets to be protected by the TOE are

• virtual machine images
• storage objects used to store user and TSF data
• TSF functions

The resources and metadata, such as management attributes, used by the TSF to store
and manage these assets must be protected from unauthorized read access,
modification, deletion or creation of new illegitimate data by the TOE
The threat agents having an interest in manipulating the data model can be
categorized as either:

• Unauthorized individuals or malware (“attackers”) which are unknown to the TOE
and its runtime environment.

• Authorized users or administrators of the TOE who try to manipulate data that
they are not authorized to access.

Threat agents originate from a well-managed user community within an organizations
internal network. Hence, only inadvertent or casual attempts to breach system security
are expected from this community.
TOE administrators, including administrators of the TOE environment, are assumed to be
trustworthy, trained and to follow the instructions provided to them with respect to the
secure configuration and operation of the systems under their responsibility. Hence, only
inadvertent attempts to manipulate the safe operation of the TOE are expected from this
community.

3.1.1 Threats countered by the TOE
T.UNAUTHORIZED_MODIFICATION

Malware running in a VM is able to modify the underlying VS or another VM or VS
components outside of its own VM.

T.PLATFORM_COMPROMISE
An attacker accesses the underlying platform in a manner not controlled by the
VMM to modify system firmware or software compromising both the Virtualization
System and the underlying platform.

T.UNAUTHORIZED_ACCESS
An adversary with access to an open management network could undetected
perform management functions or the TOE by injecting commands into the
management infrastructure.

3.2 Assumptions
A.PLATFORM_INTEGRITY

It is assumed that the TOE platform works as specified, has no undocumented
security critical side effects and has not been compromised prior to installation of
the TOE.

A.PHYSICAL
It is assumed that the TOE is operated in an environment preventing unauthorized
physical access.

A.TRUSTED_ADMIN

Version 2.3 Copyright © 2021 by Red Hat Page 17 (64)

It is assumed that the administrators are trained, trusted and follow their guidance.
A.NON_MALICIOUS_USER

It is assumed that the users of the VS are not willfully negligent or hostile, and
follow their guidance.

3.3 Organizational Security Policies
P.DENIAL_OF_SERVICE

No VM shall via a resource exhaustion of shared resources be able to block other
VMs from using system resources provided by the VS (e.g., system memory,
persistent storage, and processing time).

P.DATA_LEAKAGE
The domains encapsulated by different VMs must remain separate and prohibits
data transfer between VMs unless explicitly allowed by the security policy.

P.CONFIGURATION
The policies of the VS for information flow control between the VMs and the access
control to resources provide by the VS platform must be configurable.

Version 2.3 Copyright © 2021 by Red Hat Page 18 (64)

4 Security Objectives

4.1 Objectives for the TOE
O.VM_ISOLATION

The TOE must support the mechanisms to isolate all resources associated with
virtual networks and to limit a VM's access to only those virtual networks for which
it has been configured. The TOE must also support the mechanisms to control the
configurations of virtual networks according to the SSP.

O.VMM_INTEGRITY
The integrity of each VMM component in the VS must be established and
maintained.

O.PLATFORM_INTEGRITY
The VS should provide no capability for a user or any hosted software to undermine
the integrity of the platform.

O.MANAGEMENT_ACCESS
Only administrators are allowed to exercise VMM management functions. VMM
management functions include VM configuration, virtualized network configuration,
allocation of physical resources, and reporting. Only certain authorized system
users (administrators) are allowed to exercise management functions.

O.AUDIT
The TOE must provide accountability of any management functions performed by
the administrators.

O.CORRECTLY_APPLIED_CONFIGURATION
The TOE must correctly apply changes to configurations and policies to guest VMs
as specified by the administrator and within the existing security policy.

O.RESOURCE_ALLOCATION
The TOE will provide mechanisms that enforce constraints on the allocation of
system resources in accordance with existing security policy.

4.2 Objectives for the Operational Environment
OE.PHYSICAL

The TOE is operated in an environment preventing unauthorized physical access.
OE.TRUSTED_ADMIN

The administrators are trained, trusted and follow their guidance.
OE.NON_MALICIOUS_USER

The users of the VS are not willfully negligent or hostile, and follow their guidance.
OE.PLATFORM_INTEGRITY

The TOE platform works as specified, has no undocumented security critical side
effects and has not been compromised prior to installation of the TOE.

4.3 Security Objectives Rationale

4.3.1 Coverage
The following table provides a mapping of TOE objectives to threats and policies, showing
that each objective counters or enforces at least one threat or policy, respectively.
Objective Threats / OSPs
O.VM_ISOLATION P.DATA_LEAKAGE

Version 2.3 Copyright © 2021 by Red Hat Page 19 (64)

Objective Threats / OSPs
O.VMM_INTEGRITY T.UNAUTHORIZED_MODIFICATION
O.PLATFORM_INTEGRITY T.PLATFORM_COMPROMISE
O.MANAGEMENT_ACCESS T.UNAUTHORIZED_ACCESS

P.CONFIGURATION
O.AUDIT T.UNAUTHORIZED_MODIFICATION
O.CORRECTLY_APPLIED_CONFIGURATION P.CONFIGURATION
O.RESOURCE_ALLOCATION P.DENIAL_OF_SERVICE

Table 2: Mapping of security objectives to threats and policies
The following table provides a mapping of the objectives for the Operational Environment
to assumptions, threats and policies, showing that each objective holds, counters or
enforces at least one assumption, threat or policy, respectively.
Objective Assumptions / Threats / OSPs
OE.PHYSICAL A.PHYSICAL
OE.TRUSTED_ADMIN A.TRUSTED_ADMIN
OE.NON_MALICIOUS_USER A.NON_MALICIOUS_USER
OE.PLATFORM_INTEGRITY A.PLATFORM_INTEGRITY

Table 3: Mapping of security objectives for the environment to the SPD

4.3.2 Sufficiency
The following rationale provides justification that the security objectives are suitable to
counter each individual threat and that each security objective tracing back to a threat,
when achieved, actually contributes to the removal, diminishing or mitigation of that
threat.
Threat Rationale for security objectives
T.UNAUTHORIZED_MODIFICATION O.VMM_INTEGRITY provides for enforcement of VMM

integrity preventing the bypass of enforcement
mechanisms. O.AUDIT ensures that abuse of
legitimate authority can be detected.

T.PLATFORM_COMPROMISE O.PLATFORM_INTEGRITY ensures that users and
hosted software will not have any capabilities to break
out of a VM and affect the platform on which the VS is
running. This will prevent them from undermining the
integrity of the platform.

T.UNAUTHORIZED_ACCESS O.MANAGEMENT_ACCESS ensures TSF management
functions cannot be executed without authorization
prevents untrusted subjects from modifying the
behavior of the TOE in an unanticipated manner.

Table 4: Sufficiency of objectives countering threats
The following rationale provides justification that the security objectives for the
environment are suitable to cover each individual assumption, that each security
objective for the environment that traces back to an assumption about the environment
of use of the TOE, when achieved, actually contributes to the environment achieving
consistency with the assumption, and that if all security objectives for the environment
that trace back to an assumption are achieved, the intended usage is supported.

Version 2.3 Copyright © 2021 by Red Hat Page 20 (64)

Assumption Rationale for security objectives
A.PLATFORM_INTEGRITY The security objective OE.PLATFORM_INTEGRITY is literally the

same as the assumption and therefore directly upholds the
assumption.

A.PHYSICAL The security objective OE.PHYSICAL is literally the same as
the assumption and therefore directly upholds the
assumption.

A.TRUSTED_ADMIN The security objective OE.TRUSTED_ADMIN is literally the
same as the assumption and therefore directly upholds the
assumption.

A.NON_MALICIOUS_USER The security objective OE.NON_MALICIOUS_USER is literally
the same as the assumption and therefore directly upholds
the assumption.

Table 5: Sufficiency of objectives holding assumptions
The following rationale provides justification that the security objectives are suitable to
cover each individual organizational security policy (OSP), that each security objective
that traces back to an OSP, when achieved, actually contributes to the implementation of
the OSP, and that if all security objectives that trace back to an OSP are achieved, the
OSP is implemented.

OSP Rationale for security objectives
P.DENIAL_OF_SERVICE The policy to provide mechanisms to enforce constraints on

the allocation of system resources in accordance with existing
security policy is implemented by the objective
O.RESOURCE_ALLOCATION.

P.DATA_LEAKAGE O.VM_ISOLATION provides for separation of VMs and
enforcement of domain integrity prevent unauthorized
transmission of data from one VM to another.

P.CONFIGURATION O.CORRECTLY_APPLIED_CONFIGURATION and
O.MANAGEMENT_ACCESS provide mechanisms to prevent the
application of configurations that violate the security policy
help prevent misconfigurations.

Table 6: Sufficiency of objectives enforcing Organizational Security Policies

Version 2.3 Copyright © 2021 by Red Hat Page 21 (64)

5 Extended Components Definition
This ST defines the following extended components based on the virtualization SFRs
defined in [BVPPv1.0] (all except FMT_MOF_EXT.1) and [SVEPv1.0] (FMT_MOF_EXT.1
only). Most of these SFRs are not from CC Part 2, but were created specifically to address
virtualization functionality.

5.1 Class FDP: User data protection

5.1.1 Hardware-Based Isolation Mechanisms (FDP_HBI_EXT)
Family behaviour
Enumerate the hardware-based isolation mechanisms used by the TOE and the physical
devices to which they constrain a Guest VM's access.
Management: FDP_HBI_EXT.1
There are no management activities foreseen.
Audit: FDP_HBI_EXT.1
There are no audit events foreseen.

5.1.1.1 FDP_HBI_EXT.1 - Extended component for Hardware-
Based Isolation Mechanisms

Hierarchical to: No other components.
Dependencies: No dependencies.

FDP_HBI_EXT.1.1 The TSF shall use [selection: no mechanism, [assignment: list of
platform-provided, hardware-based mechanisms]] to constrain a
Guest VM’s direct access to the following physical devices:
[selection: no devices, [assignment: physical devices to which
the VMM allows Guest VMs physical access]].

5.1.2 Physical Platform Resource Controls (FDP_PPR_EXT)
Family behaviour
Enumerate the physical platform resources to which the administrator may control Guest
VM access.
Management: FDP_PPR_EXT.1
There are no management activities foreseen.
Audit: FDP_PPR_EXT.1
There are no audit events foreseen.

5.1.2.1 FDP_PPR_EXT.1 - Extended component for Physical
Platform Resource Controls

Hierarchical to: No other components.
Dependencies: No dependencies.

FDP_PPR_EXT.1.1 The TSF shall allow an authorized administrator to control Guest
VM access to the following physical platform resources:

Version 2.3 Copyright © 2021 by Red Hat Page 22 (64)

[assignment: list of physical platform resources the VMM is able
to control access to].

FDP_PPR_EXT.1.2 The TSF shall explicitly deny all Guest VMs access to the
following physical platform resources: [selection: no physical
platform resources, [assignment: list of physical platform
resources to which access is explicitly denied]].

FDP_PPR_EXT.1.3 The TSF shall explicitly allow all Guest VMs access to the
following physical platform resources: [selection: no physical
platform resources, [assignment: list of physical platform
resources to which access is always allowed]].

5.1.3 Residual information protection (FDP_RIP)
Management: FDP_RIP_EXT.1
There are no management activities foreseen.
Management: FDP_RIP_EXT.2
There are no management activities foreseen.
Audit: FDP_RIP_EXT.1
There are no audit events foreseen.
Audit: FDP_RIP_EXT.2
There are no audit events foreseen.

5.1.3.1 FDP_RIP_EXT.1 - Extended component for Residual
Information in Memory

Hierarchical to: No other components.
Dependencies: No dependencies.

FDP_RIP_EXT.1.1 The TSF shall ensure that any previous information content of
physical memory is cleared prior to allocation to a Guest VM.

5.1.3.2 FDP_RIP_EXT.2 - Extended component for Residual
Information on Disk

Hierarchical to: No other components.
Dependencies: No dependencies.

FDP_RIP_EXT.2.1 The TSF should ensure that any previous information content of
physical disk storage is cleared prior to allocation to a Guest VM
or the TSS shall describe the conditions of exception.

5.1.4 VM Separation (FDP_VMS_EXT)
Family behaviour
Enumerate the mechanisms provided by the TOE for data transfer between Guest VMs
and specify the administrator's ability to configure them.

Version 2.3 Copyright © 2021 by Red Hat Page 23 (64)

Management: FDP_VMS_EXT.1
There are no management activities foreseen.
Audit: FDP_VMS_EXT.1
There are no audit events foreseen.

5.1.4.1 FDP_VMS_EXT.1 - Extended component for VM
Separation

Hierarchical to: No other components.
Dependencies: No dependencies.

FDP_VMS_EXT.1.1 The VS shall provide the following mechanisms for transferring
data between Guest VMs: [selection: no mechanism, virtual
networking, [assignment: other inter-VM data sharing
mechanisms]].

FDP_VMS_EXT.1.2 The TSF shall allow Administrators to configure these
mechanisms to [selection: enable, disable] the transfer of data
between Guest VMs.

FDP_VMS_EXT.1.3 The VS shall ensure that no Guest VM is able to read or transfer
data to or from another Guest VM except through the
mechanisms listed in FDP_VMS_EXT.1.1.

5.1.5 Virtual Networking Components (FDP_VNC_EXT)
Family behaviour
Require the administrator be able to configure virtual networking components to connect
VMs to each other or to physical networks and ensure and that the traffic is only visible
to the Guest VMs intended.
Management: FDP_VNC_EXT.1
There are no management activities foreseen.
Audit: FDP_VNC_EXT.1
There are no audit events foreseen.

5.1.5.1 FDP_VNC_EXT.1 - Extended component for Virtual
Networking Components

Hierarchical to: No other components.
Dependencies: No dependencies.

FDP_VNC_EXT.1.1 The TSF shall allow Administrators to configure virtual
networking components to connect VMs to each other, and to
physical networks.

FDP_VNC_EXT.1.2 The TSF shall ensure that network traffic visible to a Guest VM
on a virtual network - or virtual segment of a physical network -
is visible only to Guest VMs configured to be on that virtual

Version 2.3 Copyright © 2021 by Red Hat Page 24 (64)

network or segment.

5.2 Class FIA: Identification and authentication

5.2.1 Authentication failures (FIA_AFL)
Management: FIA_AFL_EXT.1
The following actions could be considered for the management functions in FMT:

a) management of the threshold for unsuccessful authentication attempts;
b) management of actions to be taken in the event of an authentication failure.

Audit: FIA_AFL_EXT.1
The following actions should be auditable if FAU_GEN Security audit data generation is
included in the PP/ST:

c) Minimal: the reaching of the threshold for the unsuccessful authentication
attempts and the actions (e.g. disabling of a terminal) taken and the subsequent,
if appropriate, restoration to the normal state (e.g. re-enabling of a terminal).

5.2.1.1 FIA_AFL_EXT.1 - Extended component for Authentication
Failure Handling

Hierarchical to: No other components.
Dependencies: No dependencies.

FIA_AFL_EXT.1.1 The TSF shall detect when [selection:

• [assignment: a positive integer number]
• an administrator configurable positive integer within a

[assignment: range of acceptable values]

] unsuccessful authentication attempts occur related to
administrators attempting to authenticate remotely using a
[selection: password, PIN].

FIA_AFL_EXT.1.2 When the defined number of unsuccessful authentication
attempts for an account has been met, the TSF shall: [selection:
Account Lockout, Account Disablement, Mandatory Credential
Reset, [assignment: list of actions]].

5.2.2 Password Management (FIA_PMG_EXT)
Family behaviour
Require specific password management capabilities for administrative passwords.
Management: FIA_PMG_EXT.1
The following actions could be considered for the management functions in FMT:

d) management function for password management.
Audit: FIA_PMG_EXT.1
There are no audit events foreseen.

Version 2.3 Copyright © 2021 by Red Hat Page 25 (64)

5.2.2.1 FIA_PMG_EXT.1 - Extended component for Password
Management

Hierarchical to: No other components.
Dependencies: No dependencies.

FIA_PMG_EXT.1.1 The TSF shall provide the following password management
capabilities for administrative passwords:

a) Passwords shall be able to be composed of any
combination of upper and lower case characters, digits,
and the following special characters: [selection: !, @, #, $,
%, ^, &, *, (,), [assignment: other characters]]

b) Minimum password length shall be configurable;
c) Passwords of at least 15 characters in length shall be

supported.

5.2.3 Administrator Identification and Authentication
(FIA_UIA_EXT)

Family behaviour
Require the administrator be successfully identified and authenticated before allowing
any TSF-medicated management function to be performed.
Management: FIA_UIA_EXT.1
There are no management activities foreseen.
Audit: FIA_UIA_EXT.1
There are no audit events foreseen.

5.2.3.1 FIA_UIA_EXT.1 - Extended component for Administrator
Identification and Authentication

Hierarchical to: No other components.
Dependencies: No dependencies.

FIA_UIA_EXT.1.1 The TSF shall require Administrators to be successfully identified
and authenticated using one of the methods in FIA_UAU.5 before
allowing any TSF-mediated management function to be performed
by that Administrator.

5.3 Class FMT: Security management

5.3.1 Management of functions in TSF (FMT_MOF)
Management: FMT_MOF_EXT.1
There are no management activities foreseen.
Audit: FMT_MOF_EXT.1
There are no audit events foreseen.

Version 2.3 Copyright © 2021 by Red Hat Page 26 (64)

5.3.1.1 FMT_MOF_EXT.1 - Extended component for Management
of Security Functions Behavior

Hierarchical to: No other components.
Dependencies: FMT_MSA_EXT.1 Extended component for Default Data Sharing

Configuration

FMT_MOF_EXT.1.1 The TSF shall be capable of supporting [selection: local, remote]
administration.

5.3.2 Management of security attributes (FMT_MSA)
Management: FMT_MSA_EXT.1
There are no management activities foreseen.
Audit: FMT_MSA_EXT.1
There are no audit events foreseen.

5.3.2.1 FMT_MSA_EXT.1 - Extended component for Default Data
Sharing Configuration

Hierarchical to: No other components.
Dependencies: No dependencies.

FMT_MSA_EXT.1.1 The TSF shall by default enforce a policy prohibiting sharing of
data between Guest VMs using [selection: no mechanism, virtual
networking, [assignment: other inter-VM data sharing
mechanisms]].

FMT_MSA_EXT.1.2 The TSF shall allow Administrators to specify alternative initial
configuration values to override the default values when a
Guest VM is created.

5.3.3 Separation of Management and Operational Networks
(FMT_SMO_EXT)

Family behaviour
Enumerate the means by which separate management and operational networks are
configured.
Management: FMT_SMO_EXT.1
There are no management activities foreseen.
Audit: FMT_SMO_EXT.1
There are no audit events foreseen.

5.3.3.1 FMT_SMO_EXT.1 - Extended component for Separation of
Management and Operational Networks

Hierarchical to: No other components.
Dependencies: No dependencies.

Version 2.3 Copyright © 2021 by Red Hat Page 27 (64)

FMT_SMO_EXT.1.1 The TSF shall support the configuration of separate
management and operational networks through [selection:
physical means, logical means, trusted channel].

5.4 Class FPT: Protection of the TSF

5.4.1 Non-Existence of Disconnected Virtual Devices
(FPT_DVD_EXT)

Family behaviour
Require the TSF limit a Guest VM's access to virtual devices to those present in the VM's
virtual hardware configuration.
Management: FPT_DVD_EXT.1
There are no management activities foreseen.
Audit: FPT_DVD_EXT.1
There are no audit events foreseen.

5.4.1.1 FPT_DVD_EXT.1 - Extended component for Non-Existence
of Disconnected Virtual Devices

Hierarchical to: No other components.
Dependencies: No dependencies.

FPT_DVD_EXT.1.1 The TSF shall limit a Guest VM’s access to virtual devices to
those that are present in the VM’s current virtual hardware
configuration.

5.4.2 Execution Environment Mitigations (FPT_EEM_EXT)
Family behaviour
Enumerate the vulnerability mitigation mechanisms used by the TOE.
Management: FPT_EEM_EXT.1
There are no management activities foreseen.
Audit: FPT_EEM_EXT.1
There are no audit events foreseen.

5.4.2.1 FPT_EEM_EXT.1 - Extended component for Execution
Environment Mitigations

Hierarchical to: No other components.
Dependencies: No dependencies.

FPT_EEM_EXT.1.1 The TSF shall take advantage of execution environment-based
vulnerability mitigation mechanisms supported by the Platform
such as: [selection:

1. Address space randomization
2. Memory execution protection (e.g., DEP)
3. Stack buffer overflow protection

Version 2.3 Copyright © 2021 by Red Hat Page 28 (64)

4. Heap corruption detection
5. [assignment: other mechanisms]
6. No mechanisms

].

5.4.3 Hardware Assists (FPT_HAS_EXT)
Family behaviour
Enumerate the hardware assists used by the TOE to reduce or eliminate the need for
binary translation and shadow page tables.
Management: FPT_HAS_EXT.1
There are no management activities foreseen.
Audit: FPT_HAS_EXT.1
There are no audit events foreseen.

5.4.3.1 FPT_HAS_EXT.1 - Extended component for Hardware
Assists

Hierarchical to: No other components.
Dependencies: No dependencies.

FPT_HAS_EXT.1.1 The VMM shall use [assignment: list of hardware-based
virtualization assists] to reduce or eliminate the need for binary
translation.

FPT_HAS_EXT.1.2 The VMM shall use [assignment: list of hardware-based
virtualization memory-handling assists] to reduce or eliminate
the need for shadow page tables.

5.4.4 Removable Devices and Media (FPT_RDM_EXT)
Family behaviour
Require the TSF implement controls for the transfer of virtual and physical removable
media or devices and specify the rules enforced upon specified devices.
Management: FPT_RDM_EXT.1
There are no management activities foreseen.
Audit: FPT_RDM_EXT.1
There are no audit events foreseen.

5.4.4.1 FPT_RDM_EXT.1 - Extended component for Removable
Devices and Media

Hierarchical to: No other components.
Dependencies: No dependencies.

FPT_RDM_EXT.1.1 The TSF shall implement controls for handling the transfer of
virtual and physical removable media and virtual and physical
removable media devices between information domains.

Version 2.3 Copyright © 2021 by Red Hat Page 29 (64)

FPT_RDM_EXT.1.2 The TSF shall enforce the following rules when [assignment:
virtual or physical removable media and virtual or physical
removable media devices] are switched between information
domains, then [selection:

1. the Administrator has granted explicit access for the
media or device to be connected to the receiving domain,

2. the media in a device that is being transferred is ejected
prior to the receiving domain being allowed access to the
device,

3. the user of the receiving domain expressly authorizes the
connection,

4. the device or media that is being transferred is prevented
from being accessed by the receiving domain

].

5.4.5 Virtual Device Parameters (FPT_VDP_EXT)
Family behaviour
Require the TSF to provide interfaces for virtual devices as part of the virtual hardware
abstraction and that the TSF validate parameters passed to the interface before
executing the functionality provided.
Management: FPT_VDP_EXT.1
There are no management activities foreseen.
Audit: FPT_VDP_EXT.1
There are no audit events foreseen.

5.4.5.1 FPT_VDP_EXT.1 - Extended component for Virtual Device
Parameters

Hierarchical to: No other components.
Dependencies: No dependencies.

FPT_VDP_EXT.1.1 The TSF shall provide interfaces for virtual devices implemented
by the VMM as part of the virtual hardware abstraction.

FPT_VDP_EXT.1.2 The TSF shall validate the parameters passed to the virtual
device interface prior to execution of the VMM functionality
exposed by those interfaces.

5.4.6 VMM Isolation from VMs (FPT_VIV_EXT)
Family behaviour
Require that the TSF ensure the software running in a VM is not able to degrade or
disrupt other VMs, the VMM, or the platform and that a Guest VM is not able to invoke
platform code running at a privileged level at or above that of the VMM without
involvement of the VMM.
Management: FPT_VIV_EXT.1
There are no management activities foreseen.

Version 2.3 Copyright © 2021 by Red Hat Page 30 (64)

Audit: FPT_VIV_EXT.1
There are no audit events foreseen.

5.4.6.1 FPT_VIV_EXT.1 - Extended component for VMM Isolation
from VMs

Hierarchical to: No other components.
Dependencies: No dependencies.

FPT_VIV_EXT.1.1 The TSF must ensure that software running in a VM is not able to
degrade or disrupt the functioning of other VMs, the VMM, or the
Platform.

FPT_VIV_EXT.1.2 The TSF must ensure that a Guest VM is unable to invoke
platform code that runs at a privilege level equal to or exceeding
that of the VMM without involvement of the VMM.

5.5 Class FTP: Trusted path/channels

5.5.1 User Interface: I/O Focus (FTP_UIF_EXT)
Family behaviour
Require the TSF to indicate to the user which VM has current input focus.
Management: FTP_UIF_EXT.1
There are no management activities foreseen.
Management: FTP_UIF_EXT.2
There are no management activities foreseen.
Audit: FTP_UIF_EXT.1
There are no audit events foreseen.
Audit: FTP_UIF_EXT.2
There are no audit events foreseen.

5.5.1.1 FTP_UIF_EXT.1 - Extended component for User Interface:
I/O Focus

Hierarchical to: No other components.
Dependencies: No dependencies.

FTP_UIF_EXT.1.1 The TSF shall indicate to users which VM, if any, has the current
input focus.

5.5.1.2 FTP_UIF_EXT.2 - Extended component for User Interface:
Identification of VM

Hierarchical to: No other components.
Dependencies: No dependencies.

Version 2.3 Copyright © 2021 by Red Hat Page 31 (64)

FTP_UIF_EXT.2.1 The TSF shall support the unique identification of a VM’s output
display to users.

Version 2.3 Copyright © 2021 by Red Hat Page 32 (64)

6 Security Requirements
The Security Functional Requirements (SFRs) included in this section are derived from
[CC] Part 2 with additional extended functional components.
The CC defines operations on Security Functional Requirements. This document uses the
following font conventions to identify the operations performed:

• Assignments and selections are indicated with bold text;
• Refinement deletions are indicated by strikethrough, refinement additions are

indicated by italicized text;
• No iterations of SFRs are performed.

 Extended SFRs are identified by the text "_EXT" appended to the name.

6.1 TOE Security Functional Requirements
The following table shows the SFRs for the TOE, and the operations performed on the
components according to CC part 1: iteration (Iter.), refinement (Ref.), assignment (Ass.)
and selection (Sel.).
Security
functional class

Security functional
requirement

Source Operations
Iter. Ref. Ass. Sel.

FAU - Security
audit

FAU_GEN.1 Audit data
generation

CC Part 2 No No Yes Yes

FAU_SAR.1 Audit review CC Part 2 No No Yes No
FAU_STG.1 Protected audit trail
storage

CC Part 2 No No No Yes

FDP - User data
protection

FDP_HBI_EXT.1 Extended
component for Hardware-Based
Isolation Mechanisms

ECD No No Yes Yes

FDP_PPR_EXT.1 Extended
component for Physical
Platform Resource Controls

ECD No No Yes Yes

FDP_RIP_EXT.1 Extended
component for Residual
Information in Memory

ECD No No No No

FDP_RIP_EXT.2 Extended
component for Residual
Information on Disk

ECD No No No No

FDP_VMS_EXT.1 Extended
component for VM Separation

ECD No No No Yes

FDP_VNC_EXT.1 Extended
component for Virtual
Networking Components

ECD No No No No

FIA - Identification
and authentication

FIA_AFL_EXT.1 Extended
component for Authentication
Failure Handling

ECD No Yes Yes Yes

FIA_PMG_EXT.1 Extended
component for Password
Management

ECD No Yes No Yes

FIA_UAU.5 Multiple CC Part 2 No Yes Yes Yes

Version 2.3 Copyright © 2021 by Red Hat Page 33 (64)

Security
functional class

Security functional
requirement

Source Operations
Iter. Ref. Ass. Sel.

authentication mechanisms
FIA_UIA_EXT.1 Extended
component for Administrator
Identification and
Authentication

ECD No No No No

FMT - Security
management

FMT_MOF_EXT.1 Extended
component for Management of
Security Functions Behavior

ECD No No No Yes

FMT_MSA_EXT.1 Extended
component for Default Data
Sharing Configuration

ECD No No No Yes

FMT_SMO_EXT.1 Extended
component for Separation of
Management and Operational
Networks

ECD No No No Yes

FPT - Protection of
the TSF

FPT_DVD_EXT.1 Extended
component for Non-Existence
of Disconnected Virtual Devices

ECD No No No No

FPT_EEM_EXT.1 Extended
component for Execution
Environment Mitigations

ECD No No Yes Yes

FPT_HAS_EXT.1 Extended
component for Hardware
Assists

ECD No No Yes No

FPT_RDM_EXT.1 Extended
component for Removable
Devices and Media

ECD No No Yes Yes

FPT_STM.1 Reliable time
stamps

CC Part 2 No No No No

FPT_VDP_EXT.1 Extended
component for Virtual Device
Parameters

ECD No No No No

FPT_VIV_EXT.1 Extended
component for VMM Isolation
from VMs

ECD No No No No

FTP - Trusted
path/channels

FTP_UIF_EXT.1 Extended
component for User Interface:
I/O Focus

ECD No No No No

FTP_UIF_EXT.2 Extended
component for User Interface:
Identification of VM

ECD No No No No

Version 2.3 Copyright © 2021 by Red Hat Page 34 (64)

Table 7: SFRs for the TOE

6.1.1 Security audit (FAU)

6.1.1.1 Audit data generation (FAU_GEN.1)

FAU_GEN.1.1 The TSF shall be able to generate an audit record of the following auditable
events:

a) Start-up and shutdown of the audit functions;
b) All auditable events for the not specified level of audit; and
c) additional information defined in Table 8: Auditable Events.

FAU_GEN.1.2 The TSF shall record within each audit record at least the following
information:

d) Date and time of the event, type of event, subject identity (if
applicable), and the outcome (success or failure) of the event; and

e) For each audit event type, based on the auditable event definitions of
the functional components included in the PP/ST, User identity (if
applicable).

Application Note: The table entry for FDP_VNC_EXT.1 refers to configuration settings
that attach VMs to virtualized network components. Changes to these configurations can
be made during VM execution or when VMs are not running. Audit records must be
generated for either case.
The intent of the audit requirement for FDP_PPR_EXT.1 is to log that the VM is connected
to a physical device (when the device becomes part of the VM’s hardware view), not to
log every time that the device is accessed. Generally, this is only once at VM startup.
However, some devices can be connected and disconnected during operation (e.g.,
virtual USB devices such as CD-ROMs). All such connection/disconnection events must be
logged.
Requirement Auditable Events Additional Audit Record

Contents
FAU_GEN.1 None. None.
FAU_SAR.1 Basic: Reading of information from the

audit records.
None.

FAU_STG.1 Failure of audit data capture due to lack of
disk space or pre-defined limit. On failure
of logging function, capture record of
failure and record upon restart of logging
function.

None.

FDP_HBI_EXT.1 None. None.
FDP_PPR_EXT.1 Successful and failed VM connections to

physical devices where connection is
governed by configurable policy. Security
policy violations. The intent of this audit
requirement is to log that the VM is
connected to a physical device (when the
device becomes part of the VM’s hardware
view), not to log every time that the
device is accessed. Generally, this is only
once at VM startup. However, some
devices can be connected and
disconnected during operation (e.g.,

VM and physical device
identifiers. Identifier for
the security policy that
was violated.

Version 2.3 Copyright © 2021 by Red Hat Page 35 (64)

Requirement Auditable Events Additional Audit Record
Contents

virtual USB devices such as CD-ROMs). All
such connection/disconnection events
must be logged.

FDP_RIP_EXT.1 None. None.
FDP_RIP_EXT.2 None. None.
FDP_VMS_EXT.1 None. None.
FDP_VNC_EXT.1 Successful and failed attempts to connect

VMs to virtual and physical networking
components. Security policy violations.
Administrator configuration of inter-VM
communications channels between VMs.
Changes to these configurations can be
made during VM execution or when VMs
are not running. Audit records must be
generated for either case.

VM and virtual or physical
networking component
identifiers. Identifier for
the security policy that
was violated.

FIA_AFL_EXT.1 Minimal: the reaching of the threshold for
the unsuccessful authentication attempts
and the actions (e.g., disabling of a
terminal) taken and the subsequent, if
appropriate, restoration to the normal
state (e.g., re-enabling of a terminal).

None.

FIA_PMG_EXT.1 None. None.
FIA_UAU.5 Minimal: The final decision on

authentication.
None.

FIA_UIA_EXT.1 Administrator authentication attempts. All
use of the identification and authentication
mechanism.

Provided user identity,
origin of the attempt (e.g.,
console, remote IP
address).

FMT_MOF_EXT.1 None. None.
FMT_MSA_EXT.1 None. None.
FMT_SMO_EXT.1 None. None.
FPT_DVD_EXT.1 None. None.
FPT_EEM_EXT.1 None. None.
FPT_HAS_EXT.1 None. None.
FPT_RDM_EXT.1 Connection/disconnection of removable

media or device to/from a VM.
Ejection/insertion of removable media or
device from/to an already connected VM.

VM Identifier, removable
media/device identifier,
event description or
identifier
(connect/disconnect,
ejection/insertion, etc.).

FPT_STM.1 Minimal: changes to the time. None.
FPT_VDP_EXT.1 None. None.
FPT_VIV_EXT.1 None. None.
FTP_UIF_EXT.1 None. None.
FTP_UIF_EXT.2 None. None.

Version 2.3 Copyright © 2021 by Red Hat Page 36 (64)

Table 8: Auditable Events

6.1.1.2 Audit review (FAU_SAR.1)

FAU_SAR.1.1 The TSF shall provide the root user with the capability to read all audit
information from the audit records.

FAU_SAR.1.2 The TSF shall provide the audit records in a manner suitable for the user to
interpret the information.

Application Note: The audit records are stored in ASCII format and can therefore be
read with a normal editor or pager. In addition, the TOE provides specific tools that
support the interpretation of the audit trail.
Application Note: The audit trail is stored in a file that is readable to the users with the
above-mentioned capabilities only.

6.1.1.3 Protected audit trail storage (FAU_STG.1)

FAU_STG.1.1 The TSF shall protect the stored audit records in the audit trail from
unauthorized deletion.

FAU_STG.1.2 The TSF shall be able to prevent unauthorized modifications to the stored
audit records in the audit trail.

6.1.2 User data protection (FDP)

6.1.2.1 Extended component for Hardware-Based Isolation
Mechanisms (FDP_HBI_EXT.1)

FDP_HBI_EXT.1.1 The TSF shall use

1. Intel VT-x
2. Intel EPT
3. Intel IOMMU

to constrain a Guest VM’s direct access to the following physical devices:

1. CPU
2. RAM
3. PCI devices

Application Note: The TSF must use available hardware-based isolation mechanisms to
constrain VMs when VMs have direct access to physical devices. “Direct access” in this
context means that the VM can read or write device memory or access device I/O ports
without the VMM being able to intercept and validate every transaction.

6.1.2.2 Extended component for Physical Platform Resource
Controls (FDP_PPR_EXT.1)

FDP_PPR_EXT.1.1 The TSF shall allow an authorized administrator to control Guest VM
access to the following physical platform resources:

a) CPU
b) RAM

Version 2.3 Copyright © 2021 by Red Hat Page 37 (64)

c) PCI devices
d) USB devices
e) CD-ROM
f) Block devices
g) TPM
h) Watchdog

FDP_PPR_EXT.1.2 The TSF shall explicitly deny all Guest VMs access to the following
physical platform resources: no physical platform resources.

FDP_PPR_EXT.1.3 The TSF shall explicitly allow all Guest VMs access to the following
physical platform resources: no physical platform resources.

Application Note: This requirement specifies that the VMM controls access to physical
platform resources, and indicates that it must be configurable, but does not specify the
means by which that is done.

6.1.2.3 Extended component for Residual Information in
Memory (FDP_RIP_EXT.1)

FDP_RIP_EXT.1.1 The TSF shall ensure that any previous information content of physical
memory is cleared prior to allocation to a Guest VM.

Application Note: Physical memory must be zeroed before it is made accessible to a
VM for general use by a Guest OS.
The purpose of this requirement is to ensure that a VM does not receive memory
containing data previously used by another VM or the host.
For general use means for use by the Guest OS in its page tables for running applications
or system software.
This does not apply to pages shared by design or policy between VMs or between the
VMMs and VMs, such as read-only OS pages or pages used for virtual device buffers.

6.1.2.4 Extended component for Residual Information on Disk
(FDP_RIP_EXT.2)

FDP_RIP_EXT.2.1 The TSF should ensure that any previous information content of physical
disk storage is cleared prior to allocation to a Guest VM or the TSS shall
describe the conditions of exception.

Application Note: Disk storage should be zeroed before it is made accessible to a VM
for use by a Guest OS or the TSS must document the conditions under which physical
disk storage is not cleared prior to allocation to a Guest VM.
The purpose of this requirement is to ensure that a VM does not receive disk storage
containing data previously used by another VM or the host.
This does not apply to disk-resident files shared by design or policy between VMs or
between the VMMs and VMs, such as read-only data files or files used for inter-VM data
transfers permitted by policy.

6.1.2.5 Extended component for VM Separation
(FDP_VMS_EXT.1)

FDP_VMS_EXT.1.1 The VS shall provide the following mechanisms for transferring data
between Guest VMs: virtual networking .

Version 2.3 Copyright © 2021 by Red Hat Page 38 (64)

FDP_VMS_EXT.1.2 The TSF shall allow Administrators to configure these mechanisms to
enable, disable the transfer of data between Guest VMs.

FDP_VMS_EXT.1.3 The VS shall ensure that no Guest VM is able to read or transfer data to
or from another Guest VM except through the mechanisms listed in
FDP_VMS_EXT.1.1.

Vendor attestation: A Guest VM cannot access the data of another Guest VM, or
transfer data to another Guest VM other than through the mechanisms described in
FDP_VMS_EXT.1.1 when expressly enabled by an authorized Administrator. There are no
design or implementation flaws that permit the above mechanisms to be bypassed or
defeated, or for data to be transferred through undocumented mechanisms. This claim
does not apply to covert channels or architectural side-channels.
Application Note: The fundamental requirement of a Virtualization System is the ability
to enforce separation between information domains implemented as Virtual Machines
and Virtual Networks. The intent of this requirement is to ensure that VMs, VMMs, and
the Virtualization System as a whole is implemented with this fundamental requirement
in mind.
For data transfer mechanisms that use virtual networking, FDP_VMS_EXT.1.2 is met if
FDP_VNC_EXT.1.1 is met (VM access to virtual networks is configurable).
FDP_VMS_EXT.1.3 is an attestation requirement. The vendor must attest that data cannot
be transferred between Guest VMs except through the configurable mechanisms
documented in FDP_VMS_EXT.1.1. The vendor must attest that there are no design or
implementation flaws that permit the above mechanisms to be bypassed or defeated, or
for data to be transferred through a different, undocumented mechanism.

6.1.2.6 Extended component for Virtual Networking Components
(FDP_VNC_EXT.1)

FDP_VNC_EXT.1.1 The TSF shall allow Administrators to configure virtual networking
components to connect VMs to each other, and to physical networks.

FDP_VNC_EXT.1.2 The TSF shall ensure that network traffic visible to a Guest VM on a
virtual network—or virtual segment of a physical network—is visible only
to Guest VMs configured to be on that virtual network or segment.

Vendor attestation: Traffic traversing a virtual network is visible only to Guest VMs
that are configured by an Administrator to be members of that virtual network. There are
no design or implementation flaws that permit the virtual networking configuration to be
bypassed or defeated, or for data to be transferred through undocumented mechanisms.
This claim does not apply to covert channels or architectural side-channels.
Application Note: Virtual networks must be isolated from one another to provide
assurance commensurate with that provided by physically separate networks. It must not
be possible for data to cross between properly configured virtual networks regardless of
whether the traffic originated from a local Guest VM or a remote host.
Unprivileged users must not be able to connect VMs to each other or to external
networks.
FDP_VNC_EXT.1.2 is an attestation requirement. The vendor must attest that traffic
traversing a virtual network is visible only to Guest VMs that are configured by an
Administrator to be members of that virtual network, and that there are no design or
implementation flaws that permit the virtual networking configuration to be bypassed or
defeated, or for data to be transferred through undocumented mechanisms.

Version 2.3 Copyright © 2021 by Red Hat Page 39 (64)

6.1.3 Identification and authentication (FIA)

6.1.3.1 Extended component for Authentication Failure Handling
(FIA_AFL_EXT.1)

FIA_AFL_EXT.1.1 The TSF shall detect when an administrator configurable positive
integer within a range of 1 to 10 unsuccessful authentication attempts
occur related to administrators attempting to authenticate remotely using
a password when authenticating with the local user database .

FIA_AFL_EXT.1.2 When the defined number of unsuccessful authentication attempts for an
account has been met, the TSF shall: Account Disablement.

6.1.3.2 Extended component for Password Management
(FIA_PMG_EXT.1)

FIA_PMG_EXT.1.1 The TSF shall provide the following password management capabilities
for administrative passwords when authenticating with the local user
database :

a) Passwords shall be able to be composed of any combination of
upper and lower case characters, digits, and the following special
characters: !, @, #, $, %, ^, &, *, (,)

b) Minimum password length shall be configurable;
c) Passwords of at least 15 characters in length shall be supported.

6.1.3.3 Multiple authentication mechanisms (FIA_UAU.5)

FIA_UAU.5.1 The TSF shall provide the following authentication mechanisms:

• authentication based on username and password using local
user database

• authentication based on username and password using
remote authentication providers

• authentication based on SSH keys

 to support

 user authentication (SSH keys) and Administrator authentication
(passwords)

FIA_UAU.5.2 The TSF shall authenticate any user's or Administrator's claimed identity
according to the following rules:

• password-based authentication via the local password
database provided by the TOE (for Administrator)

• password-based authentication via an authentication
backend (such as LDAP or single sign-on mechanism)
configured by the administrator and provided by the
Operational Environment (for Administrator)

• SSH key-based authentication (for user)

Version 2.3 Copyright © 2021 by Red Hat Page 40 (64)

6.1.3.4 Extended component for Administrator Identification
and Authentication (FIA_UIA_EXT.1)

FIA_UIA_EXT.1.1 The TSF shall require Administrators to be successfully identified and
authenticated using one of the methods in FIA_UAU.5 before allowing any
TSF-mediated management function to be performed by that
Administrator.

6.1.4 Security management (FMT)

6.1.4.1 Extended component for Management of Security
Functions Behavior (FMT_MOF_EXT.1)

FMT_MOF_EXT.1.1 The TSF shall be capable of supporting remote administration.

6.1.4.2 Extended component for Default Data Sharing
Configuration (FMT_MSA_EXT.1)

FMT_MSA_EXT.1.1 The TSF shall by default enforce a policy prohibiting sharing of data
between Guest VMs using virtual networking.

FMT_MSA_EXT.1.2 The TSF shall allow Administrators to specify alternative initial
configuration values to override the default values when a Guest VM is
created.

Application Note: By default, the VMM must enforce a policy prohibiting sharing of data
between VMs. The default policy applies to all mechanisms for sharing data between
VMs, including inter-VM communication channels, shared physical devices, shared virtual
devices, and virtual networks. The default policy does not apply to covert channels and
architectural side-channels.

6.1.4.3 Extended component for Separation of Management and
Operational Networks (FMT_SMO_EXT.1)

FMT_SMO_EXT.1.1 The TSF shall support the configuration of separate management and
operational networks through physical means, logical means.

Application Note: Management communications must be separate from user
workloads. Administrative communications including communications between physical
hosts concerning load balancing, audit data, VM startup and shutdown must be separate
from guest operational networks.
Physical means refers to using separate physical networks for management and
operational networks. For example, the machines in the management network are
connected by separate cables plugged into separate and dedicated physical ports on
each physical host.
Logical means refers to using separate network cables to connect physical hosts together
using general-purpose networking ports. The management and operational networks are
kept separate within the hosts using separate virtualized networking components.

Version 2.3 Copyright © 2021 by Red Hat Page 41 (64)

6.1.5 Protection of the TSF (FPT)

6.1.5.1 Extended component for Non-Existence of Disconnected
Virtual Devices (FPT_DVD_EXT.1)

FPT_DVD_EXT.1.1 The TSF shall limit a Guest VM's access to virtual devices to those that
are present in the VM's current virtual hardware configuration.

Application Note: The virtualized hardware abstraction implemented by a particular VS
might include the virtualized interfaces for many different devices. Sometimes these
devices are not present in a particular instantiation of a VM. The interface for devices not
present must not accessible by the VM.
Such interfaces include memory buffers and processor I/O ports.
The purpose of this requirement is to reduce the attack surface of the VMM by closing
unused interfaces.

6.1.5.2 Extended component for Execution Environment
Mitigations (FPT_EEM_EXT.1)

FPT_EEM_EXT.1.1 The TSF shall take advantage of execution environment-based
vulnerability mitigation mechanisms supported by the Platform such as:

1. Address space randomization
2. Stack buffer overflow protection (Stack Canary):

Modification of a function return address on the process'
or thread's stack to jump to previously known processor
instructions by misusing the following C programming
language constructs (also known as Stack Protector
Strong):

i. Functions with stack buffers larger than 8 bytes;
ii. Functions using alloca();
iii. Functions with local array definitions;
iv. Functions having references to local frame addresses;
3. Read-Only Relocation (RELRO)
4. FORTIFY_SOURCE set to 2
5. Intel SMEP
6. Intel SMAP

Application Note: Processor manufacturers, compiler developers, and operating system
vendors have developed execution environment-based mitigations that increase the cost
to attackers by adding complexity to the task of compromising systems. Software can
often take advantage of these mechanisms by using APIs provided by the operating
system or by enabling the mechanism through compiler or linker options.
This requirement does not mandate that these protections be enabled throughout the
Virtualization System—only that they be enabled where they have likely impact. For
example, code that receives and processes user input should take advantage of these
mechanisms.

6.1.5.3 Extended component for Hardware Assists
(FPT_HAS_EXT.1)

FPT_HAS_EXT.1.1 The VMM shall use Intel VT-x to reduce or eliminate the need for binary
translation.

Version 2.3 Copyright © 2021 by Red Hat Page 42 (64)

FPT_HAS_EXT.1.2 The VMM shall use Intel EPT to reduce or eliminate the need for shadow
page tables.

Application Note: These hardware-assists help reduce the size and complexity of the
VMM, and thus, of the trusted computing base, by eliminating or reducing the need for
paravirtualization or binary translation. Paravirtualization involves modifying guest
software so that instructions that cannot be properly virtualized are never executed on
the physical processor.

6.1.5.4 Extended component for Removable Devices and Media
(FPT_RDM_EXT.1)

FPT_RDM_EXT.1.1 The TSF shall implement controls for handling the transfer of virtual and
physical removable media and virtual and physical removable media
devices between information domains.

FPT_RDM_EXT.1.2 The TSF shall enforce the following rules when CD/DVD, ISO images
acting as CD/DVD backend, USB drives are switched between
information domains, then

1. the Administrator has granted explicit access for the
media or device to be connected to the receiving domain

Application Note: The purpose of these requirements is to ensure that VMs are not
given inadvertent access to information from different domains because of media or
removable media devices left connected to physical machines.
Removable media is media that can be ejected from a device, such as a compact disc,
floppy disk, SD, or compact flash memory card.
Removable media devices are removable devices that include media, such as USB flash
drives and USB hard drives. Removable media devices can themselves contain
removable media (e.g., USB CDROM drives).
For purposes of this requirement, an Information Domain is:

a. A VM or collection of VMs,
b. The Virtualization System,
c. Host OS, or
d. Management Subsystem.

These requirements also apply to virtualized removable media such as virtual CD drives
that connect to ISO images as well as physical media such as CDROMs and USB flash
drives. In the case of virtual CDROMs, virtual ejection of the virtual media is sufficient.

6.1.5.5 Reliable time stamps (FPT_STM.1)

FPT_STM.1.1 The TSF shall be able to provide reliable time stamps.

6.1.5.6 Extended component for Virtual Device Parameters
(FPT_VDP_EXT.1)

FPT_VDP_EXT.1.1 The TSF shall provide interfaces for virtual devices implemented by the
VMM as part of the virtual hardware abstraction.

FPT_VDP_EXT.1.2 The TSF shall validate the parameters passed to the virtual device
interface prior to execution of the VMM functionality exposed by those
interfaces.

Version 2.3 Copyright © 2021 by Red Hat Page 43 (64)

Vendor attestation: Parameters passed from Guest VMs to virtual device interfaces are
thoroughly validated and all illegal values (as specified in the TSS) are rejected.
Additionally, parameters passed from Guest VMs to virtual device interfaces are not able
to degrade or disrupt the functioning of other VMs, the VMM, or the Platform. Thorough
testing and architectural design reviews have been conducted to ensure the accuracy of
these claims, and there are no design or implementation flaws that bypass or defeat the
security of the virtual device interfaces.
Application Note: The purpose of this requirement is to ensure that the VMM is not
vulnerable to compromise through the processing of malformed data passed to the
virtual device interface from a Guest OS. The VMM cannot assume that any data coming
from a VM is well-formed even if the virtual device interface is unique to the
Virtualization System and the data comes from a virtual device driver supplied by the
Virtualization Vendor.
FPT_VDP_EXT.1.2 is an attestation requirement. The vendor must attest that parameters
passed from a VM to a virtual device interface are not able to degrade or disrupt the
functioning of other VMs, the VMM, or the Platform. The vendor must attest that there
are no design or implementation flaws that permit the above.

6.1.5.7 Extended component for VMM Isolation from VMs
(FPT_VIV_EXT.1)

FPT_VIV_EXT.1.1 The TSF must ensure that software running in a VM is not able to degrade
or disrupt the functioning of other VMs, the VMM, or the Platform.

FPT_VIV_EXT.1.2 The TSF must ensure that a Guest VM is unable to invoke platform code
that runs at a privilege level equal to or exceeding that of the VMM
without involvement of the VMM.

Vendor attestation: Software running in a VM is not able to degrade or disrupt the
functioning of other VMs, the VMM, or the Platform. There are no design or
implementation flaws that bypass or defeat VM isolation.
Application Note: This requirement is intended to ensure that software running within
a Guest VM cannot compromise other VMs, the VMM, or the platform. This requirement is
not met if Guest VM software whatever its privilege level can crash the Virtualization
System or the Platform, or breakout of its virtual hardware abstraction to gain execution
on the platform, within or outside of the context of the VMM.
This requirement is not violated if software running within a VM can crash the Guest OS
and there is no way for an attacker to gain execution in the VMM or outside of the
virtualized domain.
FPT_VIV_EXT.1.2 addresses several specific mechanisms that must not be permitted to
bypass the VMM and invoke privileged code on the Platform.
At a minimum, the TSF should enforce the following:

a) On the x64 platform, a virtual System Management Interrupt (SMI) cannot invoke
platform System Management Mode (SMM).

b) An attempt to update virtual firmware or virtual BIOS cannot cause physical
platform firmware or physical platform BIOS to be modified.

c) An attempt to update virtual firmware or virtual BIOS cannot cause the VMM to be
modified.

Of the above, (a) does not apply to platforms that do not support SMM. The rationale
behind activity (c) is that a firmware update of a single VM must not affect other VMs. So
if multiple VMs share the same firmware image as part of a common hardware
abstraction, then the update of a single machines BIOS must not be allowed to change
the common abstraction. The virtual hardware abstraction is part of the VMM.
This is an attestation requirement. The vendor must attest that software running in a VM
is not able to degrade or disrupt the functioning of other VMs, the VMM, or the Platform.

Version 2.3 Copyright © 2021 by Red Hat Page 44 (64)

The vendor must attest that there are no design or implementation flaws that permit the
above.

6.1.6 Trusted path/channels (FTP)

6.1.6.1 Extended component for User Interface: I/O Focus
(FTP_UIF_EXT.1)

FTP_UIF_EXT.1.1 The TSF shall indicate to users which VM, if any, has the current input
focus.

Application Note: This requirement applies to all users—whether User or Administrator.
In environments where multiple VMs run at the same time, the user must have a way of
knowing which VM user input is directed to at any given moment. This is especially
important in multiple-domain environments.
In the case of a human user, this is usually a visual indicator. In the case of headless
VMs, the user is considered to be a program, but this program still needs to know which
VM it is sending input to; this would typically be accomplished through programmatic
means.
The TOE provides access to virtual machines' consoles and serial consoles. For consoles,
the TOE provides a different TCP port number for each console. For serial consoles, the
TOE only connects a user to the serial console of the virtual machine guest the user was
configured for. If the user is allowed to access the serial consoles of multiple virtual
machines, the user has to select the intended serial console during login.

6.1.6.2 Extended component for User Interface: Identification of
VM (FTP_UIF_EXT.2)

FTP_UIF_EXT.2.1 The TSF shall support the unique identification of a VM's output display to
users.

Application Note: In environments where a user has access to more than one VM at the
same time, the user must be able to determine the identity of each VM displayed in order
to avoid inadvertent cross-domain data entry.
There must be a mechanism for associating an identifier with a VM so that an application
or program displaying the VM can identify the VM to users. This is generally indicated
visually for human users (e.g., a border around a VMs screen display) and
programmatically for headless VMs (e.g., an API function). The identification must be
unique to the VS, but does not need to be universally unique.

6.2 Security Functional Requirements Rationale

6.2.1 Coverage
The following table provides a mapping of SFR to the security objectives, showing that
each security functional requirement addresses at least one security objective.
Security functional
requirements

Objectives

FAU_GEN.1 O.AUDIT
FAU_SAR.1 O.AUDIT
FAU_STG.1 O.AUDIT
FDP_HBI_EXT.1 O.PLATFORM_INTEGRITY

Version 2.3 Copyright © 2021 by Red Hat Page 45 (64)

Security functional
requirements

Objectives

FDP_PPR_EXT.1 O.PLATFORM_INTEGRITY,
O.VM_ISOLATION,
O.VMM_INTEGRITY

FDP_RIP_EXT.1 O.RESOURCE_ALLOCATION,
O.VM_ISOLATION

FDP_RIP_EXT.2 O.RESOURCE_ALLOCATION,
O.VM_ISOLATION

FDP_VMS_EXT.1 O.PLATFORM_INTEGRITY,
O.VM_ISOLATION,
 O.VMM_INTEGRITY

FDP_VNC_EXT.1 O.PLATFORM_INTEGRITY,
O.VM_ISOLATION,
O.VMM_INTEGRITY

FIA_AFL_EXT.1 O.MANAGEMENT_ACCESS
FIA_PMG_EXT.1 O.MANAGEMENT_ACCESS
FIA_UAU.5 O.MANAGEMENT_ACCESS
FIA_UIA_EXT.1 O.MANAGEMENT_ACCESS
FMT_MOF_EXT.1 O.MANAGEMENT_ACCESS,

O.VMM_INTEGRITY
FMT_MSA_EXT.1 O.CORRECTLY_APPLIED_CONFIGURATION,

O.MANAGEMENT_ACCESS,
O.VMM_INTEGRITY

FMT_SMO_EXT.1 O.MANAGEMENT_ACCESS
FPT_DVD_EXT.1 O.PLATFORM_INTEGRITY,

O.VM_ISOLATION,
O.VMM_INTEGRITY

FPT_EEM_EXT.1 O.PLATFORM_INTEGRITY,
O.VM_ISOLATION,
O.VMM_INTEGRITY

FPT_HAS_EXT.1 O.PLATFORM_INTEGRITY,
O.VM_ISOLATION,
O.VMM_INTEGRITY

FPT_RDM_EXT.1 O.PLATFORM_INTEGRITY
FPT_STM.1 O.AUDIT
FPT_VDP_EXT.1 O.PLATFORM_INTEGRITY,

O.VM_ISOLATION,
O.VMM_INTEGRITY

FPT_VIV_EXT.1 O.PLATFORM_INTEGRITY,
O.VM_ISOLATION,
O.VMM_INTEGRITY

FTP_UIF_EXT.1 O.VM_ISOLATION
FTP_UIF_EXT.2 O.VM_ISOLATION

Version 2.3 Copyright © 2021 by Red Hat Page 46 (64)

Table 9: Mapping of security functional requirements to security objectives

6.2.2 Sufficiency
The following rationale provides justification for each security objective for the TOE,
showing that the security functional requirements are suitable to meet and achieve the
security objectives.
Security objectives Rationale
O.VM_ISOLATION Met by SFRs for physical platform resource

controls and VM separation and isolation:
FDP_PPR_EXT.1, FDP_RIP_EXT.1,
FDP_RIP_EXT.2, FDP_VMS_EXT.1,
FDP_VNC_EXT.1, FPT_DVD_EXT.1,
FPT_EEM_EXT.1, FPT_HAS_EXT.1,
FPT_VDP_EXT.1, FPT_VIV_EXT.1, FTP_UIF_EXT.1,
and FTP_UIF_EXT.2.

O.VMM_INTEGRITY Met by SFRs for VMM management and VM
separation and isolation: FMT_MOF_EXT.1,
FMT_MSA_EXT.1, FDP_PPR_EXT.1,
FDP_VMS_EXT.1, FDP_VNC_EXT.1,
FPT_DVD_EXT.1, FPT_EEM_EXT.1,
FPT_HAS_EXT.1, FPT_VDP_EXT.1, and
FPT_VIV_EXT.1.

O.PLATFORM_INTEGRITY Met by SFRs for physical platform resource
controls: FDP_HBI_EXT.1, FDP_PPR_EXT.1,
FDP_VMS_EXT.1, FDP_VNC_EXT.1,
FPT_DVD_EXT.1, FPT_EEM_EXT.1,
FPT_HAS_EXT.1, FPT_RDM_EXT.1,
FPT_VDP_EXT.1, and FPT_VIV_EXT.1.

O.MANAGEMENT_ACCESS Met by SFRs for I&A and VMM management:
FIA_AFL_EXT.1, FIA_PMG_EXT.1, FIA_UAU.5,
FIA_UIA_EXT.1, FMT_MOF_EXT.1,
FMT_MSA_EXT.1, and FMT_SMO_EXT.1.

O.AUDIT Met by SFRs for audit generation, review, and
storage: FAU_GEN.1, FAU_SAR.1, FAU_STG.1,
and FPT_STM.1.

O.CORRECTLY_APPLIED_CONFIGURATION Met by SFR for VMM management:
FMT_MSA_EXT.1.

O.RESOURCE_ALLOCATION Met by SFRs for residual data protection:
FDP_RIP_EXT.1, and FDP_RIP_EXT.2.

Table 10: Security objectives for the TOE rationale

6.2.3 Security Requirements Dependency Analysis
The security functional requirements in this Security Target do not introduce
dependencies on any security assurance requirement; neither do the security assurance
requirements in this Security Target introduce dependencies on any security functional
requirement.
The following table demonstrates the dependencies of the SFRs modeled in CC Part 2
and the extended component definition in this Security Target, and how the SFRs for the
TOE resolve those dependencies.

Version 2.3 Copyright © 2021 by Red Hat Page 47 (64)

Security functional requirement Dependencies Resolution
FAU_GEN.1 FPT_STM.1 FPT_STM.1
FAU_SAR.1 FAU_GEN.1 FAU_GEN.1
FAU_STG.1 FAU_GEN.1 FAU_GEN.1
FDP_HBI_EXT.1 No dependencies
FDP_PPR_EXT.1 No dependencies
FDP_RIP_EXT.1 No dependencies
FDP_RIP_EXT.2 No dependencies
FDP_VMS_EXT.1 No dependencies
FDP_VNC_EXT.1 No dependencies
FIA_AFL_EXT.1 No dependencies
FIA_PMG_EXT.1 No dependencies
FIA_UAU.5 No dependencies
FIA_UIA_EXT.1 No dependencies
FMT_MOF_EXT.1 FMT_MSA_EXT.1 FMT_MSA_EXT.1
FMT_MSA_EXT.1 No dependencies
FMT_SMO_EXT.1 No dependencies
FPT_DVD_EXT.1 No dependencies
FPT_EEM_EXT.1 No dependencies
FPT_HAS_EXT.1 No dependencies
FPT_RDM_EXT.1 No dependencies
FPT_STM.1 No dependencies
FPT_VDP_EXT.1 No dependencies
FPT_VIV_EXT.1 No dependencies
FTP_UIF_EXT.1 No dependencies
FTP_UIF_EXT.2 No dependencies

Table 11: SFR dependency analysis

6.3 Security Assurance Requirements
The security assurance requirements (SARs) for the TOE are defined in [CC] part 3 for the
Evaluation Assurance Level 2, augmented by ALC_FLR.3.
The following table shows the SARs, and the operations performed on the components
according to CC part 3: iteration (Iter.), refinement (Ref.), assignment (Ass.) and selection
(Sel.).
Security
assurance
class

Security assurance
requirement

Source Operations
Iter. Ref. Ass. Sel.

ADV
Development

ADV_ARC.1 Security architecture
description

CC Part 3 No No No No

ADV_FSP.2 Security-enforcing
functional specification

CC Part 3 No No No No

Version 2.3 Copyright © 2021 by Red Hat Page 48 (64)

Security
assurance
class

Security assurance
requirement

Source Operations
Iter. Ref. Ass. Sel.

ADV_TDS.1 Basic design CC Part 3 No No No No
AGD Guidance
documents

AGD_OPE.1 Operational user
guidance

CC Part 3 No No No No

AGD_PRE.1 Preparative
procedures

CC Part 3 No No No No

ALC Life-cycle
support

ALC_CMC.2 Use of a CM system CC Part 3 No No No No
ALC_CMS.2 Parts of the TOE CM
coverage

CC Part 3 No No No No

ALC_DEL.1 Delivery procedures CC Part 3 No No No No
ALC_FLR.3 Systematic flaw
remediation

CC Part 3 No No No No

ASE Security
Target
evaluation

ASE_INT.1 ST introduction CC Part 3 No No No No
ASE_CCL.1 Conformance claims CC Part 3 No No No No
ASE_SPD.1 Security problem
definition

CC Part 3 No No No No

ASE_OBJ.2 Security objectives CC Part 3 No No No No
ASE_ECD.1 Extended
components definition

CC Part 3 No No No No

ASE_REQ.2 Derived security
requirements

CC Part 3 No No No No

ASE_TSS.1 TOE summary
specification

CC Part 3 No No No No

ATE Tests ATE_COV.1 Evidence of coverage CC Part 3 No No No No
ATE_FUN.1 Functional testing CC Part 3 No No No No
ATE_IND.2 Independent testing -
sample

CC Part 3 No No No No

AVA
Vulnerability
assessment

AVA_VAN.2 Vulnerability analysis CC Part 3 No No No No

Table 12: Security Assurance Requirements

6.4 Security Assurance Requirements Rationale
Dependencies within the EAL package selected (EAL2) for the security assurance
requirements have been considered by the authors of CC Part 3 and are not analysed
here again. The augmentation by flaw remediation, ALC_FLR.3, has no dependencies on
other requirements. The security functional requirements in this Security Target do not
introduce dependencies on any security assurance requirement; neither do the security
assurance requirements in this Security Target introduce dependencies on any security
functional requirement.
The EAL2 level was also deemed sufficient because this will provide a necessary
assurance for a product that is operated in an environment that is not directly exposed to
external attackers, but still able to resist attacker with basic attack potential.

Version 2.3 Copyright © 2021 by Red Hat Page 49 (64)

The assurance requirements of the EAL2 package provides a full Security Target and
requires an analysis using a functional and interface specification and a basic description
of the architecture of the TOE, which would give sufficient confidence in the design and
architecture and for the evaluator to perform an analysis of the design and architecture
for the vulnerability analysis.
The augmentation of EAL2 with ALC_FLR.3 is seen useful for software products in a
security critical market where the flaw remediation procedures requiring timely response
and the automatic distribution of security flaw reports and the associated corrections to
registered users who might be affected by the security flaw.

Version 2.3 Copyright © 2021 by Red Hat Page 50 (64)

7 TOE Summary Specification

7.1 TOE Security Functionality
The following section explains how the security functions are implemented. The different
TOE security functions cover the various SFR classes.
The primary security features of the TOE are:

• Audit
• User Data Protection
• Identification and Authentication
• Security Management
• Protection of the TSF
• Trusted Path/Channels

Many security functions in the TOE are implemented in the virtualization environment
provided by Red Hat Enterprise Linux (RHEL).
KVM is implemented as part of the Linux kernel supported by user space code. It consists
of two essential components that implement VMM functionality: the KVM Linux kernel
module and QEMU for hardware emulation. The use of QEMU implies that KVM provides
full virtualization to its guests and can, therefore, execute unaltered guest operating
systems.
The KVM Linux kernel module implements memory management and virtual machine
maintenance functionality. This kernel extension makes the entire Linux kernel the
hypervisor. Virtual machines are treated by the Linux kernel as normal applications. The
kernel schedules them like applications, and they can be handled like applications. As
such, the process implementing a virtual machine can be seen in process listings and it
can be sent signals, like SIGTERM.
From the Linux kernel perspective, the virtual machine is just another process. However,
the virtual machine process has a special layout. The process image is split into two
parts. The first part hosts a regular application logic executing in user mode – this is used
to maintain the QEMU I/O virtualization and some other small KVM-related software
components. The second part contains the image of the guest code, usually an operating
system, where the software may execute either in supervisor or user mode of the
processor. This implies that the entire memory used for the guest operating system is
allocated by the QEMU application. The kernel keeps track of which parts of the
application belong to the guest operating system and which parts to the regular
application.
When the kernel releases control of the CPU to the virtual machine process, it sets the
processor state of the CPU to the user state when calling the regular application logic in
user mode. However, when returning control of the CPU to the guest code, the CPU can
be set either to supervisor state or user state, depending on the state of the CPU when
the Linux kernel initially obtained control.
The overall logic flow between the Linux kernel, the regular application logic, and the
guest operating system is described below. This logic flow is an endless loop which is
characterized as follows:

1) The regular application logic executing in user mode sets up the virtual machine
configuration by instructing the kernel to allocate memory, CPU, and other
resources for the application. The kernel sets up these resources and assigns
them to the calling process. After setup is complete, the kernel is instructed to
execute the guest. This phase starts the loop and is not executed again during the
loop.

2) The kernel now causes the processor to enter guest mode. If the processor exits
guest mode due to an event, such as an external interrupt or a shadow page table
fault (see section 7.1.2.1), the kernel performs the necessary handling and

Version 2.3 Copyright © 2021 by Red Hat Page 51 (64)

resumes guest execution. If the exit is due to an I/O instruction or a signal queued
to the process, then the kernel exits to the regular application logic in user mode.

3) The processor executes guest code until it encounters an instruction that needs
assistance, a fault, or an external interrupt. The processor then returns control to
the host kernel.

4) If the host kernel detects an exit of the guest code due to an I/O instruction or a
signal, or until an external event such as arrival of a network packet or a timeout
occurs, the kernel invokes the user mode component of the virtual machine
process. The processed I/O instructions cover programmed I/O (PIO) whose
implementation is not as complex as the second set of processed I/O instructions,
the memory mapped I/O (MMIO). QEMU, with a small extension for making QEMU
KVM-aware, is used to implement the I/O handling, implementing a number of
emulated devices and mediate access to real resources when a device is
accessed via the I/O instruction. QEMU may alter the virtual processor state to
reflect the emulated I/O instruction result to the calling guest code. The
modification of the virtual processor state is done with IOCTLs to a file descriptor
that QEMU has allocated when setting up the virtual machine. This file descriptor
is used to store all virtual machine and virtual CPU data relevant for executing the
virtual machine. As the file descriptor is bound to one process only, the kernel
implicitly ensures that a QEMU instance can only operate on its virtual machine
and virtual CPUs. Once QEMU completes the I/O operation, it signals the kernel
that the guest code can resume execution which is implemented by step 2 above.

In this architecture, regular applications (i.e., applications executing only in user state of
the CPU and having full access to all services of the Linux kernel and, therefore, other
parts of the operating system) coexist with applications that host virtual machines.
The libvirtd management daemon sets up virtual machines and controls the resources
assigned to virtual machines. To support the separation of virtual machines, libvirtd uses
the following capabilities:

• Every virtual machine process executes with the normal, unprivileged user ID of
“qemu” and the group ID of “qemu”. This implies that these processes do not
possess any Linux kernel capability.

• Libvirtd sets up the unique SELinux label for a virtual machine and assigns it to
the virtual machine and its resources. The resource access control functionality is
defined as an independent security functionality.

• Libvirtd can instruct the kernel to set up the IOMMU in a way to exclusively assign
hardware resources to a virtual machine process as an independent security
functionality.

• Every virtual machine process will be placed in a dedicated control group or
cgroup. Cgroup is a mechanism of the Linux kernel to mark processes and assign
certain properties to these processes. Every process spawned by an already-
marked process will bear the same identifier. Using the device whitelist controller
with the cgroup mechanism, ACLs on devices are implemented. Libvirtd uses
cgroups to restrict access of each virtual machine process to only the devices
assigned to this virtual machine, even though ordinary UNIX permission bits would
have granted access to these devices. Please note that this mechanism only
applies when the disk resource granted to a virtual machine is based on iSCSI,
LVM or SANs. It does not apply to backends like regular files, NFS or others.

Virtual machines are associated with one or more unique IP addresses that can be used
to communicate with other virtual machines on the same host or with other external
entities. The kernel ensures that the configured IP addresses are used by the virtual
machines for any network-related communication.
The oVirt management framework supports, but does not enforce, the SFRs in this
Security Target. Figure 3, Virtualization System and Platform shows the relationship
between oVirt and the previously described Linux components.

Version 2.3 Copyright © 2021 by Red Hat Page 52 (64)

Figure 3, Virtualization System and Platform

Once QEMU is spawned, it interacts with the Linux kernel KVM framework to provide one
virtual machine instance. Together with the KVM framework, QEMU provides the
execution environment for the guest operating system. This includes the virtualization
and para-virtualization of all resources that are referenced via the command line
parameters. For example, a storage resource may be presented to the guest as a VirtIO
storage device by QEMU.
QEMU implements a SPICE daemon that may be enabled if configured via the oVirt
management framework. SPICE is the protocol used to access the virtual machine
console. An external SPICE client connects to the QEMU SPICE daemon to access this
virtual machine console. When oVirt triggers the instantiation of a virtual machine via
libvirt, it also provides the network port to be used for the SPICE communication of this
QEMU instance. In order for the SPICE client to know which port to access, oVirt provides
the connection details to the SPICE client.
In addition to the virtual machine console, QEMU externalizes the serial console of the
guest operating system if configured by the oVirt management framework. The serial
console is accessed by a client via SSH. oVirt instantiates a separate SSH daemon which
connects to the QEMU serial console interface using TLS. The SSH daemon is configured
to only allow SSH-key-based authentication. oVirt provides the following data to the SSH
daemon:

• oVirt manages the SSH keys used for authentication. The SSH daemon obtains the
keys from oVirt to implement and enforce the key-based authentication.

• oVirt knows which QEMU instances are available on the system, thus it provides
the information to SSHD to ensure that a user authenticated by SSHD is only
connected to the serial console of the intended QEMU instance.

7.1.1 Audit
Auditing support is implemented using the Linux Auditing Framework (LAF). libvirt
generates audit entries which are stored on disk by the audit daemon. The audit data can
be reviewed using the ausearch utility.
The Linux Audit Framework (LAF) is designed to be an audit system making Linux
compliant with the requirements from Common Criteria. LAF is able to intercept all
system calls as well as retrieving audit log entries from privileged user space
applications. The subsystem allows configuring the events to be actually audited from
the set of all events that are possible to be audited. Those events are configured in a
specific configuration file and then the kernel is notified to build its own internal structure
for the events to be audited.

libvirt PAM

QEMU auditd

ausearch

oVirt Software Collection
SPICE
 Client

KVM SELinux

Network /
Bridge

Auditing
Linux Kernel

SFR Enforcing

SFR Supporting

TOE-External

Serial
Console

Via
SSH

SSHD

Version 2.3 Copyright © 2021 by Red Hat Page 53 (64)

7.1.1.1 Audit functionality
The Linux kernel implements the core of the LAF functionality. It gathers all audit events,
analyzes these events based on the audit rules and forwards the audit events that are
requested to be audited to the audit daemon executing in user space.
Audit events are generated in various places of the kernel. In addition, a user space
application can create audit records which need to be passed to the kernel for further
processing.
The audit functionality of the Linux kernel is configured by user space applications which
communicate with the kernel using a specific netlink communication channel. This
netlink channel is also used by applications that want to send an audit event to the
kernel.
The kernel netlink interface is usable only by applications possessing the following
capabilities:

• CAP_AUDIT_CONTROL: Performing management operations like adding or deleting
audit rules, setting or getting auditing parameters;

• CAP_AUDIT_WRITE: Submitting audit records to the kernel which in turn forwards
the audit records to the audit daemon.

Based on the audit rules, the kernel decides whether an audit event is discarded or sent
to the user space audit daemon for storage in the audit trail. The kernel sends the
message to the audit daemon using the above-mentioned netlink communication
channel. The audit daemon writes the audit records to the audit trail. An internal queuing
mechanism is used for this purpose. When the queue does not have sufficient space to
hold an audit record, the kernel switches into single-user mode and is halted or the audit
daemon executes an administrator-specified notification action depending on the
configuration of the audit daemon. This ensures that audit records are not lost due to a
resource shortage and the administrator can backup and clear the audit trail to free disk
space for new audit logs.
Access to audit data by normal users is prohibited by the discretionary access control
function of the kernel, which is used to restrict the access to the audit trail and audit
configuration files to the system administrator only.
The system administrator can define the events to be audited from the overall events
that the Linux Audit Framework offers using simple filter expressions. This allows for a
flexible definition of the events to be audited and the conditions under which events are
audited. The system administrator is also able to define a set of user IDs for which
auditing is active or alternatively a set of user IDs that are not audited.
The system administrator can select the audited events. Individual files can be
configured to be audited by adding them to a watch list that is loaded into the kernel. In
addition, audit rules can be specified to generate audit data based on a large number of
different attributes, including:

• Subject or user identifiers
• Result of the operation (success/failure)
• Object identity
• Operation performed on an object
• System call number
• SELinux label components

The TOE provides a management application that uses the aforementioned netlink
interface. This application is used during boot time to load the audit rules from the
configuration file /etc/audit/audit.rules. The audit rules can be modified at runtime of the
system.
This security functionality supports FAU_GEN.1.

Version 2.3 Copyright © 2021 by Red Hat Page 54 (64)

7.1.1.2 Audit trail
An audit record consists of one or more lines of text containing fields in a
“keyword=value” tagged format. The following information is contained in all audit
record lines:

• Type: indicates the source of the event, such as SYSCALL, PATH, USER_LOGIN, or
LOGIN

• Timestamp: Date and time the audit record was generated
• Audit ID: unique numerical event identifier
• Login ID (“auid”), the user ID of the user authenticated by the system (regardless

if the user has changed his real and / or effective user ID afterwards)
• Success or failure (where appropriate)
• SELinux label of the subject that caused the event
• Process ID of the subject that caused the event (PID)
• Hostname or terminal the subject used performing the operation
• Information about the intended operation

This information is followed by event specific data. In some cases, such as SYSCALL
event records involving file system objects, multiple text lines will be generated for a
single event. These all have the same time stamp and audit ID to permit easy
correlation.
The audit trail is stored in ASCII text. The TOE provides tools for managing ASCII files that
can be used for post-processing of audit data. The ausearch application allows selective
extraction of records from the audit trail using defined selection criteria. Using the
ausearch application, the administrator is able to select the information he wants to
review. The tools allow the specification of a fine-grained search pattern where each
information component can be searched for, including combinations of these patterns.
The audit trail is stored in files which are accessible by root only. If the audit trail reaches
a warning threshold, the administrator is notified. If the audit trail is full, the audit
daemon rejects new audit logs from the kernel to store and the kernel buffer holding
audit messages fills up. When the kernel audit message buffer is full, the kernel
suspends every subject that triggered an auditable event until the buffer is cleared,
preventing additional auditable events. In addition, the audit daemon can inform the
administrator of the full audit trail, can switch to single-user mode, or can halt the
system, depending on the configuration.
This security functionality supports FAU_SAR.1 and FAU_STG.1.

7.1.2 User Data Protection
The TOE uses hardware-based isolation mechanisms and physical platform resource
controls to protect user data.

7.1.2.1 Required hardware support
The TOE uses Linux kernel mechanisms, which in turn use hardware-based mechanisms,
to constrain VMs when VMs have direct access to physical devices.
The Linux kernel uses various hardware mechanisms to provide the virtualization support
and ensure proper separation of virtual machines. The following enumerates the
hardware support and indicates whether the underlying hardware must provide the
respective functionality to achieve full separation.
IOMMU virtualization support

If PCI device assignment is configured, the hardware must provide the IOMMU
mechanism located on the North Bridge chip set. Intel chip sets with the VT-d
support implement the IOMMU support. The KVM Linux kernel support can only
implement the PCI device assignment functionality when the chip set implements
the mentioned IOMMU mechanisms and they are enabled.

Version 2.3 Copyright © 2021 by Red Hat Page 55 (64)

This security functionality supports FDP_HBI_EXT.1.

7.1.2.2 Network resources
The TOE provides a central location for users to perform logical network-related
operations and search for logical networks based on each network’s property or
association with other resources. The following operations are allowed:

• Attaching or detaching the networks to hosts
• Removing network interfaces from virtual machines and templates

The TOE does not provide any other means for inter-virtual-machine-communication
apart from these network administration functions.
 The TOE allows configuration of virtual switches and network interfaces for establishing
a communication between virtual machines within a host. In addition, the TOE can be
configured to link a virtual switch or a virtual interface with a physical interface to allow a
virtual machine to communicate outside of the host.
This security functionality supports FDP_VMS_EXT.1 and FDP_VNC_EXT.1.

7.1.2.3 Residual Information Protection
The TOE protects against residual information being left behind in both memory and on
disk after use by a virtual machine.

In Memory
The TOE utilizes the underlying Linux kernel to manage memory. Each time a process is
given new memory, the kernel allocates the requested amount of memory pages which
are all zeroized before the process can access them.
This security functionality supports FDP_RIP_EXT.1.

On Disk
The TOE utilizes the underlying Linux kernel to manage information on disk. The Linux
kernel ensures that when a new sparse file is created, accessing any block for the first
time within that file will return a zero page. When pre-allocating file-based storage, the
TOE ensures that the entire file contains zeros. Only when mapping a physical disk
device directly from the host would existing data be available to a guest VM.
This security functionality supports FDP_RIP_EXT.2.

7.1.2.4 Physical Platform Resource Controls
The TOE relies on the fact that each virtual machine is represented by a separate Linux
process. Each process has a separate instance of the QEMU application previously
described to provide the virtualized environment.
This security functionality supports FDP_PPR_EXT.1.

7.1.3 Identification and Authentication
The TOE uses RHEL authentication and password management functions. All
administrative users must always authenticate when accessing consoles. The TOE utilizes
the underlying Linux authentication mechanisms. The TOE (oVirt) authenticates users by
using the PAM library offered by the basic Linux operating system. Using PAM
authentication of users with the local user database is achieved. To access remote
authentication providers like LDAP or Active Directory, oVirt uses appropriate PAM
configurations. Remote authentication providers implement the authentication of users
and return the information about authentication decisions to PAM which forwards the
result to oVirt for enforcement. PAM also links with the Linux Auditing Framework to
provide the capability to audit authentication requests.

Version 2.3 Copyright © 2021 by Red Hat Page 56 (64)

Users and their credentials are allowed to be managed via an external directory server. A
variety of directory server products are supported by the TOE.
This security functionality supports FIA_AFL_EXT.1, FIA_PMG_EXT.1, FIA_UAU.5, and
FIA_UIA_EXT.1.

7.1.4 Security Management
Hosts, also known as hypervisors, are the physical servers on which virtual machines run.
Full virtualization is provided by using a loadable Linux kernel module called Kernel-
based Virtual Machine (KVM).
KVM can concurrently host multiple virtual machines running either Windows or Linux
operating systems. Virtual machines run as individual Linux processes and threads on
the host machine and are managed remotely by the Red Hat Virtualization Manager. A
Red Hat Virtualization environment has one or more hosts attached to it.
The security management of covers the entire life-cycle of Virtual Machines from the
creation, starting stopping, restarting and deletion of VMs.
The oVirt management framework allowing users – considered to be an administrator in
terms of the evaluation – to manage resources assigned to virtual machines as well as
virtual machines. Management operations that are applied to resources like networking
options, storage options, etc. are applied to objects that are not yet part of virtual
machines. Such operations may include the preparation of storage objects like creating
file system objects that eventually will become backends for virtual machine disk images.
All these operations are outside of the security claims of this ST. At one point, however, a
user may perform an operation on virtual machines. Such operations include start or stop
of virtual machines or other operations.
The oVirt translates all operations into XML requests that are forwarded to the libvirt API.
These are the same as requests that can be sent via virsh or any other invocation of the
libvirt API. Note the API is reachable via the network since libvirt is a daemon. These XML
requests received by the libvirt API are transformed into command line parameters with
which the QEMU application is invoked. The invocation of the QEMU application assigns
the resources managed by oVirt to QEMU. All resources the QEMU application shall use
for virtualization, such as storage backends, are referenced as command line parameters
to QEMU. As part of the invocation of the QEMU application, libvirt configures the Linux
kernel infrastructure, like SELinux labels for the QEMU resources and QEMU, configures
the networking options, like bridges and assignment of QEMU networking interfaces to
bridges. In addition, libvirt contains auditing support which may cause audit entries to be
generated for administrative actions.
Once QEMU is spawned, it interacts with the Linux kernel KVM framework to provide one
virtual machine instance. Together with the KVM framework, QEMU provides the
execution environment for the guest operating system. This includes the virtualization
and para-virtualization of all resources that are referenced via the command line
parameters. For example, a storage resource may be presented to the guest as a VirtIO
storage device by QEMU.
This security functionality supports FMT_MOF_EXT.1, and FMT_MSA_EXT.1.
To ensure that the management and operational networks maintain separation, [ECG]
outlines how a separate, dedicated administrative LAN is established with the TOE in the
evaluated configuration.
This security functionality supports FMT_SMO_EXT.1.

7.1.5 Protection of the TSF
The TOE provides functionality to mitigate the effects of buffer overrun vulnerabilities in
applications and to protect against residual information remaining in memory or on disk
between uses by different virtual machine instances.

Version 2.3 Copyright © 2021 by Red Hat Page 57 (64)

7.1.5.1 Buffer Overrun Protection
The TOE provides mechanisms to prevent or significantly increase the complexity of
exploitation of common buffer overflow and similar attacks. These mechanisms are used
for the TSF and are available to untrusted code.
Runtime protection against programming errors is provided by implementing multiple
countermeasures against exploitation of such errors. Standard programming errors, such
as buffer overflows, are exploitable using known techniques. The TOE blocks or
significantly increases the challenge to use these techniques with the following different
approaches:

• Prevention of code execution on the process' or thread's stack. This prevents
standard buffer overflow attacks which write executable code (e.g. the shellcode)
into a stack variable and causes the CPU to execute it. A guard variable is added
to functions with vulnerable objects and is checked for correctness after a
function ends and before the function pointed to by the return address is
evaluated. This guard variable is also known as Stack Canary. The variable is a
random number which is generated during startup of an application and used
throughout the lifetime of the process.

• Performing address space randomization which affects position independent code
(PIC) as well as position independent executables (PIE). All shared libraries are
necessarily PIC, whereas only dedicated TSF applications are PIE. Users may
compile their applications as PIE to allow address space randomization protect
their applications. Using Address Space Layout Randomization (ASLR) configured
by the Linux kernel, the layout of the address space covering the memory pages
as well as the stack, the location of application and library code segments with
their symbols differs for each instantiation of a process. This means that even
when the same binary is started in a second process, its address space is
completely different than the layout of the first instance. This approach makes is
very hard for attackers to modify the return address stored on the stack during a
buffer overrun exploit. Therefore, using code present in the binaries to mount an
attack is rendered difficult as the attacker does not know the address of the
memory segments he wants the CPU to execute. Note, this approach does not
technically prevent the exploitation, but adds significant barriers to doing so
successfully.

• Marking the runtime memory of all parts of a binary as read-only apart from heap
data before the loaded application gains control. This support is enabled for
dedicated TSF applications and specifically compiled user applications. Partial
protection is also possible which implies that also the .got.plt section is marked
read/writable. The technique called read-only relocation (RELRO) is implemented
by the Linux loader and linker to mark memory as read only. This memory
contains the ELF segments holding the global object table (GOT) and procedure
linking table (PLT) after the resolution by the linker but before the main() function
of the application is called. These sections store offset tables required for the
dynamic linking mechanism and, if abused, allow attackers to modify the jump
addresses of object accesses. Marking these memory segments read-only
requires the dynamic linker to resolve all library symbols of shared libraries during
load time of the application. Marking the PLT as read only incurs a significant
performance penalty. Therefore, the TOE implements two types of RELRO: partial
and full.

o Full RELRO support means that for an application and all dependent shared
libraries, the PLT is set read only in addition to all ELF header sections
other than the data segments. If at least one dependent library is not
compiled with full RELRO, the entire application cannot be claimed to have
full RELRO. Note, the TOE code does not use full RELRO.

o Partial RELRO means that for an application and all dependent libraries, all
ELF sections except the data segments are marked read only. The PLT is
not marked read only in either the application or at least one dependent

Version 2.3 Copyright © 2021 by Red Hat Page 58 (64)

shared library. If at least one dependent library is compiled without RELRO,
the entire application cannot be claimed to have partial RELRO.

• The FORTIFY_SOURCE macro provides lightweight support for detecting buffer
overflows in various functions that perform operations on memory and strings.
Not all types of buffer overflows can be detected with this macro, but it does
provide an extra level of validation for some functions that are potentially a
source of buffer overflow flaws. It protects both C and C++ code.
FORTIFY_SOURCE works by computing the number of bytes that are going to be
copied from a source to the destination. All packages are compiled with -
D_FORTIFY_SOURCE=2.

On Intel CPUs starting with Ivy Bridge, the CPU feature SMEP is employed which prevents
the kernel from executing code located in user space memory.
Intel CPUs starting with Haswell CPUs offers the feature SMAP. This feature is employed
by the Linux kernel which ensures that the Linux kernel cannot read from or write to user
space memory.
This security functionality supports FPT_EEM_EXT.1.

7.1.5.2 Storage Management
A storage domain is a collection of images that have a common storage interface. A
storage domain contains complete images of templates and virtual machines (including
snapshots), or ISO files. A storage domain can be made of block devices (SAN - iSCSI or
FCP) or a file system (NAS - NFS, GlusterFS, or other POSIX compliant file systems).
On NFS, all virtual disks, templates, and snapshots are files.
On SAN (iSCSI/FCP), each virtual disk, template or snapshot is a logical volume. Block
devices are aggregated into a logical entity called a volume group, and then divided by
LVM (Logical Volume Manager) into logical volumes for use as virtual hard disks. See Red
Hat Enterprise Linux Logical Volume Manager Administration Guide for more information
on LVM.
Virtual disks can have one of two formats, either QCOW2 or raw. The type of storage can
be sparse or preallocated. Snapshots are always sparse but can be taken for disks of
either format.
Virtual machines that share the same storage domain can be migrated between hosts
that belong to the same cluster.
By default, in an NFS, local, or POSIX compliant data center, the SPM creates the virtual
disk using a thin provisioned format as a file in a file system.
In iSCSI and other block-based data centers, the SPM creates a volume group on top of
the Logical Unit Numbers (LUNs) provided and makes logical volumes to use as virtual
disks. Virtual disks on block-based storage are preallocated by default.
Reassignment of removable media is only allowed for read-only media like CD/DVD or
ISO images presented as virtual CD/DVD to a guest.
This security functionality supports FPT_RDM_EXT.1.

7.1.5.3 Required hardware support
The TOE uses Linux kernel mechanisms, which in turn use hardware-based mechanisms,
to constrain VMs when VMs have direct access to physical devices.
The Linux kernel uses various hardware mechanisms to provide the virtualization support
and ensure proper separation of virtual machines. The following enumerates the
hardware support and indicates whether the underlying hardware must provide the
respective functionality to achieve full separation.
Processor virtualization support

The Linux kernel uses the Intel VT-x processor support to allow untrusted software
to execute in user mode and supervisor mode. The KVM mechanism of the Linux
kernel is only operational if these support mechanisms are implemented. This
evaluation applies only when the processor virtualization support is present and

Version 2.3 Copyright © 2021 by Red Hat Page 59 (64)

enabled. The kernel marks the enabled virtualization support in /proc/cpuinfo as the
CPU flag vmx (Intel).

Shadow page table support
The Linux kernel uses the shadow page table support provided with the CPU (Intel
refers to this mechanism as EPT - extended page table support). The shadow page
table support ensures that the processor handles guest software access to the
paging configuration and the associated page-table walks. The evaluation applies
only if the underlying processor has the shadow page table support enabled and
ready for use. For x86 CPUs, the kernel marks the enabled shadow page table
support in /proc/cpuinfo as the CPU flag ept (Intel) and npt (AMD).

This security functionality supports FPT_HAS_EXT.1.

7.1.5.4 Resource access control for virtual machines
The TOE implements the following types of access control restrictions to limit access of
virtual machines to only their resources:

• SELinux-based: each virtual machine and its resources are assigned a unique
SELinux label which prevents other virtual machines with a different label from
accessing either the virtual machine process or its resources.

• IOMMU-based: The TOE is able to configure the IOMMU of the underlying machine
to bind the DMA address space of a particular physical resource to be only visible
in the address space of the virtual machine process configured to access that
resource.

• Cgroup-based: each virtual machine is granted access to a whitelist of device
files. Access to other device files is prevented using the cgroup device ACL
mechanism.

The SELinux mechanism is implemented as a Linux Security Module (LSM) that is invoked
for each and every operation of a subject on an object or resource. The SELinux policy
enforced for virtual machines therefore prevent virtual machines from accessing:

• Resources assigned to other virtual machines,
• Resources owned by other users on the system,
• Resources belonging to the host operating system.

This security functionality supports FPT_DVD_EXT.1.

7.1.5.5 Virtual Device Parameters
The TOE supports the following types of interfaces:

• Hypercalls: A guest can issue hypercalls to access para-virtualized host services
implemented in the kernel.

• Exceptions: A guest can trigger exceptions that must be caught by the host
kernel. Those exceptions may be handled by the kernel (such as interrupts, most
instruction completion operations) or by QEMU associated with the guest for more
complex exceptions (such as interaction with fully virtualized devices or para-
virtualized devices provided by QEMU). In case of para-virtualized devices, the
VirtIO framework is used for communication between the guest and the host.

• VNC: The QEMU application associated with a guest allows access to a guest's
console via VNC. That VNC communication channel may be tunneled through
cryptographic channels if configured by the administrator.

This security functionality supports FPT_VDP_EXT.1 and FPT_VIV_EXT.1.

7.1.5.6 Reliable Time Stamps
Audit logs depend on reliable time stamps. The RHEL operating system, which is part of
the TOE, provides an accurate time function. The time is set by the administrator.
This security functionality supports FPT_STM.1.

Version 2.3 Copyright © 2021 by Red Hat Page 60 (64)

7.1.6 Trusted Path/Channels
The TOE implements trusted paths and trusted channels using components of the RHEL
virtual machine environment.

7.1.6.1 User Interface

I/O Focus
The user or administrator can connect to the VM console using either the SPICE or VNC
graphics protocols which communicate through QEMU. From the perspective of the
virtual machine, focus is always on this connection. Focus for the user's keyboard and
mouse is managed by the system and/or window manager they use to make their
connection to the TOE or a VM.
This security functionality supports FTP_UIF_EXT.1.

Identification of VM
Access to virtual machines is only possible via network access: either network access of
the guest operating system or via VNC-offered QEMU for the guest. Each virtual machine
has one or more unique IP addresses for network access allowing an unambiguous
identification. When using VNC, each VNC server endpoint maintained by a QEMU
instance has a unique identifier which allows unique identification of the accessed virtual
machine.
This security functionality supports FTP_UIF_EXT.2.

Version 2.3 Copyright © 2021 by Red Hat Page 61 (64)

8 Abbreviations, Terminology and References

8.1 Abbreviations

8.2 Terminology
This section contains definitions of technical terms that are used with a meaning specific
to this document. Terms defined in the [CC] are not reiterated here, unless stated
otherwise.
Administrator

Administrators perform management activities on the VS. These management
functions do not include administration of software running within Guest VMs, such
as the Guest OS. Administrators need not be human as in the case of embedded or
headless VMs. Administrators are often nothing more than software entities that
operate within the VM.

Auditor
Auditors are responsible for managing the audit capabilities of the TOE. An Auditor
may also be an Administrator. It is not a requirement that the TOE be capable of
supporting an Auditor role that is separate from that of an Administrator.

Domain
A Domain or Information Domain is a policy construct that groups together
execution environments and networks by sensitivity of information and access
control policy. For example, classification levels represent information domains.
Within classification levels, there might be other domains representing communities
of interest or coalitions. In the context of a VS, information domains are generally
implemented as collections of VMs connected by virtual networks. The VS itself can
be considered an Information Domain, as can its Management Subsystem.

EPT
Extended Page Table

FCP
Fibre Channel Protocol (FCP) is a protocol that transports SCSI commands over Fibre
Channel networks.

Guest Network
See Operational Network.

Guest Operating System (OS)
An operating system that runs within a Guest VM.

Guest VM
A Guest VM is a VM that contains a virtual environment for the execution of an
independent computing system. Virtual environments execute mission workloads
and implement customer-specific client or server functionality in Guest VMs, such
as a web server or desktop productivity applications.

Helper VM
A Helper VM is a VM that performs services on behalf of one or more Guest VMs, but
does not qualify as a Service VM—and therefore is not part of the VMM. Helper VMs
implement functions or services that are particular to the workloads of Guest VMs.
For example, a VM that provides a virus scanning service for a Guest VM would be
considered a Helper VM. For the purposes of this document, Helper VMs are
considered a type of Guest VM, and are therefore subject to all the same
requirements, unless specifically stated otherwise.

Host Operating System (OS)

Version 2.3 Copyright © 2021 by Red Hat Page 62 (64)

An operating system onto which a VS is installed. Relative to the VS, the Host OS is
part of the Platform.

Hypercall
An API function that allows VM-aware software running within a VM to invoke VMM
functionality.

Hypervisor
The Hypervisor is part of the VMM. It is the software executive of the physical
platform of a VS. A Hypervisor’s primary function is to mediate access to all CPU
and memory resources, but it is also responsible for either the direct management
or the delegation of the management of all other hardware devices on the hardware
platform.

Information Domain
See Domain.

Introspection
A capability that allows a specially designated and privileged domain to have
visibility into another domain for purposes of anomaly detection or monitoring.

iSCSI
Internet Small Computer Systems Interface is an IP-based storage networking
standard providing block-level access to storage devices by carrying SCSI
commands over a TCP/IP network.

KVM
Kernel-based Virtual Machine (KVM) is a virtualization module in the Linux kernel
that allows the kernel to function as a hypervisor.

LAF
Linux Audit Framework (LAF) is designed to be an audit system making Linux
compliant with the requirements from Common Criteria.

LSM
Linux Security Modules is a framework that allows the Linux kernel to support a
variety of computer security models and is a standard part of the Linux kernel.

LVM
Logical Volume Manager (LVM) is a device mapper target that provides logical
volume management for the Linux kernel.

Management Network
A network, which may have both physical and virtualized components, used to
manage and administer a VS. Management networks include networks used by VS
Administrators to communicate with management components of the VS, and
networks used by the VS for communications between VS components. For
purposes of this document, networks that connect physical hosts for purposes of VM
transfer or coordinate, and back-end storage networks are considered management
networks.

Management Subsystem
Components of the VS that allow VS Administrators to configure and manage the
VMM, as well as configure Guest VMs. VMM management functions include VM
configuration, virtualized network configuration, and allocation of physical
resources.

NFS
Network File System (NFS) is a distributed file system protocol allowing a user on a
client computer to access files over a computer network as if it resided on a local
storage device.

Operational Network
An Operational Network is a network, which may have both physical and virtualized
components, used to connect Guest VMs to each other and potentially to other

Version 2.3 Copyright © 2021 by Red Hat Page 63 (64)

entities outside of the VS. Operational Networks support mission workloads and
customer-specific client or server functionality. Also called a “Guest Network.”

Physical Platform
The hardware environment on which a VS executes. Physical platform resources
include processors, memory, devices, and associated firmware.

Platform
The hardware, firmware, and software environment into which a VS is installed and
executes.

QEMU
QEMU is an open source machine emulator and virtualizer.

RELRO
Read-only relocation of runtime memory segments.

SAN
Storage Area Network is a computer network which provides access to
consolidated, block-level data storage.

Service VM
A Service VM is a VM whose purpose is to support the Hypervisor in providing the
resources or services necessary to support Guest VMs. Service VMs may implement
some portion of Hypervisor functionality, but also may contain important system
functionality that is not necessary for Hypervisor operation. As with any VM, Service
VMs necessarily execute without full Hypervisor privileges — only the privileges
required to perform its designed functionality. Examples of Service VMs include
device driver VMs that manage access to a physical device, and name-service VMs
that help establish communication paths between VMs.

SPICE
Simple Protocol for Independent Computing Environments remote display system
for virtual environments.

SPM
Storage Pool Manager (SPM) is a role given to one of the hosts in the data center
enabling it to manage the storage domains of the data center.

System Security Policy (SSP)
The overall policy enforced by the VS defining constraints on the behavior of VMs
and users.

User
Users operate Guest VMs and are subject to configuration policies applied to the VS
by Administrators. Users need not be human as in the case of embedded or
headless VMs, users are often nothing more than software entities that operate
within the VM.

Virtualization System (VS)
A software product that enables multiple independent computing systems to
execute on the same physical hardware platform without interference from one
other. For the purposes of this document, the VS consists of a Virtual Machine
Manager (VMM), Virtual Machine (VM) abstractions, a management subsystem, and
other components.

Virtual Machine (VM)
A Virtual Machine is a virtualized hardware environment in which an operating
system may execute.

Virtual Machine Manager (VMM)
A VMM is a collection of software components responsible for enabling VMs to
function as expected by the software executing within them. Generally, the VMM
consists of a Hypervisor, Service VMs, and other components of the VS, such as
virtual devices, binary translation systems, and physical device drivers. It manages
concurrent execution of all VMs and virtualizes platform resources as needed.

Version 2.3 Copyright © 2021 by Red Hat Page 64 (64)

VNC
Virtual Network Computing graphical desktop sharing system.

8.3 References
BVPPv1.0 Protection Profile for Virtualization Version 1.0

Version 1.0, 2016-11-22
https://www.niap-ccevs.org/MMO/PP/pp_base_virtualization_v1.0.pdf

CC Common Criteria for Information Technology Security Evaluation
Version 3.1R5, April 2017
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R5.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R5.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf

ECG EAL2 Evaluated Configuration Guide for Red Hat Virtualization 4.3
Version 0.9, 2021-11-08

RHVAG Red Hat Virtualization 4.3 Administration Guide
Red Hat, Inc., 2020-10-06
https://access.redhat.com/documentation/en-
us/red_hat_virtualization/4.3/html/administration_guide/index

RHVPG Red Hat Virtualization 4.3 Product Guide
Red Hat, Inc., 2020-04-20
https://access.redhat.com/documentation/en-
us/red_hat_virtualization/4.3/html-single/product_guide/index

RHVPPG Red Hat Virtualization 4.3 Planning and Prerequisites Guide
Red Hat, Inc., 2020-03-27
https://access.redhat.com/documentation/en-
us/red_hat_virtualization/4.3/html/planning_and_prerequisites_guide/index

RHVTR Red Hat Virtualization 4.3 Technical Reference
Red Hat, Inc., 2020-04-20
https://access.redhat.com/documentation/en-
us/red_hat_virtualization/4.3/html/technical_reference/index

SVEPv1.0 Extended Package for Server Virtualization Version 1.0
Version 1.0, 2016-11-22
https://www.niap-ccevs.org/MMO/PP/ep_sv_v1.0.pdf

